Skip to content

Commit

Permalink
Merge pull request #300 from helinwang/demo
Browse files Browse the repository at this point in the history
Add demo for fault tolerant label semantic role and machine translation.
  • Loading branch information
helinwang authored Aug 14, 2017
2 parents 56810cf + 1d5420f commit 73ade55
Show file tree
Hide file tree
Showing 2 changed files with 468 additions and 0 deletions.
229 changes: 229 additions & 0 deletions demo/label_semantic_roles/train_ft.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,229 @@
import os
import math
import numpy as np
import paddle.v2 as paddle
import paddle.v2.dataset.conll05 as conll05
import paddle.v2.evaluator as evaluator
from paddle.v2.reader.creator import cloud_reader

etcd_ip = os.getenv("ETCD_IP")
etcd_endpoint = "http://" + etcd_ip + ":" + "2379"

word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
pred_len = len(verb_dict)

mark_dict_len = 2
word_dim = 32
mark_dim = 5
hidden_dim = 512
depth = 8
default_std = 1 / math.sqrt(hidden_dim) / 3.0
mix_hidden_lr = 1e-3


def d_type(size):
return paddle.data_type.integer_value_sequence(size)


def db_lstm():
#8 features
word = paddle.layer.data(name='word_data', type=d_type(word_dict_len))
predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len))

ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len))
ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len))
ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len))
ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len))
ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len))
mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len))

emb_para = paddle.attr.Param(name='emb', initial_std=0., is_static=True)
std_0 = paddle.attr.Param(initial_std=0.)
std_default = paddle.attr.Param(initial_std=default_std)

predicate_embedding = paddle.layer.embedding(
size=word_dim,
input=predicate,
param_attr=paddle.attr.Param(name='vemb', initial_std=default_std))
mark_embedding = paddle.layer.embedding(
size=mark_dim, input=mark, param_attr=std_0)

word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
emb_layers = [
paddle.layer.embedding(size=word_dim, input=x, param_attr=emb_para)
for x in word_input
]
emb_layers.append(predicate_embedding)
emb_layers.append(mark_embedding)

hidden_0 = paddle.layer.mixed(
size=hidden_dim,
bias_attr=std_default,
input=[
paddle.layer.full_matrix_projection(
input=emb, param_attr=std_default) for emb in emb_layers
])

lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0)
hidden_para_attr = paddle.attr.Param(
initial_std=default_std, learning_rate=mix_hidden_lr)

lstm_0 = paddle.layer.lstmemory(
input=hidden_0,
act=paddle.activation.Relu(),
gate_act=paddle.activation.Sigmoid(),
state_act=paddle.activation.Sigmoid(),
bias_attr=std_0,
param_attr=lstm_para_attr)

#stack L-LSTM and R-LSTM with direct edges
input_tmp = [hidden_0, lstm_0]

for i in range(1, depth):
mix_hidden = paddle.layer.mixed(
size=hidden_dim,
bias_attr=std_default,
input=[
paddle.layer.full_matrix_projection(
input=input_tmp[0], param_attr=hidden_para_attr),
paddle.layer.full_matrix_projection(
input=input_tmp[1], param_attr=lstm_para_attr)
])

lstm = paddle.layer.lstmemory(
input=mix_hidden,
act=paddle.activation.Relu(),
gate_act=paddle.activation.Sigmoid(),
state_act=paddle.activation.Sigmoid(),
reverse=((i % 2) == 1),
bias_attr=std_0,
param_attr=lstm_para_attr)

input_tmp = [mix_hidden, lstm]

feature_out = paddle.layer.mixed(
size=label_dict_len,
bias_attr=std_default,
input=[
paddle.layer.full_matrix_projection(
input=input_tmp[0], param_attr=hidden_para_attr),
paddle.layer.full_matrix_projection(
input=input_tmp[1], param_attr=lstm_para_attr)
], )

return feature_out


def load_parameter(file_name, h, w):
with open(file_name, 'rb') as f:
f.read(16) # skip header.
return np.fromfile(f, dtype=np.float32).reshape(h, w)


def main():
paddle.init()

# define network topology
feature_out = db_lstm()
target = paddle.layer.data(name='target', type=d_type(label_dict_len))
crf_cost = paddle.layer.crf(
size=label_dict_len,
input=feature_out,
label=target,
param_attr=paddle.attr.Param(
name='crfw', initial_std=default_std, learning_rate=mix_hidden_lr))

crf_dec = paddle.layer.crf_decoding(
size=label_dict_len,
input=feature_out,
label=target,
param_attr=paddle.attr.Param(name='crfw'))
evaluator.sum(input=crf_dec)

# create parameters
parameters = paddle.parameters.create(crf_cost)
parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32))

# create optimizer
optimizer = paddle.optimizer.Momentum(
momentum=0,
learning_rate=2e-2,
regularization=paddle.optimizer.L2Regularization(rate=8e-4),
model_average=paddle.optimizer.ModelAverage(
average_window=0.5, max_average_window=10000), )

trainer = paddle.trainer.SGD(
cost=crf_cost,
parameters=parameters,
update_equation=optimizer,
extra_layers=crf_dec)

reader = paddle.batch(
paddle.reader.shuffle(cloud_reader(
["/pfs/dlnel/public/dataset/conll05/conl105_train-*"],
etcd_endpoint), buf_size=8192), batch_size=10)

feeding = {
'word_data': 0,
'ctx_n2_data': 1,
'ctx_n1_data': 2,
'ctx_0_data': 3,
'ctx_p1_data': 4,
'ctx_p2_data': 5,
'verb_data': 6,
'mark_data': 7,
'target': 8
}

def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "Pass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
if event.batch_id % 1000 == 0:
result = trainer.test(reader=reader, feeding=feeding)
print "\nTest with Pass %d, Batch %d, %s" % (
event.pass_id, event.batch_id, result.metrics)

if isinstance(event, paddle.event.EndPass):
# save parameters
with open('params_pass_%d.tar' % event.pass_id, 'w') as f:
parameters.to_tar(f)

result = trainer.test(reader=reader, feeding=feeding)
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)

trainer.train(
reader=reader,
event_handler=event_handler,
num_passes=1,
feeding=feeding)

test_creator = paddle.dataset.conll05.test()
test_data = []
for item in test_creator():
test_data.append(item[0:8])
if len(test_data) == 1:
break

predict = paddle.layer.crf_decoding(
size=label_dict_len,
input=feature_out,
param_attr=paddle.attr.Param(name='crfw'))
probs = paddle.infer(
output_layer=predict,
parameters=parameters,
input=test_data,
field='id')
assert len(probs) == len(test_data[0][0])
labels_reverse = {}
for (k, v) in label_dict.items():
labels_reverse[v] = k
pre_lab = [labels_reverse[i] for i in probs]
print pre_lab


if __name__ == '__main__':
main()
Loading

0 comments on commit 73ade55

Please sign in to comment.