-
Notifications
You must be signed in to change notification settings - Fork 78
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #300 from helinwang/demo
Add demo for fault tolerant label semantic role and machine translation.
- Loading branch information
Showing
2 changed files
with
468 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,229 @@ | ||
import os | ||
import math | ||
import numpy as np | ||
import paddle.v2 as paddle | ||
import paddle.v2.dataset.conll05 as conll05 | ||
import paddle.v2.evaluator as evaluator | ||
from paddle.v2.reader.creator import cloud_reader | ||
|
||
etcd_ip = os.getenv("ETCD_IP") | ||
etcd_endpoint = "http://" + etcd_ip + ":" + "2379" | ||
|
||
word_dict, verb_dict, label_dict = conll05.get_dict() | ||
word_dict_len = len(word_dict) | ||
label_dict_len = len(label_dict) | ||
pred_len = len(verb_dict) | ||
|
||
mark_dict_len = 2 | ||
word_dim = 32 | ||
mark_dim = 5 | ||
hidden_dim = 512 | ||
depth = 8 | ||
default_std = 1 / math.sqrt(hidden_dim) / 3.0 | ||
mix_hidden_lr = 1e-3 | ||
|
||
|
||
def d_type(size): | ||
return paddle.data_type.integer_value_sequence(size) | ||
|
||
|
||
def db_lstm(): | ||
#8 features | ||
word = paddle.layer.data(name='word_data', type=d_type(word_dict_len)) | ||
predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len)) | ||
|
||
ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len)) | ||
ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len)) | ||
ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len)) | ||
ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len)) | ||
ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len)) | ||
mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len)) | ||
|
||
emb_para = paddle.attr.Param(name='emb', initial_std=0., is_static=True) | ||
std_0 = paddle.attr.Param(initial_std=0.) | ||
std_default = paddle.attr.Param(initial_std=default_std) | ||
|
||
predicate_embedding = paddle.layer.embedding( | ||
size=word_dim, | ||
input=predicate, | ||
param_attr=paddle.attr.Param(name='vemb', initial_std=default_std)) | ||
mark_embedding = paddle.layer.embedding( | ||
size=mark_dim, input=mark, param_attr=std_0) | ||
|
||
word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2] | ||
emb_layers = [ | ||
paddle.layer.embedding(size=word_dim, input=x, param_attr=emb_para) | ||
for x in word_input | ||
] | ||
emb_layers.append(predicate_embedding) | ||
emb_layers.append(mark_embedding) | ||
|
||
hidden_0 = paddle.layer.mixed( | ||
size=hidden_dim, | ||
bias_attr=std_default, | ||
input=[ | ||
paddle.layer.full_matrix_projection( | ||
input=emb, param_attr=std_default) for emb in emb_layers | ||
]) | ||
|
||
lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0) | ||
hidden_para_attr = paddle.attr.Param( | ||
initial_std=default_std, learning_rate=mix_hidden_lr) | ||
|
||
lstm_0 = paddle.layer.lstmemory( | ||
input=hidden_0, | ||
act=paddle.activation.Relu(), | ||
gate_act=paddle.activation.Sigmoid(), | ||
state_act=paddle.activation.Sigmoid(), | ||
bias_attr=std_0, | ||
param_attr=lstm_para_attr) | ||
|
||
#stack L-LSTM and R-LSTM with direct edges | ||
input_tmp = [hidden_0, lstm_0] | ||
|
||
for i in range(1, depth): | ||
mix_hidden = paddle.layer.mixed( | ||
size=hidden_dim, | ||
bias_attr=std_default, | ||
input=[ | ||
paddle.layer.full_matrix_projection( | ||
input=input_tmp[0], param_attr=hidden_para_attr), | ||
paddle.layer.full_matrix_projection( | ||
input=input_tmp[1], param_attr=lstm_para_attr) | ||
]) | ||
|
||
lstm = paddle.layer.lstmemory( | ||
input=mix_hidden, | ||
act=paddle.activation.Relu(), | ||
gate_act=paddle.activation.Sigmoid(), | ||
state_act=paddle.activation.Sigmoid(), | ||
reverse=((i % 2) == 1), | ||
bias_attr=std_0, | ||
param_attr=lstm_para_attr) | ||
|
||
input_tmp = [mix_hidden, lstm] | ||
|
||
feature_out = paddle.layer.mixed( | ||
size=label_dict_len, | ||
bias_attr=std_default, | ||
input=[ | ||
paddle.layer.full_matrix_projection( | ||
input=input_tmp[0], param_attr=hidden_para_attr), | ||
paddle.layer.full_matrix_projection( | ||
input=input_tmp[1], param_attr=lstm_para_attr) | ||
], ) | ||
|
||
return feature_out | ||
|
||
|
||
def load_parameter(file_name, h, w): | ||
with open(file_name, 'rb') as f: | ||
f.read(16) # skip header. | ||
return np.fromfile(f, dtype=np.float32).reshape(h, w) | ||
|
||
|
||
def main(): | ||
paddle.init() | ||
|
||
# define network topology | ||
feature_out = db_lstm() | ||
target = paddle.layer.data(name='target', type=d_type(label_dict_len)) | ||
crf_cost = paddle.layer.crf( | ||
size=label_dict_len, | ||
input=feature_out, | ||
label=target, | ||
param_attr=paddle.attr.Param( | ||
name='crfw', initial_std=default_std, learning_rate=mix_hidden_lr)) | ||
|
||
crf_dec = paddle.layer.crf_decoding( | ||
size=label_dict_len, | ||
input=feature_out, | ||
label=target, | ||
param_attr=paddle.attr.Param(name='crfw')) | ||
evaluator.sum(input=crf_dec) | ||
|
||
# create parameters | ||
parameters = paddle.parameters.create(crf_cost) | ||
parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32)) | ||
|
||
# create optimizer | ||
optimizer = paddle.optimizer.Momentum( | ||
momentum=0, | ||
learning_rate=2e-2, | ||
regularization=paddle.optimizer.L2Regularization(rate=8e-4), | ||
model_average=paddle.optimizer.ModelAverage( | ||
average_window=0.5, max_average_window=10000), ) | ||
|
||
trainer = paddle.trainer.SGD( | ||
cost=crf_cost, | ||
parameters=parameters, | ||
update_equation=optimizer, | ||
extra_layers=crf_dec) | ||
|
||
reader = paddle.batch( | ||
paddle.reader.shuffle(cloud_reader( | ||
["/pfs/dlnel/public/dataset/conll05/conl105_train-*"], | ||
etcd_endpoint), buf_size=8192), batch_size=10) | ||
|
||
feeding = { | ||
'word_data': 0, | ||
'ctx_n2_data': 1, | ||
'ctx_n1_data': 2, | ||
'ctx_0_data': 3, | ||
'ctx_p1_data': 4, | ||
'ctx_p2_data': 5, | ||
'verb_data': 6, | ||
'mark_data': 7, | ||
'target': 8 | ||
} | ||
|
||
def event_handler(event): | ||
if isinstance(event, paddle.event.EndIteration): | ||
if event.batch_id % 100 == 0: | ||
print "Pass %d, Batch %d, Cost %f, %s" % ( | ||
event.pass_id, event.batch_id, event.cost, event.metrics) | ||
if event.batch_id % 1000 == 0: | ||
result = trainer.test(reader=reader, feeding=feeding) | ||
print "\nTest with Pass %d, Batch %d, %s" % ( | ||
event.pass_id, event.batch_id, result.metrics) | ||
|
||
if isinstance(event, paddle.event.EndPass): | ||
# save parameters | ||
with open('params_pass_%d.tar' % event.pass_id, 'w') as f: | ||
parameters.to_tar(f) | ||
|
||
result = trainer.test(reader=reader, feeding=feeding) | ||
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics) | ||
|
||
trainer.train( | ||
reader=reader, | ||
event_handler=event_handler, | ||
num_passes=1, | ||
feeding=feeding) | ||
|
||
test_creator = paddle.dataset.conll05.test() | ||
test_data = [] | ||
for item in test_creator(): | ||
test_data.append(item[0:8]) | ||
if len(test_data) == 1: | ||
break | ||
|
||
predict = paddle.layer.crf_decoding( | ||
size=label_dict_len, | ||
input=feature_out, | ||
param_attr=paddle.attr.Param(name='crfw')) | ||
probs = paddle.infer( | ||
output_layer=predict, | ||
parameters=parameters, | ||
input=test_data, | ||
field='id') | ||
assert len(probs) == len(test_data[0][0]) | ||
labels_reverse = {} | ||
for (k, v) in label_dict.items(): | ||
labels_reverse[v] = k | ||
pre_lab = [labels_reverse[i] for i in probs] | ||
print pre_lab | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
Oops, something went wrong.