Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix_sequence_conv_op #5130

Merged
merged 4 commits into from
Oct 30, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
241 changes: 161 additions & 80 deletions paddle/operators/math/context_project.h
Original file line number Diff line number Diff line change
Expand Up @@ -16,36 +16,36 @@ limitations under the License. */

#include "paddle/framework/eigen.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/tensor.h"
#include "paddle/operators/math/im2col.h"

namespace paddle {
namespace operators {
namespace math {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

/*
* \brief Context projection concatenate features in adjacent time steps in
* \brief Context projection concatenates features in adjacent time-steps in
* a sequence. The i-th row of the output is the concatenation of
* context_length rows of the input. The context_length rows are the
* consecutive rows from the i+shift_start row.

* ContextProjectGradFunctor is the inverse process of ContextProjectFunctor.
*
* \param in Input data.
* \param Shape The shape of Input data,
* [minibatch, number_of_input_features].
* \param type A float LoDTensor.
* \param Shape The shape of Input data:
* [mini-batch, input_hidden_size].
*
* \param padding_data Padding data.
* \param Shape The shape of Padding data,
* [up_pad + down_pad, number_of_input_features].
* \param type A float Tensor.
* \param Shape The shape of Padding data:
* [up_pad + down_pad, input_hidden_size].
*
* \param col Col data.
* \param Shape The shape of Col data,
* [minibatch, context_length * number_of_input_features].
* \param type A float Tensor.
* \param Shape The shape of Col data:
* [mini-batch, context_length * input_hidden_size].
*
* For a mini-batch of 2 variable lengths sentences, containing 3, and 1
* time-steps:
Expand All @@ -63,126 +63,210 @@ using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
* representation is 2.
*
* - Case1:
* If context_start is -1 and padding_trainable is false, we use zero to pad
* instead of learned weight to pad,
* and the context_lenth is 3, the output (Out) is:
* If context_start is -1 and padding_trainable is false, we use zero to pad
* instead of learned weight to pad,
* and the context_length is 3, the output (Out) is:
*
* Out =[[0, 0, a1, a2, b1, b2;
* a1, a2, b1, b2, c1, c2;
* b1, b2, c1, c2, 0, 0 ]
* [0, 0, d1, d2, 0, 0 ]]
* Out =[[0, 0, a1, a2, b1, b2;
* a1, a2, b1, b2, c1, c2;
* b1, b2, c1, c2, 0, 0 ]
* [0, 0, d1, d2, 0, 0 ]]
*
* - Case2:
* If context_start is -1 and padding_trainable is true, we use learned weight
* to pad,
* and the context_lenth is 3, the output (Out) is:
* If context_start is -1 and padding_trainable is true, we use learned weight
* to pad,
* and the context_length is 3, the output (Out) is:
*
* Out = [[w1, w2, a1, a2, b1, b2;
* a1, a2, b1, b2, c1, c2;
* b1, b2, c1, c2, w3, w4]
* [w1, w2, d1, d2, w3, w4]]
* Out = [[w1, w2, a1, a2, b1, b2;
* a1, a2, b1, b2, c1, c2;
* b1, b2, c1, c2, w3, w4]
* [w1, w2, d1, d2, w3, w4]]
*
*/

template <typename Place, typename T>
class ContextProjectFunctor {
public:
void operator()(const platform::DeviceContext& context,
framework::LoDTensor& in, framework::Tensor& padding_data,
framework::Tensor& col, bool padding_trainable,
void operator()(const platform::DeviceContext& context, const LoDTensor& in,
const Tensor& padding_data, Tensor& col,
bool padding_trainable, int context_start, int context_length,
int context_stride, int up_pad, int down_pad) {
auto lod_level_0 = in.lod()[0];

math::Im2ColFunctor<math::ColFormat::kOCF, Place, float> im2col_ocf;

int input_row_begin, input_row_end;
int sequence_height, sequence_width;
sequence_width = in.dims()[1];

for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
input_row_begin = (context_start > 0)
? static_cast<int>(lod_level_0[i]) + context_start
: static_cast<int>(lod_level_0[i]);
input_row_end = static_cast<int>(lod_level_0[i + 1]);

Tensor out_t = col.Slice(static_cast<int>(lod_level_0[i]),
static_cast<int>(lod_level_0[i + 1]));

sequence_height = static_cast<int>(out_t.dims()[0]);

if (input_row_begin < input_row_end) {
Tensor in_t = in.Slice(input_row_begin, input_row_end);

std::vector<int64_t> output_shape(
{sequence_height, 1, 1, context_length,
sequence_width}); // output_height, output_width,
// input_channels, filter_height, filter_width
out_t.Resize(framework::make_ddim(output_shape));

std::vector<int64_t> input_shape(
{1, input_row_end - input_row_begin,
sequence_width}); // input_channels, input_height, input_width
in_t.Resize(framework::make_ddim(input_shape));

im2col_ocf(context, in_t, out_t,
/*stride_height*/ context_stride, /*stride_width*/ 1, up_pad,
down_pad, 0, 0);
out_t.Resize({sequence_height, context_length * sequence_width});
}
}
if (padding_trainable) {
for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
Tensor out_t = col.Slice(static_cast<int>(lod_level_0[i]),
static_cast<int>(lod_level_0[i + 1]));

sequence_height = static_cast<int>(out_t.dims()[0]);

// add up trainable data
out_t.Resize({sequence_height * context_length, sequence_width});

if (up_pad > 0) { // add up pad
int padding_rows = std::min(
up_pad, static_cast<int>(lod_level_0[i + 1] - lod_level_0[i]));

for (int k = 0; k < padding_rows; ++k) {
int padding_size =
k + context_length < up_pad ? context_length : up_pad - k;
Tensor out_t_sub = out_t.Slice(k * context_length,
k * context_length + padding_size);
Tensor w_sub = padding_data.Slice(k, k + padding_size);
auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
auto w_sub_e = EigenMatrix<T>::From(w_sub);
out_t_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e;
}
}
if (down_pad > 0) { // add down pad
int down_pad_begin_row =
std::max(0,
(sequence_height - context_start - context_length) + 1) +
1;
int padding_begin = std::max(0, context_start - sequence_height);
int padding_size =
sequence_height - context_start >= context_length
? 1
: context_length - (sequence_height - context_start);
if (context_start >= sequence_height) padding_size = context_length;
int padding_idx = padding_begin;
for (int t = 0; t + down_pad_begin_row <= sequence_height;
++t, ++padding_size) {
if (context_start >= sequence_height) padding_size = context_length;
if (padding_size > context_length) {
padding_size = context_length;
padding_idx++;
}
if (padding_begin > 0 || sequence_height == context_start)
padding_idx = padding_begin + t;

Tensor out_t_sub = out_t.Slice(
(down_pad_begin_row + t) * context_length - padding_size,
(down_pad_begin_row + t) * context_length);
Tensor w_sub = padding_data.Slice(
up_pad + padding_idx, up_pad + padding_idx + padding_size);
auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
auto w_sub_e = EigenMatrix<T>::From(w_sub);
out_t_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e;
}
}
out_t.Resize({sequence_height, context_length * sequence_width});
}
}
}
};

template <typename Place, typename T>
class ContextProjectGradFunctor {
public:
void operator()(const platform::DeviceContext& context, LoDTensor& in,
Tensor& padding_data, Tensor& col, bool padding_trainable,
int context_start, int context_length, int context_stride,
int up_pad, int down_pad, bool gradient, bool input_grad,
bool pad_grad) {
int up_pad, int down_pad, bool input_grad, bool pad_grad) {
auto lod_level_0 = in.lod()[0];

paddle::operators::math::Im2ColFunctor<
paddle::operators::math::ColFormat::kOCF, Place, float>
im2col_ocf;
paddle::operators::math::Col2ImFunctor<
paddle::operators::math::ColFormat::kOCF, Place, float>
col2im_ocf;
math::Col2ImFunctor<math::ColFormat::kOCF, Place, float> col2im_ocf;

int input_row_begin, input_row_end;
int sequence_height, sequence_width;
sequence_width = in.dims()[1];
input_grad = gradient && input_grad;
pad_grad = gradient && pad_grad;

if (!gradient || input_grad) {
if (input_grad) {
for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
input_row_begin = (context_start > 0)
? static_cast<int>(lod_level_0[i]) + context_start
: static_cast<int>(lod_level_0[i]);
input_row_end = static_cast<int>(lod_level_0[i + 1]);

framework::Tensor out_t =
col.Slice(static_cast<int>(lod_level_0[i]),
static_cast<int>(lod_level_0[i + 1]));
Tensor out_t = col.Slice(static_cast<int>(lod_level_0[i]),
static_cast<int>(lod_level_0[i + 1]));

sequence_height = static_cast<int>(out_t.dims()[0]);

if (input_row_begin < input_row_end) {
framework::Tensor in_t = in.Slice(input_row_begin, input_row_end);
Tensor in_t = in.Slice(input_row_begin, input_row_end);

std::vector<int64_t> output_shape(
{sequence_height, 1, 1, context_length,
sequence_width}); // output_height, output_width,
// input_channels, filter_height, filter_width

out_t.Resize(framework::make_ddim(output_shape));

std::vector<int64_t> input_shape(
{1, input_row_end - input_row_begin,
sequence_width}); // input_channels, input_height, input_width
in_t.Resize(framework::make_ddim(input_shape));

if (gradient) {
col2im_ocf(context, in_t, out_t,
/*stride_height*/ context_stride, /*stride_width*/ 1,
up_pad, down_pad, 0, 0);
} else {
im2col_ocf(context, in_t, out_t,
/*stride_height*/ context_stride, /*stride_width*/ 1,
up_pad, down_pad, 0, 0);
}
col2im_ocf(context, in_t, out_t,
/*stride_height*/ context_stride, /*stride_width*/ 1,
up_pad, down_pad, 0, 0);
out_t.Resize({sequence_height, context_length * sequence_width});
}
}
}
if (!gradient || pad_grad) {
if (pad_grad) {
if (padding_trainable) {
for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
framework::Tensor out_t =
col.Slice(static_cast<int>(lod_level_0[i]),
static_cast<int>(lod_level_0[i + 1]));
Tensor out_t = col.Slice(static_cast<int>(lod_level_0[i]),
static_cast<int>(lod_level_0[i + 1]));

sequence_height = static_cast<int>(out_t.dims()[0]);

// add up trainable data
out_t.Resize({sequence_height * context_length, sequence_width});

if (up_pad > 0) { // add up pad
if (up_pad > 0) {
int padding_rows = std::min(
up_pad, static_cast<int>(lod_level_0[i + 1] - lod_level_0[i]));

for (int k = 0; k < padding_rows; ++k) {
int padding_size =
k + context_length < up_pad ? context_length : up_pad - k;
framework::Tensor out_t_sub = out_t.Slice(
k * context_length, k * context_length + padding_size);
framework::Tensor w_sub = padding_data.Slice(k, k + padding_size);
// in this block, using EigenVector<T>::Flatten is ok too.
Tensor out_t_sub = out_t.Slice(k * context_length,
k * context_length + padding_size);
Tensor w_sub = padding_data.Slice(k, k + padding_size);
auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
auto w_sub_e = EigenMatrix<T>::From(w_sub);
if (gradient) {
w_sub_e.device(*context.GetEigenDevice<Place>()) =
w_sub_e + out_t_sub_e;
} else {
out_t_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e;
}
w_sub_e.device(*context.GetEigenDevice<Place>()) =
w_sub_e + out_t_sub_e;
}
}
if (down_pad > 0) { // add down pad
if (down_pad > 0) {
int down_pad_begin_row =
std::max(
0, (sequence_height - context_start - context_length) + 1) +
Expand All @@ -204,19 +288,16 @@ class ContextProjectFunctor {
}
if (padding_begin > 0 || sequence_height == context_start)
padding_idx = padding_begin + t;
framework::Tensor out_t_sub = out_t.Slice(

Tensor out_t_sub = out_t.Slice(
(down_pad_begin_row + t) * context_length - padding_size,
(down_pad_begin_row + t) * context_length);
framework::Tensor w_sub = padding_data.Slice(
Tensor w_sub = padding_data.Slice(
up_pad + padding_idx, up_pad + padding_idx + padding_size);
auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
auto w_sub_e = EigenMatrix<T>::From(w_sub);
if (gradient) {
w_sub_e.device(*context.GetEigenDevice<Place>()) =
w_sub_e + out_t_sub_e;
} else {
out_t_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e;
}
w_sub_e.device(*context.GetEigenDevice<Place>()) =
w_sub_e + out_t_sub_e;
}
}
out_t.Resize({sequence_height, context_length * sequence_width});
Expand Down
Loading