-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add chunk eval op #5016
Merged
Merged
Add chunk eval op #5016
Changes from all commits
Commits
Show all changes
4 commits
Select commit
Hold shift + click to select a range
bb9d68d
Add chunk_eval_op
guoshengCS 4b84f07
Merge branch 'develop' of /~https://github.com/PaddlePaddle/paddle into…
guoshengCS ece1d57
Merge branch 'develop' of /~https://github.com/PaddlePaddle/paddle into…
guoshengCS c8dcd9a
Refine ChunkEvalOp by following comments and rewrite the doc
guoshengCS File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/operators/chunk_eval_op.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
class ChunkEvalOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
void InferShape(framework::InferShapeContext *ctx) const override { | ||
PADDLE_ENFORCE(ctx->HasInput("Inference"), | ||
"Input(Inference) of ChunkEvalOp should not be null."); | ||
PADDLE_ENFORCE(ctx->HasInput("Label"), | ||
"Input(Label) of ChunkEvalOp should not be null."); | ||
PADDLE_ENFORCE(ctx->HasOutput("Precision"), | ||
"Output(Precision) of ChunkEvalOp should not be null."); | ||
PADDLE_ENFORCE(ctx->HasOutput("Recall"), | ||
"Output(Recall) of ChunkEvalOp should not be null."); | ||
PADDLE_ENFORCE(ctx->HasOutput("F1-Score"), | ||
"Output(F1-Score) of ChunkEvalOp should not be null."); | ||
|
||
auto inference_dim = ctx->GetInputDim("Inference"); | ||
auto label_dim = ctx->GetInputDim("Label"); | ||
|
||
PADDLE_ENFORCE(inference_dim == label_dim, | ||
"Inference's shape must be the same as Label's shape."); | ||
|
||
ctx->SetOutputDim("Precision", {1}); | ||
ctx->SetOutputDim("Recall", {1}); | ||
ctx->SetOutputDim("F1-Score", {1}); | ||
} | ||
|
||
protected: | ||
framework::DataType IndicateDataType( | ||
const framework::ExecutionContext &ctx) const override { | ||
return framework::DataType::FP32; | ||
} | ||
}; | ||
|
||
class ChunkEvalOpMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
ChunkEvalOpMaker(framework::OpProto *proto, | ||
framework::OpAttrChecker *op_checker) | ||
: OpProtoAndCheckerMaker(proto, op_checker) { | ||
AddInput("Inference", | ||
"(Tensor, default: Tensor<int>). Predictions from the network."); | ||
AddInput("Label", | ||
"(Tensor, default: Tensor<int>). The true tag sequences."); | ||
AddOutput("Precision", | ||
"(float). The evaluated precision (called positive predictive " | ||
"value) of chunks on the given mini-batch."); | ||
AddOutput("Recall", | ||
"(float). The evaluated recall (true positive rate or " | ||
"sensitivity) of chunks on the given mini-batch."); | ||
AddOutput("F1-Score", | ||
"(float). The evaluated F1-Score on the given mini-batch."); | ||
AddAttr<int>("num_chunk_types", | ||
"(int). The number of chunk type. See below for details."); | ||
AddAttr<std::string>( | ||
"chunk_scheme", | ||
"(string, default IOB). The labeling scheme indicating " | ||
"how to encode the chunks. Must be IOB, IOE, IOBES or plain. See below " | ||
"for details.") | ||
.SetDefault("IOB"); | ||
AddAttr<std::vector<int>>("excluded_chunk_types", | ||
"(list<int>) A list including chunk type ids " | ||
"indicating chunk types that are not counted. " | ||
"See below for details.") | ||
.SetDefault(std::vector<int>{}); | ||
AddComment(R"DOC( | ||
For some basics of chunking, please refer to | ||
‘Chunking with Support Vector Mechines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>’. | ||
|
||
|
||
CheckEvalOp computes the precision, recall, and F1-score of chunk detection, | ||
and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes. | ||
Here is a NER example of labeling for these tagging schemes: | ||
|
||
Li Ming works at Agricultural Bank of China in Beijing. | ||
IO: I-PER I-PER O O I-ORG I-ORG I-ORG I-ORG O I-LOC | ||
IOB: B-PER I-PER O O B-ORG I-ORG I-ORG I-ORG O B-LOC | ||
IOE: I-PER E-PER O O I-ORG I-ORG I-ORG E-ORG O E-LOC | ||
IOBES: B-PER E-PER O O I-ORG I-ORG I-ORG E-ORG O S-LOC | ||
|
||
There are three chunk types(named entity types) including PER(person), ORG(orgnazation) | ||
and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>. | ||
|
||
Since the calculations actually use label ids rather than labels, extra attention | ||
should be paid when mapping labels to ids to make CheckEvalOp work. The key point | ||
is that the listed equations are satisfied by ids. | ||
|
||
tag_type = label % num_tag_type | ||
chunk_type = label / num_tag_type | ||
|
||
where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type` | ||
is the num of chunk types, and `tag_type` get its value from the following table. | ||
|
||
Scheme Begin Inside End Single | ||
plain 0 - - - | ||
IOB 0 1 - - | ||
IOE - 0 1 - | ||
IOBES 0 1 2 3 | ||
|
||
Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG, | ||
PER and LOC. To satisfy the above equations, the label map can be like this: | ||
|
||
B-ORG 0 | ||
I-ORG 1 | ||
B-PER 2 | ||
I-PER 3 | ||
B-LOC 4 | ||
I-LOC 5 | ||
O 6 | ||
|
||
It’s not hard to verify the equations noting that the num of chunk types | ||
is 3 and the num of tag types in IOB scheme is 2. For example, the label | ||
id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of | ||
I-LOC is 2, which consistent with the results from the equations. | ||
)DOC"); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP_WITHOUT_GRADIENT(chunk_eval, ops::ChunkEvalOp, | ||
ops::ChunkEvalOpMaker); | ||
REGISTER_OP_CPU_KERNEL(chunk_eval, | ||
ops::ChunkEvalKernel<paddle::platform::CPUPlace, float>); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,219 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
#include <set> | ||
#include "paddle/framework/eigen.h" | ||
#include "paddle/framework/op_registry.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using Tensor = framework::Tensor; | ||
using LoDTensor = framework::LoDTensor; | ||
|
||
template <typename Place, typename T> | ||
class ChunkEvalKernel : public framework::OpKernel<T> { | ||
public: | ||
struct Segment { | ||
int begin; | ||
int end; | ||
int type; | ||
bool operator==(const Segment& y) const { | ||
return begin == y.begin && end == y.end && type == y.type; | ||
} | ||
}; | ||
|
||
void GetSegments(const int* label, int length, std::vector<Segment>& segments, | ||
int num_chunk_types, int num_tag_types, int other_chunk_type, | ||
int tag_begin, int tag_inside, int tag_end, | ||
int tag_single) const { | ||
segments.clear(); | ||
segments.reserve(length); | ||
int chunk_start = 0; | ||
bool in_chunk = false; | ||
int tag = -1; | ||
int type = other_chunk_type; | ||
for (int i = 0; i < length; ++i) { | ||
int prev_tag = tag; | ||
int prev_type = type; | ||
PADDLE_ENFORCE_LE(label[i], num_chunk_types * num_tag_types); | ||
tag = label[i] % num_tag_types; | ||
type = label[i] / num_tag_types; | ||
if (in_chunk && ChunkEnd(prev_tag, prev_type, tag, type, other_chunk_type, | ||
tag_begin, tag_inside, tag_end, tag_single)) { | ||
Segment segment{ | ||
chunk_start, // begin | ||
i - 1, // end | ||
prev_type, | ||
}; | ||
segments.push_back(segment); | ||
in_chunk = false; | ||
} | ||
if (ChunkBegin(prev_tag, prev_type, tag, type, other_chunk_type, | ||
tag_begin, tag_inside, tag_end, tag_single)) { | ||
chunk_start = i; | ||
in_chunk = true; | ||
} | ||
} | ||
if (in_chunk) { | ||
Segment segment{ | ||
chunk_start, // begin | ||
length - 1, // end | ||
type, | ||
}; | ||
segments.push_back(segment); | ||
} | ||
} | ||
|
||
bool ChunkEnd(int prev_tag, int prev_type, int tag, int type, | ||
int other_chunk_type, int tag_begin, int tag_inside, | ||
int tag_end, int tag_single) const { | ||
if (prev_type == other_chunk_type) return false; | ||
if (type == other_chunk_type) return true; | ||
if (type != prev_type) return true; | ||
if (prev_tag == tag_begin) return tag == tag_begin || tag == tag_single; | ||
if (prev_tag == tag_inside) return tag == tag_begin || tag == tag_single; | ||
if (prev_tag == tag_end) return true; | ||
if (prev_tag == tag_single) return true; | ||
return false; | ||
} | ||
|
||
bool ChunkBegin(int prev_tag, int prev_type, int tag, int type, | ||
int other_chunk_type, int tag_begin, int tag_inside, | ||
int tag_end, int tag_single) const { | ||
if (prev_type == other_chunk_type) return type != other_chunk_type; | ||
if (type == other_chunk_type) return false; | ||
if (type != prev_type) return true; | ||
if (tag == tag_begin) return true; | ||
if (tag == tag_inside) return prev_tag == tag_end || prev_tag == tag_single; | ||
if (tag == tag_end) return prev_tag == tag_end || prev_tag == tag_single; | ||
if (tag == tag_single) return true; | ||
return false; | ||
} | ||
|
||
void Compute(const framework::ExecutionContext& context) const override { | ||
// initialize to parse configurations | ||
int num_chunk_types, num_tag_types; | ||
int other_chunk_type; | ||
int tag_begin, tag_inside, tag_end, tag_single; | ||
std::vector<Segment> label_segments; | ||
std::vector<Segment> output_segments; | ||
std::set<int> excluded_chunk_types; | ||
int64_t num_output_segments = 0; | ||
int64_t num_label_segments = 0; | ||
int64_t num_correct = 0; | ||
if (context.Attr<std::string>("chunk_scheme") == "IOB") { | ||
num_tag_types = 2; | ||
tag_begin = 0; | ||
tag_inside = 1; | ||
tag_end = -1; | ||
tag_single = -1; | ||
} else if (context.Attr<std::string>("chunk_scheme") == "IOE") { | ||
num_tag_types = 2; | ||
tag_begin = -1; | ||
tag_inside = 0; | ||
tag_end = 1; | ||
tag_single = -1; | ||
} else if (context.Attr<std::string>("chunk_scheme") == "IOBES") { | ||
num_tag_types = 4; | ||
tag_begin = 0; | ||
tag_inside = 1; | ||
tag_end = 2; | ||
tag_single = 3; | ||
} else if (context.Attr<std::string>("chunk_scheme") == "plain") { | ||
num_tag_types = 1; | ||
tag_begin = -1; | ||
tag_inside = -1; | ||
tag_end = -1; | ||
tag_single = -1; | ||
} else { | ||
PADDLE_THROW("Unknown chunk scheme."); | ||
} | ||
other_chunk_type = num_chunk_types = context.Attr<int>("num_chunk_types"); | ||
excluded_chunk_types.insert( | ||
context.Attr<std::vector<int>>("excluded_chunk_types").begin(), | ||
context.Attr<std::vector<int>>("excluded_chunk_types").end()); | ||
|
||
auto* inference = context.Input<LoDTensor>("Inference"); | ||
auto* label = context.Input<LoDTensor>("Label"); | ||
auto* precision = context.Output<Tensor>("Precision"); | ||
auto* recall = context.Output<Tensor>("Recall"); | ||
auto* f1 = context.Output<Tensor>("F1-Score"); | ||
|
||
const int* inference_data = inference->data<int>(); | ||
const int* label_data = label->data<int>(); | ||
T* precision_data = precision->mutable_data<T>(context.GetPlace()); | ||
T* racall_data = recall->mutable_data<T>(context.GetPlace()); | ||
T* f1_data = f1->mutable_data<T>(context.GetPlace()); | ||
|
||
auto lod = label->lod(); | ||
PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now."); | ||
PADDLE_ENFORCE(lod == inference->lod(), | ||
"LoD must be same between Inference and Label."); | ||
int num_sequences = lod[0].size() - 1; | ||
for (int i = 0; i < num_sequences; ++i) { | ||
int seq_length = lod[0][i + 1] - lod[0][i]; | ||
EvalOneSeq(inference_data + lod[0][i], label_data + lod[0][i], seq_length, | ||
output_segments, label_segments, num_output_segments, | ||
num_label_segments, num_correct, num_chunk_types, | ||
num_tag_types, other_chunk_type, tag_begin, tag_inside, | ||
tag_end, tag_single, excluded_chunk_types); | ||
} | ||
*precision_data = !num_output_segments ? 0 : static_cast<T>(num_correct) / | ||
num_output_segments; | ||
*racall_data = !num_label_segments ? 0 : static_cast<T>(num_correct) / | ||
num_label_segments; | ||
*f1_data = !num_correct ? 0 : 2 * (*precision_data) * (*racall_data) / | ||
((*precision_data) + (*racall_data)); | ||
} | ||
|
||
void EvalOneSeq(const int* output, const int* label, int length, | ||
std::vector<Segment>& output_segments, | ||
std::vector<Segment>& label_segments, | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
|
||
int64_t& num_output_segments, int64_t& num_label_segments, | ||
int64_t& num_correct, int num_chunk_types, int num_tag_types, | ||
int other_chunk_type, int tag_begin, int tag_inside, | ||
int tag_end, int tag_single, | ||
const std::set<int>& excluded_chunk_types) const { | ||
GetSegments(output, length, output_segments, num_chunk_types, num_tag_types, | ||
other_chunk_type, tag_begin, tag_inside, tag_end, tag_single); | ||
GetSegments(label, length, label_segments, num_chunk_types, num_tag_types, | ||
other_chunk_type, tag_begin, tag_inside, tag_end, tag_single); | ||
size_t i = 0, j = 0; | ||
while (i < output_segments.size() && j < label_segments.size()) { | ||
if (output_segments[i] == label_segments[j] && | ||
excluded_chunk_types.count(output_segments[i].type) != 1) { | ||
++num_correct; | ||
} | ||
if (output_segments[i].end < label_segments[j].end) { | ||
++i; | ||
} else if (output_segments[i].end > label_segments[j].end) { | ||
++j; | ||
} else { | ||
++i; | ||
++j; | ||
} | ||
} | ||
for (auto& segment : label_segments) { | ||
if (excluded_chunk_types.count(segment.type) != 1) ++num_label_segments; | ||
} | ||
for (auto& segment : output_segments) { | ||
if (excluded_chunk_types.count(segment.type) != 1) ++num_output_segments; | ||
} | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Do we need to define a struct for these arguments and put these arguments initialization code to another member function?