Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix 堆栈溢出 (stack overflow) of case10: paddle.unique #49981

Merged
merged 3 commits into from
Jan 31, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 9 additions & 0 deletions paddle/phi/infermeta/unary.cc
Original file line number Diff line number Diff line change
Expand Up @@ -4626,13 +4626,22 @@ void UniqueRawInferMeta(const MetaTensor& x,
if (axis_value < 0) {
axis_value += x.dims().size();
}

PADDLE_ENFORCE_LT(
axis_value,
x.dims().size(),
phi::errors::InvalidArgument("The axis(%d) should be less than "
"the dimension size(%d) of x.",
axis_value,
x.dims().size()));
PADDLE_ENFORCE_GE(
axis_value,
0,
phi::errors::InvalidArgument(
"The axis(%d) + rank(x) (%d) should be greater than or equal to 0.",
axis_value,
-x.dims().size()));

auto out_dims = x.dims();
out_dims[axis_value] = -1;
out->set_dims(out_dims);
Expand Down
26 changes: 26 additions & 0 deletions python/paddle/fluid/tests/unittests/test_unique.py
Original file line number Diff line number Diff line change
Expand Up @@ -190,6 +190,32 @@ def init_config(self):
}


class TestUniqueOpAxisNeg(TestUniqueOp):
def init_config(self):
self.inputs = {'X': np.random.random((6, 1, 8)).astype('float64')}
unique, indices, inverse, counts = np.unique(
self.inputs['X'],
return_index=True,
return_inverse=True,
return_counts=True,
axis=-1,
)
self.attrs = {
'dtype': int(core.VarDesc.VarType.INT32),
"return_index": True,
"return_inverse": True,
"return_counts": True,
"axis": [-1],
"is_sorted": True,
}
self.outputs = {
'Out': unique,
'Indices': indices,
"Index": inverse,
"Counts": counts,
}


class TestUniqueOpAxis1(TestUniqueOp):
def init_config(self):
self.inputs = {'X': np.random.random((3, 8, 8)).astype('float64')}
Expand Down