Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add Max strategy for sequence_pool op #4864

Merged
merged 7 commits into from
Oct 27, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 9 additions & 0 deletions paddle/operators/sequence_pool_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,15 @@ class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment(R"DOC(
SequencePoolOp pools features of all time-steps of each instance.

It supports six pooling strategy:
- AVERAGE: Out[i] = average_{for each instance in i-th sequence}{X[i]}
- SUM: Out[i] = sum_{for each instance in i-th sequence}{X[i]}
- SQRT: Out[i] = sum_{for each instance in i-th sequence}{X[i]}
/ sqrt(i-th sequence length)
- LAST: Out[i] = last instance in i-th sequence X[i]
- FIRST: Out[i] = first instance in i-th sequence X[i]
- MAX: Out[i] = max_{for each instance in i-th sequence}{X[i]}

For a mini-batch of 3 variable-length sentences, containing 2, 3, and 2 time-steps:

Assume X is a [7,M,N] LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2.
Expand Down
21 changes: 20 additions & 1 deletion paddle/operators/sequence_pool_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,9 @@ class SequencePoolKernel : public framework::OpKernel<T> {
out_e.device(place) = in_e.sum(Eigen::array<int, 1>({{0}})) /
std::sqrt(static_cast<T>(h));
break;
case MAX:
out_e.device(place) = in_e.maximum(Eigen::array<int, 1>({{0}}));
break;
case LAST:
out_e.device(place) = in_e.chip(h - 1, 0);
break;
Expand All @@ -100,8 +103,8 @@ class SequencePoolGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Input<LoDTensor>("X");
auto* out_g = context.Input<LoDTensor>(framework::GradVarName("Out"));
auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
auto* out_g = context.Input<LoDTensor>(framework::GradVarName("Out"));
int strategy = context.Attr<int>("strategy");

auto dims = in->dims();
Expand Down Expand Up @@ -135,6 +138,22 @@ class SequencePoolGradKernel : public framework::OpKernel<T> {
in_g_e.device(place) =
(out_g_e / std::sqrt(static_cast<T>(h))).broadcast(bcast);
break;
case MAX: {
auto in_t =
in->Slice(static_cast<int>(lod[i]), static_cast<int>(lod[i + 1]));
Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>>
in_t_map(in_t.data<T>(), h, w);
int row_id;
Eigen::array<int, 2> extents = {1, 1};
for (int col_id = 0; col_id < w; col_id++) {
in_t_map.col(col_id).maxCoeff(&row_id);
Eigen::array<int, 2> in_offsets = {row_id, col_id};
Eigen::array<int, 2> out_offsets = {0, col_id};
in_g_e.slice(in_offsets, extents).device(place) =
out_g_e.slice(out_offsets, extents);
}
break;
}
case LAST:
in_g_e.chip(h - 1, 0).device(place) = out_g_e;
break;
Expand Down
70 changes: 38 additions & 32 deletions python/paddle/v2/framework/tests/test_seq_pool.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,18 +22,17 @@ def set_data(self):

out = np.zeros((4, 23)).astype('float32')
self.outputs = {'Out': out}
return x, lod, out

def compute(self):
def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.AVERAGE}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :]
out[i] = sub_x.mean(axis=0)

def setUp(self):
self.set_data()
self.compute()
x, lod, out = self.set_data()
self.compute(x, lod, out)

def test_check_output(self):
self.check_output()
Expand All @@ -52,52 +51,43 @@ def set_data(self):

out = np.zeros((4, 3, 17)).astype('float32')
self.outputs = {'Out': out}
return x, lod, out

def compute(self):
def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.AVERAGE}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
out[i] = np.reshape(sub_x.mean(axis=0), (3, 17))


class TestSeqSumPool(TestSeqAvgPool):
def compute(self):
def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.SUM}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :]
out[i] = sub_x.sum(axis=0)


class TestSeqSumPool2D(TestSeqAvgPool2D):
def compute(self):
def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.SUM}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
out[i] = np.reshape(sub_x.sum(axis=0), (3, 17))


class TestSeqSqrtPool(TestSeqAvgPool):
def compute(self):
def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.SQRT}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :]
len = lod[0][i + 1] - lod[0][i]
out[i] = sub_x.sum(axis=0) / np.sqrt(len)


class TestSeqSqrtPool2D(TestSeqAvgPool2D):
def compute(self):
def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.SQRT}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
len = lod[0][i + 1] - lod[0][i]
Expand All @@ -107,41 +97,57 @@ def test_check_grad(self):
self.check_grad(["X"], "Out", max_relative_error=0.06)


class TestSeqMaxPool(TestSeqAvgPool):
def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.MAX}
for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :]
out[i] = np.amax(sub_x, axis=0)

def test_check_grad(self):
# Remove MaxPool2D from gradient check to confirm the success of CI.
return


class TestSeqMaxPool2D(TestSeqAvgPool2D):
def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.MAX}
for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
out[i] = np.reshape(np.amax(sub_x, axis=0), (3, 17))

def test_check_grad(self):
# Remove MaxPool2D from gradient check to confirm the success of CI.
return


class TestSeqLastPool(TestSeqAvgPool):
def compute(self):
def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.LAST}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :]
out[i] = sub_x[-1, :]


class TestSeqLastPool2D(TestSeqAvgPool2D):
def compute(self):
def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.LAST}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
out[i] = np.reshape(sub_x[-1, :], (3, 17))


class TestSeqFirstPool(TestSeqAvgPool):
def compute(self):
def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.FIRST}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :]
out[i] = sub_x[0, :]


class TestSeqFirstPool2D(TestSeqAvgPool2D):
def compute(self):
def compute(self, x, lod, out):
self.attrs = {'strategy': SeqPoolType.FIRST}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
out[i] = np.reshape(sub_x[0, :], (3, 17))
Expand Down