Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

support gpu mixed precision inference #40531

Merged
merged 6 commits into from
Mar 17, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions paddle/fluid/framework/ir/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -97,6 +97,7 @@ pass_library(layer_norm_fuse_pass inference)
pass_library(add_support_int8_pass inference)
pass_library(matmul_scale_fuse_pass inference)
pass_library(gpu_cpu_map_matmul_to_mul_pass inference)
pass_library(mixed_precision_configure_pass inference)
pass_library(generate_pass DEPS pass_desc_proto)
target_link_libraries(generate_pass pass_desc_proto)

Expand Down
149 changes: 149 additions & 0 deletions paddle/fluid/framework/ir/mixed_precision_configure_pass.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,149 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/mixed_precision_configure_pass.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/op_version_registry.h"

namespace paddle {
namespace framework {
namespace ir {

void MixedPrecisionConfigurePass::InsertCastOps(
Graph* graph, const StringSet& blacklist) const {
VLOG(3) << "Insert the cast op before and after the kernel that does not "
"supports fp16 precision";

auto update_cast_desc = [&](
framework::OpDesc& desc, const std::string& x_name,
const std::string& out_name, const int in_dtype, const int out_dtype) {
desc.SetType("cast");
desc.SetInput("X", {x_name});
desc.SetOutput("Out", {out_name});
desc.SetAttr("in_dtype", in_dtype);
desc.SetAttr("out_dtype", out_dtype);
desc.SetAttr("use_mkldnn", false);
desc.SetAttr("with_quant_attr", false);
desc.Flush();
};

auto cast_input = [&](Graph* graph, Node* op_node,
const StringSet& cast_list) {
auto inlinks = op_node->inputs;
for (auto* pre_node : inlinks) {
if (pre_node->IsVar()) {
const auto is_persistable = pre_node->Var()->Persistable();
const auto is_float =
pre_node->Var()->GetDataType() == proto::VarType::FP16 ||
pre_node->Var()->GetDataType() == proto::VarType::FP32 ||
pre_node->Var()->GetDataType() == proto::VarType::FP64;
if (!is_persistable && is_float) {
int suffix = 0;
for (auto* pre_node_input : pre_node->inputs) {
if (!pre_node_input->IsOp()) continue;
const auto& type = pre_node_input->Op()->Type();
if (!cast_list.count(type) && type != "cast") {
std::string old_name = pre_node->Name();
std::string new_name =
old_name + "_cast.tmp_" + std::to_string(suffix);
suffix++;

framework::OpDesc new_op_desc(op_node->Op()->Block());
// 4 for fp16, 5 for fp32
update_cast_desc(new_op_desc, old_name, new_name, 4, 5);
auto* new_op = graph->CreateOpNode(&new_op_desc);

VarDesc out_var(new_name);
out_var.SetPersistable(false);
auto* node_var = graph->CreateVarNode(&out_var);

op_node->Op()->RenameInput(old_name, new_name);
IR_NODE_LINK_TO(pre_node, new_op);
IR_NODE_LINK_TO(new_op, node_var);
IR_NODE_LINK_TO(node_var, op_node);
}
}
}
}
}
};

auto cast_output = [&](Graph* graph, Node* op_node,
const StringSet& cast_list) {
auto outlinks = op_node->outputs;
for (auto* next_node : outlinks) {
if (next_node->IsVar()) {
const auto is_persistable = next_node->Var()->Persistable();
const auto is_float =
next_node->Var()->GetDataType() == proto::VarType::FP16 ||
next_node->Var()->GetDataType() == proto::VarType::FP32 ||
next_node->Var()->GetDataType() == proto::VarType::FP64;
if (!is_persistable && is_float) {
int suffix = 0;
for (auto* next_node_output : next_node->outputs) {
if (!next_node_output->IsOp()) continue;

const auto& type = next_node_output->Op()->Type();
if (!cast_list.count(type) && type != "cast") {
std::string old_name = next_node->Name();
std::string new_name =
old_name + "_cast.tmp_" + std::to_string(suffix);
suffix++;

framework::OpDesc new_op_desc(op_node->Op()->Block());
// 4 for fp16, 5 for fp32
update_cast_desc(new_op_desc, old_name, new_name, 5, 4);
auto* new_op = graph->CreateOpNode(&new_op_desc);

VarDesc out_var(new_name);
out_var.SetPersistable(false);
auto* node_var = graph->CreateVarNode(&out_var);

next_node_output->Op()->RenameInput(old_name, new_name);
IR_NODE_LINK_TO(next_node, new_op);
IR_NODE_LINK_TO(new_op, node_var);
IR_NODE_LINK_TO(node_var, next_node_output);
}
}
}
}
}
};

for (auto* op_node :
ir::TopologyVarientSort(*graph, static_cast<ir::SortKind>(0))) {
if (!op_node->IsOp() || op_node->Op()->Type() == "feed" ||
op_node->Op()->Type() == "fetch")
continue;

const auto& type = op_node->Op()->Type();
if (blacklist.count(type)) {
cast_input(graph, op_node, blacklist);
cast_output(graph, op_node, blacklist);
}
}
}

void MixedPrecisionConfigurePass::ApplyImpl(Graph* graph) const {
const auto blacklist =
Get<std::unordered_set<std::string>>("gpu_fp16_disabled_op_types");
InsertCastOps(graph, blacklist);
}

} // namespace ir
} // namespace framework
} // namespace paddle

REGISTER_PASS(mixed_precision_configure_pass,
paddle::framework::ir::MixedPrecisionConfigurePass);
39 changes: 39 additions & 0 deletions paddle/fluid/framework/ir/mixed_precision_configure_pass.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/framework/ir/fuse_pass_base.h"

namespace paddle {
namespace framework {
namespace ir {

using StringSet = std::unordered_set<std::string>;

class MixedPrecisionConfigurePass : public FusePassBase {
public:
MixedPrecisionConfigurePass() = default;
virtual ~MixedPrecisionConfigurePass() {}

protected:
void ApplyImpl(Graph* graph) const override;

private:
void InsertCastOps(Graph* graph, const StringSet& blacklist) const;
};

} // namespace ir
} // namespace framework
} // namespace paddle
3 changes: 3 additions & 0 deletions paddle/fluid/inference/analysis/argument.h
Original file line number Diff line number Diff line change
Expand Up @@ -188,6 +188,9 @@ struct Argument {
DECL_ARGUMENT_FIELD(use_gpu, UseGPU, bool);
DECL_ARGUMENT_FIELD(use_fc_padding, UseFcPadding, bool);
DECL_ARGUMENT_FIELD(gpu_device_id, GPUDeviceId, int);
DECL_ARGUMENT_FIELD(use_gpu_fp16, UseGPUFp16, bool);
DECL_ARGUMENT_FIELD(gpu_fp16_disabled_op_types, GpuFp16DisabledOpTypes,
std::unordered_set<std::string>);

// Usually use for trt dynamic shape.
// TRT will select the best kernel according to opt shape
Expand Down
4 changes: 4 additions & 0 deletions paddle/fluid/inference/analysis/ir_pass_manager.cc
Original file line number Diff line number Diff line change
Expand Up @@ -189,6 +189,10 @@ void IRPassManager::CreatePasses(Argument *argument,
new int(argument->dlnne_min_subgraph_size()));
pass->Set("program",
new framework::ProgramDesc *(&argument->main_program()));
} else if (pass_name == "mixed_precision_configure_pass") {
pass->Set("gpu_fp16_disabled_op_types",
new std::unordered_set<std::string>(
argument->gpu_fp16_disabled_op_types()));
}
if (pass_name == "lite_subgraph_pass") {
bool lite_enable_int8 =
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@

#include "paddle/fluid/inference/analysis/passes/ir_params_sync_among_devices_pass.h"
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/platform/enforce.h"
Expand Down Expand Up @@ -65,6 +66,26 @@ void IrParamsSyncAmongDevicesPass::CopyParamsToNpu(Argument *argument) {

#else

void IrParamsSyncAmongDevicesPass::GetVarNameToOpTypeMap(
const framework::ir::Graph &graph,
std::unordered_map<std::string, std::string> *var_name_op_type_map) {
std::vector<framework::ir::Node *> node_list =
framework::ir::TopologyVarientSort(
graph, static_cast<framework::ir::SortKind>(0));
for (auto *op_node : node_list) {
if (!op_node->IsOp() || op_node->Op()->Type() == "feed" ||
op_node->Op()->Type() == "fetch")
continue;

for (auto *pre_node : op_node->inputs) {
if (pre_node->IsVar() && pre_node->Var()->Persistable()) {
var_name_op_type_map->insert(std::pair<std::string, std::string>(
pre_node->Var()->Name(), op_node->Op()->Type()));
}
}
}
}

void IrParamsSyncAmongDevicesPass::CopyParamsToGpu(Argument *argument) {
// The parameters are on the cpu, therefore, synchronization is not necessary.
if (!argument->use_gpu()) return;
Expand Down Expand Up @@ -102,6 +123,16 @@ void IrParamsSyncAmongDevicesPass::CopyParamsToGpu(Argument *argument) {
if (with_dynamic_shape) {
reserve_cpu_weights = true;
}

bool mixed_precision_mode =
argument->Has("use_gpu_fp16") && argument->use_gpu_fp16();
std::unordered_map<std::string, std::string> var_name_op_type_map{};
std::unordered_set<std::string> blacklist{};
if (mixed_precision_mode) {
GetVarNameToOpTypeMap(graph, &var_name_op_type_map);
blacklist = argument->gpu_fp16_disabled_op_types();
}

for (auto &var_name : all_vars) {
if (std::count(repetitive_params.begin(), repetitive_params.end(),
var_name)) {
Expand All @@ -117,18 +148,29 @@ void IrParamsSyncAmongDevicesPass::CopyParamsToGpu(Argument *argument) {
var->IsType<framework::Tensor>()) {
auto *t = var->GetMutable<framework::LoDTensor>();

platform::CPUPlace cpu_place;
framework::LoDTensor temp_tensor;
temp_tensor.Resize(t->dims());
temp_tensor.mutable_data<float>(cpu_place);

// Copy the parameter data to a tmp tensor.
paddle::framework::TensorCopySync(*t, cpu_place, &temp_tensor);
// Reallocation the space on GPU
t->clear();

// Copy parameter data to newly allocated GPU space.
paddle::framework::TensorCopySync(temp_tensor, place, t);
bool is_float = t->dtype() == paddle::experimental::DataType::FLOAT32 ||
t->dtype() == paddle::experimental::DataType::FLOAT64;
if (mixed_precision_mode &&
!blacklist.count(var_name_op_type_map[var_name]) && is_float) {
framework::Tensor half_tensor;
half_tensor.set_type(paddle::experimental::DataType::FLOAT16);
half_tensor.Resize(t->dims());
auto *half_data =
half_tensor.mutable_data<float16>(platform::CPUPlace());
for (int i = 0; i < t->numel(); i++) {
auto *data = t->mutable_data<float>(platform::CPUPlace());
half_data[i] = static_cast<float16>(data[i]);
}
t->clear();
paddle::framework::TensorCopySync(half_tensor, place, t);
} else {
platform::CPUPlace cpu_place;
framework::LoDTensor temp_tensor;
temp_tensor.Resize(t->dims());
paddle::framework::TensorCopySync(*t, cpu_place, &temp_tensor);
t->clear();
paddle::framework::TensorCopySync(temp_tensor, place, t);
}
}
}
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,12 @@ class IrParamsSyncAmongDevicesPass : public AnalysisPass {
#ifdef PADDLE_WITH_ASCEND_CL
void CopyParamsToNpu(Argument *argument);
#else
void CopyParamsToGpu(Argument *argument);

void GetVarNameToOpTypeMap(
const framework::ir::Graph& graph,
std::unordered_map<std::string, std::string>* var_name_op_type_map);

void CopyParamsToGpu(Argument* argument);
#endif
};

Expand Down
Loading