Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

change dtype of pooling mask to 'int32' for Paddle2ONNX #39314

Merged
merged 3 commits into from
Feb 10, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions python/paddle/nn/functional/pooling.py
Original file line number Diff line number Diff line change
Expand Up @@ -611,7 +611,7 @@ def max_pool1d(x,
helper = LayerHelper(op_type, **locals())
dtype = helper.input_dtype(input_param_name='x')
pool_out = helper.create_variable_for_type_inference(dtype)
mask = helper.create_variable_for_type_inference(dtype)
mask = helper.create_variable_for_type_inference('int32')
outputs = {"Out": pool_out, "Mask": mask}

helper.append_op(
Expand Down Expand Up @@ -1053,7 +1053,7 @@ def max_pool2d(x,
'max_pool2d')
dtype = helper.input_dtype(input_param_name='x')
pool_out = helper.create_variable_for_type_inference(dtype)
mask = helper.create_variable_for_type_inference(dtype)
mask = helper.create_variable_for_type_inference("int32")
outputs = {"Out": pool_out, "Mask": mask}

helper.append_op(
Expand Down Expand Up @@ -1183,7 +1183,7 @@ def max_pool3d(x,
check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
dtype = helper.input_dtype(input_param_name='x')
pool_out = helper.create_variable_for_type_inference(dtype)
mask = helper.create_variable_for_type_inference(dtype)
mask = helper.create_variable_for_type_inference('int32')
outputs = {"Out": pool_out, "Mask": mask}

helper.append_op(
Expand Down Expand Up @@ -1559,7 +1559,7 @@ def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
dtype = helper.input_dtype(input_param_name='x')
pool_out = helper.create_variable_for_type_inference(dtype)

mask = helper.create_variable_for_type_inference(dtype)
mask = helper.create_variable_for_type_inference('int32')
outputs = {"Out": pool_out, "Mask": mask}

helper.append_op(
Expand Down Expand Up @@ -1647,7 +1647,7 @@ def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
dtype = helper.input_dtype(input_param_name='x')
pool_out = helper.create_variable_for_type_inference(dtype)

mask = helper.create_variable_for_type_inference(dtype)
mask = helper.create_variable_for_type_inference('int32')
outputs = {"Out": pool_out, "Mask": mask}

helper.append_op(
Expand Down Expand Up @@ -1740,7 +1740,7 @@ def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
dtype = helper.input_dtype(input_param_name='x')
pool_out = helper.create_variable_for_type_inference(dtype)

mask = helper.create_variable_for_type_inference(dtype)
mask = helper.create_variable_for_type_inference('int32')
outputs = {"Out": pool_out, "Mask": mask}

helper.append_op(
Expand Down