Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Accuracy op #3907

Merged
merged 23 commits into from
Sep 14, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
23 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
66 changes: 66 additions & 0 deletions paddle/operators/accuracy_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/accuracy_op.h"

namespace paddle {
namespace operators {

class AccuracyOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Inference"),
"Input of Inference must be initialized.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
"Input of Inference must be initialized.");
auto *inference = ctx.Input<framework::Tensor>("Inference");
auto *label = ctx.Input<framework::Tensor>("Label");

PADDLE_ENFORCE_EQ(label->dims().size(), 1, "label must be a vector");
PADDLE_ENFORCE_EQ(inference->dims()[0], label->dims()[0],
"inference size must be the same as label size");

ctx.Output<Tensor>("Accuracy")->Resize({1});
}
};

class AccuracyOpMaker : public framework::OpProtoAndCheckerMaker {
public:
AccuracyOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
// TODO(typhoonzero): support both inference value and indices.
AddInput("Inference", "topk(indices) the network output");
AddInput("Label", "Label of the training data");
// TODO(typhoonzero): AddInput("Weight", ...
AddOutput("Accuracy", "The accuracy of current batch");

AddComment(
R"DOC(Accuracy. It will print accuracy rate for classification.
The accuracy is:
.. math::
accuracy = \\frac{NumOfCorrectPredicts}{NumOfAllSamples})DOC");
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(accuracy, ops::AccuracyOp, ops::AccuracyOpMaker);
REGISTER_OP_CPU_KERNEL(accuracy,
ops::AccuracyKernel<paddle::platform::CPUPlace, float>);
69 changes: 69 additions & 0 deletions paddle/operators/accuracy_op.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/accuracy_op.h"

namespace paddle {
namespace operators {

__global__ void AccuracySingleKernel(const int N, const int D, const int top_k,
const int* Xdata, const int* labelData,
float* accuracy) {
int correct = 0;
for (int row = 0; row < N; row++) {
const int label = labelData[row];
for (int col = 0; col < D; col++) {
const int pred = Xdata[row * D + col];
if (pred == label) {
++correct;
break;
}
}
}
*accuracy = static_cast<float>(correct) / static_cast<float>(N);
}

template <typename T>
class AccuracyOpCUDAKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"It must use GPUPlace.");
auto* inference = ctx.Input<Tensor>("Inference");
auto* label = ctx.Input<Tensor>("Label");
auto* accuracy = ctx.Output<Tensor>("Accuracy");
// FIXME(typhoonzero): only support indices currently
// if add support for output values, how to detect the data type?
const int* inference_data = inference->data<int>();
const int* label_data = label->data<int>();
float* accuracy_data = accuracy->mutable_data<float>(ctx.GetPlace());

size_t num_samples = inference->dims()[0];
size_t infer_width = inference->dims()[1];
cudaMemset((void**)&accuracy_data, 0, sizeof(float));

if (num_samples == 0) {
return;
}

AccuracySingleKernel<<<1, 1>>>(num_samples, infer_width, 1, inference_data,
label_data, accuracy_data);
}
};

} // namespace operators
} // namespace paddle

REGISTER_OP_GPU_KERNEL(accuracy,
paddle::operators::AccuracyOpCUDAKernel<float>);
77 changes: 77 additions & 0 deletions paddle/operators/accuracy_op.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenScalar = framework::EigenScalar<T, MajorType, IndexType>;

template <typename Place, typename T>
class AccuracyKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* inference = ctx.Input<Tensor>("Inference");
auto* label = ctx.Input<Tensor>("Label");
auto* accuracy = ctx.Output<Tensor>("Accuracy");

float* accuracy_data = accuracy->mutable_data<float>(ctx.GetPlace());

const T* inference_data = inference->data<T>();
const T* label_data = label->data<T>();

size_t num_samples = inference->dims()[0];
size_t class_dim = inference->dims()[1];
*accuracy_data = 0.0f;

if (num_samples == 0) {
return;
}

int num_correct = 0;
// assume inference is already the topk of the output
for (size_t i = 0; i < num_samples; ++i) {
PADDLE_ENFORCE_GE(label_data[i], 0, "label must >= 0");
for (size_t j = 0; j < class_dim; ++j) {
if (inference_data[i * class_dim + j] == label_data[i]) {
++num_correct;
break;
}
}
}

// FIXME(typhoonzero): we don't accumulate the accuracy for now.
*accuracy_data =
static_cast<float>(num_correct) / static_cast<float>(num_samples);
Copy link
Contributor

@dzhwinter dzhwinter Sep 13, 2017

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Do we need an ENFORCE check num_samples is not equal to zero? when user misuse this operator, the num_samples may be zero. I'm not sure it's useful.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done, this return 0 if num_sample==0

}
};

} // namespace operators
} // namespace paddle
1 change: 1 addition & 0 deletions paddle/pybind/pybind.cc
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,7 @@ USE_OP(minus);
USE_OP(cos_sim);
USE_CPU_ONLY_OP(gather);
USE_CPU_ONLY_OP(scatter);
USE_OP(accuracy);
USE_CPU_ONLY_OP(concat);
USE_OP(top_k);
USE_OP(squared_l2_distance);
Expand Down
25 changes: 25 additions & 0 deletions python/paddle/v2/framework/tests/test_accuracy_op.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
import unittest
import numpy as np
from op_test import OpTest


class TestAccuracyOp(OpTest):
def setUp(self):
self.op_type = "accuracy"
infer = np.random.randint(0, 2, (32, 1)).astype("int")
label = np.random.randint(0, 2, (32, )).astype("int")
self.inputs = {'Inference': infer, "Label": label}
num_correct = 0
for rowid in xrange(32):
for ele in infer[rowid]:
if ele == label[rowid]:
num_correct += 1
break
self.outputs = {'Accuracy': [num_correct / 32.0]}

def test_check_output(self):
self.check_output()


if __name__ == '__main__':
unittest.main()