-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
add adaround post-quant method #38460
Merged
yghstill
merged 7 commits into
PaddlePaddle:develop
from
yghstill:add_post_quant_adaround
Mar 28, 2022
Merged
Changes from all commits
Commits
Show all changes
7 commits
Select commit
Hold shift + click to select a range
8905820
add adaround post-quant method
yghstill e94b42f
Merge branch 'develop' of github.com:PaddlePaddle/Paddle into add_pos…
yghstill 9bee8b1
merge develop
yghstill 7e4fea8
add unit test
yghstill ff4ba1a
Merge branch 'develop' of github.com:PaddlePaddle/Paddle into add_pos…
yghstill 0857203
fix some parameter
yghstill d256668
fix unittest
yghstill File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
309 changes: 309 additions & 0 deletions
309
python/paddle/fluid/contrib/slim/quantization/adaround.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,309 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import numpy as np | ||
import time | ||
import sys | ||
import logging | ||
|
||
import paddle.fluid as fluid | ||
|
||
from ....log_helper import get_logger | ||
from .utils import load_variable_data, set_variable_data, stable_sigmoid, quant_tensor, dequant_tensor, _channelwise_quant_axis1_ops, calculate_quant_cos_error | ||
|
||
_logger = get_logger( | ||
__name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s') | ||
|
||
GAMMA = -0.1 | ||
ZETA = 1.1 | ||
|
||
|
||
def compute_soft_rounding(alpha_v): | ||
return fluid.layers.clip( | ||
fluid.layers.sigmoid(alpha_v) * (ZETA - GAMMA) + GAMMA, min=0, max=1) | ||
|
||
|
||
def compute_soft_rounding_np(alpha_v): | ||
return np.clip( | ||
stable_sigmoid(alpha_v) * (ZETA - GAMMA) + GAMMA, a_min=0, a_max=1) | ||
|
||
|
||
class AdaRoundLoss(object): | ||
def __init__(self, reg_param=0.01, default_beta_range=(20, 2)): | ||
self.default_reg_param = reg_param | ||
self.default_beta_range = default_beta_range | ||
|
||
def compute_recon_loss(self, ada_quantized_output, orig_output): | ||
square_cost = fluid.layers.square_error_cost(ada_quantized_output, | ||
orig_output) | ||
recon_loss = fluid.layers.reduce_mean( | ||
fluid.layers.reduce_sum( | ||
square_cost, dim=-1)) | ||
return recon_loss | ||
|
||
def compute_round_loss(self, alpha_v, warm_start, beta): | ||
def round_loss_fn(): | ||
# compute rectified sigmoid of parameter 'alpha' which maps it between zero and one | ||
h_v = compute_soft_rounding(alpha_v) | ||
|
||
# calculate regularization term - which ensures parameter to converge to exactly zeros and ones | ||
# at the end of optimization | ||
reg_term = fluid.layers.reduce_sum(-fluid.layers.pow( | ||
fluid.layers.abs(2 * h_v - 1), factor=beta) + 1) | ||
|
||
# calculate the rounding loss | ||
round_loss = self.default_reg_param * reg_term | ||
|
||
return round_loss | ||
|
||
round_loss = fluid.layers.cond(warm_start, lambda: fluid.layers.fill_constant(shape=[1], dtype='float32', value=0.0), round_loss_fn) | ||
|
||
return round_loss | ||
|
||
def compute_beta(self, max_iter, cur_iter, warm_start): | ||
|
||
# Start and stop beta for annealing of rounding loss (start_beta, end_beta) | ||
start_beta, end_beta = self.default_beta_range | ||
|
||
# iteration at end of warm start period, which is 20% of max iterations | ||
warm_start_end_iter = warm_start * max_iter | ||
|
||
# compute relative iteration of current iteration | ||
rel_iter = (cur_iter - warm_start_end_iter) / ( | ||
max_iter - warm_start_end_iter) | ||
beta = end_beta + 0.5 * (start_beta - end_beta) * (1 + np.cos(rel_iter * | ||
np.pi)) | ||
|
||
return beta | ||
|
||
|
||
class AdaRound(object): | ||
def __init__(self, | ||
scale, | ||
weight_tensor, | ||
scope=None, | ||
weight_var_name=None, | ||
weight_op_type=None, | ||
is_train=True, | ||
num_iterations=1000): | ||
self.is_train = is_train | ||
self.num_iterations = num_iterations | ||
self.warm_start = 0.1 | ||
self.weight_bits = 8 | ||
self.offset = 0. # zero-point offset | ||
self.adaround_loss = AdaRoundLoss() | ||
self.ori_weight_tensor = weight_tensor | ||
self.scale = scale | ||
self.scope = scope | ||
self.quant_axis = 0 | ||
if weight_op_type in _channelwise_quant_axis1_ops: | ||
self.quant_axis = 1 | ||
self.weight_var_name = weight_var_name | ||
self.alpha_name = weight_var_name + ".alpha" | ||
self.initialize_alpha(weight_tensor.copy(), scale, weight_var_name) | ||
|
||
def initialize_alpha(self, tensor, scale, var_name): | ||
""" | ||
Initializes alpha parameter, same shape as the weight tensor | ||
""" | ||
tensor_scale = quant_tensor(tensor, scale, quant_axis=self.quant_axis) | ||
tensor_floor = np.floor(tensor_scale) | ||
tensor = tensor_scale - tensor_floor | ||
alpha = -np.log((ZETA - GAMMA) / (tensor - GAMMA) - 1) | ||
self.alpha_v = fluid.layers.create_parameter( | ||
shape=alpha.shape, | ||
dtype="float32", | ||
name=var_name + ".alpha", | ||
default_initializer=fluid.initializer.NumpyArrayInitializer(alpha)) | ||
|
||
def _calculate_output_with_adarounded_weights(self, program, place, exe, | ||
data, fp32_fetch_list, | ||
weight_tensor_dequant): | ||
set_variable_data(self.scope, place, self.weight_var_name, | ||
weight_tensor_dequant) | ||
|
||
adaround_out_tensor = exe.run(program=program, | ||
feed=data, | ||
fetch_list=[fp32_fetch_list], | ||
return_numpy=True, | ||
scope=self.scope) | ||
return adaround_out_tensor | ||
|
||
def _calculate_quant_weight(self): | ||
np_alpha = load_variable_data(self.scope, self.alpha_name) | ||
h_alpha = compute_soft_rounding_np(np_alpha) | ||
|
||
# Scale the tensor | ||
tensor_scale = quant_tensor( | ||
self.ori_weight_tensor.copy(), | ||
self.scale, | ||
quant_axis=self.quant_axis) | ||
|
||
weight_tensor = np.floor(tensor_scale) | ||
|
||
# Adaround the tensor | ||
weight_tensor_quant = np.add(weight_tensor, h_alpha) | ||
return weight_tensor_quant | ||
|
||
def _calculate_adarounded_weights(self): | ||
weight_tensor_quant = self._calculate_quant_weight() | ||
|
||
# Dequantize the tensor | ||
weight_tensor_dequant = dequant_tensor( | ||
weight_tensor_quant + self.offset, | ||
self.scale, | ||
quant_axis=self.quant_axis) | ||
return weight_tensor_dequant | ||
|
||
def update_final_weights(self): | ||
weight_tensor_quant = self._calculate_quant_weight() | ||
return weight_tensor_quant | ||
|
||
def get_loss(self, beta, warm_start, adaround_out_tensor, orig_out_tensor): | ||
round_loss = self.adaround_loss.compute_round_loss(self.alpha_v, | ||
warm_start, beta) | ||
recon_loss = self.adaround_loss.compute_recon_loss(adaround_out_tensor, | ||
orig_out_tensor) | ||
loss = round_loss + recon_loss | ||
losses = { | ||
'loss': loss, | ||
'round_loss': round_loss, | ||
'recon_loss': recon_loss | ||
} | ||
return losses | ||
|
||
def update_beta_warm(self, cur_iteration): | ||
warm_start = cur_iteration < self.num_iterations * self.warm_start | ||
beta = self.adaround_loss.compute_beta(self.num_iterations, | ||
cur_iteration, self.warm_start) | ||
return beta, warm_start | ||
|
||
|
||
def run_adaround(data_loader, | ||
fp32_program, | ||
fetch_list, | ||
exe, | ||
scope, | ||
place, | ||
quantized_op_pairs, | ||
weight_op_pairs, | ||
scale_dict, | ||
num_iterations=1000, | ||
lr=0.001, | ||
fast_mode=True): | ||
fetch_op_name = fetch_list[0].name | ||
final_weight_tensor_quant_dict = {} | ||
for weight_var_name, quant_op_out_name in quantized_op_pairs.items(): | ||
_logger.info('Start adaround op: {}'.format(weight_var_name)) | ||
weight_op_type = weight_op_pairs[weight_var_name] | ||
# get scale and weight tensor | ||
weight_var_tensor = load_variable_data(scope, weight_var_name) | ||
scale = scale_dict[weight_var_name] | ||
fp32_fetch_list = None | ||
for _op in fp32_program.global_block().ops: | ||
if _op.type == "fetch": | ||
_op._rename_input(fetch_op_name, quant_op_out_name) | ||
fp32_fetch_list = fp32_program.global_block().var( | ||
quant_op_out_name) | ||
fetch_op_name = quant_op_out_name | ||
|
||
# build adaround program | ||
exec_strategy = fluid.ExecutionStrategy() | ||
exec_strategy.num_iteration_per_drop_scope = 1 | ||
startup_program = fluid.Program() | ||
train_program = fluid.Program() | ||
with fluid.program_guard(train_program, startup_program): | ||
with fluid.unique_name.guard(): | ||
# initialize adaround | ||
adaround = AdaRound( | ||
scale, | ||
weight_var_tensor, | ||
scope=scope, | ||
weight_var_name=weight_var_name, | ||
weight_op_type=weight_op_type, | ||
num_iterations=num_iterations) | ||
orig_out_tensor = fluid.data( | ||
name='orig_out_tensor', | ||
shape=fp32_fetch_list.shape, | ||
dtype='float32') | ||
adaround_out_tensor = fluid.data( | ||
name='adaround_out_tensor', | ||
shape=fp32_fetch_list.shape, | ||
dtype='float32') | ||
beta_tensor = fluid.data( | ||
name='beta', shape=[1], dtype='float32') | ||
warm_start_tensor = fluid.data( | ||
name='warm_start', shape=[1], dtype='bool') | ||
|
||
train_fetches_loss = adaround.get_loss( | ||
beta_tensor, warm_start_tensor, adaround_out_tensor, | ||
orig_out_tensor) | ||
optimizer = fluid.optimizer.Adam(learning_rate=lr) | ||
loss = train_fetches_loss['loss'] | ||
optimizer.minimize(loss) | ||
exe.run(startup_program) | ||
|
||
start_time = time.time() | ||
prev_start_time = start_time | ||
for i, data in enumerate(data_loader()): | ||
prev_start_time = start_time | ||
start_time = time.time() | ||
# run fp32 model | ||
np_orig_out_tensor = exe.run(program=fp32_program, | ||
feed=data, | ||
fetch_list=[fp32_fetch_list], | ||
return_numpy=True, | ||
scope=scope) | ||
|
||
adaround_weight_tensor_dequant = adaround._calculate_adarounded_weights( | ||
) | ||
np_adaround_out_tensor = adaround._calculate_output_with_adarounded_weights( | ||
fp32_program, place, exe, data, fp32_fetch_list, | ||
adaround_weight_tensor_dequant) | ||
|
||
# If the cosine distance of the two tensor is small, skip training | ||
cos_error = calculate_quant_cos_error(np_orig_out_tensor[0], | ||
np_adaround_out_tensor[0]) | ||
if fast_mode and cos_error > 0.99: | ||
_logger.info("The cosine error is small, skip training.") | ||
break | ||
beta, warm_start = adaround.update_beta_warm(i) | ||
feed_dict = { | ||
'orig_out_tensor': np_orig_out_tensor[0], | ||
'adaround_out_tensor': np_adaround_out_tensor[0], | ||
'beta': beta, | ||
'warm_start': warm_start | ||
} | ||
out = exe.run( | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 执行"train_program"的作用是什么? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. adaround需要执行训练 |
||
train_program, | ||
feed=feed_dict, | ||
fetch_list=[v.name for v in train_fetches_loss.values()], | ||
return_numpy=True) | ||
_logger.info( | ||
"Iter {:d}, lr {:.5f}, loss {:.5f}, loss_round {:.5f}, loss_recon {:.5f}, time {:.5f}s". | ||
format(i, lr, | ||
np.mean(out[0]), | ||
np.mean(out[1]), | ||
np.mean(out[2]), start_time - prev_start_time)) | ||
sys.stdout.flush() | ||
if i == num_iterations: | ||
break | ||
final_weight_tensor_quant_dict[ | ||
weight_var_name] = adaround.update_final_weights() | ||
del adaround | ||
|
||
# update adarounded calibrated weights | ||
for weight_var_name in quantized_op_pairs.keys(): | ||
set_variable_data(scope, place, weight_var_name, | ||
final_weight_tensor_quant_dict[weight_var_name]) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
quantized_op_output_name_dict
和weight_op_pairs
都是weight到其它信息的映射,但是命名风格完全不一样。There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
已统一风格