Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix_InternalStorage #37568

Merged
merged 1 commit into from
Nov 29, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,6 @@
# See the License for the specific language governing permissions and
from .hybrid_parallel_optimizer import HybridParallelOptimizer
from .hybrid_parallel_gradscaler import HybridParallelGradScaler
# from .dygraph_sharding_optimizer import DygraphShardingOptimizer
from .dygraph_sharding_optimizer import DygraphShardingOptimizer

__all__ = []
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
Expand All @@ -11,32 +11,14 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#Taken and modified for fairscale from:
# /~https://github.com/facebookresearch/fairscale/blob/main/fairscale/optim/oss.py
#Commit: 8acbec718f3c70a6b9785470bb9e05cd84fc3f8e

import numpy as np
from itertools import chain
######

from functools import reduce
from collections import OrderedDict

import paddle
from paddle import framework
import paddle.distributed as dist
from paddle.optimizer import Optimizer

from ...utils.log_util import logger
from ...utils.internal_storage import ParamStorage
from ...meta_parallel.sharding.sharding_utils import Type

# CUDA alignment 256 bytes
alignment = {"gpu": 256, }
align = {
Type.fp16.value: 2,
Type.fp32.value: 4,
}

__all__ = ["ShardingOptimizerStage2"]


def _is_trainable(param):
Expand Down Expand Up @@ -210,245 +192,3 @@ def _grad_clip(self):

def __getattr__(self, item):
return getattr(self._inner_optimizer, item)


class ShardingOptimizerStage2(Optimizer):
"""
A wrapper for Sharding Stage2 Optimizer in Dygraph.

.. warning: ShardingOptimizer encapsulates the optimization strategy and integrates it into the optimizer.

.. ZeRO: 1.https://arxiv.org/pdf/1910.02054.pdf 2.https://arxiv.org/pdf/1910.02054.pdf.

"""

# TODO (Baibaifan)
# Feature Notes:
# 1. Unified memory for parameters and parameters.grad to InternalStorage.
# 2. Support the segmentation of optimizer parameters and partial updating of parameters.
# 3. Dynamically adjust training parameters and models。
# 4. Support offload function.
# 5. Support the establishment of independent communication groups.
# 6. Broadcast_fp16 is not supported now.
def __init__(self,
params,
optim,
group,
broadcast_fp16=False,
offload=False,
device="gpu",
accumulation_steps=None,
**kw):

super().__init__(optim._learning_rate, params, kw)

# Segmentation information
self._dtype_rank_params = OrderedDict(
) # {dtype:[param1,param2]} device, rank, params
self._param2rank = {}
self._segment_params = []
self._rank_buffer_size = {} # {dtype: {rank: numel+alignment}}
self._param2align = {} # {param.name: align}

# Default information
self._optim_defaults = kw
self._optim = optim
self._local_params = params
self._default_device = device
self._accumulation_steps = accumulation_steps

assert group is not None, "Distributed communication group is must be gived"
self.group = group
self.world_size = group.nranks
self.rank = group.rank

self.broadcast_fp16 = broadcast_fp16
self.param_storages = {} # {dtype: {rank: InternalStorage}}
self.offload = offload # Using for offload

# Update optimizer parameters and adjust parameter storage and use according to rank.
self.update_opt_status()

def update_opt_status(self):
"""Update optimizer status and parameter storage information, and special functions to be developed.
"""
# func 1
self._integration_params()

# fun 2 TODO

# Segement helpers

def segment_params(self):
"""
Divide all optimizer parameters equally into rank.
"""
if len(self._segment_params) == 0:
self._segment_params, param_lists = [
[] for _ in range(self.world_size)
], [[] for _ in range(self.world_size)]
sizes = [0] * self.world_size
for param in self._local_params:
# Add this param to rank with smallest size.
rank = sizes.index(min(sizes))
param_lists[rank].append(param)

# Statistical real numels
sizes[rank] += np.prod(param.shape) if param.trainable else 0

for rank, params in enumerate(param_lists):
# param_group_rank = copy.copy(params)
self._segment_params[rank].extend(params)
return self._segment_params

@property
def local_params(self):
return self._local_params

@property
def accumulation_steps(self):
return self._accumulation_steps

@property
def param2rank(self):
"""Map the params to the rank which owns them"""
if len(self._param2rank) == 0:
for rank, params in enumerate(self.segment_params()):
for param in params:
self._param2rank[param.name] = rank
return self._param2rank

@property
def dtype_rank_params(self):
"""
Divide the parameters into groups according to rank and dtype.
"""
if len(self._dtype_rank_params) == 0:
# Assign the parameters of each rank according to the type
for param in self._local_params:
if param.dtype not in self._dtype_rank_params.keys():
self._dtype_rank_params[
param.dtype] = [[] for _ in range(self.world_size)]
self._dtype_rank_params[param.dtype][self.param2rank[
param.name]].append(param)

# Sort per rank params by size
for dtype in self._dtype_rank_params.keys():
for rank_params in self._dtype_rank_params[dtype]:
rank_params.sort(key=lambda x: np.prod(x.shape))

return self._dtype_rank_params

@property
def rank_buffer_size(self):
"""
Count the memory size of the parameters corresponding to rank under the corresponding dtype.
"""
# CUDA alignment 256 bytes
if len(self._rank_buffer_size) == 0:
for dtype in self.dtype_rank_params.keys():
if dtype not in self._rank_buffer_size.keys():
self._rank_buffer_size[dtype] = {}
for dst_rank, per_rank_params in enumerate(
self.dtype_rank_params[dtype]):
if dst_rank not in self._rank_buffer_size[dtype].keys():
self._rank_buffer_size[dtype][dst_rank] = 0
for param in per_rank_params:
if not param.trainable:
continue
size = np.prod(param.shape) * align[dtype]
remaining = size % alignment[self._default_device]
ali = 0 if remaining == 0 else alignment[
self._default_device] - remaining
align_ = ali // align[dtype]
self._rank_buffer_size[dtype][dst_rank] += np.prod(
param.shape) + align_
self._param2align[param.name] = align_

return self._rank_buffer_size

def _integration_params(self):
"""
Integrate the parameters into a continuous memory according to rank, and support the update of training parameters.
"""

for dtype, per_rank_params in self.dtype_rank_params.items():
if dtype not in self.param_storages.keys():
self.param_storages[dtype] = {}

for dst_rank, params in enumerate(per_rank_params):
if len(params) > 0:

# Merge all the trainable params in a single InternalStorage
trainable_params = list(
filter(lambda x: x.trainable, params))
if trainable_params:
param_storage = ParamStorage(
size=self.rank_buffer_size[dtype][dst_rank],
dtype=dtype,
device=self._default_device)

param_storage.add_rank_params(trainable_params,
self._param2align)
self.param_storages[dtype][dst_rank] = param_storage

# Clear the InternalStorage keys which are not in use anymore
dtype_in_use = list(self.dtype_rank_params.keys())
dtype_to_pop = list(
filter(lambda x: x not in dtype_in_use, self.param_storages.keys()))
for d in dtype_to_pop:
self.param_storages.pop(d)

def step(self):
"""
A wrapper for Optimizer's step function to finish the update operation of the optimizer.
"""

# Synchronize optimizer parameters for the current rank
if len(self.dtype_rank_params.keys(
)) == 1 and Type.fp32.value in self.dtype_rank_params.keys():
self._optim._parameter_list = self.dtype_rank_params[
Type.fp32.value][self.rank]
elif len(self.dtype_rank_params.keys(
)) == 1 and Type.fp16.value in self.dtype_rank_params.keys():
self._optim._parameter_list = self.dtype_rank_params[
Type.fp16.value][self.rank]
else:
self._optim._parameter_list = self.dtype_rank_params[
Type.fp16.value][self.rank] + self.dtype_rank_params[
Type.fp32.value][self.rank]

# Run the optimizer of the current rank step
self._optim.step()

# Synchronize all the updated shards in between the ranks
self._broadcast_params()

# Return full parameters to optimizer parameters
self._optim._parameter_list = self._local_params

def clear_cache(self):
self._segment_params.clear()
self._dtype_rank_params.clear()
self._param2rank.clear()

@paddle.no_grad()
def _broadcast_params(self):
"""Broadcast the parameters of the current rank to each rank"""

assert self._default_device == "gpu", "Only supported gpu"

# Exchange all the shards with the other ranks
for dtype_per_rank in self.param_storages.values():
for dst_rank, internal_storage in dtype_per_rank.items():
dist.broadcast(
tensor=internal_storage.buffer,
src=dst_rank,
group=self.group,
use_calc_stream=True)

# Multi stream operation will be supported later
dist.wait(
tensor=internal_storage.buffer,
group=self.group,
use_calc_stream=True)
Loading