-
Notifications
You must be signed in to change notification settings - Fork 5.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Auto Parallel] Completion Dist Attribute for Backward & Update stage #36744
Merged
JZ-LIANG
merged 6 commits into
PaddlePaddle:develop
from
JZ-LIANG:AutoParallel/bugfix-bw-allreduce-completion
Oct 27, 2021
Merged
Changes from 4 commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
e167a7a
revise completion for backward
JZ-LIANG 8b8f35e
revise completion for update
JZ-LIANG 3a2d9df
revise completion for update
JZ-LIANG 23d1ccd
update unitest
JZ-LIANG ee54562
chmod
JZ-LIANG d579db6
bugfix for grad_op output var's mesh
JZ-LIANG File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -623,24 +623,35 @@ def _get_op_by_id(ops, id): | |
if dist_context is None: | ||
dist_context = get_default_distributed_context() | ||
|
||
grad_start_idx = -1 | ||
first_backward_op_idx = -1 | ||
for idx, op in enumerate(auto_parallel_main_prog.global_block().ops): | ||
if int(op.attr('op_role')) == int( | ||
int(core.op_proto_and_checker_maker.OpRole.Backward) | int( | ||
core.op_proto_and_checker_maker.OpRole.Loss)): | ||
assert op.type == "fill_constant" | ||
grad_start_idx = idx | ||
first_backward_op_idx = idx | ||
break | ||
|
||
assert grad_start_idx >= 0, "No backward procedure found in this program." | ||
assert first_backward_op_idx >= 0, "No backward procedure found in this program." | ||
|
||
ops = list(auto_parallel_main_prog.global_block().ops) | ||
vars = auto_parallel_main_prog.global_block().vars | ||
dist_op_helper = dist_context.get_dist_op_helper() | ||
|
||
for idx in range(grad_start_idx, len(ops)): | ||
for idx in range(first_backward_op_idx, len(ops)): | ||
|
||
# complete the initial grad loss op | ||
if idx == grad_start_idx: | ||
if idx == first_backward_op_idx: | ||
assert ops[idx].type == "fill_constant" | ||
assert len( | ||
ops[idx].input_arg_names | ||
) == 0, "first backward op should has only ONE output, but got [{}]".format( | ||
len(ops[idx].input_arg_names)) | ||
assert len( | ||
ops[idx].output_arg_names | ||
) == 1, "first backward op should has only ONE output, but got [{}]".format( | ||
len(ops[idx].output_arg_names)) | ||
|
||
grad_var = vars[ops[idx].output_arg_names[0]] | ||
forward_var_name = _get_forward_varname_from_grad_varname( | ||
grad_var.name) | ||
|
@@ -659,48 +670,17 @@ def _get_op_by_id(ops, id): | |
|
||
op_attr = OperatorDistributedAttribute(ops[idx], dist_context) | ||
op_attr.set_process_mesh(process_mesh) | ||
dist_context.set_op_distributed_attr_for_program(ops[idx], op_attr) | ||
continue | ||
|
||
# TODO remove this when dist op handle its own grad scale | ||
# in the data parallel mode, the loss op followed by scale op. | ||
if ops[idx].type == "scale" and idx == grad_start_idx + 1: | ||
assert grad_var.name in ops[ | ||
idx].input_arg_names and grad_var.name in ops[ | ||
idx].output_arg_names | ||
grad_var = vars[ops[idx].output_arg_names[0]] | ||
forward_var_name = _get_forward_varname_from_grad_varname( | ||
grad_var.name) | ||
forward_var = vars[forward_var_name] | ||
process_mesh = dist_context.get_tensor_distributed_attr_for_program( | ||
forward_var).get_process_mesh() | ||
op_attr = OperatorDistributedAttribute(ops[idx], dist_context) | ||
op_attr.set_process_mesh(process_mesh) | ||
dist_context.set_op_distributed_attr_for_program(ops[idx], op_attr) | ||
continue | ||
|
||
# TODO remove this when dist op handle its own communication | ||
# TODO should distinguish the dp allreduce and mp allreduce | ||
# complete the c_allreduce_sum op for gradient in the data parallel mode. | ||
if ops[idx].type == "c_allreduce_sum" and ops[ | ||
idx].input_arg_names == ops[idx].output_arg_names: | ||
grad_var = vars[ops[idx].output_arg_names[0]] | ||
op_attr = OperatorDistributedAttribute(ops[idx], dist_context) | ||
process_mesh = dist_context.get_tensor_distributed_attr_for_program( | ||
grad_var).get_process_mesh() | ||
op_attr.set_process_mesh(process_mesh) | ||
op_attr.set_output_dims_mapping(grad_var.name, dims_mapping) | ||
dist_context.set_op_distributed_attr_for_program(ops[idx], op_attr) | ||
continue | ||
|
||
# complete the annotation of grad op (xxx_grad op or sum op) | ||
grad_op = ops[idx] | ||
|
||
# xxx_grad op will have a corresponding forward op in gradopidx2opidx | ||
dist_op_helper = dist_context.get_dist_op_helper() | ||
grad_op = ops[idx] | ||
if grad_op.desc.id() in dist_op_helper.gradopidx2opidx: | ||
# TODO support the case where one forward op corresponding to multiple xxx_grad op | ||
forward_op = _get_op_by_id( | ||
ops[:grad_start_idx], | ||
ops[:first_backward_op_idx], | ||
dist_op_helper.gradopidx2opidx[grad_op.desc.id()]) | ||
assert forward_op is not None | ||
|
||
|
@@ -710,39 +690,60 @@ def _get_op_by_id(ops, id): | |
grad_op_attr = OperatorDistributedAttribute(grad_op, dist_context) | ||
grad_op_attr.set_process_mesh(forward_op_attr.get_process_mesh()) | ||
|
||
for var_name in grad_op.input_arg_names: | ||
if "@GRAD" in var_name: | ||
dims_mapping = dist_context.get_tensor_distributed_attr_for_program( | ||
vars[var_name]).get_dims_mapping() | ||
grad_op_attr.set_input_dims_mapping(var_name, dims_mapping) | ||
# var | ||
for output_name in grad_op.desc.output_names(): | ||
assert len(grad_op.desc.output(output_name)) in [0, 1] | ||
# if grad_op.type == "cast": | ||
# input_name = "X" | ||
# else: | ||
if _is_grad_var_name(output_name): | ||
input_name = _get_forward_varname_from_grad_varname( | ||
output_name) | ||
else: | ||
dims_mapping = forward_op_attr.get_input_dims_mapping( | ||
var_name) | ||
# TODO fixed here | ||
if dims_mapping == None: | ||
dims_mapping = forward_op_attr.get_output_dims_mapping( | ||
var_name) | ||
assert dims_mapping is not None, "[{}]'s dims_mapping is None".format( | ||
var_name) | ||
grad_op_attr.set_input_dims_mapping(var_name, dims_mapping) | ||
assert grad_op.type in [ | ||
"cast", "c_identity", "c_allreduce_sum" | ||
] | ||
input_name = "X" | ||
assert input_name in forward_op.desc.input_names( | ||
), "var [{}] in op [{}]'s output but coulf not find [{}] in its forward op".format( | ||
output_name, grad_op.type, input_name) | ||
if len(grad_op.desc.output(output_name)) == 1: | ||
assert len(forward_op.desc.input(input_name)) == 1 | ||
input_var = vars[forward_op.desc.input(input_name)[0]] | ||
input_var_dist_attr = dist_context.get_tensor_distributed_attr_for_program( | ||
input_var) | ||
assert input_var_dist_attr is not None, "[{}] has not dist attribute".format( | ||
input_var.name) | ||
ref_dims_mapping = input_var_dist_attr.get_dims_mapping() | ||
ref_process_mesh = input_var_dist_attr.get_process_mesh() | ||
|
||
# tensor dist attr | ||
output_var = vars[grad_op.desc.output(output_name)[0]] | ||
output_var_attr = TensorDistributedAttribute(output_var, | ||
dist_context) | ||
output_var_attr.set_dims_mapping(ref_dims_mapping) | ||
output_var_attr.set_process_mesh(ref_process_mesh) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. the grad var process mesh should be the same with grad op instead of forward var? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. yes, here is a bug and had been fixed |
||
dist_context.set_tensor_distributed_attr_for_program( | ||
output_var, output_var_attr) | ||
|
||
# op dist attr | ||
grad_op_attr.set_output_dims_mapping(output_var.name, | ||
ref_dims_mapping) | ||
|
||
for input_name in grad_op.input_arg_names: | ||
input_var = vars[input_name] | ||
input_var_dist_attr = dist_context.get_tensor_distributed_attr_for_program( | ||
input_var) | ||
assert input_var_dist_attr is not None, "[{}] has not dist attribute".format( | ||
input_var.name) | ||
ref_dims_mapping = input_var_dist_attr.get_dims_mapping() | ||
assert ref_dims_mapping is not None, "[{}] 's dims mapping is NONE".format( | ||
input_var.name) | ||
grad_op_attr.set_input_dims_mapping(input_name, | ||
ref_dims_mapping) | ||
|
||
dist_context.set_op_distributed_attr_for_program(grad_op, | ||
grad_op_attr) | ||
# var dist attr | ||
for var_name in grad_op.output_arg_names: | ||
if _is_grad_var_name(var_name): | ||
|
||
forward_var_name = _get_forward_varname_from_grad_varname( | ||
var_name) | ||
forward_var = vars[forward_var_name] | ||
tensor_attr = TensorDistributedAttribute(vars[var_name], | ||
dist_context) | ||
process_mesh = grad_op_attr.get_process_mesh() | ||
dims_mapping = grad_op_attr.get_input_dims_mapping( | ||
forward_var_name) | ||
tensor_attr.set_process_mesh(process_mesh) | ||
tensor_attr.set_dims_mapping(dims_mapping) | ||
dist_context.set_tensor_distributed_attr_for_program( | ||
vars[var_name], tensor_attr) | ||
|
||
# only sum op for merge mutiple version grad has no a corresponding mapping in gradopidx2opidx | ||
else: | ||
|
@@ -775,6 +776,9 @@ def _get_op_by_id(ops, id): | |
var_name) == ref_forward_var_name | ||
grad_op_attr.set_input_dims_mapping( | ||
var_name, ref_forward_var_dims_mapping) | ||
|
||
grad_op_attr.set_output_dims_mapping(grad_op.output_arg_names[0], | ||
ref_forward_var_dims_mapping) | ||
dist_context.set_op_distributed_attr_for_program(grad_op, | ||
grad_op_attr) | ||
|
||
|
@@ -787,28 +791,86 @@ def complete_update_annotation(auto_parallel_main_prog, dist_context): | |
|
||
ops = list(auto_parallel_main_prog.global_block().ops) | ||
vars = auto_parallel_main_prog.global_block().vars | ||
learning_rate_completed = False | ||
|
||
for idx in range(len(ops)): | ||
|
||
# complete the annotation of the optimizer op. | ||
# TODO to add attribute for moment var | ||
if int(ops[idx].attr('op_role')) == int(OpRole.Optimize): | ||
if "Grad" in ops[idx].input_names and "Param" in ops[ | ||
idx].input_names: | ||
assert len(ops[idx].input( | ||
op = ops[idx] | ||
if int(op.attr('op_role')) == int(OpRole.Optimize): | ||
|
||
if "Grad" in op.input_names and "Param" in ops[idx].input_names: | ||
assert len(op.input( | ||
"Param")) == 1, "Only support one-to-one now." | ||
assert len(ops[idx].input( | ||
assert len(op.input( | ||
"Grad")) == 1, "Only support one-to-one now." | ||
param = vars[ops[idx].input("Param")[0]] | ||
grad_var = vars[ops[idx].input("Grad")[0]] | ||
process_mesh = dist_context.get_tensor_distributed_attr_for_program( | ||
param = vars[op.input("Param")[0]] | ||
grad_var = vars[op.input("Grad")[0]] | ||
|
||
param_dist_attr = dist_context.get_tensor_distributed_attr_for_program( | ||
param) | ||
grad_dist_attr = dist_context.get_tensor_distributed_attr_for_program( | ||
grad_var) | ||
|
||
assert param_dist_attr is not None | ||
assert grad_dist_attr is not None | ||
assert param_dist_attr.get_dims_mapping( | ||
) == grad_dist_attr.get_dims_mapping() | ||
|
||
ref_process_mesh = dist_context.get_tensor_distributed_attr_for_program( | ||
param).get_process_mesh() | ||
dims_mapping = dist_context.get_tensor_distributed_attr_for_program( | ||
assert ref_process_mesh is not None | ||
ref_dims_mapping = dist_context.get_tensor_distributed_attr_for_program( | ||
param).get_dims_mapping() | ||
op_attr = OperatorDistributedAttribute(ops[idx], dist_context) | ||
op_attr.set_process_mesh(process_mesh) | ||
op_attr.set_input_dims_mapping(grad_var.name, dims_mapping) | ||
op_attr.set_input_dims_mapping(param.name, dims_mapping) | ||
dist_context.set_op_distributed_attr_for_program(ops[idx], | ||
op_attr) | ||
assert ref_dims_mapping is not None | ||
op_attr = OperatorDistributedAttribute(op, dist_context) | ||
op_attr.set_process_mesh(ref_process_mesh) | ||
op_attr.set_input_dims_mapping(grad_var.name, ref_dims_mapping) | ||
op_attr.set_input_dims_mapping(param.name, ref_dims_mapping) | ||
op_attr.set_output_dims_mapping(param.name, ref_dims_mapping) | ||
learning_var = vars[op.input("LearningRate")[0]] | ||
op_attr.set_input_dims_mapping(learning_var.name, [-1]) | ||
op_attr.set_output_dims_mapping(learning_var.name, [-1]) | ||
|
||
if not learning_rate_completed: | ||
learning_rate_completed = True | ||
var_dist_attr = TensorDistributedAttribute(learning_var, | ||
dist_context) | ||
var_dist_attr.set_process_mesh(ref_process_mesh) | ||
var_dist_attr.set_dims_mapping([-1]) | ||
dist_context.set_tensor_distributed_attr_for_program( | ||
learning_var, var_dist_attr) | ||
|
||
for input_name in op.desc.input_names(): | ||
|
||
if input_name in [ | ||
'Param', 'Grad', 'LearningRate', "SkipUpdate", | ||
"Beta1Tensor", "Beta2Tensor", "EpsilonTensor", | ||
"MasterParam" | ||
]: | ||
continue | ||
|
||
assert len(op.desc.input(input_name)) == 1 | ||
input_var = vars[op.desc.input(input_name)[0]] | ||
input_var_attr = TensorDistributedAttribute(input_var, | ||
dist_context) | ||
|
||
if "Beta1Pow" in input_name or "Beta2Pow" in input_name: | ||
input_var_attr.set_dims_mapping([-1]) | ||
op_attr.set_input_dims_mapping(input_var.name, [-1]) | ||
op_attr.set_output_dims_mapping(input_var.name, [-1]) | ||
else: | ||
assert "Moment" in input_name | ||
input_var_attr.set_dims_mapping(ref_dims_mapping) | ||
op_attr.set_input_dims_mapping(input_var.name, | ||
ref_dims_mapping) | ||
op_attr.set_output_dims_mapping(input_var.name, | ||
ref_dims_mapping) | ||
|
||
input_var_attr.set_process_mesh(ref_process_mesh) | ||
dist_context.set_tensor_distributed_attr_for_program( | ||
input_var, input_var_attr) | ||
|
||
dist_context.set_op_distributed_attr_for_program(op, op_attr) | ||
continue |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
没用可以干掉