Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

rnn backward python unittest #3531

Merged
merged 1 commit into from
Sep 22, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions paddle/framework/pybind.cc
Original file line number Diff line number Diff line change
Expand Up @@ -275,6 +275,13 @@ All parameter, weight, gradient are variables in Paddle.
const std::shared_ptr<operators::NetOp> &net) -> void {
self.set_stepnet(net);
});

rnn.def("backward", [](const operators::RecurrentOp &forwardOp,
const std::unordered_set<std::string> &no_grad_vars) {
const auto &op = *static_cast<const OperatorBase *>(&forwardOp);
return Backward(op, no_grad_vars);
});

ExposeOperator(rnn);

m.def("unique_integer", UniqueIntegerGenerator);
Expand Down
1 change: 0 additions & 1 deletion paddle/operators/recurrent_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,6 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
// Now all variables in scope must be created outside of op.
PADDLE_ENFORCE_NOT_NULL(stepnet_);
PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), "stepnet_ op has no outputs");
PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), "net_op has no outputs");

if (seq_len_ > step_scopes->size()) {
for (size_t i = step_scopes->size(); i < seq_len_; ++i) {
Expand Down
12 changes: 6 additions & 6 deletions python/paddle/v2/framework/tests/gradient_checker.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,13 +29,13 @@ def get_numeric_gradient(op,
local_scope=None):
"""
Get Numeric Gradient for an operator's input.
:param op: C++ operator instance, could be an network
:param input_values: The input variables. Should be an dictionary, key is
variable name. Value is numpy array.
:param output_name: The final output variable name.

:param op: C++ operator instance, could be an network
:param input_values: The input variables. Should be an dictionary, key is
variable name. Value is numpy array
:param output_name: The final output variable name.
:param input_to_check: The input variable need to get gradient.
:param delta: The perturbation value for numeric gradient method. The
:param delta: The perturbation value for numeric gradient method. The
smaller delta is, the more accurate result will get. But if that delta is
too small, it could occur numerical stability problem.
:param local_scope: The local scope used for get_numeric_gradient.
Expand Down
40 changes: 39 additions & 1 deletion python/paddle/v2/framework/tests/test_recurrent_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
import unittest
import numpy as np
from paddle.v2.framework.op import Operator, RecurrentOp
from gradient_checker import GradientChecker


def py_sigmoid(x):
Expand Down Expand Up @@ -69,7 +70,7 @@ def create_tensor(scope, name, shape, np_data):
return tensor


class TestRecurrentOp(unittest.TestCase):
class RecurrentOpTest(unittest.TestCase):
'''
Test RNNOp

Expand Down Expand Up @@ -164,5 +165,42 @@ def test_forward(self):
self.assertEqual(pd_output.shape, py_output.shape)


class RecurrentGradientOpTest(unittest.TestCase):
def create_forward_op(self):
self.forward_op = RecurrentOp(
# inputs
inlinks=["x"],
boot_memories=["h_boot"],
step_net="stepnet",
# outputs
outlinks=["h"],
step_scopes="step_scopes",
# attributes
inlink_alias=["x@alias"],
outlink_alias=["h@alias"],
pre_memories=["h@pre"],
memories=["h@alias"])

# create a stepnet for RNN
stepnet = core.Net.create()
x_fc_op = Operator("mul", X="x@alias", Y="W", Out="Wx")
h_fc_op = Operator("mul", X="h@pre", Y="U", Out="Uh")
sum_op = Operator("add_two", X="Wx", Y="Uh", Out="sum")
sig_op = Operator("sigmoid", X="sum", Y="h@alias")

for op in [x_fc_op, h_fc_op, sum_op, sig_op]:
stepnet.add_op(op)
stepnet.complete_add_op(True)
self.forward_op.set_stepnet(stepnet)

def create_gradient_op(self):
a = set()
backward_op = core.RecurrentOp.backward(self.forward_op, a)

def test_grad(self):
self.create_forward_op()
self.create_gradient_op()


if __name__ == '__main__':
unittest.main()