-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #3815 from xinghai-sun/cos_sim_layer2
Add cosine similarity operator.
- Loading branch information
Showing
9 changed files
with
307 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/operators/cos_sim_op.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using framework::Tensor; | ||
|
||
class CosSimOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
protected: | ||
void InferShape(const framework::InferShapeContext &ctx) const override { | ||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null."); | ||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) must not be null."); | ||
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("X")->dims(), | ||
ctx.Input<Tensor>("Y")->dims(), | ||
"Dimensions of Input(X) and Input(Y) must be the same."); | ||
|
||
auto dims = ctx.Input<Tensor>("X")->dims(); | ||
ctx.Output<Tensor>("Out")->Resize({dims[0], 1}); | ||
ctx.Output<Tensor>("XNorm")->Resize({dims[0], 1}); | ||
ctx.Output<Tensor>("YNorm")->Resize({dims[0], 1}); | ||
} | ||
}; | ||
|
||
class CosSimOpMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
CosSimOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) | ||
: OpProtoAndCheckerMaker(proto, op_checker) { | ||
AddInput("X", "The first input of cos_sim op."); | ||
AddInput("Y", "The second input of cos_sim op."); | ||
AddOutput("Out", "The output of cos_sim op."); | ||
AddOutput("XNorm", "Row norm of the first input.").AsIntermediate(); | ||
AddOutput("YNorm", "Row norm of the second input.").AsIntermediate(); | ||
|
||
AddComment(R"DOC( | ||
Cosine Similarity Operator. | ||
The equation is: Out = X^T * Y / (sqrt(X^T * X) * sqrt(Y^T * Y)) | ||
)DOC"); | ||
} | ||
}; | ||
|
||
class CosSimOpGrad : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
protected: | ||
void InferShape(const framework::InferShapeContext &ctx) const override { | ||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null."); | ||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) must not be null."); | ||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("XNorm"), | ||
"Input(XNorm) must not be null."); | ||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("YNorm"), | ||
"Input(YNorm) must not be null."); | ||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")), | ||
"Input(Out@GRAD) must not be null."); | ||
|
||
auto x_dims = ctx.Input<Tensor>("X")->dims(); | ||
auto y_dims = ctx.Input<Tensor>("Y")->dims(); | ||
auto xnorm_dims = ctx.Input<Tensor>("XNorm")->dims(); | ||
auto ynorm_dims = ctx.Input<Tensor>("YNorm")->dims(); | ||
auto out_dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims(); | ||
PADDLE_ENFORCE_EQ(x_dims, y_dims, | ||
"Dimensions of Input(X) and Input(Y) must be the same."); | ||
PADDLE_ENFORCE_EQ(xnorm_dims[0], x_dims[0], | ||
"1st dimension of XNorm must equal that of Input(X)."); | ||
PADDLE_ENFORCE_EQ(xnorm_dims[1], 1, "2st dimension of XNorm must be one."); | ||
PADDLE_ENFORCE_EQ(ynorm_dims[0], y_dims[0], | ||
"1st dimension of YNorm must equal that of Input(Y)."); | ||
PADDLE_ENFORCE_EQ(ynorm_dims[1], 1, "2st dimension of YNorm must be one."); | ||
PADDLE_ENFORCE_EQ(out_dims[0], x_dims[0], | ||
"1st dimension of Out@GRAD must equal that of Input(X)"); | ||
PADDLE_ENFORCE_EQ(out_dims[1], 1, "1st dimension of Out@GRAD must be one."); | ||
|
||
auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X")); | ||
auto *y_grad = ctx.Output<Tensor>(framework::GradVarName("Y")); | ||
if (x_grad) x_grad->Resize(x_dims); | ||
if (y_grad) y_grad->Resize(y_dims); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP(cos_sim, ops::CosSimOp, ops::CosSimOpMaker, cos_sim_grad, | ||
ops::CosSimOpGrad); | ||
REGISTER_OP_CPU_KERNEL(cos_sim, | ||
ops::CosSimKernel<paddle::platform::CPUPlace, float>); | ||
REGISTER_OP_CPU_KERNEL( | ||
cos_sim_grad, ops::CosSimGradKernel<paddle::platform::CPUPlace, float>); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#define EIGEN_USE_GPU | ||
#include "paddle/operators/cos_sim_op.h" | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP_GPU_KERNEL(cos_sim, | ||
ops::CosSimKernel<paddle::platform::GPUPlace, float>); | ||
REGISTER_OP_GPU_KERNEL( | ||
cos_sim_grad, ops::CosSimGradKernel<paddle::platform::GPUPlace, float>); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
#include "paddle/framework/eigen.h" | ||
#include "paddle/framework/op_registry.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using Tensor = framework::Tensor; | ||
template <typename T, int MajorType = Eigen::RowMajor, | ||
typename IndexType = Eigen::DenseIndex> | ||
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>; | ||
|
||
template <typename Place, typename T> | ||
class CosSimKernel : public framework::OpKernel { | ||
public: | ||
void Compute(const framework::ExecutionContext& context) const override { | ||
auto* input_x = context.Input<Tensor>("X"); | ||
auto* input_y = context.Input<Tensor>("Y"); | ||
auto* output_z = context.Output<Tensor>("Out"); | ||
auto* output_x_norm = context.Output<Tensor>("XNorm"); | ||
auto* output_y_norm = context.Output<Tensor>("YNorm"); | ||
|
||
output_z->mutable_data<T>(context.GetPlace()); | ||
output_x_norm->mutable_data<T>(context.GetPlace()); | ||
output_y_norm->mutable_data<T>(context.GetPlace()); | ||
|
||
auto dims = input_x->dims(); | ||
int size = static_cast<int>(framework::product(dims)); | ||
auto new_dims = framework::make_ddim({dims[0], size / dims[0]}); | ||
auto x = EigenMatrix<T>::From(*input_x, new_dims); | ||
auto y = EigenMatrix<T>::From(*input_y, new_dims); | ||
auto z = EigenMatrix<T>::From(*output_z); | ||
auto x_norm = EigenMatrix<T>::From(*output_x_norm); | ||
auto y_norm = EigenMatrix<T>::From(*output_y_norm); | ||
|
||
auto place = context.GetEigenDevice<Place>(); | ||
auto xy = (x * y).sum(Eigen::array<int, 1>({1})); | ||
x_norm.device(place) = x.square().sum(Eigen::array<int, 1>({1})).sqrt(); | ||
y_norm.device(place) = y.square().sum(Eigen::array<int, 1>({1})).sqrt(); | ||
z.device(place) = xy / x_norm / y_norm; | ||
} | ||
}; | ||
|
||
template <typename Place, typename T> | ||
class CosSimGradKernel : public framework::OpKernel { | ||
public: | ||
void Compute(const framework::ExecutionContext& context) const override { | ||
auto* input_x = context.Input<Tensor>("X"); | ||
auto* input_y = context.Input<Tensor>("Y"); | ||
auto* input_z = context.Input<Tensor>("Out"); | ||
auto* input_x_norm = context.Input<Tensor>("XNorm"); | ||
auto* input_y_norm = context.Input<Tensor>("YNorm"); | ||
auto* output_grad_x = context.Output<Tensor>(framework::GradVarName("X")); | ||
auto* output_grad_y = context.Output<Tensor>(framework::GradVarName("Y")); | ||
auto* input_grad_z = context.Input<Tensor>(framework::GradVarName("Out")); | ||
|
||
auto dims = input_x->dims(); | ||
int size = static_cast<int>(framework::product(dims)); | ||
auto new_dims = framework::make_ddim({dims[0], size / dims[0]}); | ||
auto x = EigenMatrix<T>::From(*input_x, new_dims); | ||
auto y = EigenMatrix<T>::From(*input_y, new_dims); | ||
auto z = EigenMatrix<T>::From(*input_z); | ||
auto x_norm = EigenMatrix<T>::From(*input_x_norm); | ||
auto y_norm = EigenMatrix<T>::From(*input_y_norm); | ||
auto dz = EigenMatrix<T>::From(*input_grad_z); | ||
|
||
Eigen::DSizes<int, 2> bcast(1, new_dims[1]); | ||
auto z_bcast = z.broadcast(bcast); | ||
auto dz_bcast = dz.broadcast(bcast); | ||
auto place = context.GetEigenDevice<Place>(); | ||
auto x_snorm_bcast = x_norm.square().eval().broadcast(bcast); | ||
auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast); | ||
auto norm_prod_bcast = (x_norm * y_norm).eval().broadcast(bcast); | ||
if (output_grad_x) { | ||
output_grad_x->mutable_data<T>(context.GetPlace()); | ||
auto dx = EigenMatrix<T>::From(*output_grad_x, new_dims); | ||
dx.device(place) = | ||
dz_bcast * (y / norm_prod_bcast - z_bcast * x / x_snorm_bcast); | ||
} | ||
if (output_grad_y) { | ||
output_grad_y->mutable_data<T>(context.GetPlace()); | ||
auto dy = EigenMatrix<T>::From(*output_grad_y, new_dims); | ||
dy.device(place) = | ||
dz_bcast * (x / norm_prod_bcast - z_bcast * y / y_snorm_bcast); | ||
} | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
import unittest | ||
import numpy as np | ||
from gradient_checker import GradientChecker, create_op | ||
from op_test_util import OpTestMeta | ||
|
||
|
||
class TestCosSimOp(unittest.TestCase): | ||
__metaclass__ = OpTestMeta | ||
|
||
def setUp(self): | ||
self.type = "cos_sim" | ||
self.inputs = { | ||
'X': np.random.random((32, 64)).astype("float32"), | ||
'Y': np.random.random((32, 64)).astype("float32") | ||
} | ||
expect_x_norm = np.linalg.norm(self.inputs['X'], axis=1) | ||
expect_y_norm = np.linalg.norm(self.inputs['Y'], axis=1) | ||
expect_out = (self.inputs['X'] * self.inputs['Y']).sum(axis=1) / \ | ||
expect_x_norm / expect_y_norm | ||
self.outputs = { | ||
'XNorm': np.expand_dims(expect_x_norm, 1), | ||
'YNorm': np.expand_dims(expect_y_norm, 1), | ||
'Out': np.expand_dims(expect_out, 1) | ||
} | ||
|
||
|
||
class TestCosSimGradOp(GradientChecker): | ||
def setUp(self): | ||
self.op = create_op("cos_sim") | ||
self.inputs = { | ||
'X': np.random.random((10, 5)).astype("float32"), | ||
'Y': np.random.random((10, 5)).astype("float32") | ||
} | ||
|
||
def test_cpu_gpu_compare(self): | ||
self.compare_grad(self.op, self.inputs) | ||
|
||
def test_normal(self): | ||
self.check_grad( | ||
self.op, self.inputs, ["X", "Y"], "Out", max_relative_error=0.05) | ||
|
||
def test_ignore_x(self): | ||
self.check_grad( | ||
self.op, | ||
self.inputs, ["Y"], | ||
"Out", | ||
max_relative_error=0.05, | ||
no_grad_set={"X"}) | ||
|
||
def test_ignore_y(self): | ||
self.check_grad( | ||
self.op, | ||
self.inputs, ["X"], | ||
"Out", | ||
max_relative_error=0.05, | ||
no_grad_set={"Y"}) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |