Skip to content

Commit

Permalink
add op/api repeat/interleave (#37981)
Browse files Browse the repository at this point in the history
  • Loading branch information
kuizhiqing authored Dec 17, 2021
1 parent 885767e commit a7de0e6
Show file tree
Hide file tree
Showing 8 changed files with 957 additions and 1 deletion.
174 changes: 174 additions & 0 deletions paddle/fluid/operators/repeat_interleave_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/repeat_interleave_op.h"
#include <memory>

namespace paddle {
namespace operators {

using framework::Tensor;

class RepeatInterleaveOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_EQ(
ctx->HasInput("X"), true,
platform::errors::InvalidArgument(
"Input(X) of RepeatInterleaveOp should not be null."));
PADDLE_ENFORCE_EQ(
ctx->HasOutput("Out"), true,
platform::errors::InvalidArgument(
"Output(Out) of RepeatInterleaveOp should not be null."));

auto input_dim = ctx->GetInputDim("X");
auto dim = ctx->Attrs().Get<int>("dim");
auto output_dim = framework::vectorize(input_dim);
PADDLE_ENFORCE_EQ(
dim < input_dim.size() && dim >= (0 - input_dim.size()), true,
platform::errors::OutOfRange(
"Attr(dim) is out of range, It's expected "
"to be in range of [-%d, %d]. But received Attr(dim) = %d.",
input_dim.size(), input_dim.size() - 1, dim));

auto repeats = ctx->Attrs().Get<int>("Repeats");
if (ctx->HasInput("RepeatsTensor")) {
auto repeats_dim = ctx->GetInputDim("RepeatsTensor");

PADDLE_ENFORCE_EQ(
repeats_dim.size() == 1 ||
(repeats_dim.size() == 2 && repeats_dim[1] == 1),
true, platform::errors::InvalidArgument(
"The 'shape' of Input(RepeatsTensor) must be 1-D tensor. "
"But received: the 'shape' of Input(Index) is [%s], "
"the dimension of Input(Index) is [%d].",
repeats_dim, repeats_dim.size()));

PADDLE_ENFORCE_EQ(repeats_dim[0] != 0, true,
platform::errors::InvalidArgument(
"The length of Input(RepeatsTensor) can't be 0."));

if (dim < 0) {
dim += input_dim.size();
}
output_dim[dim] = -1;
} else if (repeats > 0) {
output_dim[dim] = input_dim[dim] * repeats;
}
VLOG(3) << "infershap out " << output_dim[dim];
ctx->SetOutputDim("Out", framework::make_ddim(output_dim));
auto type = ctx->GetInputsVarType("X")[0];
if (type == framework::proto::VarType::LOD_TENSOR) {
ctx->ShareLoD("X", /*->*/ "Out");
}
}

protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
return framework::OpKernelType(data_type, ctx.device_context());
}
};

class RepeatInterleaveGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
platform::errors::InvalidArgument(
"Input(Out@GRAD) should be not null."));
PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
platform::errors::InvalidArgument(
"Output(X@GRAD) should be not null."));

ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.device_context());
}
};

class RepeatInterleaveOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor) the input tensor.");
AddInput("RepeatsTensor",
"the 1-D tensor containing the repeats alongsize the axis.")
.AsDispensable();
AddOutput("Out", "the output tensor.");
AddAttr<int>("Repeats", "the number of repetitions for each element.")
.SetDefault(0);
AddAttr<int>("dim", "the dimension in which we repeat.").SetDefault(0);
AddComment(R"DOC(
Returns a new tensor which repeats the input tensor
along dimension dim using the entries in repeats which
is a Tensor or int.
The returned tensor has the same number of dimensions
as the original tensor (input), except along the given axis.
)DOC");
}
};

template <typename T>
class RepeatInterleaveGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("repeat_interleave_grad");

op->SetInput("X", this->Input("X"));
op->SetInput("RepeatsTensor", this->Input("RepeatsTensor"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetAttrMap(this->Attrs());
}
};

DECLARE_NO_NEED_BUFFER_VARS_INFERER(RepeatInterleaveGradNoNeedBufferVarsInferer,
"X");
} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(repeat_interleave, ops::RepeatInterleaveOp,
ops::RepeatInterleaveOpMaker,
ops::RepeatInterleaveGradMaker<paddle::framework::OpDesc>,
ops::RepeatInterleaveGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(repeat_interleave_grad, ops::RepeatInterleaveGradOp,
ops::RepeatInterleaveGradNoNeedBufferVarsInferer);
REGISTER_OP_CPU_KERNEL(
repeat_interleave,
ops::RepeatInterleaveKernel<paddle::platform::CPUDeviceContext, float>,
ops::RepeatInterleaveKernel<paddle::platform::CPUDeviceContext, double>,
ops::RepeatInterleaveKernel<paddle::platform::CPUDeviceContext, int>,
ops::RepeatInterleaveKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
repeat_interleave_grad,
ops::RepeatInterleaveGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::RepeatInterleaveGradKernel<paddle::platform::CPUDeviceContext, double>,
ops::RepeatInterleaveGradKernel<paddle::platform::CPUDeviceContext, int>,
ops::RepeatInterleaveGradKernel<paddle::platform::CPUDeviceContext,
int64_t>);
Loading

0 comments on commit a7de0e6

Please sign in to comment.