Skip to content

Commit

Permalink
fix_InternalStorage
Browse files Browse the repository at this point in the history
  • Loading branch information
Baibaifan committed Nov 28, 2021
1 parent c520da3 commit 8b60311
Show file tree
Hide file tree
Showing 8 changed files with 302 additions and 323 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,6 @@
# See the License for the specific language governing permissions and
from .hybrid_parallel_optimizer import HybridParallelOptimizer
from .hybrid_parallel_gradscaler import HybridParallelGradScaler
# from .dygraph_sharding_optimizer import DygraphShardingOptimizer
from .dygraph_sharding_optimizer import DygraphShardingOptimizer

__all__ = []
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
Expand All @@ -11,32 +11,14 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#Taken and modified for fairscale from:
# /~https://github.com/facebookresearch/fairscale/blob/main/fairscale/optim/oss.py
#Commit: 8acbec718f3c70a6b9785470bb9e05cd84fc3f8e

import numpy as np
from itertools import chain
######

from functools import reduce
from collections import OrderedDict

import paddle
from paddle import framework
import paddle.distributed as dist
from paddle.optimizer import Optimizer

from ...utils.log_util import logger
from ...utils.internal_storage import ParamStorage
from ...meta_parallel.sharding.sharding_utils import Type

# CUDA alignment 256 bytes
alignment = {"gpu": 256, }
align = {
Type.fp16.value: 2,
Type.fp32.value: 4,
}

__all__ = ["ShardingOptimizerStage2"]


def _is_trainable(param):
Expand Down Expand Up @@ -210,245 +192,3 @@ def _grad_clip(self):

def __getattr__(self, item):
return getattr(self._inner_optimizer, item)


class ShardingOptimizerStage2(Optimizer):
"""
A wrapper for Sharding Stage2 Optimizer in Dygraph.
.. warning: ShardingOptimizer encapsulates the optimization strategy and integrates it into the optimizer.
.. ZeRO: 1.https://arxiv.org/pdf/1910.02054.pdf 2.https://arxiv.org/pdf/1910.02054.pdf.
"""

# TODO (Baibaifan)
# Feature Notes:
# 1. Unified memory for parameters and parameters.grad to InternalStorage.
# 2. Support the segmentation of optimizer parameters and partial updating of parameters.
# 3. Dynamically adjust training parameters and models。
# 4. Support offload function.
# 5. Support the establishment of independent communication groups.
# 6. Broadcast_fp16 is not supported now.
def __init__(self,
params,
optim,
group,
broadcast_fp16=False,
offload=False,
device="gpu",
accumulation_steps=None,
**kw):

super().__init__(optim._learning_rate, params, kw)

# Segmentation information
self._dtype_rank_params = OrderedDict(
) # {dtype:[param1,param2]} device, rank, params
self._param2rank = {}
self._segment_params = []
self._rank_buffer_size = {} # {dtype: {rank: numel+alignment}}
self._param2align = {} # {param.name: align}

# Default information
self._optim_defaults = kw
self._optim = optim
self._local_params = params
self._default_device = device
self._accumulation_steps = accumulation_steps

assert group is not None, "Distributed communication group is must be gived"
self.group = group
self.world_size = group.nranks
self.rank = group.rank

self.broadcast_fp16 = broadcast_fp16
self.param_storages = {} # {dtype: {rank: InternalStorage}}
self.offload = offload # Using for offload

# Update optimizer parameters and adjust parameter storage and use according to rank.
self.update_opt_status()

def update_opt_status(self):
"""Update optimizer status and parameter storage information, and special functions to be developed.
"""
# func 1
self._integration_params()

# fun 2 TODO

# Segement helpers

def segment_params(self):
"""
Divide all optimizer parameters equally into rank.
"""
if len(self._segment_params) == 0:
self._segment_params, param_lists = [
[] for _ in range(self.world_size)
], [[] for _ in range(self.world_size)]
sizes = [0] * self.world_size
for param in self._local_params:
# Add this param to rank with smallest size.
rank = sizes.index(min(sizes))
param_lists[rank].append(param)

# Statistical real numels
sizes[rank] += np.prod(param.shape) if param.trainable else 0

for rank, params in enumerate(param_lists):
# param_group_rank = copy.copy(params)
self._segment_params[rank].extend(params)
return self._segment_params

@property
def local_params(self):
return self._local_params

@property
def accumulation_steps(self):
return self._accumulation_steps

@property
def param2rank(self):
"""Map the params to the rank which owns them"""
if len(self._param2rank) == 0:
for rank, params in enumerate(self.segment_params()):
for param in params:
self._param2rank[param.name] = rank
return self._param2rank

@property
def dtype_rank_params(self):
"""
Divide the parameters into groups according to rank and dtype.
"""
if len(self._dtype_rank_params) == 0:
# Assign the parameters of each rank according to the type
for param in self._local_params:
if param.dtype not in self._dtype_rank_params.keys():
self._dtype_rank_params[
param.dtype] = [[] for _ in range(self.world_size)]
self._dtype_rank_params[param.dtype][self.param2rank[
param.name]].append(param)

# Sort per rank params by size
for dtype in self._dtype_rank_params.keys():
for rank_params in self._dtype_rank_params[dtype]:
rank_params.sort(key=lambda x: np.prod(x.shape))

return self._dtype_rank_params

@property
def rank_buffer_size(self):
"""
Count the memory size of the parameters corresponding to rank under the corresponding dtype.
"""
# CUDA alignment 256 bytes
if len(self._rank_buffer_size) == 0:
for dtype in self.dtype_rank_params.keys():
if dtype not in self._rank_buffer_size.keys():
self._rank_buffer_size[dtype] = {}
for dst_rank, per_rank_params in enumerate(
self.dtype_rank_params[dtype]):
if dst_rank not in self._rank_buffer_size[dtype].keys():
self._rank_buffer_size[dtype][dst_rank] = 0
for param in per_rank_params:
if not param.trainable:
continue
size = np.prod(param.shape) * align[dtype]
remaining = size % alignment[self._default_device]
ali = 0 if remaining == 0 else alignment[
self._default_device] - remaining
align_ = ali // align[dtype]
self._rank_buffer_size[dtype][dst_rank] += np.prod(
param.shape) + align_
self._param2align[param.name] = align_

return self._rank_buffer_size

def _integration_params(self):
"""
Integrate the parameters into a continuous memory according to rank, and support the update of training parameters.
"""

for dtype, per_rank_params in self.dtype_rank_params.items():
if dtype not in self.param_storages.keys():
self.param_storages[dtype] = {}

for dst_rank, params in enumerate(per_rank_params):
if len(params) > 0:

# Merge all the trainable params in a single InternalStorage
trainable_params = list(
filter(lambda x: x.trainable, params))
if trainable_params:
param_storage = ParamStorage(
size=self.rank_buffer_size[dtype][dst_rank],
dtype=dtype,
device=self._default_device)

param_storage.add_rank_params(trainable_params,
self._param2align)
self.param_storages[dtype][dst_rank] = param_storage

# Clear the InternalStorage keys which are not in use anymore
dtype_in_use = list(self.dtype_rank_params.keys())
dtype_to_pop = list(
filter(lambda x: x not in dtype_in_use, self.param_storages.keys()))
for d in dtype_to_pop:
self.param_storages.pop(d)

def step(self):
"""
A wrapper for Optimizer's step function to finish the update operation of the optimizer.
"""

# Synchronize optimizer parameters for the current rank
if len(self.dtype_rank_params.keys(
)) == 1 and Type.fp32.value in self.dtype_rank_params.keys():
self._optim._parameter_list = self.dtype_rank_params[
Type.fp32.value][self.rank]
elif len(self.dtype_rank_params.keys(
)) == 1 and Type.fp16.value in self.dtype_rank_params.keys():
self._optim._parameter_list = self.dtype_rank_params[
Type.fp16.value][self.rank]
else:
self._optim._parameter_list = self.dtype_rank_params[
Type.fp16.value][self.rank] + self.dtype_rank_params[
Type.fp32.value][self.rank]

# Run the optimizer of the current rank step
self._optim.step()

# Synchronize all the updated shards in between the ranks
self._broadcast_params()

# Return full parameters to optimizer parameters
self._optim._parameter_list = self._local_params

def clear_cache(self):
self._segment_params.clear()
self._dtype_rank_params.clear()
self._param2rank.clear()

@paddle.no_grad()
def _broadcast_params(self):
"""Broadcast the parameters of the current rank to each rank"""

assert self._default_device == "gpu", "Only supported gpu"

# Exchange all the shards with the other ranks
for dtype_per_rank in self.param_storages.values():
for dst_rank, internal_storage in dtype_per_rank.items():
dist.broadcast(
tensor=internal_storage.buffer,
src=dst_rank,
group=self.group,
use_calc_stream=True)

# Multi stream operation will be supported later
dist.wait(
tensor=internal_storage.buffer,
group=self.group,
use_calc_stream=True)
Loading

0 comments on commit 8b60311

Please sign in to comment.