Skip to content

Commit

Permalink
update
Browse files Browse the repository at this point in the history
  • Loading branch information
AnnaTrainingG committed Jan 4, 2022
1 parent 2273471 commit 3e1ad79
Show file tree
Hide file tree
Showing 5 changed files with 127 additions and 122 deletions.
47 changes: 19 additions & 28 deletions paddle/fluid/operators/bce_loss_op.cu
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include "paddle/fluid/operators/bce_loss_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
#include "paddle/fluid/operators/math.h"
#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
Expand All @@ -23,6 +24,17 @@ namespace operators {

using Tensor = framework::Tensor;

template <typename T>
struct BCELossGradFunctor {
T one = static_cast<T>(1.0f);
T eps = static_cast<T>(1e-12);
__device__ __forceinline__ T operator()(const T& x, const T& label,
const T& dout) const {
T term1 = max((one - x) * x, eps);
return (dout * (x - label) / term1);
}
};

template <typename T>
__global__ void GPUBCELossForward(const T* x_data, const T* label_data,
T* out_data, const int in_numel) {
Expand All @@ -44,23 +56,6 @@ __global__ void GPUBCELossForward(const T* x_data, const T* label_data,
}
}

template <typename T>
__global__ void GPUBCELossBackward(const T* x_data, const T* label_data,
const T* dout_data, T* dx_data,
const int in_numel) {
CUDA_KERNEL_LOOP(i, in_numel) {
T x = x_data[i];
T label = label_data[i];
T dout = dout_data[i];
T one = static_cast<T>(1.);
T eps = static_cast<T>(1e-12);

T term1 = max((one - x) * x, eps);

dx_data[i] = dout * (x - label) / term1;
}
}

template <typename DeviceContext, typename T>
class BCELossCUDAKernel : public framework::OpKernel<T> {
public:
Expand Down Expand Up @@ -91,17 +86,13 @@ class BCELossGradCUDAKernel : public framework::OpKernel<T> {
auto* labels = ctx.Input<Tensor>("Label");
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

int x_numel = x->numel();
auto* dx_data = dx->mutable_data<T>(ctx.GetPlace());

auto& dev_ctx = ctx.cuda_device_context();
platform::GpuLaunchConfig config =
platform::GetGpuLaunchConfig1D(dev_ctx, x_numel);

GPUBCELossBackward<T><<<config.block_per_grid, config.thread_per_block, 0,
dev_ctx.stream()>>>(
x->data<T>(), labels->data<T>(), dout->data<T>(), dx_data, x_numel);
dx->mutable_data<T>(ctx.GetPlace());
std::vector<const framework::Tensor*> ins = {x, labels, dout};
std::vector<framework::Tensor*> outs = {dx};
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
auto functor = BCELossGradFunctor<T>();
LaunchSameDimsElementwiseCudaKernel<ElementwiseType::kTernary, T, T>(
dev_ctx, ins, &outs, functor);
}
};

Expand Down
26 changes: 9 additions & 17 deletions paddle/fluid/operators/clip_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -18,24 +18,16 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/transform.h"
#if defined(__NVCC__) || defined(__HIPCC__)
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
#endif

namespace paddle {
namespace operators {

using framework::Tensor;
using platform::Transform;

#if defined(__NVCC__) || defined(__HIPCC__)
template <typename T, typename UnaryOperation>
__global__ void ClipCudaKernel(const T* input, T* out, int num,
UnaryOperation op) {
int idx = threadIdx.x + blockDim.x * blockIdx.x;
if (idx < num) {
out[idx] = op(input[idx]);
}
}
#endif

template <typename T>
class ClipFunctor {
public:
Expand Down Expand Up @@ -106,12 +98,12 @@ class ClipKernel : public framework::OpKernel<T> {
int64_t numel = x->numel();
if (platform::is_gpu_place(context.GetPlace())) {
#if defined(__NVCC__) || defined(__HIPCC__)
int threads = 256;
int blocks = (numel + threads - 1) / threads;
ClipCudaKernel<T, ClipFunctor<T>><<<
blocks, threads, 0,
context.template device_context<platform::CUDADeviceContext>()
.stream()>>>(x_data, out_data, numel, ClipFunctor<T>(min, max));
std::vector<const framework::Tensor*> ins = {x};
std::vector<framework::Tensor*> outs = {out};
auto functor = ClipFunctor<T>(min, max);
LaunchSameDimsElementwiseCudaKernel<ElementwiseType::kUnary, T, T>(
context.template device_context<platform::CUDADeviceContext>(), ins,
&outs, functor);
#endif
} else {
Transform<DeviceContext> trans;
Expand Down
68 changes: 42 additions & 26 deletions paddle/fluid/operators/label_smooth_op.cu
Original file line number Diff line number Diff line change
Expand Up @@ -13,19 +13,39 @@ See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
#include "paddle/fluid/operators/label_smooth_op.h"
namespace paddle {
namespace operators {

template <typename T>
__global__ void LabelSmoothRunOriginKernel(const int N, const float epsilon,
const int label_dim, const T* src,
T* dst) {
CUDA_KERNEL_LOOP(idx, N) {
dst[idx] = static_cast<T>(1 - epsilon) * src[idx] +
static_cast<T>(epsilon / label_dim);
struct LabelSmoothFunctor {
T epsilon;
T label_dim;

__forceinline__ LabelSmoothFunctor(float epsilon_data, int label_dim_data) {
epsilon = static_cast<T>(epsilon_data);
label_dim = static_cast<T>(label_dim_data);
}
}

__device__ __forceinline__ T operator()(const T& x) const {
return (static_cast<T>(1 - epsilon) * x +
static_cast<T>(epsilon / label_dim));
}
};

template <typename T>
struct LabelSmoothGradFunctor {
T epsilon;

__forceinline__ LabelSmoothGradFunctor(float epsilon_data) {
epsilon = static_cast<T>(epsilon_data);
}

__device__ __forceinline__ T operator()(const T& x) const {
return static_cast<T>(1 - epsilon) * x;
}
};

template <typename T>
__global__ void LabelSmoothRunDistKernel(const int N, const float epsilon,
Expand All @@ -38,14 +58,6 @@ __global__ void LabelSmoothRunDistKernel(const int N, const float epsilon,
}
}

template <typename T>
__global__ void LabelSmoothGradRunKernel(const int N, const float epsilon,
const T* src, T* dst) {
CUDA_KERNEL_LOOP(idx, N) {
dst[idx] = static_cast<T>(1 - epsilon) * src[idx];
}
}

template <typename DeviceContext, typename T>
class LabelSmoothGPUKernel : public framework::OpKernel<T> {
public:
Expand All @@ -69,8 +81,14 @@ class LabelSmoothGPUKernel : public framework::OpKernel<T> {
size_prob, epsilon, dist_numel, in_data, dist_data, out_data);

} else {
LabelSmoothRunOriginKernel<T><<<grid, threads, 0, stream>>>(
size_prob, epsilon, label_dim, in_data, out_data);
auto& dev_ctx =
ctx.template device_context<platform::CUDADeviceContext>();

std::vector<const framework::Tensor*> ins = {in_t};
std::vector<framework::Tensor*> outs = {out_t};
auto functor = LabelSmoothFunctor<T>(epsilon, label_dim);
LaunchSameDimsElementwiseCudaKernel<ElementwiseType::kUnary, T, T>(
dev_ctx, ins, &outs, functor);
}
}
};
Expand All @@ -84,15 +102,13 @@ class LabelSmoothGradGPUKernel : public framework::OpKernel<T> {
d_in_t->mutable_data<T>(ctx.GetPlace());

auto epsilon = ctx.Attr<float>("epsilon");
auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
const T* in_data = d_out_t->data<T>();
auto size_prob = d_out_t->numel();
T* out_data = d_in_t->mutable_data<T>(ctx.GetPlace());
int threads = 512;
int grid = (size_prob + threads - 1) / threads;
auto stream = ctx.cuda_device_context().stream();
LabelSmoothGradRunKernel<T><<<grid, threads, 0, stream>>>(
size_prob, epsilon, in_data, out_data);
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();

std::vector<const framework::Tensor*> ins = {d_out_t};
std::vector<framework::Tensor*> outs = {d_in_t};
auto functor = LabelSmoothGradFunctor<T>(epsilon);
LaunchSameDimsElementwiseCudaKernel<ElementwiseType::kUnary, T, T>(
dev_ctx, ins, &outs, functor);
}
};
} // namespace operators
Expand Down
61 changes: 12 additions & 49 deletions paddle/pten/kernels/gpu/cast_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
#include "paddle/pten/core/kernel_registry.h"

// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
#include "paddle/fluid/platform/aligned_vector.h"
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"
Expand All @@ -27,62 +28,24 @@

namespace pten {

template <typename InT, typename OutT, int VecSize>
__global__ void VecCastCUDAKernel(const InT* in, const int64_t N, OutT* out) {
using LoadT = paddle::platform::AlignedVector<InT, VecSize>;
using StoreT = paddle::platform::AlignedVector<OutT, VecSize>;

int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
for (int64_t i = idx * VecSize; i < N;
i += blockDim.x * gridDim.x * VecSize) {
LoadT in_val;
paddle::platform::Load<InT, VecSize>(&in[i], &in_val);

StoreT out_val;
#pragma unroll
for (int j = 0; j < VecSize; j++) {
out_val[j] = static_cast<OutT>(in_val[j]);
}

paddle::platform::Store<OutT, VecSize>(out_val, &out[i]);
}
}

template <typename InT, typename OutT>
__global__ void CastCUDAKernel(const InT* in, const int64_t N, OutT* out) {
CUDA_KERNEL_LOOP(index, N) { out[index] = static_cast<OutT>(in[index]); }
}

template <typename InT, typename OutT>
void CastCUDAKernelImplWithPtr(const GPUContext& dev_ctx,
const InT* in_data,
OutT* out_data,
int64_t size) {
paddle::platform::GpuLaunchConfig config =
paddle::platform::GetGpuLaunchConfig1D(dev_ctx, size);
int vec_size = paddle::platform::GetVectorizedSize<OutT>(out_data);
if (!std::is_same<InT, OutT>::value && vec_size == 4 && size % 4 == 0) {
VecCastCUDAKernel<InT, OutT, 4><<<config.block_per_grid,
config.thread_per_block,
0,
dev_ctx.stream()>>>(
in_data, size, out_data);
} else {
CastCUDAKernel<InT, OutT><<<config.block_per_grid,
config.thread_per_block,
0,
dev_ctx.stream()>>>(in_data, size, out_data);
struct CastFuctor {
__device__ __forceinline__ OutT operator()(const InT& x) const {
return static_cast<OutT>(x);
}
}
};

template <typename InT, typename OutT>
void CastCUDAKernelImpl(const GPUContext& dev_ctx,
const DenseTensor& x,
DenseTensor* out) {
auto* in_data = x.data<InT>();
auto size = x.numel();
auto* out_data = out->mutable_data<OutT>();
CastCUDAKernelImplWithPtr(dev_ctx, in_data, out_data, size);
std::vector<const DenseTensor*> inputs;
std::vector<DenseTensor*> outputs;
inputs.emplace_back(&x);
outputs.emplace_back(out);
out->mutable_data<OutT>();
LaunchSameDimsElementwiseCudaKernel<ElementwiseType::kUnary, InT, OutT>(
dev_ctx, inputs, &outputs, CastFuctor<InT, OutT>());
}

template <typename T, typename Context>
Expand Down
47 changes: 45 additions & 2 deletions paddle/pten/kernels/gpu/scale_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -16,11 +16,54 @@ limitations under the License. */

#include "paddle/pten/backends/gpu/gpu_context.h"
#include "paddle/pten/core/kernel_registry.h"
#include "paddle/pten/kernels/impl/scale_kernel_impl.h"

// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
#include "paddle/fluid/platform/float16.h"

namespace pten {

template <typename InT>
struct ScaleFunctor {
InT bias;
InT scale;
bool bias_after_scale;

ScaleFunctor(InT scale_data, InT bias_data, bool is_bias_after_sacle) {
scale = scale_data;
bias = bias_data;
bias_after_scale = is_bias_after_sacle;
}

__device__ __forceinline__ InT operator()(const InT& x) const {
if (bias_after_scale) {
return scale * x + bias;
} else {
return scale * (x + bias);
}
}
};

template <typename T, typename ContextT>
void Scale(const ContextT& dev_ctx,
const DenseTensor& x,
const Scalar& scale,
float bias,
bool bias_after_scale,
DenseTensor* out) {
std::vector<const DenseTensor*> inputs;
std::vector<DenseTensor*> outputs;
inputs.emplace_back(&x);
outputs.emplace_back(out);
out->mutable_data<T>();
LaunchSameDimsElementwiseCudaKernel<ElementwiseType::kUnary, T, T>(
dev_ctx,
inputs,
&outputs,
ScaleFunctor<T>(scale.to<T>(), static_cast<T>(bias), bias_after_scale));
}

} // namespace pten

PT_REGISTER_CTX_KERNEL(scale,
GPU,
ALL_LAYOUT,
Expand Down

1 comment on commit 3e1ad79

@paddle-bot-old
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Congratulation! Your pull request passed all required CI. You could ask reviewer(s) to approve and merge. 🎉

Please sign in to comment.