-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add adaround post-quant method (#38460)
* add adaround post-quant method
- Loading branch information
Showing
8 changed files
with
709 additions
and
146 deletions.
There are no files selected for viewing
309 changes: 309 additions & 0 deletions
309
python/paddle/fluid/contrib/slim/quantization/adaround.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,309 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import numpy as np | ||
import time | ||
import sys | ||
import logging | ||
|
||
import paddle.fluid as fluid | ||
|
||
from ....log_helper import get_logger | ||
from .utils import load_variable_data, set_variable_data, stable_sigmoid, quant_tensor, dequant_tensor, _channelwise_quant_axis1_ops, calculate_quant_cos_error | ||
|
||
_logger = get_logger( | ||
__name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s') | ||
|
||
GAMMA = -0.1 | ||
ZETA = 1.1 | ||
|
||
|
||
def compute_soft_rounding(alpha_v): | ||
return fluid.layers.clip( | ||
fluid.layers.sigmoid(alpha_v) * (ZETA - GAMMA) + GAMMA, min=0, max=1) | ||
|
||
|
||
def compute_soft_rounding_np(alpha_v): | ||
return np.clip( | ||
stable_sigmoid(alpha_v) * (ZETA - GAMMA) + GAMMA, a_min=0, a_max=1) | ||
|
||
|
||
class AdaRoundLoss(object): | ||
def __init__(self, reg_param=0.01, default_beta_range=(20, 2)): | ||
self.default_reg_param = reg_param | ||
self.default_beta_range = default_beta_range | ||
|
||
def compute_recon_loss(self, ada_quantized_output, orig_output): | ||
square_cost = fluid.layers.square_error_cost(ada_quantized_output, | ||
orig_output) | ||
recon_loss = fluid.layers.reduce_mean( | ||
fluid.layers.reduce_sum( | ||
square_cost, dim=-1)) | ||
return recon_loss | ||
|
||
def compute_round_loss(self, alpha_v, warm_start, beta): | ||
def round_loss_fn(): | ||
# compute rectified sigmoid of parameter 'alpha' which maps it between zero and one | ||
h_v = compute_soft_rounding(alpha_v) | ||
|
||
# calculate regularization term - which ensures parameter to converge to exactly zeros and ones | ||
# at the end of optimization | ||
reg_term = fluid.layers.reduce_sum(-fluid.layers.pow( | ||
fluid.layers.abs(2 * h_v - 1), factor=beta) + 1) | ||
|
||
# calculate the rounding loss | ||
round_loss = self.default_reg_param * reg_term | ||
|
||
return round_loss | ||
|
||
round_loss = fluid.layers.cond(warm_start, lambda: fluid.layers.fill_constant(shape=[1], dtype='float32', value=0.0), round_loss_fn) | ||
|
||
return round_loss | ||
|
||
def compute_beta(self, max_iter, cur_iter, warm_start): | ||
|
||
# Start and stop beta for annealing of rounding loss (start_beta, end_beta) | ||
start_beta, end_beta = self.default_beta_range | ||
|
||
# iteration at end of warm start period, which is 20% of max iterations | ||
warm_start_end_iter = warm_start * max_iter | ||
|
||
# compute relative iteration of current iteration | ||
rel_iter = (cur_iter - warm_start_end_iter) / ( | ||
max_iter - warm_start_end_iter) | ||
beta = end_beta + 0.5 * (start_beta - end_beta) * (1 + np.cos(rel_iter * | ||
np.pi)) | ||
|
||
return beta | ||
|
||
|
||
class AdaRound(object): | ||
def __init__(self, | ||
scale, | ||
weight_tensor, | ||
scope=None, | ||
weight_var_name=None, | ||
weight_op_type=None, | ||
is_train=True, | ||
num_iterations=1000): | ||
self.is_train = is_train | ||
self.num_iterations = num_iterations | ||
self.warm_start = 0.1 | ||
self.weight_bits = 8 | ||
self.offset = 0. # zero-point offset | ||
self.adaround_loss = AdaRoundLoss() | ||
self.ori_weight_tensor = weight_tensor | ||
self.scale = scale | ||
self.scope = scope | ||
self.quant_axis = 0 | ||
if weight_op_type in _channelwise_quant_axis1_ops: | ||
self.quant_axis = 1 | ||
self.weight_var_name = weight_var_name | ||
self.alpha_name = weight_var_name + ".alpha" | ||
self.initialize_alpha(weight_tensor.copy(), scale, weight_var_name) | ||
|
||
def initialize_alpha(self, tensor, scale, var_name): | ||
""" | ||
Initializes alpha parameter, same shape as the weight tensor | ||
""" | ||
tensor_scale = quant_tensor(tensor, scale, quant_axis=self.quant_axis) | ||
tensor_floor = np.floor(tensor_scale) | ||
tensor = tensor_scale - tensor_floor | ||
alpha = -np.log((ZETA - GAMMA) / (tensor - GAMMA) - 1) | ||
self.alpha_v = fluid.layers.create_parameter( | ||
shape=alpha.shape, | ||
dtype="float32", | ||
name=var_name + ".alpha", | ||
default_initializer=fluid.initializer.NumpyArrayInitializer(alpha)) | ||
|
||
def _calculate_output_with_adarounded_weights(self, program, place, exe, | ||
data, fp32_fetch_list, | ||
weight_tensor_dequant): | ||
set_variable_data(self.scope, place, self.weight_var_name, | ||
weight_tensor_dequant) | ||
|
||
adaround_out_tensor = exe.run(program=program, | ||
feed=data, | ||
fetch_list=[fp32_fetch_list], | ||
return_numpy=True, | ||
scope=self.scope) | ||
return adaround_out_tensor | ||
|
||
def _calculate_quant_weight(self): | ||
np_alpha = load_variable_data(self.scope, self.alpha_name) | ||
h_alpha = compute_soft_rounding_np(np_alpha) | ||
|
||
# Scale the tensor | ||
tensor_scale = quant_tensor( | ||
self.ori_weight_tensor.copy(), | ||
self.scale, | ||
quant_axis=self.quant_axis) | ||
|
||
weight_tensor = np.floor(tensor_scale) | ||
|
||
# Adaround the tensor | ||
weight_tensor_quant = np.add(weight_tensor, h_alpha) | ||
return weight_tensor_quant | ||
|
||
def _calculate_adarounded_weights(self): | ||
weight_tensor_quant = self._calculate_quant_weight() | ||
|
||
# Dequantize the tensor | ||
weight_tensor_dequant = dequant_tensor( | ||
weight_tensor_quant + self.offset, | ||
self.scale, | ||
quant_axis=self.quant_axis) | ||
return weight_tensor_dequant | ||
|
||
def update_final_weights(self): | ||
weight_tensor_quant = self._calculate_quant_weight() | ||
return weight_tensor_quant | ||
|
||
def get_loss(self, beta, warm_start, adaround_out_tensor, orig_out_tensor): | ||
round_loss = self.adaround_loss.compute_round_loss(self.alpha_v, | ||
warm_start, beta) | ||
recon_loss = self.adaround_loss.compute_recon_loss(adaround_out_tensor, | ||
orig_out_tensor) | ||
loss = round_loss + recon_loss | ||
losses = { | ||
'loss': loss, | ||
'round_loss': round_loss, | ||
'recon_loss': recon_loss | ||
} | ||
return losses | ||
|
||
def update_beta_warm(self, cur_iteration): | ||
warm_start = cur_iteration < self.num_iterations * self.warm_start | ||
beta = self.adaround_loss.compute_beta(self.num_iterations, | ||
cur_iteration, self.warm_start) | ||
return beta, warm_start | ||
|
||
|
||
def run_adaround(data_loader, | ||
fp32_program, | ||
fetch_list, | ||
exe, | ||
scope, | ||
place, | ||
quantized_op_pairs, | ||
weight_op_pairs, | ||
scale_dict, | ||
num_iterations=1000, | ||
lr=0.001, | ||
fast_mode=True): | ||
fetch_op_name = fetch_list[0].name | ||
final_weight_tensor_quant_dict = {} | ||
for weight_var_name, quant_op_out_name in quantized_op_pairs.items(): | ||
_logger.info('Start adaround op: {}'.format(weight_var_name)) | ||
weight_op_type = weight_op_pairs[weight_var_name] | ||
# get scale and weight tensor | ||
weight_var_tensor = load_variable_data(scope, weight_var_name) | ||
scale = scale_dict[weight_var_name] | ||
fp32_fetch_list = None | ||
for _op in fp32_program.global_block().ops: | ||
if _op.type == "fetch": | ||
_op._rename_input(fetch_op_name, quant_op_out_name) | ||
fp32_fetch_list = fp32_program.global_block().var( | ||
quant_op_out_name) | ||
fetch_op_name = quant_op_out_name | ||
|
||
# build adaround program | ||
exec_strategy = fluid.ExecutionStrategy() | ||
exec_strategy.num_iteration_per_drop_scope = 1 | ||
startup_program = fluid.Program() | ||
train_program = fluid.Program() | ||
with fluid.program_guard(train_program, startup_program): | ||
with fluid.unique_name.guard(): | ||
# initialize adaround | ||
adaround = AdaRound( | ||
scale, | ||
weight_var_tensor, | ||
scope=scope, | ||
weight_var_name=weight_var_name, | ||
weight_op_type=weight_op_type, | ||
num_iterations=num_iterations) | ||
orig_out_tensor = fluid.data( | ||
name='orig_out_tensor', | ||
shape=fp32_fetch_list.shape, | ||
dtype='float32') | ||
adaround_out_tensor = fluid.data( | ||
name='adaround_out_tensor', | ||
shape=fp32_fetch_list.shape, | ||
dtype='float32') | ||
beta_tensor = fluid.data( | ||
name='beta', shape=[1], dtype='float32') | ||
warm_start_tensor = fluid.data( | ||
name='warm_start', shape=[1], dtype='bool') | ||
|
||
train_fetches_loss = adaround.get_loss( | ||
beta_tensor, warm_start_tensor, adaround_out_tensor, | ||
orig_out_tensor) | ||
optimizer = fluid.optimizer.Adam(learning_rate=lr) | ||
loss = train_fetches_loss['loss'] | ||
optimizer.minimize(loss) | ||
exe.run(startup_program) | ||
|
||
start_time = time.time() | ||
prev_start_time = start_time | ||
for i, data in enumerate(data_loader()): | ||
prev_start_time = start_time | ||
start_time = time.time() | ||
# run fp32 model | ||
np_orig_out_tensor = exe.run(program=fp32_program, | ||
feed=data, | ||
fetch_list=[fp32_fetch_list], | ||
return_numpy=True, | ||
scope=scope) | ||
|
||
adaround_weight_tensor_dequant = adaround._calculate_adarounded_weights( | ||
) | ||
np_adaround_out_tensor = adaround._calculate_output_with_adarounded_weights( | ||
fp32_program, place, exe, data, fp32_fetch_list, | ||
adaround_weight_tensor_dequant) | ||
|
||
# If the cosine distance of the two tensor is small, skip training | ||
cos_error = calculate_quant_cos_error(np_orig_out_tensor[0], | ||
np_adaround_out_tensor[0]) | ||
if fast_mode and cos_error > 0.99: | ||
_logger.info("The cosine error is small, skip training.") | ||
break | ||
beta, warm_start = adaround.update_beta_warm(i) | ||
feed_dict = { | ||
'orig_out_tensor': np_orig_out_tensor[0], | ||
'adaround_out_tensor': np_adaround_out_tensor[0], | ||
'beta': beta, | ||
'warm_start': warm_start | ||
} | ||
out = exe.run( | ||
train_program, | ||
feed=feed_dict, | ||
fetch_list=[v.name for v in train_fetches_loss.values()], | ||
return_numpy=True) | ||
_logger.info( | ||
"Iter {:d}, lr {:.5f}, loss {:.5f}, loss_round {:.5f}, loss_recon {:.5f}, time {:.5f}s". | ||
format(i, lr, | ||
np.mean(out[0]), | ||
np.mean(out[1]), | ||
np.mean(out[2]), start_time - prev_start_time)) | ||
sys.stdout.flush() | ||
if i == num_iterations: | ||
break | ||
final_weight_tensor_quant_dict[ | ||
weight_var_name] = adaround.update_final_weights() | ||
del adaround | ||
|
||
# update adarounded calibrated weights | ||
for weight_var_name in quantized_op_pairs.keys(): | ||
set_variable_data(scope, place, weight_var_name, | ||
final_weight_tensor_quant_dict[weight_var_name]) |
Oops, something went wrong.