-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* fix raw optim * pre-commit test file Co-authored-by: sneaxiy <sneaxiy@126.com> Co-authored-by: sneaxiy <sneaxiy@126.com>
- Loading branch information
Showing
3 changed files
with
161 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,157 @@ | ||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
import paddle | ||
import os | ||
|
||
import numpy as np | ||
import paddle | ||
import paddle.static as static | ||
import paddle.distributed.fleet as fleet | ||
import paddle.nn as nn | ||
import paddle.nn.functional as F | ||
|
||
paddle.enable_static() | ||
|
||
|
||
class RNNEncoder(nn.Layer): | ||
def __init__(self, | ||
input_size, | ||
hidden_size, | ||
num_layers=1, | ||
direction="forward", | ||
dropout=0.0, | ||
pooling_type=None, | ||
**kwargs): | ||
super().__init__() | ||
self._input_size = input_size | ||
self._hidden_size = hidden_size | ||
self._direction = direction | ||
self._pooling_type = pooling_type | ||
|
||
self.rnn_layer = nn.SimpleRNN( | ||
input_size=input_size, | ||
hidden_size=hidden_size, | ||
num_layers=num_layers, | ||
direction=direction, | ||
dropout=dropout, | ||
**kwargs) | ||
|
||
def get_input_dim(self): | ||
return self._input_size | ||
|
||
def get_output_dim(self): | ||
if self._direction == "bidirect": | ||
return self._hidden_size * 2 | ||
else: | ||
return self._hidden_size | ||
|
||
def forward(self, inputs, sequence_length): | ||
encoded_text, last_hidden = self.rnn_layer( | ||
inputs, sequence_length=sequence_length) | ||
output = paddle.max(encoded_text, axis=1) | ||
return output | ||
|
||
|
||
class RNNModel(nn.Layer): | ||
def __init__(self, | ||
vocab_size, | ||
num_classes, | ||
emb_dim=128, | ||
padding_idx=0, | ||
rnn_hidden_size=198, | ||
direction='forward', | ||
rnn_layers=1, | ||
dropout_rate=0.0, | ||
pooling_type=None, | ||
fc_hidden_size=96): | ||
super().__init__() | ||
self.embedder = nn.Embedding( | ||
num_embeddings=vocab_size, | ||
embedding_dim=emb_dim, | ||
padding_idx=padding_idx) | ||
self.rnn_encoder = RNNEncoder( | ||
emb_dim, | ||
rnn_hidden_size, | ||
num_layers=rnn_layers, | ||
direction=direction, | ||
dropout=dropout_rate, | ||
pooling_type=pooling_type) | ||
self.fc = nn.Linear(self.rnn_encoder.get_output_dim(), fc_hidden_size) | ||
self.output_layer = nn.Linear(fc_hidden_size, num_classes) | ||
|
||
def forward(self, text, seq_len): | ||
embedded_text = self.embedder(text) | ||
text_repr = self.rnn_encoder(embedded_text, sequence_length=seq_len) | ||
fc_out = paddle.tanh(self.fc(text_repr)) | ||
logits = self.output_layer(fc_out) | ||
return logits | ||
|
||
|
||
def rnn_pretrain_forward(train_program, start_program, topo=None): | ||
with static.program_guard(train_program, | ||
start_program), paddle.utils.unique_name.guard(): | ||
batch_size = 1 | ||
tokens = static.data( | ||
name="tokens", shape=[batch_size, -1], dtype="int64") | ||
seq_len = static.data(name="ids", shape=[batch_size], dtype="int64") | ||
labels = static.data(name="labels", shape=[batch_size], dtype="int64") | ||
data_holders = [tokens, seq_len, labels] | ||
vocab_size = 10 | ||
num_classes = 2 | ||
pad_token_id = 0 | ||
model = RNNModel( | ||
vocab_size, | ||
num_classes, | ||
direction='forward', | ||
padding_idx=pad_token_id, | ||
pooling_type='max') | ||
|
||
optimizer = paddle.optimizer.Adam( | ||
parameters=model.parameters(), learning_rate=0.001) | ||
criterion = paddle.nn.CrossEntropyLoss() | ||
preds = model(tokens, seq_len) | ||
loss = criterion(preds, labels) | ||
|
||
return train_program, start_program, loss, optimizer, data_holders | ||
|
||
|
||
class TestFleetMetaOptimizer(unittest.TestCase): | ||
def setUp(self): | ||
os.environ["PADDLE_TRAINER_ID"] = "1" | ||
os.environ[ | ||
"PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001,127.0.0.1:36002" | ||
|
||
def test_rnn_raw_optimizer(self): | ||
import paddle.distributed.fleet as fleet | ||
import paddle.distributed.fleet.base.role_maker as role_maker | ||
role = role_maker.PaddleCloudRoleMaker(is_collective=True) | ||
fleet.init(role) | ||
train_program = static.Program() | ||
start_program = static.Program() | ||
train_program, start_program, loss, optimizer, data_holders = \ | ||
rnn_pretrain_forward(train_program, start_program) | ||
with paddle.static.program_guard( | ||
train_program, start_program), paddle.utils.unique_name.guard(): | ||
strategy = fleet.DistributedStrategy() | ||
strategy.without_graph_optimization = True | ||
strategy.fuse_all_reduce_ops = True | ||
fleet.init(is_collective=True, strategy=strategy) | ||
optimizer = fleet.distributed_optimizer(optimizer) | ||
optimizer.minimize(loss) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |