-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add new api paddle.quantile and paddle.Tensor.quantile
- Loading branch information
Showing
4 changed files
with
288 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import print_function | ||
|
||
import unittest | ||
import numpy as np | ||
import paddle | ||
|
||
|
||
def np_quantile_multi_q(x, q, axis=None, keepdims=False): | ||
if not isinstance(q, (list, tuple)): | ||
return np.quantile(x, q, axis=axis, keepdims=keepdims) | ||
else: | ||
output = [] | ||
for q_num in q: | ||
output.append(np.quantile(x, q_num, axis=axis, keepdims=keepdims)) | ||
return np.stack(output, 0) | ||
|
||
|
||
class TestQuantile(unittest.TestCase): | ||
def setUp(self): | ||
np.random.seed(678) | ||
self.input_data = np.random.rand(6, 7, 8, 9, 10) | ||
|
||
def test_quantile_single_q(self): | ||
x = paddle.to_tensor(self.input_data) | ||
paddle_res = paddle.quantile(x, q=0.5, axis=2) | ||
np_res = np.quantile(self.input_data, q=0.5, axis=2) | ||
self.assertTrue(np.allclose(paddle_res.numpy(), np_res)) | ||
|
||
def test_quantile_with_no_axis(self): | ||
x = paddle.to_tensor(self.input_data) | ||
paddle_res = paddle.quantile(x, q=0.35) | ||
np_res = np.quantile(self.input_data, q=0.35) | ||
self.assertTrue(np.allclose(paddle_res.numpy(), np_res)) | ||
|
||
def test_quantile_with_multi_axis(self): | ||
x = paddle.to_tensor(self.input_data) | ||
paddle_res = paddle.quantile(x, q=0.75, axis=[0, 2, 3]) | ||
np_res = np.quantile(self.input_data, q=0.75, axis=[0, 2, 3]) | ||
self.assertTrue(np.allclose(paddle_res.numpy(), np_res)) | ||
|
||
def test_quantile_with_keepdim(self): | ||
x = paddle.to_tensor(self.input_data) | ||
paddle_res = paddle.quantile(x, q=0.35, axis=4, keepdim=True) | ||
np_res = np.quantile(self.input_data, q=0.35, axis=4, keepdims=True) | ||
self.assertTrue(np.allclose(paddle_res.numpy(), np_res)) | ||
|
||
def test_quantile_with_keepdim_and_multiple_axis(self): | ||
x = paddle.to_tensor(self.input_data) | ||
paddle_res = paddle.quantile(x, q=0.1, axis=[1, 4], keepdim=True) | ||
np_res = np.quantile(self.input_data, q=0.1, axis=[1, 4], keepdims=True) | ||
self.assertTrue(np.allclose(paddle_res.numpy(), np_res)) | ||
|
||
def test_quantile_with_boundary_q(self): | ||
x = paddle.to_tensor(self.input_data) | ||
paddle_res = paddle.quantile(x, q=0, axis=3) | ||
np_res = np.quantile(self.input_data, q=0, axis=3) | ||
self.assertTrue(np.allclose(paddle_res.numpy(), np_res)) | ||
|
||
def test_quantile_include_NaN(self): | ||
input_data = np.random.randn(2, 3, 4) | ||
input_data[0, 1, 1] = np.nan | ||
x = paddle.to_tensor(input_data) | ||
paddle_res = paddle.quantile(x, q=0.35, axis=0) | ||
self.assertTrue(paddle.isnan(paddle_res[1, 1])) | ||
|
||
|
||
class TestQuantileMuitlpleQ(unittest.TestCase): | ||
def setUp(self): | ||
np.random.seed(678) | ||
self.input_data = np.random.rand(10, 3, 4, 5, 4) | ||
|
||
def test_quantile(self): | ||
x = paddle.to_tensor(self.input_data) | ||
paddle_res = paddle.quantile(x, q=[0.3, 0.44], axis=-2) | ||
np_res = np_quantile_multi_q(self.input_data, q=[0.3, 0.44], axis=-2) | ||
self.assertTrue(np.allclose(paddle_res.numpy(), np_res)) | ||
|
||
def test_quantile_multiple_axis(self): | ||
x = paddle.to_tensor(self.input_data) | ||
paddle_res = paddle.quantile(x, q=[0.2, 0.67], axis=[1, -1]) | ||
np_res = np_quantile_multi_q( | ||
self.input_data, q=[0.2, 0.67], axis=[1, -1]) | ||
self.assertTrue(np.allclose(paddle_res.numpy(), np_res)) | ||
|
||
def test_quantile_multiple_axis_keepdim(self): | ||
x = paddle.to_tensor(self.input_data) | ||
paddle_res = paddle.quantile( | ||
x, q=[0.1, 0.2, 0.3], axis=[1, 2], keepdim=True) | ||
np_res = np_quantile_multi_q( | ||
self.input_data, q=[0.1, 0.2, 0.3], axis=[1, 2], keepdims=True) | ||
self.assertTrue(np.allclose(paddle_res.numpy(), np_res)) | ||
|
||
|
||
class TestQuantileError(unittest.TestCase): | ||
def setUp(self): | ||
self.x = paddle.randn((2, 3, 4)) | ||
|
||
def test_errors(self): | ||
def test_q_range_error_1(): | ||
paddle_res = paddle.quantile(self.x, q=1.5) | ||
|
||
self.assertRaises(ValueError, test_q_range_error_1) | ||
|
||
def test_q_range_error_2(): | ||
paddle_res = paddle.quantile(self.x, q=[0.2, -0.3]) | ||
|
||
self.assertRaises(ValueError, test_q_range_error_2) | ||
|
||
def test_q_range_error_3(): | ||
paddle_res = paddle.quantile(self.x, q=[]) | ||
|
||
self.assertRaises(ValueError, test_q_range_error_3) | ||
|
||
def test_x_type_error(): | ||
x = [1, 3, 4] | ||
paddle_res = paddle.quantile(x, q=0.9) | ||
|
||
self.assertRaises(TypeError, test_x_type_error) | ||
|
||
def test_axis_type_error_1(): | ||
paddle_res = paddle.quantile(self.x, q=0.4, axis=0.4) | ||
|
||
self.assertRaises(ValueError, test_axis_type_error_1) | ||
|
||
def test_axis_type_error_2(): | ||
paddle_res = paddle.quantile(self.x, q=0.4, axis=[1, 0.4]) | ||
|
||
self.assertRaises(ValueError, test_axis_type_error_2) | ||
|
||
def test_axis_value_error_1(): | ||
paddle_res = paddle.quantile(self.x, q=0.4, axis=10) | ||
|
||
self.assertRaises(ValueError, test_axis_value_error_1) | ||
|
||
def test_axis_value_error_2(): | ||
paddle_res = paddle.quantile(self.x, q=0.4, axis=[1, -10]) | ||
|
||
self.assertRaises(ValueError, test_axis_value_error_2) | ||
|
||
def test_axis_value_error_3(): | ||
paddle_res = paddle.quantile(self.x, q=0.4, axis=[]) | ||
|
||
self.assertRaises(ValueError, test_axis_value_error_3) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters