Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[xpu] multi_encoder supports no mask input, such as VIT #9712

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
110 changes: 70 additions & 40 deletions lite/core/optimizer/mir/fusion/__xpu__multi_encoder_fuse_pass.cc
Original file line number Diff line number Diff line change
Expand Up @@ -48,18 +48,22 @@ class XPUSingleEncoderFuser : public FuseBase {
const std::string& input_pos = "Y",
const std::string& qkv_ln_2_out_pos = "Y",
const std::string& matmul_type = "matmul",
const std::string& matmul2_type = "matmul_v2",
const std::string& mul_type = "mul",
bool with_q_scale = true,
bool norm_before = false,
const std::string& relative_type = "")
const std::string& relative_type = "",
bool with_mask = true)
: act_type_(act_type),
input_pos_(input_pos),
qkv_ln_2_out_pos_(qkv_ln_2_out_pos),
matmul_type_(matmul_type),
matmul2_type_(matmul2_type),
mul_type_(mul_type),
with_q_scale_(with_q_scale),
norm_before_(norm_before),
relative_emb_type_(relative_type) {}
relative_emb_type_(relative_type),
with_mask_(with_mask) {}

void BuildPattern() override {
auto* input = VarNode("input")
Expand Down Expand Up @@ -213,18 +217,25 @@ class XPUSingleEncoderFuser : public FuseBase {
->AsIntermediate();

auto* qk_matmul = OpNode("qk_matmul", matmul_type_)->AsIntermediate();
std::string op_after_qk_matmul = with_mask_ ? "elementwise_add" : "softmax";
auto* qk_matmul_out = VarNode("qk_matmul_out")
->assert_is_op_output(matmul_type_, "Out")
->assert_is_op_input("elementwise_add", "X")
->assert_is_op_input(op_after_qk_matmul, "X")
->AsIntermediate();
auto* qk_mask = VarNode("qk_mask")
->assert_is_op_input("elementwise_add", "Y")
->AsInput();
auto* qk_add = OpNode("qk_add", "elementwise_add")->AsIntermediate();
auto* qk_add_out = VarNode("qk_add_out")
->assert_is_op_output("elementwise_add", "Out")
->assert_is_op_input("softmax", "X")
->AsIntermediate();
PMNode* qk_mask = nullptr;
PMNode* qk_add = nullptr;
PMNode* qk_add_out = nullptr;
if (with_mask_) {
qk_mask = VarNode("qk_mask")
->assert_is_op_input("elementwise_add", "Y")
->AsInput();
qk_add = OpNode("qk_add", "elementwise_add")->AsIntermediate();
qk_add_out = VarNode("qk_add_out")
->assert_is_op_output("elementwise_add", "Out")
->assert_is_op_input("softmax", "X")
->AsIntermediate();
}

auto* qk_softmax = OpNode("qk_softmax", "softmax")->AsIntermediate();
auto* qk_softmax_out = VarNode("qk_softmax_out")
->assert_is_op_output("softmax", "Out")
Expand Down Expand Up @@ -256,16 +267,16 @@ class XPUSingleEncoderFuser : public FuseBase {
auto* v_transpose2 = OpNode("v_transpose2", "transpose2")->AsIntermediate();
auto* v_transpose2_out = VarNode("v_transpose2_out")
->assert_is_op_output("transpose2", "Out")
->assert_is_op_input(matmul_type_, "Y")
->assert_is_op_input(matmul2_type_, "Y")
->AsIntermediate();
auto* v_transpose2_xshape =
VarNode("v_transpose2_xshape")
->assert_is_op_output("transpose2", "XShape")
->AsIntermediate();

auto* qkv_matmul = OpNode("qkv_matmul", matmul_type_)->AsIntermediate();
auto* qkv_matmul = OpNode("qkv_matmul", matmul2_type_)->AsIntermediate();
auto* qkv_matmul_out = VarNode("qkv_matmul_out")
->assert_is_op_output(matmul_type_, "Out")
->assert_is_op_output(matmul2_type_, "Out")
->assert_is_op_input("transpose2", "X")
->AsIntermediate();
auto* qkv_transpose2 =
Expand Down Expand Up @@ -459,9 +470,14 @@ class XPUSingleEncoderFuser : public FuseBase {
*k_reshape2 >> *k_reshape2_xshape;
*k_transpose2 >> *k_transpose2_xshape;

*qk_matmul >> *qk_matmul_out >> *qk_add >> *qk_add_out >> *qk_softmax >>
*qk_softmax_out >> *qkv_matmul;
*qk_mask >> *qk_add;
if (with_mask_) {
*qk_matmul >> *qk_matmul_out >> *qk_add >> *qk_add_out >> *qk_softmax >>
*qk_softmax_out >> *qkv_matmul;
*qk_mask >> *qk_add;
} else {
*qk_matmul >> *qk_matmul_out >> *qk_softmax >> *qk_softmax_out >>
*qkv_matmul;
}

if (norm_before_) {
*ln_before_out >> *v_mul;
Expand Down Expand Up @@ -513,7 +529,9 @@ class XPUSingleEncoderFuser : public FuseBase {
cpp::OpDesc op_desc;
op_desc.SetType("single_encoder");
op_desc.SetInput("Inputs", {matched.at("input")->arg()->name});
op_desc.SetInput("Mask", {matched.at("qk_mask")->arg()->name});
if (with_mask_) {
op_desc.SetInput("Mask", {matched.at("qk_mask")->arg()->name});
}
op_desc.SetInput("FCWeight",
{
matched.at("q_mul_y")->arg()->name,
Expand Down Expand Up @@ -645,7 +663,6 @@ class XPUSingleEncoderFuser : public FuseBase {
single_encoder_stmt->SetOp(fake_subgraph_op);

std::vector<std::string> froms = {
"qk_mask",
"k_mul_y",
"v_mul_y",
"qkv_mul_y",
Expand All @@ -660,6 +677,9 @@ class XPUSingleEncoderFuser : public FuseBase {
"qkv_ln_2_scale",
"qkv_ln_2_bias",
};
if (with_mask_) {
froms.push_back("qk_mask");
}
if (relative_emb_type_ == "__xpu__roformer_relative_embedding") {
froms.push_back("q_cos_embedding");
froms.push_back("q_sin_embedding");
Expand Down Expand Up @@ -687,10 +707,12 @@ class XPUSingleEncoderFuser : public FuseBase {
std::string input_pos_;
std::string qkv_ln_2_out_pos_;
std::string matmul_type_;
std::string matmul2_type_;
std::string mul_type_;
bool with_q_scale_;
bool norm_before_;
const std::string relative_emb_type_;
bool with_mask_;
// quant_info: mul input_max, output_max * 6 + matmul x_max:y_max, output_max
// * 2
void set_quant_info(Scope* scope,
Expand Down Expand Up @@ -955,7 +977,7 @@ class XPUMultiEncoderFuser {
std::string mask_name;
for (auto* encoder : all_encoders) {
auto* op_info = encoder->stmt()->op_info();
if (mask_name.empty()) {
if (mask_name.empty() && op_info->HasInput("Mask")) {
mask_name = op_info->Input("Mask").front();
} else {
// CHECK(mask_name == op_info->Input("Mask").front());
Expand Down Expand Up @@ -1026,13 +1048,11 @@ class XPUMultiEncoderFuser {
if (all_encoders.size() == 1) {
// take care of only one encoder
in_name = op_info->Input("Inputs").front();
mask_name = op_info->Input("Mask").front();
out_name = op_info->Output("Outputs").front();
} else if (i == 0) {
// first encoder
to_remove.insert(cur_out);
in_name = op_info->Input("Inputs").front();
mask_name = op_info->Input("Mask").front();
} else if (i == all_encoders.size() - 1) {
// last encoder
to_remove.insert(cur_encoder);
Expand All @@ -1051,7 +1071,9 @@ class XPUMultiEncoderFuser {
for (auto kv : arg_map) {
op_desc.SetInput(kv.first, kv.second);
}
op_desc.SetInput("Mask", {mask_name});
if (!mask_name.empty()) {
op_desc.SetInput("Mask", {mask_name});
}
op_desc.SetOutput("Output", {out_name});
op_desc.SetAttr<int>("xpu", 1);
op_desc.SetAttr<int>(
Expand Down Expand Up @@ -1382,9 +1404,11 @@ class XPUMultiEncoderFusePass : public ProgramPass {
std::vector<std::string> input_poss{"X", "Y"};
std::vector<std::string> qkv_ln_2_out_poss{"X", "Y"};
std::vector<std::string> matmul_types{"matmul", "matmul_v2"};
std::vector<std::string> matmul2_types{"matmul", "matmul_v2"};
std::vector<std::string> mul_types{"mul", "matmul", "matmul_v2"};
std::vector<bool> with_q_scales{true, false};
std::vector<bool> norm_befores{true, false};
std::vector<bool> with_mask{true, false};
std::vector<std::string> relative_embedding_type{
"", "__xpu__roformer_relative_embedding"};

Expand Down Expand Up @@ -1423,23 +1447,29 @@ class XPUMultiEncoderFusePass : public ProgramPass {
for (auto& input_pos : input_poss) {
for (auto& qkv_ln_2_out_pos : qkv_ln_2_out_poss) {
for (auto& matmul_type : matmul_types) {
for (auto& mul_type : mul_types) {
for (auto with_q_scale : with_q_scales) {
for (auto norm_before : norm_befores) {
for (auto relative_type : relative_embedding_type) {
fusion::XPUSingleEncoderFuser single_encoder_fuser(
act_type,
input_pos,
qkv_ln_2_out_pos,
matmul_type,
mul_type,
with_q_scale,
norm_before,
relative_type);
single_encoder_fuser(graph.get());
fusion::XPUMultiEncoderFuser multi_encoder_fuser(
fc_precision, adaptive_seqlen);
multi_encoder_fuser(graph.get());
for (auto& matmul2_type : matmul2_types) {
for (auto& mul_type : mul_types) {
for (auto with_q_scale : with_q_scales) {
for (auto norm_before : norm_befores) {
for (auto relative_type : relative_embedding_type) {
for (auto mask : with_mask) {
fusion::XPUSingleEncoderFuser single_encoder_fuser(
act_type,
input_pos,
qkv_ln_2_out_pos,
matmul_type,
matmul2_type,
mul_type,
with_q_scale,
norm_before,
relative_type,
mask);
single_encoder_fuser(graph.get());
fusion::XPUMultiEncoderFuser multi_encoder_fuser(
fc_precision, adaptive_seqlen);
multi_encoder_fuser(graph.get());
}
}
}
}
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,8 @@ class XPUMultiEncoderSliceLinkFuser : public FuseBase {
layer_norm = OpNode("layer_norm", "layer_norm");
layer_norm_out = VarNode("layer_norm_out")
->assert_is_op_output("layer_norm", "Y")
->assert_is_op_input("slice", "Input");
->assert_is_op_input("slice", "Input")
->assert_only_one_output();
} else {
xpu_encoder->assert_op_attr<bool>("norm_before", false);
encoder_out->assert_is_op_input("slice", "Input")->AsIntermediate();
Expand Down
44 changes: 44 additions & 0 deletions lite/kernels/xpu/__xpu__multi_encoder_compute.cc
Original file line number Diff line number Diff line change
Expand Up @@ -255,6 +255,50 @@ void XPUMultiEncoderCompute::run_encoder(const T* in, T* out) {
arg_ln_bias_,
qkv_attn_param);
CHECK_EQ(r, 0);
} else if (param.mask == nullptr) {
// When no mask input, like VIT, create LOD to act as vsl.
int batch = static_cast<int>(param.input->dims()[0]);
int max_seqlen = static_cast<int>(param.input->dims()[1]);
std::vector<int> lod;
for (int i = 0; i < batch + 1; i++) {
lod.push_back(i * max_seqlen);
}
query_lod = {lod.data(), static_cast<int>(lod.size()), nullptr};
// No need to pad, no matter slice or not
int max_pad_seqlen = -1;
xdnn::QKVAttnParam qkv_attn_param(query_lod, /* lod */
param.head_num,
param.size_per_head,
qkv_act,
slice_idx,
true /* qkv fusion */,
max_pad_seqlen,
param.hidden_dim,
param.norm_before, /*is_pre_norm*/
param.per_channel);
qkv_attn_param.quant_type_.assign(quant_types_.begin(), quant_types_.end());
if (relative_type_ == 1) {
qkv_attn_param.relative_type = relative_type_;
qkv_attn_param.max_pos_len = param.max_pos_len;
qkv_attn_param.relative_pos.assign(roformer_embedding_.begin(),
roformer_embedding_.end());
}
qkv_attn_param.scale_of_hidden_units = param.ffn_hidden_dim_scale;
if (std::is_same<TGEMM, int8_t>::value) {
CHECK_GT(fc_input_max_.size(), 0);
}
int r = xdnn::transformer_encoder<T, TW, TGEMM>(
ctx.GetRawContext(),
in,
*(XPUMultiEncoderCompute::get_weight<TW>()),
out,
fc_input_max_,
fc_weight_max_,
arg_fc_bias_,
arg_ln_scale_,
arg_ln_bias_,
qkv_attn_param);
CHECK_EQ(r, 0);
} else {
// no vsl
int batch = static_cast<int>(param.input->dims()[0]);
Expand Down