Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Metal] fix Pad2d and add utpy #8232

Merged
merged 2 commits into from
Jan 17, 2022
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
153 changes: 153 additions & 0 deletions lite/tests/unittest_py/op/test_pad2d_op.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,153 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
sys.path.append('../')

from auto_scan_test import AutoScanTest, IgnoreReasons
from program_config import TensorConfig, ProgramConfig, OpConfig, CxxConfig, TargetType, PrecisionType, DataLayoutType, Place
import unittest

import hypothesis
from hypothesis import given, settings, seed, example, assume
import hypothesis.strategies as st
import argparse

import numpy as np
from functools import partial


class TestPad2dOp(AutoScanTest):
def __init__(self, *args, **kwargs):
AutoScanTest.__init__(self, *args, **kwargs)
self.enable_testing_on_place(
TargetType.Host,
PrecisionType.FP32,
DataLayoutType.NCHW,
thread=[1, 2])
# When Host and X86 exist at the same time, the error occurred.
# self.enable_testing_on_place(
# TargetType.X86,
# PrecisionType.FP32,
# DataLayoutType.NCHW,
# thread=[1, 2])
self.enable_testing_on_place(
TargetType.ARM,
PrecisionType.FP32,
DataLayoutType.NCHW,
thread=[1, 4])
# Diff occurred.
# self.enable_testing_on_place(
# TargetType.ARM,
# PrecisionType.FP16,
# DataLayoutType.NCHW,
# thread=[1, 4])
opencl_places = [
Place(TargetType.OpenCL, PrecisionType.FP16,
DataLayoutType.ImageDefault),
Place(TargetType.OpenCL, PrecisionType.FP32, DataLayoutType.NCHW),
Place(TargetType.OpenCL, PrecisionType.FP16,
DataLayoutType.ImageFolder), Place(
TargetType.OpenCL, PrecisionType.Any,
DataLayoutType.ImageDefault), Place(
TargetType.OpenCL, PrecisionType.Any,
DataLayoutType.ImageFolder),
Place(TargetType.OpenCL, PrecisionType.Any, DataLayoutType.NCHW),
Place(TargetType.Host, PrecisionType.FP32)
]
self.enable_testing_on_place(places=opencl_places)
metal_places = [
Place(TargetType.Metal, PrecisionType.FP32,
DataLayoutType.MetalTexture2DArray),
Place(TargetType.Metal, PrecisionType.FP16,
DataLayoutType.MetalTexture2DArray)
]
self.enable_testing_on_place(places=metal_places)

def is_program_valid(self,
program_config: ProgramConfig,
predictor_config: CxxConfig) -> bool:
return True

def sample_program_configs(self, draw):
in_shape = draw(
st.lists(
st.integers(
min_value=1, max_value=32), min_size=4, max_size=4))
mode = draw(st.sampled_from(["constant", "reflect", "edge"]))
value_data = draw(st.floats(min_value=0.0, max_value=4.0))
padding_data = draw(
st.lists(
st.integers(
min_value=0, max_value=4), min_size=4, max_size=4))
for i in range(4):
assume(padding_data[i] < in_shape[1])
assume(padding_data[i] < in_shape[2])
assume(padding_data[i] < in_shape[3])

def generate_input(*args, **kwargs):
return np.random.random(in_shape).astype(np.float32)

def generate_paddings(*args, **kwargs):
return np.array(padding_data).astype(np.int32)

build_ops = OpConfig(
type="pad2d",
inputs={
"X": ["input_data"],
#"Paddings": ["paddings_data"]
},
outputs={"Out": ["output_data"], },
attrs={
"paddings": padding_data,
"mode": mode,
"pad_value": value_data,
"data_format": "NCHW",
})
program_config = ProgramConfig(
ops=[build_ops],
weights={
#"paddings_data": TensorConfig(data_gen=partial(generate_paddings))
},
inputs={
"input_data": TensorConfig(data_gen=partial(generate_input))
},
outputs=["output_data"])
return program_config

def sample_predictor_configs(self):
atol, rtol = 1e-5, 1e-5
target_str = self.get_target()
if target_str == "Metal":
atol, rtol = 1e-3, 1e-3
return self.get_predictor_configs(), ["pad2d"], (atol, rtol)

def add_ignore_pass_case(self):
def teller1(program_config, predictor_config):
mode = program_config.ops[0].attrs["mode"]
if predictor_config.target() == TargetType.Metal:
if mode == "reflect" or mode == "edge":
return True

self.add_ignore_check_case(
teller1, IgnoreReasons.ACCURACY_ERROR,
"The op output has diff in a specific case. We need to fix it as soon as possible."
)

def test(self, *args, **kwargs):
self.run_and_statis(quant=False, max_examples=25)


if __name__ == "__main__":
unittest.main(argv=[''])