Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

xpu: _spatial_transformer_fuse_pass #10054

Merged
merged 1 commit into from
Mar 6, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions lite/api/paddle_use_passes.h
Original file line number Diff line number Diff line change
Expand Up @@ -79,6 +79,7 @@ USE_MIR_PASS(lite_greater_than_cast_fuse_pass);
USE_MIR_PASS(assign_value_calc_offline_pass);
USE_MIR_PASS(__xpu__graph_dedup_pass);
USE_MIR_PASS(__xpu__resnet_fuse_pass);
USE_MIR_PASS(__xpu__spatial_transformer_fuse_pass);
USE_MIR_PASS(__xpu__gn_silu_fuse_pass);
USE_MIR_PASS(__xpu__multihead_cross_attn_fuse_pass);
USE_MIR_PASS(__xpu__multihead_self_attn_fuse_pass);
Expand Down

Large diffs are not rendered by default.

1 change: 1 addition & 0 deletions lite/core/optimizer/optimizer.cc
Original file line number Diff line number Diff line change
Expand Up @@ -206,6 +206,7 @@ std::unique_ptr<RuntimeProgram> RunDefaultOptimizer(
"__xpu__multihead_cross_attn_fuse_pass",
"__xpu__geglu_fuse_pass",
"__xpu__quick_gelu_fuse_pass",
"__xpu__spatial_transformer_fuse_pass",
"__xpu__gn_silu_fuse_pass",
"__xpu__multi_encoder_fuse_pass",
"__xpu__embedding_with_eltwise_add_fuse_pass",
Expand Down
1 change: 1 addition & 0 deletions lite/kernels/xpu/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -140,4 +140,5 @@ add_kernel(__xpu__geglu_compute_xpu XPU extra SRCS __xpu__geglu_compute.cc)
if(XPU_WITH_XFT)
add_kernel(fusion_decoding_compute_xpu XPU extra SRCS fusion_decoding_compute.cc)
add_kernel(fusion_unified_decoding_compute_xpu XPU extra SRCS fusion_unified_decoding_compute.cc)
add_kernel(__xpu__spatial_transformer_compute_xpu XPU extra SRCS __xpu__spatial_transformer_compute.cc)
zhupengyang marked this conversation as resolved.
Show resolved Hide resolved
endif(XPU_WITH_XFT)
312 changes: 312 additions & 0 deletions lite/kernels/xpu/__xpu__spatial_transformer_compute.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,312 @@
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/xpu/__xpu__spatial_transformer_compute.h"
#include <vector>
#include "lite/backends/xpu/xpu_header_sitter.h"
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace xpu {
template <typename T>

static std::vector<const T*> PrepareWeight(
const std::vector<lite::Tensor*>& fc_weight) {
std::vector<const T*> result;
for (auto* weight : fc_weight) {
result.push_back(reinterpret_cast<const T*>(weight->data<float>()));
}
return result;
}

template <typename InType, PrecisionType PType>
void XPUSpatialTransformerCompute<InType, PType>::PrepareWeightMax(
const std::vector<lite::Tensor*>& weight_max,
int max_ptr_len,
std::vector<const float*>* max_xpu_ptrs) {
int max_value_num = 0;
for (auto max_tensor : weight_max) {
max_value_num += max_tensor->numel();
}
VLOG(3) << "Total weight max value number: " << max_value_num;
weight_max_guard_ =
TargetWrapperXPU::MallocScratchPad(max_value_num * sizeof(float));
float* weight_max_ptr = reinterpret_cast<float*>(weight_max_guard_->addr_);

int offset = 0;
for (auto max_tensor : weight_max) {
float* cur_weight_max_ptr = weight_max_ptr + offset;
auto len = max_tensor->numel();
VLOG(6) << "weight max value: " << max_tensor->data<float>()[0] << " "
<< max_tensor->data<float>()[len - 1];
std::vector<float> cpu_max(max_ptr_len, max_tensor->data<float>()[0]);
lite::TargetWrapperXPU::MemcpySync(cur_weight_max_ptr,
cpu_max.data(),
sizeof(float) * max_ptr_len,
IoDirection::HtoD);
max_xpu_ptrs->push_back(cur_weight_max_ptr);
offset += max_ptr_len;
}
}

template <typename InType, PrecisionType PType>
void XPUSpatialTransformerCompute<InType, PType>::PrepareFilterMax(
const std::vector<lite::Tensor*>& filter_max,
int max_ptr_len,
std::vector<const float*>* max_xpu_ptrs) {
int max_value_num = 0;
for (auto max_tensor : filter_max) {
max_value_num += max_tensor->numel();
}
VLOG(3) << "Total weight max value number: " << max_value_num;
filter_max_guard_ =
TargetWrapperXPU::MallocScratchPad(max_value_num * sizeof(float));
float* filter_max_ptr = reinterpret_cast<float*>(filter_max_guard_->addr_);

int offset = 0;
for (auto max_tensor : filter_max) {
float* cur_filter_max_ptr = filter_max_ptr + offset;
auto len = max_tensor->numel();
VLOG(6) << "weight max value: " << max_tensor->data<float>()[0] << " "
<< max_tensor->data<float>()[len - 1];
std::vector<float> cpu_max(max_ptr_len, max_tensor->data<float>()[0]);
lite::TargetWrapperXPU::MemcpySync(cur_filter_max_ptr,
cpu_max.data(),
sizeof(float) * max_ptr_len,
IoDirection::HtoD);
max_xpu_ptrs->push_back(cur_filter_max_ptr);
offset += max_ptr_len;
}
}

template <typename InType, PrecisionType PType>
void XPUSpatialTransformerCompute<InType, PType>::PrepareForRun() {
auto& ctx = this->ctx_->template As<XPUContext>();
auto& param = this->template Param<param_t>();
xft_attn_fc_bias.emplace_back(
const_cast<float*>(param.fc_bias[0]->template data<float>()),
xft::xftVec<float>::dim_t{param.fc_bias[0]->dims()[0]});
xft_attn_fc_bias.emplace_back(
const_cast<float*>(param.fc_bias[1]->template data<float>()),
xft::xftVec<float>::dim_t{param.fc_bias[1]->dims()[0]});
xft_geglu_fc_bias.emplace_back(
const_cast<float*>(param.fc_bias[2]->template data<float>()),
xft::xftVec<float>::dim_t{param.fc_bias[2]->dims()[0]});
xft_geglu_fc_bias.emplace_back(
const_cast<float*>(param.fc_bias[3]->template data<float>()),
xft::xftVec<float>::dim_t{param.fc_bias[3]->dims()[0]});
// prepare scale
for (auto* ln_scale : param.ln_scale) {
xft_ln_weights.emplace_back(
const_cast<float*>(ln_scale->template data<float>()),
xft::xftVec<float>::dim_t{ln_scale->dims()[0]});
}
// prepare ln_bias
for (auto* ln_bias : param.ln_bias) {
xft_ln_bias.emplace_back(
const_cast<float*>(ln_bias->template data<float>()),
xft::xftVec<float>::dim_t{ln_bias->dims()[0]});
}

// prepare gn_scale
for (auto* gn_scale : param.gn_scale) {
xft_gn_weights.emplace_back(
const_cast<float*>(gn_scale->template data<float>()),
xft::xftVec<float>::dim_t{gn_scale->dims()[0]});
}
// prepare gn_bias
for (auto* gn_bias : param.gn_bias) {
xft_gn_bias.emplace_back(
const_cast<float*>(gn_bias->template data<float>()),
xft::xftVec<float>::dim_t{gn_bias->dims()[0]});
}
// prepare conv bias
for (auto* conv_bias : param.conv_bias) {
xft_conv_bias.emplace_back(
const_cast<float*>(conv_bias->template data<float>()),
xft::xftVec<float>::dim_t{conv_bias->dims()[0]});
}

arg_fc_weight_int16_ = PrepareWeight<int16_t>(param.fc_weight);
arg_conv_filter_int16_ = PrepareWeight<int16_t>(param.conv_weight);
const int XPU_QUANT_SCALE_NUM = ctx.GetRawContext()->max_ptr_size();
PrepareWeightMax(param.weight_max, XPU_QUANT_SCALE_NUM, &fc_weight_max_);
PrepareFilterMax(param.conv_max, XPU_QUANT_SCALE_NUM, &conv_filter_max_);

int channel = static_cast<int>(param.input->dims()[1]);
int xh = static_cast<int>(param.input->dims()[2]);
int xw = static_cast<int>(param.input->dims()[3]);
int hidden_dim = xh * xw;
int embedding_dim = static_cast<int>(param.embedding->dims()[2]);

// xft fc weights
xft_q_weights.emplace_back(
const_cast<int16_t*>(arg_fc_weight_int16_[0]),
const_cast<float*>(fc_weight_max_[0]),
xft::xftMat<int16_t>::dim_t{hidden_dim, hidden_dim});
xft_q_weights.emplace_back(
const_cast<int16_t*>(arg_fc_weight_int16_[4]),
const_cast<float*>(fc_weight_max_[4]),
xft::xftMat<int16_t>::dim_t{hidden_dim, hidden_dim});
xft_k_weights.emplace_back(
const_cast<int16_t*>(arg_fc_weight_int16_[1]),
const_cast<float*>(fc_weight_max_[1]),
xft::xftMat<int16_t>::dim_t{hidden_dim, hidden_dim});
xft_k_weights.emplace_back(
const_cast<int16_t*>(arg_fc_weight_int16_[5]),
const_cast<float*>(fc_weight_max_[5]),
xft::xftMat<int16_t>::dim_t{hidden_dim, embedding_dim});
xft_v_weights.emplace_back(
const_cast<int16_t*>(arg_fc_weight_int16_[2]),
const_cast<float*>(fc_weight_max_[2]),
xft::xftMat<int16_t>::dim_t{hidden_dim, hidden_dim});
xft_v_weights.emplace_back(
const_cast<int16_t*>(arg_fc_weight_int16_[6]),
const_cast<float*>(fc_weight_max_[6]),
xft::xftMat<int16_t>::dim_t{hidden_dim, embedding_dim});
xft_attn_fc_weights.emplace_back(
const_cast<int16_t*>(arg_fc_weight_int16_[3]),
const_cast<float*>(fc_weight_max_[3]),
xft::xftMat<int16_t>::dim_t{hidden_dim, hidden_dim});
xft_attn_fc_weights.emplace_back(
const_cast<int16_t*>(arg_fc_weight_int16_[7]),
const_cast<float*>(fc_weight_max_[7]),
xft::xftMat<int16_t>::dim_t{hidden_dim, hidden_dim});
xft_geglu_fc_weights.emplace_back(
const_cast<int16_t*>(arg_fc_weight_int16_[8]),
const_cast<float*>(fc_weight_max_[8]),
xft::xftMat<int16_t>::dim_t{param.geglu_dim * 2, hidden_dim});
xft_geglu_fc_weights.emplace_back(
const_cast<int16_t*>(arg_fc_weight_int16_[9]),
const_cast<float*>(fc_weight_max_[9]),
xft::xftMat<int16_t>::dim_t{hidden_dim, param.geglu_dim});
for (size_t i = 0; i < arg_conv_filter_int16_.size(); i++) {
int kh = param.filter_dims[i][2];
int kw = param.filter_dims[i][3];
xft_conv_weights.emplace_back(
const_cast<int16_t*>(arg_conv_filter_int16_[i]),
const_cast<float*>(conv_filter_max_[i]),
xft::xftTensor<int16_t, 4>::dim_t{channel, hidden_dim, kh, kw});
}
st_param.n_head = param.head_num;
st_param.size_per_head = param.size_per_head,
st_param.geglu_dim = param.geglu_dim;
st_param.add_res = true;
st_param.conv_groups = param.conv_groups;
st_param.kernel_dims = param.filter_dims;
st_param.dilations = param.dilations;
st_param.paddings = param.paddings;
st_param.strides = param.strides;
st_param.gn_groups.push_back(param.groups);
st_param.gn_eps.push_back(param.epsilon);
}

template <typename InType, PrecisionType PType>
void XPUSpatialTransformerCompute<InType, PType>::Run() {
auto& param = this->template Param<param_t>();
auto& ctx = this->ctx_->template As<XPUContext>();
const InType* in = param.input->template data<InType>();
const InType* embedding = param.embedding->template data<InType>();
InType* out = param.output->template mutable_data<InType>(TARGET(kXPU));
int batch = static_cast<int>(param.input->dims()[0]);
int hidden_dim = static_cast<int>(param.input->dims()[1]);
int channel = hidden_dim;
int xh = static_cast<int>(param.input->dims()[2]);
int xw = static_cast<int>(param.input->dims()[3]);
int embedding_seq = static_cast<int>(param.embedding->dims()[1]);
int embedding_dim = static_cast<int>(param.embedding->dims()[2]);
// input
xft::xftTensor<InType, 4> in_tensor(
const_cast<InType*>(in), nullptr, {batch, channel, xh, xw});
xft::xftTensor<InType, 3> embedding_tensor(
const_cast<InType*>(embedding),
nullptr,
{batch, embedding_seq, embedding_dim});
// output
xft::xftTensor<InType, 4> output_tensor(out, {batch, channel, xh, xw});
int r = xft::st_spatial_transformer_fusion<InType, int16_t, int16_t>(
ctx.GetRawContext(),
in_tensor,
embedding_tensor,
xft_ln_weights,
xft_ln_bias,
xft_gn_weights,
xft_gn_bias,
xft_q_weights,
xft_k_weights,
xft_v_weights,
xft_attn_fc_weights,
xft_attn_fc_bias,
xft_geglu_fc_weights,
xft_geglu_fc_bias,
xft_conv_weights,
xft_conv_bias,
&output_tensor,
st_param);
CHECK_EQ(r, 0);
}

} // namespace xpu
} // namespace kernels
} // namespace lite
} // namespace paddle

namespace xpu = paddle::lite::kernels::xpu;

// using XPUSpatialTransformer_FP32 = xpu::XPUSpatialTransformerCompute<float,
// PRECISION(kFloat)>;
using XPUSpatialTransformer_FP16 =
xpu::XPUSpatialTransformerCompute<float16, PRECISION(kFP16)>;

// REGISTER_LITE_KERNEL(
// __xpu__spatial_transformer,
// kXPU,
// kFloat,
// kNCHW,
// XPUSpatialTransformer_FP32,
// def)
// .BindInput("Input", {LiteType::GetTensorTy(TARGET(kXPU))})
// .BindInput("Embedding", {LiteType::GetTensorTy(TARGET(kXPU))})
// .BindInput("FCWeight", {LiteType::GetTensorTy(TARGET(kXPU))})
// .BindInput("FCBias", {LiteType::GetTensorTy(TARGET(kXPU))})
// .BindInput("LNScale", {LiteType::GetTensorTy(TARGET(kXPU))})
// .BindInput("LNBias", {LiteType::GetTensorTy(TARGET(kXPU))})
// .BindInput("ConvWeight", {LiteType::GetTensorTy(TARGET(kXPU))})
// .BindInput("ConvBias", {LiteType::GetTensorTy(TARGET(kXPU))})
// .BindInput("GNScale", {LiteType::GetTensorTy(TARGET(kXPU))})
// .BindInput("GNBias", {LiteType::GetTensorTy(TARGET(kXPU))})
// .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kXPU))})
// .Finalize();
REGISTER_LITE_KERNEL(__xpu__spatial_transformer,
kXPU,
kFP16,
kNCHW,
XPUSpatialTransformer_FP16,
def_fp16)
.BindInput("Input", {LiteType::GetTensorTy(TARGET(kXPU), PRECISION(kFP16))})
.BindInput("Embedding",
{LiteType::GetTensorTy(TARGET(kXPU), PRECISION(kFP16))})
.BindInput("FCWeight", {LiteType::GetTensorTy(TARGET(kXPU))})
.BindInput("FCBias", {LiteType::GetTensorTy(TARGET(kXPU))})
.BindInput("LNScale", {LiteType::GetTensorTy(TARGET(kXPU))})
.BindInput("LNBias", {LiteType::GetTensorTy(TARGET(kXPU))})
.BindInput("ConvWeight", {LiteType::GetTensorTy(TARGET(kXPU))})
.BindInput("ConvBias", {LiteType::GetTensorTy(TARGET(kXPU))})
.BindInput("GNScale", {LiteType::GetTensorTy(TARGET(kXPU))})
.BindInput("GNBias", {LiteType::GetTensorTy(TARGET(kXPU))})
.BindOutput("Output",
{LiteType::GetTensorTy(TARGET(kXPU), PRECISION(kFP16))})
.Finalize();
Loading