-
Notifications
You must be signed in to change notification settings - Fork 1.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
10 changed files
with
1,238 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
606 changes: 606 additions & 0 deletions
606
lite/core/optimizer/mir/fusion/__xpu__spatial_transformer_fuse_pass.cc
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,312 @@ | ||
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "lite/kernels/xpu/__xpu__spatial_transformer_compute.h" | ||
#include <vector> | ||
#include "lite/backends/xpu/xpu_header_sitter.h" | ||
#include "lite/core/op_registry.h" | ||
|
||
namespace paddle { | ||
namespace lite { | ||
namespace kernels { | ||
namespace xpu { | ||
template <typename T> | ||
|
||
static std::vector<const T*> PrepareWeight( | ||
const std::vector<lite::Tensor*>& fc_weight) { | ||
std::vector<const T*> result; | ||
for (auto* weight : fc_weight) { | ||
result.push_back(reinterpret_cast<const T*>(weight->data<float>())); | ||
} | ||
return result; | ||
} | ||
|
||
template <typename InType, PrecisionType PType> | ||
void XPUSpatialTransformerCompute<InType, PType>::PrepareWeightMax( | ||
const std::vector<lite::Tensor*>& weight_max, | ||
int max_ptr_len, | ||
std::vector<const float*>* max_xpu_ptrs) { | ||
int max_value_num = 0; | ||
for (auto max_tensor : weight_max) { | ||
max_value_num += max_tensor->numel(); | ||
} | ||
VLOG(3) << "Total weight max value number: " << max_value_num; | ||
weight_max_guard_ = | ||
TargetWrapperXPU::MallocScratchPad(max_value_num * sizeof(float)); | ||
float* weight_max_ptr = reinterpret_cast<float*>(weight_max_guard_->addr_); | ||
|
||
int offset = 0; | ||
for (auto max_tensor : weight_max) { | ||
float* cur_weight_max_ptr = weight_max_ptr + offset; | ||
auto len = max_tensor->numel(); | ||
VLOG(6) << "weight max value: " << max_tensor->data<float>()[0] << " " | ||
<< max_tensor->data<float>()[len - 1]; | ||
std::vector<float> cpu_max(max_ptr_len, max_tensor->data<float>()[0]); | ||
lite::TargetWrapperXPU::MemcpySync(cur_weight_max_ptr, | ||
cpu_max.data(), | ||
sizeof(float) * max_ptr_len, | ||
IoDirection::HtoD); | ||
max_xpu_ptrs->push_back(cur_weight_max_ptr); | ||
offset += max_ptr_len; | ||
} | ||
} | ||
|
||
template <typename InType, PrecisionType PType> | ||
void XPUSpatialTransformerCompute<InType, PType>::PrepareFilterMax( | ||
const std::vector<lite::Tensor*>& filter_max, | ||
int max_ptr_len, | ||
std::vector<const float*>* max_xpu_ptrs) { | ||
int max_value_num = 0; | ||
for (auto max_tensor : filter_max) { | ||
max_value_num += max_tensor->numel(); | ||
} | ||
VLOG(3) << "Total weight max value number: " << max_value_num; | ||
filter_max_guard_ = | ||
TargetWrapperXPU::MallocScratchPad(max_value_num * sizeof(float)); | ||
float* filter_max_ptr = reinterpret_cast<float*>(filter_max_guard_->addr_); | ||
|
||
int offset = 0; | ||
for (auto max_tensor : filter_max) { | ||
float* cur_filter_max_ptr = filter_max_ptr + offset; | ||
auto len = max_tensor->numel(); | ||
VLOG(6) << "weight max value: " << max_tensor->data<float>()[0] << " " | ||
<< max_tensor->data<float>()[len - 1]; | ||
std::vector<float> cpu_max(max_ptr_len, max_tensor->data<float>()[0]); | ||
lite::TargetWrapperXPU::MemcpySync(cur_filter_max_ptr, | ||
cpu_max.data(), | ||
sizeof(float) * max_ptr_len, | ||
IoDirection::HtoD); | ||
max_xpu_ptrs->push_back(cur_filter_max_ptr); | ||
offset += max_ptr_len; | ||
} | ||
} | ||
|
||
template <typename InType, PrecisionType PType> | ||
void XPUSpatialTransformerCompute<InType, PType>::PrepareForRun() { | ||
auto& ctx = this->ctx_->template As<XPUContext>(); | ||
auto& param = this->template Param<param_t>(); | ||
xft_attn_fc_bias.emplace_back( | ||
const_cast<float*>(param.fc_bias[0]->template data<float>()), | ||
xft::xftVec<float>::dim_t{param.fc_bias[0]->dims()[0]}); | ||
xft_attn_fc_bias.emplace_back( | ||
const_cast<float*>(param.fc_bias[1]->template data<float>()), | ||
xft::xftVec<float>::dim_t{param.fc_bias[1]->dims()[0]}); | ||
xft_geglu_fc_bias.emplace_back( | ||
const_cast<float*>(param.fc_bias[2]->template data<float>()), | ||
xft::xftVec<float>::dim_t{param.fc_bias[2]->dims()[0]}); | ||
xft_geglu_fc_bias.emplace_back( | ||
const_cast<float*>(param.fc_bias[3]->template data<float>()), | ||
xft::xftVec<float>::dim_t{param.fc_bias[3]->dims()[0]}); | ||
// prepare scale | ||
for (auto* ln_scale : param.ln_scale) { | ||
xft_ln_weights.emplace_back( | ||
const_cast<float*>(ln_scale->template data<float>()), | ||
xft::xftVec<float>::dim_t{ln_scale->dims()[0]}); | ||
} | ||
// prepare ln_bias | ||
for (auto* ln_bias : param.ln_bias) { | ||
xft_ln_bias.emplace_back( | ||
const_cast<float*>(ln_bias->template data<float>()), | ||
xft::xftVec<float>::dim_t{ln_bias->dims()[0]}); | ||
} | ||
|
||
// prepare gn_scale | ||
for (auto* gn_scale : param.gn_scale) { | ||
xft_gn_weights.emplace_back( | ||
const_cast<float*>(gn_scale->template data<float>()), | ||
xft::xftVec<float>::dim_t{gn_scale->dims()[0]}); | ||
} | ||
// prepare gn_bias | ||
for (auto* gn_bias : param.gn_bias) { | ||
xft_gn_bias.emplace_back( | ||
const_cast<float*>(gn_bias->template data<float>()), | ||
xft::xftVec<float>::dim_t{gn_bias->dims()[0]}); | ||
} | ||
// prepare conv bias | ||
for (auto* conv_bias : param.conv_bias) { | ||
xft_conv_bias.emplace_back( | ||
const_cast<float*>(conv_bias->template data<float>()), | ||
xft::xftVec<float>::dim_t{conv_bias->dims()[0]}); | ||
} | ||
|
||
arg_fc_weight_int16_ = PrepareWeight<int16_t>(param.fc_weight); | ||
arg_conv_filter_int16_ = PrepareWeight<int16_t>(param.conv_weight); | ||
const int XPU_QUANT_SCALE_NUM = ctx.GetRawContext()->max_ptr_size(); | ||
PrepareWeightMax(param.weight_max, XPU_QUANT_SCALE_NUM, &fc_weight_max_); | ||
PrepareFilterMax(param.conv_max, XPU_QUANT_SCALE_NUM, &conv_filter_max_); | ||
|
||
int channel = static_cast<int>(param.input->dims()[1]); | ||
int xh = static_cast<int>(param.input->dims()[2]); | ||
int xw = static_cast<int>(param.input->dims()[3]); | ||
int hidden_dim = xh * xw; | ||
int embedding_dim = static_cast<int>(param.embedding->dims()[2]); | ||
|
||
// xft fc weights | ||
xft_q_weights.emplace_back( | ||
const_cast<int16_t*>(arg_fc_weight_int16_[0]), | ||
const_cast<float*>(fc_weight_max_[0]), | ||
xft::xftMat<int16_t>::dim_t{hidden_dim, hidden_dim}); | ||
xft_q_weights.emplace_back( | ||
const_cast<int16_t*>(arg_fc_weight_int16_[4]), | ||
const_cast<float*>(fc_weight_max_[4]), | ||
xft::xftMat<int16_t>::dim_t{hidden_dim, hidden_dim}); | ||
xft_k_weights.emplace_back( | ||
const_cast<int16_t*>(arg_fc_weight_int16_[1]), | ||
const_cast<float*>(fc_weight_max_[1]), | ||
xft::xftMat<int16_t>::dim_t{hidden_dim, hidden_dim}); | ||
xft_k_weights.emplace_back( | ||
const_cast<int16_t*>(arg_fc_weight_int16_[5]), | ||
const_cast<float*>(fc_weight_max_[5]), | ||
xft::xftMat<int16_t>::dim_t{hidden_dim, embedding_dim}); | ||
xft_v_weights.emplace_back( | ||
const_cast<int16_t*>(arg_fc_weight_int16_[2]), | ||
const_cast<float*>(fc_weight_max_[2]), | ||
xft::xftMat<int16_t>::dim_t{hidden_dim, hidden_dim}); | ||
xft_v_weights.emplace_back( | ||
const_cast<int16_t*>(arg_fc_weight_int16_[6]), | ||
const_cast<float*>(fc_weight_max_[6]), | ||
xft::xftMat<int16_t>::dim_t{hidden_dim, embedding_dim}); | ||
xft_attn_fc_weights.emplace_back( | ||
const_cast<int16_t*>(arg_fc_weight_int16_[3]), | ||
const_cast<float*>(fc_weight_max_[3]), | ||
xft::xftMat<int16_t>::dim_t{hidden_dim, hidden_dim}); | ||
xft_attn_fc_weights.emplace_back( | ||
const_cast<int16_t*>(arg_fc_weight_int16_[7]), | ||
const_cast<float*>(fc_weight_max_[7]), | ||
xft::xftMat<int16_t>::dim_t{hidden_dim, hidden_dim}); | ||
xft_geglu_fc_weights.emplace_back( | ||
const_cast<int16_t*>(arg_fc_weight_int16_[8]), | ||
const_cast<float*>(fc_weight_max_[8]), | ||
xft::xftMat<int16_t>::dim_t{param.geglu_dim * 2, hidden_dim}); | ||
xft_geglu_fc_weights.emplace_back( | ||
const_cast<int16_t*>(arg_fc_weight_int16_[9]), | ||
const_cast<float*>(fc_weight_max_[9]), | ||
xft::xftMat<int16_t>::dim_t{hidden_dim, param.geglu_dim}); | ||
for (size_t i = 0; i < arg_conv_filter_int16_.size(); i++) { | ||
int kh = param.filter_dims[i][2]; | ||
int kw = param.filter_dims[i][3]; | ||
xft_conv_weights.emplace_back( | ||
const_cast<int16_t*>(arg_conv_filter_int16_[i]), | ||
const_cast<float*>(conv_filter_max_[i]), | ||
xft::xftTensor<int16_t, 4>::dim_t{channel, hidden_dim, kh, kw}); | ||
} | ||
st_param.n_head = param.head_num; | ||
st_param.size_per_head = param.size_per_head, | ||
st_param.geglu_dim = param.geglu_dim; | ||
st_param.add_res = true; | ||
st_param.conv_groups = param.conv_groups; | ||
st_param.kernel_dims = param.filter_dims; | ||
st_param.dilations = param.dilations; | ||
st_param.paddings = param.paddings; | ||
st_param.strides = param.strides; | ||
st_param.gn_groups.push_back(param.groups); | ||
st_param.gn_eps.push_back(param.epsilon); | ||
} | ||
|
||
template <typename InType, PrecisionType PType> | ||
void XPUSpatialTransformerCompute<InType, PType>::Run() { | ||
auto& param = this->template Param<param_t>(); | ||
auto& ctx = this->ctx_->template As<XPUContext>(); | ||
const InType* in = param.input->template data<InType>(); | ||
const InType* embedding = param.embedding->template data<InType>(); | ||
InType* out = param.output->template mutable_data<InType>(TARGET(kXPU)); | ||
int batch = static_cast<int>(param.input->dims()[0]); | ||
int hidden_dim = static_cast<int>(param.input->dims()[1]); | ||
int channel = hidden_dim; | ||
int xh = static_cast<int>(param.input->dims()[2]); | ||
int xw = static_cast<int>(param.input->dims()[3]); | ||
int embedding_seq = static_cast<int>(param.embedding->dims()[1]); | ||
int embedding_dim = static_cast<int>(param.embedding->dims()[2]); | ||
// input | ||
xft::xftTensor<InType, 4> in_tensor( | ||
const_cast<InType*>(in), nullptr, {batch, channel, xh, xw}); | ||
xft::xftTensor<InType, 3> embedding_tensor( | ||
const_cast<InType*>(embedding), | ||
nullptr, | ||
{batch, embedding_seq, embedding_dim}); | ||
// output | ||
xft::xftTensor<InType, 4> output_tensor(out, {batch, channel, xh, xw}); | ||
int r = xft::st_spatial_transformer_fusion<InType, int16_t, int16_t>( | ||
ctx.GetRawContext(), | ||
in_tensor, | ||
embedding_tensor, | ||
xft_ln_weights, | ||
xft_ln_bias, | ||
xft_gn_weights, | ||
xft_gn_bias, | ||
xft_q_weights, | ||
xft_k_weights, | ||
xft_v_weights, | ||
xft_attn_fc_weights, | ||
xft_attn_fc_bias, | ||
xft_geglu_fc_weights, | ||
xft_geglu_fc_bias, | ||
xft_conv_weights, | ||
xft_conv_bias, | ||
&output_tensor, | ||
st_param); | ||
CHECK_EQ(r, 0); | ||
} | ||
|
||
} // namespace xpu | ||
} // namespace kernels | ||
} // namespace lite | ||
} // namespace paddle | ||
|
||
namespace xpu = paddle::lite::kernels::xpu; | ||
|
||
// using XPUSpatialTransformer_FP32 = xpu::XPUSpatialTransformerCompute<float, | ||
// PRECISION(kFloat)>; | ||
using XPUSpatialTransformer_FP16 = | ||
xpu::XPUSpatialTransformerCompute<float16, PRECISION(kFP16)>; | ||
|
||
// REGISTER_LITE_KERNEL( | ||
// __xpu__spatial_transformer, | ||
// kXPU, | ||
// kFloat, | ||
// kNCHW, | ||
// XPUSpatialTransformer_FP32, | ||
// def) | ||
// .BindInput("Input", {LiteType::GetTensorTy(TARGET(kXPU))}) | ||
// .BindInput("Embedding", {LiteType::GetTensorTy(TARGET(kXPU))}) | ||
// .BindInput("FCWeight", {LiteType::GetTensorTy(TARGET(kXPU))}) | ||
// .BindInput("FCBias", {LiteType::GetTensorTy(TARGET(kXPU))}) | ||
// .BindInput("LNScale", {LiteType::GetTensorTy(TARGET(kXPU))}) | ||
// .BindInput("LNBias", {LiteType::GetTensorTy(TARGET(kXPU))}) | ||
// .BindInput("ConvWeight", {LiteType::GetTensorTy(TARGET(kXPU))}) | ||
// .BindInput("ConvBias", {LiteType::GetTensorTy(TARGET(kXPU))}) | ||
// .BindInput("GNScale", {LiteType::GetTensorTy(TARGET(kXPU))}) | ||
// .BindInput("GNBias", {LiteType::GetTensorTy(TARGET(kXPU))}) | ||
// .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kXPU))}) | ||
// .Finalize(); | ||
REGISTER_LITE_KERNEL(__xpu__spatial_transformer, | ||
kXPU, | ||
kFP16, | ||
kNCHW, | ||
XPUSpatialTransformer_FP16, | ||
def_fp16) | ||
.BindInput("Input", {LiteType::GetTensorTy(TARGET(kXPU), PRECISION(kFP16))}) | ||
.BindInput("Embedding", | ||
{LiteType::GetTensorTy(TARGET(kXPU), PRECISION(kFP16))}) | ||
.BindInput("FCWeight", {LiteType::GetTensorTy(TARGET(kXPU))}) | ||
.BindInput("FCBias", {LiteType::GetTensorTy(TARGET(kXPU))}) | ||
.BindInput("LNScale", {LiteType::GetTensorTy(TARGET(kXPU))}) | ||
.BindInput("LNBias", {LiteType::GetTensorTy(TARGET(kXPU))}) | ||
.BindInput("ConvWeight", {LiteType::GetTensorTy(TARGET(kXPU))}) | ||
.BindInput("ConvBias", {LiteType::GetTensorTy(TARGET(kXPU))}) | ||
.BindInput("GNScale", {LiteType::GetTensorTy(TARGET(kXPU))}) | ||
.BindInput("GNBias", {LiteType::GetTensorTy(TARGET(kXPU))}) | ||
.BindOutput("Output", | ||
{LiteType::GetTensorTy(TARGET(kXPU), PRECISION(kFP16))}) | ||
.Finalize(); |
Oops, something went wrong.