-
Notifications
You must be signed in to change notification settings - Fork 1.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[NNAdapter] Add bn+conv2d,transpose+inverse_transpose and identity tr…
…anspose fuser (#9690)
- Loading branch information
1 parent
663a438
commit 6bc3164
Showing
6 changed files
with
479 additions
and
0 deletions.
There are no files selected for viewing
23 changes: 23 additions & 0 deletions
23
...ends/nnadapter/nnadapter/include/nnadapter/optimizer/fuse_batch_norm_conv2d_into_conv2d.h
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#pragma once | ||
|
||
#include "core/types.h" | ||
|
||
namespace nnadapter { | ||
|
||
void FuseBatchNormConv2DIntoConv2D(core::Model *model); | ||
|
||
} // namespace nnadapter |
44 changes: 44 additions & 0 deletions
44
...er/include/nnadapter/optimizer/fuse_transpose_inverse_transpose_into_identity_transpose.h
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#pragma once | ||
|
||
#include "core/types.h" | ||
|
||
namespace nnadapter { | ||
|
||
/* | ||
* Fuse two mutually inverse operations into an identity transpose operation. | ||
* | ||
* in | ||
* | | ||
* transpose -> perm1[0,2,3,1] | ||
* | | ||
* transpose -> perm2[0,3,1,2] | ||
* | | ||
* out | ||
* | ||
* After applied: | ||
* | ||
* in | ||
* | | ||
* transpose -> perm3[0,1,2,3] | ||
* | | ||
* out | ||
* | ||
*/ | ||
|
||
void FuseTransposeInverseTransposeIntoIdentityTranspose(core::Model *model); | ||
|
||
} // namespace nnadapter |
25 changes: 25 additions & 0 deletions
25
lite/backends/nnadapter/nnadapter/include/nnadapter/optimizer/remove_identity_transpose.h
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#pragma once | ||
|
||
#include "core/types.h" | ||
|
||
namespace nnadapter { | ||
|
||
// Remove a transpose operation with a identity permutation, such as perm=[0,1], | ||
// perm=[0,1,2] or perm[0,1,2,3] | ||
void RemoveIdentityTranspose(core::Model *model); | ||
|
||
} // namespace nnadapter |
209 changes: 209 additions & 0 deletions
209
lite/backends/nnadapter/nnadapter/src/optimizer/fuse_batch_norm_conv2d_into_conv2d.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,209 @@ | ||
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "optimizer/fuse_batch_norm_conv2d_into_conv2d.h" | ||
#include <algorithm> | ||
#include <iostream> | ||
#include <map> | ||
#include <vector> | ||
#include "optimizer/pattern_matcher.h" | ||
#include "utility/debug.h" | ||
#include "utility/logging.h" | ||
#include "utility/micros.h" | ||
#include "utility/modeling.h" | ||
#include "utility/utility.h" | ||
|
||
namespace nnadapter { | ||
|
||
class BatchNormConv2DFuser : public PatternMatcher { | ||
public: | ||
explicit BatchNormConv2DFuser(NNAdapterOperationType batch_norm_type, | ||
NNAdapterOperationType conv2d_type) | ||
: batch_norm_type_(batch_norm_type), conv2d_type_(conv2d_type) {} | ||
void BuildPattern() override; | ||
bool HandleMatchedResults(core::Model* model, | ||
const std::map<std::string, Node*>& nodes) override; | ||
|
||
private: | ||
NNAdapterOperationType batch_norm_type_{NNADAPTER_BATCH_NORMALIZATION}; | ||
NNAdapterOperationType conv2d_type_{NNADAPTER_CONV_2D}; | ||
}; | ||
|
||
void BatchNormConv2DFuser::BuildPattern() { | ||
// Operation patterns | ||
auto batch_norm_pattern = | ||
CreatePattern("batch_norm", batch_norm_type_)->IsIntermediate(); | ||
auto conv2d_pattern = CreatePattern("conv2d", conv2d_type_); | ||
// Operand patterns | ||
auto batch_norm_input_pattern = | ||
CreatePattern("batch_norm_input") | ||
->IsOperationInputOperand(batch_norm_type_, 0); | ||
auto batch_norm_scale_pattern = | ||
CreatePattern("batch_norm_scale") | ||
->IsOperationInputOperand(batch_norm_type_, 1) | ||
->IsConstantOperand() | ||
->IsIntermediate(); | ||
auto batch_norm_bias_pattern = | ||
CreatePattern("batch_norm_bias") | ||
->IsOperationInputOperand(batch_norm_type_, 2) | ||
->IsConstantOperand() | ||
->IsIntermediate(); | ||
auto batch_norm_mean_pattern = | ||
CreatePattern("batch_norm_mean") | ||
->IsOperationInputOperand(batch_norm_type_, 3) | ||
->IsConstantOperand() | ||
->IsIntermediate(); | ||
auto batch_norm_variance_pattern = | ||
CreatePattern("batch_norm_variance") | ||
->IsOperationInputOperand(batch_norm_type_, 4) | ||
->IsConstantOperand() | ||
->IsIntermediate(); | ||
auto batch_norm_epsilon_pattern = | ||
CreatePattern("batch_norm_epsilon") | ||
->IsOperationInputOperand(batch_norm_type_, 5) | ||
->IsConstantOperand() | ||
->IsIntermediate(); | ||
auto batch_norm_output_pattern = | ||
CreatePattern("batch_norm_output") | ||
->IsOperationOutputOperand(batch_norm_type_, 0) | ||
->IsOperationInputOperand(conv2d_type_, 0) | ||
->IsIntermediate(); | ||
auto conv2d_filter_pattern = CreatePattern("conv2d_filter") | ||
->IsOperationInputOperand(conv2d_type_, 1) | ||
->IsConstantOperand(); | ||
auto conv2d_bias_pattern = CreatePattern("conv2d_bias") | ||
->IsOperationInputOperand(conv2d_type_, 2) | ||
->IsConstantOperand(); | ||
auto conv2d_output_pattern = | ||
CreatePattern("conv2d_output")->IsOperationOutputOperand(conv2d_type_, 0); | ||
// Create the topological connections for the above patterns | ||
std::vector<Pattern*> batch_norm_input_patterns{batch_norm_input_pattern, | ||
batch_norm_scale_pattern, | ||
batch_norm_bias_pattern, | ||
batch_norm_mean_pattern, | ||
batch_norm_variance_pattern, | ||
batch_norm_epsilon_pattern}; | ||
std::vector<Pattern*> conv2d_input_patterns{ | ||
batch_norm_output_pattern, conv2d_filter_pattern, conv2d_bias_pattern}; | ||
batch_norm_input_patterns >> *batch_norm_pattern >> | ||
*batch_norm_output_pattern; | ||
conv2d_input_patterns >> *conv2d_pattern >> *conv2d_output_pattern; | ||
} | ||
|
||
bool BatchNormConv2DFuser::HandleMatchedResults( | ||
core::Model* model, const std::map<std::string, Node*>& nodes) { | ||
// Get the operands and operations from the matched subgraph nodes. | ||
auto batch_norm_operation = nodes.at("batch_norm")->operation; | ||
auto batch_norm_scale_data = | ||
reinterpret_cast<float*>(batch_norm_operation->input_operands[1]->buffer); | ||
auto batch_norm_bias_data = | ||
reinterpret_cast<float*>(batch_norm_operation->input_operands[2]->buffer); | ||
auto batch_norm_mean_data = | ||
reinterpret_cast<float*>(batch_norm_operation->input_operands[3]->buffer); | ||
auto batch_norm_variance_data = | ||
reinterpret_cast<float*>(batch_norm_operation->input_operands[4]->buffer); | ||
auto batch_norm_epsilon = *reinterpret_cast<float*>( | ||
batch_norm_operation->input_operands[5]->buffer); | ||
auto conv2d_operation = nodes.at("conv2d")->operation; | ||
auto conv2d_input_operand = conv2d_operation->input_operands[0]; | ||
auto& conv2d_input_type = conv2d_input_operand->type; | ||
auto conv2d_output_operand = conv2d_operation->output_operands[0]; | ||
auto& conv2d_output_type = conv2d_output_operand->type; | ||
auto conv2d_filter_operand = conv2d_operation->input_operands[1]; | ||
auto& conv2d_filter_type = conv2d_filter_operand->type; | ||
auto conv2d_bias_operand = conv2d_operation->input_operands[2]; | ||
auto conv2d_group = | ||
*reinterpret_cast<int32_t*>(conv2d_operation->input_operands[6]->buffer); | ||
auto conv2d_input_channel_size = conv2d_input_type.dimensions.data[1]; | ||
NNADAPTER_CHECK_NE(conv2d_input_channel_size, NNADAPTER_UNKNOWN); | ||
auto conv2d_output_channel_size = conv2d_filter_type.dimensions.data[0]; | ||
auto conv2d_input_channel_group = conv2d_input_channel_size / conv2d_group; | ||
auto conv2d_output_channel_group = conv2d_output_channel_size / conv2d_group; | ||
auto conv2d_filter_inner_size = conv2d_filter_type.dimensions.data[2] * | ||
conv2d_filter_type.dimensions.data[3]; | ||
// The formula for BATCH_NORMALIZATION: output = scale * (input - mean) / | ||
// sqrt(variance + epsilon) + bias | ||
// Equivalent to: output = alpha * input + beta, where alpha = scale / | ||
// sqrt(variance + epsilon), beta = -scale * mean / sqrt(variance + epsilon) + | ||
// bias | ||
std::vector<double> batch_norm_alpha(conv2d_input_channel_size), | ||
batch_norm_beta(conv2d_input_channel_size); | ||
for (int64_t i = 0; i < conv2d_input_channel_size; i++) { | ||
double coeff = batch_norm_scale_data[i] / | ||
std::sqrt(static_cast<double>(batch_norm_variance_data[i]) + | ||
batch_norm_epsilon); | ||
batch_norm_alpha[i] = coeff; | ||
batch_norm_beta[i] = | ||
-batch_norm_mean_data[i] * coeff + batch_norm_bias_data[i]; | ||
} | ||
if (IsInt8SymmPerLayerQuantType(conv2d_input_type.precision) && | ||
(IsInt8SymmPerLayerQuantType(conv2d_filter_type.precision) || | ||
IsInt8SymmPerChannelQuantType(conv2d_filter_type.precision)) && | ||
IsInt8SymmPerLayerQuantType(conv2d_output_type.precision)) { | ||
// TODO(hong19860320) Add bn+conv2d fusion for the quantized conv2d | ||
return false; | ||
} else { | ||
NNADAPTER_CHECK_EQ(conv2d_input_type.precision, NNADAPTER_FLOAT32); | ||
NNADAPTER_CHECK_EQ(conv2d_filter_type.precision, NNADAPTER_FLOAT32); | ||
NNADAPTER_CHECK_EQ(conv2d_output_type.precision, NNADAPTER_FLOAT32); | ||
auto conv2d_filter_data = | ||
reinterpret_cast<float*>(conv2d_filter_operand->buffer); | ||
auto conv2d_bias_data = | ||
reinterpret_cast<float*>(conv2d_bias_operand->buffer); | ||
for (int64_t g = 0; g < conv2d_group; g++) { | ||
for (int64_t i = 0; i < conv2d_output_channel_group; i++) { | ||
float sum = 0.0f; | ||
for (int64_t j = 0; j < conv2d_input_channel_group; j++) { | ||
for (int64_t k = 0; k < conv2d_filter_inner_size; k++) { | ||
auto offset = | ||
g * conv2d_output_channel_group * conv2d_input_channel_group * | ||
conv2d_filter_inner_size + | ||
i * conv2d_input_channel_group * conv2d_filter_inner_size + | ||
j * conv2d_filter_inner_size + k; | ||
auto value = conv2d_filter_data[offset]; | ||
conv2d_filter_data[offset] = | ||
value * batch_norm_alpha[g * conv2d_input_channel_group + j]; | ||
sum += value * batch_norm_beta[g * conv2d_input_channel_group + j]; | ||
} | ||
} | ||
conv2d_bias_data[g * conv2d_output_channel_group + i] += sum; | ||
} | ||
} | ||
} | ||
// Replace the input operand the of NNADAPTER_CONV_2D with the input operand | ||
// of NNADAPTER_BATCH_NORMALIZATION | ||
conv2d_operation->input_operands[0] = batch_norm_operation->input_operands[0]; | ||
// The matched intermediate operands and operations will be deleted only when | ||
// it returns true. | ||
return true; | ||
} | ||
|
||
NNADAPTER_EXPORT void FuseBatchNormConv2DIntoConv2D(core::Model* model) { | ||
for (auto batch_norm_type : {NNADAPTER_BATCH_NORMALIZATION}) { | ||
for (auto conv2d_type : {NNADAPTER_CONV_2D}) { | ||
NNADAPTER_VLOG(5) << "Apply BatchNormConv2DFuser for batch_norm_type:" | ||
<< OperationTypeToString(batch_norm_type) | ||
<< " conv2d_type:" | ||
<< OperationTypeToString(conv2d_type); | ||
bool stop; | ||
do { | ||
BatchNormConv2DFuser batch_norm_conv2d_fuser(batch_norm_type, | ||
conv2d_type); | ||
stop = batch_norm_conv2d_fuser.Apply(model) == 0; | ||
} while (!stop); | ||
} | ||
} | ||
} | ||
|
||
} // namespace nnadapter |
Oops, something went wrong.