-
Notifications
You must be signed in to change notification settings - Fork 1.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[xpu]: add adaptive_seqlen_v2_fuse_pass and add mask_type
- Loading branch information
Showing
6 changed files
with
234 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
212 changes: 212 additions & 0 deletions
212
lite/core/optimizer/mir/fusion/__xpu__multi_encoder_adaptive_seqlen_v2_fuse_pass.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,212 @@ | ||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include <memory> | ||
#include <string> | ||
|
||
#include "lite/backends/xpu/math.h" | ||
#include "lite/core/optimizer/mir/pass_registry.h" | ||
#include "lite/core/optimizer/mir/pattern_matcher_high_api.h" | ||
|
||
namespace paddle { | ||
namespace lite { | ||
namespace mir { | ||
namespace fusion { | ||
|
||
/* support adaptive seq len for bert/ernie */ | ||
/* in_Input in_Mask fill_constant */ | ||
/* | \ / */ | ||
/* | \ / */ | ||
/* | | */ | ||
/* xpu_embedding equal */ | ||
/* | | */ | ||
/* | | */ | ||
/* layer_norm cast */ | ||
/* | | */ | ||
/* | scale */ | ||
/* | / */ | ||
/* | unsqueeze2 */ | ||
/* | | */ | ||
/* | / */ | ||
/* | / */ | ||
/* xpu_encoder */ | ||
/* | */ | ||
/* | */ | ||
/* out_Output */ | ||
/*---------------------------------------------------*/ | ||
/* After the pass apply: */ | ||
/* in_Input in_Mask */ | ||
/* | | */ | ||
/* | | */ | ||
/* | / */ | ||
/* xpu_embedding */ | ||
/* | \ */ | ||
/* | SeqLod */ | ||
/* | | */ | ||
/* layer_norm | */ | ||
/* | | */ | ||
/* | / */ | ||
/* xpu_encoder */ | ||
/* | */ | ||
/* | */ | ||
/* out_Output */ | ||
/*---------------------------------------------------*/ | ||
|
||
class XPUMultiEncoderAdaptiveSeqlenV2Fuser : public FuseBase { | ||
public: | ||
explicit XPUMultiEncoderAdaptiveSeqlenV2Fuser(bool pre_ln = false) | ||
: pre_ln_(pre_ln) {} | ||
|
||
void BuildPattern() override { | ||
auto* mask = VarNode("mask")->assert_is_op_input("equal", "X")->AsInput(); | ||
auto* fill_constant = | ||
OpNode("fill_constant", "fill_constant")->AsIntermediate(); | ||
// delete fill_constant_out | ||
auto* fill_constant_out = VarNode("fill_constant_out") | ||
->assert_is_op_output("fill_constant", "Out") | ||
->assert_is_op_input("equal", "Y") | ||
->AsIntermediate(); | ||
auto* equal = OpNode("equal", "equal")->AsIntermediate(); | ||
auto* equal_out = VarNode("equal_out") | ||
->assert_is_op_output("equal", "Out") | ||
->assert_is_op_input("cast", "X") | ||
->AsIntermediate(); | ||
auto* cast = OpNode("cast", "cast")->AsIntermediate(); | ||
auto* cast_out = VarNode("cast_out") | ||
->assert_is_op_output("cast", "Out") | ||
->assert_is_op_input("scale", "X") | ||
->AsIntermediate(); | ||
auto* scale = OpNode("scale", "scale")->AsIntermediate(); | ||
auto* scale_out = VarNode("scale_out") | ||
->assert_is_op_output("scale", "Out") | ||
->assert_is_op_input("unsqueeze2", "X") | ||
->AsIntermediate(); | ||
auto* unsqueeze2 = OpNode("unsqueeze2", "unsqueeze2")->AsIntermediate(); | ||
auto* unsqueeze2_out = | ||
VarNode("unsqueeze2_out") | ||
->assert_is_op_output("unsqueeze2", "Out") | ||
->assert_is_op_input("__xpu__multi_encoder", "Mask") | ||
->AsIntermediate(); | ||
// delete unsqueeze2_out_xshape | ||
auto* unsqueeze2_out_xshape = | ||
VarNode("unsqueeze2_out_xshape") | ||
->assert_is_op_output("unsqueeze2", "XShape") | ||
->AsIntermediate(); | ||
auto* xpu_embedding = | ||
OpNode("xpu_embedding", "__xpu__embedding_with_eltwise_add"); | ||
|
||
PMNode* embedding_out = nullptr; | ||
PMNode* layer_norm = nullptr; | ||
PMNode* layer_norm_out = nullptr; | ||
|
||
if (pre_ln_) { | ||
embedding_out = VarNode("embedding_out") | ||
->assert_is_op_output( | ||
"__xpu__embedding_with_eltwise_add", "Output") | ||
->assert_is_op_input("__xpu__multi_encoder", "Input"); | ||
} else { | ||
embedding_out = VarNode("embedding_out") | ||
->assert_is_op_output( | ||
"__xpu__embedding_with_eltwise_add", "Output") | ||
->assert_is_op_input("layer_norm", "X"); | ||
layer_norm = OpNode("layer_norm", "layer_norm"); | ||
layer_norm_out = | ||
VarNode("layer_norm_out") | ||
->assert_is_op_output("layer_norm", "Y") | ||
->assert_is_op_input("__xpu__multi_encoder", "Input"); | ||
} | ||
auto* xpu_encoder = OpNode("xpu_encoder", "__xpu__multi_encoder") | ||
->assert_op_attr<bool>("adaptive_seqlen", true); | ||
if (pre_ln_) { | ||
xpu_encoder->assert_op_attr<bool>("norm_before", true); | ||
*xpu_embedding >> *embedding_out >> *xpu_encoder; | ||
} else { | ||
*xpu_embedding >> *embedding_out >> *layer_norm >> *layer_norm_out >> | ||
*xpu_encoder; | ||
} | ||
*mask >> *equal; | ||
*fill_constant >> *fill_constant_out >> *equal; | ||
*equal >> *equal_out >> *cast >> *cast_out >> *scale >> *scale_out >> | ||
*unsqueeze2 >> *unsqueeze2_out >> *xpu_encoder; | ||
*unsqueeze2 >> *unsqueeze2_out_xshape; | ||
} | ||
|
||
void InsertNewNode(SSAGraph* graph, const key2nodes_t& matched) override { | ||
auto* embedding_instruct = matched.at("xpu_embedding")->stmt(); | ||
auto embedding_op_desc = *embedding_instruct->mutable_op_info(); | ||
auto embedding_op = embedding_instruct->op(); | ||
auto* scope = embedding_op->scope(); | ||
auto* encoder_instruct = matched.at("xpu_encoder")->stmt(); | ||
auto encoder_op_desc = *encoder_instruct->mutable_op_info(); | ||
auto encoder_op = encoder_instruct->op(); | ||
|
||
// add new arg seq_lod | ||
std::string embedding_out_name = matched.at("embedding_out")->arg()->name; | ||
std::string embedding_seq_lod_name = embedding_out_name + "_seq_lod"; | ||
auto* embedding_seq_lod_node = | ||
graph->NewArgumentNode(embedding_seq_lod_name); | ||
embedding_seq_lod_node->arg()->type = LiteType::GetTensorTy( | ||
TARGET(kHost), PRECISION(kInt32), DATALAYOUT(kNCHW)); | ||
scope->NewTensor(embedding_seq_lod_name); | ||
// add new arg pad_seq_len | ||
std::string embedding_pad_seq_len_name = | ||
embedding_out_name + "_pad_seq_len"; | ||
auto* embedding_pad_seq_len_node = | ||
graph->NewArgumentNode(embedding_pad_seq_len_name); | ||
embedding_pad_seq_len_node->arg()->type = LiteType::GetTensorTy( | ||
TARGET(kHost), PRECISION(kInt32), DATALAYOUT(kNCHW)); | ||
scope->NewTensor(embedding_pad_seq_len_name); | ||
|
||
embedding_op_desc.SetOutput("SeqLod", {embedding_seq_lod_name}); | ||
embedding_op_desc.SetOutput("PadSeqLen", {embedding_pad_seq_len_name}); | ||
encoder_op_desc.SetInput("SeqLod", {embedding_seq_lod_name}); | ||
encoder_op_desc.SetInput("PadSeqLen", {embedding_pad_seq_len_name}); | ||
embedding_op_desc.SetInput("Mask", {matched.at("mask")->arg()->name}); | ||
// add mask dtype | ||
embedding_op_desc.SetAttr<int>( | ||
"mask_dtype", static_cast<int>(VarDescAPI::VarDataType::INT64)); | ||
embedding_instruct->ResetOp(embedding_op_desc, | ||
embedding_op->valid_places()); | ||
encoder_instruct->ResetOp(encoder_op_desc, encoder_op->valid_places()); | ||
DirectedLink(matched.at("xpu_embedding"), embedding_seq_lod_node); | ||
DirectedLink(matched.at("xpu_embedding"), embedding_pad_seq_len_node); | ||
DirectedLink(matched.at("mask"), matched.at("xpu_embedding")); | ||
DirectedLink(embedding_seq_lod_node, matched.at("xpu_encoder")); | ||
DirectedLink(embedding_pad_seq_len_node, matched.at("xpu_encoder")); | ||
} | ||
|
||
private: | ||
bool pre_ln_; | ||
}; | ||
|
||
} // namespace fusion | ||
|
||
class XPUMultiEncoderAdaptiveSeqlenV2FusePass : public ProgramPass { | ||
public: | ||
void Apply(const std::unique_ptr<SSAGraph>& graph) override { | ||
std::vector<bool> pre_lns{true, false}; | ||
for (auto pre_ln : pre_lns) { | ||
fusion::XPUMultiEncoderAdaptiveSeqlenV2Fuser fuser(pre_ln); | ||
fuser(graph.get()); | ||
} | ||
} | ||
}; | ||
|
||
} // namespace mir | ||
} // namespace lite | ||
} // namespace paddle | ||
|
||
REGISTER_MIR_PASS(__xpu__multi_encoder_adaptive_seqlen_v2_fuse_pass, | ||
paddle::lite::mir::XPUMultiEncoderAdaptiveSeqlenV2FusePass) | ||
.BindTargets({TARGET(kXPU)}); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters