Skip to content

Commit

Permalink
转换规则 No. 370 (#243)
Browse files Browse the repository at this point in the history
Add test
  • Loading branch information
co63oc authored Aug 23, 2023
1 parent 12b0172 commit af8658f
Show file tree
Hide file tree
Showing 2 changed files with 97 additions and 0 deletions.
13 changes: 13 additions & 0 deletions paconvert/api_mapping.json
Original file line number Diff line number Diff line change
Expand Up @@ -8386,6 +8386,19 @@
"input": "x"
}
},
"torch.nn.functional.dropout1d": {
"Matcher": "GenericMatcher",
"paddle_api": "paddle.nn.functional.dropout",
"args_list": [
"input",
"p",
"training",
"inplace"
],
"kwargs_change": {
"input": "x"
}
},
"torch.nn.functional.dropout2d": {
"Matcher": "GenericMatcher",
"paddle_api": "paddle.nn.functional.dropout2d",
Expand Down
84 changes: 84 additions & 0 deletions tests/test_nn_functional_dropout1d.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import textwrap

from apibase import APIBase

obj = APIBase("torch.nn.functional.dropout1d")


def test_case_1():
pytorch_code = textwrap.dedent(
"""
import torch
import torch.nn.functional as F
x = torch.tensor([[[-1.3020, -0.1005, 0.5766, 0.6351, -0.8893, 0.0253, -0.1756, 1.2913],
[-0.8833, -0.1369, -0.0168, -0.5409, -0.1511, -0.1240, -1.1870, -1.8816]]])
result = F.dropout1d(x)
"""
)
obj.run(pytorch_code, ["result"], check_value=False)


def test_case_2():
pytorch_code = textwrap.dedent(
"""
import torch
import torch.nn.functional as F
x = torch.tensor([[[-1.3020, -0.1005, 0.5766, 0.6351, -0.8893, 0.0253, -0.1756, 1.2913],
[-0.8833, -0.1369, -0.0168, -0.5409, -0.1511, -0.1240, -1.1870, -1.8816]]])
result = F.dropout1d(x, 0.5)
"""
)
obj.run(pytorch_code, ["result"], check_value=False)


def test_case_3():
pytorch_code = textwrap.dedent(
"""
import torch
import torch.nn.functional as F
x = torch.tensor([[[-1.3020, -0.1005, 0.5766, 0.6351, -0.8893, 0.0253, -0.1756, 1.2913],
[-0.8833, -0.1369, -0.0168, -0.5409, -0.1511, -0.1240, -1.1870, -1.8816]]])
result = F.dropout1d(x, p=0.5)
"""
)
obj.run(pytorch_code, ["result"], check_value=False)


def test_case_4():
pytorch_code = textwrap.dedent(
"""
import torch
import torch.nn.functional as F
x = torch.tensor([[[-1.3020, -0.1005, 0.5766, 0.6351, -0.8893, 0.0253, -0.1756, 1.2913],
[-0.8833, -0.1369, -0.0168, -0.5409, -0.1511, -0.1240, -1.1870, -1.8816]]])
result = F.dropout1d(x, 0.5, training=True, inplace=False)
"""
)
obj.run(pytorch_code, ["result"], check_value=False)


def test_case_5():
pytorch_code = textwrap.dedent(
"""
import torch
import torch.nn.functional as F
x = torch.tensor([[[-1.3020, -0.1005, 0.5766, 0.6351, -0.8893, 0.0253, -0.1756, 1.2913],
[-0.8833, -0.1369, -0.0168, -0.5409, -0.1511, -0.1240, -1.1870, -1.8816]]])
result = F.dropout1d(input=x, p=0.5, inplace=True, training=True)
"""
)
obj.run(pytorch_code, ["result"], check_value=False)

0 comments on commit af8658f

Please sign in to comment.