Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add abs2() operator for squared abs() #568

Merged
merged 3 commits into from
Jan 22, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 20 additions & 0 deletions docs_input/api/math/misc/abs2.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
.. _abs2_func:

abs2
====

Squared absolute value. For complex numbers, this is the squared
complex magnitude, or real(t)^2 + imag(t)^2. For real numbers,
tbensonatl marked this conversation as resolved.
Show resolved Hide resolved
this is equivalent to the squared value, or t*t.

.. doxygenfunction:: abs2(Op t)

Examples
~~~~~~~~

.. literalinclude:: ../../../../test/00_operators/OperatorTests.cu
:language: cpp
:start-after: example-begin abs2-test-1
:end-before: example-end abs2-test-1
:dedent:

14 changes: 14 additions & 0 deletions include/matx/operators/scalar_ops.h
Original file line number Diff line number Diff line change
Expand Up @@ -285,6 +285,20 @@ template <typename T> struct ExpjF {
};
template <typename T> using ExpjOp = UnOp<T, ExpjF<T>>;

template <typename T> struct Abs2F {
static __MATX_INLINE__ std::string str() { return "abs2"; }

static __MATX_INLINE__ __MATX_HOST__ __MATX_DEVICE__ auto op(T v)
{
if constexpr (is_complex_v<T>) {
return v.real() * v.real() + v.imag() * v.imag();
}
else {
return v * v;
}
}
};
template <typename T> using Abs2Op = UnOp<T, Abs2F<T>>;

template <typename T> static __MATX_INLINE__ __MATX_HOST__ __MATX_DEVICE__ auto _internal_normcdf(T v1)
{
Expand Down
10 changes: 10 additions & 0 deletions include/matx/operators/unary_operators.h
Original file line number Diff line number Diff line change
Expand Up @@ -190,6 +190,15 @@ namespace matx
*/
Op abs(Op t) {}

/**
* Compute squared absolute value of every element in the tensor. For complex numbers
* this returns the squared magnitude, or real(t)^2 + imag(t)^2. For real numbers
* this returns the squared value, or t*t.
* @param t
* Tensor or operator input
*/
Op abs2(Op t) {}

/**
* Compute the sine of every element in the tensor
* @param t
Expand Down Expand Up @@ -379,6 +388,7 @@ namespace matx
#endif
DEFINE_UNARY_OP(norm, detail::NormOp);
DEFINE_UNARY_OP(abs, detail::AbsOp);
DEFINE_UNARY_OP(abs2, detail::Abs2Op);
DEFINE_UNARY_OP(sin, detail::SinOp);
DEFINE_UNARY_OP(cos, detail::CosOp);
DEFINE_UNARY_OP(tan, detail::TanOp);
Expand Down
67 changes: 67 additions & 0 deletions test/00_operators/OperatorTests.cu
Original file line number Diff line number Diff line change
Expand Up @@ -1582,6 +1582,73 @@ TYPED_TEST(OperatorTestsAllExecs, OperatorFuncs)
MATX_EXIT_HANDLER();
}

TYPED_TEST(OperatorTestsNumericAllExecs, Abs2)
{
MATX_ENTER_HANDLER();
using TestType = std::tuple_element_t<0, TypeParam>;
using ExecType = std::tuple_element_t<1, TypeParam>;
using inner_type = typename inner_op_type_t<TestType>::type;

ExecType exec{};

auto sync = [&exec]() constexpr {
tbensonatl marked this conversation as resolved.
Show resolved Hide resolved
if constexpr (std::is_same_v<ExecType,cudaExecutor>) {
cudaDeviceSynchronize();
}
};

if constexpr (std::is_same_v<TestType, cuda::std::complex<float>> &&
std::is_same_v<ExecType,cudaExecutor>) {
// example-begin abs2-test-1
auto x = make_tensor<cuda::std::complex<float>>({});
auto y = make_tensor<float>({});
x() = { 1.5f, 2.5f };
(y = abs2(x)).run();
cudaDeviceSynchronize();
ASSERT_NEAR(y(), 1.5f*1.5f+2.5f*2.5f, 1.0e-6);
// example-end abs2-test-1
}

auto x = make_tensor<TestType>({});
auto y = make_tensor<inner_type>({});
if constexpr (is_complex_v<TestType>) {
x() = TestType{2.0, 2.0};
(y = abs2(x)).run(exec);
sync();
ASSERT_NEAR(y(), 8.0, 1.0e-6);
} else {
x() = 2.0;
(y = abs2(x)).run(exec);
sync();
ASSERT_NEAR(y(), 4.0, 1.0e-6);

// Test with higher rank tensor
auto x3 = make_tensor<TestType>({3,3,3});
auto y3 = make_tensor<TestType>({3,3,3});
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
for (int k = 0; k < 3; k++) {
x3(i,j,k) = static_cast<TestType>(i*9 + j*3 + k);
}
}
}

(y3 = abs2(x3)).run(exec);
sync();

for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
for (int k = 0; k < 3; k++) {
TestType v = static_cast<TestType>(i*9 + j*3 + k);
ASSERT_NEAR(y3(i,j,k), v*v, 1.0e-6);
}
}
}
}

MATX_EXIT_HANDLER();
}

TYPED_TEST(OperatorTestsFloatNonComplexAllExecs, OperatorFuncsR2C)
{
MATX_ENTER_HANDLER();
Expand Down