Skip to content

Commit

Permalink
polyval operator
Browse files Browse the repository at this point in the history
  • Loading branch information
cliffburdick committed Oct 26, 2023
1 parent 4bab040 commit 100cd40
Show file tree
Hide file tree
Showing 5 changed files with 162 additions and 0 deletions.
18 changes: 18 additions & 0 deletions docs_input/api/polynomials/polyval.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
.. _polyval_func:

polyval
=======

Evaluate a polynomial given an input sequence and coefficients

.. doxygenfunction:: polyval(const Op &op, const Coeffs &coeffs)

Examples
~~~~~~~~

.. literalinclude:: ../../../test/00_operators/OperatorTests.cu
:language: cpp
:start-after: example-begin polyval-test-1
:end-before: example-end polyval-test-1
:dedent:

1 change: 1 addition & 0 deletions include/matx/operators/operators.h
Original file line number Diff line number Diff line change
Expand Up @@ -78,6 +78,7 @@
#include "matx/operators/percentile.h"
#include "matx/operators/permute.h"
#include "matx/operators/planar.h"
#include "matx/operators/polyval.h"
#include "matx/operators/pwelch.h"
#include "matx/operators/qr.h"
#include "matx/operators/r2c.h"
Expand Down
101 changes: 101 additions & 0 deletions include/matx/operators/polyval.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
////////////////////////////////////////////////////////////////////////////////
// BSD 3-Clause License
//
// Copyright (c) 2021, NVIDIA Corporation
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/////////////////////////////////////////////////////////////////////////////////

#pragma once


#include "matx/core/type_utils.h"
#include "matx/operators/base_operator.h"

namespace matx
{

/**
* Returns the polynomial evaluated at each point
*/
namespace detail {
template <typename Op, typename Coeffs>
class PolyvalOp : public BaseOp<PolyvalOp<Op, Coeffs>>
{
private:
Op op_;
Coeffs coeffs_;

public:
using matxop = bool;
using scalar_type = typename Op::scalar_type;

__MATX_INLINE__ std::string str() const { return "polyval()"; }
__MATX_INLINE__ PolyvalOp(const Op &op, const Coeffs &coeffs) : op_(op), coeffs_(coeffs) {
MATX_STATIC_ASSERT_STR(coeffs.Rank() == 1, matxInvalidDim, "Coefficient must be rank 1");
MATX_STATIC_ASSERT_STR(op.Rank() == 1, matxInvalidDim, "Input operator must be rank 1");
};

__MATX_INLINE__ __MATX_DEVICE__ __MATX_HOST__ auto operator()(index_t idx) const
{
// Horner's method for computing polynomial
scalar_type ttl{coeffs_(0)};
for(int i = 1; i < coeffs_.Size(0); i++) {
ttl = ttl * op_(idx) + coeffs_(i);
}

return ttl;
}

static __MATX_INLINE__ constexpr __MATX_HOST__ __MATX_DEVICE__ int32_t Rank()
{
return 1;
}
constexpr __MATX_INLINE__ __MATX_HOST__ __MATX_DEVICE__ index_t Size([[maybe_unused]] int dim) const
{
return op_.Size(0);
}
};
}


/**
* @brief Evaluate a polynomial
*
* Currently only allows 1D input and coefficients
*
* @tparam Op Type of input values to evaluate
* @tparam Coeffs Type of coefficients
* @param op Input values to evaluate
* @param coeffs Coefficient values
* @return polyval operator
*/
template <typename Op, typename Coeffs>
__MATX_INLINE__ auto polyval(const Op &op, const Coeffs &coeffs) {
return detail::PolyvalOp(op, coeffs);
}
} // end namespace matx
27 changes: 27 additions & 0 deletions test/00_operators/OperatorTests.cu
Original file line number Diff line number Diff line change
Expand Up @@ -3274,6 +3274,33 @@ TYPED_TEST(OperatorTestsFloatNonComplexAllExecs, Sphere2Cart)
MATX_EXIT_HANDLER();
}

TYPED_TEST(OperatorTestsFloatNonComplexNonHalfAllExecs, PolyVal)
{
MATX_ENTER_HANDLER();
using TestType = std::tuple_element_t<0, TypeParam>;
using ExecType = std::tuple_element_t<1, TypeParam>;

auto pb = std::make_unique<detail::MatXPybind>();
pb->InitAndRunTVGenerator<TestType>("00_operators", "polyval_operator", "run", {4, 100});

ExecType exec{};
auto x = make_tensor<TestType>({100});
auto c = make_tensor<TestType>({4});
auto out = make_tensor<TestType>({100});

pb->NumpyToTensorView(x, "x");
pb->NumpyToTensorView(c, "c");

// example-begin polyval-test-1
(out = polyval(x, c)).run();
// example-end polyval-test-1
cudaStreamSynchronize(0);
MATX_TEST_ASSERT_COMPARE(pb, out, "out", 0.01);

MATX_EXIT_HANDLER();
}


TYPED_TEST(OperatorTestsNumericAllExecs, Upsample)
{
MATX_ENTER_HANDLER();
Expand Down
15 changes: 15 additions & 0 deletions test/test_vectors/generators/00_operators.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,21 @@
import scipy.signal as ss
from typing import Dict, List

class polyval_operator:
def __init__(self, dtype: str, size: List[int]):
self.size = size
pass

def run(self) -> Dict[str, np.array]:
c = np.random.rand(self.size[0])
x = np.random.rand(self.size[1])

return {
'c': c,
'x': x,
'out': np.polyval(c, x),
}


class kron_operator:
def __init__(self, dtype: str, size: List[int]):
Expand Down

0 comments on commit 100cd40

Please sign in to comment.