-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathslide_r_basic_statistic.Rmd
446 lines (355 loc) · 14.6 KB
/
slide_r_basic_statistic.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
---
title: "Brief introduction to statistics"
subtitle: "Statistics"
author: "Nima Rafati"
keywords: bioinformatics, course, scilifelab, nbis, R
output:
xaringan::moon_reader:
encoding: 'UTF-8'
self_contained: false
chakra: 'assets/remark-latest.min.js'
css: 'assets/slide.css'
lib_dir: libs
include: NULL
nature:
ratio: '4:3'
highlightLanguage: r
highlightStyle: github
highlightLines: true
countIncrementalSlides: false
slideNumberFormat: "%current%/%total%"
---
exclude: true
count: false
```{r,echo=FALSE,child="assets/header-slide.Rmd"}
```
<!-- ------------ Only edit title, subtitle & author above this ------------ -->
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo=TRUE, width=60)
```
```{r,include=FALSE}
# load the packages you need
#library(dplyr)
#library(tidyr)
#library(stringr)
#library(ggplot2)
#library(mkteachr)
```
---
name: intro
# Introduction
**Why do we need statistics in our analysis?**
- Make data understandable and insightful.
- Evaluate patterns and trends.
- Identify and quantify differences/similarities between groups.
--
**Types of statistics:**
- Descriptive statistics: To summarize and describe main features of a dataset (Mean, median,...).
- Inferential statistics: To make prediction or inferences about a population using a sample of data (Hypothesis testing, regression analysis,...).
- Predictive statistics: To make predictions about future outcomes based on collected data (Regression models, time series forecasting, machine learning,...).
- ......
---
name: Descriptive
# Types of Descriptive Statistics
Descriptive statistics helps to:
- Summarize and describe the data.
- Visualize the data.
- Identify patterns (trends) and outliers in the data.
- Provide insights for downstream-analysis.
---
name: SomeStats
# Some of the basic descriptive statistics
1. **Measures of Central Tendency**
- Mean, Median, Mode.
2. **Measures of Spread**
- Range, Interquartile Range, Standard Deviation, Variance.
3. **Correlation**
- Relation between two variables (e.g. Pearson's correlation).
---
name: Mean
# Central Tendency: Mean
- Mean: The average value of data.
$$
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
$$
```{r Mean, eval = T, echo = F, fig.width = 10, fig.height=4}
set.seed(123)
par(mfrow = c(1, 2), mar = c(5, 4, 4, 2) + 0.1)
data <- data.frame( var1 = rgamma(10000, shape = 2, scale = 2) * 12,
var2 = rnorm(10000, mean = 100, sd = 20))
hist(data$var1,breaks = 50, main = 'var1 distribution', xlab = 'var1', col = 'skyblue', freq = TRUE)
var1_mean = mean(data$var1)
# Mean
abline(v = var1_mean, col = 'red', lwd = 2)
text(x = var1_mean + 10 , y = 700, labels = paste("Mean =", round(var1_mean, 2)), pos = 4, col = 'red', cex = 0.8)
hist(data$var2,breaks = 50, main = 'var2 distribution', xlab = 'var2', col = 'skyblue', freq = TRUE)
var2_mean = mean(data$var2)
var2_median = median(data$var2)
# Mean
abline(v = var2_mean, col = 'red', lwd = 2)
text(x = var2_mean + 10 , y = 700, labels = paste("Mean =", round(var2_mean, 2)), pos = 4, col = 'red', cex = 0.8)
```
```{r mean, eval = T, echo = T}
mean(data$var1)
mean(data$var2)
```
---
name: Median
# Central Tendency: Median
- Median: The middle value with the data is sorted.
```{r Median, eval = T, echo = F, fig.width = 10, fig.height=5}
par(mfrow=c(1,2))
hist(data$var1,breaks = 50, main = 'var1 distribution', xlab = 'var1', col = 'skyblue', freq = TRUE)
var1_mean = mean(data$var1)
var1_median = median(data$var1)
# Mean
abline(v = var1_mean, col = 'red', lwd = 2)
text(x = var1_mean + 10 , y = 400, labels = paste("Mean =", round(var1_mean, 2)), pos = 4, col = 'red')
# Median
abline(v = var1_median, col = 'green', lwd = 2)
text(x = var1_median + 10 , y = 500, labels = paste("Median =", round(var1_median, 2)), pos = 4, col = 'green')
hist(data$var2,breaks = 50, main = 'var2 distribution', xlab = 'var2', col = 'skyblue', freq = TRUE)
var2_mean = mean(data$var2)
var2_median = median(data$var2)
# Mean
abline(v = var2_mean, col = 'red', lwd = 2)
text(x = var2_mean + 30 , y = 400, labels = paste("Mean =", round(var2_mean, 2)), pos = 4, col = 'red')
# Median
abline(v = var2_median, col = 'green', lwd = 2)
text(x = var2_median + 30 , y = 600, labels = paste("Median =", round(var2_median, 2)), pos = 4, col = 'green')
```
```{r}
median(data$var1)
median(data$var2)
```
---
name: Mode
# Central Tendency: Mode
- Mode: The most frequently occurring value.
```{r Mode-plot, eval = T, echo = F, fig.width = 10, fig.height=5}
par(mfrow=c(1,2))
hist(data$var1,breaks = 50, main = 'var1 distribution', xlab = 'var1', col = 'skyblue', freq = TRUE)
var1_mean = mean(data$var1)
var1_median = median(data$var1)
# Mean
abline(v = var1_mean, col = 'red', lwd = 2)
text(x = var1_mean + 10 , y = 400, labels = paste("Mean =", round(var1_mean, 2)), pos = 4, col = 'red')
# Median
abline(v = var1_median, col = 'green', lwd = 2)
text(x = var1_median + 10 , y = 500, labels = paste("Median =", round(var1_median, 2)), pos = 4, col = 'green')
# Mode
density_data <- density(data$var1)
var1_mode <- density_data$x[which.max(density_data$y)]
abline(v = var1_mode, col = 'purple', lwd = 2)
text(x = var1_mode + 10 , y = 600, labels = paste("Mode =", round(var1_mode, 2)), pos = 4, col = 'purple')
hist(data$var2,breaks = 50, main = 'var2 distribution', xlab = 'var2', col = 'skyblue', freq = TRUE)
var2_mean = mean(data$var2)
var2_median = median(data$var2)
# Mean
abline(v = var2_mean, col = 'red', lwd = 2)
text(x = var2_mean + 30 , y = 400, labels = paste("Mean =", round(var2_mean, 2)), pos = 4, col = 'red')
# Median
abline(v = var2_median, col = 'green', lwd = 2)
text(x = var2_median + 30 , y = 600, labels = paste("Median =", round(var2_median, 2)), pos = 4, col = 'green')
# Mode
density_data <- density(data$var2)
var2_mode <- density_data$x[which.max(density_data$y)]
abline(v = var2_mode, col = 'purple', lwd = 2)
text(x = var2_mode - 90 , y = 600, labels = paste("Mode =", round(var2_mode, 2)), pos = 4, col = 'purple')
```
```{r mode, echoo = T, eval = T}
density_data1 <- density(data$var1)
density_data1$x[which.max(density_data1$y)]
density_data2 <- density(data$var2)
density_data2$x[which.max(density_data2$y)]
```
---
name: Spread
# Measures of spread: Range and Interquartile Range.
- Range: Difference between maximum `max(data$var2)` and minimum `min(data$var2)`.
- Interquartile Range: Data is represented in four equally sized groups (bins) known as **Quartile** and the distance between quartile is called **Interquartile Range** (IQR).
```{r range, echo = F, eval = T}
# Sample data
set.seed(123)
data_quartile <- c(24, 30, 33, 45, 47, 58, 60, 66, 70)
# Calculate min, Q1, Q2 (median), Q3, max, IQR, and range
min_val <- min(data_quartile)
q1 <- quantile(data_quartile, 0.25)
median_val <- median(data_quartile)
q3 <- quantile(data_quartile, 0.75)
max_val <- max(data_quartile)
iqr_val <- IQR(data_quartile)
range_val <- max_val - min_val
# Plot the main line and quartiles
plot(c(1, 9), c(0, 1), type = "n", xlab = "", ylab = "", xaxt = "n", yaxt = "n", bty = "n")
# Main line (the range of the data)
segments(1, 0.5, 9, 0.5, lwd = 2)
# Draw vertical lines at min, Q1, median (Q2), Q3, max
segments(1, 0.45, 1, 0.55, lwd = 2) # Min
segments(3, 0.45, 3, 0.55, lwd = 2, col = "orange") # Q1
segments(5, 0.45, 5, 0.55, lwd = 2, col = "red") # Q2 (Median)
segments(7, 0.45, 7, 0.55, lwd = 2, col = "orange") # Q3
segments(9, 0.45, 9, 0.55, lwd = 2) # Max
# Add the values on top
text(1, 0.6, min_val, cex = 1)
text(3, 0.6, q1, cex = 1)
text(5, 0.6, median_val, cex = 1, col = "red")
text(7, 0.6, q3, cex = 1)
text(9, 0.6, max_val, cex = 1)
# Add labels for Min, Q1, Q2, Q3, Max
text(1, 0.4, "Min", cex = 1, col = "blue")
text(3, 0.4, "Q1", cex = 1, col = "blue")
text(5, 0.4, "Q2", cex = 1, col = "blue")
text(7, 0.4, "Q3", cex = 1, col = "blue")
text(9, 0.4, "Max", cex = 1, col = "blue")
# Add the IQR and Range arrows and labels
arrows(3, 0.3, 7, 0.3, length = 0.1)
text(5, 0.25, paste("IQR = Q3 - Q1 =", round(iqr_val, 2)), cex = 1)
arrows(1, 0.2, 9, 0.2, length = 0.1)
text(5, 0.15, paste("Range = Max - Min =", range_val), cex = 1)
```
---
name: Variance
# Measures of spread: Variance
- Variance: How far the data points are spread out from the mean. Unit is the square of the data's unit (e.g. $cm^2$ ).
$$
\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2
$$
```{r var, echo=TRUE, eval=TRUE}
var(data$var2)
```
---
name: Stdev
# Measures of spread: Standard deviation
- Standard deviation (sd): is the square root of the variance and provides a more intuitive measure of spread. Despite of variance, sd has the same unit as the data (e.g. cm).
$$
\sigma =\sqrt{\sigma^2}
$$
```{r sd-plot,echo = F, eval = T}
var2_sd <- sd(data$var2)
hist(data$var2,breaks = 50, main = '', xlab = '', col = 'skyblue', freq = TRUE, ylim = c(0,1200))
abline(v = var2_mean, col = 'red', lwd = 2)
rect(var2_mean - var2_sd, 0, var2_mean + var2_sd, 1100, col = rgb(0.9, 0.9, 0.9, 0.5), border = NA)
rect(var2_mean - 2*var2_sd, 0, var2_mean - var2_sd, 1100, col = rgb(0.7, 0.7, 0.7, 0.5), border = NA)
rect(var2_mean + 2*var2_sd, 0, var2_mean + var2_sd, 1100, col = rgb(0.7, 0.7, 0.7, 0.5), border = NA)
rect(var2_mean - 3*var2_sd, 0, var2_mean - 2*var2_sd, 1100, col = rgb(0.5, 0.5, 0.5, 0.5), border = NA)
rect(var2_mean + 3*var2_sd, 0, var2_mean + 2*var2_sd, 1100, col = rgb(0.5, 0.5, 0.5, 0.5), border = NA)
text(x = var2_mean - 1 , y = 1200, labels = expression(bar(x)), pos = 4, col = 'red', cex = 0.8)
text(x = var2_mean + 5, y = 1100, labels = expression(bar(x) + sd), pos = 4, col = 'black', cex = 0.8)
text(x = var2_mean - var2_sd , y = 1100, labels = expression(bar(x) - sd), pos = 4, col = 'black', cex = 0.8)
text(x = var2_mean + 2*var2_sd - 15 , y = 1100, labels = expression(bar(x) + 2*sd), pos = 4, col = 'black', cex = 0.7)
text(x = var2_mean - 2*var2_sd , y = 1100, labels = expression(bar(x) - 2*sd), pos = 4, col = 'black', cex = 0.7)
text(x = var2_mean + 3*var2_sd - 15 , y = 1100, labels = expression(bar(x) + 3*sd), pos = 4, col = 'black', cex = 0.7)
text(x = var2_mean - 3*var2_sd , y = 1100, labels = expression(bar(x) - 3*sd), pos = 4, col = 'black', cex = 0.7)
rect(xleft = var2_mean - var2_sd,
xright = var2_mean + var2_sd,
ytop = 890,
ybottom = 895)
text(x = var2_mean + 30, y = 910, col = 'black', labels = '68.27%')
rect(xleft = var2_mean - 2*var2_sd,
xright = var2_mean + 2*var2_sd,
ytop = 590,
ybottom = 595)
text(x = var2_mean + 40, y = 610, col = 'black', labels = '95.45%')
rect(xleft = var2_mean - 3*var2_sd,
xright = var2_mean + 3*var2_sd,
ytop = 190,
ybottom = 195)
text(x = var2_mean + 50, y = 210, col = 'black', labels = '99.73%')
```
---
name: correlation
# Correlation
- Measuring the strength and direction of the **linear** relationship between two variables.
- Positive Correlation: As one variable increases, the other also increases.
- Negative Correlation: As one variable increases, the other decreases.
- No Correlation: No directional relationship between the variables.
---
name: Pearson
# Types of correlation
- Pearson's correlation coefficient: Correlation of two **continuous** variables.
- Assumptions:
- Linear relationship.
- Normally distributed variables.
```{r pearson,echo = F, eval = T, fig.width=10, fig.height=5}
set.seed(123)
# Generate data for perfect positive correlation
x_pos <- seq(1, 100, length.out = 100)
y_pos <- x_pos + rnorm(100, mean = 0, sd = 1) # adding a tiny bit of noise for realism
# Generate data for perfect negative correlation
x_neg <- seq(1, 100, length.out = 100)
y_neg <- -x_neg + rnorm(100, mean = 0, sd = 1)
# Generate data for no correlation
x_none <- seq(1, 100, length.out = 100)
y_none <- rnorm(100, mean = 50, sd = 20)
# Combine all datasets into a data frame
data <- data.frame(
x_pos = x_pos,
y_pos = y_pos,
x_neg = x_neg,
y_neg = y_neg,
x_none = x_none,
y_none = y_none
)
# Plot the data to visualize the correlations
par(mfrow = c(1, 3), mar = c(5, 4, 4, 5) + 0.1)
# Positive correlation
plot(data$x_pos, data$y_pos, main = paste0("Positive (r =", round(cor(data$x_pos, data$y_pos), digits = 4), ")"), xlab = "X", ylab = "Y", col = "blue", pch = 19)
abline(lm(data$y_pos ~ data$x_pos), col = "red", lwd = 2)
# Negative correlation
plot(data$x_neg, data$y_neg, main = paste0("Negative (r =", round(cor(data$x_neg, data$y_neg), digits = 4), ")"), xlab = "X", ylab = "Y", col = "blue", pch = 19)
abline(lm(data$y_neg ~ data$x_neg), col = "red", lwd = 2)
# No correlation
plot(data$x_none, data$y_none, main = paste0("No Correlation (r =", round(cor(data$x_none, data$y_none), digits = 2), ")"), xlab = "X", ylab = "Y", col = "blue", pch = 19)
abline(lm(data$y_none ~ data$x_none), col = "red", lwd = 2)
```
$$
r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}
$$
---
name: Spearman
# Types of correlation
- Spearman's rank correlation coefficient: Measures the monotonic relationship between two **ranked** variables.
- Assumptions:
- It is a non-parametric approach and does not require the data to be linearly correlated.
- The data is not normally distributed.
- For both conrinuous and ordinal (categorical) variables.
```{r spearman,echo = F, eval = T, fig.width=8, fig.height=4}
# Create the ordinal dataset
data_ordinal <- data.frame(
Satisfaction = c(5, 4, 3, 2, 1, 4, 5, 2, 3, 1),
Performance = c(9, 8, 7, 3, 2, 6, 10, 1, 5, 4)
)
# Calculate Spearman's rank correlation
spearman_corr <- cor(data_ordinal$Satisfaction, data_ordinal$Performance, method = "spearman")
# Plot to visualize the relationship
plot(data_ordinal$Satisfaction, data_ordinal$Performance,
xlab = "Satisfaction (Ordinal)",
ylab = "Performance (Rank)",
main = paste("Spearman's Correlation =", round(spearman_corr, 2)),
pch = 19, col = "blue")
# Add a line to show the trend
abline(lm(data_ordinal$Performance ~ data_ordinal$Satisfaction), col = "red", lwd = 2)
```
$$
\rho = 1 - \frac{6 \sum d_i^2}{n(n^2 - 1)}
$$
---
name: closing
# More on statistics?
- We discussed about very basic descriptive statistical measures.
- You can read more [here](https://nbisweden.github.io/workshop-mlbiostatistics/session-descriptive/docs/index.html).
<!-- --------------------- Do not edit this and below --------------------- -->
---
name: end_slide
class: end-slide, middle
count: false
# See you at the next lecture!
```{r, echo=FALSE,child="assets/footer-slide.Rmd"}
```
```{r,include=FALSE,eval=FALSE}
# manually run this to render this document to HTML
#rmarkdown::render("presentation_demo.Rmd")
# manually run this to convert HTML to PDF
#pagedown::chrome_print("presentation_demo.html",output="presentation_demo.pdf")
```