Skip to content

Marsman1996/Security-AI-Papers

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 

Repository files navigation

Recent Papers Related to AI Related Security

All Papers (Classification according to Subject)

Fuzzing (LLM)

Large Language Model guided Protocol Fuzzing, NDSS'24, Abhik Roychoudhury, NUS

Abstract: How to find security flaws in a protocol implementation without a machine-readable specification of the protocol? Facing the internet, protocol implementations are particularly security-critical software systems where inputs must adhere to a specific structure and order that is often informally specified in hundreds of pages in natural language (RFC). Without some machine-readable version of that protocol, it is difficult to automatically generate valid test inputs for its implementation that follow the required structure and order. It is possible to partially alleviate this challenge using mutational fuzzing on a set of recorded message sequences as seed inputs. However, the set of available seeds is often quite limited and will hardly cover the great diversity of protocol states and input structures.

In this paper, we explore the opportunities of systematic interaction with a pre-trained large language models (LLM) which has ingested millions of pages of human-readable protocol specifications, to draw out machine-readable information about the protocol that can be used during protocol fuzzing. We use the knowledge of the LLMs about protocol message types for well-known protocols. We also checked the LLM's capability in detecting ``states" for stateful protocol implementations by generating sequences of messages and predicting response codes. Based on these observations, we have developed an LLM-guided protocol implementation fuzzing engine. Our protocol fuzzer ChatAFL constructs grammars for each message type in a protocol, and then mutates messages or predicts the next messages in a message sequence via interactions with LLMs. Experiments on a wide range of real-world protocols from ProFuzzbench show significant efficacy in state and code coverage. Our LLM-guided stateful fuzzer was compared with state-of-the-art fuzzers AFLNet and NSFuzz. ChatAFL covers 47.6% and 42.7% more state transitions, 29.6% and 25.8% more states, and 5.8% and 6.7% more code, respectively. Apart from enhanced coverage, ChatAFL discovered nine distinct and previously unknown vulnerabilities in widely-used and extensively-tested protocol implementations while AFLNet and NSFuzz only discover three and four of them, respectively.

Prompt Fuzzing for Fuzz Driver Generation, CCS'24, Peng Chen

Overview

Abstract: Crafting high-quality fuzz drivers not only is time-consuming but also requires a deep understanding of the library. However, the state-of-the-art automatic fuzz driver generation techniques fall short of expectations. While fuzz drivers derived from consumer code can reach deep states, they have limited coverage. Conversely, interpretative fuzzing can explore most API calls but requires numerous attempts within a large search space. We propose PromptFuzz, a coverage-guided fuzzer for prompt fuzzing that iteratively generates fuzz drivers to explore undiscovered library code. To explore API usage in fuzz drivers during prompt fuzzing, we propose several key techniques: instructive program generation, erroneous program validation, coverage-guided prompt mutation, and constrained fuzzer scheduling. We implemented PromptFuzz and evaluated it on 14 real-world libraries. Compared with OSS-Fuzz and Hopper (the state-of-the-art fuzz driver generation tool), fuzz drivers generated by PromptFuzz achieved 1.61 and 1.63 times higher branch coverage than those by OSS-Fuzz and Hopper, respectively. Moreover, the fuzz drivers generated by PromptFuzz detected 33 genuine, new bugs out of a total of 49 crashes, out of which 30 bugs have been confirmed by their respective communities.

Fuzz4All: Universal Fuzzing with Large Language Models, ICSE'24, LingMing Zhang

Generate code by LLM to test target compiler/solver/... GPT4 to summarize code, StarCoder-15B to generate code snippet

Framework

Abstract: Fuzzing has achieved tremendous success in discovering bugs and vulnerabilities in various software systems. Systems under test (SUTs) that take in programming or formal language as inputs, e.g., compilers, runtime engines, constraint solvers, and software libraries with accessible APIs, are especially important as they are fundamental building blocks of software development. However, existing fuzzers for such systems often target a specific language, and thus cannot be easily applied to other languages or even other versions of the same language. Moreover, the inputs generated by existing fuzzers are often limited to specific features of the input language, and thus can hardly reveal bugs related to other or new features. This paper presents Fuzz4All, the first fuzzer that is universal in the sense that it can target many different input languages and many different features of these languages. The key idea behind Fuzz4All is to leverage large language models (LLMs) as an input generation and mutation engine, which enables the approach to produce diverse and realistic inputs for any practically relevant language. To realize this potential, we present a novel autoprompting technique, which creates LLM prompts that are well-suited for fuzzing, and a novel LLM-powered fuzzing loop, which iteratively updates the prompt to create new fuzzing inputs. We evaluate Fuzz4All on nine systems under test that take in six different languages (C, C++, Go, SMT2, Java, and Python) as inputs. The evaluation shows, across all six languages, that universal fuzzing achieves higher coverage than existing, language-specific fuzzers. Furthermore, Fuzz4All has identified 98 bugs in widely used systems, such as GCC, Clang, Z3, CVC5, OpenJDK, and the Qiskit quantum computing platform, with 64 bugs already confirmed by developers as previously unknown.

KernelGPT: Enhanced Kernel Fuzzing via Large Language Models, Arxiv’23, Lingming Zhang

Automatically inferring syscall Syzkaller specifications by LLM

Framework

Abstract: Bugs in operating system kernels can affect billions of devices and users all over the world. As a result, a large body of research has been focused on kernel fuzzing, i.e., automatically generating syscall (system call) sequences to detect potential kernel bugs or vulnerabilities. Syzkaller, one of the most widely studied kernel fuzzers, aims to generate valid syscall sequences based on predefined specifications written in syzlang, a domain-specific language for defining syscalls, their arguments, and the relationships between them. While there has been existing work trying to automate Syzkaller specification generation, this still remains largely manual work and a large number of important syscalls are still uncovered. In this paper, we propose KernelGPT, the first approach to automatically inferring Syzkaller specifications via Large Language Models (LLMs) for enhanced kernel fuzzing. Our basic insight is that LLMs have seen massive kernel code, documentation, and use cases during pre-training, and thus can automatically distill the necessary information for making valid syscalls. More specifically, KernelGPT leverages an iterative approach to automatically infer all the necessary specification components, and further leverages the validation feedback to repair/refine the initial specifications. Our preliminary results demonstrate that KernelGPT can help Syzkaller achieve higher coverage and find multiple previously unknown bugs. Moreover, we also received a request from the Syzkaller team to upstream specifications inferred by KernelGPT.

WhiteFox: White-Box Compiler Fuzzing Empowered by Large Language Models, OOPSLA'24, Lingming Zhang

Generate code snippets by LLM to test the DL/C/C++ compilers GPT4 to summarize code, StarCoder-15B to generate code snippet

Subset of Fuzz4All?

Overview

Abstract: Compiler correctness is crucial, as miscompilation falsifying the program behaviors can lead to serious consequences. In the literature, fuzzing has been extensively studied to uncover compiler defects. However, compiler fuzzing remains challenging: Existing arts focus on black- and grey-box fuzzing, which generates tests without sufficient understanding of internal compiler behaviors. As such, they often fail to construct programs to exercise conditions of intricate optimizations. Meanwhile, traditional white-box techniques are computationally inapplicable to the giant codebase of compilers. Recent advances demonstrate that Large Language Models (LLMs) excel in code generation/understanding tasks and have achieved state-of-the-art performance in black-box fuzzing. Nonetheless, prompting LLMs with compiler source-code information remains a missing piece of research in compiler testing. To this end, we propose WhiteFox, the first white-box compiler fuzzer using LLMs with source-code information to test compiler optimization. WhiteFox adopts a dual-model framework: (i) an analysis LLM examines the low-level optimization source code and produces requirements on the high-level test programs that can trigger the optimization; (ii) a generation LLM produces test programs based on the summarized requirements. Additionally, optimization-triggering tests are used as feedback to further enhance the test generation on the fly. Our evaluation on four popular compilers shows that WhiteFox can generate high-quality tests to exercise deep optimizations requiring intricate conditions, practicing up to 80 more optimizations than state-of-the-art fuzzers. To date, WhiteFox has found in total 96 bugs, with 80 confirmed as previously unknown and 51 already fixed. Beyond compiler testing, WhiteFox can also be adapted for white-box fuzzing of other complex, real-world software systems in general.

Large Language Models are Edge-Case Generators: Crafting Unusual Programs for Fuzzing Deep Learning Libraries, ICSE'24, Lingming Zhang

Fuzz Driver Generated by LLM
Historical bug information given

Framework

Abstract: Deep Learning (DL) library bugs affect downstream DL applications, emphasizing the need for reliable systems. Generating valid input programs for fuzzing DL libraries is challenging due to the need for satisfying both language syntax/semantics and constraints for constructing valid computational graphs. Recently, the TitanFuzz work demonstrates that modern Large Language Models (LLMs) can be directly leveraged to implicitly learn all the constraints to generate valid DL programs for fuzzing. However, LLMs tend to generate ordinary programs following similar patterns seen in their massive training corpora, while fuzzing favors unusual inputs that cover edge cases or are unlikely to be manually produced. To fill this gap, this paper proposes FuzzGPT, the first technique to prime LLMs to synthesize unusual programs for fuzzing. FuzzGPT is built on the well-known hypothesis that historical bug-triggering programs may include rare/valuable code ingredients important for bug finding. Traditional techniques leveraging such historical information require intensive human efforts to design dedicated generators and ensure the validity of generated programs. FuzzGPT demonstrates that this process can be fully automated via the intrinsic capabilities of LLMs (including fine-tuning and in-context learning), while being generalizable and applicable to challenging domains. While FuzzGPT can be applied with different LLMs, this paper focuses on the powerful GPT-style models: Codex and CodeGen. Moreover, FuzzGPT also shows the potential of directly leveraging the instruct-following capability of the recent ChatGPT for effective fuzzing. Evaluation on two popular DL libraries (PyTorch and TensorFlow) shows that FuzzGPT can substantially outperform TitanFuzz, detecting 76 bugs, with 49 already confirmed as previously unknown bugs, including 11 high-priority bugs or security vulnerabilities.

Large Language Models are Zero-Shot Fuzzers: Fuzzing Deep-Learning Libraries via Large Language Models, ISSTA'23, Lingming Zhang

Fuzz Driver Generated by LLM
Use both generative and infilling LLMs

Framework

Abstract: Detecting bugs in Deep Learning (DL) libraries (e.g., TensorFlow/PyTorch) is critical for almost all downstream DL systems in ensuring effectiveness/safety for end users. Meanwhile, traditional fuzzing techniques can be hardly effective for such a challenging domain since the input DL programs need to satisfy both the input language (e.g., Python) syntax/semantics and the DL API input/shape constraints for tensor computations.

To address these limitations, we propose TitanFuzz - the first approach to directly leveraging Large Language Models (LLMs) to generate input programs for fuzzing DL libraries. LLMs are titanic models trained on billions of code snippets and can auto-regressively generate human-like code snippets. Our key insight is that modern LLMs can also include numerous code snippets invoking DL library APIs in their training corpora, and thus can implicitly learn both language syntax/semantics and intricate DL API constraints for valid DL program generation. More specifically, we use both generative and infilling LLMs (e.g., Codex/InCoder) to generate and mutate valid/diverse input DL programs for fuzzing. Our experimental results demonstrate that TitanFuzz can achieve 30.38%/50.84% higher code coverage than state-of-the-art fuzzers on TensorFlow/PyTorch. Furthermore, TitanFuzz is able to detect 65 bugs, with 41 already confirmed as previously unknown bugs.

This paper demonstrates that modern titanic LLMs can be leveraged to directly perform both generation-based and mutation-based fuzzing studied for decades, while being fully automated, generalizable, and applicable to domains challenging for traditional approaches (such as DL systems). We hope TitanFuzz can stimulate more work in this promising direction of LLMs for fuzzing.

Augmenting Greybox Fuzzing with Generative AI, Arxiv’23, Heng Yin

  • Paper
  • [Code] Publish upon acceptance

Apply ChatGPT for Seed Generation + Mutation

Overview

Abstract: Real-world programs expecting structured inputs often has a format-parsing stage gating the deeper program space. Neither a mutation-based approach nor a generative approach can provide a solution that is effective and scalable. Large language models (LLM) pre-trained with an enormous amount of natural language corpus have proved to be effective for understanding the implicit format syntax and generating format-conforming inputs. In this paper, propose ChatFuzz, a greybox fuzzer augmented by generative AI. More specifically, we pick a seed in the fuzzer's seed pool and prompt ChatGPT generative models to variations, which are more likely to be format-conforming and thus of high quality. We conduct extensive experiments to explore the best practice for harvesting the power of generative LLM models. The experiment results show that our approach improves the edge coverage by 12.77% over the SOTA greybox fuzzer (AFL++) on 12 target programs from three well-tested benchmarks. As for vulnerability detection, \sys is able to perform similar to or better than AFL++ for programs with explicit syntax rules but not for programs with non-trivial syntax.

Fuzzing (Traditional AI Method)

Evaluating and Improving Neural Program-Smoothing-based Fuzzing, ICSE’22, Lingming Zhang

Improving Neuzz & MTFuzz
Resource-Efficient Edge Selection Mechanism
Probabilistic Byte Selection Mechanism

Abstract: Fuzzing nowadays has been commonly modeled as an optimization problem, e.g., maximizing code coverage under a given time budget via typical search-based solutions such as evolutionary algorithms. However, such solutions are widely argued to cause inefficient computing resource usage, i.e., inefficient mutations. To address this issue, two neural program-smoothing-based fuzzers, Neuzz and MTFuzz, have been recently proposed to approximate program branching behaviors via neural network models, which input byte sequences of a seed and output vectors representing program branching behaviors. Moreover, assuming that mutating the bytes with larger gradients can better explore branching behaviors, they develop strategies to mutate such bytes for generating new seeds as test cases. Meanwhile, although they have been shown to be effective in the original papers, they were only evaluated upon a limited dataset. In addition, it is still unclear how their key technical components and whether other factors can impact fuzzing performance. To further investigate neural program-smoothing-based fuzzing, we first construct a large-scale benchmark suite with a total of 28 popular open-source projects. Then, we extensively evaluate Neuzz and MTFuzz on such benchmarks. The evaluation results suggest that their edge coverage performance can be unstable. Moreover, neither neural network models nor mutation strategies can be consistently effective, and the power of their gradient-guidance mechanisms have been compromised. Inspired by such findings, we propose a simplistic technique, PreFuzz, which improves neural program-smoothing-based fuzzers with a resource-efficient edge selection mechanism to enhance their gradient guidance and a probabilistic byte selection mechanism to further boost mutation effectiveness. Our evaluation results indicate that PreFuzz can significantly increase the edge coverage of Neuzz/MTFuzz, and also reveal multiple practical guidelines to advance future research on neural program-smoothing-based fuzzing.

MTFuzz: Fuzzing with a multi-task neural network, ECSE/FSE‘20, Dongdong She

Call Stack + Edge Coverage
4 Dense + 4 Activation

Abstract: Fuzzing is a widely used technique for detecting software bugs and vulnerabilities. Most popular fuzzers generate new inputs using an evolutionary search to maximize code coverage. Essentially, these fuzzers start with a set of seed inputs, mutate them to generate new inputs, and identify the promising inputs using an evolutionary fitness function for further mutation. Despite their success, evolutionary fuzzers tend to get stuck in long sequences of unproductive mutations. In recent years, machine learning (ML) based mutation strategies have reported promising results. However, the existing ML-based fuzzers are limited by the lack of quality and diversity of the training data. As the input space of the target programs is high dimensional and sparse, it is prohibitively expensive to collect many diverse samples demonstrating successful and unsuccessful mutations to train the model. In this paper, we address these issues by using a Multi-Task Neural Network that can learn a compact embedding of the input space based on diverse training samples for multiple related tasks (i.e., predicting for different types of coverage). The compact embedding can guide the mutation process by focusing most of the mutations on the parts of the embedding where the gradient is high. MTFuzz uncovers 11 previously unseen bugs and achieves an average of 2× more edge coverage compared with 5 state-of-the-art fuzzer on 10 real-world programs.

Neuzz: Efficient fuzzing with neural program smoothing, SP‘19, Dongdong She

Smooth edge coverage
2 Dense + 2 Activation

Abstract: Fuzzing has become the de facto standard technique for finding software vulnerabilities. However, even state-of-the- art fuzzers are not very efficient at finding hard-to-trigger software bugs. Most popular fuzzers use evolutionary guidance to generate inputs that can trigger different bugs. Such evolutionary algorithms, while fast and simple to implement, often get stuck in fruitless sequences of random mutations. Gradient-guided optimization presents a promising alternative to evolutionary guidance. Gradient-guided techniques have been shown to significantly outperform evolutionary algorithms at solving high-dimensional structured optimization problems in domains like machine learning by efficiently utilizing gradients or higher-order derivatives of the underlying function. However, gradient-guided approaches are not directly applicable to fuzzing as real-world program behaviors contain many discontinuities, plateaus, and ridges where the gradient- based methods often get stuck. We observe that this problem can be addressed by creating a smooth surrogate function approximating the target program’s discrete branching behavior. In this paper, we propose a novel program smoothing technique using surrogate neural network models that can incrementally learn smooth approximations of a complex, real-world program’s branching behaviors. We further demonstrate that such neural network models can be used together with gradient-guided input generation schemes to significantly increase the efficiency of the fuzzing process. Our extensive evaluations demonstrate that NEUZZ significantly outperforms 10 state-of-the-art graybox fuzzers on 10 popular real-world programs both at finding new bugs and achieving higher edge coverage. NEUZZ found 31 previously unknown bugs (including two CVEs) that other fuzzers failed to find in 10 real-world programs and achieved 3X more edge coverage than all of the tested graybox fuzzers over 24 hour runs. Furthermore, NEUZZ also outperformed existing fuzzers on both LAVA-M and DARPA CGC bug datasets.

Unit Test Generation (LLM)

ChatUniTest: A Framework for LLM-Based Test Generation, FSE'24

ChatGPT for Unit Test Generation

Abstract: Unit testing is a crucial, yet often tedious and time-consuming task. To relieve developers from this burden, automated unit test generation techniques are developed. Existing automated unit test generation tools, such as program-analysis-based tools like EvoSuite and Randoop, lack program comprehension, resulting in unit tests with poor readability and limited assertions. Language-model-based tools, such as AthenaTest and A3Test, have limitations in the generation of correct unit tests. In this paper, we introduce ChatUniTest, a ChatGPT-based automated unit test generation tool developed under the Generation-Validation-Repair framework. ChatUniTest generates tests by parsing the project, extracting essential information, and creating an adaptive focal context that includes the focal method and its dependencies within the pre-defined maximum prompt token limit. The context is incorporated into a prompt and subsequently submitted to ChatGPT. Once ChatGPT's response is received, ChatUniTest proceeds to extract the raw test from the response. It then validates the test and employs rule-based repair to fix syntactic and simple compile errors, followed by ChatGPT-based repair to address challenging errors. Our rigorous evaluation demonstrates that ChatUniTest outperforms EvoSuite in branch and line coverage, surpasses AthenaTest and A3Test in focal method coverage, and effectively generates assertions while utilizing mock objects and reflection to achieve test objectives.

Codamosa: Escaping coverage plateaus in test generation with pre-trained large language models, ICSE’23, Caroline Lemieux

Abstract: Search-based software testing (SBST) generates high-coverage test cases for programs under test with a combination of test case generation and mutation. SBST’s performance relies on there being a reasonable probability of generating test cases that exercise the core logic of the program under test. Given such test cases, SBST can then explore the space around them to exercise various parts of the program. This paper explores whether Large Language Models (LLMs) of code, such as OpenAI’s Codex, can be used to help SBST’s exploration. Our proposed algorithm, CODAMOSA, conducts SBST until its coverage improvements stall, then asks Codex to provide example test cases for under-covered functions. These examples help SBST redirect its search to more useful areas of the search space. On an evaluation over 486 benchmarks, CODAMOSA achieves statistically significantly higher coverage on many more benchmarks (173 and 279) than it reduces coverage on (10 and 4), compared to SBST and LLM-only baselines.

Code Generation Tools (Almost) for Free? A Study of Few-Shot, Pre-Trained Language Models on Code, Arxiv’22

Codex for Unit Test Generation

Abstract: Few-shot learning with large-scale, pre-trained language models is a powerful way to answer questions about code, e.g., how to complete a given code example, or even generate code snippets from scratch. The success of these models raises the question whether they could serve as a basis for building a wide range code generation tools. Traditionally, such tools are built manually and separately for each task. Instead, few-shot learning may allow to obtain different tools from a single pre-trained language model by simply providing a few examples or a natural language description of the expected tool behavior. This paper studies to what extent a state-of-the-art, pre-trained language model of code, Codex, may serve this purpose. We consider three code manipulation and code generation tasks targeted by a range of traditional tools: (i) code mutation; (ii) test oracle generation from natural language documentation; and (iii) test case generation. For each task, we compare few-shot learning to a manually built tool. Our results show that the model-based tools complement (code mutation), are on par (test oracle generation), or even outperform their respective traditionally built tool (test case generation), while imposing far less effort to develop them. By comparing the effectiveness of different variants of the model-based tools, we provide insights on how to design an appropriate input ("prompt") to the model and what influence the size of the model has. For example, we find that providing a small natural language description of the code generation task is an easy way to improve predictions. Overall, we conclude that few-shot language models are surprisingly effective, yet there is still more work to be done, such as exploring more diverse ways of prompting and tackling even more involved tasks.

Unit Test Case Generation (Traditional AI Method)

Unit Test Case Generation with Transformers and Focal Context, Arxiv’20, Microsoft

BART

Abstract: Automated unit test case generation tools facilitate test-driven development and support developers by suggesting tests intended to identify flaws in their code. Existing approaches are usually guided by the test coverage criteria, generating synthetic test cases that are often difficult for developers to read or understand. In this paper we propose AthenaTest, an approach that aims to generate unit test cases by learning from real-world focal methods and developer-written testcases. We formulate unit test case generation as a sequence-to-sequence learning task, adopting a two-step training procedure consisting of denoising pretraining on a large unsupervised Java corpus, and supervised finetuning for a downstream translation task of generating unit tests. We investigate the impact of natural language and source code pretraining, as well as the focal context information surrounding the focal method. Both techniques provide improvements in terms of validation loss, with pretraining yielding 25% relative improvement and focal context providing additional 11.1% improvement. We also introduce Methods2Test, the largest publicly available supervised parallel corpus of unit test case methods and corresponding focal methods in Java, which comprises 780K test cases mined from 91K open-source repositories from GitHub. We evaluate AthenaTest on five defects4j projects, generating 25K passing test cases covering 43.7% of the focal methods with only 30 attempts. We execute the test cases, collect test coverage information, and compare them with test cases generated by EvoSuite and GPT-3, finding that our approach outperforms GPT-3 and has comparable coverage w.r.t. EvoSuite. Finally, we survey professional developers on their preference in terms of readability, understandability, and testing effectiveness of the generated tests, showing overwhelmingly preference towards AthenaTest.

Program Repair (LLM)

The Plastic Surgery Hypothesis in the Era of Large Language Models, ASE'23, Lingming Zhang

Abstract: Automated Program Repair (APR) aspires to automatically generate patches for an input buggy program. Traditional APR tools typically focus on specific bug types and fixes through the use of templates, heuristics, and formal specifications. However, these techniques are limited in terms of the bug types and patch variety they can produce. As such, researchers have designed various learning-based APR tools with recent work focused on directly using Large Language Models (LLMs) for APR. While LLM-based APR tools are able to achieve state-of-the-art performance on many repair datasets, the LLMs used for direct repair are not fully aware of the project-specific information such as unique variable or method names. The plastic surgery hypothesis is a well-known insight for APR, which states that the code ingredients to fix the bug usually already exist within the same project. Traditional APR tools have largely leveraged the plastic surgery hypothesis by designing manual or heuristic-based approaches to exploit such existing code ingredients. However, as recent APR research starts focusing on LLM-based approaches, the plastic surgery hypothesis has been largely ignored. In this paper, we ask the following question: How useful is the plastic surgery hypothesis in the era of LLMs? Interestingly, LLM-based APR presents a unique opportunity to fully automate the plastic surgery hypothesis via fine-tuning (training on the buggy project) and prompting (directly providing valuable code ingredients as hints to the LLM). To this end, we propose FitRepair, which combines the direct usage of LLMs with two domain-specific fine-tuning strategies and one prompting strategy (via information retrieval and static analysis) for more powerful APR. While traditional APR techniques require intensive manual efforts in both generating patches based on the plastic surgery hypothesis and guaranteeing patch validity, our approach is fully automated and general. Moreover, while it is very challenging to manually design heuristics/patterns for effectively leveraging the hypothesis, due to the power of LLMs in code vectorization/understanding, even partial/imprecise project-specific information can still guide LLMs in generating correct patches! Our experiments on the widely studied Defects4j 1.2 and 2.0 datasets show that FitRepair fixes 89 and 44 bugs (substantially outperforming baseline techniques by 15 and 8), respectively, demonstrating a promising future of the plastic surgery hypothesis in the era of LLMs.

Copiloting the Copilots: Fusing Large Language Models with Completion Engines for Automated Program Repair, FSE'23, Lingming Zhang

-paper

Abstract: During Automated Program Repair (APR), it can be challenging to synthesize correct patches for real-world systems in general-purpose programming languages. Recent Large Language Models (LLMs) have been shown to be helpful "copilots" in assisting developers with various coding tasks, and have also been directly applied for patch synthesis. However, most LLMs treat programs as sequences of tokens, meaning that they are ignorant of the underlying semantics constraints of the target programming language. This results in plenty of statically invalid generated patches, impeding the practicality of the technique. Therefore, we propose Repilot, a general code generation framework to further copilot the AI "copilots" (i.e., LLMs) by synthesizing more valid patches during the repair process. Our key insight is that many LLMs produce outputs autoregressively (i.e., token by token), resembling human writing programs, which can be significantly boosted and guided through a Completion Engine. Repilot synergistically synthesizes a candidate patch through the interaction between an LLM and a Completion Engine, which 1) prunes away infeasible tokens suggested by the LLM and 2) proactively completes the token based on the suggestions provided by the Completion Engine. Our evaluation on a subset of the widely-used Defects4j 1.2 and 2.0 datasets shows that Repilot outperforms state-of-the-art techniques by fixing 27% and 47% more bugs, respectively. Moreover, Repilot produces more valid and correct patches than the base LLM with the same budget. While we focus on leveraging Repilot for APR in this work, the overall approach is also generalizable to other code generation tasks.

Examining Zero-Shot Vulnerability Repair with Large Language Models, SP'23, Brendan Dolan-Gavitt

Abstract: Human developers can produce code with cybersecurity bugs. Can emerging 'smart' code completion tools help repair those bugs? In this work, we examine the use of large language models (LLMs) for code (such as OpenAI's Codex and AI21's Jurassic J-1) for zero-shot vulnerability repair. We investigate challenges in the design of prompts that coax LLMs into generating repaired versions of insecure code. This is difficult due to the numerous ways to phrase key information - both semantically and syntactically - with natural languages. We perform a large scale study of five commercially available, black-box, "off-the-shelf" LLMs, as well as an open-source model and our own locally-trained model, on a mix of synthetic, hand-crafted, and real-world security bug scenarios. Our experiments demonstrate that while the approach has promise (the LLMs could collectively repair 100% of our synthetically generated and hand-crafted scenarios), a qualitative evaluation of the model's performance over a corpus of historical real-world examples highlights challenges in generating functionally correct code.

Automated program repair in the era of large pre-trained language models, ICSE'23, Lingming Zhang

Evaluating LLMs in APR

Abstract: Automated Program Repair (APR) aims to help developers automatically patch software bugs. However, current state-of-the-art traditional and learning-based APR techniques face the problem of limited patch variety, failing to fix complicated bugs. This is mainly due to the reliance on bug-fixing datasets to craft fix templates (traditional) or directly predict potential patches (learning-based). Large Pre-Trained Language Models (LLMs), trained using billions of text/code tokens, can potentially help avoid this issue. Very recently, researchers have directly leveraged LLMs for APR without relying on any bug- fixing datasets. Meanwhile, such existing work either failed to include state-of-the-art LLMs or was not evaluated on realistic datasets. Thus, the true power of modern LLMs on the important APR problem is yet to be revealed.

In this work, we perform the first extensive study on directly applying LLMs for APR. We select 9 recent state-of-the-art LLMs, including both generative and infilling models, ranging from 125M to 20B in size. We designed 3 different repair settings to evaluate the different ways we can use LLMs to generate patches: 1) generate the entire patch function, 2) fill in a chunk of code given the prefix and suffix 3) output a single line fix. We apply the LLMs under these repair settings on 5 datasets across 3 different languages and compare different LLMs in the number of bugs fixed, generation speed and compilation rate. We also compare the LLMs against recent state-of-the-art APR tools. Our study demonstrates that directly applying state-of-the-art LLMs can already substantially outperform all existing APR techniques on all our datasets. Among the studied LLMs, the scaling effect exists for APR where larger models tend to achieve better performance. Also, we show for the first time that suffix code after the buggy line (adopted in infilling-style APR) is important in not only generating more fixes but more patches with higher compilation rate. Besides patch generation, the LLMs consider correct patches to be more natural than other ones, and can even be leveraged for effective patch ranking or patch correctness checking. Lastly, we show that LLM-based APR can be further substantially boosted via: 1) increasing the sample size, and 2) incorporating fix template information.

Less training, more repairing please: revisiting automated program repair via zero-shot learning, ESEC/FSE'22, Lingming Zhang

CodeBert

Abstract: Due to the promising future of Automated Program Repair (APR), researchers have proposed various APR techniques, including heuristic-based, template-based, and constraint-based techniques. Among such classic APR techniques, template-based techniques have been widely recognized as state of the art. However, such template-based techniques require predefined templates to perform repair, and their effectiveness is thus limited. To this end, researchers have leveraged the recent advances in Deep Learning to further improve APR. Such learning-based techniques typically view APR as a Neural Machine Translation problem, using the buggy/fixed code snippets as the source/target languages for translation. In this way, such techniques heavily rely on large numbers of high-quality bug-fixing commits, which can be extremely costly/challenging to construct and may limit their edit variety and context representation.

In this paper, we aim to revisit the learning-based APR problem, and propose AlphaRepair, the first cloze-style (or infilling-style) APR approach to directly leveraging large pre-trained code models for APR without any fine-tuning/retraining on historical bug fixes. Our main insight is instead of modeling what a repair edit should look like (i.e., a NMT task), we can directly predict what the correct code is based on the context information (i.e., a cloze or text infilling task). Although our approach is general and can be built on various pre-trained code models, we have implemented AlphaRepair as a practical multilingual APR tool based on the recent CodeBERT model. Our evaluation of AlphaRepair on the widely used Defects4J benchmark shows for the first time that learning-based APR without any history bug fixes can already outperform state-of-the-art APR techniques. We also studied the impact of different design choices and show that AlphaRepair performs even better on a newer version of Defects4J (2.0) with 3.3X more fixes than best performing baseline, indicating that AlphaRepair can potentially avoid the dataset-overfitting issue of existing techniques. Additionally, we demonstrate the multilingual repair ability of AlphaRepair by evaluating on the QuixBugs dataset where AlphaRepair achieved the state-of-the-art results on both Java and Python versions.

Program Repair (Traditional AI method)

Neural program repair with execution-based backpropagation, ICSE'22

Neural machine translation (NMT)
loss function based on program-specific information

Abstract: Neural machine translation (NMT) architectures have achieved promising results for automatic program repair. Yet, they have the limitation of generating low-quality patches (e.g., not compilable patches). This is because the existing works only optimize a purely syntactic loss function based on characters and tokens without incorporating program-specific information during neural network weight optimization. In this paper, we propose a novel program repair model called RewardRepair. The core novelty of RewardRepair is to improve NMT-based program repair with a loss function based on program compilation and test execution information, rewarding the network to produce patches that compile and that do not overfit. We conduct several experiments to evaluate RewardRepair showing that it is feasible and effective to use compilation and test execution results to optimize the underlying neural repair model. RewardRepair correctly repairs 207 bugs over four benchmarks. we report on repair success for 121 bugs that are fixed for the first time in the literature. Also, RewardRepair produces up to 45.3% of compilable patches, an improvement over the 39% by the state-of-the-art.

Code Representation

Structcoder: Structure-aware transformer for code generation, TKDD'24

AST Based

Abstract: There has been a recent surge of interest in automating software engineering tasks using deep learning. This paper addresses the problem of code generation where the goal is to generate target code given source code in a different language or a natural language description. Most of the state-of-the-art deep learning models for code generation use training strategies primarily designed for natural language. However, understanding and generating code requires a more rigorous comprehension of the code syntax and semantics. With this motivation, we develop an encoder-decoder Transformer model where both the encoder and decoder are explicitly trained to recognize the syntax and data flow in the source and target codes, respectively. We not only make the encoder structure-aware by leveraging the source code's syntax tree and data flow graph, but we also support the decoder in preserving the syntax and data flow of the target code by introducing two novel auxiliary tasks: AST (Abstract Syntax Tree) paths prediction and data flow prediction. To the best of our knowledge, this is the first work to introduce a structure-aware Transformer decoder that models both syntax and data flow to enhance the quality of generated code. The proposed StructCoder model achieves state-of-the-art performance on code translation and text-to-code generation tasks in the CodeXGLUE benchmark, and improves over baselines of similar size on the APPS code generation benchmark. Our code is publicly available at /~https://github.com/reddy-lab-code-research/StructCoder/.

Unixcoder: Unified crossmodal pre-training for code representation, ACL'22

AST Based

Abstract: Pre-trained models for programming languages have recently demonstrated great success on code intelligence. To support both code-related understanding and generation tasks, recent works attempt to pre-train unified encoder-decoder models. However, such encoder-decoder framework is sub-optimal for auto-regressive tasks, especially code completion that requires a decoder-only manner for efficient inference. In this paper, we present UniXcoder, a unified cross-modal pre-trained model for programming language. The model utilizes mask attention matrices with prefix adapters to control the behavior of the model and leverages cross-modal contents like AST and code comment to enhance code representation. To encode AST that is represented as a tree in parallel, we propose a one-to-one mapping method to transform AST in a sequence structure that retains all structural information from the tree. Furthermore, we propose to utilize multi-modal contents to learn representation of code fragment with contrastive learning, and then align representations among programming languages using a cross-modal generation task. We evaluate UniXcoder on five code-related tasks over nine datasets. To further evaluate the performance of code fragment representation, we also construct a dataset for a new task, called zero-shot code-to-code search. Results show that our model achieves state-of-the-art performance on most tasks and analysis reveals that comment and AST can both enhance UniXcoder.

Graphcodebert: Pre-training code representations with data flow, ICLR'21, Microsoft Research Asia

CFG+DFG Based

Abstract: Pre-trained models for programming language have achieved dramatic empirical improvements on a variety of code-related tasks such as code search, code completion, code summarization, etc. However, existing pre-trained models regard a code snippet as a sequence of tokens, while ignoring the inherent structure of code, which provides crucial code semantics and would enhance the code understanding process. We present GraphCodeBERT, a pre-trained model for programming language that considers the inherent structure of code. Instead of taking syntactic-level structure of code like abstract syntax tree (AST), we use data flow in the pre-training stage, which is a semantic-level structure of code that encodes the relation of "where-the-value-comes-from" between variables. Such a semantic-level structure is neat and does not bring an unnecessarily deep hierarchy of AST, the property of which makes the model more efficient. We develop GraphCodeBERT based on Transformer. In addition to using the task of masked language modeling, we introduce two structure-aware pre-training tasks. One is to predict code structure edges, and the other is to align representations between source code and code structure. We implement the model in an efficient way with a graph-guided masked attention function to incorporate the code structure. We evaluate our model on four tasks, including code search, clone detection, code translation, and code refinement. Results show that code structure and newly introduced pre-training tasks can improve GraphCodeBERT and achieves state-of-the-art performance on the four downstream tasks. We further show that the model prefers structure-level attentions over token-level attentions in the task of code search.

Convolutional Neural Networks over Tree Structures for Programming Language Processing, AAAI'16

AST Based

Abstract: Programming language processing (similar to natural language processing) is a hot research topic in the field of software engineering; it has also aroused growing interest in the artificial intelligence community. However, different from a natural language sentence, a program contains rich, explicit, and complicated structural information. Hence, traditional NLP models may be inappropriate for programs. In this paper, we propose a novel tree-based convolutional neural network (TBCNN) for programming language processing, in which a convolution kernel is designed over programs' abstract syntax trees to capture structural information. TBCNN is a generic architecture for programming language processing; our experiments show its effectiveness in two different program analysis tasks: classifying programs according to functionality, and detecting code snippets of certain patterns. TBCNN outperforms baseline methods, including several neural models for NLP.

Code Generation

Jigsaw: Large Language Models meet Program Synthesis, ICSE’22, Microsoft

Assist GPT-3 and Codex to generate correct code

Abstract: Large pre-trained language models such as GPT-3, Codex, and Google's language model are now capable of generating code from natural language specifications of programmer intent. We view these developments with a mixture of optimism and caution. On the optimistic side, such large language models have the potential to improve productivity by providing an automated AI pair programmer for every programmer in the world. On the cautionary side, since these large language models do not understand program semantics, they offer no guarantees about quality of the suggested code. In this paper, we present an approach to augment these large language models with post-processing steps based on program analysis and synthesis techniques, that understand the syntax and semantics of programs. Further, we show that such techniques can make use of user feedback and improve with usage. We present our experiences from building and evaluating such a tool jigsaw, targeted at synthesizing code for using Python Pandas API using multi-modal inputs. Our experience suggests that as these large language models evolve for synthesizing code from intent, jigsaw has an important role to play in improving the accuracy of the systems.

Competition-level code generation with alphacode, Science'22

Abstract: Programming is a powerful and ubiquitous problem-solving tool. Developing systems that can assist programmers or even generate programs independently could make programming more productive and accessible, yet so far incorporating innovations in AI has proven challenging. Recent large-scale language models have demonstrated an impressive ability to generate code, and are now able to complete simple programming tasks. However, these models still perform poorly when evaluated on more complex, unseen problems that require problem-solving skills beyond simply translating instructions into code. For example, competitive programming problems which require an understanding of algorithms and complex natural language remain extremely challenging. To address this gap, we introduce AlphaCode, a system for code generation that can create novel solutions to these problems that require deeper reasoning. In simulated evaluations on recent programming competitions on the Codeforces platform, AlphaCode achieved on average a ranking of top 54.3% in competitions with more than 5,000 participants. We found that three key components were critical to achieve good and reliable performance: (1) an extensive and clean competitive programming dataset for training and evaluation, (2) large and efficient-to-sample transformer-based architectures, and (3) large-scale model sampling to explore the search space, followed by filtering based on program behavior to a small set of submissions.

Program Analysis

ProGraML: Graph-based Deep Learning for Program Optimization and Analysis, Arxiv'20

Abstract: The increasing complexity of computing systems places a tremendous burden on optimizing compilers, requiring ever more accurate and aggressive optimizations. Machine learning offers significant benefits for constructing optimization heuristics but there remains a gap between what state-of-the-art methods achieve and the performance of an optimal heuristic. Closing this gap requires improvements in two key areas: a representation that accurately captures the semantics of programs, and a model architecture with sufficient expressiveness to reason about this representation. We introduce ProGraML - Program Graphs for Machine Learning - a novel graph-based program representation using a low level, language agnostic, and portable format; and machine learning models capable of performing complex downstream tasks over these graphs. The ProGraML representation is a directed attributed multigraph that captures control, data, and call relations, and summarizes instruction and operand types and ordering. Message Passing Neural Networks propagate information through this structured representation, enabling whole-program or per-vertex classification tasks. ProGraML provides a general-purpose program representation that equips learnable models to perform the types of program analysis that are fundamental to optimization. To this end, we evaluate the performance of our approach first on a suite of traditional compiler analysis tasks: control flow reachability, dominator trees, data dependencies, variable liveness, and common subexpression detection. On a benchmark dataset of 250k LLVM-IR files covering six source programming languages, ProGraML achieves an average 94.0 F1 score, significantly outperforming the state-of-the-art approaches. We then apply our approach to two high-level tasks - heterogeneous device mapping and program classification - setting new state-of-the-art performance in both.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published