A High-level Scorecard Modeling API | 评分卡建模尽在于此
Documentation page | 文档页面:https://scorecard-bundle.bubu.blue/
Scorecard-Bundle is a high-level Scorecard modeling API that is easy-to-use and Scikit-Learn consistent. It covers the major steps of training a Scorecard model including feature discretization with ChiMerge, WOE encoding, feature evaluation with information value and collinearity, Logistic-Regression-based Scorecard model, and model evaluation for binary classification tasks. All the transformers and model classes in Scorecard-Bundle comply with Scikit-Learn‘s fit-transform-predict convention.
-
A complete example showing how to build a scorecard with Scorecard-Bundle: Example Notebooks
-
See detailed and more reader-friendly documentation in https://scorecard-bundle.bubu.blue/
In Scorecard-Bundle, core algorithms in WOE/IV calculation and scorecard transformation were based on the methods introduced in Mamdouh Refaat's book '"Credit Risk Scorecards: Development and Implementation Using SAS";ChiMerge was written based on Randy Kerber's paper "ChiMerge: Discretization of Numeric Attributes".
I developed Scorecard-Bundle in my private time, but its codes wouldn't be so good if my superior Andyshi hasn't been allowing me to use it in projects at work, if my colleages (e.g. zeyunH) hasn't been active in using it, or if users didn't report issues when they found bugs. Thanks to everyone who helps to make Scorecard-Bundle better.
Installing the latest version is strongly recommended as every version either corrected known bugs or added useful functionality. In principle, critical bugs are fixed as soon as they are revealed. Therefore please file an issue if you suspect the presence of a bug when using Scorecard-Bundle.
Note that Scorecard-Bundle depends on NumPy, Pandas, matplotlib, Scikit-Learn, and SciPy, which can be installed individually or together through Anaconda
-
Pip: Scorecard-Bundle can be installed with pip:
pip install --upgrade scorecardbundle
!Note that the latest version may be not available at some pip mirror site (e.g. https://mirrors.aliyun.com/pypi/simple/). Therefore in order to update to the latest version, use the following command to specify the source as https://pypi.org/project
pip install -i https://pypi.org/project --upgrade scorecardbundle
-
Manually: Download codes from github
</~https://github.com/Lantianzz/Scorecard-Bundle>
and import them directly:import sys sys.path.append('E:\Github\Scorecard-Bundle') # add path that contains the codes from scorecardbundle.feature_discretization import ChiMerge as cm from scorecardbundle.feature_discretization import FeatureIntervalAdjustment as fia from scorecardbundle.feature_encoding import WOE as woe from scorecardbundle.feature_selection import FeatureSelection as fs from scorecardbundle.model_training import LogisticRegressionScoreCard as lrsc from scorecardbundle.model_evaluation import ModelEvaluation as me from scorecardbundle.model_interpretation import ScorecardExplainer as mise
- [Fix] 2 rare but critical bugs has been fixed from V1.2.1. Therefore I strongly advised anyone who uses Scorecard-bundle to update their older versions. See details of the bugs in the updates log for V1.2.1. Thanks to @ zeyunH for bringing one of the bugs to me.
- [Notice] In several functions of WOE and ChiMerge module, vector outer product is used to get the boolean mask matrix between two vectors. This may cause memory error if the feature has too many unique values (e.g. a feature whose sample size is 350,000 and number of unique values is 10,000 caused this error in a 8G RAM laptop when calculating WOE). The tricky thing is the error message may not be "memory error" and this makes it harder for user to debug ( the current error message could be
TypeError: 'bool' object is not iterable
orDeprecationWarning: elementwise comparison failed
). - [Fix] When using V1.0.2, songshijun007 brought up an issue about the occuring of KeyError due to too few unique values on training set and more extreme values in the test set. This issue has been fixed from V1.1.0. (issue url: #1 (comment)).
V1.2.2 fixed some non-critical bugs in previous versions.
-
Corrected the use of deprecated parameters
- When using
plt.annotate()
in previous versions, parameters
is used to pass in the text. However, this parameter has been renamed astext
and from Python3.9 continuing usings
may cause in TypeErrorannotate() missing 1 required positional argument: 'text'
. In V1.2.2 parametertext
is used when usingplt.annotate()
- When using
-
Change default parameter values: Change the default value of parameter
min_intervals
in ChiMerge from 1 to 2. -
Adjust the naming of private variables in classes:
- Several classes in ScorecardBundle are inherited from the
BaseEstimator
andTransformerMixin
classess in Scikit-learn, and for each class parameter Scikit-learn checks whether it is existed inside the class as an property with the exact same name. The previous codes set such parameters as private variables with two underscores as prefix. This resulted in errors likecannot found __xx in class xxxx
when users try to print the instance or access these private variables. Note that this problem won't stop you from getting the correct results. - V1.2.2 adjusted the use of OOP in
ChiMerge
,WOE
andLogisticRegressionScoreCard
to avoid such problem.
- Several classes in ScorecardBundle are inherited from the
This is an emergency update to fix 2 related bugs that may be triggered in rare cases but are hard to debug for someone who is not familiar with the codes. Thanks to @ zeyunH for bring one of the bugs to me.
- feature_discretization:
- [Fix] Add parameter
force_inf
toscorecardbundle/utils/func_numpy.py/_assign_interval_base()
and related codes. This parameter controls whether to force the largest interval's right boundary to be positive infinity. Default is True.- Bug description:
- In the case when the largest boundary value
b_max
passed is larger than or equal to the maximum feature value, the largest interval output is originally (xxx, b_max]. In tasks like fitting ChiMerge where the output intervals are supposed to cover the entire value space (-inf ~ inf), this parameterforce_inf
should be set to True so that the largest interval will be overwritten from (xxx, b_max] to (xxx, inf]. In other words, the previous largest boundary value is abandoned. - In the old version of codes the adjustment stated above was applied in all tasks. However, when merely applying the given boundaries, the output intervals should be exactly where the values belong according to the given boundaries and does not have to cover the entire value space. In this case forcing the largest interval to have inf may generate intervals that should not exist. For example, the passed boundary values are 0, 10, 20, 30, while the largest feature value is only 20. The old version would change the largest interval from (10, 20] to (10, inf], which should not exist given the boundaries.
- In the case when the largest boundary value
- Solution in V1.2.1: Set
force_inf=True
in tasks like fitting ChiMerge where we want the output intervals to cover the entire value space so that the largest interval will be fixed to cover infinity. Setforce_inf=False
in tasks like ChiMerge transform and Scorecard predict where we only need to transform feature values into intervals based on the given boundaries.
- Bug description:
- [Fix] When generating intervals with
_assign_interval_base
in ChiMergefit()
, the largest interval will be overwritten from (xxx, b_max] to (xxx, inf] to cover the entire value range. However, previously the codes only perform this adjustment when the largest boundary value is equal to the maximum value of the data, while in practive the largest boundary may be larger due to rounding (e.g. the max value is 3.14159 and the threshold happend to choose this value and rounded up to 3.1316 due to thedecimal
parameter of ChiMerge). From V1.2.1, the condition has been changed to>=
- [Fix] Add parameter
- model_training.LogisticRegressionScoreCard:
- [Fix] Set
force_inf=False
in functionassign_interval_str
when calling Scorecard predict(). This is to avoid getting KeyError because the maximum interval adjustment mentioned above generates an interval that does not exist in the Scorecard rules. - [Add] Add a sanity check against the Scorecard rules on the
X_beforeWOE
parameter ofLogisticRegressionScoreCard.predict()
. In the case when the Scorecard rules have features which are not in the passed features data, or the passed features data has features which are not in the Scorecard rules, an exception will be raised.
- [Fix] Set
-
feature_discretization:
- [Add] Add parameter
decimal
to classChiMerge.ChiMerge()
, which allows users to control the number of decimals of the feature interval boundaries. - [Add] Add data table to the feature visualization
FeatureIntervalAdjustment.plot_event_dist()
. - [Add] Add function
FeatureIntervalAdjustment.feature_stat()
that computes the input feature's sample distribution, including the sample sizes, event sizes and event proportions of each feature value.
- [Add] Add parameter
-
feature_selection.FeatureSelection:
- [Add] Add function
identify_colinear_features()
that identifies the highly-correlated features pair that may cause colinearity problem. - [Add] Add function
unstacked_corr_table()
that returns the unstacked correlation table to help analyze the colinearity problem.
- [Add] Add function
-
model_training.LogisticRegressionScoreCard:
- [Fix] Alter the
LogisticRegressionScoreCard
class so that it now accepts all parameters ofsklearn.linear_model.LogisticRegression
and itsfit()
fucntion accepts all parameters of thefit()
ofsklearn.linear_model.LogisticRegression
(includingsample_weight
) - [Add] Add parameter
baseOdds
forLogisticRegressionScoreCard
. This allows users to pass user-defined base odds (# of y=1 / # of y=0) to the Scorecard model.
- [Fix] Alter the
-
model_evaluation.ModelEvaluation:
- [Add] Add function
pref_table
, which evaluates the classification performance on differet levels of model scores . This function is useful for setting classification threshold based on precision and recall.
- [Add] Add function
-
model_interpretation:
- [Add] Add function
ScorecardExplainer.important_features()
to help interpret the result of a individual instance. This function indentifies features who contribute the most in pusing the total score of a particular instance above a threshold.
- [Add] Add function
- [Fix] Fixed a few minor bugs and warnings detected by Spyder's Static Code Analysis. V1.1.3 covers all major steps of creating a scorecard model. This version has been used in dozens of scorecard modeling tasks without being found any error/bug during my career as a data analyst.
- [Fix] Fixed a bug in
scorecardbundle.feature_discretization.ChiMerge.ChiMerge
to ensure the output discretized feature values are continous intervals from negative infinity to infinity, covering all possible values. This was done by modifying_assign_interval_base
function andchi_merge_vector
function; - [Fix] Changed the default value of
min_intervals
parameter inscorecardbundle.feature_discretization.ChiMerge.ChiMerge
from None to 1 so that in case of encountering features with only one unique value would not cause an error. Setting the default value to 1 is actually more consistent to the actual meaning, as there is at least one interval in a feature; - [Add] Add
scorecardbundle.feature_discretization.FeatureIntervalAdjustment
class to cover the functionality related to manually adjusting features in feature engineering stage. Now this class only containsplot_event_dist
function, which can visualize a feature's sample distribution and event rate distribution. This is to facilate feature adjustment decisions in order to obtain better explainability and predictabiltiy;
- Fixed a bug in scorecardbundle.feature_discretization.ChiMerge.ChiMerge.transform(). In V1.0.1, The transform function did not run normally when the number of unique values in a feature is less then the parameter 'min_intervals'. This was due to an ill-considered if-else statement. This bug has been fixed in v1.0.2;
Scorecard-Bundle是一个基于Python的高级评分卡建模API,实施方便且符合Scikit-Learn的调用习惯,包含的类均遵守Scikit-Learn的fit-transform-predict习惯。Scorecard-Bundle包括基于ChiMerge的特征离散化、WOE编码、基于信息值(IV)和共线性的特征评估、基于逻辑回归的评分卡模型、以及针对二元分类任务的模型评估。
-
展示如何训练评分卡模型的完整示例见Example Notebooks
-
详细的、更友好的文档见https://scorecard-bundle.bubu.blue/
Scorecard-Bundle中WOE和IV的计算、评分卡转化等的核心计算逻辑源自《信用风险评分卡研究 —基于SAS的开发与实施》一书,该书籍由王松奇和林治乾翻译自Mamdouh Refaat的"Credit Risk Scorecards: Development and Implementation Using SAS";而ChiMerge算法则是复现了原作者Randy Kerber的论文"ChiMerge: Discretization of Numeric Attributes"。
虽然我是用私人时间开发的Scorecard-Bundle,但如果不是我的上级 Andyshi 允许我在工作中使用它、如果不是我的同事 (e.g. zeyunH) 积极的使用和反馈、如果不是用户们在发现bug时提出issue,Scorecard-Bundle的代码不会有现在这么好。感谢帮助Scorecard-Bundle变得更好的每一个人。
由于每次版本更新都在修复已知的bug或添加重要的新功能,强烈建议安装最新版本 。严重的bug原则上都会在被发现的第一时间修复,因此若在使用Scorecard-Bundle的过程中怀疑存在bug,欢迎在issue中记录。
注意,Scorecard-Bundle依赖NumPy, Pandas, matplotlib, Scikit-Learn, SciPy,可单独安装或直接使用Anaconda安装。
-
Pip: Scorecard-Bundle可使用pip安装:
pip install --upgrade scorecardbundle
注意!最新版本可能尚未被纳入一些镜像源网站 (e.g. *https://mirrors.aliyun.com/pypi/simple/*)。因此为了更新到最新版本,可以使用下面的命令,指定 *https://pypi.org/project*作为源
pip install -i https://pypi.org/project --upgrade scorecardbundle
-
手动: 从Github下载代码
</~https://github.com/Lantianzz/Scorecard-Bundle>
, 直接导入:import sys sys.path.append('E:\Github\Scorecard-Bundle') # add path that contains the codes from scorecardbundle.feature_discretization import ChiMerge as cm from scorecardbundle.feature_discretization import FeatureIntervalAdjustment as fia from scorecardbundle.feature_encoding import WOE as woe from scorecardbundle.feature_selection import FeatureSelection as fs from scorecardbundle.model_training import LogisticRegressionScoreCard as lrsc from scorecardbundle.model_evaluation import ModelEvaluation as me from scorecardbundle.model_interpretation import ScorecardExplainer as mise
- [Fix] 从V1.2.1开始修复了两处罕见但重要的bug,因此强烈建议Scorecard-bundle的用户更新旧版本的代码。bug的细节请见V1.2.1的更新日志;感谢@ zeyunH 指出其中的一个bug;
- [Notice] WOE和ChiMerge模块的几处代码(例如WOE模块的woe_vector函数)中,利用向量外积获得两个向量间的boolean mask矩阵,当输入的特征具有较多的唯一值时,可能会导致计算此外积的时候内存溢出(e.g. 样本量35万、唯一值1万个的特征,已在8G内存的电脑上计算WOE会内存溢出),此时的报错信息未必是内存溢出,给用户debug造成困难(当前的报错信息可能是
TypeError: 'bool' object is not iterable
或DeprecationWarning: elementwise comparison failed
); - [Fix] 在使用V1.0.2版本时,songshijun007 在issue中提到当测试集存在比训练集更大的特征值时会造成KeyError。这处bug已被解决,自V1.1.0版本起已修复(issue链接#1 (comment)).
V1.2.2修复了几处非重要的bug
- 修正了失效参数的使用
- 旧版代码在使用
plt.annotate()
时使用参数s
传入文本,但此参数已经被更名为text
, 在Python3.9中继续使用原参数可能导致TypeErrorannotate() missing 1 required positional argument: 'text'
。新版代码改为使用text
参数
- 旧版代码在使用
- 修改默认参数值:将ChiMerge的
min_intervals
参数的默认值由1改为2 - 调整类的private variable的名称
- Scorecardbundle中的几个类均继承自 Scikit-learn的
BaseEstimator
和TransformerMixin
, Scikit-learn会检查每个参数是否以同样的名称存在于类的实例的属性中,旧代码将参数均设为了由两个断线__
作为前缀的私有变量,导致当用户试图打印实例、或者获取私有变量的时候出现cannot found __xx in class xxxx
这类错误,此错误不会影响代码的正常使用 - 新代码调整了
ChiMerge
,WOE
和LogisticRegressionScoreCard
三个类,类的参数均已同名的属性的形式存在于类的实例中
- Scorecardbundle中的几个类均继承自 Scikit-learn的
为了修复两处罕见的bug而紧急发布V1.2.1版本。下面的bug对于不熟悉代码的用户较难排查。感谢@ zeyunH 指出其中的一个bug
- 特征离散化feature_discretization:
- [Fix]添加参数
force_inf
到函数scorecardbundle/utils/func_numpy.py/_assign_interval_base()
及相关代码,此参数控制是否会强制最大的区间的右侧边界为正无穷,默认为True- Bug描述:
- 当传入的最大阈值
b_max
大于等于特征数据的最大值时,输出的最大的区间原本是(xxx, b_max],而fit ChiMerge计算离散化的阈值时,需要输出的区间覆盖整个值域(-inf ~ inf),此时这个参数应该被设为True,使得最大区间被从 (xxx, b_max] 改为(xxx, inf],相当于原有的最大阈值被弃用了。 - 旧版本的代码在所有情况下都无差别的应用了上面的修改规则,然而,当仅仅在应用已知的阈值将数值型数据转化为分箱时,输出的区间应该只有数值所处的位置决定,此时若对最大区间进行调整,可能会导致出现于原阈值不符的区间。例如传入的阈值是0,10,20,30,传入的数据最大值仅有20,旧代码会将最大的区间由原本的(10, 20]修改为(10, inf],而根据给定的阈值不应该存在(10, inf]这个区间;
- 当传入的最大阈值
- 修复:添加此参数作为开关后,在fit ChiMerge这样希望输出的区间覆盖整个值域的任务中使用
force_inf=True
,这样可以按需修正最大区间使其覆盖到正无穷;在用ChiMerge做transform操作、或使用评分卡的predict()这样希望严格按照阈值输出区间的任务中,使用force_inf=False
;
- Bug描述:
- [Fix] 当在 ChiMerge
fit()
中,旧版代码只会在最大阈值等于数据最大值时作上面提到的调整,然而实践中可能出现四舍五入导致最大阈值大于最大值的情况 (e.g. 最大值为3.14159 ,而最大阈值正好选中了这个值且由于ChiMerge的decimal
参数四舍五入到了3.1316)。因此从V1.2.1开始,生效的条件被改为了>=
- [Fix]添加参数
- 模型训练 model_training.LogisticRegressionScoreCard:
- [Fix] predict()中为函数
assign_interval_str
设置force_inf=False
,避免原代码在最大阈值等于数据最大值时会擅自修改输出的最大区间,导致出现评分规则中不存在的区间,造成评分规则时的KeyError - [Add] 添加了对传入的特征数据
X_beforeWOE
的检查,当评分规则中存在特征数据没有的特征、或特征数据中存在评分规则没有的特征时,会抛出异常
- [Fix] predict()中为函数
-
特征离散化 feature_discretization:
- [Add] 为class
ChiMerge.ChiMerge()
添加参数decimal
, 允许用户控制输出的特征区间的边界的小数位数; - [Add] 为特征分布可视化添加分布数据表
FeatureIntervalAdjustment.plot_event_dist()
; - [Add] 添加函数
FeatureIntervalAdjustment.feature_stat()
用于计算特征的分布,包括不同取值的样本分布、响应率分布等;
- [Add] 为class
-
特征选择 feature_selection.FeatureSelection:
- [Add] 添加函数
identify_colinear_features()
用于识别高度相关的特征,输出高度相关的特征中IV较低的特征清单; - [Add] 添加函数
unstacked_corr_table()
,输出特征相关性表用于分析共线性问题;
- [Add] 添加函数
-
模型训练 model_training.LogisticRegressionScoreCard:
- [Fix] 优化
LogisticRegressionScoreCard
class ,使其可接受sklearn.linear_model.LogisticRegression
的任意参数、且其fit()
函数可接受sklearn.linear_model.LogisticRegression
的fit()函数的任意参数 (包括sample_weight
) - [Add] 为
LogisticRegressionScoreCard
添加参数baseOdds
. 这允许用户传入自定义的base odds (# of y=1 / # of y=0)
- [Fix] 优化
-
模型评估 model_evaluation.ModelEvaluation:
- [Add] 添加函数
pref_table
, 用于评估不同水平的模型分数的分类表现(精确度、召回率、F1、样本比例等)。此函数可帮助用户基于分类表现选择分类阈值;
- [Add] 添加函数
-
评分卡解释 model_interpretation:
- [Add] 添加函数
ScorecardExplainer.important_features()
用于解释单个样本的模型结果。此函数可识别对模型结果较重要的特征
- [Add] 添加函数
- [Fix] 修复Spyder的Static Code Analysis功能检测出的几处小bug和warning。V1.1.3覆盖了评分卡建模的主要步骤,在我作为数据分析师的数十次评分卡建模中未发现错误或bug
- [Fix]修正scorecardbundle.feature_discretization.ChiMerge.ChiMerge,使得任意情况下输出的取值区间都是负无穷到正无穷的连续区间(通过修改_assign_interval_base和chi_merge_vector实现);
- [Fix] 将scorecardbundle.feature_discretization.ChiMerge.ChiMerge中的min_intervals默认值由None改为1,更符合实际情况(实际至少能有一个区间),当遇到特征的唯一值仅有一个的极端情况时也能直接输出此类特征的原值;
- [Add] 增加scorecardbundle.feature_discretization.FeatureIntervalAdjustment类,覆盖了特征工程阶段手动调整特征相关的功能,目前实现了
plot_event_dist
函数,可实现样本分布和响应率分布的可视化,方便对特征进行调整,已获得更好的可解释性和预测力;
- [Fix] 修复scorecardbundle.feature_discretization.ChiMerge.ChiMerge.transform()的一处bug。在V1.0.1中,当一个特征唯一值的数量小于'min_intervals'参数时,transform函数无法正常运行,这是一处考虑不周的if-else判断语句造成的. 此bug已经在v1.0.2中修复;