Skip to content

Commit

Permalink
Merge pull request #1215 from Axelrod-Python/adaptor
Browse files Browse the repository at this point in the history
New Strategy: Implementation of Adaptor
  • Loading branch information
meatballs authored Oct 31, 2018
2 parents 8dba4c0 + ae51ba4 commit 1a7688b
Show file tree
Hide file tree
Showing 10 changed files with 213 additions and 8 deletions.
2 changes: 1 addition & 1 deletion axelrod/game.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ def RPST(self) -> Tuple[Score, Score, Score, Score]:
P = self.scores[(D, D)][0]
S = self.scores[(C, D)][0]
T = self.scores[(D, C)][0]
return (R, P, S, T)
return R, P, S, T

def score(self, pair: Tuple[Action, Action]) -> Tuple[Score, Score]:
"""Returns the appropriate score for a decision pair.
Expand Down
3 changes: 3 additions & 0 deletions axelrod/strategies/_strategies.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
from .adaptive import Adaptive
from .adaptor import AdaptorBrief, AdaptorLong
from .alternator import Alternator
from .ann import EvolvedANN, EvolvedANN5, EvolvedANNNoise05
from .apavlov import APavlov2006, APavlov2011
Expand Down Expand Up @@ -230,6 +231,8 @@
all_strategies = [
Adaptive,
AdaptiveTitForTat,
AdaptorBrief,
AdaptorLong,
Aggravater,
Alexei,
ALLCorALLD,
Expand Down
104 changes: 104 additions & 0 deletions axelrod/strategies/adaptor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
from typing import Dict, Tuple

from axelrod.action import Action
from axelrod.player import Player
from axelrod.random_ import random_choice

from numpy import heaviside

C, D = Action.C, Action.D


class AbstractAdaptor(Player):
"""
An adaptive strategy that updates an internal state based on the last
round of play. Using this state the player Cooperates with a probability
derived from the state.
s, float:
the internal state, initially 0
perr, float:
an error threshold for misinterpreted moves
delta, a dictionary of floats:
additive update values for s depending on the last round's outcome
Names:
- Adaptor: [Hauert2002]_
"""

name = "AbstractAdaptor"
classifier = {
"memory_depth": float("inf"), # Long memory
"stochastic": True,
"makes_use_of": set(),
"long_run_time": False,
"inspects_source": False,
"manipulates_source": False,
"manipulates_state": False,
}

def __init__(self, delta: Dict[Tuple[Action, Action], float],
perr: float = 0.01) -> None:
super().__init__()
self.perr = perr
self.delta = delta
self.s = 0.

def strategy(self, opponent: Player) -> Action:
if self.history:
# Update internal state from the last play
last_round = (self.history[-1], opponent.history[-1])
self.s += self.delta[last_round]

# Compute probability of Cooperation
p = self.perr + (1.0 - 2 * self.perr) * (
heaviside(self.s + 1, 1) - heaviside(self.s - 1, 1))
# Draw action
action = random_choice(p)
return action


class AdaptorBrief(AbstractAdaptor):
"""
An Adaptor trained on short interactions.
Names:
- AdaptorBrief: [Hauert2002]_
"""

name = "AdaptorBrief"

def __init__(self) -> None:
delta = {
(C, C): 0., # R
(C, D): -1.001505, # S
(D, C): 0.992107, # T
(D, D): -0.638734 # P
}
super().__init__(delta=delta)


class AdaptorLong(AbstractAdaptor):
"""
An Adaptor trained on long interactions.
Names:
- AdaptorLong: [Hauert2002]_
"""

name = "AdaptorLong"

def __init__(self) -> None:
delta = {
(C, C): 0., # R
(C, D): 1.888159, # S
(D, C): 1.858883, # T
(D, D): -0.995703 # P
}
super().__init__(delta=delta)
8 changes: 4 additions & 4 deletions axelrod/strategies/bush_mosteller.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,15 +51,15 @@ def __init__(
aspiration_level_divider: float, 3.0
Value that regulates the aspiration level,
isn't modified during match
learning rate [0 , 1]
Percentage of learning speed
learning rate [0 , 1]
Percentage of learning speed
Variables / Constants
_stimulus (Var: [-1 , 1]): float
stimulus (Var: [-1 , 1]): float
Value that impacts the changes of action probability
_aspiration_level: float
Value that impacts the stimulus changes, isn't modified during match
_init_c_prob , _init_d_prob : float
Values used to properly set up reset(),
Values used to properly set up reset(),
set to original probabilities
"""
super().__init__()
Expand Down
94 changes: 94 additions & 0 deletions axelrod/tests/strategies/test_adaptor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
"""Tests for the adaptor"""

import unittest

import axelrod
from axelrod import Game

from .test_player import TestPlayer, test_four_vector

C, D = axelrod.Action.C, axelrod.Action.D


class TestAdaptorBrief(TestPlayer):

name = "AdaptorBrief"
player = axelrod.AdaptorBrief
expected_classifier = {
"memory_depth": float("inf"),
"stochastic": True,
"makes_use_of": set(),
"inspects_source": False,
"manipulates_source": False,
"manipulates_state": False,
}

def test_strategy(self):
# No error.
actions = [(C, C), (C, C), (C, C), (C, C)]
self.versus_test(
opponent=axelrod.AdaptorBrief(), expected_actions=actions, seed=0
)

# Error corrected.
actions = [(C, C), (C, D), (D, C), (C, C)]
self.versus_test(
opponent=axelrod.AdaptorBrief(), expected_actions=actions, seed=22
)

# Error corrected, example 2
actions = [(D, C), (C, D), (D, C), (C, D), (C, C)]
self.versus_test(
opponent=axelrod.AdaptorBrief(), expected_actions=actions, seed=925
)

# Versus Cooperator
actions = [(C, C)] * 8
self.versus_test(
opponent=axelrod.Cooperator(), expected_actions=actions, seed=0
)

# Versus Defector
actions = [(C, D), (D, D), (D, D), (D, D), (D, D), (D, D), (D, D)]
self.versus_test(
opponent=axelrod.Defector(), expected_actions=actions, seed=0
)


class TestAdaptorLong(TestPlayer):

name = "AdaptorLong"
player = axelrod.AdaptorLong
expected_classifier = {
"memory_depth": float("inf"),
"stochastic": True,
"makes_use_of": set(),
"inspects_source": False,
"manipulates_source": False,
"manipulates_state": False,
}

def test_strategy(self):
# No error.
actions = [(C, C), (C, C), (C, C), (C, C)]
self.versus_test(
opponent=axelrod.AdaptorLong(), expected_actions=actions, seed=0
)

# Error corrected.
actions = [(C, C), (C, D), (D, D), (C, C), (C, C)]
self.versus_test(
opponent=axelrod.AdaptorLong(), expected_actions=actions, seed=22
)

# Versus Cooperator
actions = [(C, C)] * 8
self.versus_test(
opponent=axelrod.Cooperator(), expected_actions=actions, seed=0
)

# Versus Defector
actions = [(C, D), (D, D), (C, D), (D, D), (D, D), (C, D), (D, D)]
self.versus_test(
opponent=axelrod.Defector(), expected_actions=actions, seed=0
)
3 changes: 2 additions & 1 deletion axelrod/tests/strategies/test_memoryone.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,8 @@ class TestWinShiftLoseStayTestPlayer(TestPlayer):
def test_strategy(self):
# Check that switches if does not get best payoff.
actions = [(D, C), (C, D), (C, C), (D, D), (D, C)]
self.versus_test(opponent=axelrod.Alternator(), expected_actions=actions)
self.versus_test(opponent=axelrod.Alternator(),
expected_actions=actions)


class TestGTFT(TestPlayer):
Expand Down
2 changes: 1 addition & 1 deletion axelrod/tests/strategies/test_meta.py
Original file line number Diff line number Diff line change
Expand Up @@ -548,7 +548,7 @@ class TestNMWEStochastic(TestMetaPlayer):
}

def test_strategy(self):
actions = [(C, C), (C, D), (D, C), (D, D), (D, C)]
actions = [(C, C), (C, D), (C, C), (D, D), (D, C)]
self.versus_test(opponent=axelrod.Alternator(), expected_actions=actions)


Expand Down
2 changes: 2 additions & 0 deletions docs/reference/all_strategies.rst
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,8 @@ Here are the docstrings of all the strategies in the library.

.. automodule:: axelrod.strategies.adaptive
:members:
.. automodule:: axelrod.strategies.adaptor
:members:
.. automodule:: axelrod.strategies.alternator
:members:
.. automodule:: axelrod.strategies.ann
Expand Down
1 change: 1 addition & 0 deletions docs/reference/bibliography.rst
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@ documentation.
.. [Berg2015] Berg, P. Van Den, & Weissing, F. J. (2015). The importance of mechanisms for the evolution of cooperation. Proceedings of the Royal Society B-Biological Sciences, 282.
.. [Eckhart2015] Eckhart Arnold (2016) CoopSim v0.9.9 beta 6. /~https://github.com/jecki/CoopSim/
.. [Frean1994] Frean, Marcus R. "The Prisoner's Dilemma without Synchrony." Proceedings: Biological Sciences, vol. 257, no. 1348, 1994, pp. 75–79. www.jstor.org/stable/50253.
.. [Hauert2002] Hauert, Christoph, and Olaf Stenull. "Simple adaptive strategy wins the prisoner's dilemma." Journal of Theoretical Biology 218.3 (2002): 261-272.
.. [Hilbe2013] Hilbe, C., Nowak, M.A. and Traulsen, A. (2013). Adaptive dynamics of extortion and compliance, PLoS ONE, 8(11), p. e77886. doi: 10.1371/journal.pone.0077886.
.. [Hilbe2017] Hilbe, C., Martinez-Vaquero, L. A., Chatterjee K., Nowak M. A. (2017). Memory-n strategies of direct reciprocity, Proceedings of the National Academy of Sciences May 2017, 114 (18) 4715-4720; doi: 10.1073/pnas.1621239114.
.. [Kuhn2017] Kuhn, Steven, "Prisoner's Dilemma", The Stanford Encyclopedia of Philosophy (Spring 2017 Edition), Edward N. Zalta (ed.), https://plato.stanford.edu/archives/spr2017/entries/prisoner-dilemma/
Expand Down
2 changes: 1 addition & 1 deletion docs/tutorials/advanced/classification_of_strategies.rst
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ strategies::
... }
>>> strategies = axl.filtered_strategies(filterset)
>>> len(strategies)
82
84

Or, to find out how many strategies only use 1 turn worth of memory to
make a decision::
Expand Down

0 comments on commit 1a7688b

Please sign in to comment.