Skip to content

The 2-in-1 PHP SDK offering seamless integration with Grok AI API for both framework-agnostic PHP and Laravel 11+ applications.

License

Notifications You must be signed in to change notification settings

AlvinCoded/grok-php-client

Repository files navigation

Grok PHP: The 2-in-1 PHP SDK for Grok AI

Latest Version PHP Version PHP Version License

Grok PHP is a 2-in-1 PHP SDK offering seamless integration with Grok AI API for both framework-agnostic PHP and Laravel 11+ applications.

Features

  • Dual Architecture: Use as framework-agnostic PHP library or first-class Laravel package with extensive error handling
  • Full API Coverage: Chat, completions, images, embeddings, and structured outputs
  • Modern PHP: Strict types, enums, and attributes for schema definition
  • Laravel Integration: Auto-discovery, config publishing, and facade support
  • Advanced Chat Capabilities: Full support for multi-turn conversations and real-time streaming
  • Model Flexibility: Support for multiple Grok models (Grok-2, Grok-2-Vision, etc.)
  • Enterprise Ready: Secure API handling with proper authentication
  • Easy Configuration: Simple setup with minimal dependencies

Requirements

Installation

Install Grok PHP via Composer:

composer require alvincoded/grok-php-client

New Do the following with Laravel applications only:

php artisan grok:install

Note: This command publishes the configuration file and adds the relevant environment variables to your .env file.

Quick Start

Framework-agnostic PHP Usage :

Chat Completion
use GrokPHP\Client\GrokClient;
use GrokPHP\Params;

$client = new GrokClient($apiKey);

// Simple chat
$response = $client->chat()->generate("Tell me a joke about AI");
echo $response->getContent();

// With system message
$response = $client->chat()->generate(
    "What's the best programming language?",
    Params::create()
    ->systemMessage('You are an experienced programmer.')
    ->temperature(0.7)
);

// Streaming response
$client->chat()->streamChat(
    'Tell me something about Grok PHP',
    function (ChatMessage $chunk) {
        echo $chunk->text();
    }
);

// Multi-turn conversation
$chat = $client->beginConvo();

$response = $chat->send('What is machine learning?');
echo $response->text();

$response = $chat->send('Give me an example');
echo $response->text();
Text Completions
use GrokPHP\Client\GrokClient;
use GrokPHP\Params;

$client = new GrokClient($apiKey);

// Basic completion
$response = $client->completions()->create(
    "The future of AI will",
    Params::create()->maxTokens(100)->temperature(0.7)
);

// Multiple completions
$responses = $client->completions()->createMultiple(
    "Write a creative title for a sci-fi novel",
    3,
    Params::create()->temperature(1.0)
);

// Get token count
$tokenCount = $client->completions()->getTokenCount("Sample text");
Image Understanding
use GrokPHP\Client\GrokClient;
use GrokPHP\Params;

$client = new GrokClient($apiKey);

// Basic image analysis
$response = $client->images()->analyze('https://picsum.photos/200/300');

// Detailed analysis with prompt
$response = $client->images()->analyze(
    'https://picsum.photos/200/300',
    'What objects can you identify in this image?',
    Params::create()->maxTokens(300)->temperature(0.8)
);

// Check image content
$containsPeople = $response->containsContent('person');
Embeddings
use GrokPHP\Client\GrokClient;

$client = new GrokClient($apiKey);

$embeddingResponse = $client->embeddings()->create('Hello, world!');
$embeddings = $embeddingResponse->getEmbeddings();
Model-specific executions
use GrokPHP\Client\GrokClient;
use GrokPHP\Enums\Model;

$client = new GrokClient($apiKey);

// Simple chat (with model specification)
$response = $client->model(Model::GROK_2_1212)->generate('Tell me a joke about AI');
echo $response->text();

// Get model capabilities
$model = Model::GROK_2_1212
$config = $client->getConfig();

echo $config->getModelMaxTokens($model)      // 32,768
echo $config->modelSupportsStreaming($model) // true
echo $config->modelSupportsFunctions($model) // false
Structured Output
use GrokPHP\Client\GrokClient;
use GrokPHP\Enums\Model;

// Scenario example: A university library needs to process 50,000 research papers into their new digital repository.
// Each entry requires consistent metadata fields.

// 1. Define schema once
$jsonSchema = [
    "type" => "object",
    "properties" => [
        "title" => ["type" => "string"],
        "authors" => ["type" => "array", "items" => ["type" => "string"]],
        "publication_year" => ["type" => "integer"],
        "doi" => ["type" => "string"],
        "keywords" => ["type" => "array", "items" => ["type" => "string"]],
        "citation_count" => ["type" => "integer"]
    ],
    "required" => ["title", "authors"]
];


// 2. Process documents
$client = new GrokClient($apiKey);

foreach ($researchPapers as $paperText) {
    $metadata = $client->chat()->generateStructured($paperText, $jsonSchema);
    
    // 3. Directly store structured data
    $this->database->insertPaper(
        title: $metadata['title'],
        authors: $metadata['authors'],
        year: $metadata['publication_year'] ?? null,
        doi: $metadata['doi'] ?? '',
        keywords: $metadata['keywords'] ?? []
    );
}
Structured Output (alt. option with PHP class)
// Define your schema as a PHP class
class ResearchPaper extends \GrokPHP\Utils\DataModel 
{
    #[SchemaProperty(type: 'string', description: 'Paper title')]
    public string $title;
    
    #[SchemaProperty(type: 'array', description: 'List of authors')]
    public array $authors;
    
    #[SchemaProperty(type: 'integer', description: 'Year of publication', required: false)]
    public int $publicationYear;
}

// ...then, in your application code
$result = $client->chat()->generateStructured(
            "Extract research paper details", 
             ResearchPaper::class
          );

// ...and finally, get typed properties
echo $result->title;
echo $result->authors[0];

New Laravel Usage :

The coolest part about using Laravel with Grok PHP? You don't have to learn any new tricks! Just use it the same way you would with the framework-agnostic PHP and you're good to go. It's like magic, but better! ✨

use GrokPHP\Enums\Model;
use GrokPHP\Facades\Grok;
use GrokPHP\Client\GrokClient;
use GrokPHP\Params;

public function __construct(
private GrokClient $grok
) {}

public function analyzeImage(): Response
{
    return $this->grok->model(Model::GROK_2_VISION_1212)->images()->analyze('https://picsum.photos/200/300.jpg');
}

// Using the facade
public function ask(): Response
{
    $prompt = "Do you know the muffin man?";
    $params =  Params::create()->maxTokens(300)->temperature(0.8);

    return Grok::model(Model::GROK_2_1212)->chat()->generate($prompt, $params);
}

Response Handling

Chat/Completion Response Methods

$response->getContent();       // Get response content
$response->getRole();          // Get message role
$response->getFinishReason();  // Get completion finish reason
$response->getId();            // Get response ID
$response->getModel();         // Get model used
$response->getUsage();         // Get token usage statistics

Image Analysis Response Methods

$response->getAnalysis();      // Get analysis text
$response->getImageUrl();      // Get analyzed image URL
$response->getMetadata();      // Get image metadata
$response->getUsage();         // Get token usage

Embedding Response Methods

$response->getEmbeddings();    // Get embeddings
$response->getUsage();         // Get token usage

Error Handling

use GrokPHP\Exceptions\GrokException;

try {
    $response = $client->chat()->generate("Your prompt");
} catch (GrokException $e) {
    echo "Error: " . $e->getMessage();
}

Supported Models

Model Supports Streaming Supports Functions
grok-beta Yes Yes
grok-2-vision-1212 No No
grok-2-1212 Yes Yes

Supported Parameters

  • temperature(float $value): Sets the temperature for sampling the next token.
  • maxTokens(int $value): Sets the maximum number of tokens to generate in the completion.
  • topP(float $value): Sets the top P value for nucleus sampling.
  • stream(bool $value): Sets the presence of streaming responses.
  • systemMessage(string $message): Sets the system message for the AI model.
  • n(int $value): Sets the number of completions to generate.
  • presencePenalty(float $value): Sets the presence penalty.
  • frequencyPenalty(float $value): Sets the frequency penalty.
  • logitBias(array $values): Sets the logit bias for the completion.
  • stop(array $values): Sets the stop sequence for the completion.
  • logprobs(int $value): Sets the logprobs parameter.
  • dimensions(int $value): Sets the dimensions parameter for embedding.
  • echo(bool $value): Sets the echo parameter.
  • user(string $value): Sets the user parameter.
  • suffix(string $value): Sets the suffix that is appended to the completion.

Environment Variables

Add the following to your .env file:

GROK_API_KEY=your-api-key

# Include if Laravel is used
GROK_DEFAULT_MODEL=grok-2-latest
GROK_BASE_URL=https://api.x.ai

Testing

composer test

Changelog

Please see CHANGELOG for more information on what has changed recently.

Contributing

Contributions are highly aappreciated! Please see the Contributing Guide for details.

Security

Please review the security policy on how to report security vulnerabilities.

License

Grok PHP is an open-sourced software licensed under the MIT license.

Support

If you encounter any issues or have questions, please open an issue on the GitHub repository.



Built with ❤️ for the AI community.

About

The 2-in-1 PHP SDK offering seamless integration with Grok AI API for both framework-agnostic PHP and Laravel 11+ applications.

Topics

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Packages

No packages published

Languages