Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Birch-san's sub-quadratic attention implementation #6055

Merged
merged 8 commits into from
Jan 7, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -141,6 +141,7 @@ Licenses for borrowed code can be found in `Settings -> Licenses` screen, and al
- Ideas for optimizations - /~https://github.com/basujindal/stable-diffusion
- Cross Attention layer optimization - Doggettx - /~https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
- Cross Attention layer optimization - InvokeAI, lstein - /~https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion)
- Sub-quadratic Cross Attention layer optimization - Alex Birch (/~https://github.com/Birch-san/diffusers/pull/1), Amin Rezaei (/~https://github.com/AminRezaei0x443/memory-efficient-attention)
- Textual Inversion - Rinon Gal - /~https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas).
- Idea for SD upscale - /~https://github.com/jquesnelle/txt2imghd
- Noise generation for outpainting mk2 - /~https://github.com/parlance-zz/g-diffuser-bot
Expand Down
29 changes: 28 additions & 1 deletion html/licenses.html
Original file line number Diff line number Diff line change
Expand Up @@ -184,7 +184,7 @@ <h2><a href="/~https://github.com/pharmapsychotic/clip-interrogator/blob/main/LICE
</pre>

<h2><a href="/~https://github.com/JingyunLiang/SwinIR/blob/main/LICENSE">SwinIR</a></h2>
<small>Code added by contirubtors, most likely copied from this repository.</small>
<small>Code added by contributors, most likely copied from this repository.</small>

<pre>
Apache License
Expand Down Expand Up @@ -390,3 +390,30 @@ <h2><a href="/~https://github.com/JingyunLiang/SwinIR/blob/main/LICENSE">SwinIR</a
limitations under the License.
</pre>

<h2><a href="/~https://github.com/AminRezaei0x443/memory-efficient-attention/blob/main/LICENSE">Memory Efficient Attention</a></h2>
<small>The sub-quadratic cross attention optimization uses modified code from the Memory Efficient Attention package that Alex Birch optimized for 3D tensors. This license is updated to reflect that.</small>
<pre>
MIT License

Copyright (c) 2023 Alex Birch
Copyright (c) 2023 Amin Rezaei

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
</pre>

21 changes: 9 additions & 12 deletions modules/sd_hijack.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,6 @@
from modules.shared import cmd_opts
from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr

from modules.sd_hijack_optimizations import invokeAI_mps_available

import ldm.modules.attention
import ldm.modules.diffusionmodules.model
import ldm.modules.diffusionmodules.openaimodel
Expand Down Expand Up @@ -43,20 +41,19 @@ def apply_optimizations():
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward
optimization_method = 'xformers'
elif cmd_opts.opt_sub_quad_attention:
print("Applying sub-quadratic cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.sub_quad_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.sub_quad_attnblock_forward
optimization_method = 'sub-quadratic'
elif cmd_opts.opt_split_attention_v1:
print("Applying v1 cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
optimization_method = 'V1'
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not torch.cuda.is_available()):
if not invokeAI_mps_available and shared.device.type == 'mps':
print("The InvokeAI cross attention optimization for MPS requires the psutil package which is not installed.")
print("Applying v1 cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
optimization_method = 'V1'
else:
print("Applying cross attention optimization (InvokeAI).")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI
optimization_method = 'InvokeAI'
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not cmd_opts.opt_split_attention and not torch.cuda.is_available()):
print("Applying cross attention optimization (InvokeAI).")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI
optimization_method = 'InvokeAI'
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()):
print("Applying cross attention optimization (Doggettx).")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward
Expand Down
125 changes: 100 additions & 25 deletions modules/sd_hijack_optimizations.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import math
import sys
import traceback
import importlib
import psutil

import torch
from torch import einsum
Expand All @@ -12,6 +12,8 @@
from modules import shared
from modules.hypernetworks import hypernetwork

from .sub_quadratic_attention import efficient_dot_product_attention


if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
try:
Expand All @@ -22,6 +24,19 @@
print(traceback.format_exc(), file=sys.stderr)


def get_available_vram():
if shared.device.type == 'cuda':
stats = torch.cuda.memory_stats(shared.device)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
return mem_free_total
else:
return psutil.virtual_memory().available


# see /~https://github.com/basujindal/stable-diffusion/pull/117 for discussion
def split_cross_attention_forward_v1(self, x, context=None, mask=None):
h = self.heads
Expand Down Expand Up @@ -76,12 +91,7 @@ def split_cross_attention_forward(self, x, context=None, mask=None):

r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)

stats = torch.cuda.memory_stats(q.device)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
mem_free_total = get_available_vram()

gb = 1024 ** 3
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
Expand Down Expand Up @@ -118,19 +128,8 @@ def split_cross_attention_forward(self, x, context=None, mask=None):
return self.to_out(r2)


def check_for_psutil():
try:
spec = importlib.util.find_spec('psutil')
return spec is not None
except ModuleNotFoundError:
return False

invokeAI_mps_available = check_for_psutil()

# -- Taken from /~https://github.com/invoke-ai/InvokeAI and modified --
if invokeAI_mps_available:
import psutil
mem_total_gb = psutil.virtual_memory().total // (1 << 30)
mem_total_gb = psutil.virtual_memory().total // (1 << 30)

def einsum_op_compvis(q, k, v):
s = einsum('b i d, b j d -> b i j', q, k)
Expand Down Expand Up @@ -215,6 +214,71 @@ def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None):

# -- End of code from /~https://github.com/invoke-ai/InvokeAI --


# Based on Birch-san's modified implementation of sub-quadratic attention from /~https://github.com/Birch-san/diffusers/pull/1
# The sub_quad_attention_forward function is under the MIT License listed under Memory Efficient Attention in the Licenses section of the web UI interface
def sub_quad_attention_forward(self, x, context=None, mask=None):
assert mask is None, "attention-mask not currently implemented for SubQuadraticCrossAttnProcessor."

h = self.heads

q = self.to_q(x)
context = default(context, x)

context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
k = self.to_k(context_k)
v = self.to_v(context_v)
del context, context_k, context_v, x

q = q.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
k = k.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
v = v.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)

x = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training)

x = x.unflatten(0, (-1, h)).transpose(1,2).flatten(start_dim=2)

out_proj, dropout = self.to_out
x = out_proj(x)
x = dropout(x)

return x

def sub_quad_attention(q, k, v, q_chunk_size=1024, kv_chunk_size=None, kv_chunk_size_min=None, chunk_threshold=None, use_checkpoint=True):
bytes_per_token = torch.finfo(q.dtype).bits//8
batch_x_heads, q_tokens, _ = q.shape
_, k_tokens, _ = k.shape
qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens

if chunk_threshold is None:
chunk_threshold_bytes = int(get_available_vram() * 0.9) if q.device.type == 'mps' else int(get_available_vram() * 0.7)
elif chunk_threshold == 0:
chunk_threshold_bytes = None
else:
chunk_threshold_bytes = int(0.01 * chunk_threshold * get_available_vram())

if kv_chunk_size_min is None and chunk_threshold_bytes is not None:
kv_chunk_size_min = chunk_threshold_bytes // (batch_x_heads * bytes_per_token * (k.shape[2] + v.shape[2]))
elif kv_chunk_size_min == 0:
kv_chunk_size_min = None

if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes:
# the big matmul fits into our memory limit; do everything in 1 chunk,
# i.e. send it down the unchunked fast-path
query_chunk_size = q_tokens
kv_chunk_size = k_tokens

return efficient_dot_product_attention(
q,
k,
v,
query_chunk_size=q_chunk_size,
kv_chunk_size=kv_chunk_size,
kv_chunk_size_min = kv_chunk_size_min,
use_checkpoint=use_checkpoint,
)


def xformers_attention_forward(self, x, context=None, mask=None):
h = self.heads
q_in = self.to_q(x)
Expand Down Expand Up @@ -252,12 +316,7 @@ def cross_attention_attnblock_forward(self, x):

h_ = torch.zeros_like(k, device=q.device)

stats = torch.cuda.memory_stats(q.device)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
mem_free_total = get_available_vram()

tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
mem_required = tensor_size * 2.5
Expand Down Expand Up @@ -312,3 +371,19 @@ def xformers_attnblock_forward(self, x):
return x + out
except NotImplementedError:
return cross_attention_attnblock_forward(self, x)

def sub_quad_attnblock_forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
b, c, h, w = q.shape
q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v))
q = q.contiguous()
k = k.contiguous()
v = v.contiguous()
out = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training)
out = rearrange(out, 'b (h w) c -> b c h w', h=h)
out = self.proj_out(out)
return x + out
4 changes: 4 additions & 0 deletions modules/shared.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,6 +56,10 @@
parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
parser.add_argument("--deepdanbooru", action='store_true', help="does not do anything")
parser.add_argument("--opt-split-attention", action='store_true', help="force-enables Doggettx's cross-attention layer optimization. By default, it's on for torch cuda.")
parser.add_argument("--opt-sub-quad-attention", action='store_true', help="enable memory efficient sub-quadratic cross-attention layer optimization")
parser.add_argument("--sub-quad-q-chunk-size", type=int, help="query chunk size for the sub-quadratic cross-attention layer optimization to use", default=1024)
parser.add_argument("--sub-quad-kv-chunk-size", type=int, help="kv chunk size for the sub-quadratic cross-attention layer optimization to use", default=None)
parser.add_argument("--sub-quad-chunk-threshold", type=int, help="the percentage of VRAM threshold for the sub-quadratic cross-attention layer optimization to use chunking", default=None)
parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.")
parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
Expand Down
Loading