-
LassoESM
LassoESM_pretraining.py
: Pretraining Lasso Peptide-Specific Language Modelget_embeddings_LassoESM
: extract embeddings for peptide variants in training set from LassoESM/PeptideESM/VanillaESM, then feed them into various downstream classification models
-
Downstream task 1: substrate_tolerance_prediction
hyperparameter_optimization_ML_FusA.py
: grid-search for hyperparameters of downstream classification modelsdownstream_models_performance_diff_3embs.py
: compare downstream model performance with different embeddings (VanillaESM, PeptideESM, LassoESM)diff_training_size.py
: evaulate downstream model performance using different training sizecal_uncertainty.py
: explore uncertainty of classification model output
-
Downstream task 2: cycalse_peptide_pair_prediction
generate_negative_cyclase_peptide_pairs.py
: generate the synthetic cyclase-peptide pairs (negative samples)predict_cyclase_peptide_pairs
: a general model (MLP) to predict cyclase(embedded by VanillaESM)-peptide(embedded by LassoESM) pairspredict_cyclase_peptide_pairs_with_CrossAttention
: add a cross-attention layer, where lasso peptide embeddings reweight its corresponding cyclase embeddingspredict_non_natural_cyclase_peptide_pairs.py
: use the trained cyclase-peptide pair prediction model to assess the compatibility of FusC with other predicted naturally occuring lasso peptides
-
Downstream task 3: antimicrobial_activity_prediction
get_embeddings_for_Ubonodin.py
: extracting embeddings for Ubonodin variant sequences from LassoESM/PeptideESM/VanillaESM modelsantimicrobial_activity_prediction_for_Ubonodin.py
: predict the antimicrobial activity of Ubonodin variant sequencesget_embeddings_for_Klebsidin.py
: extracting embeddings for Klebsidin variant sequences from LassoESM/PeptideESM/VanillaESM modelsantimicrobial_activity_prediction_for_Klebsidin.py
: predict the antimicrobial activity of Klebsidin variant sequences
To set up the environment for this project, use the provided environment.yml
file. This file contains all necessary dependencies.
- Xuenan Mi - xmi4@illinois.edu