Skip to content

Latest commit

 

History

History
328 lines (284 loc) · 9.63 KB

workflow.md

File metadata and controls

328 lines (284 loc) · 9.63 KB

Introduction

Here we present end-to-end example of how to server TensorFlow model (build and trained in Python) within Go-server. The example is based on two blogs:

I adapted it to MNIST dataset such that you can build your TensforFlow model in python, save it and use in Go-server to recognize MNIST images.

Setup

You need to have in place MNIST datasets and you may use PNG images which can be found here.

Setup your tensorflow library

Build your favorite ML model in python, the one I used is shown below You may run it as simple as

python model.py --params=model.json
# here I used model.json to put store model parameters, e.g.
{
    "learning_rate": 0.01,
    "batch_size": 100,
    "n_hidden_1": 256,
    "n_hidden_2": 256,
    "n_classes": 10,
    "n_input": 784,
    "save_path": "/tmp/TensorFlow/model",
    "data_path": "/opt/data/mnist"
}

Once you run your python code it will save TensorFlow model into provided area (in this case /tmp/TensorFlow/model). The Go server code expects model to be in ./mnistmodel, therefore we make appropriate link:

ln -s /tmp/TensorFlow/model mnistmodel

Run go run server.go with Go server code shown below.

Query your server to recognize given image, e.g.

curl localhost:8080/recognize -F 'image=@./mnist_png/testing/9/104.png'
{"filename":"104.png","labels":[9]}

As you can see our model correctly recorgnized that provided image from folder "9" was assigned label 9.

Python model example

#!/usr/bin/env python

""" Neural Network.
A 2-Hidden Layers Fully Connected Neural Network (a.k.a Multilayer Perceptron)
implementation with TensorFlow. This example is using the MNIST database
of handwritten digits (http://yann.lecun.com/exdb/mnist/).
This example is using TensorFlow layers, see 'neural_network_raw' example for
a raw implementation with variables.
Links:
    [MNIST Dataset](http://yann.lecun.com/exdb/mnist/).
Author: Aymeric Damien
Project: /~https://github.com/aymericdamien/TensorFlow-Examples/
"""

from __future__ import print_function
import json
import argparse

# TensorFlow module
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

class OptionParser():
    def __init__(self):
        "User based option parser"
        self.parser = argparse.ArgumentParser(prog='PROG')
        self.parser.add_argument("--params", action="store",
            dest="params", default="model.json", help="Input model parameters (default model.json)")
        self.parser.add_argument("--verbose", action="store",
            dest="verbose", default=0, help="verbosity level")

def train(params):
    "Train function defines our ML/DL model and work with our data"
    # extact given parameters
    data_path = params.get('data_path', '/opt/data/mnist')
    batch_size = params.get('batch_size', 256)
    fout = params.get('save_path', '')
    n_input = params.get('n_input', 784)
    n_classes = params.get('n_classes', 10)
    n_hidden_1 = params.get('n_hidden_1', 256)
    n_hidden_2 = params.get('n_hidden_2', 256)
    learning_rate = params.get('learning_rate', 0.01)
    display_step = 1

    mnist = input_data.read_data_sets(data_path, one_hot=True)
    xdf = mnist.train.images
    labels = mnist.train.labels

    # tf Graph input, use explicit name='input' for GOLANG
    x = tf.placeholder("float", [None, n_input], name='inputdata')
    y = tf.placeholder("float", [None, n_classes])

    # Create model
    def multilayer_perceptron(x, weights, biases):
        # Hidden layer with RELU activation
        layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
        layer_1 = tf.nn.relu(layer_1)
        # Hidden layer with RELU activation
        layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
        layer_2 = tf.nn.relu(layer_2)
        # Output layer with linear activation
        out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
        return out_layer

    # Store layers weight & bias
    weights = {
        'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
        'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
        'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
    }
    biases = {
        'b1': tf.Variable(tf.random_normal([n_hidden_1])),
        'b2': tf.Variable(tf.random_normal([n_hidden_2])),
        'out': tf.Variable(tf.random_normal([n_classes]))
    }

    # Construct model
    pred = multilayer_perceptron(x, weights, biases)

    # Define loss and optimizer
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

    # Initialize the variables (i.e. assign their default value)
    init = tf.global_variables_initializer()

    # Running first session
    print("Starting session...")
    with tf.Session() as sess:

        # Run the initializer
        sess.run(init)

        # Training cycle
        for epoch in range(3):
            avg_cost = 0.
            total_batch = int(mnist.train.num_examples/batch_size)
            # Loop over all batches
            for i in range(total_batch):
                batch_x, batch_y = mnist.train.next_batch(batch_size)
                # Run optimization op (backprop) and cost op (to get loss value)
                _, c = sess.run([optimizer, cost], feed_dict={x: batch_x,
                                                              y: batch_y})
                # Compute average loss
                avg_cost += c / total_batch
            # Display logs per epoch step
            if epoch % display_step == 0:
                print("Epoch:", '%04d' % (epoch+1), "cost=", \
                    "{:.9f}".format(avg_cost))
        print("First Optimization Finished!")

        # use expicit name='inference' for GOLANG
        infer = tf.argmax(pred, 1, name="inference")

        # Test model
        correct_prediction = tf.equal(infer, tf.argmax(y, 1))
        # Calculate accuracy
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
        print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))

        # Save model weights to disk
        if fout:
            builder = tf.saved_model.builder.SavedModelBuilder(fout)
            # GOLANG note that we must tag our model so that we can retrieve it at inference-time
            # for that purpose we use model tag
            builder.add_meta_graph_and_variables(sess, ["model"])
            builder.save()

def main():
    "Main function"
    optmgr  = OptionParser()
    opts = optmgr.parser.parse_args()
    params = json.load(open(opts.params))
    train(params)

if __name__ == '__main__':
    main()

Go server example

package main

import (
	"bytes"
	"encoding/json"
	"errors"
	"fmt"
	"image"
	_ "image/png"
	"io"
	"log"
	"net/http"

	"github.com/julienschmidt/httprouter"
	tf "github.com/tensorflow/tensorflow/tensorflow/go"
)

var (
	model *tf.SavedModel
)

type Result struct {
	Filename string  `json:"filename"`
	Labels   []int64 `json:"labels"`
}

func main() {
	if err := loadModel(); err != nil {
		log.Fatal(err)
		return
	}

	r := httprouter.New()
	r.POST("/recognize", recognizeHandler)
	log.Fatal(http.ListenAndServe(":8080", r))
}

func loadModel() error {
	var err error
	model, err = tf.LoadSavedModel("mnistmodel", []string{"model"}, nil)
	if err != nil {
		return err
	}
	return nil
}

func typeof(v interface{}) string {
	return fmt.Sprintf("%T", v)
}

func inputTensor(imageBuffer *bytes.Buffer) (*tf.Tensor, error) {
	img, _, err := image.Decode(imageBuffer)
	if err != nil {
		return nil, err
	}
	var pix []uint8
	switch tim := img.(type) {
	case *image.RGBA:
		pix = tim.Pix
	case *image.NRGBA:
		pix = tim.Pix
	case *image.Gray:
		pix = tim.Pix
	default:
		fmt.Println(typeof(img))
		return nil, errors.New("unrecognized image")
	}
	size := len(pix)
	arr := make([]float32, size)
	for k, v := range pix {
		arr[k] = float32(v)
	}
	var imageData [][]float32
	imageData = append(imageData, arr)
	return tf.NewTensor(imageData)
}

func responseError(w http.ResponseWriter, message string, code int) {
	w.Header().Set("Content-Type", "application/json")
	w.WriteHeader(code)
	json.NewEncoder(w).Encode(map[string]string{"error": message})
}

func responseJSON(w http.ResponseWriter, data interface{}) {
	w.Header().Set("Content-Type", "application/json")
	json.NewEncoder(w).Encode(data)
}

func recognizeHandler(w http.ResponseWriter, r *http.Request, _ httprouter.Params) {
	// Read image
	imageFile, header, err := r.FormFile("image")
	if err != nil {
		responseError(w, "Could not read image", http.StatusBadRequest)
		return
	}
	defer imageFile.Close()
	var imageBuffer bytes.Buffer
	// Copy image data to a buffer
	io.Copy(&imageBuffer, imageFile)

	// Make tensor
	tensor, err := inputTensor(&imageBuffer)
	if err != nil {
		responseError(w, "Invalid image", http.StatusBadRequest)
		return
	}
	// here we extract from model.Graph two operations:
	// inputdata is an input vector
	// inference is an output predictions
	// both tags should be defined within python code
	output, err := model.Session.Run(
		map[tf.Output]*tf.Tensor{
			model.Graph.Operation("inputdata").Output(0): tensor,
		},
		[]tf.Output{
			model.Graph.Operation("inference").Output(0),
		},
		nil,
	)

	if err != nil {
		fmt.Printf("Error running the session with input, err: %s\n", err.Error())
		return
	}

	res := output[0].Value()
	switch v := res.(type) {
	case []int64:
		responseJSON(w, Result{
			Filename: header.Filename,
			Labels:   v,
		})
	}
}