# doc_id = 1 # sent_id = 1 # text = We solve the word problem for free double categories without equations between generators by translating it to the word problem for 2 - categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 solve solve VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 word word NOUN NN Number=Sing 5 compound _ _ 5 problem problem NOUN NN Number=Sing 2 dobj _ _ 6 for for ADP IN _ 5 prep _ _ 7 free free ADJ JJ Degree=Pos 9 amod _ _ 8 double double ADJ JJ Degree=Pos 9 amod _ _ 9 categories category NOUN NNS Number=Plur 6 pobj _ _ 10 without without ADP IN _ 2 prep _ _ 11 equations equation NOUN NNS Number=Plur 10 pobj _ _ 12 between between ADP IN _ 11 prep _ _ 13 generators generator NOUN NNS Number=Plur 12 pobj _ _ 14 by by ADP IN _ 2 prep _ _ 15 translating translate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 pcomp _ _ 16 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 15 dobj _ _ 17 to to ADP IN _ 15 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 word word NOUN NN Number=Sing 20 compound _ _ 20 problem problem NOUN NN Number=Sing 17 pobj _ _ 21 for for ADP IN _ 20 prep _ _ 22 2 2 NUM CD NumType=Card 24 nummod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 categories category NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = This yields a quadratic algorithm deciding the equality of diagrams in a free double category. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 yields yield VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 quadratic quadratic ADJ JJ Degree=Pos 5 amod _ _ 5 algorithm algorithm NOUN NN Number=Sing 2 dobj _ _ 6 deciding decide VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 acl _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 equality equality NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 diagrams diagram NOUN NNS Number=Plur 9 pobj _ _ 11 in in ADP IN _ 8 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 13 free free ADJ JJ Degree=Pos 15 amod _ _ 14 double double ADJ JJ Degree=Pos 15 amod _ _ 15 category category NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = The translation is of interest in its own right since and can for instance be used to reason about double categories with the language of 2 - categories, sidestepping the pinwheel problem. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 translation translation NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 of of ADP IN _ 3 prep _ _ 5 interest interest NOUN NN Number=Sing 4 pobj _ _ 6 in in ADP IN _ 5 prep _ _ 7 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 9 poss _ _ 8 own own ADJ JJ Degree=Pos 9 amod _ _ 9 right right NOUN NN Number=Sing 6 pobj _ _ 10 since since SCONJ IN _ 3 prep _ _ 11 and and CCONJ CC ConjType=Cmp 3 cc _ _ 12 can can AUX MD VerbForm=Fin 16 aux _ _ 13 for for ADP IN _ 16 prep _ _ 14 instance instance NOUN NN Number=Sing 13 pobj _ _ 15 be be AUX VB VerbForm=Inf 16 auxpass _ _ 16 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 conj _ _ 17 to to PART TO _ 18 aux _ _ 18 reason reason VERB VB VerbForm=Inf 16 xcomp _ _ 19 about about ADP IN _ 18 prep _ _ 20 double double ADJ JJ Degree=Pos 21 amod _ _ 21 categories category NOUN NNS Number=Plur 19 pobj _ _ 22 with with ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 language language NOUN NN Number=Sing 22 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 2 2 NUM CD NumType=Card 28 nummod _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 categories category NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 18 punct _ _ 30 sidestepping sidestep VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 18 advcl _ _ 31 the the DET DT Definite=Def|PronType=Art 33 det _ _ 32 pinwheel pinwheel NOUN NN Number=Sing 33 compound _ _ 33 problem problem NOUN NN Number=Sing 30 dobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = It also shows that although double categories are formally more general than 2 - categories, they are not actually more expressive, explaining the rarity of applications of this notion. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 shows show VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 18 mark _ _ 5 although although SCONJ IN _ 8 mark _ _ 6 double double ADJ JJ Degree=Pos 7 amod _ _ 7 categories category NOUN NNS Number=Plur 8 nsubj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 18 advcl _ _ 9 formally formally ADV RB _ 8 advmod _ _ 10 more more ADV RBR Degree=Cmp 11 advmod _ _ 11 general general ADJ JJ Degree=Pos 8 acomp _ _ 12 than than ADP IN _ 11 prep _ _ 13 2 2 NUM CD NumType=Card 15 nummod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 categories category NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 18 punct _ _ 17 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 18 nsubj _ _ 18 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 19 not not PART RB Polarity=Neg 18 neg _ _ 20 actually actually ADV RB _ 18 advmod _ _ 21 more more ADV RBR Degree=Cmp 22 advmod _ _ 22 expressive expressive ADJ JJ Degree=Pos 18 acomp _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 18 punct _ _ 24 explaining explain VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 18 advcl _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 rarity rarity NOUN NN Number=Sing 24 dobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 applications application NOUN NNS Number=Plur 27 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 this this DET DT Number=Sing|PronType=Dem 31 det _ _ 31 notion notion NOUN NN Number=Sing 29 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 2 # sent_id = 1 # text = This paper introduces $ infty $ - and $ n $ - fold vector bundles as special functors from the $ infty $ - and $ n $ - cube categories to the category of smooth manifolds. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 introduces introduce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 $ infty $ $ infty $ SYM $ _ 8 nmod _ _ 5 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 6 and and CCONJ CC ConjType=Cmp 4 cc _ _ 7 $ n $ $ n $ SYM $ _ 4 conj _ _ 8 - - ADJ JJ Degree=Pos 11 amod _ _ 9 fold fold ADJ JJ Degree=Pos 11 amod _ _ 10 vector vector NOUN NN Number=Sing 11 compound _ _ 11 bundles bundle NOUN NNS Number=Plur 3 dobj _ _ 12 as as ADP IN _ 3 prep _ _ 13 special special ADJ JJ Degree=Pos 14 amod _ _ 14 functors functor NOUN NNS Number=Plur 12 pobj _ _ 15 from from ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 23 det _ _ 17 $ infty $ $ infty $ SYM $ _ 23 nmod _ _ 18 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 19 and and CCONJ CC ConjType=Cmp 17 cc _ _ 20 $ n $ $ n $ SYM $ _ 22 quantmod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 cube cube ADJ JJ Degree=Pos 17 conj _ _ 23 categories category NOUN NNS Number=Plur 15 pobj _ _ 24 to to ADP IN _ 3 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 category category NOUN NN Number=Sing 24 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 smooth smooth ADJ JJ Degree=Pos 29 amod _ _ 29 manifolds manifold NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = We study the cores and " $ n $ - pullbacks" of $ n $ - fold vector bundles and we prove that any $ n $ - fold vector bundle admits a non - canonical isomorphism to a decomposed $ n $ - fold vector bundle. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 cores core NOUN NNS Number=Plur 2 dobj _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 " " PUNCT `` PunctSide=Ini|PunctType=Quot 9 punct _ _ 7 $ n $ $ n $ SYM $ _ 9 quantmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 pullbacks pullback NOUN NNS Number=Plur 4 conj _ SpaceAfter=No 10 " " PUNCT '' PunctSide=Fin|PunctType=Quot 9 punct _ _ 11 of of ADP IN _ 4 prep _ _ 12 $ n $ $ n $ SYM $ _ 11 pobj _ _ 13 - - ADJ JJ Degree=Pos 11 punct _ _ 14 fold fold ADJ JJ Degree=Pos 16 amod _ _ 15 vector vector NOUN NN Number=Sing 16 compound _ _ 16 bundles bundle NOUN NNS Number=Plur 11 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 2 cc _ _ 18 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 19 nsubj _ _ 19 prove prove VERB VBP Tense=Pres|VerbForm=Fin 2 conj _ _ 20 that that SCONJ IN _ 27 mark _ _ 21 any any DET DT _ 26 det _ _ 22 $ n $ $ n $ SYM $ _ 24 advmod _ _ 23 - - ADJ JJ Degree=Pos 22 punct _ _ 24 fold fold ADJ JJ Degree=Pos 26 amod _ _ 25 vector vector NOUN NN Number=Sing 26 compound _ _ 26 bundle bundle NOUN NN Number=Sing 27 nsubj _ _ 27 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 ccomp _ _ 28 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 29 non non ADJ JJ Degree=Pos 32 amod _ _ 30 - - ADJ JJ Degree=Pos 32 amod _ _ 31 canonical canonical ADJ JJ Degree=Pos 32 amod _ _ 32 isomorphism isomorphism NOUN NN Number=Sing 27 dobj _ _ 33 to to ADP IN _ 27 prep _ _ 34 a a DET DT Definite=Ind|PronType=Art 40 det _ _ 35 decomposed decompose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 40 amod _ _ 36 $ n $ $ n $ SYM $ _ 37 nmod _ _ 37 - - ADJ JJ Degree=Pos 35 nmod _ _ 38 fold fold ADJ JJ Degree=Pos 40 amod _ _ 39 vector vector NOUN NN Number=Sing 40 compound _ _ 40 bundle bundle NOUN NN Number=Sing 33 pobj _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 3 # text = A colimit argument then shows that $ infty $ - fold vector bundles admit as well non - canonical decompositions. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 colimit colimit NOUN NN Number=Sing 3 compound _ _ 3 argument argument NOUN NN Number=Sing 5 nsubj _ _ 4 then then ADV RB PronType=Dem 5 advmod _ _ 5 shows show VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 that that SCONJ IN _ 12 mark _ _ 7 $ infty $ $ infty $ SYM $ _ 8 advmod _ _ 8 - - ADJ JJ Degree=Pos 11 amod _ _ 9 fold fold ADJ JJ Degree=Pos 11 amod _ _ 10 vector vector NOUN NN Number=Sing 11 compound _ _ 11 bundles bundle NOUN NNS Number=Plur 12 nsubj _ _ 12 admit admit VERB VBP Tense=Pres|VerbForm=Fin 5 ccomp _ _ 13 as as ADV RB _ 14 advmod _ _ 14 well well ADV RB Degree=Pos 18 intj _ _ 15 non non ADJ JJ Degree=Pos 17 amod _ _ 16 - - ADJ JJ Degree=Pos 17 punct _ _ 17 canonical canonical ADJ JJ Degree=Pos 18 amod _ _ 18 decompositions decomposition NOUN NNS Number=Plur 12 dobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = For the convenience of the reader, the case of triple vector bundles is discussed in detail. 1 For for ADP IN _ 15 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 convenience convenience NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 reader reader NOUN NN Number=Sing 4 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 15 punct _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 case case NOUN NN Number=Sing 15 nsubjpass _ _ 10 of of ADP IN _ 9 prep _ _ 11 triple triple ADJ JJ Degree=Pos 13 amod _ _ 12 vector vector NOUN NN Number=Sing 13 compound _ _ 13 bundles bundle NOUN NNS Number=Plur 10 pobj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 auxpass _ _ 15 discussed discuss VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 16 in in ADP IN _ 15 prep _ _ 17 detail detail NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # doc_id = 3 # sent_id = 1 # text = We construct three classes of generalised orbifolds of Reshetikhin - Turaev theory for a modular tensor category $ C $ , using the language of defect TQFT: (i) spherical fusion categories give orbifolds for the "trivial" defect TQFT associated to $ Vect $ , (ii) $ G $ - crossed extensions of $ C $ give group orbifolds for any finite group $ G $ , and (iii) we construct orbifolds from commutative $ Delta $ - separable Frobenius algebras in $ C $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 construct construct VERB VBP Tense=Pres|VerbForm=Fin 33 ccomp _ _ 3 three three NUM CD NumType=Card 4 nummod _ _ 4 classes class NOUN NNS Number=Plur 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 generalised generalise VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 amod _ _ 7 orbifolds orbifold NOUN NNS Number=Plur 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 Reshetikhin Reshetikhin PROPN NNP Number=Sing 11 compound _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 Turaev Turaev PROPN NNP Number=Sing 12 compound _ _ 12 theory theory NOUN NN Number=Sing 8 pobj _ _ 13 for for ADP IN _ 4 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 15 modular modular ADJ JJ Degree=Pos 17 amod _ _ 16 tensor tensor NOUN NN Number=Sing 17 compound _ _ 17 category category NOUN NN Number=Sing 13 pobj _ _ 18 $ C $ $ c $ SYM $ _ 17 appos _ _ 19 , , PUNCT , PunctType=Comm 2 punct _ _ 20 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 language language NOUN NN Number=Sing 20 dobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 defect defect NOUN NN Number=Sing 23 pobj _ _ 25 TQFT TQFT PROPN NNP Number=Sing 23 pobj _ SpaceAfter=No 26 : : PUNCT : _ 2 punct _ _ 27 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 33 punct _ SpaceAfter=No 28 i i NOUN NN Number=Sing 32 nmod _ SpaceAfter=No 29 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 32 punct _ _ 30 spherical spherical ADJ JJ Degree=Pos 31 amod _ _ 31 fusion fusion NOUN NN Number=Sing 32 compound _ _ 32 categories category NOUN NNS Number=Plur 33 nsubj _ _ 33 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 34 orbifolds orbifold NOUN NNS Number=Plur 33 dobj _ _ 35 for for ADP IN _ 33 dative _ _ 36 the the DET DT Definite=Def|PronType=Art 40 det _ _ 37 " " PUNCT `` PunctSide=Ini|PunctType=Quot 40 punct _ SpaceAfter=No 38 trivial trivial ADJ JJ Degree=Pos 40 amod _ SpaceAfter=No 39 " " PUNCT '' PunctSide=Fin|PunctType=Quot 40 punct _ _ 40 defect defect NOUN NN Number=Sing 52 nmod _ _ 41 TQFT TQFT PROPN NNP Number=Sing 42 nsubj _ _ 42 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 40 acl _ _ 43 to to ADP IN _ 42 prep _ _ 44 $ Vect $ $ vect $ SYM $ _ 43 pobj _ _ 45 , , PUNCT , PunctType=Comm 40 punct _ _ 46 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 40 punct _ SpaceAfter=No 47 ii ii PROPN NNP Number=Sing 40 appos _ SpaceAfter=No 48 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 40 punct _ _ 49 $ G $ $ g $ SYM $ _ 51 advmod _ _ 50 - - PUNCT HYPH PunctType=Dash 51 punct _ _ 51 crossed cross VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 52 amod _ _ 52 extensions extension NOUN NNS Number=Plur 35 pobj _ _ 53 of of ADP IN _ 52 prep _ _ 54 $ C $ $ c $ SYM $ _ 53 pobj _ _ 55 give give VERB VB VerbForm=Inf 33 advcl _ _ 56 group group NOUN NN Number=Sing 57 compound _ _ 57 orbifolds orbifold NOUN NNS Number=Plur 55 dobj _ _ 58 for for ADP IN _ 55 dative _ _ 59 any any DET DT _ 61 det _ _ 60 finite finite ADJ JJ Degree=Pos 61 compound _ _ 61 group group NOUN NN Number=Sing 58 pobj _ _ 62 $ G $ $ g $ SYM $ _ 61 appos _ _ 63 , , PUNCT , PunctType=Comm 33 punct _ _ 64 and and CCONJ CC ConjType=Cmp 33 cc _ _ 65 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 66 punct _ SpaceAfter=No 66 iii iii PROPN NNP Number=Sing 69 meta _ SpaceAfter=No 67 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 66 punct _ _ 68 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 69 nsubj _ _ 69 construct construct VERB VBP Tense=Pres|VerbForm=Fin 33 conj _ _ 70 orbifolds orbifold NOUN NNS Number=Plur 69 dobj _ _ 71 from from ADP IN _ 69 prep _ _ 72 commutative commutative ADJ JJ Degree=Pos 77 amod _ _ 73 $ Delta $ $ delta $ SYM $ _ 75 advmod _ _ 74 - - PUNCT HYPH PunctType=Dash 75 punct _ _ 75 separable separable ADJ JJ Degree=Pos 77 amod _ _ 76 Frobenius Frobenius PROPN NNP Number=Sing 77 compound _ _ 77 algebras algebra NOUN NNS Number=Plur 71 pobj _ _ 78 in in ADP IN _ 69 prep _ _ 79 $ C $ $ c $ SYM $ _ 78 pobj _ _ 80 . . PUNCT . PunctType=Peri 33 punct _ SpaceAfter=No # sent_id = 2 # text = We also explain how the Turaev - Viro state sum construction fits into our framework by proving that it is isomorphic to the orbifold of case (i). 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 explain explain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 how how SCONJ WRB _ 12 advmod _ _ 5 the the DET DT Definite=Def|PronType=Art 11 det _ _ 6 Turaev Turaev PROPN NNP Number=Sing 8 compound _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 Viro Viro PROPN NNP Number=Sing 11 compound _ _ 9 state state NOUN NN Number=Sing 10 compound _ _ 10 sum sum NOUN NN Number=Sing 11 compound _ _ 11 construction construction NOUN NN Number=Sing 12 nsubj _ _ 12 fits fit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 13 into into ADP IN _ 12 prep _ _ 14 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 15 poss _ _ 15 framework framework NOUN NN Number=Sing 13 pobj _ _ 16 by by ADP IN _ 12 prep _ _ 17 proving prove VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 pcomp _ _ 18 that that SCONJ IN _ 20 mark _ _ 19 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 20 nsubj _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 ccomp _ _ 21 isomorphic isomorphic ADJ JJ Degree=Pos 20 acomp _ _ 22 to to ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 orbifold orbifold NOUN NN Number=Sing 22 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 case case NOUN NN Number=Sing 25 pobj _ _ 27 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 26 punct _ SpaceAfter=No 28 i i NOUN NN Number=Sing 26 appos _ SpaceAfter=No 29 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 26 punct _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = Moreover, we treat the cases (ii) and (iii) in the more general setting of ribbon tensor categories. 1 Moreover moreover ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 treat treat VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 cases case NOUN NNS Number=Plur 4 dobj _ _ 7 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 6 punct _ SpaceAfter=No 8 ii ii PROPN NNP Number=Sing 6 appos _ SpaceAfter=No 9 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 6 punct _ _ 10 and and CCONJ CC ConjType=Cmp 6 cc _ _ 11 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 12 punct _ SpaceAfter=No 12 iii iii PROPN NNP Number=Sing 6 conj _ SpaceAfter=No 13 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 6 punct _ _ 14 in in ADP IN _ 4 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 18 det _ _ 16 more more ADV RBR Degree=Cmp 17 advmod _ _ 17 general general ADJ JJ Degree=Pos 18 amod _ _ 18 setting setting NOUN NN Number=Sing 14 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 ribbon ribbon NOUN NN Number=Sing 22 compound _ _ 21 tensor tensor NOUN NN Number=Sing 22 compound _ _ 22 categories category NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = For case (ii) we show how Morita equivalence leads to isomorphic orbifolds, and we discuss Tambara - Yamagami categories as particular examples. 1 For for ADP IN _ 7 prep _ _ 2 case case NOUN NN Number=Sing 1 pobj _ _ 3 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 4 punct _ SpaceAfter=No 4 ii ii NOUN NN Number=Sing 2 appos _ SpaceAfter=No 5 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 4 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 how how SCONJ WRB _ 11 advmod _ _ 9 Morita Morita PROPN NNP Number=Sing 10 compound _ _ 10 equivalence equivalence NOUN NN Number=Sing 11 nsubj _ _ 11 leads lead VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 ccomp _ _ 12 to to ADP IN _ 11 prep _ _ 13 isomorphic isomorphic ADJ JJ Degree=Pos 14 amod _ _ 14 orbifolds orbifold NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 7 punct _ _ 16 and and CCONJ CC ConjType=Cmp 7 cc _ _ 17 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 18 nsubj _ _ 18 discuss discuss VERB VBP Tense=Pres|VerbForm=Fin 7 conj _ _ 19 Tambara Tambara PROPN NNP Number=Sing 21 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 Yamagami Yamagami PROPN NNP Number=Sing 22 amod _ _ 22 categories category NOUN NNS Number=Plur 18 dobj _ _ 23 as as ADP IN _ 18 prep _ _ 24 particular particular ADJ JJ Degree=Pos 25 amod _ _ 25 examples example NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # doc_id = 4 # sent_id = 1 # text = Suppose an extension map $ U: T_1 - > T_0 $ in the 2 - category $ Con $ of contexts for arithmetic universes satisfies a Chevalley criterion for being an (op)fibration in $ Con $ . 1 Suppose suppose VERB VB VerbForm=Inf 0 ROOT _ _ 2 an an DET DT Definite=Ind|PronType=Art 4 det _ _ 3 extension extension NOUN NN Number=Sing 4 compound _ _ 4 map map NOUN NN Number=Sing 17 nsubj _ _ 5 $ U: T_1 - > T_0 $ $ u: t_1 - > t_0 $ SYM $ _ 4 appos _ _ 6 in in ADP IN _ 4 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 10 det _ _ 8 2 2 NUM CD NumType=Card 10 nummod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 category category NOUN NN Number=Sing 6 pobj _ _ 11 $ Con $ $ con $ SYM $ _ 10 appos _ _ 12 of of ADP IN _ 11 prep _ _ 13 contexts context NOUN NNS Number=Plur 12 pobj _ _ 14 for for ADP IN _ 4 prep _ _ 15 arithmetic arithmetic ADJ JJ Degree=Pos 16 amod _ _ 16 universes universe NOUN NNS Number=Plur 14 pobj _ _ 17 satisfies satisfy VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 1 ccomp _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 Chevalley Chevalley PROPN NNP Number=Sing 20 compound _ _ 20 criterion criterion NOUN NN Number=Sing 17 dobj _ _ 21 for for ADP IN _ 20 prep _ _ 22 being be AUX VBG VerbForm=Ger 21 pcomp _ _ 23 an an DET DT Definite=Ind|PronType=Art 25 det _ _ 24 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 25 punct _ SpaceAfter=No 25 op)fibration op)fibration NOUN NN Number=Sing 22 attr _ _ 26 in in ADP IN _ 25 prep _ _ 27 $ Con $ $ con $ SYM $ _ 26 pobj _ _ 28 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = If $ M $ is a model of $ T_0 $ in an elementary topos $ S $ with NNO, then the classifier $ p: S[T_1/M] - > S $ satisfies the representable definition of being an (op)fibration in the 2 - category $ ETop $ of elementary toposes (with NNO) and geometric morphisms. 1 If if SCONJ IN _ 3 mark _ _ 2 $ M $ $ m $ SYM $ _ 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 advcl _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 model model NOUN NN Number=Sing 3 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 $ T_0 $ $ t_0 $ SYM $ _ 6 pobj _ _ 8 in in ADP IN _ 5 prep _ _ 9 an an DET DT Definite=Ind|PronType=Art 11 det _ _ 10 elementary elementary ADJ JJ Degree=Pos 11 amod _ _ 11 topos topos NOUN NN Number=Sing 8 pobj _ _ 12 $ S $ $ s $ SYM $ _ 11 appos _ _ 13 with with ADP IN _ 5 prep _ _ 14 NNO NNO PROPN NNP Number=Sing 13 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 20 punct _ _ 16 then then ADV RB PronType=Dem 20 advmod _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 classifier classifier NOUN NN Number=Sing 20 nsubj _ _ 19 $ p: S[T_1/M] - > S $ $ p: s[t_1/m] - > s $ SYM $ _ 20 nsubj _ _ 20 satisfies satisfy VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 21 the the DET DT Definite=Def|PronType=Art 23 det _ _ 22 representable representable ADJ JJ Degree=Pos 23 amod _ _ 23 definition definition NOUN NN Number=Sing 20 dobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 being be AUX VBG VerbForm=Ger 24 pcomp _ _ 26 an an DET DT Definite=Ind|PronType=Art 28 det _ _ 27 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 28 punct _ SpaceAfter=No 28 op)fibration op)fibration NOUN NN Number=Sing 25 attr _ _ 29 in in ADP IN _ 28 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 34 det _ _ 31 2 2 NUM CD NumType=Card 33 nummod _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 category category NOUN NN Number=Sing 34 compound _ _ 34 $ ETop $ $ etop $ SYM $ _ 29 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 elementary elementary ADJ JJ Degree=Pos 37 amod _ _ 37 toposes topos NOUN NNS Number=Plur 35 pobj _ _ 38 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 37 punct _ SpaceAfter=No 39 with with ADP IN _ 28 prep _ _ 40 NNO NNO PROPN NNP Number=Sing 39 pobj _ SpaceAfter=No 41 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 28 punct _ _ 42 and and CCONJ CC ConjType=Cmp 28 cc _ _ 43 geometric geometric ADJ JJ Degree=Pos 44 amod _ _ 44 morphisms morphism NOUN NNS Number=Plur 28 conj _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # doc_id = 5 # sent_id = 1 # text = In this paper we construct a symmetric monoidal closed model category of coherently commutative monoidal categories. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 symmetric symmetric ADJ JJ Degree=Pos 8 amod _ _ 8 monoidal monoidal NOUN NN Number=Sing 11 amod _ _ 9 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 amod _ _ 10 model model NOUN NN Number=Sing 11 compound _ _ 11 category category NOUN NN Number=Sing 5 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 coherently coherently ADV RB _ 14 advmod _ _ 14 commutative commutative ADJ JJ Degree=Pos 16 amod _ _ 15 monoidal monoidal ADJ JJ Degree=Pos 16 amod _ _ 16 categories category NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = The main aim of this paper is to establish a Quillen equivalence between a model category of coherently commutative monoidal categories and a natural model category of Permutative (or strict symmetric monoidal) categories, $ Perm $ , which is not a symmetric monoidal closed model category. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 aim aim NOUN NN Number=Sing 7 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 6 paper paper NOUN NN Number=Sing 4 pobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 to to PART TO _ 9 aux _ _ 9 establish establish VERB VB VerbForm=Inf 7 xcomp _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 Quillen quillen ADJ JJ Degree=Pos 12 amod _ _ 12 equivalence equivalence NOUN NN Number=Sing 9 dobj _ _ 13 between between ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 model model NOUN NN Number=Sing 16 compound _ _ 16 category category NOUN NN Number=Sing 13 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 coherently coherently ADV RB _ 19 advmod _ _ 19 commutative commutative ADJ JJ Degree=Pos 21 amod _ _ 20 monoidal monoidal ADJ JJ Degree=Pos 21 amod _ _ 21 categories category NOUN NNS Number=Plur 17 pobj _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 24 natural natural ADJ JJ Degree=Pos 25 amod _ _ 25 model model NOUN NN Number=Sing 26 compound _ _ 26 category category NOUN NN Number=Sing 16 conj _ _ 27 of of ADP IN _ 26 prep _ _ 28 Permutative Permutative PROPN NNP Number=Sing 27 pobj _ _ 29 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 28 punct _ SpaceAfter=No 30 or or CCONJ CC ConjType=Cmp 28 cc _ _ 31 strict strict ADJ JJ Degree=Pos 35 amod _ _ 32 symmetric symmetric ADJ JJ Degree=Pos 33 amod _ _ 33 monoidal monoidal NOUN NN Number=Sing 35 nmod _ SpaceAfter=No 34 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 35 punct _ _ 35 categories category NOUN NNS Number=Plur 28 conj _ SpaceAfter=No 36 , , PUNCT , PunctType=Comm 35 punct _ _ 37 $ Perm $ $ perm $ SYM $ _ 35 appos _ _ 38 , , PUNCT , PunctType=Comm 35 punct _ _ 39 which which PRON WDT _ 40 nsubj _ _ 40 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 35 relcl _ _ 41 not not PART RB Polarity=Neg 40 neg _ _ 42 a a DET DT Definite=Ind|PronType=Art 44 det _ _ 43 symmetric symmetric ADJ JJ Degree=Pos 44 amod _ _ 44 monoidal monoidal NOUN NN Number=Sing 47 amod _ _ 45 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 47 amod _ _ 46 model model NOUN NN Number=Sing 47 compound _ _ 47 category category NOUN NN Number=Sing 40 attr _ SpaceAfter=No 48 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = The right adjoint of this Quillen equivalence is the classical Segal's Nerve functor. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 right right ADJ JJ Degree=Pos 3 amod _ _ 3 adjoint adjoint NOUN NN Number=Sing 8 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 this this DET DT Number=Sing|PronType=Dem 7 det _ _ 6 Quillen quillen ADJ JJ Degree=Pos 7 amod _ _ 7 equivalence equivalence NOUN NN Number=Sing 4 pobj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 the the DET DT Definite=Def|PronType=Art 14 det _ _ 10 classical classical ADJ JJ Degree=Pos 14 amod _ _ 11 Segal Segal PROPN NNP Number=Sing 14 poss _ SpaceAfter=No 12 's 's PART POS _ 11 case _ _ 13 Nerve Nerve PROPN NNP Number=Sing 14 compound _ _ 14 functor functor NOUN NN Number=Sing 8 attr _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # doc_id = 6 # sent_id = 1 # text = We define exact sequences in the enchilada category of $ C* $ - algebras and correspondences, and prove that the reduced - crossed - product functor is not exact for the enchilada categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 exact exact ADJ JJ Degree=Pos 4 amod _ _ 4 sequences sequence NOUN NNS Number=Plur 2 dobj _ _ 5 in in ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 enchilada enchilada NOUN NN Number=Sing 8 compound _ _ 8 category category NOUN NN Number=Sing 5 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 $ C* $ $ c* $ SYM $ _ 12 nmod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 algebras algebra NOUN NNS Number=Plur 9 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 correspondences correspondence NOUN NNS Number=Plur 12 conj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 2 punct _ _ 16 and and CCONJ CC ConjType=Cmp 2 cc _ _ 17 prove prove VERB VB VerbForm=Inf 2 conj _ _ 18 that that SCONJ IN _ 26 mark _ _ 19 the the DET DT Definite=Def|PronType=Art 25 det _ _ 20 reduced reduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 21 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 22 crossed cross VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 product product NOUN NN Number=Sing 25 compound _ _ 25 functor functor NOUN NN Number=Sing 26 nsubj _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 ccomp _ _ 27 not not PART RB Polarity=Neg 26 neg _ _ 28 exact exact ADJ JJ Degree=Pos 26 acomp _ _ 29 for for ADP IN _ 28 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 32 det _ _ 31 enchilada enchilada NOUN NN Number=Sing 32 compound _ _ 32 categories category NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Our motivation was to determine whether we can have a better understanding of the Baum - Connes conjecture by using enchilada categories. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 motivation motivation NOUN NN Number=Sing 3 nsubj _ _ 3 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 0 ROOT _ _ 4 to to PART TO _ 5 aux _ _ 5 determine determine VERB VB VerbForm=Inf 3 xcomp _ _ 6 whether whether SCONJ IN _ 9 mark _ _ 7 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 9 nsubj _ _ 8 can can AUX MD VerbForm=Fin 9 aux _ _ 9 have have VERB VB VerbForm=Inf 5 ccomp _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 better well ADJ JJR Degree=Cmp 12 amod _ _ 12 understanding understanding NOUN NN Number=Sing 9 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 18 det _ _ 15 Baum Baum PROPN NNP Number=Sing 17 compound _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 Connes Connes PROPN NNP Number=Sing 18 compound _ _ 18 conjecture conjecture NOUN NN Number=Sing 13 pobj _ _ 19 by by ADP IN _ 9 prep _ _ 20 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 19 pcomp _ _ 21 enchilada enchilada NOUN NN Number=Sing 22 compound _ _ 22 categories category NOUN NNS Number=Plur 20 dobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = Along the way we prove numerous results showing that the enchilada category is rather strange. 1 Along along ADP IN _ 0 ROOT _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 way way NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 prove prove VERB VBP Tense=Pres|VerbForm=Fin 3 relcl _ _ 6 numerous numerous ADJ JJ Degree=Pos 7 amod _ _ 7 results result NOUN NNS Number=Plur 5 dobj _ _ 8 showing show VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 acl _ _ 9 that that SCONJ IN _ 13 mark _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 enchilada enchilada NOUN NN Number=Sing 12 compound _ _ 12 category category NOUN NN Number=Sing 13 nsubj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 ccomp _ _ 14 rather rather ADV RB _ 15 advmod _ _ 15 strange strange ADJ JJ Degree=Pos 13 acomp _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # doc_id = 7 # sent_id = 1 # text = We construct combinatorial model category structures on the categories of (marked) categories and (marked) preadditive categories, and we characterize (marked) additive categories as fibrant objects in a Bousfield localization of preadditive categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 combinatorial combinatorial ADJ JJ Degree=Pos 4 amod _ _ 4 model model NOUN NN Number=Sing 6 compound _ _ 5 category category NOUN NN Number=Sing 6 compound _ _ 6 structures structure NOUN NNS Number=Plur 2 dobj _ _ 7 on on ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 categories category NOUN NNS Number=Plur 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 14 punct _ SpaceAfter=No 12 marked marked ADJ JJ Degree=Pos 14 amod _ SpaceAfter=No 13 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 14 punct _ _ 14 categories category NOUN NNS Number=Plur 10 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 20 punct _ SpaceAfter=No 17 marked marked ADJ JJ Degree=Pos 20 amod _ SpaceAfter=No 18 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 20 punct _ _ 19 preadditive preadditive ADJ JJ Degree=Pos 20 amod _ _ 20 categories category NOUN NNS Number=Plur 14 conj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 2 punct _ _ 22 and and CCONJ CC ConjType=Cmp 2 cc _ _ 23 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 24 nsubj _ _ 24 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 2 conj _ _ 25 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 29 punct _ SpaceAfter=No 26 marked marked ADJ JJ Degree=Pos 29 amod _ SpaceAfter=No 27 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 29 punct _ _ 28 additive additive ADJ JJ Degree=Pos 29 amod _ _ 29 categories category NOUN NNS Number=Plur 24 dobj _ _ 30 as as ADP IN _ 29 prep _ _ 31 fibrant fibrant ADJ JJ Degree=Pos 32 amod _ _ 32 objects object NOUN NNS Number=Plur 30 pobj _ _ 33 in in ADP IN _ 24 prep _ _ 34 a a DET DT Definite=Ind|PronType=Art 36 det _ _ 35 Bousfield Bousfield PROPN NNP Number=Sing 36 compound _ _ 36 localization localization NOUN NN Number=Sing 33 pobj _ _ 37 of of ADP IN _ 36 prep _ _ 38 preadditive preadditive ADJ JJ Degree=Pos 39 amod _ _ 39 categories category NOUN NNS Number=Plur 37 pobj _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 24 punct _ SpaceAfter=No # sent_id = 2 # text = These model category structures are used to present the corresponding infinity - categories obtained by inverting equivalences. 1 These these DET DT Number=Plur|PronType=Dem 4 det _ _ 2 model model NOUN NN Number=Sing 4 compound _ _ 3 category category NOUN NN Number=Sing 4 compound _ _ 4 structures structure NOUN NNS Number=Plur 6 nsubjpass _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 6 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 to to PART TO _ 8 aux _ _ 8 present present VERB VB VerbForm=Inf 6 xcomp _ _ 9 the the DET DT Definite=Def|PronType=Art 13 det _ _ 10 corresponding corresponding ADJ JJ Degree=Pos 13 amod _ _ 11 infinity infinity NOUN NN Number=Sing 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 categories category NOUN NNS Number=Plur 8 dobj _ _ 14 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 acl _ _ 15 by by ADP IN _ 14 agent _ _ 16 inverting inverting NOUN NN Number=Sing 17 compound _ _ 17 equivalences equivalence NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = We apply these results to explicitly calculate limits and colimits in these infinity - categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 apply apply VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 these these DET DT Number=Plur|PronType=Dem 4 det _ _ 4 results result NOUN NNS Number=Plur 2 dobj _ _ 5 to to PART TO _ 7 aux _ _ 6 explicitly explicitly ADV RB _ 7 advmod _ _ 7 calculate calculate VERB VB VerbForm=Inf 2 advcl _ _ 8 limits limit NOUN NNS Number=Plur 7 dobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 colimits colimit NOUN NNS Number=Plur 8 conj _ _ 11 in in ADP IN _ 7 prep _ _ 12 these these DET DT Number=Plur|PronType=Dem 15 det _ _ 13 infinity infinity NOUN NN Number=Sing 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 categories category NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = The motivating application is a systematic construction of the equivariant coarse algebraic $ K $ - homology with coefficients in an additive category from its non - equivariant version. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 motivating motivating NOUN NN Number=Sing 3 compound _ _ 3 application application NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 systematic systematic ADJ JJ Degree=Pos 7 amod _ _ 7 construction construction NOUN NN Number=Sing 4 attr _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 15 det _ _ 10 equivariant equivariant ADJ JJ Degree=Pos 11 amod _ _ 11 coarse coarse NOUN NN Number=Sing 15 amod _ _ 12 algebraic algebraic ADJ JJ Degree=Pos 15 amod _ _ 13 $ K $ $ k $ SYM $ _ 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 homology homology NOUN NN Number=Sing 8 pobj _ _ 16 with with ADP IN _ 7 prep _ _ 17 coefficients coefficient NOUN NNS Number=Plur 16 pobj _ _ 18 in in ADP IN _ 17 prep _ _ 19 an an DET DT Definite=Ind|PronType=Art 21 det _ _ 20 additive additive ADJ JJ Degree=Pos 21 amod _ _ 21 category category NOUN NN Number=Sing 18 pobj _ _ 22 from from ADP IN _ 21 prep _ _ 23 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 27 poss _ _ 24 non non ADJ JJ Degree=Pos 26 amod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 equivariant equivariant ADJ JJ Degree=Pos 27 amod _ _ 27 version version NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 8 # sent_id = 1 # text = We generalize the notions of shifted double Poisson and shifted double Lie - Rinehart structures to monoids in a symmetric monoidal abelian category. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 generalize generalize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 notions notion NOUN NNS Number=Plur 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 shifted shift VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 7 double double ADJ JJ Degree=Pos 8 amod _ _ 8 Poisson Poisson PROPN NNP Number=Sing 5 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 2 cc _ _ 10 shifted shift VERB VBD Tense=Past|VerbForm=Fin 2 conj _ _ 11 double double ADJ JJ Degree=Pos 15 amod _ _ 12 Lie lie NOUN NN Number=Sing 14 compound _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 Rinehart rinehart ADJ JJ Degree=Pos 15 amod _ _ 15 structures structure NOUN NNS Number=Plur 10 dobj _ _ 16 to to ADP IN _ 10 prep _ _ 17 monoids monoid NOUN NNS Number=Plur 16 pobj _ _ 18 in in ADP IN _ 10 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 20 symmetric symmetric ADJ JJ Degree=Pos 23 amod _ _ 21 monoidal monoidal ADJ JJ Degree=Pos 22 amod _ _ 22 abelian abelian ADJ JJ Degree=Pos 23 compound _ _ 23 category category NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The main result is that an $ n $ - shifted double Lie - Rinehart structure on a pair $ (A, M) $ is equivalent to a non - shifted double Lie - Rinehart structure on the pair $ (A, M[ - n]) $ . 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 result result NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 19 mark _ _ 6 an an DET DT Definite=Ind|PronType=Art 14 det _ _ 7 $ n $ $ n $ SYM $ _ 9 advmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 shifted shift VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 10 double double ADJ JJ Degree=Pos 14 amod _ _ 11 Lie lie NOUN NN Number=Sing 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 Rinehart rinehart ADJ JJ Degree=Pos 14 amod _ _ 14 structure structure NOUN NN Number=Sing 19 nsubj _ _ 15 on on ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 pair pair NOUN NN Number=Sing 15 pobj _ _ 18 $ (A, M) $ $ (a, m) $ NUM CD NumType=Card 19 nsubj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 20 equivalent equivalent ADJ JJ Degree=Pos 19 acomp _ _ 21 to to ADP IN _ 20 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 23 non non ADV RB _ 25 advmod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 shifted shift VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 30 amod _ _ 26 double double ADJ JJ Degree=Pos 30 amod _ _ 27 Lie lie NOUN NN Number=Sing 29 compound _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 Rinehart rinehart ADJ JJ Degree=Pos 30 amod _ _ 30 structure structure NOUN NN Number=Sing 21 pobj _ _ 31 on on ADP IN _ 30 prep _ _ 32 the the DET DT Definite=Def|PronType=Art 33 det _ _ 33 pair pair NOUN NN Number=Sing 31 pobj _ _ 34 $ (A, M[ - n]) $ $ (a, m[ - n]) $ SYM $ _ 19 dep _ _ 35 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 9 # sent_id = 1 # text = The goal of this article is to emphasize the role of cubical sets in enriched category theory and infinity - category theory. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 goal goal NOUN NN Number=Sing 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 article article NOUN NN Number=Sing 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 to to PART TO _ 8 aux _ _ 8 emphasize emphasize VERB VB VerbForm=Inf 6 xcomp _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 role role NOUN NN Number=Sing 8 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 cubical cubical ADJ JJ Degree=Pos 13 amod _ _ 13 sets set NOUN NNS Number=Plur 11 pobj _ _ 14 in in ADP IN _ 13 prep _ _ 15 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 16 category category NOUN NN Number=Sing 17 compound _ _ 17 theory theory NOUN NN Number=Sing 14 pobj _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 infinity infinity NOUN NN Number=Sing 21 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 category category NOUN NN Number=Sing 22 compound _ _ 22 theory theory NOUN NN Number=Sing 17 conj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = We show in particular that categories enriched in cubical sets provide a convenient way to describe many infinity - categories appearing in the context of homological algebra. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 in in ADP IN _ 2 prep _ _ 4 particular particular ADJ JJ Degree=Pos 3 amod _ _ 5 that that SCONJ IN _ 11 mark _ _ 6 categories category NOUN NNS Number=Plur 11 nsubj _ _ 7 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 acl _ _ 8 in in ADP IN _ 7 prep _ _ 9 cubical cubical ADJ JJ Degree=Pos 10 amod _ _ 10 sets set NOUN NNS Number=Plur 8 pobj _ _ 11 provide provide VERB VBP Tense=Pres|VerbForm=Fin 2 ccomp _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 convenient convenient ADJ JJ Degree=Pos 14 amod _ _ 14 way way NOUN NN Number=Sing 11 dobj _ _ 15 to to PART TO _ 16 aux _ _ 16 describe describe VERB VB VerbForm=Inf 14 relcl _ _ 17 many many ADJ JJ Degree=Pos 20 amod _ _ 18 infinity infinity NOUN NN Number=Sing 20 compound _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 categories category NOUN NNS Number=Plur 16 dobj _ _ 21 appearing appear VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 20 acl _ _ 22 in in ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 context context NOUN NN Number=Sing 22 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 homological homological ADJ JJ Degree=Pos 27 amod _ _ 27 algebra algebra NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 10 # sent_id = 1 # text = Let $ PreOrd(C) $ be the category of internal preorders in an exact category $ C $ . 1 Let let VERB VB VerbForm=Inf 0 ROOT _ _ 2 $ PreOrd(C) $ $ preord(c) $ SYM $ _ 3 nsubj _ _ 3 be be AUX VB VerbForm=Inf 1 ccomp _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 3 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 internal internal ADJ JJ Degree=Pos 8 amod _ _ 8 preorders preorder NOUN NNS Number=Plur 6 pobj _ _ 9 in in ADP IN _ 3 prep _ _ 10 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 11 exact exact ADJ JJ Degree=Pos 12 amod _ _ 12 category category NOUN NN Number=Sing 9 pobj _ _ 13 $ C $ $ c $ SYM $ _ 12 appos _ _ 14 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = We show that the pair $ (Eq(C), ParOrd(C)) $ is a pretorsion theory in $ PreOrd(C) $ , where $ Eq(C) $ and $ ParOrd(C) $ are the full subcategories of internal equivalence relations and of internal partial orders in $ C $ , respectively. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 7 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 pair pair NOUN NN Number=Sing 7 nsubj _ _ 6 $ (Eq(C), ParOrd(C)) $ $ (Eq(C), ParOrd(C)) $ PROPN NNP Number=Sing 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 pretorsion pretorsion NOUN NN Number=Sing 10 compound _ _ 10 theory theory NOUN NN Number=Sing 7 attr _ _ 11 in in ADP IN _ 10 prep _ _ 12 $ PreOrd(C) $ $ preord(c) $ SYM $ _ 11 pobj _ _ 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 where where SCONJ WRB _ 18 advmod _ _ 15 $ Eq(C) $ $ eq(c) $ SYM $ _ 18 nsubj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 $ ParOrd(C) $ $ parord(c) $ SYM $ _ 15 conj _ _ 18 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 12 relcl _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 full full ADJ JJ Degree=Pos 21 amod _ _ 21 subcategories subcategorie NOUN NNS Number=Plur 18 attr _ _ 22 of of ADP IN _ 21 prep _ _ 23 internal internal ADJ JJ Degree=Pos 25 amod _ _ 24 equivalence equivalence NOUN NN Number=Sing 25 compound _ _ 25 relations relation NOUN NNS Number=Plur 22 pobj _ _ 26 and and CCONJ CC ConjType=Cmp 22 cc _ _ 27 of of ADP IN _ 22 conj _ _ 28 internal internal ADJ JJ Degree=Pos 30 amod _ _ 29 partial partial ADJ JJ Degree=Pos 30 amod _ _ 30 orders order NOUN NNS Number=Plur 27 pobj _ _ 31 in in ADP IN _ 30 prep _ _ 32 $ C $ $ c $ SYM $ _ 31 pobj _ _ 33 , , PUNCT , PunctType=Comm 12 punct _ _ 34 respectively respectively ADV RB _ 12 advmod _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We observe that $ ParOrd(C) $ is a reflective subcategory of $ PreOrd(C) $ such that each component of the unit of the adjunction is a pullback - stable regular epimorphism. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 observe observe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 5 mark _ _ 4 $ ParOrd(C) $ $ parord(c) $ SYM $ _ 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 reflective reflective ADJ JJ Degree=Pos 8 amod _ _ 8 subcategory subcategory NOUN NN Number=Sing 5 attr _ _ 9 of of ADP IN _ 8 prep _ _ 10 $ PreOrd(C) $ $ preord(c) $ SYM $ _ 11 nmod _ _ 11 such such ADJ JJ Degree=Pos 21 acomp _ _ 12 that that SCONJ IN _ 21 mark _ _ 13 each each DET DT _ 14 det _ _ 14 component component NOUN NN Number=Sing 21 nsubj _ _ 15 of of ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 unit unit NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 adjunction adjunction NOUN NN Number=Sing 18 pobj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 22 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 23 pullback pullback ADJ JJ Degree=Pos 25 amod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 stable stable ADJ JJ Degree=Pos 27 amod _ _ 26 regular regular ADJ JJ Degree=Pos 27 amod _ _ 27 epimorphism epimorphism NOUN NN Number=Sing 21 attr _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = The reflector $ F: PreOrd(C) to PardOrd(C) $ turns out to have stable units in the sense of Cassidy, Hébert and Kelly, thus inducing an admissible categorical Galois structure. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 reflector reflector NOUN NN Number=Sing 4 nsubj _ _ 3 $ F: PreOrd(C) to PardOrd(C) $ $ f: preord(c) to pardord(c) $ SYM $ _ 4 nsubj _ _ 4 turns turn VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 out out ADP RP _ 4 prt _ _ 6 to to PART TO _ 7 aux _ _ 7 have have VERB VB VerbForm=Inf 4 xcomp _ _ 8 stable stable ADJ JJ Degree=Pos 9 amod _ _ 9 units unit NOUN NNS Number=Plur 7 dobj _ _ 10 in in ADP IN _ 7 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 sense sense NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 Cassidy Cassidy PROPN NNP Number=Sing 13 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 Hébert Hébert PROPN NNP Number=Sing 14 conj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 Kelly Kelly PROPN NNP Number=Sing 16 conj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 7 punct _ _ 20 thus thus ADV RB _ 21 advmod _ _ 21 inducing induce VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 advcl _ _ 22 an an DET DT Definite=Ind|PronType=Art 26 det _ _ 23 admissible admissible ADJ JJ Degree=Pos 26 amod _ _ 24 categorical categorical ADJ JJ Degree=Pos 26 amod _ _ 25 Galois Galois PROPN NNP Number=Sing 26 compound _ _ 26 structure structure NOUN NN Number=Sing 21 dobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = In particular, when $ C $ is the category $ Set $ of sets, we show that this reflection induces a monotone - light factorization system (in the sense of Carboni, Janelidze, Kelly and Paré) in $ PreOrd(Set) $ . 1 In in ADP IN _ 14 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 14 punct _ _ 4 when when SCONJ WRB _ 6 advmod _ _ 5 $ C $ $ c $ SYM $ _ 6 nsubj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 advcl _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 category category NOUN NN Number=Sing 6 attr _ _ 9 $ Set $ $ set $ SYM $ _ 8 appos _ _ 10 of of ADP IN _ 8 prep _ _ 11 sets set NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 14 punct _ _ 13 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 14 nsubj _ _ 14 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 that that SCONJ IN _ 18 mark _ _ 16 this this DET DT Number=Sing|PronType=Dem 17 det _ _ 17 reflection reflection NOUN NN Number=Sing 18 nsubj _ _ 18 induces induce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 ccomp _ _ 19 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 20 monotone monotone NOUN NN Number=Sing 22 amod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 light light ADJ JJ Degree=Pos 24 amod _ _ 23 factorization factorization NOUN NN Number=Sing 24 compound _ _ 24 system system NOUN NN Number=Sing 18 dobj _ _ 25 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 24 punct _ SpaceAfter=No 26 in in ADP IN _ 18 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 sense sense NOUN NN Number=Sing 26 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 Carboni Carboni PROPN NNP Number=Sing 29 pobj _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 30 punct _ _ 32 Janelidze Janelidze PROPN NNP Number=Sing 30 conj _ SpaceAfter=No 33 , , PUNCT , PunctType=Comm 32 punct _ _ 34 Kelly Kelly PROPN NNP Number=Sing 32 conj _ _ 35 and and CCONJ CC ConjType=Cmp 34 cc _ _ 36 Paré Paré PROPN NNP Number=Sing 34 conj _ SpaceAfter=No 37 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 30 punct _ _ 38 in in ADP IN _ 28 prep _ _ 39 $ PreOrd(Set) $ $ preord(set) $ SYM $ _ 38 pobj _ _ 40 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 6 # text = A topological interpretation of our results in the category of Alexandroff - discrete spaces is also given, via the well - known isomorphism between this latter category and $ PreOrd(Set) $ . 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 topological topological ADJ JJ Degree=Pos 3 amod _ _ 3 interpretation interpretation NOUN NN Number=Sing 17 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 6 poss _ _ 6 results result NOUN NNS Number=Plur 4 pobj _ _ 7 in in ADP IN _ 3 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 category category NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 Alexandroff Alexandroff PROPN NNP Number=Sing 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 discrete discrete NOUN NN Number=Sing 14 compound _ _ 14 spaces space NOUN NNS Number=Plur 10 pobj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 auxpass _ _ 16 also also ADV RB _ 17 advmod _ _ 17 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 via via ADP IN _ 17 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 24 det _ _ 21 well well ADV RB Degree=Pos 23 advmod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 24 isomorphism isomorphism NOUN NN Number=Sing 19 pobj _ _ 25 between between ADP IN _ 24 prep _ _ 26 this this DET DT Number=Sing|PronType=Dem 28 det _ _ 27 latter latter ADJ JJ Degree=Pos 28 amod _ _ 28 category category NOUN NN Number=Sing 25 pobj _ _ 29 and and CCONJ CC ConjType=Cmp 28 cc _ _ 30 $ PreOrd(Set) $ $ preord(set) $ SYM $ _ 28 conj _ _ 31 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # doc_id = 11 # sent_id = 1 # text = In this article the notion of virtual double category (also known as fc - multicategory) is extended as follows. 1 In in ADP IN _ 19 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 article article NOUN NN Number=Sing 1 pobj _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 notion notion NOUN NN Number=Sing 19 nsubjpass _ _ 6 of of ADP IN _ 5 prep _ _ 7 virtual virtual ADJ JJ Degree=Pos 9 amod _ _ 8 double double ADJ JJ Degree=Pos 9 amod _ _ 9 category category NOUN NN Number=Sing 6 pobj _ _ 10 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 9 punct _ SpaceAfter=No 11 also also ADV RB _ 12 advmod _ _ 12 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 acl _ _ 13 as as ADP IN _ 12 prep _ _ 14 fc fc ADV RB _ 16 advmod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 multicategory multicategory ADJ JJ Degree=Pos 13 pobj _ SpaceAfter=No 17 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 9 punct _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 auxpass _ _ 19 extended extend VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 20 as as SCONJ IN _ 21 mark _ _ 21 follows follow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 advcl _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 2 # text = While cells in a virtual double category classically have a horizontal multi - source and single horizontal target, the notion of augmented virtual double category introduced here extends the latter notion by including cells with empty horizontal target as well. 1 While while SCONJ IN _ 9 mark _ _ 2 cells cell NOUN NNS Number=Plur 9 nsubj _ _ 3 in in ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 5 virtual virtual ADJ JJ Degree=Pos 7 amod _ _ 6 double double ADJ JJ Degree=Pos 7 amod _ _ 7 category category NOUN NN Number=Sing 3 pobj _ _ 8 classically classically ADV RB _ 9 advmod _ _ 9 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 29 advcl _ _ 10 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 11 horizontal horizontal ADJ JJ Degree=Pos 14 amod _ _ 12 multi multi NOUN NN Number=Sing 14 compound _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 source source NOUN NN Number=Sing 9 dobj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 single single ADJ JJ Degree=Pos 18 amod _ _ 17 horizontal horizontal ADJ JJ Degree=Pos 18 amod _ _ 18 target target NOUN NN Number=Sing 14 conj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 29 punct _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 notion notion NOUN NN Number=Sing 29 nsubj _ _ 22 of of ADP IN _ 21 prep _ _ 23 augmented augment VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 amod _ _ 24 virtual virtual ADJ JJ Degree=Pos 26 amod _ _ 25 double double ADJ JJ Degree=Pos 26 amod _ _ 26 category category NOUN NN Number=Sing 22 pobj _ _ 27 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 acl _ _ 28 here here ADV RB PronType=Dem 27 advmod _ _ 29 extends extend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 30 the the DET DT Definite=Def|PronType=Art 32 det _ _ 31 latter latter ADJ JJ Degree=Pos 32 amod _ _ 32 notion notion NOUN NN Number=Sing 29 dobj _ _ 33 by by ADP IN _ 29 prep _ _ 34 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 33 pcomp _ _ 35 cells cell NOUN NNS Number=Plur 34 pobj _ _ 36 with with ADP IN _ 35 prep _ _ 37 empty empty ADJ JJ Degree=Pos 39 amod _ _ 38 horizontal horizontal ADJ JJ Degree=Pos 39 amod _ _ 39 target target NOUN NN Number=Sing 36 pobj _ _ 40 as as ADV RB _ 41 advmod _ _ 41 well well ADV RB Degree=Pos 34 advmod _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 29 punct _ SpaceAfter=No # sent_id = 3 # text = Any augmented virtual double category comes with a built - in notion of "locally small object" and we describe advantages of using augmented virtual double categories as a setting for formal category rather than 2 - categories, which are classically equipped with a notion of "admissible object" by means of a yoneda structure in the sense of Street and Walters. 1 Any any DET DT _ 5 det _ _ 2 augmented augmented ADJ JJ Degree=Pos 5 amod _ _ 3 virtual virtual ADJ JJ Degree=Pos 5 amod _ _ 4 double double ADJ JJ Degree=Pos 5 amod _ _ 5 category category NOUN NN Number=Sing 6 nsubj _ _ 6 comes come VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 with with ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 9 built build VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 10 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 11 in in ADP RP _ 9 prt _ _ 12 notion notion NOUN NN Number=Sing 7 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 " " PUNCT `` PunctSide=Ini|PunctType=Quot 17 punct _ SpaceAfter=No 15 locally locally ADV RB _ 16 advmod _ _ 16 small small ADJ JJ Degree=Pos 17 amod _ _ 17 object object NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 18 " " PUNCT '' PunctSide=Fin|PunctType=Quot 17 punct _ _ 19 and and CCONJ CC ConjType=Cmp 6 cc _ _ 20 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 21 nsubj _ _ 21 describe describe VERB VBP Tense=Pres|VerbForm=Fin 6 conj _ _ 22 advantages advantage NOUN NNS Number=Plur 21 dobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 23 pcomp _ _ 25 augmented augment VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 amod _ _ 26 virtual virtual ADJ JJ Degree=Pos 28 amod _ _ 27 double double ADJ JJ Degree=Pos 28 amod _ _ 28 categories category NOUN NNS Number=Plur 24 dobj _ _ 29 as as ADP IN _ 24 prep _ _ 30 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 31 setting setting NOUN NN Number=Sing 29 pobj _ _ 32 for for ADP IN _ 31 prep _ _ 33 formal formal ADJ JJ Degree=Pos 34 amod _ _ 34 category category NOUN NN Number=Sing 32 pobj _ _ 35 rather rather ADV RB _ 36 advmod _ _ 36 than than ADP IN _ 34 cc _ _ 37 2 2 NUM CD NumType=Card 39 nummod _ _ 38 - - PUNCT HYPH PunctType=Dash 39 punct _ _ 39 categories category NOUN NNS Number=Plur 34 conj _ SpaceAfter=No 40 , , PUNCT , PunctType=Comm 39 punct _ _ 41 which which PRON WDT _ 44 nsubjpass _ _ 42 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 44 auxpass _ _ 43 classically classically ADV RB _ 44 advmod _ _ 44 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 39 relcl _ _ 45 with with ADP IN _ 44 prep _ _ 46 a a DET DT Definite=Ind|PronType=Art 47 det _ _ 47 notion notion NOUN NN Number=Sing 45 pobj _ _ 48 of of ADP IN _ 47 prep _ _ 49 " " PUNCT `` PunctSide=Ini|PunctType=Quot 51 punct _ SpaceAfter=No 50 admissible admissible ADJ JJ Degree=Pos 51 amod _ _ 51 object object NOUN NN Number=Sing 48 pobj _ SpaceAfter=No 52 " " PUNCT '' PunctSide=Fin|PunctType=Quot 51 punct _ _ 53 by by ADP IN _ 47 prep _ _ 54 means mean NOUN NNS Number=Plur 53 pobj _ _ 55 of of ADP IN _ 54 prep _ _ 56 a a DET DT Definite=Ind|PronType=Art 58 det _ _ 57 yoneda yoneda NOUN NN Number=Sing 58 compound _ _ 58 structure structure NOUN NN Number=Sing 55 pobj _ _ 59 in in ADP IN _ 44 prep _ _ 60 the the DET DT Definite=Def|PronType=Art 61 det _ _ 61 sense sense NOUN NN Number=Sing 59 pobj _ _ 62 of of ADP IN _ 61 prep _ _ 63 Street Street PROPN NNP Number=Sing 62 pobj _ _ 64 and and CCONJ CC ConjType=Cmp 63 cc _ _ 65 Walters Walters PROPN NNP Number=Sing 63 conj _ SpaceAfter=No 66 . . PUNCT . PunctType=Peri 21 punct _ SpaceAfter=No # sent_id = 4 # text = An object is locally small precisely if it admits a horizontal unit, and we show that the notions of augmented virtual double category and virtual double category coincide in the presence of all horizontal units. 1 An an DET DT Definite=Ind|PronType=Art 2 det _ _ 2 object object NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 locally locally ADV RB _ 5 advmod _ _ 5 small small ADJ JJ Degree=Pos 3 acomp _ _ 6 precisely precisely ADV RB _ 9 advmod _ _ 7 if if SCONJ IN _ 9 mark _ _ 8 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 9 nsubj _ _ 9 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 advcl _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 horizontal horizontal ADJ JJ Degree=Pos 12 amod _ _ 12 unit unit NOUN NN Number=Sing 9 dobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 3 punct _ _ 14 and and CCONJ CC ConjType=Cmp 3 cc _ _ 15 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 16 nsubj _ _ 16 show show VERB VBP Tense=Pres|VerbForm=Fin 3 conj _ _ 17 that that SCONJ IN _ 29 mark _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 notions notion NOUN NNS Number=Plur 29 nsubj _ _ 20 of of ADP IN _ 19 prep _ _ 21 augmented augment VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 22 virtual virtual ADJ JJ Degree=Pos 24 amod _ _ 23 double double ADJ JJ Degree=Pos 24 amod _ _ 24 category category NOUN NN Number=Sing 20 pobj _ _ 25 and and CCONJ CC ConjType=Cmp 24 cc _ _ 26 virtual virtual ADJ JJ Degree=Pos 29 amod _ _ 27 double double ADJ JJ Degree=Pos 28 amod _ _ 28 category category NOUN NN Number=Sing 29 compound _ _ 29 coincide coincide NOUN NN Number=Sing 16 ccomp _ _ 30 in in ADP IN _ 29 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 presence presence NOUN NN Number=Sing 30 pobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 all all DET DT _ 36 det _ _ 35 horizontal horizontal ADJ JJ Degree=Pos 36 amod _ _ 36 units unit NOUN NNS Number=Plur 33 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 5 # text = Without assuming the existence of horizontal units we show that most of the basic theory for virtual double categories, such as that of restriction and composition of horizontal morphisms, extends to augmented virtual double categories. 1 Without without ADP IN _ 0 ROOT _ _ 2 assuming assume VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 1 pcomp _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 existence existence NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 horizontal horizontal ADJ JJ Degree=Pos 7 amod _ _ 7 units unit NOUN NNS Number=Plur 5 pobj _ _ 8 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 9 nsubj _ _ 9 show show VERB VBP Tense=Pres|VerbForm=Fin 2 ccomp _ _ 10 that that SCONJ IN _ 32 mark _ _ 11 most most ADJ JJS Degree=Sup 32 nsubj _ _ 12 of of ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 basic basic ADJ JJ Degree=Pos 15 amod _ _ 15 theory theory NOUN NN Number=Sing 12 pobj _ _ 16 for for ADP IN _ 15 prep _ _ 17 virtual virtual ADJ JJ Degree=Pos 19 amod _ _ 18 double double ADJ JJ Degree=Pos 19 amod _ _ 19 categories category NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 19 punct _ _ 21 such such ADJ JJ Degree=Pos 22 amod _ _ 22 as as ADP IN _ 19 prep _ _ 23 that that PRON DT Number=Sing|PronType=Dem 22 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 restriction restriction NOUN NN Number=Sing 24 pobj _ _ 26 and and CCONJ CC ConjType=Cmp 25 cc _ _ 27 composition composition NOUN NN Number=Sing 25 conj _ _ 28 of of ADP IN _ 25 prep _ _ 29 horizontal horizontal ADJ JJ Degree=Pos 30 amod _ _ 30 morphisms morphism NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 11 punct _ _ 32 extends extend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 ccomp _ _ 33 to to ADP IN _ 32 prep _ _ 34 augmented augment VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 37 amod _ _ 35 virtual virtual ADJ JJ Degree=Pos 37 amod _ _ 36 double double ADJ JJ Degree=Pos 37 amod _ _ 37 categories category NOUN NNS Number=Plur 33 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 6 # text = We introduce and study in augmented virtual double categories the notion of "pointwise" composition of horizontal morphisms, which formalises the classical composition of profunctors given by the coend formula. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 study study NOUN NN Number=Sing 2 conj _ _ 5 in in ADP IN _ 4 prep _ _ 6 augmented augmented ADJ JJ Degree=Pos 9 amod _ _ 7 virtual virtual ADJ JJ Degree=Pos 9 amod _ _ 8 double double ADJ JJ Degree=Pos 9 amod _ _ 9 categories category NOUN NNS Number=Plur 5 pobj _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 notion notion NOUN NN Number=Sing 2 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 " " PUNCT `` PunctSide=Ini|PunctType=Quot 16 punct _ SpaceAfter=No 14 pointwise pointwise NOUN NN Number=Sing 16 nmod _ SpaceAfter=No 15 " " PUNCT '' PunctSide=Fin|PunctType=Quot 16 punct _ _ 16 composition composition NOUN NN Number=Sing 12 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 horizontal horizontal ADJ JJ Degree=Pos 19 amod _ _ 19 morphisms morphism NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 19 punct _ _ 21 which which PRON WDT _ 22 nsubj _ _ 22 formalises formalise VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 relcl _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 classical classical ADJ JJ Degree=Pos 25 amod _ _ 25 composition composition NOUN NN Number=Sing 22 dobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 profunctors profunctor NOUN NNS Number=Plur 26 pobj _ _ 28 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 acl _ _ 29 by by ADP IN _ 28 agent _ _ 30 the the DET DT Definite=Def|PronType=Art 32 det _ _ 31 coend coend NOUN NN Number=Sing 32 compound _ _ 32 formula formula NOUN NN Number=Sing 29 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 12 # sent_id = 1 # text = We define the homology of a simplicial set with coefficients in a Segal's Gamma - set ( $ s $ - module). 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 homology homology NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 simplicial simplicial NOUN NN Number=Sing 5 pobj _ _ 8 set set VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 acl _ _ 9 with with ADP IN _ 8 prep _ _ 10 coefficients coefficient NOUN NNS Number=Plur 9 pobj _ _ 11 in in ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 Segal Segal PROPN NNP Number=Sing 17 poss _ SpaceAfter=No 14 's 's PART POS _ 13 case _ _ 15 Gamma Gamma PROPN NNP Number=Sing 17 compound _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 set set VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 pobj _ _ 18 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 21 punct _ _ 19 $ s $ $ s $ SYM $ _ 21 nummod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 module module NOUN NN Number=Sing 17 appos _ SpaceAfter=No 22 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 17 punct _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We show the relevance of this new homology with values in $ s $ - modules by proving that taking as coefficients the $ s $ - modules at the archimedean place over the structure sheaf on $ Spec(Z) $ , one obtains on the singular homology with real coefficients of a topological space $ X $ , a norm equivalent to the Gromov norm. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 relevance relevance NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 this this DET DT Number=Sing|PronType=Dem 8 det _ _ 7 new new ADJ JJ Degree=Pos 8 amod _ _ 8 homology homology NOUN NN Number=Sing 5 pobj _ _ 9 with with ADP IN _ 4 prep _ _ 10 values value NOUN NNS Number=Plur 9 pobj _ _ 11 in in ADP IN _ 10 prep _ _ 12 $ s $ $ s $ SYM $ _ 14 nummod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 modules module NOUN NNS Number=Plur 11 pobj _ _ 15 by by ADP IN _ 2 prep _ _ 16 proving prove VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 pcomp _ _ 17 that that SCONJ IN _ 16 dobj _ _ 18 taking take VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 17 nmod _ _ 19 as as ADP IN _ 18 prep _ _ 20 coefficients coefficient NOUN NNS Number=Plur 19 pobj _ _ 21 the the DET DT Definite=Def|PronType=Art 24 det _ _ 22 $ s $ $ s $ SYM $ _ 24 compound _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 modules module NOUN NNS Number=Plur 18 dobj _ _ 25 at at ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 28 det _ _ 27 archimedean archimedean ADJ JJ Degree=Pos 28 compound _ _ 28 place place NOUN NN Number=Sing 25 pobj _ _ 29 over over ADP IN _ 28 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 32 det _ _ 31 structure structure NOUN NN Number=Sing 32 compound _ _ 32 sheaf sheaf NOUN NN Number=Sing 29 pobj _ _ 33 on on ADP IN _ 32 prep _ _ 34 $ Spec(Z) $ $ spec(z) $ SYM $ _ 33 pobj _ _ 35 , , PUNCT , PunctType=Comm 34 punct _ _ 36 one one NUM CD NumType=Card 37 nummod _ _ 37 obtains obtain NOUN NNS Number=Plur 16 ccomp _ _ 38 on on ADP IN _ 37 prep _ _ 39 the the DET DT Definite=Def|PronType=Art 41 det _ _ 40 singular singular ADJ JJ Degree=Pos 41 amod _ _ 41 homology homology NOUN NN Number=Sing 38 pobj _ _ 42 with with ADP IN _ 37 prep _ _ 43 real real ADJ JJ Degree=Pos 44 amod _ _ 44 coefficients coefficient NOUN NNS Number=Plur 42 pobj _ _ 45 of of ADP IN _ 44 prep _ _ 46 a a DET DT Definite=Ind|PronType=Art 48 det _ _ 47 topological topological ADJ JJ Degree=Pos 48 amod _ _ 48 space space NOUN NN Number=Sing 45 pobj _ _ 49 $ X $ $ x $ SYM $ _ 48 appos _ _ 50 , , PUNCT , PunctType=Comm 48 punct _ _ 51 a a DET DT Definite=Ind|PronType=Art 52 det _ _ 52 norm norm NOUN NN Number=Sing 2 dobj _ _ 53 equivalent equivalent ADJ JJ Degree=Pos 52 amod _ _ 54 to to ADP IN _ 53 prep _ _ 55 the the DET DT Definite=Def|PronType=Art 57 det _ _ 56 Gromov Gromov PROPN NNP Number=Sing 57 compound _ _ 57 norm norm NOUN NN Number=Sing 54 pobj _ SpaceAfter=No 58 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Moreover, we prove that the two norms agree when $ X $ is an oriented compact Riemann surface. 1 Moreover moreover ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 9 mark _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 two two NUM CD NumType=Card 8 nummod _ _ 8 norms norm NOUN NNS Number=Plur 9 nsubj _ _ 9 agree agree VERB VBP Tense=Pres|VerbForm=Fin 4 ccomp _ _ 10 when when SCONJ WRB _ 12 advmod _ _ 11 $ X $ $ x $ SYM $ _ 12 nsubj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 advcl _ _ 13 an an DET DT Definite=Ind|PronType=Art 17 det _ _ 14 oriented orient VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 15 compact compact ADJ JJ Degree=Pos 17 amod _ _ 16 Riemann Riemann PROPN NNP Number=Sing 17 compound _ _ 17 surface surface NOUN NN Number=Sing 12 attr _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 13 # sent_id = 1 # text = We derive three equivalent necessary conditions for a small category to have homological dimension one, generalizing a result of Novikov. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 derive derive VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 three three NUM CD NumType=Card 6 nummod _ _ 4 equivalent equivalent ADJ JJ Degree=Pos 6 amod _ _ 5 necessary necessary ADJ JJ Degree=Pos 6 amod _ _ 6 conditions condition NOUN NNS Number=Plur 2 dobj _ _ 7 for for SCONJ IN _ 12 mark _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 small small ADJ JJ Degree=Pos 10 amod _ _ 10 category category NOUN NN Number=Sing 12 nsubj _ _ 11 to to PART TO _ 12 aux _ _ 12 have have VERB VB VerbForm=Inf 2 advcl _ _ 13 homological homological ADJ JJ Degree=Pos 14 amod _ _ 14 dimension dimension NOUN NN Number=Sing 15 compound _ _ 15 one one NUM CD NumType=Card 12 dobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 12 punct _ _ 17 generalizing generalize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 advcl _ _ 18 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 19 result result NOUN NN Number=Sing 17 dobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 Novikov Novikov PROPN NNP Number=Sing 20 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = As a consequence, any small cancellative category of homological dimension one is embeddable in a groupoid. 1 As as ADP IN _ 13 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 consequence consequence NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 13 punct _ _ 5 any any DET DT _ 8 det _ _ 6 small small ADJ JJ Degree=Pos 8 amod _ _ 7 cancellative cancellative ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 13 nsubj _ _ 9 of of ADP IN _ 8 prep _ _ 10 homological homological ADJ JJ Degree=Pos 11 amod _ _ 11 dimension dimension NOUN NN Number=Sing 12 compound _ _ 12 one one NOUN NN Number=Sing 9 pobj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 embeddable embeddable ADJ JJ Degree=Pos 13 acomp _ _ 15 in in ADP IN _ 13 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 groupoid groupoid NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # doc_id = 14 # sent_id = 1 # text = In this article we give necessary and sufficient conditions for a binary product to exist in a partial morphism category. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 article article NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 necessary necessary ADJ JJ Degree=Pos 9 amod _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 sufficient sufficient ADJ JJ Degree=Pos 6 conj _ _ 9 conditions condition NOUN NNS Number=Plur 5 dobj _ _ 10 for for SCONJ IN _ 15 mark _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 binary binary ADJ JJ Degree=Pos 13 amod _ _ 13 product product NOUN NN Number=Sing 15 nsubj _ _ 14 to to PART TO _ 15 aux _ _ 15 exist exist VERB VB VerbForm=Inf 5 advcl _ _ 16 in in ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 18 partial partial ADJ JJ Degree=Pos 20 amod _ _ 19 morphism morphism NOUN NN Number=Sing 20 compound _ _ 20 category category NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = We also give necessary and sufficient conditions for the existence of a productive terminal in such categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 necessary necessary ADJ JJ Degree=Pos 7 amod _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 sufficient sufficient ADJ JJ Degree=Pos 4 conj _ _ 7 conditions condition NOUN NNS Number=Plur 3 dobj _ _ 8 for for ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 existence existence NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 productive productive ADJ JJ Degree=Pos 14 amod _ _ 14 terminal terminal NOUN NN Number=Sing 11 pobj _ _ 15 in in ADP IN _ 14 prep _ _ 16 such such ADJ JJ Degree=Pos 17 amod _ _ 17 categories category NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 15 # sent_id = 1 # text = Persistence has proved to be a valuable tool to analyze real world data robustly. 1 Persistence persistence NOUN NN Number=Sing 3 nsubj _ _ 2 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 aux _ _ 3 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 to to PART TO _ 5 aux _ _ 5 be be AUX VB VerbForm=Inf 3 xcomp _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 valuable valuable ADJ JJ Degree=Pos 8 amod _ _ 8 tool tool NOUN NN Number=Sing 5 attr _ _ 9 to to PART TO _ 10 aux _ _ 10 analyze analyze VERB VB VerbForm=Inf 8 acl _ _ 11 real real ADJ JJ Degree=Pos 13 amod _ _ 12 world world NOUN NN Number=Sing 13 compound _ _ 13 data datum NOUN NNS Number=Plur 10 dobj _ _ 14 robustly robustly ADV RB _ 10 advmod _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = Several approaches to persistence have been attempted over time, some topological in flavor, based on the vector space - valued homology functor, others combinatorial, based on arbitrary set - valued functors. 1 Several several ADJ JJ Degree=Pos 2 amod _ _ 2 approaches approach NOUN NNS Number=Plur 7 nsubjpass _ _ 3 to to ADP IN _ 2 prep _ _ 4 persistence persistence NOUN NN Number=Sing 3 pobj _ _ 5 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 aux _ _ 6 been be AUX VBN Tense=Past|VerbForm=Part 7 auxpass _ _ 7 attempted attempt VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 over over ADP IN _ 7 prep _ _ 9 time time NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 7 punct _ _ 11 some some PRON DT _ 13 nsubj _ _ 12 topological topological ADJ JJ Degree=Pos 11 amod _ _ 13 in in ADP IN _ 7 prep _ _ 14 flavor flavor NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 7 punct _ _ 16 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 prep _ _ 17 on on ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 24 det _ _ 19 vector vector NOUN NN Number=Sing 24 nmod _ _ 20 space space NOUN NN Number=Sing 22 npadvmod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 23 homology homology NOUN NN Number=Sing 24 compound _ _ 24 functor functor PROPN NNP Number=Sing 17 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 7 punct _ _ 26 others other NOUN NNS Number=Plur 27 nsubj _ _ 27 combinatorial combinatorial VERB VBP Tense=Pres|VerbForm=Fin 7 conj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 27 punct _ _ 29 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 prep _ _ 30 on on ADP IN _ 29 prep _ _ 31 arbitrary arbitrary ADJ JJ Degree=Pos 35 amod _ _ 32 set set NOUN NN Number=Sing 34 npadvmod _ _ 33 - - PUNCT HYPH PunctType=Dash 34 punct _ _ 34 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 35 amod _ _ 35 functors functor NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = To unify the study of topological and combinatorial persistence in a common categorical framework, we give axioms for a generalized rank function on objects in a target category so that functors to that category induce persistence functions. 1 To to PART TO _ 2 aux _ _ 2 unify unify VERB VB VerbForm=Inf 17 advcl _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 study study NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 topological topological ADJ JJ Degree=Pos 9 amod _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 combinatorial combinatorial ADJ JJ Degree=Pos 6 conj _ _ 9 persistence persistence NOUN NN Number=Sing 5 pobj _ _ 10 in in ADP IN _ 4 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 12 common common ADJ JJ Degree=Pos 14 amod _ _ 13 categorical categorical ADJ JJ Degree=Pos 14 amod _ _ 14 framework framework NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 17 punct _ _ 16 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 17 nsubj _ _ 17 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 18 axioms axiom NOUN NNS Number=Plur 17 dobj _ _ 19 for for ADP IN _ 17 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 21 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 amod _ _ 22 rank rank NOUN NN Number=Sing 23 compound _ _ 23 function function NOUN NN Number=Sing 19 pobj _ _ 24 on on ADP IN _ 23 prep _ _ 25 objects object NOUN NNS Number=Plur 24 pobj _ _ 26 in in ADP IN _ 17 prep _ _ 27 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 28 target target NOUN NN Number=Sing 29 compound _ _ 29 category category NOUN NN Number=Sing 26 pobj _ _ 30 so so SCONJ IN _ 36 mark _ _ 31 that that SCONJ IN _ 36 mark _ _ 32 functors functor NOUN NNS Number=Plur 36 nsubj _ _ 33 to to ADP IN _ 32 prep _ _ 34 that that DET DT Number=Sing|PronType=Dem 35 det _ _ 35 category category NOUN NN Number=Sing 33 pobj _ _ 36 induce induce VERB VB VerbForm=Inf 17 advcl _ _ 37 persistence persistence NOUN NN Number=Sing 38 compound _ _ 38 functions function NOUN NNS Number=Plur 36 dobj _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 4 # text = We port the interleaving and bottleneck distances to this novel framework and generalize classical equalities and inequalities. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 port port VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 7 det _ _ 4 interleaving interleaving ADJ JJ Degree=Pos 7 amod _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 bottleneck bottleneck NOUN NN Number=Sing 4 conj _ _ 7 distances distance NOUN NNS Number=Plur 2 dobj _ _ 8 to to ADP IN _ 7 prep _ _ 9 this this DET DT Number=Sing|PronType=Dem 11 det _ _ 10 novel novel ADJ JJ Degree=Pos 11 amod _ _ 11 framework framework NOUN NN Number=Sing 8 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 2 cc _ _ 13 generalize generalize VERB VB VerbForm=Inf 2 conj _ _ 14 classical classical ADJ JJ Degree=Pos 15 amod _ _ 15 equalities equality NOUN NNS Number=Plur 13 dobj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 inequalities inequality NOUN NNS Number=Plur 15 conj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = Unlike sets and vector spaces, in many categories the rank of an object does not identify it up to isomorphism: to preserve information about the structure of persistence modules, we define colorable ranks, persistence diagrams and prove the equality between multicolored bottleneck distance and interleaving distance in semisimple Abelian categories. 1 Unlike unlike ADP IN _ 17 prep _ _ 2 sets set NOUN NNS Number=Plur 1 pobj _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 vector vector NOUN NN Number=Sing 5 compound _ _ 5 spaces space NOUN NNS Number=Plur 2 conj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 17 punct _ _ 7 in in ADP IN _ 17 prep _ _ 8 many many ADJ JJ Degree=Pos 9 amod _ _ 9 categories category NOUN NNS Number=Plur 7 pobj _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 rank rank NOUN NN Number=Sing 17 nsubj _ _ 12 of of ADP IN _ 11 prep _ _ 13 an an DET DT Definite=Ind|PronType=Art 14 det _ _ 14 object object NOUN NN Number=Sing 12 pobj _ _ 15 does do AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 aux _ _ 16 not not PART RB Polarity=Neg 17 neg _ _ 17 identify identify VERB VB VerbForm=Inf 34 advcl _ _ 18 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 17 dobj _ _ 19 up up ADP RP _ 17 prt _ _ 20 to to ADP IN _ 19 prep _ _ 21 isomorphism isomorphism NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 22 : : PUNCT : _ 17 punct _ _ 23 to to PART TO _ 24 aux _ _ 24 preserve preserve VERB VB VerbForm=Inf 17 advcl _ _ 25 information information NOUN NN Number=Sing 24 dobj _ _ 26 about about ADP IN _ 25 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 structure structure NOUN NN Number=Sing 26 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 persistence persistence NOUN NN Number=Sing 31 compound _ _ 31 modules module NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 34 punct _ _ 33 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 34 nsubj _ _ 34 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 35 colorable colorable ADJ JJ Degree=Pos 36 amod _ _ 36 ranks rank NOUN NNS Number=Plur 34 dobj _ SpaceAfter=No 37 , , PUNCT , PunctType=Comm 34 punct _ _ 38 persistence persistence NOUN NN Number=Sing 39 compound _ _ 39 diagrams diagram NOUN NNS Number=Plur 34 conj _ _ 40 and and CCONJ CC ConjType=Cmp 34 cc _ _ 41 prove prove VERB VB VerbForm=Inf 34 conj _ _ 42 the the DET DT Definite=Def|PronType=Art 43 det _ _ 43 equality equality NOUN NN Number=Sing 41 dobj _ _ 44 between between ADP IN _ 43 prep _ _ 45 multicolored multicolore VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 47 amod _ _ 46 bottleneck bottleneck NOUN NN Number=Sing 47 compound _ _ 47 distance distance NOUN NN Number=Sing 44 pobj _ _ 48 and and CCONJ CC ConjType=Cmp 47 cc _ _ 49 interleaving interleave VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 50 amod _ _ 50 distance distance NOUN NN Number=Sing 47 conj _ _ 51 in in ADP IN _ 47 prep _ _ 52 semisimple semisimple ADJ JJ Degree=Pos 54 amod _ _ 53 Abelian abelian ADJ JJ Degree=Pos 54 amod _ _ 54 categories category NOUN NNS Number=Plur 51 pobj _ SpaceAfter=No 55 . . PUNCT . PunctType=Peri 34 punct _ SpaceAfter=No # sent_id = 6 # text = To illustrate our framework in practice, we give examples of multicolored persistent homology on filtered topological spaces with a group action and labeled point cloud data. 1 To to PART TO _ 2 aux _ _ 2 illustrate illustrate VERB VB VerbForm=Inf 9 advcl _ _ 3 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 4 poss _ _ 4 framework framework NOUN NN Number=Sing 2 dobj _ _ 5 in in ADP IN _ 4 prep _ _ 6 practice practice NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 9 punct _ _ 8 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 9 nsubj _ _ 9 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 examples example NOUN NNS Number=Plur 9 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 multicolored multicolore VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 13 persistent persistent ADJ JJ Degree=Pos 14 amod _ _ 14 homology homology NOUN NN Number=Sing 11 pobj _ _ 15 on on ADP IN _ 9 prep _ _ 16 filtered filter VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 amod _ _ 17 topological topological ADJ JJ Degree=Pos 18 amod _ _ 18 spaces space NOUN NNS Number=Plur 15 pobj _ _ 19 with with ADP IN _ 18 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 group group NOUN NN Number=Sing 22 compound _ _ 22 action action NOUN NN Number=Sing 19 pobj _ _ 23 and and CCONJ CC ConjType=Cmp 22 cc _ _ 24 labeled label VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 amod _ _ 25 point point NOUN NN Number=Sing 26 compound _ _ 26 cloud cloud NOUN NN Number=Sing 27 compound _ _ 27 data datum NOUN NNS Number=Plur 22 conj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 16 # sent_id = 1 # text = We prove that, given any reflective subfibration $ L $ on an $ infty $ - topos $ E $ , there exists a reflective subfibration $ L' $ on $ E $ whose local maps are the $ L $ - separated maps, that is, the maps whose diagonals are $ L $ - local. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 18 mark _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 18 punct _ _ 5 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 prep _ _ 6 any any DET DT _ 8 det _ _ 7 reflective reflective ADJ JJ Degree=Pos 8 amod _ _ 8 subfibration subfibration NOUN NN Number=Sing 5 pobj _ _ 9 $ L $ $ l $ SYM $ _ 8 appos _ _ 10 on on ADP IN _ 8 prep _ _ 11 an an DET DT Definite=Ind|PronType=Art 15 det _ _ 12 $ infty $ $ infty $ SYM $ _ 14 compound _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 topos topos NOUN NN Number=Sing 15 compound _ _ 15 $ E $ $ e $ SYM $ _ 10 pobj _ _ 16 , , PUNCT , PunctType=Comm 18 punct _ _ 17 there there PRON EX _ 18 expl _ _ 18 exists exist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 19 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 20 reflective reflective ADJ JJ Degree=Pos 21 amod _ _ 21 subfibration subfibration NOUN NN Number=Sing 18 dobj _ _ 22 $ L' $ $ l' $ SYM $ _ 21 appos _ _ 23 on on ADP IN _ 28 prep _ _ 24 $ E $ $ e $ SYM $ _ 23 pobj _ _ 25 whose whose DET WP$ Poss=Yes 27 poss _ _ 26 local local ADJ JJ Degree=Pos 27 amod _ _ 27 maps map NOUN NNS Number=Plur 28 nsubj _ _ 28 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 21 relcl _ _ 29 the the DET DT Definite=Def|PronType=Art 33 det _ _ 30 $ L $ $ l $ SYM $ _ 32 advmod _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 separated separate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 33 amod _ _ 33 maps map NOUN NNS Number=Plur 28 attr _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 33 punct _ _ 35 that that ADV RB _ 36 advmod _ _ 36 is is ADV RB _ 39 advmod _ SpaceAfter=No 37 , , PUNCT , PunctType=Comm 39 punct _ _ 38 the the DET DT Definite=Def|PronType=Art 39 det _ _ 39 maps map NOUN NNS Number=Plur 21 appos _ _ 40 whose whose DET WP$ Poss=Yes 41 poss _ _ 41 diagonals diagonal NOUN NNS Number=Plur 42 nsubj _ _ 42 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 39 relcl _ _ 43 $ L $ $ l $ SYM $ _ 45 advmod _ _ 44 - - PUNCT HYPH PunctType=Dash 45 punct _ _ 45 local local ADJ JJ Degree=Pos 42 acomp _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 17 # sent_id = 1 # text = We use the homotopy invariance of equivariant principal bundles to prove that the equivariant $ A $ - category of Clapp and Puppe is invariant under Morita equivalence. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 homotopy homotopy NOUN NN Number=Sing 5 compound _ _ 5 invariance invariance NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 equivariant equivariant ADJ JJ Degree=Pos 9 amod _ _ 8 principal principal ADJ JJ Degree=Pos 9 amod _ _ 9 bundles bundle NOUN NNS Number=Plur 6 pobj _ _ 10 to to PART TO _ 11 aux _ _ 11 prove prove VERB VB VerbForm=Inf 2 xcomp _ _ 12 that that SCONJ IN _ 22 mark _ _ 13 the the DET DT Definite=Def|PronType=Art 17 det _ _ 14 equivariant equivariant ADJ JJ Degree=Pos 17 amod _ _ 15 $ A $ $ a $ SYM $ _ 17 nummod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 category category NOUN NN Number=Sing 22 nsubj _ _ 18 of of ADP IN _ 17 prep _ _ 19 Clapp Clapp PROPN NNP Number=Sing 18 pobj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 Puppe Puppe PROPN NNP Number=Sing 19 conj _ _ 22 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 ccomp _ _ 23 invariant invariant ADJ JJ Degree=Pos 22 acomp _ _ 24 under under ADP IN _ 22 prep _ _ 25 Morita Morita PROPN NNP Number=Sing 26 compound _ _ 26 equivalence equivalence NOUN NN Number=Sing 24 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = As a corollary, we obtain that both the equivariant Lusternik - Schnirelmann category of a group action and the invariant topological complexity are invariant under Morita equivalence. 1 As as ADP IN _ 6 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 corollary corollary NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 that that SCONJ IN _ 24 mark _ _ 8 both both CCONJ CC ConjType=Cmp 14 preconj _ _ 9 the the DET DT Definite=Def|PronType=Art 14 det _ _ 10 equivariant equivariant ADJ JJ Degree=Pos 14 amod _ _ 11 Lusternik Lusternik PROPN NNP Number=Sing 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 Schnirelmann Schnirelmann PROPN NNP Number=Sing 14 compound _ _ 14 category category NOUN NN Number=Sing 24 nsubj _ _ 15 of of ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 group group NOUN NN Number=Sing 18 compound _ _ 18 action action NOUN NN Number=Sing 15 pobj _ _ 19 and and CCONJ CC ConjType=Cmp 14 cc _ _ 20 the the DET DT Definite=Def|PronType=Art 23 det _ _ 21 invariant invariant ADJ JJ Degree=Pos 23 amod _ _ 22 topological topological ADJ JJ Degree=Pos 23 amod _ _ 23 complexity complexity NOUN NN Number=Sing 14 conj _ _ 24 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 25 invariant invariant ADJ JJ Degree=Pos 24 acomp _ _ 26 under under ADP IN _ 24 prep _ _ 27 Morita Morita PROPN NNP Number=Sing 28 compound _ _ 28 equivalence equivalence NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = This allows a definition of topological complexity for orbifolds. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 definition definition NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 topological topological ADJ JJ Degree=Pos 7 amod _ _ 7 complexity complexity NOUN NN Number=Sing 5 pobj _ _ 8 for for ADP IN _ 4 prep _ _ 9 orbifolds orbifold NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 18 # sent_id = 1 # text = The term ``Boolean category'' should be used for describing an object that is to categories what a Boolean algebra is to posets. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 term term NOUN NN Number=Sing 6 nmod _ _ 3 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 6 punct _ SpaceAfter=No 4 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 6 punct _ SpaceAfter=No 5 Boolean boolean ADJ JJ Degree=Pos 6 amod _ _ 6 category category NOUN NN Number=Sing 10 nsubjpass _ SpaceAfter=No 7 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 6 punct _ _ 8 should should AUX MD VerbForm=Fin 10 aux _ _ 9 be be AUX VB VerbForm=Inf 10 auxpass _ _ 10 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 11 for for ADP IN _ 10 prep _ _ 12 describing describe VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 11 pcomp _ _ 13 an an DET DT Definite=Ind|PronType=Art 14 det _ _ 14 object object NOUN NN Number=Sing 12 dobj _ _ 15 that that PRON WDT PronType=Rel 16 nsubj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 relcl _ _ 17 to to ADP IN _ 16 prep _ _ 18 categories category NOUN NNS Number=Plur 17 pobj _ _ 19 what what PRON WP _ 23 attr _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 Boolean boolean ADJ JJ Degree=Pos 22 amod _ _ 22 algebra algebra NOUN NN Number=Sing 23 nsubj _ _ 23 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 ccomp _ _ 24 to to ADP IN _ 23 prep _ _ 25 posets poset NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = More specifically, a Boolean category should provide the abstract algebraic structure underlying the proofs in Boolean Logic, in the same sense as a Cartesian closed category captures the proofs in intuitionistic logic and a $ * $ - autonomous category captures the proofs in linear logic. 1 More more ADV RBR Degree=Cmp 2 advmod _ _ 2 specifically specifically ADV RB _ 8 advmod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 8 punct _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 Boolean boolean ADJ JJ Degree=Pos 6 amod _ _ 6 category category NOUN NN Number=Sing 8 nsubj _ _ 7 should should AUX MD VerbForm=Fin 8 aux _ _ 8 provide provide VERB VB VerbForm=Inf 0 ROOT _ _ 9 the the DET DT Definite=Def|PronType=Art 12 det _ _ 10 abstract abstract ADJ JJ Degree=Pos 12 amod _ _ 11 algebraic algebraic ADJ JJ Degree=Pos 12 amod _ _ 12 structure structure NOUN NN Number=Sing 8 dobj _ _ 13 underlying underlie VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 acl _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 proofs proof NOUN NNS Number=Plur 13 dobj _ _ 16 in in ADP IN _ 15 prep _ _ 17 Boolean Boolean PROPN NNP Number=Sing 18 compound _ _ 18 Logic Logic PROPN NNP Number=Sing 16 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 8 punct _ _ 20 in in ADP IN _ 29 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 23 det _ _ 22 same same ADJ JJ Degree=Pos 23 amod _ _ 23 sense sense NOUN NN Number=Sing 20 pobj _ _ 24 as as SCONJ IN _ 29 mark _ _ 25 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 26 Cartesian Cartesian PROPN NNP Number=Sing 28 amod _ _ 27 closed closed ADJ JJ Degree=Pos 28 amod _ _ 28 category category NOUN NN Number=Sing 29 nsubj _ _ 29 captures capture VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 conj _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 proofs proof NOUN NNS Number=Plur 29 dobj _ _ 32 in in ADP IN _ 29 prep _ _ 33 intuitionistic intuitionistic ADJ JJ Degree=Pos 34 amod _ _ 34 logic logic NOUN NN Number=Sing 32 pobj _ _ 35 and and CCONJ CC ConjType=Cmp 29 cc _ _ 36 a a DET DT Definite=Ind|PronType=Art 40 det _ _ 37 $ * $ $ * $ SYM $ _ 39 advmod _ _ 38 - - PUNCT HYPH PunctType=Dash 39 punct _ _ 39 autonomous autonomous ADJ JJ Degree=Pos 40 amod _ _ 40 category category NOUN NN Number=Sing 41 nsubj _ _ 41 captures capture VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 29 conj _ _ 42 the the DET DT Definite=Def|PronType=Art 43 det _ _ 43 proofs proof NOUN NNS Number=Plur 41 dobj _ _ 44 in in ADP IN _ 41 prep _ _ 45 linear linear ADJ JJ Degree=Pos 46 amod _ _ 46 logic logic NOUN NN Number=Sing 44 pobj _ SpaceAfter=No 47 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 3 # text = However, recent work has shown that there is no canonical axiomatisation of a Boolean category. 1 However however ADV RB _ 6 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 6 punct _ _ 3 recent recent ADJ JJ Degree=Pos 4 amod _ _ 4 work work NOUN NN Number=Sing 6 nsubj _ _ 5 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 aux _ _ 6 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 that that SCONJ IN _ 9 mark _ _ 8 there there PRON EX _ 9 expl _ _ 9 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 10 no no DET DT _ 12 det _ _ 11 canonical canonical ADJ JJ Degree=Pos 12 amod _ _ 12 axiomatisation axiomatisation NOUN NN Number=Sing 9 attr _ _ 13 of of ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 Boolean boolean ADJ JJ Degree=Pos 16 amod _ _ 16 category category NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = In this work, we will see a series (with increasing strength) of possible such axiomatisations, all based on the notion of $ * $ - autonomous category. 1 In in ADP IN _ 7 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 work work NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 7 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 6 will will AUX MD VerbForm=Fin 7 aux _ _ 7 see see VERB VB VerbForm=Inf 0 ROOT _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 series series NOUN NN Number=Sing 7 dobj _ _ 10 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 9 punct _ SpaceAfter=No 11 with with ADP IN _ 9 prep _ _ 12 increasing increase VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 amod _ _ 13 strength strength NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 14 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 13 punct _ _ 15 of of ADP IN _ 13 prep _ _ 16 possible possible ADJ JJ Degree=Pos 18 amod _ _ 17 such such ADJ JJ Degree=Pos 18 amod _ _ 18 axiomatisations axiomatisation NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 9 punct _ _ 20 all all PRON DT _ 9 appos _ _ 21 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 acl _ _ 22 on on ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 notion notion NOUN NN Number=Sing 22 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 $ * $ $ * $ SYM $ _ 28 advmod _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 autonomous autonomous ADJ JJ Degree=Pos 29 amod _ _ 29 category category NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 5 # text = We will particularly focus on the medial map, which has its origin in an inference rule in $ KS $ , a cut - free deductive system for Boolean logic in the calculus of structures. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 2 will will AUX MD VerbForm=Fin 4 aux _ _ 3 particularly particularly ADV RB _ 4 advmod _ _ 4 focus focus VERB VB VerbForm=Inf 0 ROOT _ _ 5 on on ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 medial medial ADJ JJ Degree=Pos 8 amod _ _ 8 map map NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 8 punct _ _ 10 which which PRON WDT _ 11 nsubj _ _ 11 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 relcl _ _ 12 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 13 poss _ _ 13 origin origin NOUN NN Number=Sing 11 dobj _ _ 14 in in ADP IN _ 11 prep _ _ 15 an an DET DT Definite=Ind|PronType=Art 17 det _ _ 16 inference inference NOUN NN Number=Sing 17 compound _ _ 17 rule rule NOUN NN Number=Sing 14 pobj _ _ 18 in in ADP IN _ 17 prep _ _ 19 $ KS $ $ ks $ SYM $ _ 18 pobj _ _ 20 , , PUNCT , PunctType=Comm 8 punct _ _ 21 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 22 cut cut NOUN NN Number=Sing 24 npadvmod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 free free ADJ JJ Degree=Pos 26 amod _ _ 25 deductive deductive ADJ JJ Degree=Pos 26 amod _ _ 26 system system NOUN NN Number=Sing 8 appos _ _ 27 for for ADP IN _ 26 prep _ _ 28 Boolean boolean ADJ JJ Degree=Pos 29 amod _ _ 29 logic logic NOUN NN Number=Sing 27 pobj _ _ 30 in in ADP IN _ 29 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 calculus calculus NOUN NN Number=Sing 30 pobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 structures structure NOUN NNS Number=Plur 33 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 6 # text = Finally, we will present a category of proof nets as a particularly well - behaved example of a Boolean category. 1 Finally finally ADV RB _ 5 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 5 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 4 will will AUX MD VerbForm=Fin 5 aux _ _ 5 present present VERB VB VerbForm=Inf 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 category category NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 proof proof NOUN NN Number=Sing 10 compound _ _ 10 nets net NOUN NNS Number=Plur 8 pobj _ _ 11 as as ADP IN _ 5 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 13 particularly particularly ADV RB _ 16 advmod _ _ 14 well well ADV RB Degree=Pos 16 advmod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 behaved behave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 17 example example NOUN NN Number=Sing 11 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 20 Boolean boolean ADJ JJ Degree=Pos 21 amod _ _ 21 category category NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 19 # sent_id = 1 # text = We raise the question of saying what it means for a functor between abelian categories to preserve homology. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 raise raise VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 question question NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 saying say VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 pcomp _ _ 7 what what PRON WP _ 9 dobj _ _ 8 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 9 nsubj _ _ 9 means mean VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 10 for for ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 functor functor NOUN NN Number=Sing 10 pobj _ _ 13 between between ADP IN _ 12 prep _ _ 14 abelian abelian ADJ JJ Degree=Pos 15 amod _ _ 15 categories category NOUN NNS Number=Plur 13 pobj _ _ 16 to to PART TO _ 17 aux _ _ 17 preserve preserve VERB VB VerbForm=Inf 9 advcl _ _ 18 homology homology NOUN NN Number=Sing 17 dobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We give a kind of answer and explore the reasons it is unsatisfactory in general (although fine for left or right exact functors). 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 kind kind NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 answer answer NOUN NN Number=Sing 5 pobj _ _ 7 and and CCONJ CC ConjType=Cmp 2 cc _ _ 8 explore explore VERB VB VerbForm=Inf 2 conj _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 reasons reason NOUN NNS Number=Plur 8 dobj _ _ 11 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 12 nsubj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 relcl _ _ 13 unsatisfactory unsatisfactory ADJ JJ Degree=Pos 12 acomp _ _ 14 in in ADP IN _ 13 prep _ _ 15 general general ADJ JJ Degree=Pos 14 amod _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 8 punct _ SpaceAfter=No 17 although although SCONJ IN _ 18 mark _ _ 18 fine fine ADJ JJ Degree=Pos 8 advcl _ _ 19 for for ADP IN _ 18 prep _ _ 20 left left ADJ JJ Degree=Pos 24 amod _ _ 21 or or CCONJ CC ConjType=Cmp 20 cc _ _ 22 right right ADJ JJ Degree=Pos 20 conj _ _ 23 exact exact ADJ JJ Degree=Pos 24 amod _ _ 24 functors functor NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 25 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 18 punct _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 20 # sent_id = 1 # text = A category $ C $ is additive if and only if, for every object $ B $ of $ C $ , the category $ Pt(C, B) $ of pointed objects in the comma category $ (C, B) $ is canonically equivalent to $ C $ . 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 category category NOUN NN Number=Sing 4 nsubj _ _ 3 $ C $ $ c $ SYM $ _ 2 appos _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 additive additive ADJ JJ Degree=Pos 4 acomp _ _ 6 if if SCONJ IN _ 29 mark _ _ 7 and and CCONJ CC ConjType=Cmp 29 cc _ _ 8 only only ADV RB _ 9 advmod _ _ 9 if if SCONJ IN _ 29 mark _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 29 punct _ _ 11 for for ADP IN _ 29 prep _ _ 12 every every DET DT _ 13 det _ _ 13 object object NOUN NN Number=Sing 11 pobj _ _ 14 $ B $ $ b $ SYM $ _ 11 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 $ C $ $ c $ SYM $ _ 15 pobj _ _ 17 , , PUNCT , PunctType=Comm 29 punct _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 category category NOUN NN Number=Sing 29 nsubj _ _ 20 $ Pt(C, B) $ $ pt(c, b) $ SYM $ _ 19 appos _ _ 21 of of ADP IN _ 20 prep _ _ 22 pointed pointed ADJ JJ Degree=Pos 23 amod _ _ 23 objects object NOUN NNS Number=Plur 21 pobj _ _ 24 in in ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 27 det _ _ 26 comma comma ADJ JJ Degree=Pos 27 amod _ _ 27 category category NOUN NN Number=Sing 24 pobj _ _ 28 $ (C, B) $ $ (c, b) $ X FW Foreign=Yes 27 appos _ _ 29 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 advcl _ _ 30 canonically canonically ADV RB _ 31 advmod _ _ 31 equivalent equivalent ADJ JJ Degree=Pos 29 acomp _ _ 32 to to ADP IN _ 31 prep _ _ 33 $ C $ $ c $ SYM $ _ 32 pobj _ _ 34 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = We reformulate the proof of this known result in order to obtain a stronger one that uses not all objects of $ B $ of $ C $ , but only a conveniently defined generating class $ S $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 reformulate reformulate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 proof proof NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 this this DET DT Number=Sing|PronType=Dem 8 det _ _ 7 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 8 result result NOUN NN Number=Sing 5 pobj _ _ 9 in in ADP IN _ 2 prep _ _ 10 order order NOUN NN Number=Sing 9 pobj _ _ 11 to to PART TO _ 12 aux _ _ 12 obtain obtain VERB VB VerbForm=Inf 10 acl _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 stronger strong ADJ JJR Degree=Cmp 15 amod _ _ 15 one one NOUN NN Number=Sing 12 dobj _ _ 16 that that PRON WDT PronType=Rel 17 nsubj _ _ 17 uses use VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 relcl _ _ 18 not not PART RB Polarity=Neg 20 neg _ _ 19 all all DET DT _ 20 det _ _ 20 objects object NOUN NNS Number=Plur 17 dobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 $ B $ $ b $ SYM $ _ 21 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 $ C $ $ c $ SYM $ _ 23 pobj _ _ 25 , , PUNCT , PunctType=Comm 2 punct _ _ 26 but but CCONJ CC ConjType=Cmp 2 cc _ _ 27 only only ADV RB _ 32 advmod _ _ 28 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 29 conveniently conveniently ADV RB _ 30 advmod _ _ 30 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 amod _ _ 31 generating generating NOUN NN Number=Sing 32 compound _ _ 32 class class NOUN NN Number=Sing 33 compound _ _ 33 $ S $ $ s $ SYM $ _ 2 conj _ _ 34 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = If $ C $ is a variety of universal algebras, then one can take $ S $ to be the class consisting of any single free algebra on a non - empty set. 1 If if SCONJ IN _ 3 mark _ _ 2 $ C $ $ c $ SYM $ _ 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 advcl _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 variety variety NOUN NN Number=Sing 3 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 universal universal ADJ JJ Degree=Pos 8 amod _ _ 8 algebras algebra NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 13 punct _ _ 10 then then ADV RB PronType=Dem 13 advmod _ _ 11 one one PRON PRP PronType=Prs 13 nsubj _ _ 12 can can AUX MD VerbForm=Fin 13 aux _ _ 13 take take VERB VB VerbForm=Inf 0 ROOT _ _ 14 $ S $ $ s $ SYM $ _ 13 dep _ _ 15 to to PART TO _ 16 aux _ _ 16 be be AUX VB VerbForm=Inf 13 xcomp _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 class class NOUN NN Number=Sing 16 attr _ _ 19 consisting consist VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 18 acl _ _ 20 of of ADP IN _ 19 prep _ _ 21 any any DET DT _ 24 det _ _ 22 single single ADJ JJ Degree=Pos 24 amod _ _ 23 free free ADJ JJ Degree=Pos 24 amod _ _ 24 algebra algebra NOUN NNS Number=Plur 20 pobj _ _ 25 on on ADP IN _ 24 prep _ _ 26 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 27 non non ADJ JJ Degree=Pos 29 amod _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 empty empty ADJ JJ Degree=Pos 30 amod _ _ 30 set set NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # doc_id = 21 # sent_id = 1 # text = Lawvere has urged a project of characterizing petit toposes which have the character of generalized spaces and gros toposes which have the character of categories of spaces. 1 Lawvere Lawvere PROPN NNP Number=Sing 3 nsubj _ _ 2 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 aux _ _ 3 urged urge VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 project project NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 characterizing characterize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 pcomp _ _ 8 petit petit NOUN NN Number=Sing 9 compound _ _ 9 toposes topos NOUN NNS Number=Plur 7 dobj _ _ 10 which which PRON WDT _ 11 nsubj _ _ 11 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 relcl _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 character character NOUN NN Number=Sing 11 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 16 spaces space NOUN NNS Number=Plur 14 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 gros gro NOUN NNS Number=Plur 19 compound _ _ 19 toposes topos NOUN NNS Number=Plur 13 conj _ _ 20 which which PRON WDT _ 21 nsubj _ _ 21 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 relcl _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 character character NOUN NN Number=Sing 21 dobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 categories category NOUN NNS Number=Plur 24 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 spaces space NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = Etendues and locally decidable toposes are seemingly petit and have a natural common generalization in sites with all idempotents identities. 1 Etendues etendue NOUN NNS Number=Plur 6 nsubj _ _ 2 and and CCONJ CC ConjType=Cmp 1 cc _ _ 3 locally locally ADV RB _ 4 advmod _ _ 4 decidable decidable ADJ JJ Degree=Pos 5 amod _ _ 5 toposes topos NOUN NNS Number=Plur 1 conj _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 seemingly seemingly ADV RB _ 6 advmod _ _ 8 petit petit ADJ JJ Degree=Pos 6 acomp _ _ 9 and and CCONJ CC ConjType=Cmp 6 cc _ _ 10 have have VERB VB VerbForm=Inf 6 conj _ _ 11 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 12 natural natural ADJ JJ Degree=Pos 14 amod _ _ 13 common common ADJ JJ Degree=Pos 14 amod _ _ 14 generalization generalization NOUN NN Number=Sing 10 dobj _ _ 15 in in ADP IN _ 14 prep _ _ 16 sites site NOUN NNS Number=Plur 15 pobj _ _ 17 with with ADP IN _ 16 prep _ _ 18 all all DET DT _ 20 det _ _ 19 idempotents idempotent NOUN NNS Number=Plur 20 compound _ _ 20 identities identity NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = This note shows every Grothendieck topos has such a site. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 note note NOUN NN Number=Sing 3 nsubj _ _ 3 shows show VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 every every DET DT _ 6 det _ _ 5 Grothendieck Grothendieck PROPN NNP Number=Sing 6 compound _ _ 6 topos topos PROPN NNP Number=Sing 7 nsubj _ _ 7 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 8 such such DET PDT _ 10 predet _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 site site NOUN NN Number=Sing 7 dobj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = More, it defines slanted products which take any site to an equivalent one way site, a site where all endomorphisms are identities. 1 More More ADJ JJR Degree=Cmp 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 4 nsubj _ _ 4 defines define VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 slanted slanted ADJ JJ Degree=Pos 6 amod _ _ 6 products product NOUN NNS Number=Plur 4 dobj _ _ 7 which which PRON WDT _ 8 nsubj _ _ 8 take take VERB VBP Tense=Pres|VerbForm=Fin 6 relcl _ _ 9 any any DET DT _ 10 det _ _ 10 site site NOUN NN Number=Sing 8 dobj _ _ 11 to to ADP IN _ 8 prep _ _ 12 an an DET DT Definite=Ind|PronType=Art 16 det _ _ 13 equivalent equivalent ADJ JJ Degree=Pos 16 amod _ _ 14 one one NUM CD NumType=Card 15 nummod _ _ 15 way way NOUN NN Number=Sing 16 compound _ _ 16 site site NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 19 site site NOUN NN Number=Sing 16 appos _ _ 20 where where SCONJ WRB _ 23 advmod _ _ 21 all all DET DT _ 22 det _ _ 22 endomorphisms endomorphism NOUN NNS Number=Plur 23 nsubj _ _ 23 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 19 relcl _ _ 24 identities identity NOUN NNS Number=Plur 23 attr _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = On the other hand subcanonical one - way sites are very special. 1 On on ADP IN _ 10 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 other other ADJ JJ Degree=Pos 4 amod _ _ 4 hand hand NOUN NN Number=Sing 1 pobj _ _ 5 subcanonical subcanonical ADJ JJ Degree=Pos 9 amod _ _ 6 one one NUM CD NumType=Card 8 nummod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 way way NOUN NN Number=Sing 9 compound _ _ 9 sites site NOUN NNS Number=Plur 10 nsubj _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 very very ADV RB _ 12 advmod _ _ 12 special special ADJ JJ Degree=Pos 10 acomp _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 6 # text = A site criterion for petit toposes will probably require subcanonical sites. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 site site NOUN NN Number=Sing 3 compound _ _ 3 criterion criterion NOUN NN Number=Sing 9 nsubj _ _ 4 for for ADP IN _ 3 prep _ _ 5 petit petit NOUN NN Number=Sing 6 compound _ _ 6 toposes topos NOUN NNS Number=Plur 4 pobj _ _ 7 will will AUX MD VerbForm=Fin 9 aux _ _ 8 probably probably ADV RB _ 9 advmod _ _ 9 require require VERB VB VerbForm=Inf 0 ROOT _ _ 10 subcanonical subcanonical ADJ JJ Degree=Pos 11 amod _ _ 11 sites site NOUN NNS Number=Plur 9 dobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 22 # sent_id = 1 # text = In this paper we explain the relationship between Frobenius objects in monoidal categories and adjunctions in 2 - categories. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 explain explain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 relationship relationship NOUN NN Number=Sing 5 dobj _ _ 8 between between ADP IN _ 7 prep _ _ 9 Frobenius Frobenius PROPN NNP Number=Sing 10 compound _ _ 10 objects object NOUN NNS Number=Plur 8 pobj _ _ 11 in in ADP IN _ 10 prep _ _ 12 monoidal monoidal ADJ JJ Degree=Pos 13 amod _ _ 13 categories category NOUN NNS Number=Plur 11 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 adjunctions adjunction NOUN NNS Number=Plur 13 conj _ _ 16 in in ADP IN _ 10 prep _ _ 17 2 2 NUM CD NumType=Card 19 nummod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 categories category NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = Specifically, we show that every Frobenius object in a monoidal category $ M $ arises from an ambijunction (simultaneous left and right adjoints) in some 2 - category $ mathcal{D} $ into which $ M $ fully and faithfully embeds. 1 Specifically specifically ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 14 mark _ _ 6 every every DET DT _ 8 det _ _ 7 Frobenius Frobenius PROPN NNP Number=Sing 8 compound _ _ 8 object object NOUN NN Number=Sing 14 nsubj _ _ 9 in in ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 monoidal monoidal ADJ JJ Degree=Pos 12 amod _ _ 12 category category NOUN NN Number=Sing 9 pobj _ _ 13 $ M $ $ m $ SYM $ _ 8 appos _ _ 14 arises arise VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 15 from from ADP IN _ 14 prep _ _ 16 an an DET DT Definite=Ind|PronType=Art 17 det _ _ 17 ambijunction ambijunction NOUN NN Number=Sing 15 pobj _ _ 18 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 23 punct _ SpaceAfter=No 19 simultaneous simultaneous ADJ JJ Degree=Pos 23 amod _ _ 20 left left ADJ JJ Degree=Pos 23 amod _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 right right ADJ JJ Degree=Pos 20 conj _ _ 23 adjoints adjoint NOUN NNS Number=Plur 17 appos _ SpaceAfter=No 24 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 23 punct _ _ 25 in in ADP IN _ 17 prep _ _ 26 some some DET DT _ 30 det _ _ 27 2 2 NUM CD NumType=Card 29 nummod _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 category category NOUN NN Number=Sing 30 nmod _ _ 30 $ mathcal{D} $ $ mathcal{d} $ SYM $ _ 25 pobj _ _ 31 into into ADP IN _ 37 prep _ _ 32 which which PRON WDT _ 31 pobj _ _ 33 $ M $ $ m $ SYM $ _ 37 dep _ _ 34 fully fully ADV RB _ 37 advmod _ _ 35 and and CCONJ CC ConjType=Cmp 34 cc _ _ 36 faithfully faithfully ADV RB _ 34 conj _ _ 37 embeds embed VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 relcl _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = Since a 2D topological quantum field theory is equivalent to a commutative Frobenius algebra, this result also shows that every 2D TQFT is obtained from an ambijunction in some 2 - category. 1 Since since SCONJ IN _ 8 mark _ _ 2 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 3 2D 2D PROPN NNP Number=Sing 7 compound _ _ 4 topological topological ADJ JJ Degree=Pos 7 amod _ _ 5 quantum quantum NOUN NN Number=Sing 6 compound _ _ 6 field field NOUN NN Number=Sing 7 compound _ _ 7 theory theory NOUN NN Number=Sing 8 nsubj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 advcl _ _ 9 equivalent equivalent ADJ JJ Degree=Pos 8 acomp _ _ 10 to to ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 12 commutative commutative ADJ JJ Degree=Pos 14 amod _ _ 13 Frobenius Frobenius PROPN NNP Number=Sing 14 compound _ _ 14 algebra algebra PROPN NNP Number=Sing 10 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 19 punct _ _ 16 this this DET DT Number=Sing|PronType=Dem 17 det _ _ 17 result result NOUN NN Number=Sing 19 nsubj _ _ 18 also also ADV RB _ 19 advmod _ _ 19 shows show VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 20 that that SCONJ IN _ 25 mark _ _ 21 every every DET DT _ 23 det _ _ 22 2D 2D PROPN NNP Number=Sing 23 compound _ _ 23 TQFT TQFT PROPN NNP Number=Sing 25 nsubjpass _ _ 24 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 25 auxpass _ _ 25 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 ccomp _ _ 26 from from ADP IN _ 25 prep _ _ 27 an an DET DT Definite=Ind|PronType=Art 28 det _ _ 28 ambijunction ambijunction NOUN NN Number=Sing 26 pobj _ _ 29 in in ADP IN _ 28 prep _ _ 30 some some DET DT _ 33 det _ _ 31 2 2 NUM CD NumType=Card 33 nummod _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 category category NOUN NN Number=Sing 29 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 4 # text = Our theorem is proved by extending the theory of adjoint monads to the context of an arbitrary 2 - category and utilizing the free completion under Eilenberg - Moore objects. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 theorem theorem NOUN NN Number=Sing 4 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 by by ADP IN _ 4 agent _ _ 6 extending extend VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 pcomp _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 theory theory NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 adjoint adjoint NOUN NN Number=Sing 11 compound _ _ 11 monads monad NOUN NNS Number=Plur 9 pobj _ _ 12 to to ADP IN _ 6 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 context context NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 an an DET DT Definite=Ind|PronType=Art 20 det _ _ 17 arbitrary arbitrary ADJ JJ Degree=Pos 20 amod _ _ 18 2 2 NUM CD NumType=Card 20 nummod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 category category NOUN NN Number=Sing 15 pobj _ _ 21 and and CCONJ CC ConjType=Cmp 6 cc _ _ 22 utilizing utilize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 conj _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 free free ADJ JJ Degree=Pos 25 amod _ _ 25 completion completion NOUN NN Number=Sing 22 dobj _ _ 26 under under ADP IN _ 22 prep _ _ 27 Eilenberg Eilenberg PROPN NNP Number=Sing 29 compound _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 Moore Moore PROPN NNP Number=Sing 30 compound _ _ 30 objects object NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = We then categorify this theorem by replacing the monoidal category $ M $ with a semistrict monoidal 2 - category $ M $ , and replacing the 2 - category $ mathcal{D} $ into which it embeds by a semistrict 3 - category. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 categorify categorify VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 theorem theorem ADJ JJ Degree=Pos 3 dobj _ _ 6 by by ADP IN _ 3 prep _ _ 7 replacing replace VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 pcomp _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 monoidal monoidal ADJ JJ Degree=Pos 10 amod _ _ 10 category category NOUN NN Number=Sing 7 dobj _ _ 11 $ M $ $ m $ SYM $ _ 7 dep _ _ 12 with with ADP IN _ 7 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 semistrict semistrict ADJ JJ Degree=Pos 15 amod _ _ 15 monoidal monoidal ADJ JJ Degree=Pos 12 pobj _ _ 16 2 2 NUM CD NumType=Card 18 nummod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 category category NOUN NN Number=Sing 19 compound _ _ 19 $ M $ $ m $ SYM $ _ 7 dep _ _ 20 , , PUNCT , PunctType=Comm 7 punct _ _ 21 and and CCONJ CC ConjType=Cmp 7 cc _ _ 22 replacing replace VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 conj _ _ 23 the the DET DT Definite=Def|PronType=Art 27 det _ _ 24 2 2 NUM CD NumType=Card 26 nummod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 category category NOUN NN Number=Sing 27 nmod _ _ 27 $ mathcal{D} $ $ mathcal{d} $ SYM $ _ 22 dobj _ _ 28 into into ADP IN _ 31 prep _ _ 29 which which PRON WDT _ 28 pobj _ _ 30 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 31 nsubj _ _ 31 embeds embed VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 27 relcl _ _ 32 by by ADP IN _ 31 prep _ _ 33 a a DET DT Definite=Ind|PronType=Art 37 det _ _ 34 semistrict semistrict ADJ JJ Degree=Pos 37 amod _ _ 35 3 3 NUM CD NumType=Card 37 nummod _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 category category NOUN NN Number=Sing 32 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = To state this more powerful result, we must first define the notion of a `Frobenius pseudomonoid', which categorifies that of a Frobenius object. 1 To to PART TO _ 2 aux _ _ 2 state state VERB VB VerbForm=Inf 11 advcl _ _ 3 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 4 more more ADV RBR Degree=Cmp 5 advmod _ _ 5 powerful powerful ADJ JJ Degree=Pos 6 amod _ _ 6 result result NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 11 punct _ _ 8 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 11 nsubj _ _ 9 must must AUX MD VerbForm=Fin 11 aux _ _ 10 first first ADV RB _ 11 advmod _ _ 11 define define VERB VB VerbForm=Inf 0 ROOT _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 notion notion NOUN NN Number=Sing 11 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 16 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 18 punct _ SpaceAfter=No 17 Frobenius Frobenius PROPN NNP Number=Sing 18 compound _ _ 18 pseudomonoid pseudomonoid NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 19 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 18 punct _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 18 punct _ _ 21 which which PRON WDT _ 22 nsubj _ _ 22 categorifies categorifie VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 relcl _ _ 23 that that PRON DT Number=Sing|PronType=Dem 22 dobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 26 Frobenius Frobenius PROPN NNP Number=Sing 27 compound _ _ 27 object object NOUN NN Number=Sing 24 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 7 # text = We then define the notion of a `pseudo ambijunction', categorifying that of an ambijunction. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 notion notion NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 8 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 10 punct _ SpaceAfter=No 9 pseudo pseudo NOUN NN Number=Sing 10 compound _ _ 10 ambijunction ambijunction NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 11 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 3 punct _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 3 punct _ _ 13 categorifying categorifye VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 advcl _ _ 14 that that PRON DT Number=Sing|PronType=Dem 13 dobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 an an DET DT Definite=Ind|PronType=Art 17 det _ _ 17 ambijunction ambijunction NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 8 # text = In each case, the idea is that all the usual axioms now hold only up to coherent isomorphism. 1 In in ADP IN _ 7 prep _ _ 2 each each DET DT _ 3 det _ _ 3 case case NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 7 punct _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 idea idea NOUN NN Number=Sing 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 that that SCONJ IN _ 14 mark _ _ 9 all all DET PDT _ 12 predet _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 usual usual ADJ JJ Degree=Pos 12 amod _ _ 12 axioms axiom NOUN NNS Number=Plur 14 nsubj _ _ 13 now now ADV RB _ 14 advmod _ _ 14 hold hold VERB VBP Tense=Pres|VerbForm=Fin 7 ccomp _ _ 15 only only ADV RB _ 16 advmod _ _ 16 up up ADP IN _ 14 prep _ _ 17 to to ADP IN _ 16 prep _ _ 18 coherent coherent ADJ JJ Degree=Pos 19 amod _ _ 19 isomorphism isomorphism NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 9 # text = Finally, we show that every Frobenius pseudomonoid in a semistrict monoidal 2 - category arises from a pseudo ambijunction in some semistrict 3 - category. 1 Finally finally ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 16 mark _ _ 6 every every DET DT _ 8 det _ _ 7 Frobenius Frobenius PROPN NNP Number=Sing 8 compound _ _ 8 pseudomonoid pseudomonoid NOUN NN Number=Sing 16 nsubj _ _ 9 in in ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 11 semistrict semistrict ADJ JJ Degree=Pos 15 amod _ _ 12 monoidal monoidal ADJ JJ Degree=Pos 15 amod _ _ 13 2 2 NUM CD NumType=Card 15 nummod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 category category NOUN NN Number=Sing 9 pobj _ _ 16 arises arise VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 17 from from ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 pseudo pseudo NOUN NN Number=Sing 20 compound _ _ 20 ambijunction ambijunction NOUN NN Number=Sing 17 pobj _ _ 21 in in ADP IN _ 20 prep _ _ 22 some some DET DT _ 26 det _ _ 23 semistrict semistrict ADJ JJ Degree=Pos 26 amod _ _ 24 3 3 NUM CD NumType=Card 26 nummod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 category category NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 23 # sent_id = 1 # text = A flow is homotopy continuous if it is indefinitely divisible up to $ S $ - homotopy. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 flow flow NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 homotopy homotopy VERB VB VerbForm=Inf 0 ROOT _ _ 5 continuous continuous ADJ JJ Degree=Pos 4 oprd _ _ 6 if if SCONJ IN _ 8 mark _ _ 7 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 8 nsubj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 advcl _ _ 9 indefinitely indefinitely ADV RB _ 10 advmod _ _ 10 divisible divisible ADJ JJ Degree=Pos 8 acomp _ _ 11 up up ADP IN _ 15 advmod _ _ 12 to to PART TO _ 11 prep _ _ 13 $ S $ $ s $ SYM $ _ 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 homotopy homotopy NOUN NN Number=Sing 4 advmod _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = The full subcategory of cofibrant homotopy continuous flows has nice features. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 full full ADJ JJ Degree=Pos 3 amod _ _ 3 subcategory subcategory NOUN NN Number=Sing 9 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 cofibrant cofibrant NOUN NN Number=Sing 6 compound _ _ 6 homotopy homotopy PROPN NNP Number=Sing 8 nmod _ _ 7 continuous continuous ADJ JJ Degree=Pos 8 amod _ _ 8 flows flow NOUN NNS Number=Plur 4 pobj _ _ 9 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 nice nice ADJ JJ Degree=Pos 11 amod _ _ 11 features feature NOUN NNS Number=Plur 9 dobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 3 # text = Not only it is big enough to contain all dihomotopy types, but also a morphism between them is a weak dihomotopy equivalence if and only if it is invertible up to dihomotopy. 1 Not not PART RB Polarity=Neg 4 preconj _ _ 2 only only ADV RB _ 1 advmod _ _ 3 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 big big ADJ JJ Degree=Pos 4 acomp _ _ 6 enough enough ADV RB _ 5 advmod _ _ 7 to to PART TO _ 8 aux _ _ 8 contain contain VERB VB VerbForm=Inf 5 xcomp _ _ 9 all all DET DT _ 11 det _ _ 10 dihomotopy dihomotopy NOUN NN Number=Sing 11 amod _ _ 11 types type NOUN NNS Number=Plur 8 dobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 4 punct _ _ 13 but but CCONJ CC ConjType=Cmp 4 cc _ _ 14 also also ADV RB _ 13 advmod _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 morphism morphism NOUN NN Number=Sing 19 nsubj _ _ 17 between between ADP IN _ 16 prep _ _ 18 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 17 pobj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 conj _ _ 20 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 21 weak weak ADJ JJ Degree=Pos 23 amod _ _ 22 dihomotopy dihomotopy NOUN NN Number=Sing 23 compound _ _ 23 equivalence equivalence NOUN NN Number=Sing 19 attr _ _ 24 if if SCONJ IN _ 29 mark _ _ 25 and and CCONJ CC ConjType=Cmp 29 cc _ _ 26 only only ADV RB _ 29 advmod _ _ 27 if if SCONJ IN _ 29 mark _ _ 28 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 29 nsubj _ _ 29 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 advcl _ _ 30 invertible invertible ADJ JJ Degree=Pos 29 acomp _ _ 31 up up ADP RP _ 29 prep _ _ 32 to to ADP IN _ 31 prep _ _ 33 dihomotopy dihomotopy VERB VB VerbForm=Inf 32 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 4 # text = Thus, the category of cofibrant homotopy continuous flows provides an implementation of Whitehead's theorem for the full dihomotopy relation, and not only for $ S $ - homotopy as in previous works of the author. 1 Thus thus ADV RB _ 10 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 10 punct _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 category category NOUN NN Number=Sing 10 nsubj _ _ 5 of of ADP IN _ 4 prep _ _ 6 cofibrant cofibrant NOUN NN Number=Sing 7 compound _ _ 7 homotopy homotopy PROPN NNP Number=Sing 5 pobj _ _ 8 continuous continuous ADJ JJ Degree=Pos 9 amod _ _ 9 flows flow NOUN NNS Number=Plur 4 appos _ _ 10 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 12 implementation implementation NOUN NN Number=Sing 10 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 Whitehead Whitehead PROPN NNP Number=Sing 16 poss _ SpaceAfter=No 15 's 's PART POS _ 14 case _ _ 16 theorem theorem ADJ JJ Degree=Pos 13 pobj _ _ 17 for for ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 21 det _ _ 19 full full ADJ JJ Degree=Pos 21 amod _ _ 20 dihomotopy dihomotopy NOUN NN Number=Sing 21 compound _ _ 21 relation relation NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 10 punct _ _ 23 and and CCONJ CC ConjType=Cmp 10 cc _ _ 24 not not PART RB Polarity=Neg 26 preconj _ _ 25 only only ADV RB _ 24 advmod _ _ 26 for for ADP IN _ 10 conj _ _ 27 $ S $ $ s $ SYM $ _ 29 compound _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 homotopy homotopy NOUN NN Number=Sing 26 pobj _ _ 30 as as ADP IN _ 29 prep _ _ 31 in in ADP IN _ 30 prep _ _ 32 previous previous ADJ JJ Degree=Pos 33 amod _ _ 33 works work NOUN NNS Number=Plur 31 pobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 the the DET DT Definite=Def|PronType=Art 36 det _ _ 36 author author NOUN NN Number=Sing 34 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 5 # text = This fact is not the consequence of the existence of a model structure on the category of flows because it is known that there does not exist any model structure on it whose weak equivalences are exactly the weak dihomotopy equivalences. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 fact fact NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 not not PART RB Polarity=Neg 3 neg _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 consequence consequence NOUN NN Number=Sing 3 attr _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 existence existence NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 model model NOUN NN Number=Sing 13 compound _ _ 13 structure structure NOUN NN Number=Sing 10 pobj _ _ 14 on on ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 category category NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 flows flow NOUN NNS Number=Plur 17 pobj _ _ 19 because because SCONJ IN _ 22 mark _ _ 20 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 22 nsubjpass _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 auxpass _ _ 22 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 36 advcl _ _ 23 that that SCONJ IN _ 27 mark _ _ 24 there there PRON EX _ 27 expl _ _ 25 does do AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 27 aux _ _ 26 not not PART RB Polarity=Neg 27 neg _ _ 27 exist exist VERB VB VerbForm=Inf 22 ccomp _ _ 28 any any DET DT _ 30 det _ _ 29 model model NOUN NN Number=Sing 30 compound _ _ 30 structure structure NOUN NN Number=Sing 27 dobj _ _ 31 on on ADP IN _ 30 prep _ _ 32 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 31 pobj _ _ 33 whose whose DET WP$ Poss=Yes 35 poss _ _ 34 weak weak ADJ JJ Degree=Pos 35 amod _ _ 35 equivalences equivalence NOUN NNS Number=Plur 36 nsubj _ _ 36 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 37 exactly exactly ADV RB _ 41 advmod _ _ 38 the the DET DT Definite=Def|PronType=Art 41 det _ _ 39 weak weak ADJ JJ Degree=Pos 41 amod _ _ 40 dihomotopy dihomotopy NOUN NN Number=Sing 41 compound _ _ 41 equivalences equivalence NOUN NNS Number=Plur 36 attr _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = This fact is an application of a general result for the localization of a model category with respect to a weak factorization system. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 fact fact NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 5 application application NOUN NN Number=Sing 3 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 general general ADJ JJ Degree=Pos 9 amod _ _ 9 result result NOUN NN Number=Sing 6 pobj _ _ 10 for for ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 localization localization NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 model model NOUN NN Number=Sing 16 compound _ _ 16 category category NOUN NN Number=Sing 13 pobj _ _ 17 with with ADP IN _ 12 prep _ _ 18 respect respect NOUN NN Number=Sing 17 pobj _ _ 19 to to ADP IN _ 18 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 21 weak weak ADJ JJ Degree=Pos 23 amod _ _ 22 factorization factorization NOUN NN Number=Sing 23 compound _ _ 23 system system NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 24 # sent_id = 1 # text = We give here some examples of non pointed protomodular categories $ mathbb C $ satisfying a property similar to the property of representation of actions which holds for the pointed protomodular category $ Gp $ of groups: any slice category of $ Gp $ , any category of groupoids with a fixed set of objects, any essentially affine category. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 here here ADV RB PronType=Dem 2 advmod _ _ 4 some some DET DT _ 5 det _ _ 5 examples example NOUN NNS Number=Plur 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 non non PROPN NNP Number=Sing 8 compound _ _ 8 pointed point VERB VBD Tense=Past|VerbForm=Fin 10 amod _ _ 9 protomodular protomodular ADJ JJ Degree=Pos 10 amod _ _ 10 categories category NOUN NNS Number=Plur 6 pobj _ _ 11 $ mathbb C $ $ mathbb c $ SYM $ _ 2 dobj _ _ 12 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 property property NOUN NN Number=Sing 12 dobj _ _ 15 similar similar ADJ JJ Degree=Pos 14 amod _ _ 16 to to ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 property property NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 representation representation NOUN NN Number=Sing 19 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 actions action NOUN NNS Number=Plur 21 pobj _ _ 23 which which PRON WDT _ 24 nsubj _ _ 24 holds hold VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 relcl _ _ 25 for for ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 29 det _ _ 27 pointed pointed ADJ JJ Degree=Pos 29 amod _ _ 28 protomodular protomodular ADJ JJ Degree=Pos 29 amod _ _ 29 category category NOUN NN Number=Sing 25 pobj _ _ 30 $ Gp $ $ gp $ SYM $ _ 29 appos _ _ 31 of of ADP IN _ 29 prep _ _ 32 groups group NOUN NNS Number=Plur 31 pobj _ SpaceAfter=No 33 : : PUNCT : _ 2 punct _ _ 34 any any DET DT _ 36 det _ _ 35 slice slice NOUN NN Number=Sing 36 compound _ _ 36 category category NOUN NN Number=Sing 5 appos _ _ 37 of of ADP IN _ 36 prep _ _ 38 $ Gp $ $ gp $ SYM $ _ 37 pobj _ _ 39 , , PUNCT , PunctType=Comm 36 punct _ _ 40 any any DET DT _ 41 det _ _ 41 category category NOUN NN Number=Sing 36 appos _ _ 42 of of ADP IN _ 41 prep _ _ 43 groupoids groupoid NOUN NNS Number=Plur 42 pobj _ _ 44 with with ADP IN _ 41 prep _ _ 45 a a DET DT Definite=Ind|PronType=Art 47 det _ _ 46 fixed fix VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 47 amod _ _ 47 set set NOUN NN Number=Sing 44 pobj _ _ 48 of of ADP IN _ 47 prep _ _ 49 objects object NOUN NNS Number=Plur 48 pobj _ SpaceAfter=No 50 , , PUNCT , PunctType=Comm 47 punct _ _ 51 any any DET DT _ 54 det _ _ 52 essentially essentially ADV RB _ 53 advmod _ _ 53 affine affine ADJ JJ Degree=Pos 54 amod _ _ 54 category category NOUN NN Number=Sing 36 appos _ SpaceAfter=No 55 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = This property gives rise to an internal construction of the center of any object $ X $ , and consequently to a specific characterization of the abelian objects in $ mathbb C $ . 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 property property NOUN NN Number=Sing 3 nsubj _ _ 3 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 rise rise VERB VB VerbForm=Inf 3 dobj _ _ 5 to to ADP IN _ 4 prep _ _ 6 an an DET DT Definite=Ind|PronType=Art 8 det _ _ 7 internal internal ADJ JJ Degree=Pos 8 amod _ _ 8 construction construction NOUN NN Number=Sing 5 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 center center NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 any any DET DT _ 14 det _ _ 14 object object NOUN NN Number=Sing 12 pobj _ _ 15 $ X $ $ x $ SYM $ _ 3 dobj _ _ 16 , , PUNCT , PunctType=Comm 3 punct _ _ 17 and and CCONJ CC ConjType=Cmp 3 cc _ _ 18 consequently consequently ADV RB _ 19 advmod _ _ 19 to to ADP IN _ 3 conj _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 specific specific ADJ JJ Degree=Pos 22 amod _ _ 22 characterization characterization NOUN NN Number=Sing 19 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 26 det _ _ 25 abelian abelian ADJ JJ Degree=Pos 26 amod _ _ 26 objects object NOUN NNS Number=Plur 23 pobj _ _ 27 in in ADP IN _ 22 prep _ _ 28 $ mathbb C $ $ mathbb c $ SYM $ _ 27 pobj _ _ 29 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 25 # sent_id = 1 # text = The paper generalizes the notion of a congruence on a category and pursues some of its applications. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 generalizes generalize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 notion notion NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 congruence congruence NOUN NN Number=Sing 6 pobj _ _ 9 on on ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 category category NOUN NN Number=Sing 9 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 3 cc _ _ 13 pursues pursue VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 conj _ _ 14 some some PRON DT _ 13 dobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 17 poss _ _ 17 applications application NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = In particular, generalized congruences are used to provide a concrete construction of coequalizers in $ {cal C}at $ . 1 In in ADP IN _ 7 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 7 punct _ _ 4 generalized generalized ADJ JJ Degree=Pos 5 amod _ _ 5 congruences congruence NOUN NNS Number=Plur 7 nsubjpass _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 7 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 to to PART TO _ 9 aux _ _ 9 provide provide VERB VB VerbForm=Inf 7 xcomp _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 concrete concrete ADJ JJ Degree=Pos 12 amod _ _ 12 construction construction NOUN NN Number=Sing 9 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 coequalizers coequalizer NOUN NNS Number=Plur 13 pobj _ _ 15 in in ADP IN _ 12 prep _ _ 16 $ {cal C}at $ $ {cal c}at $ SYM $ _ 15 pobj _ _ 17 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = Extremal, regular and various other classes of epimorphic functors are characterized and inter - related. 1 Extremal Extremal PROPN NNP Number=Sing 11 nsubj _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 1 punct _ _ 3 regular regular ADJ JJ Degree=Pos 7 amod _ _ 4 and and CCONJ CC ConjType=Cmp 3 cc _ _ 5 various various ADJ JJ Degree=Pos 3 conj _ _ 6 other other ADJ JJ Degree=Pos 7 amod _ _ 7 classes class NOUN NNS Number=Plur 1 appos _ _ 8 of of ADP IN _ 7 prep _ _ 9 epimorphic epimorphic ADJ JJ Degree=Pos 10 amod _ _ 10 functors functor NOUN NNS Number=Plur 8 pobj _ _ 11 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 characterized characterize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 acomp _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 inter inter ADV RB _ 16 advmod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 conj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # doc_id = 26 # sent_id = 1 # text = We prove that certain categories arising from atoms in a Grothendieck topos are themselves Grothendieck toposes. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 13 mark _ _ 4 certain certain ADJ JJ Degree=Pos 5 amod _ _ 5 categories category NOUN NNS Number=Plur 13 nsubj _ _ 6 arising arise VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 acl _ _ 7 from from ADP IN _ 6 prep _ _ 8 atoms atom NOUN NNS Number=Plur 7 pobj _ _ 9 in in ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 Grothendieck Grothendieck PROPN NNP Number=Sing 12 compound _ _ 12 topos topo NOUN NNS Number=Plur 9 pobj _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 14 themselves themselves PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs|Reflex=Yes 13 attr _ _ 15 Grothendieck Grothendieck PROPN NNP Number=Sing 16 compound _ _ 16 toposes topos NOUN NNS Number=Plur 13 attr _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We also investigate enrichments of these categories over the base topos; there are in fact often two distinct enrichments. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 investigate investigate VERB VBP Tense=Pres|VerbForm=Fin 14 ccomp _ _ 4 enrichments enrichment NOUN NNS Number=Plur 3 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 these these DET DT Number=Plur|PronType=Dem 7 det _ _ 7 categories category NOUN NNS Number=Plur 5 pobj _ _ 8 over over ADP IN _ 4 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 base base NOUN NN Number=Sing 11 compound _ _ 11 topos topos NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 12 ; ; PUNCT : _ 14 punct _ _ 13 there there PRON EX _ 14 expl _ _ 14 are be VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 in in ADP IN _ 14 prep _ _ 16 fact fact NOUN NN Number=Sing 15 pobj _ _ 17 often often ADV RB _ 14 advmod _ _ 18 two two NUM CD NumType=Card 20 nummod _ _ 19 distinct distinct ADJ JJ Degree=Pos 20 amod _ _ 20 enrichments enrichment NOUN NNS Number=Plur 14 attr _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # doc_id = 27 # sent_id = 1 # text = A category may bear many monoidal structures, but (to within a unique isomorphism) only one structure of `category with finite products'. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 category category NOUN NN Number=Sing 4 nsubj _ _ 3 may may AUX MD VerbForm=Fin 4 aux _ _ 4 bear bear VERB VB VerbForm=Inf 0 ROOT _ _ 5 many many ADJ JJ Degree=Pos 7 amod _ _ 6 monoidal monoidal ADJ JJ Degree=Pos 7 amod _ _ 7 structures structure NOUN NNS Number=Plur 4 dobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 4 punct _ _ 9 but but CCONJ CC ConjType=Cmp 4 cc _ _ 10 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 11 punct _ SpaceAfter=No 11 to to PART TO _ 4 conj _ _ 12 within within ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 unique unique ADJ JJ Degree=Pos 15 amod _ _ 15 isomorphism isomorphism NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 16 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 11 punct _ _ 17 only only ADV RB _ 18 advmod _ _ 18 one one NUM CD NumType=Card 19 nummod _ _ 19 structure structure NOUN NN Number=Sing 11 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 20 punct _ SpaceAfter=No 22 category category NOUN NN Number=Sing 20 pobj _ _ 23 with with ADP IN _ 22 prep _ _ 24 finite finite ADJ JJ Degree=Pos 25 compound _ _ 25 products product NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 26 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 11 punct _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = To capture such distinctions, we consider on a 2 - category those 2 - monads for which algebra structure is essentially unique if it exists, giving a precise mathematical definition of `essentially unique' and investigating its consequences. 1 To to PART TO _ 2 aux _ _ 2 capture capture VERB VB VerbForm=Inf 7 advcl _ _ 3 such such ADJ JJ Degree=Pos 4 amod _ _ 4 distinctions distinction NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 on on ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 10 2 2 NUM CD NumType=Card 12 nummod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 category category NOUN NN Number=Sing 8 pobj _ _ 13 those those DET DT Number=Plur|PronType=Dem 16 det _ _ 14 2 2 NUM CD NumType=Card 16 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 monads monad NOUN NNS Number=Plur 7 dobj _ _ 17 for for ADP IN _ 21 prep _ _ 18 which which PRON WDT _ 17 pobj _ _ 19 algebra algebra NOUN NN Number=Sing 20 compound _ _ 20 structure structure NOUN NN Number=Sing 21 nsubj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 relcl _ _ 22 essentially essentially ADV RB _ 23 advmod _ _ 23 unique unique ADJ JJ Degree=Pos 21 acomp _ _ 24 if if SCONJ IN _ 26 mark _ _ 25 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 26 nsubj _ _ 26 exists exist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 21 advcl _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 7 punct _ _ 28 giving give VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 advcl _ _ 29 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 30 precise precise ADJ JJ Degree=Pos 32 amod _ _ 31 mathematical mathematical ADJ JJ Degree=Pos 32 amod _ _ 32 definition definition NOUN NN Number=Sing 28 dobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 33 punct _ SpaceAfter=No 35 essentially essentially ADV RB _ 36 advmod _ _ 36 unique unique ADJ JJ Degree=Pos 33 amod _ SpaceAfter=No 37 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 33 punct _ _ 38 and and CCONJ CC ConjType=Cmp 28 cc _ _ 39 investigating investigate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 28 conj _ _ 40 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 41 poss _ _ 41 consequences consequence NOUN NNS Number=Plur 39 dobj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = We call such 2 - monads property - like. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 call call VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 such such ADJ JJ Degree=Pos 9 amod _ _ 4 2 2 NUM CD NumType=Card 6 nummod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 monads monad NOUN NNS Number=Plur 9 compound _ _ 7 property property NOUN NN Number=Sing 9 npadvmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 like like ADJ JJ Degree=Pos 2 oprd _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We further consider the more restricted class of fully property - like 2 - monads, consisting of those property - like 2 - monads for which all 2 - cells between (even lax) algebra morphisms are algebra 2 - cells. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 further far ADV RB _ 3 advmod _ _ 3 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 more more ADV RBR Degree=Cmp 6 advmod _ _ 6 restricted restricted ADJ JJ Degree=Pos 7 amod _ _ 7 class class NOUN NN Number=Sing 3 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 fully fully ADV RB _ 12 advmod _ _ 10 property property NOUN NN Number=Sing 12 npadvmod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 like like ADJ JJ Degree=Pos 15 amod _ _ 13 2 2 NUM CD NumType=Card 15 nummod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 monads monad NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 7 punct _ _ 17 consisting consist VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 39 csubj _ _ 18 of of ADP IN _ 17 prep _ _ 19 those those DET DT Number=Plur|PronType=Dem 20 det _ _ 20 property property NOUN NN Number=Sing 25 nmod _ _ 21 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 22 like like ADJ JJ Degree=Pos 20 prep _ _ 23 2 2 NUM CD NumType=Card 25 nummod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 monads monad NOUN NNS Number=Plur 38 nmod _ _ 26 for for ADP IN _ 25 prep _ _ 27 which which PRON WDT _ 26 pobj _ _ 28 all all DET DT _ 31 det _ _ 29 2 2 NUM CD NumType=Card 31 nummod _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 cells cell NOUN NNS Number=Plur 38 nmod _ _ 32 between between ADP IN _ 31 prep _ _ 33 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 35 punct _ SpaceAfter=No 34 even even ADV RB _ 35 advmod _ _ 35 lax lax ADJ JJ Degree=Pos 32 pobj _ SpaceAfter=No 36 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 31 punct _ _ 37 algebra algebra PROPN NNP Number=Sing 38 compound _ _ 38 morphisms morphism NOUN NNS Number=Plur 18 pobj _ _ 39 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 40 algebra algebra NOUN NN Number=Sing 43 nmod _ _ 41 2 2 NUM CD NumType=Card 43 nummod _ _ 42 - - PUNCT HYPH PunctType=Dash 43 punct _ _ 43 cells cell NOUN NNS Number=Plur 39 attr _ SpaceAfter=No 44 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = The consideration of lax morphisms leads us to a new characterization of those monads, studied by Kock and Zoberlein, for which `structure is adjoint to unit', and which we now call lax - idempotent 2 - monads: both these and their colax - idempotent duals are fully property - like. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 consideration consideration NOUN NN Number=Sing 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 lax lax ADJ JJ Degree=Pos 5 amod _ _ 5 morphisms morphism NOUN NNS Number=Plur 3 pobj _ _ 6 leads lead VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 52 ccomp _ _ 7 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 6 dobj _ _ 8 to to ADP IN _ 6 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 new new ADJ JJ Degree=Pos 11 amod _ _ 11 characterization characterization NOUN NN Number=Sing 8 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 those those DET DT Number=Plur|PronType=Dem 14 det _ _ 14 monads monad NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 11 punct _ _ 16 studied study VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 acl _ _ 17 by by ADP IN _ 16 agent _ _ 18 Kock Kock PROPN NNP Number=Sing 17 pobj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 Zoberlein Zoberlein PROPN NNP Number=Sing 18 conj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 16 punct _ _ 22 for for ADP IN _ 26 prep _ _ 23 which which PRON WDT _ 22 pobj _ _ 24 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 26 punct _ SpaceAfter=No 25 structure structure NOUN NN Number=Sing 26 nsubj _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 relcl _ _ 27 adjoint adjoint NOUN NN Number=Sing 26 acomp _ _ 28 to to ADP IN _ 27 prep _ _ 29 unit unit NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 30 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 6 punct _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 6 punct _ _ 32 and and CCONJ CC ConjType=Cmp 6 cc _ _ 33 which which PRON WDT _ 36 dobj _ _ 34 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 36 nsubj _ _ 35 now now ADV RB _ 36 advmod _ _ 36 call call VERB VBP Tense=Pres|VerbForm=Fin 6 conj _ _ 37 lax lax ADJ JJ Degree=Pos 39 npadvmod _ _ 38 - - PUNCT HYPH PunctType=Dash 39 punct _ _ 39 idempotent idempotent ADJ JJ Degree=Pos 42 amod _ _ 40 2 2 NUM CD NumType=Card 42 nummod _ _ 41 - - PUNCT HYPH PunctType=Dash 42 punct _ _ 42 monads monad NOUN NNS Number=Plur 36 dobj _ SpaceAfter=No 43 : : PUNCT : _ 52 punct _ _ 44 both both CCONJ CC ConjType=Cmp 45 preconj _ _ 45 these these PRON DT Number=Plur|PronType=Dem 52 nsubj _ _ 46 and and CCONJ CC ConjType=Cmp 45 cc _ _ 47 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 51 poss _ _ 48 colax colax ADJ JJ Degree=Pos 50 amod _ _ 49 - - PUNCT HYPH PunctType=Dash 50 punct _ _ 50 idempotent idempotent ADJ JJ Degree=Pos 51 amod _ _ 51 duals dual NOUN NNS Number=Plur 45 conj _ _ 52 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 53 fully fully ADV RB _ 52 advmod _ _ 54 property property NOUN NN Number=Sing 56 npadvmod _ _ 55 - - PUNCT HYPH PunctType=Dash 56 punct _ _ 56 like like ADJ JJ Degree=Pos 52 acomp _ SpaceAfter=No 57 . . PUNCT . PunctType=Peri 52 punct _ SpaceAfter=No # sent_id = 6 # text = We end by showing that (at least for finitary 2 - monads) the classes of property - likes, fully property - likes, and lax - idempotents are each coreflective among all 2 - monads. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 end end VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 by by ADP IN _ 2 prep _ _ 4 showing show VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 pcomp _ _ 5 that that PRON DT Number=Sing|PronType=Dem 4 dobj _ _ 6 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 9 punct _ SpaceAfter=No 7 at at ADP IN _ 8 advmod _ _ 8 least least ADJ JJS Degree=Sup 9 advmod _ _ 9 for for ADP IN _ 4 prep _ _ 10 finitary finitary ADJ JJ Degree=Pos 13 amod _ _ 11 2 2 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 monads monad NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 14 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 4 punct _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 classes class NOUN NNS Number=Plur 31 nsubj _ _ 17 of of ADP IN _ 16 prep _ _ 18 property property NOUN NN Number=Sing 20 compound _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 likes like NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 fully fully ADV RB _ 25 advmod _ _ 23 property property NOUN NN Number=Sing 25 compound _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 likes like NOUN NNS Number=Plur 20 conj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 16 punct _ _ 27 and and CCONJ CC ConjType=Cmp 16 cc _ _ 28 lax lax NOUN NN Number=Sing 30 compound _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 idempotents idempotent NOUN NNS Number=Plur 31 nsubj _ _ 31 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 conj _ _ 32 each each PRON DT _ 31 dep _ _ 33 coreflective coreflective ADJ JJ Degree=Pos 31 acomp _ _ 34 among among ADP IN _ 33 prep _ _ 35 all all DET DT _ 38 det _ _ 36 2 2 NUM CD NumType=Card 38 nummod _ _ 37 - - PUNCT HYPH PunctType=Dash 38 punct _ _ 38 monads monad NOUN NNS Number=Plur 34 pobj _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 31 punct _ SpaceAfter=No # doc_id = 28 # sent_id = 1 # text = Given a bicategory, 2, with stable local coequalizers, we construct a bicategory of monads $ Y - mnd $ by using lax functors from the generic 0 - cell, 1 - cell and 2 - cell, respectively, into Y. 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 bicategory bicategory NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 3 punct _ _ 5 2 2 NUM CD NumType=Card 3 appos _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 3 punct _ _ 7 with with ADP IN _ 3 prep _ _ 8 stable stable ADJ JJ Degree=Pos 10 amod _ _ 9 local local ADJ JJ Degree=Pos 10 amod _ _ 10 coequalizers coequalizer NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 13 punct _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 bicategory bicategory NOUN NN Number=Sing 13 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 monads monad NOUN NNS Number=Plur 16 pobj _ _ 18 $ Y - mnd $ $ y - mnd $ SYM $ _ 13 dep _ _ 19 by by ADP IN _ 13 prep _ _ 20 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 19 pcomp _ _ 21 lax lax ADJ JJ Degree=Pos 22 amod _ _ 22 functors functor NOUN NNS Number=Plur 20 dobj _ _ 23 from from ADP IN _ 20 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 28 det _ _ 25 generic generic ADJ JJ Degree=Pos 28 amod _ _ 26 0 0 NUM CD NumType=Card 28 nummod _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 cell cell NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 28 punct _ _ 30 1 1 NUM CD NumType=Card 32 nummod _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 cell cell NOUN NN Number=Sing 28 conj _ _ 33 and and CCONJ CC ConjType=Cmp 32 cc _ _ 34 2 2 NUM CD NumType=Card 36 nummod _ _ 35 - - PUNCT HYPH PunctType=Dash 36 punct _ _ 36 cell cell NOUN NN Number=Sing 32 conj _ SpaceAfter=No 37 , , PUNCT , PunctType=Comm 36 punct _ _ 38 respectively respectively ADV RB _ 28 advmod _ SpaceAfter=No 39 , , PUNCT , PunctType=Comm 28 punct _ _ 40 into into ADP IN _ 20 prep _ _ 41 Y. Y. PROPN NNP Number=Sing 40 pobj _ SpaceAfter=No # sent_id = 2 # text = Any lax functor into $ Y $ factors through $ Y - mnd $ and the 1 - cells turn out to be the familiar bimodules. 1 Any any DET DT _ 3 det _ _ 2 lax lax ADJ JJ Degree=Pos 3 amod _ _ 3 functor functor NOUN NN Number=Sing 14 nsubj _ _ 4 into into ADP IN _ 3 prep _ _ 5 $ Y $ $ y $ SYM $ _ 6 nmod _ _ 6 factors factor NOUN NNS Number=Plur 4 pobj _ _ 7 through through ADP IN _ 3 prep _ _ 8 $ Y - mnd $ $ y - mnd $ SYM $ _ 7 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 the the DET DT Definite=Def|PronType=Art 13 det _ _ 11 1 1 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 cells cell NOUN NNS Number=Plur 8 conj _ _ 14 turn turn VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 out out ADP RP _ 14 prt _ _ 16 to to PART TO _ 17 aux _ _ 17 be be AUX VB VerbForm=Inf 14 xcomp _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 familiar familiar ADJ JJ Degree=Pos 20 amod _ _ 20 bimodules bimodule NOUN NNS Number=Plur 17 attr _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 3 # text = The locally ordered bicategory $ rel $ and its bicategory of monads both fail to be Cauchy - complete, but have a well - known Cauchy - completion in common. 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 locally locally ADV RB _ 3 advmod _ _ 3 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 amod _ _ 4 bicategory bicategory NOUN NN Number=Sing 12 nsubj _ _ 5 $ rel $ $ rel $ SYM $ _ 4 appos _ _ 6 and and CCONJ CC ConjType=Cmp 4 cc _ _ 7 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 8 poss _ _ 8 bicategory bicategory NOUN NN Number=Sing 4 conj _ _ 9 of of ADP IN _ 8 prep _ _ 10 monads monad NOUN NNS Number=Plur 9 pobj _ _ 11 both both PRON DT _ 12 preconj _ _ 12 fail fail VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 to to PART TO _ 14 aux _ _ 14 be be AUX VB VerbForm=Inf 12 xcomp _ _ 15 Cauchy cauchy NOUN NN Number=Sing 17 npadvmod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 complete complete ADJ JJ Degree=Pos 14 acomp _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 12 punct _ _ 19 but but CCONJ CC ConjType=Cmp 12 cc _ _ 20 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 12 conj _ _ 21 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 22 well well ADV RB Degree=Pos 24 advmod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 amod _ _ 25 Cauchy cauchy NOUN NN Number=Sing 27 compound _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 completion completion NOUN NN Number=Sing 20 dobj _ _ 28 in in ADP IN _ 20 prep _ _ 29 common common ADJ JJ Degree=Pos 28 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 4 # text = This prompts us to formulate a concept of Cauchy - completeness for bicategories that are not locally ordered and suggests a weakening of the notion of monad. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 prompts prompt VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 2 dobj _ _ 4 to to PART TO _ 5 aux _ _ 5 formulate formulate VERB VB VerbForm=Inf 2 advcl _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 concept concept NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 Cauchy Cauchy PROPN NNP Number=Sing 11 compound _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 completeness completeness NOUN NN Number=Sing 8 pobj _ _ 12 for for ADP IN _ 5 prep _ _ 13 bicategories bicategorie NOUN NNS Number=Plur 12 pobj _ _ 14 that that PRON WDT PronType=Rel 18 nsubjpass _ _ 15 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 18 auxpass _ _ 16 not not PART RB Polarity=Neg 18 neg _ _ 17 locally locally ADV RB _ 18 advmod _ _ 18 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 relcl _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 suggests suggest VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 conj _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 weakening weakening NOUN NN Number=Sing 20 dobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 notion notion NOUN NN Number=Sing 23 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 monad monad NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = For this purpose, we develop a calculus of general modules between unstructured endo - 1 - cells. 1 For for ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 purpose purpose NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 develop develop VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 calculus calculus NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 general general ADJ JJ Degree=Pos 11 amod _ _ 11 modules module NOUN NNS Number=Plur 9 pobj _ _ 12 between between ADP IN _ 11 prep _ _ 13 unstructured unstructured ADJ JJ Degree=Pos 18 amod _ _ 14 endo endo X FW Foreign=Yes 18 nmod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 1 1 NUM CD NumType=Card 18 nummod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 cells cell NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 6 # text = These behave well with respect to composition, but in general fail to have identities. 1 These these PRON DT Number=Plur|PronType=Dem 2 nsubj _ _ 2 behave behave VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 well well ADV RB Degree=Pos 2 advmod _ _ 4 with with ADP IN _ 2 prep _ _ 5 respect respect NOUN NN Number=Sing 4 pobj _ _ 6 to to ADP IN _ 5 prep _ _ 7 composition composition NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 2 punct _ _ 9 but but CCONJ CC ConjType=Cmp 2 cc _ _ 10 in in ADP IN _ 12 prep _ _ 11 general general ADJ JJ Degree=Pos 10 amod _ _ 12 fail fail VERB VBP Tense=Pres|VerbForm=Fin 2 conj _ _ 13 to to PART TO _ 14 aux _ _ 14 have have VERB VB VerbForm=Inf 12 xcomp _ _ 15 identities identity NOUN NNS Number=Plur 14 dobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 7 # text = To overcome this problem, we do not need to impose the full structure of a monad on endo - 1 - cells. 1 To to PART TO _ 2 aux _ _ 2 overcome overcome VERB VB VerbForm=Inf 9 advcl _ _ 3 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 4 problem problem NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 9 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 9 nsubj _ _ 7 do do AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 aux _ _ 8 not not PART RB Polarity=Neg 9 neg _ _ 9 need need VERB VB VerbForm=Inf 0 ROOT _ _ 10 to to PART TO _ 11 aux _ _ 11 impose impose VERB VB VerbForm=Inf 9 xcomp _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 full full ADJ JJ Degree=Pos 14 amod _ _ 14 structure structure NOUN NN Number=Sing 11 dobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 monad monad NOUN NNS Number=Plur 15 pobj _ _ 18 on on ADP IN _ 17 prep _ _ 19 endo endo PROPN NNP Number=Sing 23 nmod _ _ 20 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 21 1 1 NUM CD NumType=Card 23 nummod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 cells cell NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 8 # text = We show that associative coequalizing multiplications suffice and call the resulting structures interpolads. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 7 mark _ _ 4 associative associative ADJ JJ Degree=Pos 7 nsubj _ _ 5 coequalizing coequalize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 acl _ _ 6 multiplications multiplication NOUN NNS Number=Plur 5 dobj _ _ 7 suffice suffice VERB VBP Tense=Pres|VerbForm=Fin 2 ccomp _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 call call VERB VB VerbForm=Inf 7 conj _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 resulting result VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 amod _ _ 12 structures structure NOUN NNS Number=Plur 9 dobj _ _ 13 interpolads interpolad NOUN NNS Number=Plur 9 oprd _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 9 # text = Together with structure - preserving i - modules these form a bicategory $ Y - int $ that is indeed Cauchy - complete, in our sense, and contains the bicategory of monads as a not necessarily full sub - bicategory. 1 Together together ADV RB _ 2 advmod _ _ 2 with with ADP IN _ 0 ROOT _ _ 3 structure structure NOUN NN Number=Sing 5 npadvmod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 preserving preserve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 amod _ _ 6 i i PROPN NNP Case=Nom|Number=Sing|Person=1|PronType=Prs 8 nsubj _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 modules module VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 pobj _ _ 9 these these PRON DT Number=Plur|PronType=Dem 10 nsubj _ _ 10 form form VERB VBP Tense=Pres|VerbForm=Fin 8 dative _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 bicategory bicategory NOUN NN Number=Sing 8 npadvmod _ _ 13 $ Y - int $ $ y - int $ SYM $ _ 12 appos _ _ 14 that that PRON WDT PronType=Rel 15 nsubj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 relcl _ _ 16 indeed indeed ADV RB _ 15 advmod _ _ 17 Cauchy cauchy NOUN NN Number=Sing 19 npadvmod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 complete complete ADJ JJ Degree=Pos 15 acomp _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 12 punct _ _ 21 in in ADP IN _ 8 prep _ _ 22 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 23 poss _ _ 23 sense sense NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 2 punct _ _ 25 and and CCONJ CC ConjType=Cmp 2 cc _ _ 26 contains contain VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 conj _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 bicategory bicategory NOUN NN Number=Sing 26 dobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 monads monad NOUN NNS Number=Plur 29 pobj _ _ 31 as as ADP IN _ 26 prep _ _ 32 a a DET DT Definite=Ind|PronType=Art 38 det _ _ 33 not not PART RB Polarity=Neg 34 neg _ _ 34 necessarily necessarily ADV RB _ 35 advmod _ _ 35 full full ADJ JJ Degree=Pos 38 amod _ _ 36 sub sub NOUN NN Number=Sing 38 compound _ _ 37 - - PUNCT HYPH PunctType=Dash 38 punct _ _ 38 bicategory bicategory NOUN NN Number=Sing 31 pobj _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 10 # text = Interpolads over rel are idempotent relations, over the suspension of set they correspond to interpolative semi - groups, and over spn they lead to a notion of ``category without identities'' also known as ``taxonomy''. 1 Interpolads interpolad NOUN NNS Number=Plur 4 nsubj _ _ 2 over over ADP IN _ 1 prep _ _ 3 rel rel NOUN NN Number=Sing 2 pobj _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 idempotent idempotent ADJ JJ Degree=Pos 6 amod _ _ 6 relations relation NOUN NNS Number=Plur 4 attr _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 6 punct _ _ 8 over over ADP IN _ 14 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 suspension suspension NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 set set NOUN NN Number=Sing 11 pobj _ _ 13 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 14 nsubj _ _ 14 correspond correspond VERB VBP Tense=Pres|VerbForm=Fin 4 conj _ _ 15 to to PART TO _ 16 aux _ _ 16 interpolative interpolative VERB VB VerbForm=Inf 14 xcomp _ _ 17 semi semi ADJ JJ Degree=Pos 16 advmod _ _ 18 - - NOUN NNS Number=Plur 16 punct _ _ 19 groups group NOUN NNS Number=Plur 16 dobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 16 punct _ _ 21 and and CCONJ CC ConjType=Cmp 16 cc _ _ 22 over over ADP IN _ 25 prep _ _ 23 spn spn NOUN NN Number=Sing 22 pobj _ _ 24 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 25 nsubj _ _ 25 lead lead VERB VBP Tense=Pres|VerbForm=Fin 14 conj _ _ 26 to to ADP IN _ 25 prep _ _ 27 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 28 notion notion NOUN NN Number=Sing 26 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 29 punct _ SpaceAfter=No 31 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 29 punct _ SpaceAfter=No 32 category category NOUN NN Number=Sing 29 pobj _ _ 33 without without ADP IN _ 32 prep _ _ 34 identities identity NOUN NNS Number=Plur 33 pobj _ SpaceAfter=No 35 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 32 punct _ _ 36 also also ADV RB _ 37 advmod _ _ 37 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 acl _ _ 38 as as ADP IN _ 37 prep _ _ 39 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 38 punct _ SpaceAfter=No 40 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 38 punct _ SpaceAfter=No 41 taxonomy taxonomy NOUN NN Number=Sing 38 pobj _ SpaceAfter=No 42 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 25 punct _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 11 # text = If $ Y $ locally has equalizers, then modules in general, and the bicategories $ Y - mnd $ and $ Y - int $ in particular, inherit the property of being closed with respect to 1 - cell composition. 1 If if SCONJ IN _ 4 mark _ _ 2 $ Y $ $ y $ SYM $ _ 4 nsubj _ _ 3 locally locally ADV RB _ 4 advmod _ _ 4 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 advcl _ _ 5 equalizers equalizer NOUN NNS Number=Plur 4 dobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 8 punct _ _ 7 then then ADV RB PronType=Dem 8 advmod _ _ 8 modules module NOUN NNS Number=Plur 0 ROOT _ _ 9 in in ADP IN _ 8 prep _ _ 10 general general ADJ JJ Degree=Pos 9 amod _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 8 punct _ _ 12 and and CCONJ CC ConjType=Cmp 8 cc _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 bicategories bicategorie NOUN NNS Number=Plur 21 nsubj _ _ 15 $ Y - mnd $ $ y - mnd $ SYM $ _ 14 appos _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 $ Y - int $ $ y - int $ SYM $ _ 15 conj _ _ 18 in in ADP IN _ 15 prep _ _ 19 particular particular ADJ JJ Degree=Pos 18 amod _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 21 punct _ _ 21 inherit inherit VERB VB VerbForm=Inf 8 conj _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 property property NOUN NN Number=Sing 21 dobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 being be AUX VBG VerbForm=Ger 26 auxpass _ _ 26 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 pcomp _ _ 27 with with ADP IN _ 26 prep _ _ 28 respect respect NOUN NN Number=Sing 27 pobj _ _ 29 to to ADP IN _ 28 prep _ _ 30 1 1 NUM CD NumType=Card 32 nummod _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 cell cell NOUN NN Number=Sing 33 compound _ _ 33 composition composition NOUN NN Number=Sing 29 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 21 punct _ SpaceAfter=No # doc_id = 29 # sent_id = 1 # text = For $ m >= n > 0 $ , a map $ f $ between pointed spaces is said to be a weak $ [n, m] $ - equivalence if $ f $ induces isomorphisms of the homotopy groups $ pi_k for n <= k <= m~ $ . 1 For for ADP IN _ 11 prep _ _ 2 $ m >= n > 0 $ $ m >= n > 0 $ SYM $ _ 1 pobj _ _ 3 , , PUNCT , PunctType=Comm 2 punct _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 map map NOUN NN Number=Sing 11 nsubjpass _ _ 6 $ f $ $ f $ SYM $ _ 5 dep _ _ 7 between between ADP IN _ 5 prep _ _ 8 pointed pointed ADJ JJ Degree=Pos 9 amod _ _ 9 spaces space NOUN NNS Number=Plur 7 pobj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 11 said say VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 12 to to PART TO _ 13 aux _ _ 13 be be AUX VB VerbForm=Inf 11 xcomp _ _ 14 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 15 weak weak ADJ JJ Degree=Pos 18 amod _ _ 16 $ [n, m] $ $ [n, m] $ SYM $ _ 18 compound _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 equivalence equivalence NOUN NN Number=Sing 13 attr _ _ 19 if if SCONJ IN _ 21 mark _ _ 20 $ f $ $ f $ SYM $ _ 21 nsubj _ _ 21 induces induce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 advcl _ _ 22 isomorphisms isomorphism NOUN NNS Number=Plur 21 dobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 26 det _ _ 25 homotopy homotopy NOUN NN Number=Sing 26 compound _ _ 26 groups group NOUN NNS Number=Plur 23 pobj _ _ 27 $ pi_k for n <= k <= m~ $ $ pi_k for n <= k <= m~ $ SYM $ _ 13 npadvmod _ _ 28 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 2 # text = Associated with this notion we give two different closed model category structures to the category of pointed spaces. 1 Associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 advcl _ _ 2 with with ADP IN _ 1 prep _ _ 3 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 4 notion notion NOUN NN Number=Sing 2 pobj _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 two two NUM CD NumType=Card 12 nummod _ _ 8 different different ADJ JJ Degree=Pos 12 amod _ _ 9 closed closed ADJ JJ Degree=Pos 12 amod _ _ 10 model model NOUN NN Number=Sing 12 compound _ _ 11 category category NOUN NN Number=Sing 12 compound _ _ 12 structures structure NOUN NNS Number=Plur 6 dobj _ _ 13 to to ADP IN _ 6 dative _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 category category NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 pointed pointed ADJ JJ Degree=Pos 18 amod _ _ 18 spaces space NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = Both structures have the same class of weak equivalences but different classes of fibrations and therefore of cofibrations. 1 Both both DET DT _ 2 det _ _ 2 structures structure NOUN NNS Number=Plur 3 nsubj _ _ 3 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 same same ADJ JJ Degree=Pos 6 amod _ _ 6 class class NOUN NN Number=Sing 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 weak weak ADJ JJ Degree=Pos 9 amod _ _ 9 equivalences equivalence NOUN NNS Number=Plur 7 pobj _ _ 10 but but CCONJ CC ConjType=Cmp 6 cc _ _ 11 different different ADJ JJ Degree=Pos 12 amod _ _ 12 classes class NOUN NNS Number=Plur 6 conj _ _ 13 of of ADP IN _ 12 prep _ _ 14 fibrations fibration NOUN NNS Number=Plur 13 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 12 cc _ _ 16 therefore therefore ADV RB _ 17 advmod _ _ 17 of of ADP IN _ 6 prep _ _ 18 cofibrations cofibration NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = Using one of these structures, one obtains that the localized category is equivalent to the category of $ n $ - reduced CW - complexes with dimension less than or equal to $ m+1 $ and $ m $ - homotopy classes of cellular pointed maps. 1 Using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 csubj _ _ 2 one one NUM CD NumType=Card 1 dobj _ _ 3 of of ADP IN _ 2 prep _ _ 4 these these DET DT Number=Plur|PronType=Dem 5 det _ _ 5 structures structure NOUN NNS Number=Plur 3 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 1 punct _ _ 7 one one NUM CD NumType=Card 8 nummod _ _ 8 obtains obtain NOUN NNS Number=Plur 0 ROOT _ _ 9 that that PRON WDT PronType=Rel 13 mark _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 localized localize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 12 category category NOUN NN Number=Sing 13 nsubj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 ccomp _ _ 14 equivalent equivalent ADJ JJ Degree=Pos 13 acomp _ _ 15 to to ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 category category NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 $ n $ $ n $ SYM $ _ 21 advmod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 reduced reduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 22 CW CW PROPN NNP Number=Sing 24 compound _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 complexes complex NOUN NNS Number=Plur 18 pobj _ _ 25 with with ADP IN _ 17 prep _ _ 26 dimension dimension NOUN NN Number=Sing 25 pobj _ _ 27 less less ADJ JJR Degree=Cmp 13 advmod _ _ 28 than than ADP IN _ 27 prep _ _ 29 or or CCONJ CC ConjType=Cmp 28 cc _ _ 30 equal equal ADJ JJ Degree=Pos 28 conj _ _ 31 to to ADP IN _ 30 prep _ _ 32 $ m+1 $ $ m+1 $ SYM $ _ 31 pobj _ _ 33 and and CCONJ CC ConjType=Cmp 32 cc _ _ 34 $ m $ $ m $ SYM $ _ 36 quantmod _ _ 35 - - PUNCT HYPH PunctType=Dash 36 punct _ _ 36 homotopy homotopy NOUN NN Number=Sing 37 compound _ _ 37 classes class NOUN NNS Number=Plur 31 pobj _ _ 38 of of ADP IN _ 37 prep _ _ 39 cellular cellular ADJ JJ Degree=Pos 41 amod _ _ 40 pointed point VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 41 amod _ _ 41 maps map NOUN NNS Number=Plur 38 pobj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 5 # text = Using the other structure we see that the localized category is also equivalent to the homotopy category of $ (n - 1) $ - connected $ (m+1) $ - coconnected CW - complexes. 1 Using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 advcl _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 other other ADJ JJ Degree=Pos 4 amod _ _ 4 structure structure NOUN NN Number=Sing 1 dobj _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 see see VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 that that SCONJ IN _ 11 mark _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 localized localize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 10 category category NOUN NN Number=Sing 11 nsubj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 12 also also ADV RB _ 11 advmod _ _ 13 equivalent equivalent ADJ JJ Degree=Pos 11 acomp _ _ 14 to to ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 homotopy homotopy NOUN NN Number=Sing 17 compound _ _ 17 category category NOUN NN Number=Sing 14 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 $ (n - 1) $ $ (n - 1) $ SYM $ _ 21 advmod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 amod _ _ 22 $ (m+1) $ $ (m+1) $ SYM $ _ 24 advmod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 coconnected coconnecte VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 amod _ _ 25 CW cw NOUN NN Number=Sing 27 compound _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 complexes complex NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 30 # sent_id = 1 # text = In this paper, we construct a neat description of the passage from crossed squares of commutative algebras to 2 - crossed modules analogous to that given by Conduche in the group case. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 neat neat ADJ JJ Degree=Pos 9 amod _ _ 9 description description NOUN NN Number=Sing 6 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 passage passage NOUN NN Number=Sing 10 pobj _ _ 13 from from ADP IN _ 9 prep _ _ 14 crossed crossed ADJ JJ Degree=Pos 15 amod _ _ 15 squares square NOUN NNS Number=Plur 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 commutative commutative ADJ JJ Degree=Pos 18 amod _ _ 18 algebras algebra NOUN NNS Number=Plur 16 pobj _ _ 19 to to ADP IN _ 9 prep _ _ 20 2 2 NUM CD NumType=Card 22 npadvmod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 crossed cross VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 amod _ _ 23 modules module NOUN NNS Number=Plur 19 pobj _ _ 24 analogous analogous ADJ JJ Degree=Pos 23 amod _ _ 25 to to ADP IN _ 24 prep _ _ 26 that that PRON DT Number=Sing|PronType=Dem 25 pobj _ _ 27 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 prep _ _ 28 by by ADP IN _ 27 agent _ _ 29 Conduche Conduche PROPN NNP Number=Sing 28 pobj _ _ 30 in in ADP IN _ 27 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 33 det _ _ 32 group group NOUN NN Number=Sing 33 compound _ _ 33 case case NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = We also give an analogue, for commutative algebra, of $ T $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 5 analogue analogue NOUN NN Number=Sing 3 dobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 3 punct _ _ 7 for for ADP IN _ 3 prep _ _ 8 commutative commutative ADJ JJ Degree=Pos 9 amod _ _ 9 algebra algebra PROPN NNP Number=Sing 7 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 of of ADP IN _ 9 prep _ _ 12 $ T $ $ t $ SYM $ _ 11 pobj _ _ 13 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = Porter's simplicial groups to $ n $ - cubes of groups which implies an inverse functor to Conduche's one. 1 Porter Porter PROPN NNP Number=Sing 4 poss _ SpaceAfter=No 2 's 's PART POS _ 1 case _ _ 3 simplicial simplicial ADJ JJ Degree=Pos 4 amod _ _ 4 groups group NOUN NNS Number=Plur 0 ROOT _ _ 5 to to ADP IN _ 4 prep _ _ 6 $ n $ $ n $ SYM $ _ 8 nummod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 cubes cube NOUN NNS Number=Plur 5 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 groups group NOUN NNS Number=Plur 9 pobj _ _ 11 which which PRON WDT _ 12 nsubj _ _ 12 implies imply VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 relcl _ _ 13 an an DET DT Definite=Ind|PronType=Art 15 det _ _ 14 inverse inverse ADJ JJ Degree=Pos 15 amod _ _ 15 functor functor NOUN NN Number=Sing 12 dobj _ _ 16 to to ADP IN _ 12 prep _ _ 17 Conduche Conduche PROPN NNP Number=Sing 19 poss _ SpaceAfter=No 18 's 's PART POS _ 17 case _ _ 19 one one NUM CD NumType=Card 16 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 31 # sent_id = 1 # text = We give a precise characterization for when the models of the tensor product of sketches are structurally isomorphic to the models of either sketch in the models of the other. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 precise precise ADJ JJ Degree=Pos 5 amod _ _ 5 characterization characterization NOUN NN Number=Sing 2 dobj _ _ 6 for for ADP IN _ 5 prep _ _ 7 when when SCONJ WRB _ 16 advmod _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 models model NOUN NNS Number=Plur 16 nsubj _ _ 10 of of ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 tensor tensor NOUN NN Number=Sing 13 compound _ _ 13 product product NOUN NN Number=Sing 10 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 sketches sketch NOUN NNS Number=Plur 14 pobj _ _ 16 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 pcomp _ _ 17 structurally structurally ADV RB _ 18 advmod _ _ 18 isomorphic isomorphic ADJ JJ Degree=Pos 16 acomp _ _ 19 to to ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 models model NOUN NNS Number=Plur 19 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 either either PRON DT _ 24 preconj _ _ 24 sketch sketch NOUN NN Number=Sing 22 pobj _ _ 25 in in ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 models model NOUN NNS Number=Plur 25 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 other other ADJ JJ Degree=Pos 28 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = For each base category $ K $ call the just mentioned property (sketch) $ K $ - multilinearity. 1 For for ADP IN _ 6 prep _ _ 2 each each DET DT _ 4 det _ _ 3 base base NOUN NN Number=Sing 4 compound _ _ 4 category category NOUN NN Number=Sing 1 pobj _ _ 5 $ K $ $ k $ SYM $ _ 1 dep _ _ 6 call call VERB VB VerbForm=Inf 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 10 det _ _ 8 just just ADV RB _ 9 advmod _ _ 9 mentioned mention VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 10 property property NOUN NN Number=Sing 6 dobj _ _ 11 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 12 punct _ SpaceAfter=No 12 sketch sketch NOUN NN Number=Sing 10 appos _ SpaceAfter=No 13 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 10 punct _ _ 14 $ K $ $ k $ SYM $ _ 16 compound _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 multilinearity multilinearity NOUN NN Number=Sing 10 appos _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = Say that two sketches are $ K $ - compatible with respect to base category $ K $ just in case in each $ K $ - model, the limits for each limit specification in each sketch commute with the colimits for each colimit specification in the other sketch and all limits and colimits are pointwise. 1 Say say VERB VB VerbForm=Inf 0 ROOT _ _ 2 that that SCONJ IN _ 5 mark _ _ 3 two two NUM CD NumType=Card 4 nummod _ _ 4 sketches sketch NOUN NNS Number=Plur 5 nsubj _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 1 ccomp _ _ 6 $ K $ $ k $ SYM $ _ 8 advmod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 compatible compatible ADJ JJ Degree=Pos 5 acomp _ _ 9 with with ADP IN _ 8 prep _ _ 10 respect respect NOUN NN Number=Sing 9 pobj _ _ 11 to to ADP IN _ 10 prep _ _ 12 base base NOUN NN Number=Sing 13 compound _ _ 13 category category NOUN NN Number=Sing 11 pobj _ _ 14 $ K $ $ k $ SYM $ _ 15 nmod _ _ 15 just just ADV RB _ 5 advmod _ _ 16 in in ADP IN _ 5 prep _ _ 17 case case NOUN NN Number=Sing 16 pobj _ _ 18 in in ADP IN _ 17 prep _ _ 19 each each DET DT _ 22 det _ _ 20 $ K $ $ k $ SYM $ _ 22 compound _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 model model NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 5 punct _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 limits limit NOUN NNS Number=Plur 50 nsubj _ _ 26 for for ADP IN _ 25 prep _ _ 27 each each DET DT _ 29 det _ _ 28 limit limit NOUN NN Number=Sing 29 compound _ _ 29 specification specification NOUN NN Number=Sing 26 pobj _ _ 30 in in ADP IN _ 29 prep _ _ 31 each each DET DT _ 33 det _ _ 32 sketch sketch NOUN NN Number=Sing 33 compound _ _ 33 commute commute NOUN NN Number=Sing 30 pobj _ _ 34 with with ADP IN _ 33 prep _ _ 35 the the DET DT Definite=Def|PronType=Art 36 det _ _ 36 colimits colimit NOUN NNS Number=Plur 34 pobj _ _ 37 for for ADP IN _ 29 prep _ _ 38 each each DET DT _ 40 det _ _ 39 colimit colimit NOUN NN Number=Sing 40 compound _ _ 40 specification specification NOUN NN Number=Sing 37 pobj _ _ 41 in in ADP IN _ 40 prep _ _ 42 the the DET DT Definite=Def|PronType=Art 44 det _ _ 43 other other ADJ JJ Degree=Pos 44 amod _ _ 44 sketch sketch NOUN NN Number=Sing 41 pobj _ _ 45 and and CCONJ CC ConjType=Cmp 44 cc _ _ 46 all all DET DT _ 47 det _ _ 47 limits limit NOUN NNS Number=Plur 25 conj _ _ 48 and and CCONJ CC ConjType=Cmp 47 cc _ _ 49 colimits colimit NOUN NNS Number=Plur 47 conj _ _ 50 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 conj _ _ 51 pointwise pointwise ADJ JJ Degree=Pos 50 attr _ SpaceAfter=No 52 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 4 # text = Two sketches are $ K $ - multilinear if and only if the two sketches are $ K $ - compatible. 1 Two two NUM CD NumType=Card 2 nummod _ _ 2 sketches sketch NOUN NNS Number=Plur 3 nsubj _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 $ K $ $ k $ SYM $ _ 6 det _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 multilinear multilinear NOUN NN Number=Sing 3 acomp _ _ 7 if if SCONJ IN _ 14 mark _ _ 8 and and CCONJ CC ConjType=Cmp 14 cc _ _ 9 only only ADV RB _ 14 advmod _ _ 10 if if SCONJ IN _ 14 mark _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 two two NUM CD NumType=Card 13 nummod _ _ 13 sketches sketch NOUN NNS Number=Plur 14 nsubj _ _ 14 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 advcl _ _ 15 $ K $ $ k $ SYM $ _ 17 advmod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 compatible compatible ADJ JJ Degree=Pos 14 acomp _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = This property then extends to strong Colimits of sketches. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 property property NOUN NN Number=Sing 4 nsubj _ _ 3 then then ADV RB PronType=Dem 4 advmod _ _ 4 extends extend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 to to ADP IN _ 4 prep _ _ 6 strong strong ADJ JJ Degree=Pos 7 amod _ _ 7 Colimits colimit NOUN NNS Number=Plur 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 sketches sketch NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 6 # text = We shall use the technically useful property of limited completeness and completeness of every category of models of sketches. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 shall shall AUX MD VerbType=Mod 3 aux _ _ 3 use use VERB VB VerbForm=Inf 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 technically technically ADV RB _ 6 advmod _ _ 6 useful useful ADJ JJ Degree=Pos 7 amod _ _ 7 property property NOUN NN Number=Sing 3 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 limited limited ADJ JJ Degree=Pos 10 amod _ _ 10 completeness completeness NOUN NN Number=Sing 8 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 completeness completeness NOUN NN Number=Sing 10 conj _ _ 13 of of ADP IN _ 10 prep _ _ 14 every every DET DT _ 15 det _ _ 15 category category NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 models model NOUN NNS Number=Plur 16 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 sketches sketch NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 7 # text = That is, categories of sketch models have all limits commuting with the sketched colimits and and all colimits commuting with the sketched limits. 1 That that ADV RB _ 2 advmod _ _ 2 is is ADV RB _ 8 advmod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 8 punct _ _ 4 categories category NOUN NNS Number=Plur 8 nsubj _ _ 5 of of ADP IN _ 4 prep _ _ 6 sketch sketch NOUN NN Number=Sing 7 compound _ _ 7 models model NOUN NNS Number=Plur 5 pobj _ _ 8 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 all all DET DT _ 10 det _ _ 10 limits limit NOUN NNS Number=Plur 8 dobj _ _ 11 commuting commute VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 acl _ _ 12 with with ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 sketched sketch VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 amod _ _ 15 colimits colimit NOUN NNS Number=Plur 12 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 8 cc _ _ 17 and and CCONJ CC ConjType=Cmp 8 cc _ _ 18 all all DET DT _ 19 det _ _ 19 colimits colimit NOUN NNS Number=Plur 8 conj _ _ 20 commuting commute VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 19 acl _ _ 21 with with ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 sketched sketch VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 24 limits limit NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 8 # text = Often used implicitly, the precise statement of this property and its proof appears here. 1 Often often ADV RB _ 2 advmod _ _ 2 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 advcl _ _ 3 implicitly implicitly ADV RB _ 2 advmod _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 2 punct _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 precise precise ADJ JJ Degree=Pos 7 amod _ _ 7 statement statement NOUN NN Number=Sing 14 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 this this DET DT Number=Sing|PronType=Dem 10 det _ _ 10 property property NOUN NN Number=Sing 8 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 7 cc _ _ 12 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 13 poss _ _ 13 proof proof NOUN NN Number=Sing 14 nsubj _ _ 14 appears appear VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 here here ADV RB PronType=Dem 14 advmod _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # doc_id = 32 # sent_id = 1 # text = Each full reflective subcategory $ X $ of a finitely - complete category $ C $ gives rise to a factorization system $ (E, M) $ on $ C $ , where $ E $ consists of the morphisms of $ C $ inverted by the reflexion $ I : C - - > X $ . 1 Each each DET DT _ 4 det _ _ 2 full full ADJ JJ Degree=Pos 4 amod _ _ 3 reflective reflective ADJ JJ Degree=Pos 4 amod _ _ 4 subcategory subcategory NOUN NN Number=Sing 13 nsubj _ _ 5 $ X $ $ x $ SYM $ _ 4 appos _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 8 finitely finitely ADV RB _ 10 advmod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 complete complete ADJ JJ Degree=Pos 11 amod _ _ 11 category category NOUN NN Number=Sing 6 pobj _ _ 12 $ C $ $ c $ SYM $ _ 13 nsubj _ _ 13 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 rise rise NOUN NN Number=Sing 13 dobj _ _ 15 to to ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 factorization factorization NOUN NN Number=Sing 18 compound _ _ 18 system system NOUN NN Number=Sing 15 pobj _ _ 19 $ (E, M) $ $ (e, m) $ SYM $ _ 18 appos _ _ 20 on on ADP IN _ 14 prep _ _ 21 $ C $ $ c $ SYM $ _ 20 pobj _ _ 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 where where SCONJ WRB _ 25 advmod _ _ 24 $ E $ $ e $ SYM $ _ 25 nsubj _ _ 25 consists consist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 21 relcl _ _ 26 of of ADP IN _ 25 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 morphisms morphism NOUN NNS Number=Plur 26 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 $ C $ $ c $ SYM $ _ 29 pobj _ _ 31 inverted invert VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 advcl _ _ 32 by by ADP IN _ 31 agent _ _ 33 the the DET DT Definite=Def|PronType=Art 34 det _ _ 34 reflexion reflexion NOUN NN Number=Sing 32 pobj _ _ 35 $ I : C - - > X $ $ i : c - - > x $ SYM $ _ 13 dep _ _ 36 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 2 # text = Under a simplifying assumption which is satisfied in many practical examples, a morphism $ f : A - - > B $ lies in $ M $ precisely when it is the pullback along the unit $ etaB : B - - > IB $ of its reflexion $ If : IA - - > IB $ ; whereupon $ f $ is said to be a trivial covering of $ B $ . 1 Under under ADP IN _ 16 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 simplifying simplifying NOUN NN Number=Sing 4 amod _ _ 4 assumption assumption NOUN NN Number=Sing 1 pobj _ _ 5 which which PRON WDT _ 6 nsubj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 relcl _ _ 7 satisfied satisfied ADJ JJ Degree=Pos 6 acomp _ _ 8 in in ADP IN _ 7 prep _ _ 9 many many ADJ JJ Degree=Pos 11 amod _ _ 10 practical practical ADJ JJ Degree=Pos 11 amod _ _ 11 examples example NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 16 punct _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 morphism morphism NOUN NN Number=Sing 16 nsubj _ _ 15 $ f : A - - > B $ $ f : a - - > b $ SYM $ _ 16 nsubj _ _ 16 lies lie VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 37 ccomp _ _ 17 in in ADP IN _ 16 prep _ _ 18 $ M $ $ m $ SYM $ _ 17 pobj _ _ 19 precisely precisely ADV RB _ 20 advmod _ _ 20 when when SCONJ WRB _ 22 advmod _ _ 21 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 22 nsubj _ _ 22 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 advcl _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 pullback pullback NOUN NN Number=Sing 22 attr _ _ 25 along along ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 unit unit NOUN NN Number=Sing 25 pobj _ _ 28 $ etaB : B - - > IB $ $ etab : b - - > ib $ SYM $ _ 27 appos _ _ 29 of of ADP IN _ 28 prep _ _ 30 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 31 poss _ _ 31 reflexion reflexion NOUN NN Number=Sing 29 pobj _ _ 32 $ If : IA - - > IB $ $ if : ia - - > ib $ SYM $ _ 22 dep _ _ 33 ; ; PUNCT : _ 37 punct _ _ 34 whereupon whereupon NOUN NN Number=Sing 37 nsubjpass _ _ 35 $ f $ $ f $ SYM $ _ 34 advmod _ _ 36 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 37 auxpass _ _ 37 said say VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 38 to to PART TO _ 39 aux _ _ 39 be be AUX VB VerbForm=Inf 37 xcomp _ _ 40 a a DET DT Definite=Ind|PronType=Art 42 det _ _ 41 trivial trivial ADJ JJ Degree=Pos 42 amod _ _ 42 covering covering NOUN NN Number=Sing 39 attr _ _ 43 of of ADP IN _ 42 prep _ _ 44 $ B $ $ b $ SYM $ _ 43 pobj _ _ 45 . . PUNCT . PunctType=Peri 37 punct _ SpaceAfter=No # sent_id = 3 # text = Finally, the morphism $ f : A - - > B $ is said to be a covering of $ B $ if, for some effective descent morphism $ p : E - - > B $ , the pullback $ p^*f $ of $ f $ along $ p $ is a trivial covering of $ E $ . 1 Finally finally ADV RB _ 7 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 7 punct _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 morphism morphism NOUN NN Number=Sing 7 nsubjpass _ _ 5 $ f : A - - > B $ $ f : a - - > b $ SYM $ _ 4 appos _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 7 said say VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 to to PART TO _ 9 aux _ _ 9 be be AUX VB VerbForm=Inf 7 xcomp _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 covering covering NOUN NN Number=Sing 9 attr _ _ 12 of of ADP IN _ 11 prep _ _ 13 $ B $ $ b $ SYM $ _ 12 pobj _ _ 14 if if SCONJ IN _ 11 prep _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 30 punct _ _ 16 for for ADP IN _ 30 prep _ _ 17 some some DET DT _ 20 det _ _ 18 effective effective ADJ JJ Degree=Pos 20 amod _ _ 19 descent descent NOUN NN Number=Sing 20 compound _ _ 20 morphism morphism NOUN NN Number=Sing 16 pobj _ _ 21 $ p : E - - > B $ $ p : e - - > b $ SYM $ _ 16 pobj _ _ 22 , , PUNCT , PunctType=Comm 30 punct _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 pullback pullback NOUN NN Number=Sing 30 nsubj _ _ 25 $ p^*f $ $ p^*f $ SYM $ _ 24 appos _ _ 26 of of ADP IN _ 25 prep _ _ 27 $ f $ $ f $ SYM $ _ 26 pobj _ _ 28 along along ADP IN _ 29 advmod _ _ 29 $ p $ $ p $ SYM $ _ 24 appos _ _ 30 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 ccomp _ _ 31 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 32 trivial trivial ADJ JJ Degree=Pos 33 amod _ _ 33 covering covering NOUN NN Number=Sing 30 attr _ _ 34 of of ADP IN _ 33 prep _ _ 35 $ E $ $ e $ SYM $ _ 34 pobj _ _ 36 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = This is the absolute notion of covering; there is also a more general relative one, where some class $ Theta $ of morphisms of $ C $ is given, and the class $ Cov(B) $ of coverings of $ B $ is a subclass—or rather a subcategory—of the category $ C downarrow B subset C/B $ whose objects are those $ f : A - - > B $ with $ f $ in $ Theta $ . 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 ccomp _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 absolute absolute ADJ JJ Degree=Pos 5 amod _ _ 5 notion notion NOUN NN Number=Sing 2 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 covering covering NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 8 ; ; PUNCT : _ 10 punct _ _ 9 there there PRON EX _ 10 expl _ _ 10 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 also also ADV RB _ 10 advmod _ _ 12 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 13 more more ADV RBR Degree=Cmp 14 advmod _ _ 14 general general ADJ JJ Degree=Pos 16 amod _ _ 15 relative relative ADJ JJ Degree=Pos 16 amod _ _ 16 one one NUM CD NumType=Card 10 attr _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 where where SCONJ WRB _ 27 advmod _ _ 19 some some DET DT _ 20 det _ _ 20 class class NOUN NN Number=Sing 27 nsubjpass _ _ 21 $ Theta $ $ theta $ SYM $ _ 20 appos _ _ 22 of of ADP IN _ 21 prep _ _ 23 morphisms morphism NOUN NNS Number=Plur 22 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 $ C $ $ c $ SYM $ _ 24 pobj _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 27 auxpass _ _ 27 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 relcl _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 16 punct _ _ 29 and and CCONJ CC ConjType=Cmp 16 cc _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 class class NOUN NN Number=Sing 37 nsubj _ _ 32 $ Cov(B) $ $ cov(b) $ SYM $ _ 31 appos _ _ 33 of of ADP IN _ 32 prep _ _ 34 coverings covering NOUN NNS Number=Plur 33 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 $ B $ $ b $ SYM $ _ 35 pobj _ _ 37 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 conj _ _ 38 a a DET DT Definite=Ind|PronType=Art 39 det _ _ 39 subclass subclass NOUN NN Number=Sing 37 attr _ SpaceAfter=No 40 — — PUNCT : _ 39 punct _ SpaceAfter=No 41 or or CCONJ CC ConjType=Cmp 39 cc _ _ 42 rather rather ADV RB _ 44 advmod _ _ 43 a a DET DT Definite=Ind|PronType=Art 44 det _ _ 44 subcategory subcategory NOUN NN Number=Sing 39 conj _ SpaceAfter=No 45 — — PUNCT : _ 44 punct _ SpaceAfter=No 46 of of ADP IN _ 44 prep _ _ 47 the the DET DT Definite=Def|PronType=Art 48 det _ _ 48 category category NOUN NN Number=Sing 46 pobj _ _ 49 $ C downarrow B subset C/B $ $ c downarrow b subset c/b $ SYM $ _ 44 appos _ _ 50 whose whose DET WP$ Poss=Yes 51 poss _ _ 51 objects object NOUN NNS Number=Plur 52 nsubj _ _ 52 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 49 relcl _ _ 53 those those PRON DT Number=Plur|PronType=Dem 52 attr _ _ 54 $ f : A - - > B $ $ f : a - - > b $ SYM $ _ 53 npadvmod _ _ 55 with with ADP IN _ 54 prep _ _ 56 $ f $ $ f $ SYM $ _ 55 pobj _ _ 57 in in ADP IN _ 55 prep _ _ 58 $ Theta $ $ theta $ SYM $ _ 57 pobj _ _ 59 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 5 # text = Many questions in mathematics can be reduced to asking whether $ Cov(B) $ is reflective in $ C downarrow B $ ; and we give a number of disparate conditions, each sufficient for this to be so. 1 Many many ADJ JJ Degree=Pos 2 amod _ _ 2 questions question NOUN NNS Number=Plur 7 nsubjpass _ _ 3 in in ADP IN _ 2 prep _ _ 4 mathematics mathematic NOUN NNS Number=Plur 3 pobj _ _ 5 can can AUX MD VerbForm=Fin 7 aux _ _ 6 be be AUX VB VerbForm=Inf 7 auxpass _ _ 7 reduced reduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 to to ADP IN _ 7 prep _ _ 9 asking ask VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 pcomp _ _ 10 whether whether SCONJ IN _ 12 mark _ _ 11 $ Cov(B) $ $ cov(b) $ SYM $ _ 12 nsubj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 ccomp _ _ 13 reflective reflective ADJ JJ Degree=Pos 12 acomp _ _ 14 in in ADP IN _ 13 prep _ _ 15 $ C downarrow B $ $ c downarrow b $ SYM $ _ 14 pobj _ _ 16 ; ; PUNCT : _ 7 punct _ _ 17 and and CCONJ CC ConjType=Cmp 7 cc _ _ 18 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 19 nsubj _ _ 19 give give VERB VBP Tense=Pres|VerbForm=Fin 7 conj _ _ 20 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 21 number number NOUN NN Number=Sing 19 dobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 disparate disparate ADJ JJ Degree=Pos 24 amod _ _ 24 conditions condition NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 19 punct _ _ 26 each each DET DT _ 27 det _ _ 27 sufficient sufficient ADJ JJ Degree=Pos 19 conj _ _ 28 for for SCONJ IN _ 31 mark _ _ 29 this this PRON DT Number=Sing|PronType=Dem 31 nsubj _ _ 30 to to PART TO _ 31 aux _ _ 31 be be AUX VB VerbForm=Inf 27 advcl _ _ 32 so so ADV RB _ 31 advmod _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 6 # text = In this way we recapture old results and establish new ones on the reflexion of local homeomorphisms into coverings, on the Galois theory of commutative rings, and on generalized central extensions of universal algebras. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 way way NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 recapture recapture VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 old old ADJ JJ Degree=Pos 7 amod _ _ 7 results result NOUN NNS Number=Plur 5 dobj _ _ 8 and and CCONJ CC ConjType=Cmp 5 cc _ _ 9 establish establish VERB VB VerbForm=Inf 5 conj _ _ 10 new new ADJ JJ Degree=Pos 11 amod _ _ 11 ones one NOUN NNS Number=Plur 9 dobj _ _ 12 on on ADP IN _ 9 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 reflexion reflexion NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 local local ADJ JJ Degree=Pos 17 amod _ _ 17 homeomorphisms homeomorphism NOUN NNS Number=Plur 15 pobj _ _ 18 into into ADP IN _ 9 prep _ _ 19 coverings covering NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 9 punct _ _ 21 on on ADP IN _ 9 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 Galois Galois PROPN NNP Number=Sing 24 compound _ _ 24 theory theory NOUN NN Number=Sing 21 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 commutative commutative ADJ JJ Degree=Pos 27 amod _ _ 27 rings ring NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 9 punct _ _ 29 and and CCONJ CC ConjType=Cmp 5 cc _ _ 30 on on ADP IN _ 5 prep _ _ 31 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 33 amod _ _ 32 central central ADJ JJ Degree=Pos 33 amod _ _ 33 extensions extension NOUN NNS Number=Plur 30 pobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 universal universal ADJ JJ Degree=Pos 36 amod _ _ 36 algebras algebra NOUN NNS Number=Plur 34 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 33 # sent_id = 1 # text = We define a localization $ L $ of a category $ E $ to be quintessential if the left adjoint to the inclusion functor is also right adjoint to it, and persistent if $ L $ is closed under subobjects in $ E $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 localization localization NOUN NN Number=Sing 2 dobj _ _ 5 $ L $ $ l $ SYM $ _ 4 appos _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 category category NOUN NN Number=Sing 6 pobj _ _ 9 $ E $ $ e $ SYM $ _ 2 dep _ _ 10 to to PART TO _ 11 aux _ _ 11 be be AUX VB VerbForm=Inf 2 advcl _ _ 12 quintessential quintessential ADJ JJ Degree=Pos 11 acomp _ _ 13 if if SCONJ IN _ 21 mark _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 left left ADJ JJ Degree=Pos 16 amod _ _ 16 adjoint adjoint NOUN NN Number=Sing 21 nsubj _ _ 17 to to ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 inclusion inclusion NOUN NN Number=Sing 20 compound _ _ 20 functor functor NOUN NN Number=Sing 17 pobj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 advcl _ _ 22 also also ADV RB _ 21 advmod _ _ 23 right right ADJ JJ Degree=Pos 24 amod _ _ 24 adjoint adjoint NOUN NN Number=Sing 21 attr _ _ 25 to to ADP IN _ 24 prep _ _ 26 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 25 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 21 punct _ _ 28 and and CCONJ CC ConjType=Cmp 21 cc _ _ 29 persistent persistent ADJ JJ Degree=Pos 21 conj _ _ 30 if if SCONJ IN _ 33 mark _ _ 31 $ L $ $ l $ SYM $ _ 33 nsubjpass _ _ 32 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 33 auxpass _ _ 33 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 ccomp _ _ 34 under under ADP IN _ 33 prep _ _ 35 subobjects subobject NOUN NNS Number=Plur 34 pobj _ _ 36 in in ADP IN _ 35 prep _ _ 37 $ E $ $ e $ SYM $ _ 36 pobj _ _ 38 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We show that quintessential localizations of an arbitrary Cauchy - complete category correspond to idempotent natural endomorphisms of its identity functor, and that they are necessarily persistent. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 13 mark _ _ 4 quintessential quintessential ADJ JJ Degree=Pos 5 amod _ _ 5 localizations localization NOUN NNS Number=Plur 13 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 8 arbitrary arbitrary ADJ JJ Degree=Pos 12 amod _ _ 9 Cauchy Cauchy PROPN NNP Number=Sing 11 npadvmod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 complete complete ADJ JJ Degree=Pos 12 amod _ _ 12 category category NOUN NN Number=Sing 6 pobj _ _ 13 correspond correspond VERB VBP Tense=Pres|VerbForm=Fin 2 ccomp _ _ 14 to to ADP IN _ 13 prep _ _ 15 idempotent idempotent ADJ JJ Degree=Pos 17 amod _ _ 16 natural natural ADJ JJ Degree=Pos 17 amod _ _ 17 endomorphisms endomorphism NOUN NNS Number=Plur 14 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 21 poss _ _ 20 identity identity NOUN NN Number=Sing 21 compound _ _ 21 functor functor NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 13 punct _ _ 23 and and CCONJ CC ConjType=Cmp 13 cc _ _ 24 that that SCONJ IN _ 26 mark _ _ 25 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 26 nsubj _ _ 26 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 conj _ _ 27 necessarily necessarily ADV RB _ 26 advmod _ _ 28 persistent persistent ADJ JJ Degree=Pos 26 acomp _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Our investigation of persistent localizations is largely restricted to the case when $ E $ is a topos: we show that persistence is equivalence to the closure of $ L $ under finite coproducts and quotients, and that it implies that $ L $ is coreflective as well as reflective, at least provided $ E $ admits a geometric morphism to a Boolean topos. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 investigation investigation NOUN NN Number=Sing 8 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 persistent persistent ADJ JJ Degree=Pos 5 amod _ _ 5 localizations localization NOUN NNS Number=Plur 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 7 largely largely ADV RB _ 8 advmod _ _ 8 restricted restrict VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 ccomp _ _ 9 to to ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 case case NOUN NN Number=Sing 9 pobj _ _ 12 when when SCONJ WRB _ 14 advmod _ _ 13 $ E $ $ e $ SYM $ _ 14 nsubj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 advcl _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 topos topos NOUN NN Number=Sing 14 attr _ SpaceAfter=No 17 : : PUNCT : _ 19 punct _ _ 18 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 19 nsubj _ _ 19 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 20 that that SCONJ IN _ 22 mark _ _ 21 persistence persistence NOUN NN Number=Sing 22 nsubj _ _ 22 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 ccomp _ _ 23 equivalence equivalence NOUN NN Number=Sing 22 attr _ _ 24 to to ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 closure closure NOUN NN Number=Sing 24 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 $ L $ $ l $ SYM $ _ 27 pobj _ _ 29 under under ADP IN _ 26 prep _ _ 30 finite finite ADJ JJ Degree=Pos 31 compound _ _ 31 coproducts coproduct NOUN NNS Number=Plur 29 pobj _ _ 32 and and CCONJ CC ConjType=Cmp 31 cc _ _ 33 quotients quotient NOUN NNS Number=Plur 31 conj _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 22 punct _ _ 35 and and CCONJ CC ConjType=Cmp 22 cc _ _ 36 that that SCONJ IN _ 38 mark _ _ 37 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 38 nsubj _ _ 38 implies imply VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 conj _ _ 39 that that SCONJ IN _ 41 mark _ _ 40 $ L $ $ l $ SYM $ _ 41 nsubj _ _ 41 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 38 ccomp _ _ 42 coreflective coreflective ADJ JJ Degree=Pos 41 acomp _ _ 43 as as ADV RB _ 45 advmod _ _ 44 well well ADV RB Degree=Pos 45 advmod _ _ 45 as as ADP IN _ 42 cc _ _ 46 reflective reflective ADJ JJ Degree=Pos 42 conj _ SpaceAfter=No 47 , , PUNCT , PunctType=Comm 41 punct _ _ 48 at at ADP IN _ 49 advmod _ _ 49 least least ADJ JJS Degree=Sup 50 advmod _ _ 50 provided provide VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 52 nsubj _ _ 51 $ E $ $ e $ SYM $ _ 52 nsubj _ _ 52 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 38 conj _ _ 53 a a DET DT Definite=Ind|PronType=Art 55 det _ _ 54 geometric geometric ADJ JJ Degree=Pos 55 amod _ _ 55 morphism morphism NOUN NN Number=Sing 52 dobj _ _ 56 to to ADP IN _ 52 prep _ _ 57 a a DET DT Definite=Ind|PronType=Art 59 det _ _ 58 Boolean boolean ADJ JJ Degree=Pos 59 amod _ _ 59 topos topos NOUN NN Number=Sing 56 pobj _ SpaceAfter=No 60 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 4 # text = However, we provide examples to show that the reflector and coreflector need not coincide. 1 However however ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 examples example NOUN NNS Number=Plur 4 dobj _ _ 6 to to PART TO _ 7 aux _ _ 7 show show VERB VB VerbForm=Inf 4 advcl _ _ 8 that that SCONJ IN _ 15 mark _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 reflector reflector NOUN NN Number=Sing 15 nsubj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 coreflector coreflector NOUN NN Number=Sing 10 conj _ _ 13 need need AUX VBP Tense=Pres|VerbForm=Fin 15 aux _ _ 14 not not PART RB Polarity=Neg 15 neg _ _ 15 coincide coincide VERB VB VerbForm=Inf 7 ccomp _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 34 # sent_id = 1 # text = We analyze the Bianchi Identity as an instance of a basic fact of combinatorial groupoid theory, related to the Homotopy Addition Lemma. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 analyze analyze VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 Bianchi Bianchi PROPN NNP Number=Sing 5 compound _ _ 5 Identity Identity PROPN NNP Number=Sing 2 dobj _ _ 6 as as ADP IN _ 2 prep _ _ 7 an an DET DT Definite=Ind|PronType=Art 8 det _ _ 8 instance instance NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 basic basic ADJ JJ Degree=Pos 12 amod _ _ 12 fact fact NOUN NN Number=Sing 9 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 combinatorial combinatorial ADJ JJ Degree=Pos 16 amod _ _ 15 groupoid groupoid NOUN NN Number=Sing 16 compound _ _ 16 theory theory NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 2 punct _ _ 18 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 advcl _ _ 19 to to ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 23 det _ _ 21 Homotopy Homotopy PROPN NNP Number=Sing 22 compound _ _ 22 Addition Addition PROPN NNP Number=Sing 23 compound _ _ 23 Lemma Lemma PROPN NNP Number=Sing 19 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Here it becomes formulated in terms of 2 - forms with values in the gauge group bundle of a groupoid, and leads in particular to the (Chern - Weil) construction of characteristic classes. 1 Here here ADV RB PronType=Dem 3 advmod _ _ 2 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubj _ _ 3 becomes become VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 formulated formulate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 acomp _ _ 5 in in ADP IN _ 4 prep _ _ 6 terms term NOUN NNS Number=Plur 5 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 2 2 NUM CD NumType=Card 10 nummod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 forms form NOUN NNS Number=Plur 7 pobj _ _ 11 with with ADP IN _ 10 prep _ _ 12 values value NOUN NNS Number=Plur 11 pobj _ _ 13 in in ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 17 det _ _ 15 gauge gauge NOUN NN Number=Sing 16 compound _ _ 16 group group NOUN NN Number=Sing 17 compound _ _ 17 bundle bundle NOUN NN Number=Sing 13 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 groupoid groupoid NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 3 punct _ _ 22 and and CCONJ CC ConjType=Cmp 3 cc _ _ 23 leads lead VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 conj _ _ 24 in in ADV RB _ 23 advmod _ _ 25 particular particular ADJ JJ Degree=Pos 24 amod _ _ 26 to to ADP IN _ 23 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 33 det _ _ 28 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 33 punct _ SpaceAfter=No 29 Chern Chern PROPN NNP Number=Sing 31 nmod _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 Weil Weil PROPN NNP Number=Sing 33 nmod _ SpaceAfter=No 32 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 33 punct _ _ 33 construction construction NOUN NN Number=Sing 26 pobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 characteristic characteristic ADJ JJ Degree=Pos 36 amod _ _ 36 classes class NOUN NNS Number=Plur 34 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = The method is that of synthetic differential geometry, using ``the first neighbourhood of the diagonal'' of a manifold as its basic combinatorial structure. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 method method NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that PRON DT Number=Sing|PronType=Dem 3 attr _ _ 5 of of ADP IN _ 4 prep _ _ 6 synthetic synthetic ADJ JJ Degree=Pos 8 amod _ _ 7 differential differential ADJ JJ Degree=Pos 8 amod _ _ 8 geometry geometry NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 3 punct _ _ 10 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 advcl _ _ 11 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 10 punct _ SpaceAfter=No 12 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 10 punct _ SpaceAfter=No 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 first first ADJ JJ Degree=Pos 15 amod _ _ 15 neighbourhood neighbourhood NOUN NN Number=Sing 10 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 diagonal diagonal NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 19 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 15 punct _ _ 20 of of ADP IN _ 15 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 manifold manifold NOUN NN Number=Sing 20 pobj _ _ 23 as as ADP IN _ 22 prep _ _ 24 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 27 poss _ _ 25 basic basic ADJ JJ Degree=Pos 27 amod _ _ 26 combinatorial combinatorial ADJ JJ Degree=Pos 27 amod _ _ 27 structure structure NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = We introduce as a tool a new and simple description of wedge (exterior) products of differential forms in this context. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 as as ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 tool tool NOUN NN Number=Sing 3 pobj _ _ 6 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 7 new new ADJ JJ Degree=Pos 10 amod _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 simple simple ADJ JJ Degree=Pos 7 conj _ _ 10 description description NOUN NN Number=Sing 2 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 wedge wedge NOUN NN Number=Sing 16 nmod _ _ 13 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 16 punct _ SpaceAfter=No 14 exterior exterior ADJ JJ Degree=Pos 16 amod _ SpaceAfter=No 15 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 16 punct _ _ 16 products product NOUN NNS Number=Plur 11 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 differential differential ADJ JJ Degree=Pos 19 amod _ _ 19 forms form NOUN NNS Number=Plur 17 pobj _ _ 20 in in ADP IN _ 10 prep _ _ 21 this this DET DT Number=Sing|PronType=Dem 22 det _ _ 22 context context NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 35 # sent_id = 1 # text = Results on the finiteness of induced crossed modules are proved both algebraically and topologically. 1 Results result NOUN NNS Number=Plur 10 nsubjpass _ _ 2 on on ADP IN _ 1 prep _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 finiteness finiteness NOUN NN Number=Sing 2 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 7 crossed cross VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 8 modules module NOUN NNS Number=Plur 5 pobj _ _ 9 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 10 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 11 both both PRON DT _ 12 advmod _ _ 12 algebraically algebraically ADV RB _ 10 advmod _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 topologically topologically ADV RB _ 12 conj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = Using the Van Kampen type theorem for the fundamental crossed module, applications are given to the 2 - types of mapping cones of classifying spaces of groups. 1 Using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 csubj _ _ 2 the the DET DT Definite=Def|PronType=Art 5 det _ _ 3 Van Van PROPN NNP Number=Sing 4 compound _ _ 4 Kampen Kampen PROPN NNP Number=Sing 5 compound _ _ 5 type type NOUN NN Number=Sing 1 dobj _ _ 6 theorem theorem VERB VBD Tense=Past|VerbForm=Fin 15 advcl _ _ 7 for for ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 11 det _ _ 9 fundamental fundamental ADJ JJ Degree=Pos 11 amod _ _ 10 crossed crossed ADJ JJ Degree=Pos 11 amod _ _ 11 module module NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 15 punct _ _ 13 applications application NOUN NNS Number=Plur 15 nsubjpass _ _ 14 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 auxpass _ _ 15 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 16 to to ADP IN _ 15 dative _ _ 17 the the DET DT Definite=Def|PronType=Art 20 det _ _ 18 2 2 NUM CD NumType=Card 20 nummod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 types type NOUN NNS Number=Plur 16 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 mapping mapping NOUN NN Number=Sing 23 compound _ _ 23 cones cone NOUN NNS Number=Plur 21 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 classifying classify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 24 pcomp _ _ 26 spaces space NOUN NNS Number=Plur 25 dobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 groups group NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 3 # text = Calculations of the cohomology classes of some finite crossed modules are given, using crossed complex methods. 1 Calculations calculation NOUN NNS Number=Plur 12 nsubjpass _ _ 2 of of ADP IN _ 1 prep _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 cohomology cohomology NOUN NN Number=Sing 5 compound _ _ 5 classes class NOUN NNS Number=Plur 2 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 some some DET DT _ 10 det _ _ 8 finite finite NOUN NN Number=Sing 10 amod _ _ 9 crossed cross VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 10 modules module NOUN NNS Number=Plur 6 pobj _ _ 11 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 12 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 advcl _ _ 15 crossed cross VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 16 complex complex ADJ JJ Degree=Pos 17 amod _ _ 17 methods method NOUN NNS Number=Plur 14 dobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # doc_id = 36 # sent_id = 1 # text = The classical infinite loopspace machines in fact induce an equivalence of categories between a localization of the category of symmetric monoidal categories and the stable homotopy category of - 1 - connective spectra. 1 The the DET DT Definite=Def|PronType=Art 5 det _ _ 2 classical classical ADJ JJ Degree=Pos 5 amod _ _ 3 infinite infinite NOUN NN Number=Sing 5 compound _ _ 4 loopspace loopspace NOUN NN Number=Sing 5 compound _ _ 5 machines machine NOUN NNS Number=Plur 8 nsubj _ _ 6 in in ADP IN _ 8 prep _ _ 7 fact fact NOUN NN Number=Sing 6 pobj _ _ 8 induce induce VERB VB VerbForm=Inf 0 ROOT _ _ 9 an an DET DT Definite=Ind|PronType=Art 10 det _ _ 10 equivalence equivalence NOUN NN Number=Sing 8 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 categories category NOUN NNS Number=Plur 11 pobj _ _ 13 between between ADP IN _ 10 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 localization localization NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 category category NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 symmetric symmetric ADJ JJ Degree=Pos 22 amod _ _ 21 monoidal monoidal ADJ JJ Degree=Pos 22 amod _ _ 22 categories category NOUN NNS Number=Plur 19 pobj _ _ 23 and and CCONJ CC ConjType=Cmp 22 cc _ _ 24 the the DET DT Definite=Def|PronType=Art 27 det _ _ 25 stable stable ADJ JJ Degree=Pos 27 amod _ _ 26 homotopy homotopy NOUN NN Number=Sing 27 compound _ _ 27 category category NOUN NN Number=Sing 15 conj _ _ 28 of of ADP IN _ 27 prep _ _ 29 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 30 1 1 NUM CD NumType=Card 32 nummod _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 connective connective ADJ JJ Degree=Pos 33 amod _ _ 33 spectra spectra NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # doc_id = 37 # sent_id = 1 # text = Strong promonoidal functors are defined. 1 Strong strong ADJ JJ Degree=Pos 3 amod _ _ 2 promonoidal promonoidal NOUN NN Number=Sing 3 amod _ _ 3 functors functor NOUN NNS Number=Plur 5 nsubjpass _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 6 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = Left Kan extension (also called "existential quantification") along a strong promonoidal functor is shown to be a strong monoidal functor. 1 Left Left PROPN NNP Number=Sing 2 compound _ _ 2 Kan Kan PROPN NNP Number=Sing 3 compound _ _ 3 extension extension NOUN NN Number=Sing 18 nsubjpass _ _ 4 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 3 punct _ SpaceAfter=No 5 also also ADV RB _ 6 advmod _ _ 6 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 acl _ _ 7 " " PUNCT `` PunctSide=Ini|PunctType=Quot 9 punct _ SpaceAfter=No 8 existential existential ADJ JJ Degree=Pos 9 amod _ _ 9 quantification quantification NOUN NN Number=Sing 6 oprd _ SpaceAfter=No 10 " " PUNCT '' PunctSide=Fin|PunctType=Quot 9 punct _ SpaceAfter=No 11 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 3 punct _ _ 12 along along ADP IN _ 3 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 14 strong strong ADJ JJ Degree=Pos 16 amod _ _ 15 promonoidal promonoidal NOUN NN Number=Sing 16 compound _ _ 16 functor functor NOUN NN Number=Sing 12 pobj _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 auxpass _ _ 18 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 19 to to PART TO _ 20 aux _ _ 20 be be AUX VB VerbForm=Inf 18 xcomp _ _ 21 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 22 strong strong ADJ JJ Degree=Pos 24 amod _ _ 23 monoidal monoidal ADJ JJ Degree=Pos 24 amod _ _ 24 functor functor NOUN NN Number=Sing 20 attr _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # sent_id = 3 # text = A construction for the free monoidal category on a promonoidal category is provided. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 construction construction NOUN NN Number=Sing 13 nsubjpass _ _ 3 for for ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 free free ADJ JJ Degree=Pos 7 amod _ _ 6 monoidal monoidal ADJ JJ Degree=Pos 7 amod _ _ 7 category category NOUN NN Number=Sing 3 pobj _ _ 8 on on ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 promonoidal promonoidal ADJ JJ Degree=Pos 11 amod _ _ 11 category category NOUN NN Number=Sing 8 pobj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 provided provide VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 4 # text = A Fourier - like transform of presheaves is defined and shown to take convolution product to cartesian product. 1 A a DET DT Definite=Ind|PronType=Art 5 det _ _ 2 Fourier Fourier PROPN NNP Number=Sing 4 npadvmod _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 like like ADJ JJ Degree=Pos 5 amod _ _ 5 transform transform NOUN NN Number=Sing 9 nsubjpass _ _ 6 of of ADP IN _ 5 prep _ _ 7 presheaves presheave NOUN NNS Number=Plur 6 pobj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 conj _ _ 12 to to PART TO _ 13 aux _ _ 13 take take VERB VB VerbForm=Inf 11 xcomp _ _ 14 convolution convolution NOUN NN Number=Sing 15 compound _ _ 15 product product NOUN NN Number=Sing 13 dobj _ _ 16 to to ADP IN _ 13 prep _ _ 17 cartesian cartesian ADJ JJ Degree=Pos 18 amod _ _ 18 product product NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 38 # sent_id = 1 # text = In this paper we study the lattice of quantic conuclei for orthomudular lattices. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 lattice lattice NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 quantic quantic ADJ JJ Degree=Pos 10 amod _ _ 10 conuclei conuclei NOUN NN Number=Sing 8 pobj _ _ 11 for for ADP IN _ 10 prep _ _ 12 orthomudular orthomudular ADJ JJ Degree=Pos 13 amod _ _ 13 lattices lattice NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = We show that under certain condition we can get a complete characterization of all quantic conuclei. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 9 mark _ _ 4 under under ADP IN _ 9 prep _ _ 5 certain certain ADJ JJ Degree=Pos 6 amod _ _ 6 condition condition NOUN NN Number=Sing 4 pobj _ _ 7 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 9 nsubj _ _ 8 can can AUX MD VerbForm=Fin 9 aux _ _ 9 get get VERB VB VerbForm=Inf 2 ccomp _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 complete complete ADJ JJ Degree=Pos 12 amod _ _ 12 characterization characterization NOUN NN Number=Sing 9 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 all all DET DT _ 16 det _ _ 15 quantic quantic ADJ JJ Degree=Pos 16 amod _ _ 16 conuclei conuclei NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = The thing to note is we use a non commutative, non associative disjunction operation which can be thought of as non commutative, non associative linear logic. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 thing thing NOUN NN Number=Sing 5 nsubj _ _ 3 to to PART TO _ 4 aux _ _ 4 note note VERB VB VerbForm=Inf 2 relcl _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 use use VERB VBP Tense=Pres|VerbForm=Fin 5 ccomp _ _ 8 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 9 non non PROPN NNP Number=Sing 10 nmod _ _ 10 commutative commutative ADJ JJ Degree=Pos 15 amod _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 15 punct _ _ 12 non non PROPN NNP Number=Sing 15 compound _ _ 13 associative associative ADJ JJ Degree=Pos 14 amod _ _ 14 disjunction disjunction NOUN NN Number=Sing 15 compound _ _ 15 operation operation NOUN NN Number=Sing 7 dobj _ _ 16 which which PRON WDT _ 19 nsubjpass _ _ 17 can can AUX MD VerbForm=Fin 19 aux _ _ 18 be be AUX VB VerbForm=Inf 19 auxpass _ _ 19 thought think VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 relcl _ _ 20 of of ADP IN _ 19 prep _ _ 21 as as ADP IN _ 19 prep _ _ 22 non non PROPN NNP Number=Sing 23 compound _ _ 23 commutative commutative PROPN NNP Number=Sing 21 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 23 punct _ _ 25 non non PROPN NNP Number=Sing 28 nmod _ _ 26 associative associative ADJ JJ Degree=Pos 28 amod _ _ 27 linear linear PROPN NNP Number=Sing 28 compound _ _ 28 logic logic NOUN NN Number=Sing 19 oprd _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 39 # sent_id = 1 # text = We discuss two versions of a conjecture attributed to M Barr. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 discuss discuss VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 two two NUM CD NumType=Card 4 nummod _ _ 4 versions version NOUN NNS Number=Plur 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 conjecture conjecture NOUN NN Number=Sing 5 pobj _ _ 8 attributed attribute VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 acl _ _ 9 to to ADP IN _ 8 prep _ _ 10 M M PROPN NNP Number=Sing 11 compound _ _ 11 Barr Barr PROPN NNP Number=Sing 9 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The Harrison cohomology of a commutative algebra is known to coincide with the Andre/Quillen cohomology over a field of characteristic zero but not in prime characteristics. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 Harrison Harrison PROPN NNP Number=Sing 3 compound _ _ 3 cohomology cohomology NOUN NN Number=Sing 9 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 commutative commutative ADJ JJ Degree=Pos 7 amod _ _ 7 algebra algebra PROPN NNP Number=Sing 4 pobj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 to to PART TO _ 11 aux _ _ 11 coincide coincide VERB VB VerbForm=Inf 9 xcomp _ _ 12 with with ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 17 det _ _ 14 Andre Andre PROPN NNP Number=Sing 16 nmod _ SpaceAfter=No 15 / / SYM SYM _ 16 punct _ SpaceAfter=No 16 Quillen Quillen PROPN NNP Number=Sing 17 compound _ _ 17 cohomology cohomology NOUN NN Number=Sing 12 pobj _ _ 18 over over ADP IN _ 11 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 field field NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 characteristic characteristic ADJ JJ Degree=Pos 23 amod _ _ 23 zero zero NUM CD NumType=Card 21 pobj _ _ 24 but but CCONJ CC ConjType=Cmp 18 cc _ _ 25 not not PART RB Polarity=Neg 26 neg _ _ 26 in in ADP IN _ 18 conj _ _ 27 prime prime ADJ JJ Degree=Pos 28 amod _ _ 28 characteristics characteristic NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 3 # text = The conjecture is that a modified version of Harrison cohomology, taking into account torsion, always agrees with Andre/Quillen cohomology. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 conjecture conjecture NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 18 mark _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 modified modified ADJ JJ Degree=Pos 7 amod _ _ 7 version version NOUN NN Number=Sing 18 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 Harrison Harrison PROPN NNP Number=Sing 10 compound _ _ 10 cohomology cohomology NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 7 punct _ _ 12 taking take VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 acl _ _ 13 into into ADP IN _ 12 prep _ _ 14 account account NOUN NN Number=Sing 15 compound _ _ 15 torsion torsion NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 7 punct _ _ 17 always always ADV RB _ 18 advmod _ _ 18 agrees agree VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 19 with with ADP IN _ 18 prep _ _ 20 Andre Andre PROPN NNP Number=Sing 22 nmod _ SpaceAfter=No 21 / / SYM SYM _ 22 punct _ SpaceAfter=No 22 Quillen Quillen PROPN NNP Number=Sing 23 compound _ _ 23 cohomology cohomology NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = We give a counterexample. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 counterexample counterexample NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 5 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 40 # sent_id = 1 # text = The purpose is to give a simple proof that a category is equivalent to a small category if and only if both it and its presheaf category are locally small. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 purpose purpose NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 to to PART TO _ 5 aux _ _ 5 give give VERB VB VerbForm=Inf 3 xcomp _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 simple simple ADJ JJ Degree=Pos 8 amod _ _ 8 proof proof NOUN NN Number=Sing 5 dobj _ _ 9 that that SCONJ IN _ 12 mark _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 category category NOUN NN Number=Sing 12 nsubj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 acl _ _ 13 equivalent equivalent ADJ JJ Degree=Pos 12 acomp _ _ 14 to to ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 small small ADJ JJ Degree=Pos 17 amod _ _ 17 category category NOUN NN Number=Sing 14 pobj _ _ 18 if if SCONJ IN _ 28 mark _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 only only ADV RB _ 28 advmod _ _ 21 if if SCONJ IN _ 28 mark _ _ 22 both both CCONJ CC ConjType=Cmp 23 preconj _ _ 23 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 28 nsubj _ _ 24 and and CCONJ CC ConjType=Cmp 23 cc _ _ 25 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 27 poss _ _ 26 presheaf presheaf ADJ JJ Degree=Pos 27 compound _ _ 27 category category NOUN NN Number=Sing 23 conj _ _ 28 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 12 advcl _ _ 29 locally locally ADV RB _ 30 advmod _ _ 30 small small ADJ JJ Degree=Pos 28 acomp _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 41 # sent_id = 1 # text = We introduce MD - sketches, which are a particular kind of Finite Sum sketches. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 MD MD PROPN NNP Number=Sing 5 compound _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 sketches sketch NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 which which PRON WDT _ 8 nsubj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 relcl _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 particular particular ADJ JJ Degree=Pos 11 amod _ _ 11 kind kind NOUN NN Number=Sing 8 attr _ _ 12 of of ADP IN _ 11 prep _ _ 13 Finite Finite PROPN NNP Number=Sing 14 compound _ _ 14 Sum Sum PROPN NNP Number=Sing 15 compound _ _ 15 sketches sketch NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Two interesting results about MD - sketches are proved. 1 Two two NUM CD NumType=Card 3 nummod _ _ 2 interesting interesting ADJ JJ Degree=Pos 3 amod _ _ 3 results result NOUN NNS Number=Plur 9 nsubjpass _ _ 4 about about ADP IN _ 3 prep _ _ 5 MD MD PROPN NNP Number=Sing 7 compound _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 sketches sketch NOUN NNS Number=Plur 4 pobj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 3 # text = First, we show that, given two MD - sketches, it is algorithmically decidable whether their model categories are equivalent. 1 First first ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 14 mark _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 14 punct _ _ 7 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 prep _ _ 8 two two NUM CD NumType=Card 11 nummod _ _ 9 MD MD PROPN NNP Number=Sing 11 compound _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 sketches sketch NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 14 punct _ _ 13 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 14 nsubj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 15 algorithmically algorithmically ADV RB _ 16 advmod _ _ 16 decidable decidable ADJ JJ Degree=Pos 14 acomp _ _ 17 whether whether SCONJ IN _ 21 mark _ _ 18 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 20 poss _ _ 19 model model NOUN NN Number=Sing 20 compound _ _ 20 categories category NOUN NNS Number=Plur 21 nsubj _ _ 21 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 14 ccomp _ _ 22 equivalent equivalent ADJ JJ Degree=Pos 21 acomp _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = Next we show that data - specifications, as used in database - design and software engineering, can be translated to MD - sketches. 1 Next next ADV RB _ 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 21 mark _ _ 5 data datum NOUN NNS Number=Plur 7 compound _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 specifications specification NOUN NNS Number=Plur 21 nsubjpass _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 as as SCONJ IN _ 10 mark _ _ 10 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 advcl _ _ 11 in in ADP IN _ 10 prep _ _ 12 database database NOUN NN Number=Sing 14 nmod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 design design NOUN NN Number=Sing 17 nmod _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 software software NOUN NN Number=Sing 14 conj _ _ 17 engineering engineering NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 21 punct _ _ 19 can can AUX MD VerbForm=Fin 21 aux _ _ 20 be be AUX VB VerbForm=Inf 21 auxpass _ _ 21 translated translate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 ccomp _ _ 22 to to ADP IN _ 21 prep _ _ 23 MD MD PROPN NNP Number=Sing 25 compound _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 sketches sketch NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = As a corollary, we obtain that equivalence of data - specifications is decidable. 1 As as ADP IN _ 6 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 corollary corollary NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 that that DET DT Number=Sing|PronType=Dem 8 det _ _ 8 equivalence equivalence NOUN NN Number=Sing 13 nsubj _ _ 9 of of ADP IN _ 8 prep _ _ 10 data datum NOUN NNS Number=Plur 12 compound _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 specifications specification NOUN NNS Number=Plur 9 pobj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 14 decidable decidable ADJ JJ Degree=Pos 13 acomp _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 42 # sent_id = 1 # text = The Medial rule was first devised as a deduction rule in the Calculus of Structures. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 Medial medial ADJ JJ Degree=Pos 3 compound _ _ 3 rule rule NOUN NN Number=Sing 6 nsubjpass _ _ 4 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 6 auxpass _ _ 5 first first ADV RB _ 6 advmod _ _ 6 devised devise VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 as as ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 deduction deduction NOUN NN Number=Sing 10 compound _ _ 10 rule rule NOUN NN Number=Sing 7 pobj _ _ 11 in in ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 Calculus Calculus PROPN NNP Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 Structures Structures PROPN NNP Number=Sing 14 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = In this paper we explore it from the point of view of category theory, as additional structure on a $ * $ - autonomous category. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 explore explore VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 5 dobj _ _ 7 from from ADP IN _ 5 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 point point NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 view view NOUN NN Number=Sing 10 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 category category NOUN NN Number=Sing 14 compound _ _ 14 theory theory NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 5 punct _ _ 16 as as ADP IN _ 5 prep _ _ 17 additional additional ADJ JJ Degree=Pos 18 amod _ _ 18 structure structure NOUN NN Number=Sing 16 pobj _ _ 19 on on ADP IN _ 18 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 21 $ * $ $ * $ SYM $ _ 23 advmod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 autonomous autonomous ADJ JJ Degree=Pos 24 amod _ _ 24 category category NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = This gives us some insights on the denotational semantics of classical propositional logic, and allows us to construct new models for it, based on suitable generalizations of the theory of coherence spaces. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 2 dative _ _ 4 some some DET DT _ 5 det _ _ 5 insights insight NOUN NNS Number=Plur 2 dobj _ _ 6 on on ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 denotational denotational ADJ JJ Degree=Pos 9 amod _ _ 9 semantics semantic NOUN NNS Number=Plur 6 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 classical classical ADJ JJ Degree=Pos 13 amod _ _ 12 propositional propositional ADJ JJ Degree=Pos 13 amod _ _ 13 logic logic NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 2 punct _ _ 15 and and CCONJ CC ConjType=Cmp 2 cc _ _ 16 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 conj _ _ 17 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 19 nsubj _ _ 18 to to PART TO _ 19 aux _ _ 19 construct construct VERB VB VerbForm=Inf 16 ccomp _ _ 20 new new ADJ JJ Degree=Pos 21 amod _ _ 21 models model NOUN NNS Number=Plur 19 dobj _ _ 22 for for ADP IN _ 21 prep _ _ 23 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 22 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 19 punct _ _ 25 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 prep _ _ 26 on on ADP IN _ 25 prep _ _ 27 suitable suitable ADJ JJ Degree=Pos 28 amod _ _ 28 generalizations generalization NOUN NNS Number=Plur 26 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 theory theory NOUN NN Number=Sing 29 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 coherence coherence NOUN NN Number=Sing 34 compound _ _ 34 spaces space NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 43 # sent_id = 1 # text = Tilings of rectangles with rectangles, and tileorders (the associated double order structures) are useful as ``templates'' for composition in double categories. 1 Tilings tiling NOUN NNS Number=Plur 16 nsubj _ _ 2 of of ADP IN _ 1 prep _ _ 3 rectangles rectangle NOUN NNS Number=Plur 2 pobj _ _ 4 with with ADP IN _ 3 prep _ _ 5 rectangles rectangle NOUN NNS Number=Plur 4 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 1 punct _ _ 7 and and CCONJ CC ConjType=Cmp 1 cc _ _ 8 tileorders tileorder NOUN NNS Number=Plur 1 conj _ _ 9 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 8 punct _ SpaceAfter=No 10 the the DET DT Definite=Def|PronType=Art 14 det _ _ 11 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 12 double double ADJ JJ Degree=Pos 13 amod _ _ 13 order order NOUN NN Number=Sing 14 compound _ _ 14 structures structure NOUN NNS Number=Plur 8 appos _ SpaceAfter=No 15 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 8 punct _ _ 16 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 17 useful useful ADJ JJ Degree=Pos 16 acomp _ _ 18 as as ADP IN _ 17 prep _ _ 19 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 21 punct _ SpaceAfter=No 20 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 21 punct _ SpaceAfter=No 21 templates template NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 22 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 21 punct _ _ 23 for for ADP IN _ 21 prep _ _ 24 composition composition NOUN NN Number=Sing 23 pobj _ _ 25 in in ADP IN _ 24 prep _ _ 26 double double ADJ JJ Degree=Pos 27 amod _ _ 27 categories category NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 2 # text = In this context, it is particularly relevant to ask which tilings may be joined together, two rectangles at a time, to form one large rectangle. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 context context NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 6 nsubj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 particularly particularly ADV RB _ 8 advmod _ _ 8 relevant relevant ADJ JJ Degree=Pos 6 acomp _ _ 9 to to PART TO _ 10 aux _ _ 10 ask ask VERB VB VerbForm=Inf 6 xcomp _ _ 11 which which DET WDT _ 12 det _ _ 12 tilings tiling NOUN NNS Number=Plur 15 nsubjpass _ _ 13 may may AUX MD VerbForm=Fin 15 aux _ _ 14 be be AUX VB VerbForm=Inf 15 auxpass _ _ 15 joined join VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 ccomp _ _ 16 together together ADV RB _ 15 advmod _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 6 punct _ _ 18 two two NUM CD NumType=Card 19 nummod _ _ 19 rectangles rectangle NOUN NNS Number=Plur 6 attr _ _ 20 at at ADP IN _ 19 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 time time NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 19 punct _ _ 24 to to PART TO _ 25 aux _ _ 25 form form VERB VB VerbForm=Inf 6 advcl _ _ 26 one one NUM CD NumType=Card 28 nummod _ _ 27 large large ADJ JJ Degree=Pos 28 amod _ _ 28 rectangle rectangle NOUN NN Number=Sing 25 dobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = We characterize such tilings via forbidden suborders, in a manner analogous to Kuratowski's characterization of planar graphs. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 such such ADJ JJ Degree=Pos 4 amod _ _ 4 tilings tiling NOUN NNS Number=Plur 2 dobj _ _ 5 via via ADP IN _ 4 prep _ _ 6 forbidden forbidden ADJ JJ Degree=Pos 7 amod _ _ 7 suborders suborder NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 2 punct _ _ 9 in in ADP IN _ 2 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 manner manner NOUN NN Number=Sing 9 pobj _ _ 12 analogous analogous ADJ JJ Degree=Pos 11 amod _ _ 13 to to ADP IN _ 12 prep _ _ 14 Kuratowski Kuratowski PROPN NNP Number=Sing 16 poss _ SpaceAfter=No 15 's 's PART POS _ 14 case _ _ 16 characterization characterization NOUN NN Number=Sing 13 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 planar planar ADJ JJ Degree=Pos 19 amod _ _ 19 graphs graph NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 44 # sent_id = 1 # text = We formulate three slightly different notions of oriented singular chain complexes and show that all three are naturally homotopic to ordinary singular chain complexes. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 formulate formulate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 three three NUM CD NumType=Card 6 nummod _ _ 4 slightly slightly ADV RB _ 5 advmod _ _ 5 different different ADJ JJ Degree=Pos 6 amod _ _ 6 notions notion NOUN NNS Number=Plur 2 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 oriented orient VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 amod _ _ 9 singular singular ADJ JJ Degree=Pos 11 amod _ _ 10 chain chain NOUN NN Number=Sing 11 compound _ _ 11 complexes complex NOUN NNS Number=Plur 7 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 2 cc _ _ 13 show show VERB VB VerbForm=Inf 2 conj _ _ 14 that that SCONJ IN _ 17 mark _ _ 15 all all DET DT _ 16 det _ _ 16 three three NUM CD NumType=Card 17 nsubj _ _ 17 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 ccomp _ _ 18 naturally naturally ADV RB _ 17 advmod _ _ 19 homotopic homotopic ADJ JJ Degree=Pos 17 acomp _ _ 20 to to ADP IN _ 17 prep _ _ 21 ordinary ordinary ADJ JJ Degree=Pos 24 amod _ _ 22 singular singular ADJ JJ Degree=Pos 24 amod _ _ 23 chain chain NOUN NN Number=Sing 24 compound _ _ 24 complexes complex NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 45 # sent_id = 1 # text = In 1975, Brown constructed a functor $ cal P $ which carries the tower of fundamental groups of the end of a (nice) space to the Brown - Grossman fundamental group. 1 In in ADP IN _ 5 prep _ _ 2 1975 1975 NUM CD NumType=Card 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 Brown Brown PROPN NNP Number=Sing 5 nsubj _ _ 5 constructed construct VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 functor functor NOUN NN Number=Sing 8 compound _ _ 8 $ cal P $ $ cal p $ SYM $ _ 5 dobj _ _ 9 which which PRON WDT _ 10 nsubj _ _ 10 carries carry VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 advcl _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 tower tower NOUN NN Number=Sing 10 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 fundamental fundamental ADJ JJ Degree=Pos 15 amod _ _ 15 groups group NOUN NNS Number=Plur 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 end end NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 21 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 24 punct _ SpaceAfter=No 22 nice nice ADJ JJ Degree=Pos 24 amod _ SpaceAfter=No 23 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 24 punct _ _ 24 space space NOUN NN Number=Sing 19 pobj _ _ 25 to to ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 31 det _ _ 27 Brown Brown PROPN NNP Number=Sing 29 nmod _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 Grossman Grossman PROPN NNP Number=Sing 31 nmod _ _ 30 fundamental fundamental ADJ JJ Degree=Pos 31 amod _ _ 31 group group NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = In this work, we study this functor and its extensions and analogues defined for pro - sets, pro - pointed sets, pro - groups and pro - abelian groups. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 work work NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 this this DET DT Number=Sing|PronType=Dem 8 det _ _ 8 functor functor NOUN NN Number=Sing 6 dobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 11 poss _ _ 11 extensions extension NOUN NNS Number=Plur 8 conj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 analogues analogue NOUN NNS Number=Plur 11 conj _ _ 14 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 acl _ _ 15 for for ADP IN _ 14 prep _ _ 16 pro pro ADJ JJ Degree=Pos 18 amod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 sets set NOUN NNS Number=Plur 23 nmod _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 23 punct _ _ 20 pro pro ADJ JJ Degree=Pos 22 advmod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 pointed point VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 amod _ _ 23 sets set NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 23 punct _ _ 25 pro pro ADJ JJ Degree=Pos 27 amod _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 groups group NOUN NNS Number=Plur 23 conj _ _ 28 and and CCONJ CC ConjType=Cmp 27 cc _ _ 29 pro pro ADJ JJ Degree=Pos 31 amod _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 abelian abelian ADJ JJ Degree=Pos 32 amod _ _ 32 groups group NOUN NNS Number=Plur 27 conj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = The new versions of the $ cal P $ functor are provided with more algebraic structure. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 new new ADJ JJ Degree=Pos 3 amod _ _ 3 versions version NOUN NNS Number=Plur 9 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 $ cal P $ $ cal p $ SYM $ _ 7 nmod _ _ 7 functor functor NOUN NN Number=Sing 4 pobj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 provided provide VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 with with ADP IN _ 9 prep _ _ 11 more more ADJ JJR Degree=Cmp 12 advmod _ _ 12 algebraic algebraic ADJ JJ Degree=Pos 13 amod _ _ 13 structure structure NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 4 # text = Examples given in the paper prove that in general the $ cal P $ functors are not faithful, however, one of our main results establishes that the restrictions of the corresponding $ cal P $ functors to the full subcategories of towers are faithful. 1 Examples example NOUN NNS Number=Plur 6 nsubj _ _ 2 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 1 acl _ _ 3 in in ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 paper paper NOUN NN Number=Sing 3 pobj _ _ 6 prove prove VERB VB VerbForm=Inf 0 ROOT _ _ 7 that that SCONJ IN _ 13 mark _ _ 8 in in ADP IN _ 13 prep _ _ 9 general general ADJ JJ Degree=Pos 8 amod _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 $ cal P $ $ cal p $ SYM $ _ 12 nummod _ _ 12 functors functor NOUN NNS Number=Plur 13 nsubj _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 14 not not PART RB Polarity=Neg 13 neg _ _ 15 faithful faithful ADJ JJ Degree=Pos 13 acomp _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 13 punct _ _ 17 however however ADV RB _ 13 advmod _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 24 punct _ _ 19 one one NUM CD NumType=Card 24 nsubj _ _ 20 of of ADP IN _ 19 prep _ _ 21 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 23 poss _ _ 22 main main ADJ JJ Degree=Pos 23 amod _ _ 23 results result NOUN NNS Number=Plur 20 pobj _ _ 24 establishes establish VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 25 that that SCONJ IN _ 39 mark _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 restrictions restriction NOUN NNS Number=Plur 39 nsubj _ _ 28 of of ADP IN _ 27 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 32 det _ _ 30 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 32 amod _ _ 31 $ cal P $ $ cal p $ SYM $ _ 32 nmod _ _ 32 functors functor NOUN NNS Number=Plur 28 pobj _ _ 33 to to ADP IN _ 27 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 36 det _ _ 35 full full ADJ JJ Degree=Pos 36 amod _ _ 36 subcategories subcategorie NOUN NNS Number=Plur 33 pobj _ _ 37 of of ADP IN _ 36 prep _ _ 38 towers tower NOUN NNS Number=Plur 37 pobj _ _ 39 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 24 ccomp _ _ 40 faithful faithful ADJ JJ Degree=Pos 39 acomp _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 5 # text = We also prove that the restrictions of the $ cal P $ functors to the corresponding full subcategories of finitely generated towers are also full. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 20 mark _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 restrictions restriction NOUN NNS Number=Plur 20 nsubj _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 $ cal P $ $ cal p $ SYM $ _ 10 nmod _ _ 10 functors functor NOUN NNS Number=Plur 7 pobj _ _ 11 to to ADP IN _ 6 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 15 det _ _ 13 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 amod _ _ 14 full full ADJ JJ Degree=Pos 15 amod _ _ 15 subcategories subcategorie NOUN NNS Number=Plur 11 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 finitely finitely ADV RB _ 18 advmod _ _ 18 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 amod _ _ 19 towers tower NOUN NNS Number=Plur 16 pobj _ _ 20 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 21 also also ADV RB _ 20 advmod _ _ 22 full full ADJ JJ Degree=Pos 20 acomp _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = Consequently, in these cases, the towers of objects in the categories of sets, pointed sets, groups and abelian groups, can be replaced by adequate algebraic models ( $ M $ - sets, $ M $ - pointed sets, near - modules and modules.) 1 Consequently consequently ADV RB _ 27 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 27 punct _ _ 3 in in ADP IN _ 27 prep _ _ 4 these these DET DT Number=Plur|PronType=Dem 5 det _ _ 5 cases case NOUN NNS Number=Plur 3 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 27 punct _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 towers tower NOUN NNS Number=Plur 27 nsubjpass _ _ 9 of of ADP IN _ 8 prep _ _ 10 objects object NOUN NNS Number=Plur 9 pobj _ _ 11 in in ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 categories category NOUN NNS Number=Plur 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 sets set NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 pointed pointed ADJ JJ Degree=Pos 18 amod _ _ 18 sets set NOUN NNS Number=Plur 15 conj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 groups group NOUN NNS Number=Plur 18 conj _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 abelian abelian ADJ JJ Degree=Pos 23 compound _ _ 23 groups group NOUN NNS Number=Plur 20 conj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 27 punct _ _ 25 can can AUX MD VerbForm=Fin 27 aux _ _ 26 be be AUX VB VerbForm=Inf 27 auxpass _ _ 27 replaced replace VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 28 by by ADP IN _ 27 agent _ _ 29 adequate adequate ADJ JJ Degree=Pos 31 amod _ _ 30 algebraic algebraic ADJ JJ Degree=Pos 31 amod _ _ 31 models model NOUN NNS Number=Plur 28 pobj _ _ 32 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 31 punct _ _ 33 $ M $ $ m $ SYM $ _ 35 nmod _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 sets set NOUN NNS Number=Plur 31 appos _ SpaceAfter=No 36 , , PUNCT , PunctType=Comm 35 punct _ _ 37 $ M $ $ m $ SYM $ _ 39 advmod _ _ 38 - - PUNCT HYPH PunctType=Dash 39 punct _ _ 39 pointed point VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 40 amod _ _ 40 sets set NOUN NNS Number=Plur 35 conj _ SpaceAfter=No 41 , , PUNCT , PunctType=Comm 40 punct _ _ 42 near near ADJ JJ Degree=Pos 44 amod _ _ 43 - - PUNCT HYPH PunctType=Dash 44 punct _ _ 44 modules module NOUN NNS Number=Plur 40 conj _ _ 45 and and CCONJ CC ConjType=Cmp 44 cc _ _ 46 modules module NOUN NNS Number=Plur 44 conj _ SpaceAfter=No 47 . . PUNCT . PunctType=Peri 27 punct _ SpaceAfter=No 48 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 27 punct _ SpaceAfter=No # sent_id = 7 # text = The article also contains the construction of left adjoints for the $ cal P $ functors. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 article article NOUN NN Number=Sing 4 nsubj _ _ 3 also also ADV RB _ 4 advmod _ _ 4 contains contain VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 construction construction NOUN NN Number=Sing 4 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 left left ADJ JJ Degree=Pos 9 amod _ _ 9 adjoints adjoint NOUN NNS Number=Plur 7 pobj _ _ 10 for for ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 $ cal P $ $ cal p $ SYM $ _ 13 nmod _ _ 13 functors functor NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 46 # sent_id = 1 # text = Free regular and exact completions of categories with various ranks of weak limits are presented as subcategories of presheaf categories. 1 Free free ADJ JJ Degree=Pos 5 amod _ _ 2 regular regular ADJ JJ Degree=Pos 5 amod _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 exact exact ADJ JJ Degree=Pos 2 conj _ _ 5 completions completion NOUN NNS Number=Plur 15 nsubjpass _ _ 6 of of ADP IN _ 5 prep _ _ 7 categories category NOUN NNS Number=Plur 6 pobj _ _ 8 with with ADP IN _ 5 prep _ _ 9 various various ADJ JJ Degree=Pos 10 amod _ _ 10 ranks rank NOUN NNS Number=Plur 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 weak weak ADJ JJ Degree=Pos 13 amod _ _ 13 limits limit NOUN NNS Number=Plur 11 pobj _ _ 14 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 auxpass _ _ 15 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 16 as as ADP IN _ 15 prep _ _ 17 subcategories subcategorie NOUN NNS Number=Plur 16 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 presheaf presheaf ADJ JJ Degree=Pos 20 amod _ _ 20 categories category NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 2 # text = Their universal properties can then be derived with standard techniques as used in duality theory. 1 Their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 3 poss _ _ 2 universal universal ADJ JJ Degree=Pos 3 amod _ _ 3 properties property NOUN NNS Number=Plur 7 nsubjpass _ _ 4 can can AUX MD VerbForm=Fin 7 aux _ _ 5 then then ADV RB PronType=Dem 7 advmod _ _ 6 be be AUX VB VerbForm=Inf 7 auxpass _ _ 7 derived derive VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 with with ADP IN _ 7 prep _ _ 9 standard standard ADJ JJ Degree=Pos 10 amod _ _ 10 techniques technique NOUN NNS Number=Plur 8 pobj _ _ 11 as as SCONJ IN _ 12 mark _ _ 12 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 advcl _ _ 13 in in ADP IN _ 12 prep _ _ 14 duality duality NOUN NN Number=Sing 15 compound _ _ 15 theory theory NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # doc_id = 47 # sent_id = 1 # text = For an adjoint string $ V - | W - | X - | Y : B - - > C $ , with $ Y $ fully faithful, it is frequently, but not always, the case that the composite $ VY $ underlies an idempotent monad. 1 For for ADP IN _ 13 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 4 det _ _ 3 adjoint adjoint NOUN NN Number=Sing 4 compound _ _ 4 string string NOUN NN Number=Sing 1 pobj _ _ 5 $ V - | W - | X - | Y : B - - > C $ $ v - | w - | x - | y : b - - > c $ SYM $ _ 1 dep _ _ 6 , , PUNCT , PunctType=Comm 13 punct _ _ 7 with with ADP IN _ 13 prep _ _ 8 $ Y $ $ y $ SYM $ _ 10 neg _ _ 9 fully fully ADV RB _ 10 advmod _ _ 10 faithful faithful ADJ JJ Degree=Pos 7 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 13 punct _ _ 12 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 13 nsubj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 frequently frequently ADV RB _ 13 advmod _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 13 punct _ _ 16 but but CCONJ CC ConjType=Cmp 13 cc _ _ 17 not not PART RB Polarity=Neg 18 neg _ _ 18 always always ADV RB _ 13 conj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 case case NOUN NN Number=Sing 13 attr _ _ 22 that that SCONJ IN _ 26 mark _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 composite composite ADJ JJ Degree=Pos 25 amod _ _ 25 $ VY $ $ vy $ SYM $ _ 26 nsubj _ _ 26 underlies underlie VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 21 acl _ _ 27 an an DET DT Definite=Ind|PronType=Art 29 det _ _ 28 idempotent idempotent ADJ JJ Degree=Pos 29 amod _ _ 29 monad monad NOUN NNS Number=Plur 26 dobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 2 # text = When it does, we call the string distributive. 1 When when SCONJ WRB _ 3 advmod _ _ 2 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubj _ _ 3 does do VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 advcl _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 call call VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 string string NOUN NN Number=Sing 9 compound _ _ 9 distributive distributive NOUN NN Number=Sing 6 oprd _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = We also study shorter and longer `distributive' adjoint strings and how to generate them. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 shorter short ADJ JJR Degree=Cmp 11 amod _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 longer long ADV RBR Degree=Cmp 8 advmod _ _ 7 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 8 punct _ SpaceAfter=No 8 distributive distributive ADJ JJ Degree=Pos 11 amod _ SpaceAfter=No 9 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 11 punct _ _ 10 adjoint adjoint NOUN NN Number=Sing 11 compound _ _ 11 strings string NOUN NNS Number=Plur 3 dobj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 how how SCONJ WRB _ 15 advmod _ _ 14 to to PART TO _ 15 aux _ _ 15 generate generate VERB VB VerbForm=Inf 11 conj _ _ 16 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 15 dobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = These provide a new construction of the simplicial 2 - category, $ Delta $ . 1 These these PRON DT Number=Plur|PronType=Dem 2 nsubj _ _ 2 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 new new ADJ JJ Degree=Pos 5 amod _ _ 5 construction construction NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 11 det _ _ 8 simplicial simplicial ADJ JJ Degree=Pos 11 amod _ _ 9 2 2 NUM CD NumType=Card 11 nummod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 category category NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 $ Delta $ $ delta $ SYM $ _ 2 dep _ _ 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 48 # sent_id = 1 # text = We prove how any (elementary) topos may be reconstructed from the data of two complemented subtoposes together with a pair of left exact ``glueing functors''. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 how how SCONJ WRB _ 11 advmod _ _ 4 any any DET DT _ 8 det _ _ 5 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 8 punct _ SpaceAfter=No 6 elementary elementary ADJ JJ Degree=Pos 8 amod _ SpaceAfter=No 7 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 8 punct _ _ 8 topos topo NOUN NNS Number=Plur 11 nsubjpass _ _ 9 may may AUX MD VerbForm=Fin 11 aux _ _ 10 be be AUX VB VerbForm=Inf 11 auxpass _ _ 11 reconstructed reconstruct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 12 from from ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 data datum NOUN NNS Number=Plur 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 two two NUM CD NumType=Card 18 nummod _ _ 17 complemented complement VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 amod _ _ 18 subtoposes subtopose NOUN NNS Number=Plur 15 pobj _ _ 19 together together ADV RB _ 20 advmod _ _ 20 with with ADP IN _ 11 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 pair pair NOUN NN Number=Sing 20 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 left left ADJ JJ Degree=Pos 25 amod _ _ 25 exact exact ADJ JJ Degree=Pos 23 pobj _ _ 26 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 11 punct _ SpaceAfter=No 27 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 11 punct _ SpaceAfter=No 28 glueing glue VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 11 advcl _ _ 29 functors functor NOUN NNS Number=Plur 28 dobj _ SpaceAfter=No 30 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 28 punct _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = This generalizes the classical glueing theorem for toposes, which deals with the special case of an open subtopos and its closed complement. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 generalizes generalize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 classical classical ADJ JJ Degree=Pos 5 amod _ _ 5 glueing glueing NOUN NN Number=Sing 2 dobj _ _ 6 theorem theorem ADJ JJ Degree=Pos 5 acl _ _ 7 for for ADP IN _ 6 prep _ _ 8 toposes topos NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 8 punct _ _ 10 which which PRON WDT _ 11 nsubj _ _ 11 deals deal VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 relcl _ _ 12 with with ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 special special ADJ JJ Degree=Pos 15 amod _ _ 15 case case NOUN NN Number=Sing 12 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 an an DET DT Definite=Ind|PronType=Art 19 det _ _ 18 open open ADJ JJ Degree=Pos 19 amod _ _ 19 subtopos subtopos NOUN NN Number=Sing 16 pobj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 23 poss _ _ 22 closed closed ADJ JJ Degree=Pos 23 amod _ _ 23 complement complement NOUN NN Number=Sing 19 conj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Our glueing analysis applies in a particularly simple form to a locally closed subtopos and its complement, and one of the important properties (prolongation by zero for abelian groups) can be succinctly described in terms of it. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 3 poss _ _ 2 glueing glue VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 amod _ _ 3 analysis analysis NOUN NN Number=Sing 4 nsubj _ _ 4 applies apply VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 in in ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 7 particularly particularly ADV RB _ 8 advmod _ _ 8 simple simple ADJ JJ Degree=Pos 9 amod _ _ 9 form form NOUN NN Number=Sing 5 pobj _ _ 10 to to ADP IN _ 4 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 12 locally locally ADV RB _ 13 advmod _ _ 13 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 14 subtopos subtopos NOUN NN Number=Sing 10 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 17 poss _ _ 17 complement complement NOUN NN Number=Sing 14 conj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 4 punct _ _ 19 and and CCONJ CC ConjType=Cmp 4 cc _ _ 20 one one NUM CD NumType=Card 36 nsubjpass _ _ 21 of of ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 important important ADJ JJ Degree=Pos 24 amod _ _ 24 properties property NOUN NNS Number=Plur 21 pobj _ _ 25 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 24 punct _ SpaceAfter=No 26 prolongation prolongation NOUN NN Number=Sing 24 appos _ _ 27 by by ADP IN _ 26 prep _ _ 28 zero zero NUM CD NumType=Card 27 pobj _ _ 29 for for ADP IN _ 26 prep _ _ 30 abelian abelian ADJ JJ Degree=Pos 31 compound _ _ 31 groups group NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 32 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 24 punct _ _ 33 can can AUX MD VerbForm=Fin 36 aux _ _ 34 be be AUX VB VerbForm=Inf 36 auxpass _ _ 35 succinctly succinctly ADV RB _ 36 advmod _ _ 36 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 conj _ _ 37 in in ADP IN _ 36 prep _ _ 38 terms term NOUN NNS Number=Plur 37 pobj _ _ 39 of of ADP IN _ 38 prep _ _ 40 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 39 pobj _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 36 punct _ SpaceAfter=No # doc_id = 49 # sent_id = 1 # text = Locally finitely presentable categories are known to be precisely the categories of models of essentially algebraic theories, that is, categories of partial algebras whose domains of definition are determined by equations in total operations. 1 Locally locally ADV RB _ 2 advmod _ _ 2 finitely finitely ADV RB _ 4 amod _ _ 3 presentable presentable ADJ JJ Degree=Pos 4 amod _ _ 4 categories category NOUN NNS Number=Plur 6 nsubjpass _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 6 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 to to PART TO _ 8 aux _ _ 8 be be AUX VB VerbForm=Inf 6 xcomp _ _ 9 precisely precisely ADV RB _ 11 advmod _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 categories category NOUN NNS Number=Plur 8 attr _ _ 12 of of ADP IN _ 11 prep _ _ 13 models model NOUN NNS Number=Plur 12 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 essentially essentially ADV RB _ 16 advmod _ _ 16 algebraic algebraic ADJ JJ Degree=Pos 17 amod _ _ 17 theories theory NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 8 punct _ _ 19 that that ADV RB _ 20 advmod _ _ 20 is is ADV RB _ 22 advmod _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 22 punct _ _ 22 categories category NOUN NNS Number=Plur 8 attr _ _ 23 of of ADP IN _ 22 prep _ _ 24 partial partial ADJ JJ Degree=Pos 25 amod _ _ 25 algebras algebra NOUN NNS Number=Plur 23 pobj _ _ 26 whose whose DET WP$ Poss=Yes 27 poss _ _ 27 domains domain NOUN NNS Number=Plur 31 nsubjpass _ _ 28 of of ADP IN _ 27 prep _ _ 29 definition definition NOUN NN Number=Sing 28 pobj _ _ 30 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 31 auxpass _ _ 31 determined determine VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 relcl _ _ 32 by by ADP IN _ 31 agent _ _ 33 equations equation NOUN NNS Number=Plur 32 pobj _ _ 34 in in ADP IN _ 33 prep _ _ 35 total total ADJ JJ Degree=Pos 36 amod _ _ 36 operations operation NOUN NNS Number=Plur 34 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = Here we show an analogous description of locally finitely multipresentable categories. 1 Here here ADV RB PronType=Dem 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 an an DET DT Definite=Ind|PronType=Art 6 det _ _ 5 analogous analogous ADJ JJ Degree=Pos 6 amod _ _ 6 description description NOUN NN Number=Sing 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 locally locally ADV RB _ 11 advmod _ _ 9 finitely finitely ADV RB _ 11 amod _ _ 10 multipresentable multipresentable ADJ JJ Degree=Pos 11 amod _ _ 11 categories category NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = We also prove that locally finitely multipresentable categories are precisely categories of models of sketches with finite limit and countable coproduct specifications, and we present an example of a locally finitely multipresentable category not sketchable by a sketch with finite limit and finite colimit specifications. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 9 mark _ _ 5 locally locally ADV RB _ 8 advmod _ _ 6 finitely finitely ADJ JJ Degree=Pos 8 amod _ _ 7 multipresentable multipresentable ADJ JJ Degree=Pos 8 amod _ _ 8 categories category NOUN NNS Number=Plur 9 nsubj _ _ 9 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 10 precisely precisely ADV RB _ 11 advmod _ _ 11 categories category NOUN NNS Number=Plur 9 attr _ _ 12 of of ADP IN _ 11 prep _ _ 13 models model NOUN NNS Number=Plur 12 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 sketches sketch NOUN NNS Number=Plur 14 pobj _ _ 16 with with ADP IN _ 11 prep _ _ 17 finite finite ADJ JJ Degree=Pos 18 compound _ _ 18 limit limit NOUN NN Number=Sing 16 pobj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 countable countable ADJ JJ Degree=Pos 22 amod _ _ 21 coproduct coproduct NOUN NN Number=Sing 22 compound _ _ 22 specifications specification NOUN NNS Number=Plur 18 conj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 9 punct _ _ 24 and and CCONJ CC ConjType=Cmp 9 cc _ _ 25 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 26 nsubj _ _ 26 present present VERB VBP Tense=Pres|VerbForm=Fin 9 conj _ _ 27 an an DET DT Definite=Ind|PronType=Art 28 det _ _ 28 example example NOUN NN Number=Sing 26 dobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 31 locally locally ADV RB _ 32 advmod _ _ 32 finitely finitely ADV RB _ 34 amod _ _ 33 multipresentable multipresentable ADJ JJ Degree=Pos 34 amod _ _ 34 category category NOUN NN Number=Sing 29 pobj _ _ 35 not not PART RB Polarity=Neg 36 neg _ _ 36 sketchable sketchable ADJ JJ Degree=Pos 34 acl _ _ 37 by by ADP IN _ 36 agent _ _ 38 a a DET DT Definite=Ind|PronType=Art 39 det _ _ 39 sketch sketch NOUN NN Number=Sing 37 pobj _ _ 40 with with ADP IN _ 39 prep _ _ 41 finite finite ADJ JJ Degree=Pos 42 compound _ _ 42 limit limit NOUN NN Number=Sing 40 pobj _ _ 43 and and CCONJ CC ConjType=Cmp 42 cc _ _ 44 finite finite ADJ JJ Degree=Pos 45 amod _ _ 45 colimit colimit NOUN NN Number=Sing 46 compound _ _ 46 specifications specification NOUN NNS Number=Plur 42 conj _ SpaceAfter=No 47 . . PUNCT . PunctType=Peri 26 punct _ SpaceAfter=No # doc_id = 50 # sent_id = 1 # text = Some sufficient conditions for finiteness of a generalized non - abelian tensor product of groups are established extending Ellis' result for compatible actions. 1 Some some DET DT _ 3 det _ _ 2 sufficient sufficient ADJ JJ Degree=Pos 3 amod _ _ 3 conditions condition NOUN NNS Number=Plur 17 nsubjpass _ _ 4 for for ADP IN _ 3 prep _ _ 5 finiteness finiteness NOUN NN Number=Sing 4 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 8 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 amod _ _ 9 non non PROPN NNP Number=Sing 11 amod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 abelian abelian ADJ JJ Degree=Pos 13 amod _ _ 12 tensor tensor NOUN NN Number=Sing 13 compound _ _ 13 product product NOUN NN Number=Sing 6 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 groups group NOUN NNS Number=Plur 14 pobj _ _ 16 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 17 auxpass _ _ 17 established establish VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 18 extending extend VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 17 advcl _ _ 19 Ellis Ellis PROPN NNP Number=Sing 21 poss _ SpaceAfter=No 20 ' ' PART POS _ 19 case _ _ 21 result result NOUN NN Number=Sing 18 dobj _ _ 22 for for ADP IN _ 21 prep _ _ 23 compatible compatible ADJ JJ Degree=Pos 24 amod _ _ 24 actions action NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # doc_id = 51 # sent_id = 1 # text = We take another look at the Chu construction and show how to simplify it by looking at it as a module category in a trivial Chu category. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 take take VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 another another DET DT _ 4 det _ _ 4 look look NOUN NN Number=Sing 2 dobj _ _ 5 at at ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 Chu Chu PROPN NNP Number=Sing 8 compound _ _ 8 construction construction NOUN NN Number=Sing 5 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 2 cc _ _ 10 show show VERB VBP Tense=Pres|VerbForm=Fin 2 conj _ _ 11 how how SCONJ WRB _ 13 advmod _ _ 12 to to PART TO _ 13 aux _ _ 13 simplify simplify VERB VB VerbForm=Inf 10 xcomp _ _ 14 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 13 dobj _ _ 15 by by ADP IN _ 13 prep _ _ 16 looking look VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 pcomp _ _ 17 at at ADP IN _ 16 prep _ _ 18 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 17 pobj _ _ 19 as as ADP IN _ 16 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 module module NOUN NN Number=Sing 22 compound _ _ 22 category category NOUN NN Number=Sing 19 pobj _ _ 23 in in ADP IN _ 22 prep _ _ 24 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 25 trivial trivial ADJ JJ Degree=Pos 27 amod _ _ 26 Chu Chu PROPN NNP Number=Sing 27 compound _ _ 27 category category NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = This simplifies the construction substantially, especially in the case of a non - symmetric biclosed monoidal category. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 simplifies simplify VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 construction construction NOUN NN Number=Sing 2 dobj _ _ 5 substantially substantially ADV RB _ 2 advmod _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 2 punct _ _ 7 especially especially ADV RB _ 8 advmod _ _ 8 in in ADP IN _ 2 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 case case NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 13 non non ADJ JJ Degree=Pos 15 amod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 symmetric symmetric ADJ JJ Degree=Pos 18 amod _ _ 16 biclosed biclosed ADJ JJ Degree=Pos 18 amod _ _ 17 monoidal monoidal ADJ JJ Degree=Pos 18 amod _ _ 18 category category NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We also show that if the original category is accessible, then for any of a large class of ``polynomial - like'' functors, the category of coalgebras has cofree objects. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 32 mark _ _ 5 if if SCONJ IN _ 9 mark _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 original original ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 9 nsubj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 32 advcl _ _ 10 accessible accessible ADJ JJ Degree=Pos 9 acomp _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 9 punct _ _ 12 then then ADV RB PronType=Dem 13 advmod _ _ 13 for for ADP IN _ 32 prep _ _ 14 any any PRON DT _ 13 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 large large ADJ JJ Degree=Pos 18 amod _ _ 18 class class NOUN NN Number=Sing 15 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 19 punct _ SpaceAfter=No 21 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 26 punct _ SpaceAfter=No 22 polynomial polynomial ADJ JJ Degree=Pos 24 amod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 like like ADJ JJ Degree=Pos 26 amod _ SpaceAfter=No 25 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 26 punct _ _ 26 functors functor NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 26 punct _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 category category NOUN NN Number=Sing 32 nsubj _ _ 30 of of ADP IN _ 29 prep _ _ 31 coalgebras coalgebras PROPN NNP Number=Sing 30 pobj _ _ 32 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 33 cofree cofree ADJ JJ Degree=Pos 34 amod _ _ 34 objects object NOUN NNS Number=Plur 32 dobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 52 # sent_id = 1 # text = We obtain some explicit calculations of crossed $ Q $ - modules induced from a crossed module over a normal subgroup $ P $ of $ Q $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 some some DET DT _ 5 det _ _ 4 explicit explicit ADJ JJ Degree=Pos 5 amod _ _ 5 calculations calculation NOUN NNS Number=Plur 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 crossed cross VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 8 $ Q $ $ q $ SYM $ _ 10 compound _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 modules module NOUN NNS Number=Plur 6 pobj _ _ 11 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 acl _ _ 12 from from ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 crossed crossed ADJ JJ Degree=Pos 15 amod _ _ 15 module module NOUN NN Number=Sing 12 pobj _ _ 16 over over ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 18 normal normal ADJ JJ Degree=Pos 19 amod _ _ 19 subgroup subgroup NOUN NN Number=Sing 16 pobj _ _ 20 $ P $ $ p $ SYM $ _ 19 appos _ _ 21 of of ADP IN _ 20 prep _ _ 22 $ Q $ $ q $ SYM $ _ 21 pobj _ _ 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = By virtue of theorems of Brown and Higgins, this enables the computation of the homotopy 2 - types and second homotopy modules of certain homotopy pushouts of maps of classifying spaces of discrete groups. 1 By by ADP IN _ 11 prep _ _ 2 virtue virtue NOUN NN Number=Sing 1 pobj _ _ 3 of of ADP IN _ 2 prep _ _ 4 theorems theorem NOUN NNS Number=Plur 3 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 Brown Brown PROPN NNP Number=Sing 5 pobj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 Higgins Higgins PROPN NNP Number=Sing 6 conj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 11 punct _ _ 10 this this PRON DT Number=Sing|PronType=Dem 11 nsubj _ _ 11 enables enable VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 computation computation NOUN NN Number=Sing 11 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 homotopy homotopy NOUN NN Number=Sing 14 pobj _ _ 17 2 2 NUM CD NumType=Card 19 nummod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 types type NOUN NNS Number=Plur 16 appos _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 second second ADJ JJ Degree=Pos 23 amod _ _ 22 homotopy homotopy NOUN NN Number=Sing 23 compound _ _ 23 modules module NOUN NNS Number=Plur 19 conj _ _ 24 of of ADP IN _ 23 prep _ _ 25 certain certain ADJ JJ Degree=Pos 27 amod _ _ 26 homotopy homotopy NOUN NN Number=Sing 27 compound _ _ 27 pushouts pushout NOUN NNS Number=Plur 24 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 maps map NOUN NNS Number=Plur 28 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 classifying classify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 30 pcomp _ _ 32 spaces space NOUN NNS Number=Plur 31 dobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 discrete discrete ADJ JJ Degree=Pos 35 amod _ _ 35 groups group NOUN NNS Number=Plur 33 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # doc_id = 53 # sent_id = 1 # text = This note applies techniques we have developed to study coherence in monoidal categories with two tensors, corresponding to the tensor - par fragment of linear logic, to several new situations, including Hyland and de Paiva's Full Intuitionistic Linear Logic (FILL), and Lambek's Bilinear Logic (BILL). 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 note note NOUN NN Number=Sing 3 nsubj _ _ 3 applies apply VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 techniques technique NOUN NNS Number=Plur 3 dobj _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 6 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 aux _ _ 7 developed develop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 relcl _ _ 8 to to PART TO _ 9 aux _ _ 9 study study VERB VB VerbForm=Inf 7 xcomp _ _ 10 coherence coherence NOUN NN Number=Sing 9 dobj _ _ 11 in in ADP IN _ 10 prep _ _ 12 monoidal monoidal ADJ JJ Degree=Pos 13 amod _ _ 13 categories category NOUN NNS Number=Plur 11 pobj _ _ 14 with with ADP IN _ 9 prep _ _ 15 two two NUM CD NumType=Card 16 nummod _ _ 16 tensors tensor NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 3 punct _ _ 18 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 advcl _ _ 19 to to ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 24 det _ _ 21 tensor tensor NOUN NN Number=Sing 23 compound _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 par par NOUN NN Number=Sing 24 compound _ _ 24 fragment fragment NOUN NN Number=Sing 19 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 linear linear ADJ JJ Degree=Pos 27 amod _ _ 27 logic logic NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 18 punct _ _ 29 to to ADP IN _ 18 prep _ _ 30 several several ADJ JJ Degree=Pos 32 amod _ _ 31 new new ADJ JJ Degree=Pos 32 amod _ _ 32 situations situation NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 33 , , PUNCT , PunctType=Comm 32 punct _ _ 34 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 32 prep _ _ 35 Hyland Hyland PROPN NNP Number=Sing 34 pobj _ _ 36 and and CCONJ CC ConjType=Cmp 35 cc _ _ 37 de de PROPN NNP Number=Sing 38 compound _ _ 38 Paiva Paiva PROPN NNP Number=Sing 43 poss _ SpaceAfter=No 39 's 's PART POS _ 38 case _ _ 40 Full Full PROPN NNP Number=Sing 43 amod _ _ 41 Intuitionistic Intuitionistic PROPN NNP Number=Sing 43 compound _ _ 42 Linear Linear PROPN NNP Number=Sing 43 compound _ _ 43 Logic Logic PROPN NNP Number=Sing 35 conj _ _ 44 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 43 punct _ SpaceAfter=No 45 FILL FILL PROPN NNP Number=Sing 43 appos _ SpaceAfter=No 46 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 43 punct _ SpaceAfter=No 47 , , PUNCT , PunctType=Comm 3 punct _ _ 48 and and CCONJ CC ConjType=Cmp 3 cc _ _ 49 Lambek Lambek PROPN NNP Number=Sing 52 poss _ SpaceAfter=No 50 's 's PART POS _ 49 case _ _ 51 Bilinear Bilinear PROPN NNP Number=Sing 52 compound _ _ 52 Logic Logic PROPN NNP Number=Sing 3 conj _ _ 53 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 52 punct _ SpaceAfter=No 54 BILL BILL PROPN NNP Number=Sing 52 appos _ SpaceAfter=No 55 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 52 punct _ SpaceAfter=No 56 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = Note that the latter is a noncommutative logic; we also consider the noncommutative version of FILL. 1 Note note VERB VB VerbForm=Inf 12 ccomp _ _ 2 that that SCONJ IN _ 5 mark _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 latter latter NOUN NN Number=Sing 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 1 ccomp _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 noncommutative noncommutative ADJ JJ Degree=Pos 8 amod _ _ 8 logic logic NOUN NN Number=Sing 5 attr _ SpaceAfter=No 9 ; ; PUNCT : _ 12 punct _ _ 10 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 12 nsubj _ _ 11 also also ADV RB _ 12 advmod _ _ 12 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 noncommutative noncommutative ADJ JJ Degree=Pos 15 amod _ _ 15 version version NOUN NN Number=Sing 12 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 FILL FILL PROPN NNP Number=Sing 16 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 3 # text = The essential difference between FILL and BILL lies in requiring that a certain tensorial strength be an isomorphism. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 essential essential ADJ JJ Degree=Pos 3 amod _ _ 3 difference difference NOUN NN Number=Sing 8 nsubj _ _ 4 between between ADP IN _ 3 prep _ _ 5 FILL FILL PROPN NNP Number=Sing 4 pobj _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 BILL BILL PROPN NNP Number=Sing 5 conj _ _ 8 lies lie VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 in in ADP IN _ 8 prep _ _ 10 requiring require VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 pcomp _ _ 11 that that SCONJ IN _ 16 mark _ _ 12 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 13 certain certain ADJ JJ Degree=Pos 15 amod _ _ 14 tensorial tensorial ADJ JJ Degree=Pos 15 amod _ _ 15 strength strength NOUN NN Number=Sing 16 nsubj _ _ 16 be be AUX VB VerbForm=Inf 10 ccomp _ _ 17 an an DET DT Definite=Ind|PronType=Art 18 det _ _ 18 isomorphism isomorphism NOUN NN Number=Sing 16 attr _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 4 # text = In any FILL category, it is possible to isolate a full subcategory of objects (the ``nucleus'') for which this transformation is an isomorphism. 1 In in ADP IN _ 7 prep _ _ 2 any any DET DT _ 4 det _ _ 3 FILL FILL PROPN NNP Number=Sing 4 compound _ _ 4 category category NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 possible possible ADJ JJ Degree=Pos 7 acomp _ _ 9 to to PART TO _ 10 aux _ _ 10 isolate isolate VERB VB VerbForm=Inf 7 xcomp _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 full full ADJ JJ Degree=Pos 13 amod _ _ 13 subcategory subcategory NOUN NN Number=Sing 10 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 objects object NOUN NNS Number=Plur 14 pobj _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 20 punct _ SpaceAfter=No 17 the the DET DT Definite=Def|PronType=Art 20 det _ _ 18 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 20 punct _ SpaceAfter=No 19 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 20 punct _ SpaceAfter=No 20 nucleus nucleus NOUN NN Number=Sing 13 appos _ SpaceAfter=No 21 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 20 punct _ SpaceAfter=No 22 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 20 punct _ _ 23 for for ADP IN _ 27 prep _ _ 24 which which PRON WDT _ 23 pobj _ _ 25 this this DET DT Number=Sing|PronType=Dem 26 det _ _ 26 transformation transformation NOUN NN Number=Sing 27 nsubj _ _ 27 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 relcl _ _ 28 an an DET DT Definite=Ind|PronType=Art 29 det _ _ 29 isomorphism isomorphism NOUN NN Number=Sing 27 attr _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 5 # text = In addition, we define and study the appropriate categorical structure underlying the MIX rule. 1 In in ADP IN _ 5 prep _ _ 2 addition addition NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 study study VERB VB VerbForm=Inf 5 conj _ _ 8 the the DET DT Definite=Def|PronType=Art 11 det _ _ 9 appropriate appropriate ADJ JJ Degree=Pos 11 amod _ _ 10 categorical categorical ADJ JJ Degree=Pos 11 amod _ _ 11 structure structure NOUN NN Number=Sing 7 dobj _ _ 12 underlying underlie VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 11 acl _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 MIX MIX PROPN NNP Number=Sing 15 compound _ _ 15 rule rule NOUN NN Number=Sing 12 dobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 6 # text = For all these structures, we do not restrict consideration to the ``pure'' logic as we allow non - logical axioms. 1 For for ADP IN _ 9 prep _ _ 2 all all DET PDT _ 4 predet _ _ 3 these these DET DT Number=Plur|PronType=Dem 4 det _ _ 4 structures structure NOUN NNS Number=Plur 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 9 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 9 nsubj _ _ 7 do do AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 aux _ _ 8 not not PART RB Polarity=Neg 9 neg _ _ 9 restrict restrict VERB VB VerbForm=Inf 0 ROOT _ _ 10 consideration consideration NOUN NN Number=Sing 9 dobj _ _ 11 to to ADP IN _ 9 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 17 det _ _ 13 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 17 punct _ SpaceAfter=No 14 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 17 punct _ SpaceAfter=No 15 pure pure ADJ JJ Degree=Pos 17 amod _ SpaceAfter=No 16 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 17 punct _ _ 17 logic logic NOUN NN Number=Sing 11 pobj _ _ 18 as as SCONJ IN _ 20 mark _ _ 19 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 20 nsubj _ _ 20 allow allow VERB VBP Tense=Pres|VerbForm=Fin 9 advcl _ _ 21 non non ADJ JJ Degree=Pos 23 amod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 logical logical ADJ JJ Degree=Pos 24 amod _ _ 24 axioms axiom NOUN NNS Number=Plur 20 dobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 7 # text = We define the appropriate notion of proof nets for these logics, and use them to describe coherence results for the corresponding categorical structures. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 appropriate appropriate ADJ JJ Degree=Pos 5 amod _ _ 5 notion notion NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 proof proof NOUN NN Number=Sing 8 compound _ _ 8 nets net NOUN NNS Number=Plur 6 pobj _ _ 9 for for ADP IN _ 8 prep _ _ 10 these these DET DT Number=Plur|PronType=Dem 11 det _ _ 11 logics logic NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 2 punct _ _ 13 and and CCONJ CC ConjType=Cmp 2 cc _ _ 14 use use VERB VB VerbForm=Inf 2 conj _ _ 15 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 14 dobj _ _ 16 to to PART TO _ 17 aux _ _ 17 describe describe VERB VB VerbForm=Inf 14 xcomp _ _ 18 coherence coherence NOUN NN Number=Sing 19 compound _ _ 19 results result NOUN NNS Number=Plur 17 dobj _ _ 20 for for ADP IN _ 17 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 24 det _ _ 22 corresponding corresponding ADJ JJ Degree=Pos 24 amod _ _ 23 categorical categorical ADJ JJ Degree=Pos 24 amod _ _ 24 structures structure NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 54 # sent_id = 1 # text = We establish a general coherence theorem for lax operad actions on an $ n $ - category which implies that an $ n $ - category with such an action is lax equivalent to one with a strict action. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 establish establish VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 general general ADJ JJ Degree=Pos 5 amod _ _ 5 coherence coherence NOUN NN Number=Sing 6 compound _ _ 6 theorem theorem ADJ JJ Degree=Pos 2 dobj _ _ 7 for for ADP IN _ 6 prep _ _ 8 lax lax ADJ JJ Degree=Pos 10 amod _ _ 9 operad operad ADJ JJ Degree=Pos 10 amod _ _ 10 actions action NOUN NNS Number=Plur 7 pobj _ _ 11 on on ADP IN _ 10 prep _ _ 12 an an DET DT Definite=Ind|PronType=Art 15 det _ _ 13 $ n $ $ n $ SYM $ _ 15 nummod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 category category NOUN NN Number=Sing 11 pobj _ _ 16 which which PRON WDT _ 17 nsubj _ _ 17 implies imply VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 relcl _ _ 18 that that SCONJ IN _ 27 mark _ _ 19 an an DET DT Definite=Ind|PronType=Art 22 det _ _ 20 $ n $ $ n $ SYM $ _ 22 compound _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 category category NOUN NN Number=Sing 27 nsubj _ _ 23 with with ADP IN _ 22 prep _ _ 24 such such DET PDT _ 26 predet _ _ 25 an an DET DT Definite=Ind|PronType=Art 26 det _ _ 26 action action NOUN NN Number=Sing 23 pobj _ _ 27 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 ccomp _ _ 28 lax lax ADJ JJ Degree=Pos 27 acomp _ _ 29 equivalent equivalent ADJ JJ Degree=Pos 28 advmod _ _ 30 to to ADP IN _ 29 prep _ _ 31 one one NUM CD NumType=Card 30 pobj _ _ 32 with with ADP IN _ 31 prep _ _ 33 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 34 strict strict ADJ JJ Degree=Pos 35 amod _ _ 35 action action NOUN NN Number=Sing 32 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = This includes familiar coherence results (for example, for symmetric monoidal categories) and many new ones. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 includes include VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 familiar familiar ADJ JJ Degree=Pos 5 amod _ _ 4 coherence coherence NOUN NN Number=Sing 5 compound _ _ 5 results result NOUN NNS Number=Plur 2 dobj _ _ 6 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 5 punct _ SpaceAfter=No 7 for for ADP IN _ 5 prep _ _ 8 example example NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 5 punct _ _ 10 for for ADP IN _ 5 prep _ _ 11 symmetric symmetric ADJ JJ Degree=Pos 13 amod _ _ 12 monoidal monoidal ADJ JJ Degree=Pos 13 amod _ _ 13 categories category NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 14 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 10 punct _ _ 15 and and CCONJ CC ConjType=Cmp 5 cc _ _ 16 many many ADJ JJ Degree=Pos 18 amod _ _ 17 new new ADJ JJ Degree=Pos 18 amod _ _ 18 ones one NOUN NNS Number=Plur 5 conj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = In particular, any braided monoidal $ n $ - category is lax equivalent to a strict braided monoidal $ n $ - category. 1 In in ADP IN _ 10 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 10 punct _ _ 4 any any DET DT _ 6 det _ _ 5 braided braid VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 amod _ _ 6 monoidal monoidal NOUN NN Number=Sing 9 amod _ _ 7 $ n $ $ n $ SYM $ _ 9 nummod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 category category NOUN NN Number=Sing 10 nsubj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 lax lax ADJ JJ Degree=Pos 10 acomp _ _ 12 equivalent equivalent ADJ JJ Degree=Pos 11 advmod _ _ 13 to to ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 15 strict strict ADJ JJ Degree=Pos 17 amod _ _ 16 braided braid VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 17 monoidal monoidal NOUN NN Number=Sing 20 amod _ _ 18 $ n $ $ n $ SYM $ _ 20 nummod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 category category NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 4 # text = We also obtain coherence theorems for $ A_{infty} $ and $ E_{infty} $ rings and for lax modules over such rings. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 coherence coherence NOUN NN Number=Sing 5 compound _ _ 5 theorems theorem NOUN NNS Number=Plur 3 dobj _ _ 6 for for ADP IN _ 5 prep _ _ 7 $ A_{infty} $ $ a_{infty} $ SYM $ _ 6 pobj _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 $ E_{infty} $ $ e_{infty} $ SYM $ _ 10 nmod _ _ 10 rings ring NOUN NNS Number=Plur 7 conj _ _ 11 and and CCONJ CC ConjType=Cmp 6 cc _ _ 12 for for ADP IN _ 3 prep _ _ 13 lax lax ADJ JJ Degree=Pos 14 amod _ _ 14 modules module NOUN NNS Number=Plur 12 pobj _ _ 15 over over ADP IN _ 14 prep _ _ 16 such such ADJ JJ Degree=Pos 17 amod _ _ 17 rings ring NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = Using these results we give an extension of Morita equivalence to $ A_{infty} $ rings and some applications to infinite loop spaces and algebraic $ K $ - theory. 1 Using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 advcl _ _ 2 these these DET DT Number=Plur|PronType=Dem 3 det _ _ 3 results result NOUN NNS Number=Plur 1 dobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 an an DET DT Definite=Ind|PronType=Art 7 det _ _ 7 extension extension NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 Morita Morita PROPN NNP Number=Sing 10 compound _ _ 10 equivalence equivalence NOUN NN Number=Sing 8 pobj _ _ 11 to to ADP IN _ 7 prep _ _ 12 $ A_{infty} $ $ a_{infty} $ SYM $ _ 13 nmod _ _ 13 rings ring NOUN NNS Number=Plur 11 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 some some DET DT _ 16 det _ _ 16 applications application NOUN NNS Number=Plur 13 conj _ _ 17 to to ADP IN _ 16 prep _ _ 18 infinite infinite VERB VB VerbForm=Inf 20 amod _ _ 19 loop loop NOUN NN Number=Sing 20 compound _ _ 20 spaces space NOUN NNS Number=Plur 17 pobj _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 algebraic algebraic ADJ JJ Degree=Pos 25 amod _ _ 23 $ K $ $ k $ SYM $ _ 25 compound _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 theory theory NOUN NN Number=Sing 20 conj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 55 # sent_id = 1 # text = In a 1981 book, Putnam claimed that in a pure relational language without equality, for any model of a relation that was neither empty nor full, there was another model that satisfies the same first order sentences. 1 In in ADP IN _ 7 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 1981 1981 NUM CD NumType=Card 4 nummod _ _ 4 book book NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 Putnam Putnam PROPN NNP Number=Sing 7 nsubj _ _ 7 claimed claim VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 8 that that SCONJ IN _ 31 mark _ _ 9 in in ADP IN _ 31 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 11 pure pure ADJ JJ Degree=Pos 13 amod _ _ 12 relational relational ADJ JJ Degree=Pos 13 amod _ _ 13 language language NOUN NN Number=Sing 9 pobj _ _ 14 without without ADP IN _ 13 prep _ _ 15 equality equality NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 31 punct _ _ 17 for for ADP IN _ 31 prep _ _ 18 any any DET DT _ 19 det _ _ 19 model model NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 relation relation NOUN NN Number=Sing 20 pobj _ _ 23 that that PRON WDT PronType=Rel 24 nsubj _ _ 24 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 22 relcl _ _ 25 neither neither CCONJ CC ConjType=Cmp 26 preconj _ _ 26 empty empty ADJ JJ Degree=Pos 24 acomp _ _ 27 nor nor CCONJ CC ConjType=Cmp 26 cc _ _ 28 full full ADJ JJ Degree=Pos 26 conj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 31 punct _ _ 30 there there PRON EX _ 31 expl _ _ 31 was be VERB VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 7 ccomp _ _ 32 another another DET DT _ 33 det _ _ 33 model model NOUN NN Number=Sing 31 attr _ _ 34 that that PRON WDT PronType=Rel 35 nsubj _ _ 35 satisfies satisfy VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 33 relcl _ _ 36 the the DET DT Definite=Def|PronType=Art 40 det _ _ 37 same same ADJ JJ Degree=Pos 40 amod _ _ 38 first first ADJ JJ Degree=Pos 40 amod _ _ 39 order order NOUN NN Number=Sing 40 compound _ _ 40 sentences sentence NOUN NNS Number=Plur 35 dobj _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 2 # text = Ed Keenan observed that this was false for finite models since equality is a definable predicate in such cases. 1 Ed Ed PROPN NNP Number=Sing 2 compound _ _ 2 Keenan Keenan PROPN NNP Number=Sing 3 nsubj _ _ 3 observed observe VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 6 mark _ _ 5 this this PRON DT Number=Sing|PronType=Dem 6 nsubj _ _ 6 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 3 ccomp _ _ 7 false false ADJ JJ Degree=Pos 6 acomp _ _ 8 for for ADP IN _ 7 prep _ _ 9 finite finite ADJ JJ Degree=Pos 10 compound _ _ 10 models model NOUN NNS Number=Plur 8 pobj _ _ 11 since since SCONJ IN _ 13 mark _ _ 12 equality equality NOUN NN Number=Sing 13 nsubj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 advcl _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 definable definable ADJ JJ Degree=Pos 16 amod _ _ 16 predicate predicate NOUN NN Number=Sing 13 attr _ _ 17 in in ADP IN _ 16 prep _ _ 18 such such ADJ JJ Degree=Pos 19 amod _ _ 19 cases case NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = This note shows that Putnam's claim is true for infinite models, although it requires a more sophisticated proof than the one outlined by Putnam. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 note note NOUN NN Number=Sing 3 nsubj _ _ 3 shows show VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 8 mark _ _ 5 Putnam Putnam PROPN NNP Number=Sing 7 poss _ SpaceAfter=No 6 's 's PART POS _ 5 case _ _ 7 claim claim NOUN NN Number=Sing 8 nsubj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 9 true true ADJ JJ Degree=Pos 8 acomp _ _ 10 for for ADP IN _ 8 prep _ _ 11 infinite infinite ADJ JJ Degree=Pos 12 amod _ _ 12 models model NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 8 punct _ _ 14 although although SCONJ IN _ 16 mark _ _ 15 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 16 nsubj _ _ 16 requires require VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 advcl _ _ 17 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 18 more more ADV RBR Degree=Cmp 19 advmod _ _ 19 sophisticated sophisticated ADJ JJ Degree=Pos 20 amod _ _ 20 proof proof NOUN NN Number=Sing 16 dobj _ _ 21 than than ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 one one NOUN NN Number=Sing 21 pobj _ _ 24 outlined outline VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 acl _ _ 25 by by ADP IN _ 24 agent _ _ 26 Putnam Putnam PROPN NNP Number=Sing 25 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 56 # sent_id = 1 # text = We pursue the definition of a $ KZ $ - doctrine in terms of a fully faithful adjoint string $ Dd - | m - | dD $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 pursue pursue VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 definition definition NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 7 $ KZ $ $ kz $ SYM $ _ 9 nmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 doctrine doctrine NOUN NN Number=Sing 5 pobj _ _ 10 in in ADP IN _ 9 prep _ _ 11 terms term NOUN NNS Number=Plur 10 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 14 fully fully ADV RB _ 15 advmod _ _ 15 faithful faithful ADJ JJ Degree=Pos 17 amod _ _ 16 adjoint adjoint NOUN NN Number=Sing 17 compound _ _ 17 string string NOUN NN Number=Sing 12 pobj _ _ 18 $ Dd - | m - | dD $ $ dd - | m - | dd $ X ADD _ 2 npadvmod _ _ 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We give the definition in any Gray - category. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 definition definition NOUN NN Number=Sing 2 dobj _ _ 5 in in ADP IN _ 2 prep _ _ 6 any any DET DT _ 9 det _ _ 7 Gray Gray PROPN NNP Number=Sing 9 compound _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 category category NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = The concept of algebra is given as an adjunction with invertible counit. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 concept concept NOUN NN Number=Sing 6 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 algebra algebra PROPN NNP Number=Sing 3 pobj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 6 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 as as ADP IN _ 6 prep _ _ 8 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 9 adjunction adjunction NOUN NN Number=Sing 7 pobj _ _ 10 with with ADP IN _ 9 prep _ _ 11 invertible invertible ADJ JJ Degree=Pos 12 amod _ _ 12 counit counit NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = We show that these doctrines are instances of more general pseudomonads. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 6 mark _ _ 4 these these DET DT Number=Plur|PronType=Dem 5 det _ _ 5 doctrines doctrine NOUN NNS Number=Plur 6 nsubj _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 7 instances instance NOUN NNS Number=Plur 6 attr _ _ 8 of of ADP IN _ 7 prep _ _ 9 more more ADJ JJR Degree=Cmp 11 amod _ _ 10 general general ADJ JJ Degree=Pos 11 amod _ _ 11 pseudomonads pseudomonad NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = The algebras for a pseudomonad are defined in more familiar terms and shown to be the same as the ones defined as adjunctions when we start with a $ KZ $ - doctrine. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 algebras algebra NOUN NNS Number=Plur 7 nsubjpass _ _ 3 for for ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 pseudomonad pseudomonad NOUN NNS Number=Plur 3 pobj _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 7 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 in in ADP IN _ 7 prep _ _ 9 more more ADV RBR Degree=Cmp 10 advmod _ _ 10 familiar familiar ADJ JJ Degree=Pos 11 amod _ _ 11 terms term NOUN NNS Number=Plur 8 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 7 cc _ _ 13 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 conj _ _ 14 to to PART TO _ 15 aux _ _ 15 be be AUX VB VerbForm=Inf 13 xcomp _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 same same ADJ JJ Degree=Pos 15 attr _ _ 18 as as ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 ones one NOUN NNS Number=Plur 18 pobj _ _ 21 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 acl _ _ 22 as as ADP IN _ 21 prep _ _ 23 adjunctions adjunction NOUN NNS Number=Plur 22 pobj _ _ 24 when when SCONJ WRB _ 26 advmod _ _ 25 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 26 nsubj _ _ 26 start start VERB VBP Tense=Pres|VerbForm=Fin 21 advcl _ _ 27 with with ADP IN _ 26 prep _ _ 28 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 29 $ KZ $ $ kz $ SYM $ _ 31 compound _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 doctrine doctrine NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # doc_id = 57 # sent_id = 1 # text = Let $ E $ be a simplicial commutative algebra such that $ E_n $ is generated by degenerate elements. 1 Let let VERB VB VerbForm=Inf 0 ROOT _ _ 2 $ E $ $ e $ SYM $ _ 3 nsubj _ _ 3 be be AUX VB VerbForm=Inf 1 ccomp _ _ 4 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 5 simplicial simplicial ADJ JJ Degree=Pos 7 amod _ _ 6 commutative commutative ADJ JJ Degree=Pos 7 amod _ _ 7 algebra algebra PROPN NNP Number=Sing 3 attr _ _ 8 such such ADJ JJ Degree=Pos 9 amod _ _ 9 that that SCONJ IN _ 12 dobj _ _ 10 $ E_n $ $ e_n $ SYM $ _ 12 nsubjpass _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 12 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 relcl _ _ 13 by by ADP IN _ 12 agent _ _ 14 degenerate degenerate ADJ JJ Degree=Pos 15 amod _ _ 15 elements element NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = It is shown that in this case the $ n $ th term of the Moore complex of $ E $ is generated by images of certain pairings from lower dimensions. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 that that SCONJ IN _ 19 mark _ _ 5 in in ADP IN _ 11 prep _ _ 6 this this DET DT Number=Sing|PronType=Dem 7 det _ _ 7 case case NOUN NN Number=Sing 5 pobj _ _ 8 the the DET DT Definite=Def|PronType=Art 11 det _ _ 9 $ n $ $ n $ SYM $ _ 10 nmod _ _ 10 th th PRON DT _ 11 compound _ _ 11 term term NOUN NN Number=Sing 19 nsubjpass _ _ 12 of of ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 Moore Moore PROPN NNP Number=Sing 15 compound _ _ 15 complex complex NOUN NN Number=Sing 12 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 $ E $ $ e $ SYM $ _ 16 pobj _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 auxpass _ _ 19 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 ccomp _ _ 20 by by ADP IN _ 19 agent _ _ 21 images image NOUN NNS Number=Plur 20 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 certain certain ADJ JJ Degree=Pos 24 amod _ _ 24 pairings pairing NOUN NNS Number=Plur 22 pobj _ _ 25 from from ADP IN _ 24 prep _ _ 26 lower low ADJ JJR Degree=Cmp 27 amod _ _ 27 dimensions dimension NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = This is then used to give a description of the boundaries in dimension $ n - 1 $ for $ n = 2 $ , 3, and 4. 1 This this PRON DT Number=Sing|PronType=Dem 4 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 3 then then ADV RB PronType=Dem 4 advmod _ _ 4 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 to to PART TO _ 6 aux _ _ 6 give give VERB VB VerbForm=Inf 4 xcomp _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 description description NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 boundaries boundary NOUN NNS Number=Plur 9 pobj _ _ 12 in in ADP IN _ 6 prep _ _ 13 dimension dimension NOUN NN Number=Sing 12 pobj _ _ 14 $ n - 1 $ $ n - 1 $ SYM $ _ 13 appos _ _ 15 for for ADP IN _ 6 prep _ _ 16 $ n = 2 $ $ n = 2 $ SYM $ _ 15 pobj _ _ 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 3 3 NUM CD NumType=Card 16 conj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 16 punct _ _ 20 and and CCONJ CC ConjType=Cmp 4 cc _ _ 21 4 4 X LS NumType=Ord 4 conj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 58 # sent_id = 1 # text = The notion of separable (alternatively unramified, or decidable}) objects and their place in a categorical theory of space have been described by Lawvere, drawing on notions of separable from algebra and unramified from geometry. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 notion notion NOUN NN Number=Sing 13 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 separable separable NOUN NN Number=Sing 3 pobj _ _ 5 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 4 punct _ SpaceAfter=No 6 alternatively alternatively ADV RB _ 7 advmod _ _ 7 unramified unramifie VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 amod _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 or or CCONJ CC ConjType=Cmp 7 cc _ _ 10 decidable decidable ADJ JJ Degree=Pos 13 amod _ SpaceAfter=No 11 } } PUNCT -RRB- PunctSide=Fin|PunctType=Brck 13 punct _ SpaceAfter=No 12 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 13 punct _ _ 13 objects object NOUN NNS Number=Plur 25 nsubjpass _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 16 poss _ _ 16 place place NOUN NN Number=Sing 13 conj _ _ 17 in in ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 categorical categorical ADJ JJ Degree=Pos 20 amod _ _ 20 theory theory NOUN NN Number=Sing 17 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 space space NOUN NN Number=Sing 21 pobj _ _ 23 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 25 aux _ _ 24 been be AUX VBN Tense=Past|VerbForm=Part 25 auxpass _ _ 25 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 26 by by ADP IN _ 25 agent _ _ 27 Lawvere Lawvere PROPN NNP Number=Sing 26 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 25 punct _ _ 29 drawing draw VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 25 advcl _ _ 30 on on ADP IN _ 29 prep _ _ 31 notions notion NOUN NNS Number=Plur 30 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 separable separable NOUN NN Number=Sing 32 pobj _ _ 34 from from ADP IN _ 29 prep _ _ 35 algebra algebra PROPN NNP Number=Sing 34 pobj _ _ 36 and and CCONJ CC ConjType=Cmp 29 cc _ _ 37 unramified unramifie VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 conj _ _ 38 from from ADP IN _ 37 prep _ _ 39 geometry geometry NOUN NN Number=Sing 38 pobj _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 25 punct _ SpaceAfter=No # sent_id = 2 # text = In his work, Schanuel constructed the generic separable object in an extensive category with products as an object of the free category with finite sums on the dual of the category of finite sets and injections. 1 In in ADP IN _ 6 prep _ _ 2 his his PRON PRP$ Gender=Masc|Number=Sing|Person=3|Poss=Yes|PronType=Prs 3 poss _ _ 3 work work NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 Schanuel Schanuel PROPN NNP Number=Sing 6 nsubj _ _ 6 constructed construct VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 10 det _ _ 8 generic generic ADJ JJ Degree=Pos 9 amod _ _ 9 separable separable ADJ JJ Degree=Pos 10 amod _ _ 10 object object NOUN NN Number=Sing 6 dobj _ _ 11 in in ADP IN _ 6 prep _ _ 12 an an DET DT Definite=Ind|PronType=Art 14 det _ _ 13 extensive extensive ADJ JJ Degree=Pos 14 amod _ _ 14 category category NOUN NN Number=Sing 11 pobj _ _ 15 with with ADP IN _ 14 prep _ _ 16 products product NOUN NNS Number=Plur 15 pobj _ _ 17 as as ADP IN _ 16 prep _ _ 18 an an DET DT Definite=Ind|PronType=Art 19 det _ _ 19 object object NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 23 det _ _ 22 free free ADJ JJ Degree=Pos 23 amod _ _ 23 category category NOUN NN Number=Sing 20 pobj _ _ 24 with with ADP IN _ 23 prep _ _ 25 finite finite ADJ JJ Degree=Pos 26 compound _ _ 26 sums sum NOUN NNS Number=Plur 24 pobj _ _ 27 on on ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 dual dual ADJ JJ Degree=Pos 27 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 category category NOUN NN Number=Sing 30 pobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 finite finite ADJ JJ Degree=Pos 35 compound _ _ 35 sets set NOUN NNS Number=Plur 33 pobj _ _ 36 and and CCONJ CC ConjType=Cmp 35 cc _ _ 37 injections injection NOUN NNS Number=Plur 35 conj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = We present here a generalization of the work of Schaunel, replacing the category of finite sets and injections by a category $ cat A $ with a suitable factorization system. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 here here ADV RB PronType=Dem 2 advmod _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 generalization generalization NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 work work NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 Schaunel Schaunel PROPN NNP Number=Sing 9 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 2 punct _ _ 12 replacing replace VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 category category NOUN NN Number=Sing 12 dobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 finite finite ADJ JJ Degree=Pos 17 compound _ _ 17 sets set NOUN NNS Number=Plur 15 pobj _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 injections injection NOUN NNS Number=Plur 17 conj _ _ 20 by by ADP IN _ 12 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 22 category category NOUN NN Number=Sing 23 compound _ _ 23 $ cat A $ $ cat a $ SYM $ _ 20 pobj _ _ 24 with with ADP IN _ 12 prep _ _ 25 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 26 suitable suitable ADJ JJ Degree=Pos 28 amod _ _ 27 factorization factorization NOUN NN Number=Sing 28 compound _ _ 28 system system NOUN NN Number=Sing 24 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We describe the analogous construction, and identify and prove a universal property of the constructed category for both extensive categories and extensive categories with products (in the case $ cat A $ admits sums). 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 analogous analogous ADJ JJ Degree=Pos 5 amod _ _ 5 construction construction NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 2 punct _ _ 7 and and CCONJ CC ConjType=Cmp 2 cc _ _ 8 identify identify VERB VB VerbForm=Inf 2 conj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 prove prove VERB VB VerbForm=Inf 8 conj _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 universal universal ADJ JJ Degree=Pos 13 amod _ _ 13 property property NOUN NN Number=Sing 10 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 17 category category NOUN NN Number=Sing 14 pobj _ _ 18 for for ADP IN _ 17 prep _ _ 19 both both CCONJ CC ConjType=Cmp 21 det _ _ 20 extensive extensive ADJ JJ Degree=Pos 21 amod _ _ 21 categories category NOUN NNS Number=Plur 18 pobj _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 extensive extensive ADJ JJ Degree=Pos 24 amod _ _ 24 categories category NOUN NNS Number=Plur 21 conj _ _ 25 with with ADP IN _ 10 prep _ _ 26 products product NOUN NNS Number=Plur 25 pobj _ _ 27 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 10 punct _ SpaceAfter=No 28 in in ADP IN _ 32 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 case case NOUN NN Number=Sing 28 pobj _ _ 31 $ cat A $ $ cat a $ SYM $ _ 32 nsubj _ _ 32 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 conj _ _ 33 sums sum NOUN NNS Number=Plur 32 dobj _ SpaceAfter=No 34 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 32 punct _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = In constructing the machinery for proving the required universal property, we recall briefly the boolean algebra structure of the summands of an object in an extensive category. 1 In in ADP IN _ 13 prep _ _ 2 constructing construct VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 1 pcomp _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 machinery machinery NOUN NN Number=Sing 2 dobj _ _ 5 for for ADP IN _ 4 prep _ _ 6 proving prove VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 pcomp _ _ 7 the the DET DT Definite=Def|PronType=Art 10 det _ _ 8 required require VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 9 universal universal ADJ JJ Degree=Pos 10 amod _ _ 10 property property NOUN NN Number=Sing 6 dobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 13 punct _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 recall recall VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 briefly briefly ADV RB _ 13 advmod _ _ 15 the the DET DT Definite=Def|PronType=Art 18 det _ _ 16 boolean boolean PROPN NNP Number=Sing 18 compound _ _ 17 algebra algebra PROPN NNP Number=Sing 18 compound _ _ 18 structure structure NOUN NN Number=Sing 13 dobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 summands summand NOUN NNS Number=Plur 19 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 an an DET DT Definite=Ind|PronType=Art 24 det _ _ 24 object object NOUN NN Number=Sing 22 pobj _ _ 25 in in ADP IN _ 24 prep _ _ 26 an an DET DT Definite=Ind|PronType=Art 28 det _ _ 27 extensive extensive ADJ JJ Degree=Pos 28 amod _ _ 28 category category NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 6 # text = We further present a notion of direct image for certain maps in an extensive category, to allow construction of left adjoints to the inverse image maps obtained from pullbacks. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 further far ADV RB _ 3 advmod _ _ 3 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 notion notion NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 direct direct ADJ JJ Degree=Pos 8 amod _ _ 8 image image NOUN NN Number=Sing 6 pobj _ _ 9 for for ADP IN _ 8 prep _ _ 10 certain certain ADJ JJ Degree=Pos 11 amod _ _ 11 maps map NOUN NNS Number=Plur 9 pobj _ _ 12 in in ADP IN _ 3 prep _ _ 13 an an DET DT Definite=Ind|PronType=Art 15 det _ _ 14 extensive extensive ADJ JJ Degree=Pos 15 amod _ _ 15 category category NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 3 punct _ _ 17 to to PART TO _ 18 aux _ _ 18 allow allow VERB VB VerbForm=Inf 3 advcl _ _ 19 construction construction NOUN NN Number=Sing 18 dobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 left left ADJ JJ Degree=Pos 22 amod _ _ 22 adjoints adjoint NOUN NNS Number=Plur 20 pobj _ _ 23 to to ADP IN _ 18 dative _ _ 24 the the DET DT Definite=Def|PronType=Art 27 det _ _ 25 inverse inverse ADJ JJ Degree=Pos 27 amod _ _ 26 image image NOUN NN Number=Sing 27 compound _ _ 27 maps map NOUN NNS Number=Plur 23 pobj _ _ 28 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 acl _ _ 29 from from ADP IN _ 28 prep _ _ 30 pullbacks pullback NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 7 # text = Please note the electronically available References at http://www.tac.mta.ca/tac/volumes/1998/n10/reference.html 1 Please please INTJ UH _ 2 intj _ _ 2 note note VERB VB VerbForm=Inf 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 6 det _ _ 4 electronically electronically ADV RB _ 5 advmod _ _ 5 available available ADJ JJ Degree=Pos 6 amod _ _ 6 References reference NOUN NNS Number=Plur 2 dobj _ _ 7 at at ADP IN _ 2 prep _ _ 8 http://www.tac.mta.ca/tac/volumes/1998/n10/reference.html http://www.tac.mta.ca/tac/volumes/1998/n10/reference.html PROPN NNP Number=Sing 7 pobj _ SpaceAfter=No # doc_id = 59 # sent_id = 1 # text = In terms of synthetic differential geometry, we give a variational characterization of the connection (parallelism) associated to a pseudo - Riemannian metric on a manifold. 1 In in ADP IN _ 9 prep _ _ 2 terms term NOUN NNS Number=Plur 1 pobj _ _ 3 of of ADP IN _ 2 prep _ _ 4 synthetic synthetic ADJ JJ Degree=Pos 6 amod _ _ 5 differential differential ADJ JJ Degree=Pos 6 amod _ _ 6 geometry geometry NOUN NN Number=Sing 3 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 9 punct _ _ 8 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 9 nsubj _ _ 9 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 variational variational ADJ JJ Degree=Pos 12 amod _ _ 12 characterization characterization NOUN NN Number=Sing 9 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 connection connection NOUN NN Number=Sing 13 pobj _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 15 punct _ SpaceAfter=No 17 parallelism parallelism NOUN NN Number=Sing 15 appos _ SpaceAfter=No 18 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 15 punct _ _ 19 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 acl _ _ 20 to to ADP IN _ 19 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 pseudo pseudo NOUN NN Number=Sing 20 pobj _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 Riemannian riemannian ADJ JJ Degree=Pos 25 amod _ _ 25 metric metric NOUN NN Number=Sing 20 pobj _ _ 26 on on ADP IN _ 19 prep _ _ 27 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 28 manifold manifold ADJ JJ Degree=Pos 26 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 60 # sent_id = 1 # text = Using free simplicial groups, it is shown how to construct a free or totally free 2 - crossed module on suitable construction data. 1 Using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 advcl _ _ 2 free free ADJ JJ Degree=Pos 4 amod _ _ 3 simplicial simplicial ADJ JJ Degree=Pos 4 amod _ _ 4 groups group NOUN NNS Number=Plur 1 dobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 8 punct _ _ 6 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 8 nsubjpass _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 how how SCONJ WRB _ 11 advmod _ _ 10 to to PART TO _ 11 aux _ _ 11 construct construct VERB VB VerbForm=Inf 8 xcomp _ _ 12 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 13 free free ADJ JJ Degree=Pos 20 amod _ _ 14 or or CCONJ CC ConjType=Cmp 13 cc _ _ 15 totally totally ADV RB _ 16 advmod _ _ 16 free free ADJ JJ Degree=Pos 13 conj _ _ 17 2 2 NUM CD NumType=Card 19 advmod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 crossed cross VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 amod _ _ 20 module module NOUN NN Number=Sing 11 dobj _ _ 21 on on ADP IN _ 20 prep _ _ 22 suitable suitable ADJ JJ Degree=Pos 24 amod _ _ 23 construction construction NOUN NN Number=Sing 24 compound _ _ 24 data datum NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 2 # text = 2 - crossed complexes are introduced and similar freeness results for these are discussed. 1 2 2 X LS NumType=Ord 3 npadvmod _ _ 2 - - PUNCT HYPH PunctType=Dash 3 punct _ _ 3 crossed cross VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 amod _ _ 4 complexes complex NOUN NNS Number=Plur 6 nsubjpass _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 6 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 similar similar ADJ JJ Degree=Pos 10 amod _ _ 9 freeness freeness ADJ JJ Degree=Pos 10 amod _ _ 10 results result NOUN NNS Number=Plur 14 nsubjpass _ _ 11 for for ADP IN _ 10 prep _ _ 12 these these PRON DT Number=Plur|PronType=Dem 11 pobj _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 discussed discuss VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 conj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # doc_id = 61 # sent_id = 1 # text = Generalising a result of Brown and Loday, we give for $ n=3 $ and 4, a decomposition of the group, $ d_nNG_n, of boundaries of a simplicial group G as a product of commutator subgroups. 1 Generalising generalise VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 advcl _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 result result NOUN NN Number=Sing 1 dobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 Brown Brown PROPN NNP Number=Sing 4 pobj _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 Loday Loday PROPN NNP Number=Sing 5 conj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 10 punct _ _ 9 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 10 nsubj _ _ 10 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 for for ADP IN _ 10 prep _ _ 12 $ n=3 $ $ n=3 $ SYM $ _ 11 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 4 4 NUM CD NumType=Card 12 conj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 12 punct _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 decomposition decomposition NOUN NN Number=Sing 10 dobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 group group NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 $ $ SYM $ _ 23 nmod _ _ 23 d_nNG_n d_nng_n ADJ JJ Degree=Pos 20 appos _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 20 punct _ _ 25 of of ADP IN _ 20 prep _ _ 26 boundaries boundary NOUN NNS Number=Plur 25 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 29 simplicial simplicial ADJ JJ Degree=Pos 30 amod _ _ 30 group group NOUN NN Number=Sing 27 pobj _ _ 31 G G PROPN NNP Number=Sing 30 appos _ _ 32 as as ADP IN _ 17 prep _ _ 33 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 34 product product NOUN NN Number=Sing 32 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 commutator commutator NOUN NN Number=Sing 37 compound _ _ 37 subgroups subgroup NOUN NNS Number=Plur 35 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = Partial results are given for higher dimensions. 1 Partial partial ADJ JJ Degree=Pos 2 amod _ _ 2 results result NOUN NNS Number=Plur 4 nsubjpass _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 for for ADP IN _ 4 prep _ _ 6 higher high ADJ JJR Degree=Cmp 7 amod _ _ 7 dimensions dimension NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 8 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = Applications to 2 - crossed modules and quadratic modules are discussed. 1 Applications application NOUN NNS Number=Plur 11 nsubjpass _ _ 2 to to ADP IN _ 1 prep _ _ 3 2 2 NUM CD NumType=Card 5 advmod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 crossed cross VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 amod _ _ 6 modules module NOUN NNS Number=Plur 2 pobj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 quadratic quadratic ADJ JJ Degree=Pos 9 amod _ _ 9 modules module NOUN NNS Number=Plur 6 conj _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 11 discussed discuss VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # doc_id = 62 # sent_id = 1 # text = This paper shows that, given a factorization system, $ E/M $ on a closed symmetric monoidal category, the full subcategory of separated extensional objects of the Chu category is also star - autonomous under weaker conditions than had been given previously. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 shows show VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 30 mark _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 30 punct _ _ 6 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 30 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 factorization factorization NOUN NN Number=Sing 9 compound _ _ 9 system system NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 $ E/M $ $ e/m $ SYM $ _ 6 dep _ _ 12 on on ADP IN _ 6 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 14 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 15 symmetric symmetric ADJ JJ Degree=Pos 17 amod _ _ 16 monoidal monoidal ADJ JJ Degree=Pos 17 amod _ _ 17 category category NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 30 punct _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 full full ADJ JJ Degree=Pos 21 amod _ _ 21 subcategory subcategory NOUN NN Number=Sing 30 nsubj _ _ 22 of of ADP IN _ 21 prep _ _ 23 separated separated ADJ JJ Degree=Pos 25 amod _ _ 24 extensional extensional ADJ JJ Degree=Pos 25 amod _ _ 25 objects object NOUN NNS Number=Plur 22 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 29 det _ _ 28 Chu Chu PROPN NNP Number=Sing 29 compound _ _ 29 category category NOUN NN Number=Sing 26 pobj _ _ 30 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 31 also also ADV RB _ 30 advmod _ _ 32 star star NOUN NN Number=Sing 34 npadvmod _ _ 33 - - PUNCT HYPH PunctType=Dash 34 punct _ _ 34 autonomous autonomous ADJ JJ Degree=Pos 30 acomp _ _ 35 under under ADP IN _ 34 prep _ _ 36 weaker weak ADJ JJR Degree=Cmp 37 amod _ _ 37 conditions condition NOUN NNS Number=Plur 35 pobj _ _ 38 than than SCONJ IN _ 41 mark _ _ 39 had have AUX VBD Tense=Past|VerbForm=Fin 41 aux _ _ 40 been be AUX VBN Tense=Past|VerbForm=Part 41 auxpass _ _ 41 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 30 advcl _ _ 42 previously previously ADV RB _ 41 advmod _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = In the process we find conditions under which the intersection of a full reflective subcategory and its coreflective dual in a Chu category is star - autonomous. 1 In in ADP IN _ 5 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 process process NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 find find VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 conditions condition NOUN NNS Number=Plur 5 dobj _ _ 7 under under ADP IN _ 24 prep _ _ 8 which which PRON WDT _ 7 pobj _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 intersection intersection NOUN NN Number=Sing 24 nsubj _ _ 11 of of ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 13 full full ADJ JJ Degree=Pos 15 amod _ _ 14 reflective reflective ADJ JJ Degree=Pos 15 amod _ _ 15 subcategory subcategory NOUN NN Number=Sing 11 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 19 poss _ _ 18 coreflective coreflective ADJ JJ Degree=Pos 19 amod _ _ 19 dual dual ADJ JJ Degree=Pos 15 conj _ _ 20 in in ADP IN _ 19 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 22 Chu Chu PROPN NNP Number=Sing 23 compound _ _ 23 category category NOUN NN Number=Sing 20 pobj _ _ 24 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 relcl _ _ 25 star star NOUN NN Number=Sing 27 compound _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 autonomous autonomous PROPN NNP Number=Sing 24 acomp _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 63 # sent_id = 1 # text = We introduce a notion of equipment which generalizes the earlier notion of pro - arrow equipment and includes such familiar constructs as $ relK $ , $ spnK $ , $ parK $ , and $ proK $ for a suitable category $ K $ , along with related constructs such as the $ V $ - $ pro $ arising from a suitable monoidal category $ V $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 notion notion NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 equipment equipment NOUN NN Number=Sing 5 pobj _ _ 7 which which PRON WDT _ 8 nsubj _ _ 8 generalizes generalize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 relcl _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 earlier early ADJ JJR Degree=Cmp 11 amod _ _ 11 notion notion NOUN NN Number=Sing 8 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 pro pro ADJ JJ Degree=Pos 15 amod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 arrow arrow NOUN NN Number=Sing 16 compound _ _ 16 equipment equipment NOUN NN Number=Sing 12 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 8 cc _ _ 18 includes include VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 conj _ _ 19 such such ADJ JJ Degree=Pos 21 amod _ _ 20 familiar familiar ADJ JJ Degree=Pos 21 amod _ _ 21 constructs construct NOUN NNS Number=Plur 18 dobj _ _ 22 as as ADP IN _ 21 prep _ _ 23 $ relK $ $ relk $ SYM $ _ 22 pobj _ _ 24 , , PUNCT , PunctType=Comm 23 punct _ _ 25 $ spnK $ $ spnk $ SYM $ _ 23 conj _ _ 26 , , PUNCT , PunctType=Comm 25 punct _ _ 27 $ parK $ $ park $ SYM $ _ 25 conj _ _ 28 , , PUNCT , PunctType=Comm 25 punct _ _ 29 and and CCONJ CC ConjType=Cmp 23 cc _ _ 30 $ proK $ $ prok $ SYM $ _ 22 pobj _ _ 31 for for ADP IN _ 18 prep _ _ 32 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 33 suitable suitable ADJ JJ Degree=Pos 34 amod _ _ 34 category category NOUN NN Number=Sing 31 pobj _ _ 35 $ K $ $ k $ SYM $ _ 34 appos _ _ 36 , , PUNCT , PunctType=Comm 18 punct _ _ 37 along along ADP IN _ 18 prep _ _ 38 with with ADP IN _ 37 prep _ _ 39 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 40 amod _ _ 40 constructs construct NOUN NNS Number=Plur 38 pobj _ _ 41 such such ADJ JJ Degree=Pos 42 amod _ _ 42 as as ADP IN _ 40 prep _ _ 43 the the DET DT Definite=Def|PronType=Art 46 det _ _ 44 $ V $ $ v $ SYM $ _ 46 nmod _ _ 45 - - PUNCT HYPH PunctType=Dash 46 punct _ _ 46 $ pro $ $ pro $ SYM $ _ 42 pobj _ _ 47 arising arise VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 46 acl _ _ 48 from from ADP IN _ 47 prep _ _ 49 a a DET DT Definite=Ind|PronType=Art 52 det _ _ 50 suitable suitable ADJ JJ Degree=Pos 52 amod _ _ 51 monoidal monoidal ADJ JJ Degree=Pos 52 amod _ _ 52 category category NOUN NN Number=Sing 48 pobj _ _ 53 $ V $ $ v $ SYM $ _ 52 nummod _ _ 54 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We further exhibit the equipments as the objects of a 2 - category, in such a way that arbitrary functors $ F:eL - - - > K $ induce equipment arrows $ rel F:releL - - - >relK $ , $ spn F:spneL - - - > spnK $ , and so on, and similarly for arbitrary monoidal functors $ V - - - > W $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 further far ADV RB _ 3 advmod _ _ 3 exhibit exhibit VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 equipments equipment NOUN NNS Number=Plur 3 dobj _ _ 6 as as ADP IN _ 3 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 objects object NOUN NNS Number=Plur 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 11 2 2 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 category category NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 3 punct _ _ 15 in in ADP IN _ 3 prep _ _ 16 such such DET PDT _ 18 predet _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 way way NOUN NN Number=Sing 15 pobj _ _ 19 that that PRON WDT PronType=Rel 23 advmod _ _ 20 arbitrary arbitrary ADJ JJ Degree=Pos 21 amod _ _ 21 functors functor NOUN NNS Number=Plur 23 nsubj _ _ 22 $ F:eL - - - > K $ $ f:el - - - > k $ SYM $ _ 21 appos _ _ 23 induce induce VERB VB VerbForm=Inf 18 relcl _ _ 24 equipment equipment NOUN NN Number=Sing 25 compound _ _ 25 arrows arrow NOUN NNS Number=Plur 23 dobj _ _ 26 $ rel F:releL - - - >relK $ $ rel f:relel - - - >relk $ SYM $ _ 18 appos _ _ 27 , , PUNCT , PunctType=Comm 18 punct _ _ 28 $ spn F:spneL - - - > spnK $ $ spn f:spnel - - - > spnk $ SYM $ _ 18 appos _ _ 29 , , PUNCT , PunctType=Comm 15 punct _ _ 30 and and CCONJ CC ConjType=Cmp 15 cc _ _ 31 so so ADV RB _ 32 advmod _ _ 32 on on ADV RB _ 15 conj _ SpaceAfter=No 33 , , PUNCT , PunctType=Comm 32 punct _ _ 34 and and CCONJ CC ConjType=Cmp 32 cc _ _ 35 similarly similarly ADV RB _ 36 advmod _ _ 36 for for ADP IN _ 32 conj _ _ 37 arbitrary arbitrary ADJ JJ Degree=Pos 39 amod _ _ 38 monoidal monoidal ADJ JJ Degree=Pos 39 amod _ _ 39 functors functor NOUN NNS Number=Plur 36 pobj _ _ 40 $ V - - - > W $ $ v - - - > w $ SYM $ _ 3 dep _ _ 41 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = The article I with the title above dealt with those equipments $ M $ having each $ M(A, B) $ only an ordered set, and contained a detailed analysis of the case $ M =relK $ ; in the present article we allow the $ M(A, B) $ to be general categories, and illustrate our results by a detailed study of the case $ M=spnK $ . 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 article article NOUN NN Number=Sing 36 nsubj _ _ 3 I I PRON PRP Case=Nom|Number=Sing|Person=1|PronType=Prs 2 appos _ _ 4 with with ADP IN _ 2 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 title title NOUN NN Number=Sing 4 pobj _ _ 7 above above ADV RB _ 6 advmod _ _ 8 dealt deal VERB VBD Tense=Past|VerbForm=Fin 2 acl _ _ 9 with with ADP IN _ 8 prep _ _ 10 those those DET DT Number=Plur|PronType=Dem 11 det _ _ 11 equipments equipment NOUN NNS Number=Plur 9 pobj _ _ 12 $ M $ $ m $ SYM $ _ 2 appos _ _ 13 having have VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 acl _ _ 14 each each DET DT _ 19 det _ _ 15 $ M(A, B) $ $ m(a, b) $ SYM $ _ 19 predet _ _ 16 only only ADV RB _ 19 advmod _ _ 17 an an DET DT Definite=Ind|PronType=Art 19 det _ _ 18 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 amod _ _ 19 set set NOUN NN Number=Sing 13 dobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 13 punct _ _ 21 and and CCONJ CC ConjType=Cmp 2 cc _ _ 22 contained contain VERB VBD Tense=Past|VerbForm=Fin 2 conj _ _ 23 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 24 detailed detailed ADJ JJ Degree=Pos 25 amod _ _ 25 analysis analysis NOUN NN Number=Sing 22 dobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 case case NOUN NN Number=Sing 26 pobj _ _ 29 $ M =relK $ $ m =relk $ SYM $ _ 22 dep _ _ 30 ; ; PUNCT : _ 36 punct _ _ 31 in in ADP IN _ 36 prep _ _ 32 the the DET DT Definite=Def|PronType=Art 34 det _ _ 33 present present ADJ JJ Degree=Pos 34 amod _ _ 34 article article NOUN NN Number=Sing 31 pobj _ _ 35 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 36 nsubj _ _ 36 allow allow VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 37 the the DET DT Definite=Def|PronType=Art 38 det _ _ 38 $ M(A, B) $ $ m(a, b) $ SYM $ _ 40 nsubj _ _ 39 to to PART TO _ 40 aux _ _ 40 be be AUX VB VerbForm=Inf 36 ccomp _ _ 41 general general ADJ JJ Degree=Pos 42 amod _ _ 42 categories category NOUN NNS Number=Plur 40 attr _ SpaceAfter=No 43 , , PUNCT , PunctType=Comm 40 punct _ _ 44 and and CCONJ CC ConjType=Cmp 40 cc _ _ 45 illustrate illustrate VERB VB VerbForm=Inf 40 conj _ _ 46 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 47 poss _ _ 47 results result NOUN NNS Number=Plur 45 dobj _ _ 48 by by ADP IN _ 45 prep _ _ 49 a a DET DT Definite=Ind|PronType=Art 51 det _ _ 50 detailed detailed ADJ JJ Degree=Pos 51 amod _ _ 51 study study NOUN NN Number=Sing 48 pobj _ _ 52 of of ADP IN _ 51 prep _ _ 53 the the DET DT Definite=Def|PronType=Art 54 det _ _ 54 case case NOUN NN Number=Sing 52 pobj _ _ 55 $ M=spnK $ $ m=spnk $ SYM $ _ 45 dobj _ _ 56 . . PUNCT . PunctType=Peri 36 punct _ SpaceAfter=No # sent_id = 4 # text = We show in particular that $ spn $ is a locally - fully - faithful 2 - functor to the 2 - category of equipments, and determine its image on arrows. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 in in ADP IN _ 2 prep _ _ 4 particular particular ADJ JJ Degree=Pos 3 amod _ _ 5 that that SCONJ IN _ 7 mark _ _ 6 $ spn $ $ spn $ SYM $ _ 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 8 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 9 locally locally ADV RB _ 13 advmod _ _ 10 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 11 fully fully ADV RB _ 13 advmod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 faithful faithful ADJ JJ Degree=Pos 16 amod _ _ 14 2 2 NUM CD NumType=Card 16 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 functor functor NOUN NN Number=Sing 7 attr _ _ 17 to to ADP IN _ 7 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 21 det _ _ 19 2 2 NUM CD NumType=Card 21 nummod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 category category NOUN NN Number=Sing 17 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 equipments equipment NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 7 punct _ _ 25 and and CCONJ CC ConjType=Cmp 7 cc _ _ 26 determine determine VERB VB VerbForm=Inf 7 conj _ _ 27 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 28 poss _ _ 28 image image NOUN NN Number=Sing 26 dobj _ _ 29 on on ADP IN _ 28 prep _ _ 30 arrows arrow NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = After analyzing the nature of adjunctions in the 2 - category of equipments, we are able to give a simple characterization of those $ spn G $ which arise from a geometric morphism $ G $ . 1 After after ADP IN _ 16 prep _ _ 2 analyzing analyze VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 1 pcomp _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 nature nature NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 adjunctions adjunction NOUN NNS Number=Plur 5 pobj _ _ 7 in in ADP IN _ 2 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 11 det _ _ 9 2 2 NUM CD NumType=Card 11 nummod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 category category NOUN NN Number=Sing 7 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 equipments equipment NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 16 punct _ _ 15 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 16 nsubj _ _ 16 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 17 able able ADJ JJ Degree=Pos 16 acomp _ _ 18 to to PART TO _ 19 aux _ _ 19 give give VERB VB VerbForm=Inf 17 xcomp _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 simple simple ADJ JJ Degree=Pos 22 amod _ _ 22 characterization characterization NOUN NN Number=Sing 19 dobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 those those DET DT Number=Plur|PronType=Dem 25 det _ _ 25 $ spn G $ $ spn g $ SYM $ _ 23 pobj _ _ 26 which which PRON WDT _ 27 nsubj _ _ 27 arise arise VERB VBP Tense=Pres|VerbForm=Fin 25 relcl _ _ 28 from from ADP IN _ 27 prep _ _ 29 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 30 geometric geometric ADJ JJ Degree=Pos 31 amod _ _ 31 morphism morphism NOUN NN Number=Sing 28 pobj _ _ 32 $ G $ $ g $ SYM $ _ 27 dobj _ _ 33 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # doc_id = 64 # sent_id = 1 # text = The theory of enriched accessible categories over a suitable base category $ V $ is developed. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 theory theory NOUN NN Number=Sing 14 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 amod _ _ 5 accessible accessible ADJ JJ Degree=Pos 6 amod _ _ 6 categories category NOUN NNS Number=Plur 3 pobj _ _ 7 over over ADP IN _ 2 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 9 suitable suitable ADJ JJ Degree=Pos 11 amod _ _ 10 base base NOUN NN Number=Sing 11 compound _ _ 11 category category NOUN NN Number=Sing 7 pobj _ _ 12 $ V $ $ v $ SYM $ _ 2 appos _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 developed develop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 2 # text = It is proved that these enriched accessible categories coincide with the categories of flat functors, but also with the categories of models of enriched sketches. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 that that SCONJ IN _ 9 mark _ _ 5 these these DET DT Number=Plur|PronType=Dem 8 det _ _ 6 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 7 accessible accessible ADJ JJ Degree=Pos 8 amod _ _ 8 categories category NOUN NNS Number=Plur 9 nsubj _ _ 9 coincide coincide VERB VBP Tense=Pres|VerbForm=Fin 3 ccomp _ _ 10 with with ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 categories category NOUN NNS Number=Plur 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 flat flat ADJ JJ Degree=Pos 15 amod _ _ 15 functors functor NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 9 punct _ _ 17 but but CCONJ CC ConjType=Cmp 9 cc _ _ 18 also also ADV RB _ 17 advmod _ _ 19 with with ADP IN _ 9 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 categories category NOUN NNS Number=Plur 19 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 models model NOUN NNS Number=Plur 22 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 enriched enriched ADJ JJ Degree=Pos 26 amod _ _ 26 sketches sketch NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = A particular attention is devoted to enriched locally presentable categories and enriched functors. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 particular particular ADJ JJ Degree=Pos 3 amod _ _ 3 attention attention NOUN NN Number=Sing 5 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 devoted devote VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 to to ADP IN _ 5 prep _ _ 7 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 8 locally locally ADV RB _ 10 advmod _ _ 9 presentable presentable ADJ JJ Degree=Pos 10 amod _ _ 10 categories category NOUN NNS Number=Plur 6 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 enriched enriched ADJ JJ Degree=Pos 13 amod _ _ 13 functors functor NOUN NNS Number=Plur 10 conj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 65 # sent_id = 1 # text = We show that the homotopy category of simplicial diagrams $ I - SS $ indexed by a small category $ I $ is equivalent to a homotopy category of $ SSdownarrow NI $ simplicial sets over the nerve $ NI $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 17 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 homotopy homotopy NOUN NN Number=Sing 6 compound _ _ 6 category category NOUN NN Number=Sing 17 nsubj _ _ 7 of of ADP IN _ 6 prep _ _ 8 simplicial simplicial ADJ JJ Degree=Pos 9 amod _ _ 9 diagrams diagram NOUN NNS Number=Plur 7 pobj _ _ 10 $ I - SS $ $ i - ss $ SYM $ _ 6 appos _ _ 11 indexed index VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 acl _ _ 12 by by ADP IN _ 11 agent _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 small small ADJ JJ Degree=Pos 15 amod _ _ 15 category category NOUN NN Number=Sing 12 pobj _ _ 16 $ I $ $ i $ SYM $ _ 15 appos _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 18 equivalent equivalent ADJ JJ Degree=Pos 17 acomp _ _ 19 to to ADP IN _ 18 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 homotopy homotopy NOUN NN Number=Sing 22 compound _ _ 22 category category NOUN NN Number=Sing 19 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 $ SSdownarrow NI $ $ ssdownarrow ni $ SYM $ _ 26 nmod _ _ 25 simplicial simplicial ADJ JJ Degree=Pos 26 amod _ _ 26 sets set NOUN NNS Number=Plur 23 pobj _ _ 27 over over ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 nerve nerve NOUN NN Number=Sing 27 pobj _ _ 30 $ NI $ $ ni $ SYM $ _ 17 dep _ _ 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Then their equivalences, by means of the nerve functor N : Cat - - > SS $ from the category $ Cat $ of small categories, with respective homotopy categories associated to $ Cat $ are established. 1 Then then ADV RB PronType=Dem 26 advmod _ _ 2 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 3 poss _ _ 3 equivalences equivalence NOUN NNS Number=Plur 26 nsubjpass _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 5 punct _ _ 5 by by ADP IN _ 3 prep _ _ 6 means mean NOUN NNS Number=Plur 5 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 nerve nerve NOUN NN Number=Sing 10 compound _ _ 10 functor functor NOUN NN Number=Sing 7 pobj _ _ 11 N N PROPN NNP Number=Sing 3 appos _ _ 12 : : PUNCT : _ 26 punct _ _ 13 Cat Cat PROPN NNP Number=Sing 21 nmod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 16 & & CCONJ CC ConjType=Cmp 13 cc _ SpaceAfter=No 17 gt gt PROPN NNP Number=Sing 13 conj _ SpaceAfter=No 18 ; ; PUNCT : _ 13 punct _ _ 19 SS SS PROPN NNP Number=Sing 13 conj _ _ 20 $ from the category $ $ from the category $ SYM $ _ 21 nmod _ _ 21 Cat Cat PROPN NNP Number=Sing 26 nsubjpass _ _ 22 $ of small categories, with respective homotopy categories associated to $ $ of small categories, with respective homotopy categories associated to $ SYM $ _ 23 nmod _ _ 23 Cat Cat PROPN NNP Number=Sing 21 appos _ _ 24 $ $ PRON WP _ 21 appos _ _ 25 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 26 auxpass _ _ 26 established establish VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 26 punct _ SpaceAfter=No # sent_id = 3 # text = Consequently, an equivariant simplicial version of the Whitehead Theorem is derived. 1 Consequently consequently ADV RB _ 12 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 12 punct _ _ 3 an an DET DT Definite=Ind|PronType=Art 6 det _ _ 4 equivariant equivariant ADJ JJ Degree=Pos 6 amod _ _ 5 simplicial simplicial ADJ JJ Degree=Pos 6 amod _ _ 6 version version NOUN NN Number=Sing 12 nsubjpass _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 Whitehead Whitehead PROPN NNP Number=Sing 10 compound _ _ 10 Theorem Theorem PROPN NNP Number=Sing 7 pobj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 12 derived derive VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # doc_id = 66 # sent_id = 1 # text = Using descent theory we give various forms of short five - lemma in protomodular categories, known in the case of exact protomodular categories. 1 Using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 advcl _ _ 2 descent descent NOUN NN Number=Sing 3 compound _ _ 3 theory theory NOUN NN Number=Sing 1 dobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 various various ADJ JJ Degree=Pos 7 amod _ _ 7 forms form NOUN NNS Number=Plur 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 short short ADJ JJ Degree=Pos 12 amod _ _ 10 five five NUM CD NumType=Card 12 nummod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 lemma lemma NOUN NN Number=Sing 8 pobj _ _ 13 in in ADP IN _ 5 prep _ _ 14 protomodular protomodular ADJ JJ Degree=Pos 15 amod _ _ 15 categories category NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 acl _ _ 18 in in ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 case case NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 exact exact ADJ JJ Degree=Pos 24 amod _ _ 23 protomodular protomodular ADJ JJ Degree=Pos 24 amod _ _ 24 categories category NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = We also describe the situation where the notion of a semidirect product can be defined categorically. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 situation situation NOUN NN Number=Sing 3 dobj _ _ 6 where where SCONJ WRB _ 15 advmod _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 notion notion NOUN NN Number=Sing 15 nsubjpass _ _ 9 of of ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 semidirect semidirect NOUN NN Number=Sing 12 compound _ _ 12 product product NOUN NN Number=Sing 9 pobj _ _ 13 can can AUX MD VerbForm=Fin 15 aux _ _ 14 be be AUX VB VerbForm=Inf 15 auxpass _ _ 15 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 relcl _ _ 16 categorically categorically ADV RB _ 15 advmod _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 67 # sent_id = 1 # text = In the literature there are several kinds of concrete and abstract cell complexes representing composition in $ n $ - categories, $ omega $ - categories or $ infty $ - categories, and the slightly more general partial $ omega $ - categories. 1 In in ADP IN _ 5 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 literature literature NOUN NN Number=Sing 1 pobj _ _ 4 there there PRON EX _ 5 expl _ _ 5 are be VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 several several ADJ JJ Degree=Pos 7 amod _ _ 7 kinds kind NOUN NNS Number=Plur 5 attr _ _ 8 of of ADP IN _ 7 prep _ _ 9 concrete concrete ADJ JJ Degree=Pos 13 amod _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 abstract abstract ADJ JJ Degree=Pos 9 conj _ _ 12 cell cell NOUN NN Number=Sing 13 compound _ _ 13 complexes complex NOUN NNS Number=Plur 8 pobj _ _ 14 representing represent VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 acl _ _ 15 composition composition NOUN NN Number=Sing 14 dobj _ _ 16 in in ADP IN _ 15 prep _ _ 17 $ n $ $ n $ SYM $ _ 19 nummod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 categories category NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 19 punct _ _ 21 $ omega $ $ omega $ SYM $ _ 23 compound _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 categories category NOUN NNS Number=Plur 19 conj _ _ 24 or or CCONJ CC ConjType=Cmp 23 cc _ _ 25 $ infty $ $ infty $ SYM $ _ 27 nmod _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 categories category NOUN NNS Number=Plur 23 conj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 5 punct _ _ 29 and and CCONJ CC ConjType=Cmp 5 cc _ _ 30 the the DET DT Definite=Def|PronType=Art 37 det _ _ 31 slightly slightly ADV RB _ 32 advmod _ _ 32 more more ADV RBR Degree=Cmp 33 advmod _ _ 33 general general ADJ JJ Degree=Pos 37 amod _ _ 34 partial partial ADJ JJ Degree=Pos 37 amod _ _ 35 $ omega $ $ omega $ SYM $ _ 37 compound _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 categories category NOUN NNS Number=Plur 5 conj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = Some examples are parity complexes, pasting schemes and directed complexes. 1 Some some DET DT _ 2 det _ _ 2 examples example NOUN NNS Number=Plur 3 nsubj _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 parity parity NOUN NN Number=Sing 5 compound _ _ 5 complexes complex NOUN NNS Number=Plur 3 attr _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 pasting paste VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 advcl _ _ 8 schemes scheme NOUN NNS Number=Plur 7 dobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 directed direct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 amod _ _ 11 complexes complex NOUN NNS Number=Plur 8 conj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = In this paper we give an axiomatic treatment: that is to say, we study the class of ` $ omeg $ - complexes' which consists of all complexes representing partial $ omega $ - categories. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 give give VERB VBP Tense=Pres|VerbForm=Fin 16 ccomp _ _ 6 an an DET DT Definite=Ind|PronType=Art 8 det _ _ 7 axiomatic axiomatic ADJ JJ Degree=Pos 8 amod _ _ 8 treatment treatment NOUN NN Number=Sing 5 dobj _ SpaceAfter=No 9 : : PUNCT : _ 16 punct _ _ 10 that that PRON DT Number=Sing|PronType=Dem 11 nsubj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 parataxis _ _ 12 to to PART TO _ 13 aux _ _ 13 say say VERB VB VerbForm=Inf 11 xcomp _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 16 punct _ _ 15 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 16 nsubj _ _ 16 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 class class NOUN NN Number=Sing 16 dobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 19 punct _ _ 21 $ omeg $ $ omeg $ SYM $ _ 23 compound _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 complexes complex NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 24 ' ' PART POS _ 23 punct _ _ 25 which which PRON WDT _ 26 nsubj _ _ 26 consists consist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 relcl _ _ 27 of of ADP IN _ 26 prep _ _ 28 all all DET DT _ 29 det _ _ 29 complexes complex NOUN NNS Number=Plur 27 pobj _ _ 30 representing represent VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 29 acl _ _ 31 partial partial ADJ JJ Degree=Pos 34 amod _ _ 32 $ omega $ $ omega $ SYM $ _ 34 compound _ _ 33 - - PUNCT HYPH PunctType=Dash 34 punct _ _ 34 categories category NOUN NNS Number=Plur 30 dobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 4 # text = We show that $ omega $ - complexes can be given geometric structures and that in most important examples they become well - behaved CW complexes; we characterise $ omega $ - complexes by conditions on their cells; we show that a product of $ omega $ - complexes is again an $ omega $ - complex; and we describe some products in detail. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 9 mark _ _ 4 $ omega $ $ omega $ SYM $ _ 6 compound _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 complexes complex NOUN NNS Number=Plur 9 nsubjpass _ _ 7 can can AUX MD VerbForm=Fin 9 aux _ _ 8 be be AUX VB VerbForm=Inf 9 auxpass _ _ 9 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 10 geometric geometric ADJ JJ Degree=Pos 11 amod _ _ 11 structures structure NOUN NNS Number=Plur 9 dobj _ _ 12 and and CCONJ CC ConjType=Cmp 9 cc _ _ 13 that that SCONJ IN _ 19 mark _ _ 14 in in ADP IN _ 19 prep _ _ 15 most most ADV RBS Degree=Sup 16 advmod _ _ 16 important important ADJ JJ Degree=Pos 17 amod _ _ 17 examples example NOUN NNS Number=Plur 14 pobj _ _ 18 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 19 nsubj _ _ 19 become become VERB VBP Tense=Pres|VerbForm=Fin 9 conj _ _ 20 well well ADV RB Degree=Pos 22 advmod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 behaved behave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 23 CW CW PROPN NNP Number=Sing 24 compound _ _ 24 complexes complex NOUN NNS Number=Plur 19 attr _ SpaceAfter=No 25 ; ; PUNCT : _ 27 punct _ _ 26 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 27 nsubj _ _ 27 characterise characterise VERB VBP Tense=Pres|VerbForm=Fin 38 ccomp _ _ 28 $ omega $ $ omega $ SYM $ _ 30 compound _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 complexes complex NOUN NNS Number=Plur 27 dobj _ _ 31 by by ADP IN _ 30 prep _ _ 32 conditions condition NOUN NNS Number=Plur 31 pobj _ _ 33 on on ADP IN _ 32 prep _ _ 34 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 35 poss _ _ 35 cells cell NOUN NNS Number=Plur 33 pobj _ SpaceAfter=No 36 ; ; PUNCT : _ 38 punct _ _ 37 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 38 nsubj _ _ 38 show show VERB VBP Tense=Pres|VerbForm=Fin 2 ccomp _ _ 39 that that SCONJ IN _ 46 mark _ _ 40 a a DET DT Definite=Ind|PronType=Art 41 det _ _ 41 product product NOUN NN Number=Sing 46 nsubj _ _ 42 of of ADP IN _ 41 prep _ _ 43 $ omega $ $ omega $ SYM $ _ 45 compound _ _ 44 - - PUNCT HYPH PunctType=Dash 45 punct _ _ 45 complexes complex NOUN NNS Number=Plur 42 pobj _ _ 46 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 38 ccomp _ _ 47 again again ADV RB _ 46 advmod _ _ 48 an an DET DT Definite=Ind|PronType=Art 51 det _ _ 49 $ omega $ $ omega $ SYM $ _ 51 nmod _ _ 50 - - PUNCT HYPH PunctType=Dash 51 punct _ _ 51 complex complex ADJ JJ Degree=Pos 46 attr _ SpaceAfter=No 52 ; ; PUNCT : _ 2 punct _ _ 53 and and CCONJ CC ConjType=Cmp 2 cc _ _ 54 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 55 nsubj _ _ 55 describe describe VERB VBP Tense=Pres|VerbForm=Fin 2 conj _ _ 56 some some DET DT _ 57 det _ _ 57 products product NOUN NNS Number=Plur 55 dobj _ _ 58 in in ADP IN _ 55 prep _ _ 59 detail detail NOUN NN Number=Sing 58 pobj _ SpaceAfter=No 60 . . PUNCT . PunctType=Peri 55 punct _ SpaceAfter=No # doc_id = 68 # sent_id = 1 # text = If $ cal M $ is both an abelian category and a symmetric monoidal closed category, then it is natural to ask whether projective objects in $ cal M $ are flat, and whether the tensor product of two projective objects is projective. 1 If if SCONJ IN _ 3 mark _ _ 2 $ cal M $ $ cal m $ SYM $ _ 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 advcl _ _ 4 both both PRON DT _ 7 preconj _ _ 5 an an DET DT Definite=Ind|PronType=Art 7 det _ _ 6 abelian abelian ADJ JJ Degree=Pos 7 compound _ _ 7 category category NOUN NN Number=Sing 3 attr _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 10 symmetric symmetric ADJ JJ Degree=Pos 11 amod _ _ 11 monoidal monoidal NOUN NN Number=Sing 13 amod _ _ 12 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 amod _ _ 13 category category NOUN NN Number=Sing 7 conj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 17 punct _ _ 15 then then ADV RB PronType=Dem 17 advmod _ _ 16 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 17 nsubj _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 18 natural natural ADJ JJ Degree=Pos 17 acomp _ _ 19 to to PART TO _ 20 aux _ _ 20 ask ask VERB VB VerbForm=Inf 17 xcomp _ _ 21 whether whether SCONJ IN _ 26 mark _ _ 22 projective projective ADJ JJ Degree=Pos 23 amod _ _ 23 objects object NOUN NNS Number=Plur 26 nsubj _ _ 24 in in ADP IN _ 23 prep _ _ 25 $ cal M $ $ cal m $ SYM $ _ 24 pobj _ _ 26 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 20 ccomp _ _ 27 flat flat ADJ JJ Degree=Pos 26 acomp _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 17 punct _ _ 29 and and CCONJ CC ConjType=Cmp 17 cc _ _ 30 whether whether SCONJ IN _ 38 mark _ _ 31 the the DET DT Definite=Def|PronType=Art 33 det _ _ 32 tensor tensor NOUN NN Number=Sing 33 compound _ _ 33 product product NOUN NN Number=Sing 38 nsubj _ _ 34 of of ADP IN _ 33 prep _ _ 35 two two NUM CD NumType=Card 37 nummod _ _ 36 projective projective ADJ JJ Degree=Pos 37 amod _ _ 37 objects object NOUN NNS Number=Plur 34 pobj _ _ 38 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 conj _ _ 39 projective projective ADJ JJ Degree=Pos 38 acomp _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 2 # text = In the most familiar such categories, the answer to these questions is obviously yes. 1 In in ADP IN _ 13 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 6 det _ _ 3 most most ADV RBS Degree=Sup 4 advmod _ _ 4 familiar familiar ADJ JJ Degree=Pos 6 amod _ _ 5 such such ADJ JJ Degree=Pos 6 amod _ _ 6 categories category NOUN NNS Number=Plur 1 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 13 punct _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 answer answer NOUN NN Number=Sing 13 nsubj _ _ 10 to to ADP IN _ 9 prep _ _ 11 these these DET DT Number=Plur|PronType=Dem 12 det _ _ 12 questions question NOUN NNS Number=Plur 10 pobj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 obviously obviously ADV RB _ 13 advmod _ _ 15 yes yes INTJ UH _ 13 intj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 3 # text = However, the category $ cal M_G $ of Mackey functors for a compact Lie group $ G $ is a category of this type in which projective objects need not be so well - behaved. 1 However however ADV RB _ 15 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 15 punct _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 category category NOUN NN Number=Sing 15 nsubj _ _ 5 $ cal M_G $ $ cal m_g $ SYM $ _ 4 appos _ _ 6 of of ADP IN _ 5 prep _ _ 7 Mackey Mackey PROPN NNP Number=Sing 8 compound _ _ 8 functors functor NOUN NNS Number=Plur 6 pobj _ _ 9 for for ADP IN _ 5 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 11 compact compact ADJ JJ Degree=Pos 12 amod _ _ 12 Lie lie NOUN NN Number=Sing 13 compound _ _ 13 group group NOUN NN Number=Sing 9 pobj _ _ 14 $ G $ $ g $ SYM $ _ 4 appos _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 category category NOUN NN Number=Sing 15 attr _ _ 18 of of ADP IN _ 17 prep _ _ 19 this this DET DT Number=Sing|PronType=Dem 20 det _ _ 20 type type NOUN NN Number=Sing 18 pobj _ _ 21 in in ADP IN _ 27 prep _ _ 22 which which PRON WDT _ 21 pobj _ _ 23 projective projective ADJ JJ Degree=Pos 24 amod _ _ 24 objects object NOUN NNS Number=Plur 27 nsubj _ _ 25 need need AUX VBP Tense=Pres|VerbForm=Fin 27 aux _ _ 26 not not PART RB Polarity=Neg 27 neg _ _ 27 be be AUX VB VerbForm=Inf 17 relcl _ _ 28 so so ADV RB _ 31 advmod _ _ 29 well well ADV RB Degree=Pos 31 advmod _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 behaved behave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 acomp _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 4 # text = This category is of interest since good equivariant cohomology theories are Mackey functor valued. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 category category NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 of of ADP IN _ 3 prep _ _ 5 interest interest NOUN NN Number=Sing 4 pobj _ _ 6 since since SCONJ IN _ 11 mark _ _ 7 good good ADJ JJ Degree=Pos 9 amod _ _ 8 equivariant equivariant ADJ JJ Degree=Pos 9 amod _ _ 9 cohomology cohomology NOUN NN Number=Sing 10 compound _ _ 10 theories theory NOUN NNS Number=Plur 11 nsubj _ _ 11 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 advcl _ _ 12 Mackey Mackey PROPN NNP Number=Sing 13 compound _ _ 13 functor functor NOUN NN Number=Sing 11 attr _ _ 14 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 acl _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = The tensor product on $ cal M_G $ is important in this context because of the role it plays in the not yet fully understood universal coefficient and K"{u}nneth formulae. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 tensor tensor NOUN NN Number=Sing 3 compound _ _ 3 product product NOUN NN Number=Sing 6 nsubj _ _ 4 on on ADP IN _ 3 prep _ _ 5 $ cal M_G $ $ cal m_g $ SYM $ _ 4 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 important important ADJ JJ Degree=Pos 6 acomp _ _ 8 in in ADP IN _ 6 prep _ _ 9 this this DET DT Number=Sing|PronType=Dem 10 det _ _ 10 context context NOUN NN Number=Sing 8 pobj _ _ 11 because because SCONJ IN _ 6 prep _ _ 12 of of ADP IN _ 11 pcomp _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 role role NOUN NN Number=Sing 11 pobj _ _ 15 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 16 nsubj _ _ 16 plays play VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 relcl _ _ 17 in in ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 24 det _ _ 19 not not PART RB Polarity=Neg 20 neg _ _ 20 yet yet ADV RB _ 21 advmod _ _ 21 fully fully ADV RB _ 22 advmod _ _ 22 understood understand VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 23 universal universal ADJ JJ Degree=Pos 24 amod _ _ 24 coefficient coefficient NOUN NN Number=Sing 17 pobj _ _ 25 and and CCONJ CC ConjType=Cmp 24 cc _ _ 26 K"{u}nneth K"{u}nneth PROPN NNP Number=Sing 27 compound _ _ 27 formulae formulae PROPN NNP Number=Sing 24 conj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 6 # text = This role makes the relationship between projective objects and the tensor product especially critical. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 role role NOUN NN Number=Sing 3 nsubj _ _ 3 makes make VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 relationship relationship NOUN NN Number=Sing 14 nsubj _ _ 6 between between ADP IN _ 5 prep _ _ 7 projective projective ADJ JJ Degree=Pos 8 amod _ _ 8 objects object NOUN NNS Number=Plur 6 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 tensor tensor NOUN NN Number=Sing 12 compound _ _ 12 product product NOUN NN Number=Sing 8 conj _ _ 13 especially especially ADV RB _ 14 advmod _ _ 14 critical critical ADJ JJ Degree=Pos 3 ccomp _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 7 # text = Unfortunately, if $ G $ is, for example, $ O(n) $ , then projectives need not be flat in $ cal M_G $ and the tensor product of projective objects need not be projective. 1 Unfortunately unfortunately ADV RB _ 16 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 16 punct _ _ 3 if if SCONJ IN _ 5 mark _ _ 4 $ G $ $ g $ SYM $ _ 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 advcl _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 10 punct _ _ 7 for for ADP IN _ 10 prep _ _ 8 example example NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 7 punct _ _ 10 $ O(n) $ $ o(n) $ SYM $ _ 5 attr _ _ 11 , , PUNCT , PunctType=Comm 16 punct _ _ 12 then then ADV RB PronType=Dem 16 advmod _ _ 13 projectives projective NOUN NNS Number=Plur 16 nsubj _ _ 14 need need AUX MD VerbType=Mod 16 aux _ _ 15 not not PART RB Polarity=Neg 16 neg _ _ 16 be be AUX VB VerbForm=Inf 0 ROOT _ _ 17 flat flat ADJ JJ Degree=Pos 16 acomp _ _ 18 in in ADP IN _ 16 prep _ _ 19 $ cal M_G $ $ cal m_g $ SYM $ _ 18 pobj _ _ 20 and and CCONJ CC ConjType=Cmp 16 cc _ _ 21 the the DET DT Definite=Def|PronType=Art 23 det _ _ 22 tensor tensor NOUN NN Number=Sing 23 compound _ _ 23 product product NOUN NN Number=Sing 29 nsubj _ _ 24 of of ADP IN _ 23 prep _ _ 25 projective projective ADJ JJ Degree=Pos 26 amod _ _ 26 objects object NOUN NNS Number=Plur 24 pobj _ _ 27 need need AUX VBP Tense=Pres|VerbForm=Fin 29 aux _ _ 28 not not PART RB Polarity=Neg 29 neg _ _ 29 be be AUX VB VerbForm=Inf 16 conj _ _ 30 projective projective ADJ JJ Degree=Pos 29 acomp _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 29 punct _ SpaceAfter=No # sent_id = 8 # text = This misbe haviorcomplicates the search for full strength equivariant universal coefficient and K"{u}nneth formulae. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 misbe misbe NOUN NN Number=Sing 3 nsubj _ _ 3 haviorcomplicates haviorcomplicate VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 search search NOUN NN Number=Sing 3 dobj _ _ 6 for for ADP IN _ 5 prep _ _ 7 full full ADJ JJ Degree=Pos 11 amod _ _ 8 strength strength NOUN NN Number=Sing 9 nmod _ _ 9 equivariant equivariant ADJ JJ Degree=Pos 11 amod _ _ 10 universal universal ADJ JJ Degree=Pos 11 amod _ _ 11 coefficient coefficient NOUN NN Number=Sing 6 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 K"{u}nneth K"{u}nneth PROPN NNP Number=Sing 14 compound _ _ 14 formulae formulae PROPN NNP Number=Sing 11 conj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 9 # text = The primary purpose of this article is to investigate these questions about the interaction of the tensor product with projective objects in symmetric monoidal abelian categories. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 primary primary ADJ JJ Degree=Pos 3 amod _ _ 3 purpose purpose NOUN NN Number=Sing 7 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 6 article article NOUN NN Number=Sing 4 pobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 to to PART TO _ 9 aux _ _ 9 investigate investigate VERB VB VerbForm=Inf 7 xcomp _ _ 10 these these DET DT Number=Plur|PronType=Dem 11 det _ _ 11 questions question NOUN NNS Number=Plur 9 dobj _ _ 12 about about ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 interaction interaction NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 tensor tensor NOUN NN Number=Sing 18 compound _ _ 18 product product NOUN NN Number=Sing 15 pobj _ _ 19 with with ADP IN _ 14 prep _ _ 20 projective projective ADJ JJ Degree=Pos 21 amod _ _ 21 objects object NOUN NNS Number=Plur 19 pobj _ _ 22 in in ADP IN _ 21 prep _ _ 23 symmetric symmetric ADJ JJ Degree=Pos 26 amod _ _ 24 monoidal monoidal ADJ JJ Degree=Pos 26 amod _ _ 25 abelian abelian ADJ JJ Degree=Pos 26 compound _ _ 26 categories category NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 10 # text = Our focus is on functor categories whose monoidal structures arise in a fashion described by Day. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 focus focus NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 on on ADP IN _ 3 prep _ _ 5 functor functor NOUN NN Number=Sing 6 compound _ _ 6 categories category NOUN NNS Number=Plur 4 pobj _ _ 7 whose whose DET WP$ Poss=Yes 9 poss _ _ 8 monoidal monoidal ADJ JJ Degree=Pos 9 amod _ _ 9 structures structure NOUN NNS Number=Plur 10 nsubj _ _ 10 arise arise VERB VBP Tense=Pres|VerbForm=Fin 6 relcl _ _ 11 in in ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 fashion fashion NOUN NN Number=Sing 11 pobj _ _ 14 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 acl _ _ 15 by by ADP IN _ 14 agent _ _ 16 Day Day PROPN NNP Number=Sing 15 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 11 # text = Conditions are given under which such a structure interacts appropriately with projective objects. 1 Conditions condition NOUN NNS Number=Plur 3 nsubjpass _ _ 2 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 under under ADP IN _ 9 prep _ _ 5 which which PRON WDT _ 4 pobj _ _ 6 such such DET PDT _ 8 predet _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 structure structure NOUN NN Number=Sing 9 nsubj _ _ 9 interacts interact VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 advcl _ _ 10 appropriately appropriately ADV RB _ 9 advmod _ _ 11 with with ADP IN _ 9 prep _ _ 12 projective projective ADJ JJ Degree=Pos 13 amod _ _ 13 objects object NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 12 # text = Further, examples are given to show that, when these conditions aren't met, this interaction can be quite bad. 1 Further far ADV RB _ 5 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 5 punct _ _ 3 examples example NOUN NNS Number=Plur 5 nsubjpass _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 to to PART TO _ 7 aux _ _ 7 show show VERB VB VerbForm=Inf 5 advcl _ _ 8 that that SCONJ IN _ 20 mark _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 20 punct _ _ 10 when when SCONJ WRB _ 15 advmod _ _ 11 these these DET DT Number=Plur|PronType=Dem 12 det _ _ 12 conditions condition NOUN NNS Number=Plur 15 nsubjpass _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 auxpass _ SpaceAfter=No 14 n't not PART RB Polarity=Neg 15 neg _ _ 15 met meet VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 advcl _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 20 punct _ _ 17 this this DET DT Number=Sing|PronType=Dem 18 det _ _ 18 interaction interaction NOUN NN Number=Sing 20 nsubj _ _ 19 can can AUX MD VerbForm=Fin 20 aux _ _ 20 be be AUX VB VerbForm=Inf 7 ccomp _ _ 21 quite quite ADV RB _ 22 advmod _ _ 22 bad bad ADJ JJ Degree=Pos 20 acomp _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 13 # text = These examples were not fabricated to illustrate the abstract possibility of misbehavior. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 examples example NOUN NNS Number=Plur 5 nsubjpass _ _ 3 were be AUX VBD Mood=Ind|Tense=Past|VerbForm=Fin 5 auxpass _ _ 4 not not PART RB Polarity=Neg 5 neg _ _ 5 fabricated fabricate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 to to PART TO _ 7 aux _ _ 7 illustrate illustrate VERB VB VerbForm=Inf 5 xcomp _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 abstract abstract ADJ JJ Degree=Pos 10 amod _ _ 10 possibility possibility NOUN NN Number=Sing 7 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 misbehavior misbehavior NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 14 # text = Rather, they are drawn from the literature. 1 Rather rather ADV RB _ 5 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 5 punct _ _ 3 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 5 nsubjpass _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 drawn draw VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 from from ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 literature literature NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 9 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 15 # text = In particular, $ cal M_G $ is badly behaved not only for the groups $ O(n) $ , but also for the groups $ SO(n) $ , $ U(n) $ , $ SU(n) $ , $ Sp(n) $ , and $ Spin(n) $ . 1 In in ADP IN _ 7 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 7 punct _ _ 4 $ cal M_G $ $ cal m_g $ SYM $ _ 7 nsubjpass _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 6 badly badly ADV RB _ 7 advmod _ _ 7 behaved behave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 not not PART RB Polarity=Neg 10 preconj _ _ 9 only only ADV RB _ 8 advmod _ _ 10 for for ADP IN _ 7 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 groups group NOUN NNS Number=Plur 10 pobj _ _ 13 $ O(n) $ $ o(n) $ SYM $ _ 12 appos _ _ 14 , , PUNCT , PunctType=Comm 10 punct _ _ 15 but but CCONJ CC ConjType=Cmp 10 cc _ _ 16 also also ADV RB _ 15 advmod _ _ 17 for for ADP IN _ 10 conj _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 groups group NOUN NNS Number=Plur 17 pobj _ _ 20 $ SO(n) $ $ so(n) $ SYM $ _ 7 dep _ _ 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 $ U(n) $ $ u(n) $ SYM $ _ 20 conj _ _ 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 $ SU(n) $ $ su(n) $ SYM $ _ 4 acl _ _ 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 $ Sp(n) $ $ sp(n) $ SYM $ _ 24 conj _ _ 27 , , PUNCT , PunctType=Comm 26 punct _ _ 28 and and CCONJ CC ConjType=Cmp 26 cc _ _ 29 $ Spin(n) $ $ spin(n) $ SYM $ _ 26 conj _ _ 30 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 16 # text = Similar misbehavior occurs in two categories of global Mackey functors which are widely used in the study of classifying spaces of finite groups. 1 Similar similar ADJ JJ Degree=Pos 2 amod _ _ 2 misbehavior misbehavior NOUN NN Number=Sing 3 nsubj _ _ 3 occurs occur VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 in in ADP IN _ 3 prep _ _ 5 two two NUM CD NumType=Card 6 nummod _ _ 6 categories category NOUN NNS Number=Plur 4 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 global global ADJ JJ Degree=Pos 10 amod _ _ 9 Mackey Mackey PROPN NNP Number=Sing 10 compound _ _ 10 functors functor NOUN NNS Number=Plur 7 pobj _ _ 11 which which PRON WDT _ 14 nsubjpass _ _ 12 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 13 widely widely ADV RB _ 14 advmod _ _ 14 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 relcl _ _ 15 in in ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 study study NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 classifying classify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 20 amod _ _ 20 spaces space NOUN NNS Number=Plur 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 finite finite ADJ JJ Degree=Pos 23 amod _ _ 23 groups group NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 17 # text = Given the extent of the homological misbehavior in Mackey functor categories described here, it is reasonable to expect that similar problems occur in other functor categories carrying symmetric monoidal closed structures provided by Day's machinery. 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 extent extent NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 homological homological ADJ JJ Degree=Pos 7 amod _ _ 7 misbehavior misbehavior NOUN NN Number=Sing 4 pobj _ _ 8 in in ADP IN _ 7 prep _ _ 9 Mackey Mackey PROPN NNP Number=Sing 11 compound _ _ 10 functor functor NOUN NN Number=Sing 11 compound _ _ 11 categories category NOUN NNS Number=Plur 8 pobj _ _ 12 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 acl _ _ 13 here here ADV RB PronType=Dem 12 advmod _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 16 punct _ _ 15 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 16 nsubj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 17 reasonable reasonable ADJ JJ Degree=Pos 16 acomp _ _ 18 to to PART TO _ 19 aux _ _ 19 expect expect VERB VB VerbForm=Inf 16 xcomp _ _ 20 that that SCONJ IN _ 23 mark _ _ 21 similar similar ADJ JJ Degree=Pos 22 amod _ _ 22 problems problem NOUN NNS Number=Plur 23 nsubj _ _ 23 occur occur VERB VBP Tense=Pres|VerbForm=Fin 19 ccomp _ _ 24 in in ADP IN _ 23 prep _ _ 25 other other ADJ JJ Degree=Pos 27 amod _ _ 26 functor functor NOUN NN Number=Sing 27 compound _ _ 27 categories category NOUN NNS Number=Plur 24 pobj _ _ 28 carrying carry VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 27 acl _ _ 29 symmetric symmetric ADJ JJ Degree=Pos 30 amod _ _ 30 monoidal monoidal NOUN NN Number=Sing 28 dobj _ _ 31 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 amod _ _ 32 structures structure NOUN NNS Number=Plur 28 dobj _ _ 33 provided provide VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 acl _ _ 34 by by ADP IN _ 33 agent _ _ 35 Day Day PROPN NNP Number=Sing 37 poss _ SpaceAfter=No 36 's 's PART POS _ 35 case _ _ 37 machinery machinery NOUN NN Number=Sing 34 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # doc_id = 69 # sent_id = 1 # text = We give an abstract characterization of categories which are localizations of Maltsev varieties. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 4 abstract abstract ADJ JJ Degree=Pos 5 amod _ _ 5 characterization characterization NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 categories category NOUN NNS Number=Plur 6 pobj _ _ 8 which which PRON WDT _ 9 nsubj _ _ 9 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 relcl _ _ 10 localizations localization NOUN NNS Number=Plur 9 attr _ _ 11 of of ADP IN _ 10 prep _ _ 12 Maltsev Maltsev PROPN NNP Number=Sing 13 compound _ _ 13 varieties variety NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = These results can be applied to characterize localizations of naturally Maltsev varieties. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 results result NOUN NNS Number=Plur 5 nsubjpass _ _ 3 can can AUX MD VerbForm=Fin 5 aux _ _ 4 be be AUX VB VerbForm=Inf 5 auxpass _ _ 5 applied apply VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 to to PART TO _ 7 aux _ _ 7 characterize characterize VERB VB VerbForm=Inf 5 advcl _ _ 8 localizations localization NOUN NNS Number=Plur 7 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 naturally naturally ADV RB _ 11 advmod _ _ 11 Maltsev Maltsev PROPN NNP Number=Sing 12 amod _ _ 12 varieties variety NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 70 # sent_id = 1 # text = Using the Chu - construction, we define a group algebra for topological Hausdorff groups. 1 Using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 advcl _ _ 2 the the DET DT Definite=Def|PronType=Art 5 det _ _ 3 Chu Chu PROPN NNP Number=Sing 5 compound _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 construction construction NOUN NN Number=Sing 1 dobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 8 punct _ _ 7 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 8 nsubj _ _ 8 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 group group NOUN NN Number=Sing 11 compound _ _ 11 algebra algebra NOUN NN Number=Sing 8 dobj _ _ 12 for for ADP IN _ 11 prep _ _ 13 topological topological ADJ JJ Degree=Pos 15 amod _ _ 14 Hausdorff Hausdorff PROPN NNP Number=Sing 15 compound _ _ 15 groups group NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 2 # text = Furthermore, for isometric, weakly continuous representations of a subgroup $ H $ of a Hausdorff group $ G $ induced representations are constructed. 1 Furthermore furthermore ADV RB _ 21 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 21 punct _ _ 3 for for ADP IN _ 21 prep _ _ 4 isometric isometric ADJ JJ Degree=Pos 8 amod _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 8 punct _ _ 6 weakly weakly ADJ JJ Degree=Pos 8 amod _ _ 7 continuous continuous ADJ JJ Degree=Pos 8 amod _ _ 8 representations representation NOUN NNS Number=Plur 21 nsubjpass _ _ 9 of of ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 subgroup subgroup NOUN NN Number=Sing 9 pobj _ _ 12 $ H $ $ h $ SYM $ _ 11 appos _ _ 13 of of ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 Hausdorff Hausdorff PROPN NNP Number=Sing 16 compound _ _ 16 group group NOUN NN Number=Sing 13 pobj _ _ 17 $ G $ $ g $ SYM $ _ 19 nmod _ _ 18 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 amod _ _ 19 representations representation NOUN NNS Number=Plur 9 pobj _ _ 20 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 21 auxpass _ _ 21 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 21 punct _ SpaceAfter=No # doc_id = 71 # sent_id = 1 # text = Exponentiable spaces are characterized in terms of convergence. 1 Exponentiable exponentiable ADJ JJ Degree=Pos 2 amod _ _ 2 spaces space NOUN NNS Number=Plur 4 nsubjpass _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 characterized characterize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 in in ADP IN _ 4 prep _ _ 6 terms term NOUN NNS Number=Plur 5 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 convergence convergence NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 9 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = More precisely, we prove that a relation $ R:{cal U}X rightharpoonup X $ between ultrafilters and elements of a set $ X $ is the convergence relation for a quasi - locally - compact (that is, exponentiable) topology on $ X $ if and only if the following conditions are satisfied: (i) $ id subseteq Rcirceta $ , (ii) $ Rcirc {cal U}R = Rcircmu $ where $ eta : X to {cal U}X $ and $ mu : {cal U}({cal U}X) to {cal U}X $ are the unit and the multiplication of the ultrafilter monad, and $ {cal U} : bi{Rel} to bi{Rel} $ extends the ultrafilter functor $ {cal U} : bi{Set} to bi{Set} $ to the category of sets and relations. $ ({cal U}, eta, mu) $ fails to be a monad on $ bi{Rel} $ only because $ eta $ is not a strict natural transformation. 1 More more ADV RBR Degree=Cmp 2 advmod _ _ 2 precisely precisely ADV RB _ 5 advmod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 that that SCONJ IN _ 18 mark _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 relation relation NOUN NN Number=Sing 18 nsubj _ _ 9 $ R:{cal U}X rightharpoonup X $ $ r:{cal u}x rightharpoonup x $ SYM $ _ 8 appos _ _ 10 between between ADP IN _ 8 prep _ _ 11 ultrafilters ultrafilter NOUN NNS Number=Plur 10 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 elements element NOUN NNS Number=Plur 11 conj _ _ 14 of of ADP IN _ 11 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 set set NOUN NN Number=Sing 17 amod _ _ 17 $ X $ $ x $ SYM $ _ 14 pobj _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 ccomp _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 convergence convergence NOUN NN Number=Sing 21 compound _ _ 21 relation relation NOUN NN Number=Sing 18 attr _ _ 22 for for ADP IN _ 21 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 24 quasi quasi ADJ JJ Degree=Pos 35 nmod _ _ 25 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 26 locally locally ADV RB _ 28 advmod _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 compact compact ADJ JJ Degree=Pos 24 amod _ _ 29 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 31 punct _ SpaceAfter=No 30 that that ADV RB _ 31 advmod _ _ 31 is is ADV RB _ 24 parataxis _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 35 punct _ _ 33 exponentiable exponentiable ADJ JJ Degree=Pos 35 amod _ SpaceAfter=No 34 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 35 punct _ _ 35 topology topology NOUN NN Number=Sing 22 pobj _ _ 36 on on ADP IN _ 35 prep _ _ 37 $ X $ $ x $ SYM $ _ 36 pobj _ _ 38 if if SCONJ IN _ 46 prep _ _ 39 and and CCONJ CC ConjType=Cmp 38 cc _ _ 40 only only ADV RB _ 45 advmod _ _ 41 if if SCONJ IN _ 45 mark _ _ 42 the the DET DT Definite=Def|PronType=Art 44 det _ _ 43 following follow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 44 amod _ _ 44 conditions condition NOUN NNS Number=Plur 45 nsubj _ _ 45 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 18 advcl _ _ 46 satisfied satisfied ADJ JJ Degree=Pos 45 acomp _ SpaceAfter=No 47 : : PUNCT : _ 46 punct _ _ 48 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 49 punct _ SpaceAfter=No 49 i i NOUN NN Case=Nom|Number=Sing|Person=1|PronType=Prs 61 nsubj _ SpaceAfter=No 50 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 49 punct _ _ 51 $ id subseteq Rcirceta $ $ id subseteq rcirceta $ SYM $ _ 49 appos _ _ 52 , , PUNCT , PunctType=Comm 49 punct _ _ 53 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 49 punct _ SpaceAfter=No 54 ii ii PROPN NNP Number=Sing 49 appos _ SpaceAfter=No 55 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 49 punct _ _ 56 $ Rcirc {cal U}R = Rcircmu $ $ rcirc {cal u}r = rcircmu $ SYM $ _ 49 appos _ _ 57 where where SCONJ WRB _ 58 advmod _ _ 58 $ eta : X to {cal U}X $ $ eta : x to {cal u}x $ SYM $ _ 49 relcl _ _ 59 and and CCONJ CC ConjType=Cmp 58 cc _ _ 60 $ mu : {cal U}({cal U}X) to {cal U}X $ $ mu : {cal u}({cal u}x) to {cal u}x $ SYM $ _ 58 conj _ _ 61 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 46 ccomp _ _ 62 the the DET DT Definite=Def|PronType=Art 63 det _ _ 63 unit unit NOUN NN Number=Sing 61 attr _ _ 64 and and CCONJ CC ConjType=Cmp 63 cc _ _ 65 the the DET DT Definite=Def|PronType=Art 66 det _ _ 66 multiplication multiplication NOUN NN Number=Sing 63 conj _ _ 67 of of ADP IN _ 66 prep _ _ 68 the the DET DT Definite=Def|PronType=Art 70 det _ _ 69 ultrafilter ultrafilter ADJ JJ Degree=Pos 70 compound _ _ 70 monad monad NOUN NNS Number=Plur 67 pobj _ SpaceAfter=No 71 , , PUNCT , PunctType=Comm 66 punct _ _ 72 and and CCONJ CC ConjType=Cmp 66 cc _ _ 73 $ {cal U} : bi{Rel} to bi{Rel} $ $ {cal u} : bi{rel} to bi{rel} $ SYM $ _ 74 nsubj _ _ 74 extends extend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 61 conj _ _ 75 the the DET DT Definite=Def|PronType=Art 77 det _ _ 76 ultrafilter ultrafilter NOUN NN Number=Sing 77 compound _ _ 77 functor functor NOUN NN Number=Sing 74 dobj _ _ 78 $ {cal U} : bi{Set} to bi{Set} $ $ {cal u} : bi{set} to bi{set} $ SYM $ _ 74 dep _ _ 79 to to ADP IN _ 74 prep _ _ 80 the the DET DT Definite=Def|PronType=Art 81 det _ _ 81 category category NOUN NN Number=Sing 79 pobj _ _ 82 of of ADP IN _ 81 prep _ _ 83 sets set NOUN NNS Number=Plur 82 pobj _ _ 84 and and CCONJ CC ConjType=Cmp 83 cc _ _ 85 relations relation NOUN NNS Number=Plur 83 conj _ SpaceAfter=No 86 . . PUNCT . PunctType=Peri 5 punct _ _ 87 $ ({cal U}, eta, mu) $ $ ({cal U}, eta, mu) $ PROPN NNP Number=Sing 88 nsubj _ _ 88 fails fail VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 ccomp _ _ 89 to to PART TO _ 90 aux _ _ 90 be be AUX VB VerbForm=Inf 88 xcomp _ _ 91 a a DET DT Definite=Ind|PronType=Art 92 det _ _ 92 monad monad NOUN NNS Number=Plur 90 attr _ _ 93 on on ADP IN _ 92 prep _ _ 94 $ bi{Rel} $ $ bi{rel} $ SYM $ _ 93 pobj _ _ 95 only only ADV RB _ 94 advmod _ _ 96 because because SCONJ IN _ 98 mark _ _ 97 $ eta $ $ eta $ SYM $ _ 98 nsubj _ _ 98 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 88 advcl _ _ 99 not not PART RB Polarity=Neg 98 neg _ _ 100 a a DET DT Definite=Ind|PronType=Art 103 det _ _ 101 strict strict ADJ JJ Degree=Pos 103 amod _ _ 102 natural natural ADJ JJ Degree=Pos 103 amod _ _ 103 transformation transformation NOUN NN Number=Sing 98 attr _ SpaceAfter=No 104 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = So, exponentiable spaces are the lax (with respect to the unit law) algebras for a lax monad on $ bi{Rel} $ . 1 So so ADV RB _ 5 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 5 punct _ _ 3 exponentiable exponentiable ADJ JJ Degree=Pos 4 amod _ _ 4 spaces space NOUN NNS Number=Plur 5 nsubj _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 lax lax ADJ JJ Degree=Pos 5 attr _ _ 8 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 7 punct _ SpaceAfter=No 9 with with ADP IN _ 7 prep _ _ 10 respect respect NOUN NN Number=Sing 9 pobj _ _ 11 to to ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 unit unit NOUN NN Number=Sing 14 compound _ _ 14 law law NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 15 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 7 punct _ _ 16 algebras algebra NOUN NNS Number=Plur 7 appos _ _ 17 for for ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 lax lax ADJ JJ Degree=Pos 20 amod _ _ 20 monad monad NOUN NNS Number=Plur 17 pobj _ _ 21 on on ADP IN _ 20 prep _ _ 22 $ bi{Rel} $ $ bi{rel} $ SYM $ _ 21 pobj _ _ 23 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = Strict algebras are exponentiable and $ T_1 $ spaces. 1 Strict strict ADJ JJ Degree=Pos 2 amod _ _ 2 algebras algebra NOUN NNS Number=Plur 3 nsubj _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 exponentiable exponentiable ADJ JJ Degree=Pos 3 acomp _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 $ T_1 $ $ t_1 $ SYM $ _ 7 nmod _ _ 7 spaces space NOUN NNS Number=Plur 4 conj _ SpaceAfter=No 8 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 72 # sent_id = 1 # text = We define distributive laws between pseudomonads in a Gray - category $ A $ , as the classical two triangles and the two pentagons but commuting only up to isomorphism. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 distributive distributive ADJ JJ Degree=Pos 4 amod _ _ 4 laws law NOUN NNS Number=Plur 2 dobj _ _ 5 between between ADP IN _ 4 prep _ _ 6 pseudomonads pseudomonad NOUN NNS Number=Plur 5 pobj _ _ 7 in in ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 9 Gray Gray PROPN NNP Number=Sing 11 compound _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 category category NOUN NN Number=Sing 12 compound _ _ 12 $ A $ $ a $ SYM $ _ 7 pobj _ _ 13 , , PUNCT , PunctType=Comm 2 punct _ _ 14 as as ADP IN _ 2 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 18 det _ _ 16 classical classical ADJ JJ Degree=Pos 18 amod _ _ 17 two two NUM CD NumType=Card 18 nummod _ _ 18 triangles triangle NOUN NNS Number=Plur 14 pobj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 two two NUM CD NumType=Card 22 nummod _ _ 22 pentagons pentagon NOUN NNS Number=Plur 18 conj _ _ 23 but but CCONJ CC ConjType=Cmp 2 cc _ _ 24 commuting commute VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 conj _ _ 25 only only ADV RB _ 26 advmod _ _ 26 up up ADP IN _ 24 prep _ _ 27 to to ADP IN _ 26 prep _ _ 28 isomorphism isomorphism NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = These isomorphisms must satisfy nine coherence conditions. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 isomorphisms isomorphism NOUN NNS Number=Plur 4 nsubj _ _ 3 must must AUX MD VerbForm=Fin 4 aux _ _ 4 satisfy satisfy VERB VB VerbForm=Inf 0 ROOT _ _ 5 nine nine NUM CD NumType=Card 7 nummod _ _ 6 coherence coherence NOUN NN Number=Sing 7 compound _ _ 7 conditions condition NOUN NNS Number=Plur 4 dobj _ SpaceAfter=No 8 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = We also define the gray - category $ PSM(A) $ of pseudomonads in $ A $ , and define a lifting to be a pseudomonad in $ PSM(A) $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 8 det _ _ 5 gray gray ADJ JJ Degree=Pos 7 amod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 category category NOUN NN Number=Sing 8 nmod _ _ 8 $ PSM(A) $ $ psm(a) $ SYM $ _ 3 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 pseudomonads pseudomonad NOUN NNS Number=Plur 9 pobj _ _ 11 in in ADP IN _ 8 prep _ _ 12 $ A $ $ a $ SYM $ _ 11 pobj _ _ 13 , , PUNCT , PunctType=Comm 3 punct _ _ 14 and and CCONJ CC ConjType=Cmp 3 cc _ _ 15 define define VERB VB VerbForm=Inf 3 conj _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 lifting lifting NOUN NN Number=Sing 15 dobj _ _ 18 to to PART TO _ 19 aux _ _ 19 be be AUX VB VerbForm=Inf 15 advcl _ _ 20 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 21 pseudomonad pseudomonad NOUN NNS Number=Plur 19 attr _ _ 22 in in ADP IN _ 21 prep _ _ 23 $ PSM(A) $ $ psm(a) $ SYM $ _ 22 pobj _ _ 24 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = We define what is a pseudomonad with compatible structure with respect to two given pseudomonads. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 what what PRON WP _ 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 pseudomonad pseudomonad NOUN NNS Number=Plur 4 attr _ _ 7 with with ADP IN _ 6 prep _ _ 8 compatible compatible ADJ JJ Degree=Pos 9 amod _ _ 9 structure structure NOUN NN Number=Sing 7 pobj _ _ 10 with with ADP IN _ 4 prep _ _ 11 respect respect NOUN NN Number=Sing 10 pobj _ _ 12 to to ADP IN _ 11 prep _ _ 13 two two NUM CD NumType=Card 15 nummod _ _ 14 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 amod _ _ 15 pseudomonads pseudomonad NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = We show how to obtain a pseudomonad with compatible structure from a distributive law, how to get a lifting from a pseudomonad with compatible structure, and how to obtain a distributive law from a lifting. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 how how SCONJ WRB _ 5 advmod _ _ 4 to to PART TO _ 5 aux _ _ 5 obtain obtain VERB VB VerbForm=Inf 2 xcomp _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 pseudomonad pseudomonad NOUN NNS Number=Plur 5 dobj _ _ 8 with with ADP IN _ 5 prep _ _ 9 compatible compatible ADJ JJ Degree=Pos 10 amod _ _ 10 structure structure NOUN NN Number=Sing 8 pobj _ _ 11 from from ADP IN _ 5 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 distributive distributive ADJ JJ Degree=Pos 14 amod _ _ 14 law law NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 5 punct _ _ 16 how how SCONJ WRB _ 18 advmod _ _ 17 to to PART TO _ 18 aux _ _ 18 get get VERB VB VerbForm=Inf 5 conj _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 lifting lifting NOUN NN Number=Sing 18 dobj _ _ 21 from from ADP IN _ 18 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 23 pseudomonad pseudomonad NOUN NNS Number=Plur 21 pobj _ _ 24 with with ADP IN _ 23 prep _ _ 25 compatible compatible ADJ JJ Degree=Pos 26 amod _ _ 26 structure structure NOUN NN Number=Sing 24 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 18 punct _ _ 28 and and CCONJ CC ConjType=Cmp 18 cc _ _ 29 how how SCONJ WRB _ 31 advmod _ _ 30 to to PART TO _ 31 aux _ _ 31 obtain obtain VERB VB VerbForm=Inf 18 conj _ _ 32 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 33 distributive distributive ADJ JJ Degree=Pos 34 amod _ _ 34 law law NOUN NN Number=Sing 31 dobj _ _ 35 from from ADP IN _ 31 prep _ _ 36 a a DET DT Definite=Ind|PronType=Art 37 det _ _ 37 lifting lifting NOUN NN Number=Sing 35 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = We show that one triangle suffices to define a distributive law in case that one of the pseudomonads is a (co - )KZ - doctrine and the other a KZ - doctrine. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 6 mark _ _ 4 one one NUM CD NumType=Card 5 nummod _ _ 5 triangle triangle NOUN NN Number=Sing 6 nsubj _ _ 6 suffices suffice VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 7 to to PART TO _ 8 aux _ _ 8 define define VERB VB VerbForm=Inf 6 xcomp _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 distributive distributive ADJ JJ Degree=Pos 11 amod _ _ 11 law law NOUN NN Number=Sing 8 dobj _ _ 12 in in ADP IN _ 8 prep _ _ 13 case case NOUN NN Number=Sing 12 pobj _ _ 14 that that SCONJ IN _ 19 mark _ _ 15 one one NUM CD NumType=Card 19 nsubj _ _ 16 of of ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 pseudomonads pseudomonad NOUN NNS Number=Plur 16 pobj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 acl _ _ 20 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 21 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 27 punct _ SpaceAfter=No 22 co co NOUN NN Number=Sing 27 compound _ _ 23 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 24 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 27 punct _ SpaceAfter=No 25 KZ KZ PROPN NNP Number=Sing 27 compound _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 doctrine doctrine PROPN NNP Number=Sing 19 attr _ _ 28 and and CCONJ CC ConjType=Cmp 27 cc _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 other other ADJ JJ Degree=Pos 27 conj _ _ 31 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 32 KZ KZ PROPN NNP Number=Sing 34 compound _ _ 33 - - PUNCT HYPH PunctType=Dash 34 punct _ _ 34 doctrine doctrine NOUN NN Number=Sing 27 appos _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 73 # sent_id = 1 # text = The main result is that two possible structures which may be imposed on an edge symmetric double category, namely a connection pair and a thin structure, are equivalent. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 result result NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 29 mark _ _ 6 two two NUM CD NumType=Card 8 nummod _ _ 7 possible possible ADJ JJ Degree=Pos 8 amod _ _ 8 structures structure NOUN NNS Number=Plur 29 nsubj _ _ 9 which which PRON WDT _ 12 nsubjpass _ _ 10 may may AUX MD VerbForm=Fin 12 aux _ _ 11 be be AUX VB VerbForm=Inf 12 auxpass _ _ 12 imposed impose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 relcl _ _ 13 on on ADP IN _ 12 prep _ _ 14 an an DET DT Definite=Ind|PronType=Art 18 det _ _ 15 edge edge NOUN NN Number=Sing 18 nmod _ _ 16 symmetric symmetric ADJ JJ Degree=Pos 18 amod _ _ 17 double double ADJ JJ Degree=Pos 18 amod _ _ 18 category category NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 namely namely ADV RB _ 23 advmod _ _ 21 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 22 connection connection NOUN NN Number=Sing 23 compound _ _ 23 pair pair NOUN NN Number=Sing 18 appos _ _ 24 and and CCONJ CC ConjType=Cmp 23 cc _ _ 25 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 26 thin thin ADJ JJ Degree=Pos 27 amod _ _ 27 structure structure NOUN NN Number=Sing 23 conj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 8 punct _ _ 29 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 30 equivalent equivalent ADJ JJ Degree=Pos 29 acomp _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = A full proof is also given of the theorem of Spencer, that the category of small 2 - categories is equivalent to the category of edge symmetric double categories with thin structure. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 full full ADJ JJ Degree=Pos 3 amod _ _ 3 proof proof NOUN NN Number=Sing 6 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 5 also also ADV RB _ 6 advmod _ _ 6 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 theorem theorem NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 Spencer Spencer PROPN NNP Number=Sing 10 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 9 punct _ _ 13 that that SCONJ IN _ 21 mark _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 category category NOUN NN Number=Sing 21 nsubj _ _ 16 of of ADP IN _ 15 prep _ _ 17 small small ADJ JJ Degree=Pos 20 amod _ _ 18 2 2 NUM CD NumType=Card 20 nummod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 categories category NOUN NNS Number=Plur 16 pobj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 22 equivalent equivalent ADJ JJ Degree=Pos 21 acomp _ _ 23 to to ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 category category NOUN NN Number=Sing 23 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 edge edge NOUN NN Number=Sing 26 pobj _ _ 28 symmetric symmetric ADJ JJ Degree=Pos 30 amod _ _ 29 double double ADJ JJ Degree=Pos 30 amod _ _ 30 categories category NOUN NNS Number=Plur 25 appos _ _ 31 with with ADP IN _ 30 prep _ _ 32 thin thin ADJ JJ Degree=Pos 33 amod _ _ 33 structure structure NOUN NN Number=Sing 31 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 74 # sent_id = 1 # text = All the useful categories in the study of the mixed abelian groups (for example, Warf and Walk) ignore the torsion. 1 All all DET PDT _ 4 predet _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 useful useful ADJ JJ Degree=Pos 4 amod _ _ 4 categories category NOUN NNS Number=Plur 21 nsubj _ _ 5 in in ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 study study NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 12 det _ _ 10 mixed mixed ADJ JJ Degree=Pos 11 amod _ _ 11 abelian abelian ADJ JJ Degree=Pos 12 compound _ _ 12 groups group NOUN NNS Number=Plur 8 pobj _ _ 13 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 12 punct _ SpaceAfter=No 14 for for ADP IN _ 4 prep _ _ 15 example example NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 4 punct _ _ 17 Warf Warf PROPN NNP Number=Sing 4 appos _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 Walk Walk PROPN NNP Number=Sing 17 conj _ SpaceAfter=No 20 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 4 punct _ _ 21 ignore ignore VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 torsion torsion NOUN NN Number=Sing 21 dobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 21 punct _ SpaceAfter=No # sent_id = 2 # text = We introduce a new category denoted $ {cal A} $ which ignores the torsion - freeness and could characterize some classes of nonsplitting mixed groups with the aid of {bf Walk.} 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 new new ADJ JJ Degree=Pos 5 amod _ _ 5 category category NOUN NN Number=Sing 2 dobj _ _ 6 denoted denote VERB VBD Tense=Past|VerbForm=Fin 5 acl _ _ 7 $ {cal A} $ $ {cal a} $ SYM $ _ 6 dobj _ _ 8 which which PRON WDT _ 9 nsubj _ _ 9 ignores ignore VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 relcl _ _ 10 the the DET DT Definite=Def|PronType=Art 13 det _ _ 11 torsion torsion NOUN NN Number=Sing 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 freeness freeness NOUN NN Number=Sing 9 dobj _ _ 14 and and CCONJ CC ConjType=Cmp 9 cc _ _ 15 could could AUX MD VerbForm=Fin 16 aux _ _ 16 characterize characterize VERB VB VerbForm=Inf 9 conj _ _ 17 some some DET DT _ 18 det _ _ 18 classes class NOUN NNS Number=Plur 16 dobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 nonsplitting nonsplitte VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 amod _ _ 21 mixed mixed ADJ JJ Degree=Pos 22 amod _ _ 22 groups group NOUN NNS Number=Plur 19 pobj _ _ 23 with with ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 aid aid NOUN NN Number=Sing 23 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 { { PUNCT -LRB- PunctSide=Ini|PunctType=Brck 26 punct _ SpaceAfter=No 28 bf bf NOUN NN Number=Sing 29 compound _ _ 29 Walk Walk PROPN NNP Number=Sing 26 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No 31 } } PUNCT -RRB- PunctSide=Fin|PunctType=Brck 6 punct _ SpaceAfter=No # doc_id = 75 # sent_id = 1 # text = A new description of the exact completion $ cal C_{ex/reg} $ of a regular category $ cal C $ is given, using a certain topos $ Shv(cal C) $ of sheaves on $ cal C $ ; the exact completion is then constructed as the closure of $ cal C $ in $ Shv(cal C) $ under finite limits and coequalizers of equivalence relations. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 new new ADJ JJ Degree=Pos 3 amod _ _ 3 description description NOUN NN Number=Sing 32 dep _ _ 4 of of ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 exact exact ADJ JJ Degree=Pos 7 amod _ _ 7 completion completion NOUN NN Number=Sing 4 pobj _ _ 8 $ cal C_{ex/reg} $ $ cal c_{ex/reg} $ SYM $ _ 15 nsubjpass _ _ 9 of of ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 regular regular ADJ JJ Degree=Pos 12 amod _ _ 12 category category NOUN NN Number=Sing 9 pobj _ _ 13 $ cal C $ $ cal c $ SYM $ _ 8 appos _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 auxpass _ _ 15 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 relcl _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 3 punct _ _ 17 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 acl _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 certain certain ADJ JJ Degree=Pos 20 amod _ _ 20 topos topos NOUN NN Number=Sing 17 dobj _ _ 21 $ Shv(cal C) $ $ shv(cal c) $ SYM $ _ 20 appos _ _ 22 of of ADP IN _ 21 prep _ _ 23 sheaves sheaf NOUN NNS Number=Plur 22 pobj _ _ 24 on on ADP IN _ 23 prep _ _ 25 $ cal C $ $ cal c $ SYM $ _ 24 pobj _ _ 26 ; ; PUNCT : _ 32 punct _ _ 27 the the DET DT Definite=Def|PronType=Art 29 det _ _ 28 exact exact ADJ JJ Degree=Pos 29 amod _ _ 29 completion completion NOUN NN Number=Sing 32 nsubjpass _ _ 30 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 32 auxpass _ _ 31 then then ADV RB PronType=Dem 32 advmod _ _ 32 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 33 as as ADP IN _ 32 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 35 det _ _ 35 closure closure NOUN NN Number=Sing 33 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 $ cal C $ $ cal c $ SYM $ _ 36 pobj _ _ 38 in in ADP IN _ 35 prep _ _ 39 $ Shv(cal C) $ $ shv(cal c) $ SYM $ _ 38 pobj _ _ 40 under under ADP IN _ 32 prep _ _ 41 finite finite ADJ JJ Degree=Pos 42 compound _ _ 42 limits limit NOUN NNS Number=Plur 40 pobj _ _ 43 and and CCONJ CC ConjType=Cmp 42 cc _ _ 44 coequalizers coequalizer NOUN NNS Number=Plur 42 conj _ _ 45 of of ADP IN _ 42 prep _ _ 46 equivalence equivalence NOUN NN Number=Sing 47 compound _ _ 47 relations relation NOUN NNS Number=Plur 45 pobj _ SpaceAfter=No 48 . . PUNCT . PunctType=Peri 32 punct _ SpaceAfter=No # sent_id = 2 # text = An infinitary generalization is proved, and the classical description of the exact completion is derived. 1 An an DET DT Definite=Ind|PronType=Art 3 det _ _ 2 infinitary infinitary ADJ JJ Degree=Pos 3 amod _ _ 3 generalization generalization NOUN NN Number=Sing 5 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 and and CCONJ CC ConjType=Cmp 5 cc _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 classical classical ADJ JJ Degree=Pos 10 amod _ _ 10 description description NOUN NN Number=Sing 16 nsubjpass _ _ 11 of of ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 exact exact ADJ JJ Degree=Pos 14 amod _ _ 14 completion completion NOUN NN Number=Sing 11 pobj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 auxpass _ _ 16 derived derive VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 conj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # doc_id = 76 # sent_id = 1 # text = The class of functors known as discrete Conduché fibrations forms a common generalization of discrete fibrations and discrete opfibrations, and shares many of the formal properties of these two classes. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 class class NOUN NN Number=Sing 9 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 functors functor NOUN NNS Number=Plur 3 pobj _ _ 5 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 acl _ _ 6 as as ADP IN _ 5 prep _ _ 7 discrete discrete ADJ JJ Degree=Pos 8 compound _ _ 8 Conduché Conduché PROPN NNP Number=Sing 6 pobj _ _ 9 fibrations fibration NOUN NNS Number=Plur 10 nsubj _ _ 10 forms form VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 common common ADJ JJ Degree=Pos 13 amod _ _ 13 generalization generalization NOUN NN Number=Sing 10 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 discrete discrete ADJ JJ Degree=Pos 16 amod _ _ 16 fibrations fibration NOUN NNS Number=Plur 14 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 discrete discrete ADJ JJ Degree=Pos 19 amod _ _ 19 opfibrations opfibration NOUN NNS Number=Plur 16 conj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 10 punct _ _ 21 and and CCONJ CC ConjType=Cmp 10 cc _ _ 22 shares share VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 conj _ _ 23 many many ADJ JJ Degree=Pos 22 dobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 27 det _ _ 26 formal formal ADJ JJ Degree=Pos 27 amod _ _ 27 properties property NOUN NNS Number=Plur 24 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 these these DET DT Number=Plur|PronType=Dem 31 det _ _ 30 two two NUM CD NumType=Card 31 nummod _ _ 31 classes class NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = F. Lamarche conjectured that, for any small category $ cal B $ , the category $ {bf DCF}/{cal B} $ of discrete Conduché fibrations over $ cal B $ should be a topos. 1 F. F. PROPN NNP Number=Sing 2 compound _ _ 2 Lamarche Lamarche PROPN NNP Number=Sing 3 nsubj _ _ 3 conjectured conjecture VERB VBD Tense=Past|VerbForm=Fin 22 ccomp _ _ 4 that that PRON DT Number=Sing|PronType=Dem 3 dobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 18 punct _ _ 6 for for ADP IN _ 18 prep _ _ 7 any any DET DT _ 9 det _ _ 8 small small ADJ JJ Degree=Pos 9 amod _ _ 9 category category NOUN NN Number=Sing 6 pobj _ _ 10 $ cal B $ $ cal b $ SYM $ _ 9 nummod _ _ 11 , , PUNCT , PunctType=Comm 18 punct _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 category category NOUN NN Number=Sing 18 nsubj _ _ 14 $ {bf DCF}/{cal B} $ $ {bf dcf}/{cal b} $ SYM $ _ 13 appos _ _ 15 of of ADP IN _ 14 prep _ _ 16 discrete discrete ADJ JJ Degree=Pos 17 amod _ _ 17 Conduché Conduché PROPN NNP Number=Sing 15 pobj _ _ 18 fibrations fibration NOUN NNS Number=Plur 22 nsubj _ _ 19 over over ADP IN _ 18 prep _ _ 20 $ cal B $ $ cal b $ SYM $ _ 22 nsubj _ _ 21 should should AUX MD VerbForm=Fin 22 aux _ _ 22 be be AUX VB VerbForm=Inf 0 ROOT _ _ 23 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 24 topos topos NOUN NN Number=Sing 22 attr _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 22 punct _ SpaceAfter=No # sent_id = 3 # text = In this note we show that, although for suitable categories $ cal B $ the discrete Conduch&eacute fibrations over $ cal B $ may be presented as the `sheaves' for a family of coverings on a category $ {cal B}_{tw} $ constructed from $ cal B $ , they are in general very far from forming a topos. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 note note NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 that that SCONJ IN _ 21 mark _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 21 punct _ _ 8 although although SCONJ IN _ 16 mark _ _ 9 for for ADP IN _ 16 prep _ _ 10 suitable suitable ADJ JJ Degree=Pos 11 amod _ _ 11 categories category NOUN NNS Number=Plur 9 pobj _ _ 12 $ cal B $ $ cal b $ SYM $ _ 15 predet _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 discrete discrete ADJ JJ Degree=Pos 15 amod _ _ 15 Conduch&eacute Conduch&eacute PROPN NNP Number=Sing 16 nsubj _ _ 16 fibrations fibration VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 21 nsubjpass _ _ 17 over over ADP IN _ 16 prep _ _ 18 $ cal B $ $ cal b $ SYM $ _ 21 nsubjpass _ _ 19 may may AUX MD VerbForm=Fin 21 aux _ _ 20 be be AUX VB VerbForm=Inf 21 auxpass _ _ 21 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 ccomp _ _ 22 as as ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 25 punct _ SpaceAfter=No 25 sheaves sheaf NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 26 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 25 punct _ _ 27 for for ADP IN _ 25 prep _ _ 28 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 29 family family NOUN NN Number=Sing 27 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 coverings covering NOUN NNS Number=Plur 30 pobj _ _ 32 on on ADP IN _ 21 prep _ _ 33 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 34 category category NOUN NN Number=Sing 32 pobj _ _ 35 $ {cal B}_{tw} $ $ {cal b}_{tw} $ NOUN NN Number=Sing 34 appos _ _ 36 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 34 acl _ _ 37 from from ADP IN _ 36 prep _ _ 38 $ cal B $ $ cal b $ SYM $ _ 37 pobj _ _ 39 , , PUNCT , PunctType=Comm 41 punct _ _ 40 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 41 nsubj _ _ 41 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 ccomp _ _ 42 in in ADP IN _ 41 prep _ _ 43 general general ADJ JJ Degree=Pos 42 amod _ _ 44 very very ADV RB _ 45 advmod _ _ 45 far far ADV RB _ 41 advmod _ _ 46 from from ADP IN _ 45 prep _ _ 47 forming form VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 46 pcomp _ _ 48 a a DET DT Definite=Ind|PronType=Art 49 det _ _ 49 topos topos NOUN NN Number=Sing 47 dobj _ SpaceAfter=No 50 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 77 # sent_id = 1 # text = In this paper I extend Gray's tensor product of 2 - categories to a new tensor product of Gray - categories. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 I I PRON PRP Case=Nom|Number=Sing|Person=1|PronType=Prs 5 nsubj _ _ 5 extend extend VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 Gray Gray PROPN NNP Number=Sing 9 poss _ SpaceAfter=No 7 's 's PART POS _ 6 case _ _ 8 tensor tensor NOUN NN Number=Sing 9 compound _ _ 9 product product NOUN NN Number=Sing 5 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 2 2 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 categories category NOUN NNS Number=Plur 10 pobj _ _ 14 to to ADP IN _ 5 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 16 new new ADJ JJ Degree=Pos 18 amod _ _ 17 tensor tensor NOUN NN Number=Sing 18 compound _ _ 18 product product NOUN NN Number=Sing 14 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 Gray Gray PROPN NNP Number=Sing 22 compound _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 categories category NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = I give a description in terms of generators and relations, one of the relations being an ``interchange'' relation, and a description similar to Gray's description of his tensor product of 2 - categories. 1 I I PRON PRP Case=Nom|Number=Sing|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 description description NOUN NN Number=Sing 2 dobj _ _ 5 in in ADP IN _ 2 prep _ _ 6 terms term NOUN NNS Number=Plur 5 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 generators generator NOUN NNS Number=Plur 7 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 relations relation NOUN NNS Number=Plur 8 conj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 2 punct _ _ 12 one one NUM CD NumType=Card 16 nsubj _ _ 13 of of ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 relations relation NOUN NNS Number=Plur 13 pobj _ _ 16 being be AUX VBG VerbForm=Ger 2 advcl _ _ 17 an an DET DT Definite=Ind|PronType=Art 22 det _ _ 18 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 22 punct _ SpaceAfter=No 19 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 22 punct _ SpaceAfter=No 20 interchange interchange ADJ JJ Degree=Pos 22 amod _ SpaceAfter=No 21 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 22 punct _ _ 22 relation relation NOUN NN Number=Sing 16 attr _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 and and CCONJ CC ConjType=Cmp 22 cc _ _ 25 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 26 description description NOUN NN Number=Sing 22 conj _ _ 27 similar similar ADJ JJ Degree=Pos 26 amod _ _ 28 to to ADP IN _ 27 prep _ _ 29 Gray Gray PROPN NNP Number=Sing 31 poss _ SpaceAfter=No 30 's 's PART POS _ 29 case _ _ 31 description description NOUN NN Number=Sing 28 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 his his PRON PRP$ Gender=Masc|Number=Sing|Person=3|Poss=Yes|PronType=Prs 35 poss _ _ 34 tensor tensor NOUN NN Number=Sing 35 compound _ _ 35 product product NOUN NN Number=Sing 32 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 2 2 NUM CD NumType=Card 39 nummod _ _ 38 - - PUNCT HYPH PunctType=Dash 39 punct _ _ 39 categories category NOUN NNS Number=Plur 36 pobj _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = I show that this tensor product of Gray - categories satisfies a universal property with respect to quasi - functors of two variables, which are defined in terms of lax - natural transformations between Gray - categories. 1 I I PRON PRP Case=Nom|Number=Sing|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 11 mark _ _ 4 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 5 tensor tensor NOUN NN Number=Sing 6 compound _ _ 6 product product NOUN NN Number=Sing 11 nsubj _ _ 7 of of ADP IN _ 6 prep _ _ 8 Gray Gray PROPN NNP Number=Sing 10 compound _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 categories category NOUN NNS Number=Plur 7 pobj _ _ 11 satisfies satisfy VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 universal universal ADJ JJ Degree=Pos 14 amod _ _ 14 property property NOUN NN Number=Sing 11 dobj _ _ 15 with with ADP IN _ 14 prep _ _ 16 respect respect NOUN NN Number=Sing 15 pobj _ _ 17 to to ADP IN _ 16 prep _ _ 18 quasi quasi NOUN NNS Number=Plur 17 pobj _ _ 19 - - NOUN NNS Number=Plur 17 pobj _ _ 20 functors functor NOUN NNS Number=Plur 17 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 two two NUM CD NumType=Card 23 nummod _ _ 23 variables variable NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 23 punct _ _ 25 which which PRON WDT _ 27 nsubjpass _ _ 26 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 27 auxpass _ _ 27 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 relcl _ _ 28 in in ADP IN _ 27 prep _ _ 29 terms term NOUN NNS Number=Plur 28 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 lax lax ADJ JJ Degree=Pos 33 amod _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 natural natural ADJ JJ Degree=Pos 34 amod _ _ 34 transformations transformation NOUN NNS Number=Plur 30 pobj _ _ 35 between between ADP IN _ 34 prep _ _ 36 Gray Gray PROPN NNP Number=Sing 38 compound _ _ 37 - - PUNCT HYPH PunctType=Dash 38 punct _ _ 38 categories category NOUN NNS Number=Plur 35 pobj _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = The main result is that this tensor product is part of a monoidal structure on $ Gray - Cat $ , the proof requiring interchange in an essential way. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 result result NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 9 mark _ _ 6 this this DET DT Number=Sing|PronType=Dem 8 det _ _ 7 tensor tensor NOUN NN Number=Sing 8 compound _ _ 8 product product NOUN NN Number=Sing 9 nsubj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 10 part part NOUN NN Number=Sing 9 attr _ _ 11 of of ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 monoidal monoidal ADJ JJ Degree=Pos 14 amod _ _ 14 structure structure NOUN NN Number=Sing 11 pobj _ _ 15 on on ADP IN _ 14 prep _ _ 16 $ Gray - Cat $ $ gray - cat $ SYM $ _ 15 pobj _ _ 17 , , PUNCT , PunctType=Comm 9 punct _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 proof proof NOUN NN Number=Sing 9 attr _ _ 20 requiring require VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 19 acl _ _ 21 interchange interchange NOUN NN Number=Sing 20 dobj _ _ 22 in in ADP IN _ 20 prep _ _ 23 an an DET DT Definite=Ind|PronType=Art 25 det _ _ 24 essential essential ADJ JJ Degree=Pos 25 amod _ _ 25 way way NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = However, this does not give a monoidal (bi)closed structure, precisely because of interchange. 1 However however ADV RB _ 6 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 6 punct _ _ 3 this this PRON DT Number=Sing|PronType=Dem 6 nsubj _ _ 4 does do AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 aux _ _ 5 not not PART RB Polarity=Neg 6 neg _ _ 6 give give VERB VB VerbForm=Inf 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 monoidal monoidal NOUN NN Number=Sing 6 dobj _ _ 9 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 11 punct _ SpaceAfter=No 10 bi)closed bi)closed ADJ JJ Degree=Pos 11 amod _ _ 11 structure structure NOUN NN Number=Sing 8 appos _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 6 punct _ _ 13 precisely precisely ADV RB _ 14 advmod _ _ 14 because because SCONJ IN _ 6 prep _ _ 15 of of ADP IN _ 14 pcomp _ _ 16 interchange interchange NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 6 # text = And although I define composition of lax - natural transformations, this composite need not be a lax - natural transformation again, making $ Gray - Cat $ only a partial $ Gray - Catotimes - CATegory $ . 1 And and CCONJ CC ConjType=Cmp 16 cc _ _ 2 although although SCONJ IN _ 4 mark _ _ 3 I I PRON PRP Case=Nom|Number=Sing|Person=1|PronType=Prs 4 nsubj _ _ 4 define define VERB VBP Tense=Pres|VerbForm=Fin 16 advcl _ _ 5 composition composition NOUN NN Number=Sing 4 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 lax lax ADJ JJ Degree=Pos 9 amod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 natural natural ADJ JJ Degree=Pos 10 amod _ _ 10 transformations transformation NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 16 punct _ _ 12 this this DET DT Number=Sing|PronType=Dem 14 det _ _ 13 composite composite ADJ JJ Degree=Pos 14 amod _ _ 14 need need AUX NN Number=Sing 16 aux _ _ 15 not not PART RB Polarity=Neg 16 neg _ _ 16 be be AUX VB VerbForm=Inf 0 ROOT _ _ 17 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 18 lax lax ADJ JJ Degree=Pos 20 amod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 natural natural ADJ JJ Degree=Pos 21 amod _ _ 21 transformation transformation NOUN NN Number=Sing 16 attr _ _ 22 again again ADV RB _ 16 advmod _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 16 punct _ _ 24 making make VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 advcl _ _ 25 $ Gray - Cat $ $ gray - cat $ SYM $ _ 24 ccomp _ _ 26 only only ADV RB _ 29 advmod _ _ 27 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 28 partial partial ADJ JJ Degree=Pos 29 amod _ _ 29 $ Gray - Catotimes - CATegory $ $ gray - catotimes - category $ SYM $ _ 24 ccomp _ _ 30 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # doc_id = 78 # sent_id = 1 # text = In this paper certain proof - theoretic techniques of [BCST] are applied to non - symmetric linearly distributive categories, corresponding to non - commutative negation - free multiplicative linear logic (mLL). 1 In in ADP IN _ 14 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 certain certain ADJ JJ Degree=Pos 8 amod _ _ 5 proof proof NOUN NN Number=Sing 7 npadvmod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 theoretic theoretic ADJ JJ Degree=Pos 8 amod _ _ 8 techniques technique NOUN NNS Number=Plur 14 nsubjpass _ _ 9 of of ADP IN _ 8 prep _ _ 10 [ [ X XX _ 9 pobj _ SpaceAfter=No 11 BCST bcst X XX _ 9 pobj _ SpaceAfter=No 12 ] ] PUNCT -RRB- PunctSide=Fin|PunctType=Brck 8 punct _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 applied apply VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 15 to to ADP IN _ 14 prep _ _ 16 non non ADJ JJ Degree=Pos 21 amod _ _ 17 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 18 symmetric symmetric ADJ JJ Degree=Pos 21 amod _ _ 19 linearly linearly ADV RB _ 20 advmod _ _ 20 distributive distributive ADJ JJ Degree=Pos 21 amod _ _ 21 categories category NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 14 punct _ _ 23 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 advcl _ _ 24 to to ADP IN _ 23 prep _ _ 25 non non ADJ JJ Degree=Pos 27 amod _ _ 26 - - ADJ JJ Degree=Pos 27 punct _ _ 27 commutative commutative ADJ JJ Degree=Pos 33 amod _ _ 28 negation negation NOUN NN Number=Sing 30 npadvmod _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 free free ADJ JJ Degree=Pos 33 amod _ _ 31 multiplicative multiplicative ADJ JJ Degree=Pos 33 amod _ _ 32 linear linear ADJ JJ Degree=Pos 33 amod _ _ 33 logic logic NOUN NN Number=Sing 24 pobj _ _ 34 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 33 punct _ SpaceAfter=No 35 mLL mLL PROPN NNP Number=Sing 33 npadvmod _ SpaceAfter=No 36 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 23 punct _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 2 # text = First, the correctness criterion for the two - sided proof nets developed in BCST is adjusted to work in the non - commutative setting. 1 First first ADV RB _ 17 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 17 punct _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 correctness correctness NOUN NN Number=Sing 5 compound _ _ 5 criterion criterion NOUN NN Number=Sing 17 nsubjpass _ _ 6 for for ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 12 det _ _ 8 two two NUM CD NumType=Card 10 advmod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 sided sided ADJ JJ Degree=Pos 12 amod _ _ 11 proof proof NOUN NN Number=Sing 12 compound _ _ 12 nets net NOUN NNS Number=Plur 6 pobj _ _ 13 developed develop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 acl _ _ 14 in in ADP IN _ 13 prep _ _ 15 BCST BCST PROPN NNP Number=Sing 14 pobj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 auxpass _ _ 17 adjusted adjust VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 18 to to ADP IN _ 17 prep _ _ 19 work work NOUN NN Number=Sing 18 pobj _ _ 20 in in ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 25 det _ _ 22 non non ADJ JJ Degree=Pos 24 amod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 commutative commutative ADJ JJ Degree=Pos 25 amod _ _ 25 setting setting NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 3 # text = Second, these proof nets are used to represent morphisms in a (non - symmetric) linearly distributive category; a notion of proof - net equivalence is developed which permits a considerable sharpening of the previous coherence results concerning these categories, including a decision procedure for the equality of maps when there is a certain restriction on the units. 1 Second second ADV RB _ 7 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 7 punct _ _ 3 these these DET DT Number=Plur|PronType=Dem 5 det _ _ 4 proof proof NOUN NN Number=Sing 5 compound _ _ 5 nets net NOUN NNS Number=Plur 7 nsubjpass _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 7 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 30 ccomp _ _ 8 to to PART TO _ 9 aux _ _ 9 represent represent VERB VB VerbForm=Inf 7 xcomp _ _ 10 morphisms morphism NOUN NNS Number=Plur 9 dobj _ _ 11 in in ADP IN _ 9 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 13 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 16 punct _ SpaceAfter=No 14 non non ADJ JJ Degree=Pos 16 amod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 symmetric symmetric ADJ JJ Degree=Pos 20 amod _ SpaceAfter=No 17 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 16 punct _ _ 18 linearly linearly ADV RB _ 19 advmod _ _ 19 distributive distributive ADJ JJ Degree=Pos 20 amod _ _ 20 category category NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 21 ; ; PUNCT : _ 30 punct _ _ 22 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 23 notion notion NOUN NN Number=Sing 30 nsubjpass _ _ 24 of of ADP IN _ 23 prep _ _ 25 proof proof NOUN NN Number=Sing 24 pobj _ _ 26 - - PUNCT : _ 30 punct _ _ 27 net net ADJ JJ Degree=Pos 28 amod _ _ 28 equivalence equivalence NOUN NN Number=Sing 30 nsubjpass _ _ 29 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 auxpass _ _ 30 developed develop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 31 which which PRON WDT _ 32 nsubj _ _ 32 permits permit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 ccomp _ _ 33 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 34 considerable considerable ADJ JJ Degree=Pos 35 amod _ _ 35 sharpening sharpening NOUN NN Number=Sing 32 dobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 the the DET DT Definite=Def|PronType=Art 40 det _ _ 38 previous previous ADJ JJ Degree=Pos 40 amod _ _ 39 coherence coherence NOUN NN Number=Sing 40 compound _ _ 40 results result NOUN NNS Number=Plur 36 pobj _ _ 41 concerning concern VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 40 acl _ _ 42 these these DET DT Number=Plur|PronType=Dem 43 det _ _ 43 categories category NOUN NNS Number=Plur 41 dobj _ SpaceAfter=No 44 , , PUNCT , PunctType=Comm 43 punct _ _ 45 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 43 prep _ _ 46 a a DET DT Definite=Ind|PronType=Art 48 det _ _ 47 decision decision NOUN NN Number=Sing 48 compound _ _ 48 procedure procedure NOUN NN Number=Sing 45 pobj _ _ 49 for for ADP IN _ 48 prep _ _ 50 the the DET DT Definite=Def|PronType=Art 51 det _ _ 51 equality equality NOUN NN Number=Sing 49 pobj _ _ 52 of of ADP IN _ 51 prep _ _ 53 maps map NOUN NNS Number=Plur 52 pobj _ _ 54 when when SCONJ WRB _ 56 advmod _ _ 55 there there PRON EX _ 56 expl _ _ 56 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 32 advcl _ _ 57 a a DET DT Definite=Ind|PronType=Art 59 det _ _ 58 certain certain ADJ JJ Degree=Pos 59 amod _ _ 59 restriction restriction NOUN NN Number=Sing 56 attr _ _ 60 on on ADP IN _ 59 prep _ _ 61 the the DET DT Definite=Def|PronType=Art 62 det _ _ 62 units unit NOUN NNS Number=Plur 60 pobj _ SpaceAfter=No 63 . . PUNCT . PunctType=Peri 30 punct _ SpaceAfter=No # sent_id = 4 # text = In particular a decision procedure is obtained for the equivalence of proofs in non - commutative negation - free multiplicative linear logic without non - logical axioms. 1 In in ADP IN _ 7 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 decision decision NOUN NN Number=Sing 5 compound _ _ 5 procedure procedure NOUN NN Number=Sing 7 nsubjpass _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 7 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 for for ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 equivalence equivalence NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 proofs proof NOUN NNS Number=Plur 11 pobj _ _ 13 in in ADP IN _ 10 prep _ _ 14 non non ADJ JJ Degree=Pos 16 amod _ _ 15 - - ADJ JJ Degree=Pos 16 punct _ _ 16 commutative commutative ADJ JJ Degree=Pos 22 amod _ _ 17 negation negation NOUN NN Number=Sing 19 npadvmod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 free free ADJ JJ Degree=Pos 22 amod _ _ 20 multiplicative multiplicative ADJ JJ Degree=Pos 22 amod _ _ 21 linear linear ADJ JJ Degree=Pos 22 amod _ _ 22 logic logic NOUN NN Number=Sing 13 pobj _ _ 23 without without ADP IN _ 10 prep _ _ 24 non non ADJ JJ Degree=Pos 26 amod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 logical logical ADJ JJ Degree=Pos 27 amod _ _ 27 axioms axiom NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # doc_id = 79 # sent_id = 1 # text = We characterize when the coequalizer and the exact completion of a category $ cal C $ with finite sums and weak finite limits coincide. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 when when SCONJ WRB _ 5 advmod _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 coequalizer coequalizer NOUN NN Number=Sing 2 advcl _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 exact exact ADJ JJ Degree=Pos 9 amod _ _ 9 completion completion NOUN NN Number=Sing 5 conj _ _ 10 of of ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 category category NOUN NN Number=Sing 10 pobj _ _ 13 $ cal C $ $ cal c $ SYM $ _ 12 appos _ _ 14 with with ADP IN _ 12 prep _ _ 15 finite finite ADJ JJ Degree=Pos 16 compound _ _ 16 sums sum NOUN NNS Number=Plur 14 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 weak weak ADJ JJ Degree=Pos 21 amod _ _ 19 finite finite ADJ JJ Degree=Pos 20 compound _ _ 20 limits limit NOUN NNS Number=Plur 21 compound _ _ 21 coincide coincide NOUN NN Number=Sing 16 conj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 80 # sent_id = 1 # text = A von Neumann regular extension of a semiprime ring naturally defines a epimorphic extension in the category of rings. 1 A a DET DT Definite=Ind|PronType=Art 5 det _ _ 2 von von PROPN NNP Number=Sing 3 nmod _ _ 3 Neumann Neumann PROPN NNP Number=Sing 5 nmod _ _ 4 regular regular ADJ JJ Degree=Pos 5 amod _ _ 5 extension extension NOUN NN Number=Sing 11 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 semiprime semiprime NOUN NN Number=Sing 9 compound _ _ 9 ring ring NOUN NN Number=Sing 6 pobj _ _ 10 naturally naturally ADV RB _ 11 advmod _ _ 11 defines define VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 epimorphic epimorphic ADJ JJ Degree=Pos 14 amod _ _ 14 extension extension NOUN NN Number=Sing 11 dobj _ _ 15 in in ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 category category NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 rings ring NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 2 # text = These are studied, and four natural examples are considered, two in commutative ring theory, and two in rings of continuous functions. 1 These these PRON DT Number=Plur|PronType=Dem 3 nsubjpass _ _ 2 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 studied study VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 3 punct _ _ 5 and and CCONJ CC ConjType=Cmp 3 cc _ _ 6 four four NUM CD NumType=Card 8 nummod _ _ 7 natural natural ADJ JJ Degree=Pos 8 amod _ _ 8 examples example NOUN NNS Number=Plur 10 nsubjpass _ _ 9 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 10 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 conj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 two two NUM CD NumType=Card 8 appos _ _ 13 in in ADP IN _ 12 prep _ _ 14 commutative commutative ADJ JJ Degree=Pos 16 amod _ _ 15 ring ring NOUN NN Number=Sing 16 compound _ _ 16 theory theory NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 12 punct _ _ 18 and and CCONJ CC ConjType=Cmp 12 cc _ _ 19 two two NUM CD NumType=Card 12 conj _ _ 20 in in ADP IN _ 19 prep _ _ 21 rings ring NOUN NNS Number=Plur 20 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 continuous continuous ADJ JJ Degree=Pos 24 amod _ _ 24 functions function NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # doc_id = 81 # sent_id = 1 # text = We define the notion of enriched Lawvere theory, for enrichment over a monoidal biclosed category $ V $ that is locally finitely presentable as a closed category. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 notion notion NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 enriched enriched ADJ JJ Degree=Pos 8 amod _ _ 7 Lawvere Lawvere PROPN NNP Number=Sing 8 compound _ _ 8 theory theory NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 2 punct _ _ 10 for for ADP IN _ 2 prep _ _ 11 enrichment enrichment NOUN NN Number=Sing 10 pobj _ _ 12 over over ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 14 monoidal monoidal ADJ JJ Degree=Pos 15 amod _ _ 15 biclosed biclose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 16 category category NOUN NN Number=Sing 12 pobj _ _ 17 $ V $ $ v $ SYM $ _ 16 appos _ _ 18 that that PRON WDT PronType=Rel 19 nsubj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 relcl _ _ 20 locally locally ADV RB _ 22 advmod _ _ 21 finitely finitely ADV RB _ 22 advmod _ _ 22 presentable presentable ADJ JJ Degree=Pos 19 acomp _ _ 23 as as ADP IN _ 22 prep _ _ 24 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 25 closed closed ADJ JJ Degree=Pos 26 amod _ _ 26 category category NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We prove that the category of enriched Lawvere theories is equivalent to the category of finitary monads on $ V $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 10 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 10 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 enriched enriched ADJ JJ Degree=Pos 9 amod _ _ 8 Lawvere Lawvere PROPN NNP Number=Sing 9 compound _ _ 9 theories theory NOUN NNS Number=Plur 6 pobj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 11 equivalent equivalent ADJ JJ Degree=Pos 10 acomp _ _ 12 to to ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 category category NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 finitary finitary ADJ JJ Degree=Pos 17 amod _ _ 17 monads monad NOUN NNS Number=Plur 15 pobj _ _ 18 on on ADP IN _ 17 prep _ _ 19 $ V $ $ v $ SYM $ _ 18 pobj _ _ 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Moreover, the $ V $ - category of models of a Lawvere $ V $ - theory is equivalent to the $ V $ - category of algebras for the corresponding $ V $ - monad. 1 Moreover moreover ADV RB _ 15 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 15 punct _ _ 3 the the DET DT Definite=Def|PronType=Art 6 det _ _ 4 $ V $ $ v $ SYM $ _ 6 nmod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 category category NOUN NN Number=Sing 15 nsubj _ _ 7 of of ADP IN _ 6 prep _ _ 8 models model NOUN NNS Number=Plur 7 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 11 Lawvere Lawvere PROPN NNP Number=Sing 14 nmod _ _ 12 $ V $ $ v $ SYM $ _ 14 compound _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 theory theory NOUN NN Number=Sing 9 pobj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 16 equivalent equivalent ADJ JJ Degree=Pos 15 acomp _ _ 17 to to ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 21 det _ _ 19 $ V $ $ v $ SYM $ _ 21 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 category category NOUN NN Number=Sing 17 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 algebras algebra NOUN NNS Number=Plur 22 pobj _ _ 24 for for ADP IN _ 21 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 29 det _ _ 26 corresponding corresponding ADJ JJ Degree=Pos 29 amod _ _ 27 $ V $ $ v $ SYM $ _ 29 compound _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 monad monad NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 4 # text = This all extends routinely to local presentability with respect to any regular cardinal. 1 This this PRON DT Number=Sing|PronType=Dem 3 nsubj _ _ 2 all all PRON DT _ 1 appos _ _ 3 extends extend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 routinely routinely ADV RB _ 3 advmod _ _ 5 to to ADP IN _ 3 prep _ _ 6 local local ADJ JJ Degree=Pos 7 amod _ _ 7 presentability presentability NOUN NN Number=Sing 5 pobj _ _ 8 with with ADP IN _ 7 prep _ _ 9 respect respect NOUN NN Number=Sing 8 pobj _ _ 10 to to ADP IN _ 9 prep _ _ 11 any any DET DT _ 13 det _ _ 12 regular regular ADJ JJ Degree=Pos 13 amod _ _ 13 cardinal cardinal NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = We finally consider the special case where $ V $ is $ Cat $ , and explain how the correspondence extends to pseudo maps of algebras. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 finally finally ADV RB _ 3 advmod _ _ 3 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 special special ADJ JJ Degree=Pos 6 amod _ _ 6 case case NOUN NN Number=Sing 3 dobj _ _ 7 where where SCONJ WRB _ 9 advmod _ _ 8 $ V $ $ v $ SYM $ _ 9 nsubj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 relcl _ _ 10 $ Cat $ $ cat $ SYM $ _ 9 attr _ _ 11 , , PUNCT , PunctType=Comm 9 punct _ _ 12 and and CCONJ CC ConjType=Cmp 9 cc _ _ 13 explain explain VERB VB VerbForm=Inf 9 conj _ _ 14 how how SCONJ WRB _ 17 advmod _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 correspondence correspondence NOUN NN Number=Sing 17 nsubj _ _ 17 extends extend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 ccomp _ _ 18 to to PART TO _ 19 aux _ _ 19 pseudo pseudo NOUN NN Number=Sing 17 xcomp _ _ 20 maps map NOUN NNS Number=Plur 19 dobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 algebras algebra NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 82 # sent_id = 1 # text = We characterize the numerical functions which arise as the cardinalities of contravariant functors on finite sets, as those which have a series expansion in terms of Stirling functions. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 numerical numerical PROPN NNP Number=Sing 5 compound _ _ 5 functions function NOUN NNS Number=Plur 2 dobj _ _ 6 which which PRON WDT _ 7 nsubj _ _ 7 arise arise VERB VBP Tense=Pres|VerbForm=Fin 5 relcl _ _ 8 as as ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 cardinalities cardinality NOUN NNS Number=Plur 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 contravariant contravariant ADJ JJ Degree=Pos 13 amod _ _ 13 functors functor NOUN NNS Number=Plur 11 pobj _ _ 14 on on ADP IN _ 13 prep _ _ 15 finite finite ADJ JJ Degree=Pos 16 compound _ _ 16 sets set NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 7 punct _ _ 18 as as ADP IN _ 7 prep _ _ 19 those those PRON DT Number=Plur|PronType=Dem 18 pobj _ _ 20 which which PRON WDT _ 21 nsubj _ _ 21 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 19 relcl _ _ 22 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 23 series series NOUN NN Number=Sing 24 compound _ _ 24 expansion expansion NOUN NN Number=Sing 21 dobj _ _ 25 in in ADP IN _ 24 prep _ _ 26 terms term NOUN NNS Number=Plur 25 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 Stirling Stirling PROPN NNP Number=Sing 29 compound _ _ 29 functions function NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We give a procedure for calculating the coefficients in such series and a concrete test for determining whether a function is of this type. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 procedure procedure NOUN NN Number=Sing 2 dobj _ _ 5 for for ADP IN _ 4 prep _ _ 6 calculating calculate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 pcomp _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 coefficients coefficient NOUN NNS Number=Plur 6 dobj _ _ 9 in in ADP IN _ 8 prep _ _ 10 such such ADJ JJ Degree=Pos 11 amod _ _ 11 series series NOUN NN Number=Sing 9 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 concrete concrete ADJ JJ Degree=Pos 15 amod _ _ 15 test test NOUN NN Number=Sing 11 conj _ _ 16 for for ADP IN _ 15 prep _ _ 17 determining determine VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 pcomp _ _ 18 whether whether SCONJ IN _ 21 mark _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 function function NOUN NN Number=Sing 21 nsubj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 ccomp _ _ 22 of of ADP IN _ 21 prep _ _ 23 this this DET DT Number=Sing|PronType=Dem 24 det _ _ 24 type type NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = A number of examples are considered. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 number number NOUN NN Number=Sing 6 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 examples example NOUN NNS Number=Plur 3 pobj _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 6 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 7 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 83 # sent_id = 1 # text = Uniqueness for higher type term constructors in lambda calculi (for example surjective pairing for product types, or uniqueness of iterators on the natural numbers) is easily expressed using universally quantified conditional equations. 1 Uniqueness uniqueness VERB VB VerbForm=Inf 30 nsubjpass _ _ 2 for for ADP IN _ 1 prep _ _ 3 higher high ADJ JJR Degree=Cmp 5 amod _ _ 4 type type NOUN NN Number=Sing 5 compound _ _ 5 term term NOUN NN Number=Sing 6 compound _ _ 6 constructors constructor NOUN NNS Number=Plur 2 pobj _ _ 7 in in ADP IN _ 6 prep _ _ 8 lambda lambda PROPN NNP Number=Sing 9 compound _ _ 9 calculi calculi PROPN NNP Number=Sing 7 pobj _ _ 10 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 1 punct _ SpaceAfter=No 11 for for ADP IN _ 1 prep _ _ 12 example example NOUN NN Number=Sing 11 pobj _ _ 13 surjective surjective ADJ JJ Degree=Pos 1 punct _ _ 14 pairing pair VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 1 advcl _ _ 15 for for ADP IN _ 14 prep _ _ 16 product product NOUN NN Number=Sing 17 compound _ _ 17 types type NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 14 punct _ _ 19 or or CCONJ CC ConjType=Cmp 14 cc _ _ 20 uniqueness uniqueness NOUN NN Number=Sing 14 conj _ _ 21 of of ADP IN _ 20 prep _ _ 22 iterators iterator NOUN NNS Number=Plur 21 pobj _ _ 23 on on ADP IN _ 20 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 26 det _ _ 25 natural natural ADJ JJ Degree=Pos 26 amod _ _ 26 numbers number NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 27 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 1 punct _ _ 28 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 auxpass _ _ 29 easily easily ADV RB _ 30 advmod _ _ 30 expressed express VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 31 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 30 xcomp _ _ 32 universally universally ADV RB _ 33 advmod _ _ 33 quantified quantify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 35 amod _ _ 34 conditional conditional ADJ JJ Degree=Pos 35 amod _ _ 35 equations equation NOUN NNS Number=Plur 31 dobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 30 punct _ SpaceAfter=No # sent_id = 2 # text = We use a technique of Lambek involving Maltsev operators to equationally express uniqueness of iteration (more generally, higher - order primitive recursion) in a simply typed lambda calculus, essentially Godel's $ T $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 technique technique NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 Lambek Lambek PROPN NNP Number=Sing 5 pobj _ _ 7 involving involve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 acl _ _ 8 Maltsev Maltsev PROPN NNP Number=Sing 9 compound _ _ 9 operators operator NOUN NNS Number=Plur 7 dobj _ _ 10 to to PART TO _ 12 aux _ _ 11 equationally equationally ADV RB _ 12 advmod _ _ 12 express express VERB VB VerbForm=Inf 2 xcomp _ _ 13 uniqueness uniqueness NOUN NN Number=Sing 12 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 iteration iteration NOUN NN Number=Sing 14 pobj _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 22 punct _ SpaceAfter=No 17 more more ADV RBR Degree=Cmp 18 advmod _ _ 18 generally generally ADV RB _ 22 advmod _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 22 punct _ _ 20 higher high ADJ JJR Degree=Cmp 22 amod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 order order NOUN NN Number=Sing 24 nmod _ _ 23 primitive primitive ADJ JJ Degree=Pos 24 amod _ _ 24 recursion recursion NOUN NN Number=Sing 15 appos _ SpaceAfter=No 25 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 12 punct _ _ 26 in in ADP IN _ 12 prep _ _ 27 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 28 simply simply ADV RB _ 29 advmod _ _ 29 typed type VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 31 amod _ _ 30 lambda lambda PROPN NNP Number=Sing 31 compound _ _ 31 calculus calculus NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 31 punct _ _ 33 essentially essentially ADV RB _ 36 advmod _ _ 34 Godel Godel PROPN NNP Number=Sing 36 poss _ SpaceAfter=No 35 's 's PART POS _ 34 case _ _ 36 $ T $ $ t $ SYM $ _ 31 appos _ _ 37 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We prove the following facts about typed lambda calculus with uniqueness for primitive recursors: (i) It is undecidable, (ii) Church - Rosser fails, although ground Church - Rosser holds, (iii) strong normalization (termination) is still valid. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 following follow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 amod _ _ 5 facts fact NOUN NNS Number=Plur 2 dobj _ _ 6 about about ADP IN _ 5 prep _ _ 7 typed type VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 amod _ _ 8 lambda lambda PROPN NNP Number=Sing 9 compound _ _ 9 calculus calculus NOUN NN Number=Sing 6 pobj _ _ 10 with with ADP IN _ 5 prep _ _ 11 uniqueness uniqueness NOUN NN Number=Sing 10 pobj _ _ 12 for for ADP IN _ 11 prep _ _ 13 primitive primitive ADJ JJ Degree=Pos 14 amod _ _ 14 recursors recursor NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 15 : : PUNCT : _ 5 punct _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 17 punct _ SpaceAfter=No 17 i i NOUN NN Number=Sing 20 dep _ SpaceAfter=No 18 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 17 punct _ _ 19 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 20 nsubj _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 46 ccomp _ _ 21 undecidable undecidable ADJ JJ Degree=Pos 20 acomp _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 29 punct _ _ 23 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 28 punct _ SpaceAfter=No 24 ii ii PROPN NNP Number=Sing 28 nmod _ SpaceAfter=No 25 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 28 punct _ _ 26 Church Church PROPN NNP Number=Sing 28 compound _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 Rosser Rosser PROPN NNP Number=Sing 29 nsubj _ _ 29 fails fail VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 46 parataxis _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 29 punct _ _ 31 although although SCONJ IN _ 36 mark _ _ 32 ground ground NOUN NN Number=Sing 35 compound _ _ 33 Church Church PROPN NNP Number=Sing 35 compound _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 Rosser Rosser PROPN NNP Number=Sing 36 nsubj _ _ 36 holds hold VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 46 advcl _ SpaceAfter=No 37 , , PUNCT , PunctType=Comm 36 punct _ _ 38 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 42 punct _ SpaceAfter=No 39 iii iii NOUN NN Number=Sing 42 nmod _ SpaceAfter=No 40 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 42 punct _ _ 41 strong strong ADJ JJ Degree=Pos 42 amod _ _ 42 normalization normalization NOUN NN Number=Sing 46 nsubj _ _ 43 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 42 punct _ SpaceAfter=No 44 termination termination NOUN NN Number=Sing 42 appos _ SpaceAfter=No 45 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 42 punct _ _ 46 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 47 still still ADV RB _ 46 advmod _ _ 48 valid valid ADJ JJ Degree=Pos 46 acomp _ SpaceAfter=No 49 . . PUNCT . PunctType=Peri 46 punct _ SpaceAfter=No # sent_id = 4 # text = This entails the undecidability of the coherence problem for cartesian closed categories with strong natural numbers objects, as well as providing a natural example of the following computational paradigm: a non - CR, ground CR, undecidable, terminating rewriting system. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 entails entail VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 undecidability undecidability NOUN NN Number=Sing 11 nsubj _ _ 5 of of ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 coherence coherence NOUN NN Number=Sing 8 compound _ _ 8 problem problem NOUN NN Number=Sing 5 pobj _ _ 9 for for ADP IN _ 8 prep _ _ 10 cartesian cartesian ADJ JJ Degree=Pos 9 pobj _ _ 11 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 12 categories category NOUN NNS Number=Plur 2 dobj _ _ 13 with with ADP IN _ 12 prep _ _ 14 strong strong ADJ JJ Degree=Pos 17 amod _ _ 15 natural natural ADJ JJ Degree=Pos 16 amod _ _ 16 numbers number NOUN NNS Number=Plur 17 compound _ _ 17 objects object NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 12 punct _ _ 19 as as ADV RB _ 21 advmod _ _ 20 well well ADV RB Degree=Pos 21 advmod _ _ 21 as as ADP IN _ 2 cc _ _ 22 providing provide VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 23 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 24 natural natural ADJ JJ Degree=Pos 25 amod _ _ 25 example example NOUN NN Number=Sing 22 dobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 30 det _ _ 28 following follow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 30 amod _ _ 29 computational computational ADJ JJ Degree=Pos 30 amod _ _ 30 paradigm paradigm NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 31 : : PUNCT : _ 30 punct _ _ 32 a a DET DT Definite=Ind|PronType=Art 38 det _ _ 33 non non ADJ JJ Degree=Pos 35 amod _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 CR cr ADJ JJ Degree=Pos 38 amod _ SpaceAfter=No 36 , , PUNCT , PunctType=Comm 35 punct _ _ 37 ground ground NOUN NN Number=Sing 38 compound _ _ 38 CR CR PROPN NNP Number=Sing 30 appos _ SpaceAfter=No 39 , , PUNCT , PunctType=Comm 38 punct _ _ 40 undecidable undecidable ADJ JJ Degree=Pos 38 amod _ SpaceAfter=No 41 , , PUNCT , PunctType=Comm 30 punct _ _ 42 terminating terminate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 advcl _ _ 43 rewriting rewrite VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 44 amod _ _ 44 system system NOUN NN Number=Sing 42 dobj _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 84 # sent_id = 1 # text = We demonstrate how the identity $ Notimes N cong N $ in a monoidal category allows us to construct a functor from the full subcategory generated by $ N $ and $ otimes $ to the endomorphism monoid of the object $ N $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 demonstrate demonstrate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 how how SCONJ WRB _ 5 advmod _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 identity identity NOUN NN Number=Sing 6 nsubj _ _ 6 $ Notimes N cong N $ $ notimes n cong n $ SYM $ _ 2 ccomp _ _ 7 in in ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 monoidal monoidal ADJ JJ Degree=Pos 10 amod _ _ 10 category category NOUN NN Number=Sing 7 pobj _ _ 11 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 12 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 14 nsubj _ _ 13 to to PART TO _ 14 aux _ _ 14 construct construct VERB VB VerbForm=Inf 11 ccomp _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 functor functor NOUN NN Number=Sing 14 dobj _ _ 17 from from ADP IN _ 14 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 full full ADJ JJ Degree=Pos 20 amod _ _ 20 subcategory subcategory NOUN NN Number=Sing 17 pobj _ _ 21 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 acl _ _ 22 by by ADP IN _ 21 agent _ _ 23 $ N $ $ n $ SYM $ _ 22 pobj _ _ 24 and and CCONJ CC ConjType=Cmp 21 cc _ _ 25 $ otimes $ $ otimes $ SYM $ _ 14 advmod _ _ 26 to to ADP IN _ 14 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 29 det _ _ 28 endomorphism endomorphism NOUN NN Number=Sing 29 compound _ _ 29 monoid monoid NOUN NN Number=Sing 26 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 object object NOUN NN Number=Sing 30 pobj _ _ 33 $ N $ $ n $ SYM $ _ 14 dep _ _ 34 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = This provides a categorical foundation for one - object analogues of the symmetric monoidal categories used by J. - Y. Girard in his Geometry of Interaction series of papers, and explicitly described in terms of inverse semigroup theory in [6, 11]. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 categorical categorical ADJ JJ Degree=Pos 5 amod _ _ 5 foundation foundation NOUN NN Number=Sing 2 dobj _ _ 6 for for ADP IN _ 5 prep _ _ 7 one one NUM CD NumType=Card 9 nummod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 object object NOUN NN Number=Sing 10 compound _ _ 10 analogues analogue NOUN NNS Number=Plur 6 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 15 det _ _ 13 symmetric symmetric ADJ JJ Degree=Pos 15 amod _ _ 14 monoidal monoidal ADJ JJ Degree=Pos 15 amod _ _ 15 categories category NOUN NNS Number=Plur 11 pobj _ _ 16 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 acl _ _ 17 by by ADP IN _ 16 agent _ _ 18 J. J. PROPN NNP Number=Sing 21 compound _ _ 19 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 20 Y. Y. PROPN NNP Number=Sing 21 compound _ _ 21 Girard Girard PROPN NNP Number=Sing 17 pobj _ _ 22 in in ADP IN _ 16 prep _ _ 23 his his PRON PRP$ Gender=Masc|Number=Sing|Person=3|Poss=Yes|PronType=Prs 27 poss _ _ 24 Geometry Geometry PROPN NNP Number=Sing 27 nmod _ _ 25 of of ADP IN _ 24 prep _ _ 26 Interaction Interaction PROPN NNP Number=Sing 25 pobj _ _ 27 series series NOUN NN Number=Sing 22 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 papers paper NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 2 punct _ _ 31 and and CCONJ CC ConjType=Cmp 2 cc _ _ 32 explicitly explicitly ADV RB _ 33 advmod _ _ 33 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 conj _ _ 34 in in ADP IN _ 33 prep _ _ 35 terms term NOUN NNS Number=Plur 34 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 inverse inverse ADJ JJ Degree=Pos 38 amod _ _ 38 semigroup semigroup NOUN NN Number=Sing 39 compound _ _ 39 theory theory NOUN NN Number=Sing 36 pobj _ _ 40 in in ADP IN _ 33 prep _ _ 41 [ [ PROPN NNP Number=Sing 40 pobj _ SpaceAfter=No 42 6 6 NUM CD NumType=Card 41 nummod _ SpaceAfter=No 43 , , PUNCT , PunctType=Comm 42 punct _ _ 44 11 11 NUM CD NumType=Card 42 appos _ SpaceAfter=No 45 ] ] PUNCT -RRB- PunctSide=Fin|PunctType=Brck 40 pobj _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = This functor also allows the construction of one - object analogues of other categorical structures. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 functor functor NOUN NN Number=Sing 4 nsubj _ _ 3 also also ADV RB _ 4 advmod _ _ 4 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 construction construction NOUN NN Number=Sing 4 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 one one NUM CD NumType=Card 10 nummod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 object object NOUN NN Number=Sing 11 compound _ _ 11 analogues analogue NOUN NNS Number=Plur 7 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 other other ADJ JJ Degree=Pos 15 amod _ _ 14 categorical categorical ADJ JJ Degree=Pos 15 amod _ _ 15 structures structure NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = We give the example of one - object analogues of the categorical trace, and compact closedness. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 example example NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 one one NUM CD NumType=Card 8 nummod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 object object NOUN NN Number=Sing 9 compound _ _ 9 analogues analogue NOUN NNS Number=Plur 5 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 categorical categorical ADJ JJ Degree=Pos 13 amod _ _ 13 trace trace NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 13 punct _ _ 15 and and CCONJ CC ConjType=Cmp 13 cc _ _ 16 compact compact ADJ JJ Degree=Pos 17 amod _ _ 17 closedness closedness NOUN NN Number=Sing 13 conj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = Finally, we demonstrate how the categorical theory of self - similarity can be related to the algebraic theory (as presented in [11]), and Girard's dynamical algebra, by considering one - object analogues of projections and inclusions. 1 Finally finally ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 demonstrate demonstrate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 how how SCONJ WRB _ 15 advmod _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 categorical categorical ADJ JJ Degree=Pos 8 amod _ _ 8 theory theory NOUN NN Number=Sing 15 nsubjpass _ _ 9 of of ADP IN _ 8 prep _ _ 10 self self NOUN NN Number=Sing 12 compound _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 similarity similarity NOUN NN Number=Sing 9 pobj _ _ 13 can can AUX MD VerbForm=Fin 15 aux _ _ 14 be be AUX VB VerbForm=Inf 15 auxpass _ _ 15 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 ccomp _ _ 16 to to ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 algebraic algebraic ADJ JJ Degree=Pos 19 amod _ _ 19 theory theory NOUN NN Number=Sing 16 pobj _ _ 20 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 19 punct _ SpaceAfter=No 21 as as SCONJ IN _ 22 mark _ _ 22 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 acl _ _ 23 in in ADP IN _ 22 prep _ _ 24 [ [ X XX _ 23 pobj _ SpaceAfter=No 25 11 11 NUM CD NumType=Card 23 pobj _ SpaceAfter=No 26 ] ] PUNCT -RRB- PunctSide=Fin|PunctType=Brck 23 pobj _ SpaceAfter=No 27 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 19 punct _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 4 punct _ _ 29 and and CCONJ CC ConjType=Cmp 4 cc _ _ 30 Girard Girard PROPN NNP Number=Sing 33 poss _ SpaceAfter=No 31 's 's PART POS _ 30 case _ _ 32 dynamical dynamical ADJ JJ Degree=Pos 33 amod _ _ 33 algebra algebra NOUN NN Number=Sing 4 conj _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 33 punct _ _ 35 by by ADP IN _ 33 prep _ _ 36 considering consider VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 35 pcomp _ _ 37 one one NUM CD NumType=Card 39 nummod _ _ 38 - - PUNCT HYPH PunctType=Dash 39 punct _ _ 39 object object NOUN NN Number=Sing 40 compound _ _ 40 analogues analogue NOUN NNS Number=Plur 36 dobj _ _ 41 of of ADP IN _ 40 prep _ _ 42 projections projection NOUN NNS Number=Plur 41 pobj _ _ 43 and and CCONJ CC ConjType=Cmp 42 cc _ _ 44 inclusions inclusion NOUN NNS Number=Plur 42 conj _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 85 # sent_id = 1 # text = This represents a new and more comprehensive approach to the $ * $ - autonomous categories constructed in the monograph by Barr. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 represents represent VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 4 new new ADJ JJ Degree=Pos 8 amod _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 more more ADV RBR Degree=Cmp 7 advmod _ _ 7 comprehensive comprehensive ADJ JJ Degree=Pos 4 conj _ _ 8 approach approach NOUN NN Number=Sing 2 dobj _ _ 9 to to ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 14 det _ _ 11 $ * $ $ * $ SYM $ _ 13 advmod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 autonomous autonomous ADJ JJ Degree=Pos 14 amod _ _ 14 categories category NOUN NNS Number=Plur 9 pobj _ _ 15 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 acl _ _ 16 in in ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 monograph monograph NOUN NN Number=Sing 16 pobj _ _ 19 by by ADP IN _ 15 agent _ _ 20 Barr Barr PROPN NNP Number=Sing 19 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The main tool in the new approach is the Chu construction. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 tool tool NOUN NN Number=Sing 8 nsubj _ _ 4 in in ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 new new ADJ JJ Degree=Pos 7 amod _ _ 7 approach approach NOUN NN Number=Sing 4 pobj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 Chu Chu PROPN NNP Number=Sing 11 compound _ _ 11 construction construction NOUN NN Number=Sing 8 attr _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 3 # text = The main conclusion is that the category of separated extensional Chu objects for certain kinds of equational categories is equivalent to two usually distinct subcategories of the categories of uniform algebras of those categories. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 conclusion conclusion NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 19 mark _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 category category NOUN NN Number=Sing 19 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 separated separated ADJ JJ Degree=Pos 12 amod _ _ 10 extensional extensional ADJ JJ Degree=Pos 12 amod _ _ 11 Chu Chu PROPN NNP Number=Sing 12 compound _ _ 12 objects object NOUN NNS Number=Plur 8 pobj _ _ 13 for for ADP IN _ 12 prep _ _ 14 certain certain ADJ JJ Degree=Pos 15 amod _ _ 15 kinds kind NOUN NNS Number=Plur 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 equational equational ADJ JJ Degree=Pos 18 amod _ _ 18 categories category NOUN NNS Number=Plur 16 pobj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 20 equivalent equivalent ADJ JJ Degree=Pos 19 acomp _ _ 21 to to ADP IN _ 20 prep _ _ 22 two two NUM CD NumType=Card 25 nummod _ _ 23 usually usually ADV RB _ 24 advmod _ _ 24 distinct distinct ADJ JJ Degree=Pos 25 amod _ _ 25 subcategories subcategorie NOUN NNS Number=Plur 21 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 categories category NOUN NNS Number=Plur 26 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 uniform uniform ADJ JJ Degree=Pos 31 amod _ _ 31 algebras algebra NOUN NNS Number=Plur 29 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 those those DET DT Number=Plur|PronType=Dem 34 det _ _ 34 categories category NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 86 # sent_id = 1 # text = The contravariant powerset, and its generalisations $ Sigma^X $ to the lattices of open subsets of a locally compact topological space and of recursively enumerable subsets of numbers, satisfy the Euclidean principle that $ phimeet F(phi)=phimeet F(top) $ . 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 contravariant contravariant ADJ JJ Degree=Pos 3 amod _ _ 3 powerset powerset NOUN NN Number=Sing 29 nsubj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 3 punct _ _ 5 and and CCONJ CC ConjType=Cmp 3 cc _ _ 6 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 7 poss _ _ 7 generalisations generalisation NOUN NNS Number=Plur 3 conj _ _ 8 $ Sigma^X $ $ sigma^x $ SYM $ _ 7 appos _ _ 9 to to ADP IN _ 7 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 lattices lattice NOUN NNS Number=Plur 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 open open ADJ JJ Degree=Pos 14 amod _ _ 14 subsets subset NOUN NNS Number=Plur 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 17 locally locally ADV RB _ 18 advmod _ _ 18 compact compact ADJ JJ Degree=Pos 20 amod _ _ 19 topological topological ADJ JJ Degree=Pos 20 amod _ _ 20 space space NOUN NN Number=Sing 15 pobj _ _ 21 and and CCONJ CC ConjType=Cmp 15 cc _ _ 22 of of ADP IN _ 15 conj _ _ 23 recursively recursively ADV RB _ 24 advmod _ _ 24 enumerable enumerable ADJ JJ Degree=Pos 25 amod _ _ 25 subsets subset NOUN NNS Number=Plur 22 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 numbers number NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 29 punct _ _ 29 satisfy satisfy VERB VB VerbForm=Inf 0 ROOT _ _ 30 the the DET DT Definite=Def|PronType=Art 32 det _ _ 31 Euclidean Euclidean PROPN NNP Number=Sing 32 amod _ _ 32 principle principle NOUN NN Number=Sing 29 dobj _ _ 33 that that SCONJ IN _ 34 nsubj _ _ 34 $ phimeet F(phi)=phimeet F(top) $ $ phimeet f(phi)=phimeet f(top) $ SYM $ _ 32 relcl _ _ 35 . . PUNCT . PunctType=Peri 29 punct _ SpaceAfter=No # sent_id = 2 # text = Conversely, when the adjunction $ Sigma^{( - )}dashvSigma^{( - )} $ is monadic, this equation implies that $ Sigma $ classifies some class of monos, and the Frobenius law $ exists x.(phi(x)meetpsi)=(exists x.phi(x))meetpsi) $ for the existential quantifier. 1 Conversely conversely ADV RB _ 12 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 12 punct _ _ 3 when when SCONJ WRB _ 7 advmod _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 adjunction adjunction NOUN NN Number=Sing 7 nsubj _ _ 6 $ Sigma^{( - )}dashvSigma^{( - )} $ $ sigma^{( - )}dashvsigma^{( - )} $ SYM $ _ 5 appos _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 advcl _ _ 8 monadic monadic ADJ JJ Degree=Pos 7 acomp _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 12 punct _ _ 10 this this DET DT Number=Sing|PronType=Dem 11 det _ _ 11 equation equation NOUN NN Number=Sing 12 nsubj _ _ 12 implies imply VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 that that SCONJ IN _ 15 mark _ _ 14 $ Sigma $ $ sigma $ SYM $ _ 15 nsubj _ _ 15 classifies classify VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 ccomp _ _ 16 some some DET DT _ 17 det _ _ 17 class class NOUN NN Number=Sing 15 dobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 monos mono NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 12 punct _ _ 21 and and CCONJ CC ConjType=Cmp 12 cc _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 Frobenius Frobenius PROPN NNP Number=Sing 24 compound _ _ 24 law law NOUN NN Number=Sing 12 conj _ _ 25 $ exists x.(phi(x)meetpsi)=(exists x.phi(x))meetpsi) $ $ exists x.(phi(x)meetpsi)=(exists x.phi(x))meetpsi) $ NOUN NN Number=Sing 24 appos _ _ 26 for for ADP IN _ 25 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 29 det _ _ 28 existential existential ADJ JJ Degree=Pos 29 amod _ _ 29 quantifier quantifier NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 3 # text = In topology, the lattice duals of these equations also hold, and are related to the Phoa principle in synthetic domain theory. 1 In in ADP IN _ 11 prep _ _ 2 topology topology NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 11 punct _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 lattice lattice NOUN NN Number=Sing 6 compound _ _ 6 duals dual NOUN NNS Number=Plur 11 nsubj _ _ 7 of of ADP IN _ 6 prep _ _ 8 these these DET DT Number=Plur|PronType=Dem 9 det _ _ 9 equations equation NOUN NNS Number=Plur 7 pobj _ _ 10 also also ADV RB _ 11 advmod _ _ 11 hold hold VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 and and CCONJ CC ConjType=Cmp 11 cc _ _ 14 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 auxpass _ _ 15 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 conj _ _ 16 to to ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 Phoa Phoa PROPN NNP Number=Sing 19 compound _ _ 19 principle principle NOUN NN Number=Sing 16 pobj _ _ 20 in in ADP IN _ 19 prep _ _ 21 synthetic synthetic ADJ JJ Degree=Pos 22 amod _ _ 22 domain domain NOUN NN Number=Sing 23 compound _ _ 23 theory theory NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 4 # text = The natural definitions of discrete and Hausdorff spaces correspond to equality and inequality, whilst the quantifiers considered as adjoints characterise open (or, as we call them, overt) and compact spaces. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 natural natural ADJ JJ Degree=Pos 3 amod _ _ 3 definitions definition NOUN NNS Number=Plur 9 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 discrete discrete ADJ JJ Degree=Pos 4 pobj _ _ 6 and and CCONJ CC ConjType=Cmp 3 cc _ _ 7 Hausdorff Hausdorff PROPN NNP Number=Sing 8 compound _ _ 8 spaces space NOUN NNS Number=Plur 3 conj _ _ 9 correspond correspond VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 to to ADP IN _ 9 prep _ _ 11 equality equality NOUN NN Number=Sing 10 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 inequality inequality NOUN NN Number=Sing 11 conj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 9 punct _ _ 15 whilst whilst SCONJ IN _ 18 mark _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 quantifiers quantifier NOUN NNS Number=Plur 18 nsubj _ _ 18 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 advcl _ _ 19 as as SCONJ IN _ 21 mark _ _ 20 adjoints adjoint NOUN NNS Number=Plur 21 nsubj _ _ 21 characterise characterise VERB VBP Tense=Pres|VerbForm=Fin 18 advcl _ _ 22 open open ADJ JJ Degree=Pos 21 acomp _ _ 23 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 21 punct _ SpaceAfter=No 24 or or CCONJ CC ConjType=Cmp 18 cc _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 9 punct _ _ 26 as as SCONJ IN _ 28 mark _ _ 27 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 28 nsubj _ _ 28 call call VERB VBP Tense=Pres|VerbForm=Fin 9 advcl _ _ 29 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 28 dobj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 28 punct _ _ 31 overt overt NOUN NN Number=Sing 28 dep _ SpaceAfter=No 32 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 28 punct _ _ 33 and and CCONJ CC ConjType=Cmp 28 cc _ _ 34 compact compact ADJ JJ Degree=Pos 35 amod _ _ 35 spaces space NOUN NNS Number=Plur 28 conj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 5 # text = Our treatment of overt discrete spaces and open maps is precisely dual to that of compact Hausdorff spaces and proper maps. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 treatment treatment NOUN NN Number=Sing 10 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 overt overt ADJ JJ Degree=Pos 6 amod _ _ 5 discrete discrete ADJ JJ Degree=Pos 6 amod _ _ 6 spaces space NOUN NNS Number=Plur 3 pobj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 open open ADJ JJ Degree=Pos 9 amod _ _ 9 maps map NOUN NNS Number=Plur 6 conj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 precisely precisely ADV RB _ 12 advmod _ _ 12 dual dual ADJ JJ Degree=Pos 10 acomp _ _ 13 to to ADP IN _ 12 prep _ _ 14 that that PRON DT Number=Sing|PronType=Dem 13 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 compact compact ADJ JJ Degree=Pos 18 amod _ _ 17 Hausdorff Hausdorff PROPN NNP Number=Sing 18 compound _ _ 18 spaces space NOUN NNS Number=Plur 15 pobj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 proper proper ADJ JJ Degree=Pos 21 amod _ _ 21 maps map NOUN NNS Number=Plur 18 conj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 6 # text = The category of overt discrete spaces forms a pretopos and the paper concludes with a converse of Paré's theorem (that the contravariant powerset functor is monadic) that characterises elementary toposes by means of the monadic and Euclidean properties together with all quantifiers, making no reference to subsets. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 category category NOUN NN Number=Sing 7 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 overt overt PROPN NNP Number=Sing 6 compound _ _ 5 discrete discrete ADJ JJ Degree=Pos 6 compound _ _ 6 spaces space NOUN NNS Number=Plur 3 pobj _ _ 7 forms form VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 pretopos pretopos NOUN NN Number=Sing 7 dobj _ _ 10 and and CCONJ CC ConjType=Cmp 7 cc _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 paper paper NOUN NN Number=Sing 13 nsubj _ _ 13 concludes conclude VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 conj _ _ 14 with with ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 converse converse NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 Paré Paré PROPN NNP Number=Sing 20 poss _ SpaceAfter=No 19 's 's PART POS _ 18 case _ _ 20 theorem theorem ADJ JJ Degree=Pos 17 pobj _ _ 21 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 27 punct _ SpaceAfter=No 22 that that SCONJ IN _ 27 mark _ _ 23 the the DET DT Definite=Def|PronType=Art 26 det _ _ 24 contravariant contravariant ADJ JJ Degree=Pos 26 amod _ _ 25 powerset powerset NOUN NN Number=Sing 26 compound _ _ 26 functor functor NOUN NN Number=Sing 27 nsubj _ _ 27 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 ccomp _ _ 28 monadic monadic ADJ JJ Degree=Pos 27 acomp _ SpaceAfter=No 29 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 27 punct _ _ 30 that that PRON WDT PronType=Rel 31 nsubj _ _ 31 characterises characterise VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 ccomp _ _ 32 elementary elementary ADJ JJ Degree=Pos 33 amod _ _ 33 toposes topos NOUN NNS Number=Plur 31 dobj _ _ 34 by by ADP IN _ 31 prep _ _ 35 means mean NOUN NNS Number=Plur 34 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 the the DET DT Definite=Def|PronType=Art 41 det _ _ 38 monadic monadic ADJ JJ Degree=Pos 41 amod _ _ 39 and and CCONJ CC ConjType=Cmp 38 cc _ _ 40 Euclidean euclidean ADJ JJ Degree=Pos 38 conj _ _ 41 properties property NOUN NNS Number=Plur 36 pobj _ _ 42 together together ADV RB _ 43 advmod _ _ 43 with with ADP IN _ 31 prep _ _ 44 all all DET DT _ 45 det _ _ 45 quantifiers quantifier NOUN NNS Number=Plur 43 pobj _ SpaceAfter=No 46 , , PUNCT , PunctType=Comm 31 punct _ _ 47 making make VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 31 advcl _ _ 48 no no DET DT _ 49 det _ _ 49 reference reference NOUN NN Number=Sing 47 dobj _ _ 50 to to ADP IN _ 49 prep _ _ 51 subsets subset NOUN NNS Number=Plur 50 pobj _ SpaceAfter=No 52 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # doc_id = 87 # sent_id = 1 # text = In this paper we use Quillen's model structure given by Dwyer - Kan for the category of simplicial groupoids (with discrete object of objects) to describe in this category, in the simplicial language, the fundamental homotopy theoretical constructions of path and cylinder objects. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 Quillen Quillen PROPN NNP Number=Sing 9 poss _ SpaceAfter=No 7 's 's PART POS _ 6 case _ _ 8 model model NOUN NN Number=Sing 9 compound _ _ 9 structure structure NOUN NN Number=Sing 5 dobj _ _ 10 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 acl _ _ 11 by by ADP IN _ 10 agent _ _ 12 Dwyer Dwyer PROPN NNP Number=Sing 14 compound _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 Kan Kan PROPN NNP Number=Sing 11 pobj _ _ 15 for for ADP IN _ 10 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 category category NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 simplicial simplicial ADJ JJ Degree=Pos 20 amod _ _ 20 groupoids groupoid NOUN NNS Number=Plur 18 pobj _ _ 21 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 9 punct _ SpaceAfter=No 22 with with ADP IN _ 5 prep _ _ 23 discrete discrete ADJ JJ Degree=Pos 24 amod _ _ 24 object object NOUN NN Number=Sing 22 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 objects object NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 27 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 5 punct _ _ 28 to to PART TO _ 29 aux _ _ 29 describe describe VERB VB VerbForm=Inf 5 xcomp _ _ 30 in in ADP IN _ 29 prep _ _ 31 this this DET DT Number=Sing|PronType=Dem 32 det _ _ 32 category category NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 33 , , PUNCT , PunctType=Comm 29 punct _ _ 34 in in ADP IN _ 29 prep _ _ 35 the the DET DT Definite=Def|PronType=Art 37 det _ _ 36 simplicial simplicial ADJ JJ Degree=Pos 37 amod _ _ 37 language language NOUN NN Number=Sing 34 pobj _ SpaceAfter=No 38 , , PUNCT , PunctType=Comm 43 punct _ _ 39 the the DET DT Definite=Def|PronType=Art 43 det _ _ 40 fundamental fundamental ADJ JJ Degree=Pos 43 amod _ _ 41 homotopy homotopy NOUN NN Number=Sing 43 nmod _ _ 42 theoretical theoretical ADJ JJ Degree=Pos 43 amod _ _ 43 constructions construction NOUN NNS Number=Plur 5 dobj _ _ 44 of of ADP IN _ 43 prep _ _ 45 path path NOUN NN Number=Sing 48 nmod _ _ 46 and and CCONJ CC ConjType=Cmp 45 cc _ _ 47 cylinder cylinder NOUN NN Number=Sing 48 compound _ _ 48 objects object NOUN NNS Number=Plur 44 pobj _ SpaceAfter=No 49 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = We then characterize the associated left and right homotopy relations in terms of simplicial identities and give a simplicial description of the homotopy category of simplicial groupoids. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 10 det _ _ 5 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 6 left left ADJ JJ Degree=Pos 5 nmod _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 right right ADJ JJ Degree=Pos 6 conj _ _ 9 homotopy homotopy NOUN NN Number=Sing 10 compound _ _ 10 relations relation NOUN NNS Number=Plur 3 dobj _ _ 11 in in ADP IN _ 10 prep _ _ 12 terms term NOUN NNS Number=Plur 11 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 simplicial simplicial ADJ JJ Degree=Pos 15 amod _ _ 15 identities identity NOUN NNS Number=Plur 13 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 3 cc _ _ 17 give give VERB VB VerbForm=Inf 3 conj _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 simplicial simplicial ADJ JJ Degree=Pos 20 amod _ _ 20 description description NOUN NN Number=Sing 17 dobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 homotopy homotopy NOUN NN Number=Sing 24 compound _ _ 24 category category NOUN NN Number=Sing 21 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 simplicial simplicial ADJ JJ Degree=Pos 27 amod _ _ 27 groupoids groupoid NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = Finally, we show loop and suspension functors in the pointed case. 1 Finally finally ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 loop loop NOUN NN Number=Sing 8 nmod _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 suspension suspension NOUN NN Number=Sing 5 conj _ _ 8 functors functor NOUN NNS Number=Plur 4 dobj _ _ 9 in in ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 pointed pointed ADJ JJ Degree=Pos 12 amod _ _ 12 case case NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 88 # sent_id = 1 # text = The purpose of this paper is to indicate some bicategorical properties of ring theory. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 purpose purpose NOUN NN Number=Sing 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 paper paper NOUN NN Number=Sing 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 to to PART TO _ 8 aux _ _ 8 indicate indicate VERB VB VerbForm=Inf 6 xcomp _ _ 9 some some DET DT _ 11 det _ _ 10 bicategorical bicategorical ADJ JJ Degree=Pos 11 amod _ _ 11 properties property NOUN NNS Number=Plur 8 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 ring ring NOUN NN Number=Sing 14 compound _ _ 14 theory theory NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = In this interaction, static modules are analyzed. 1 In in ADP IN _ 8 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 interaction interaction NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 8 punct _ _ 5 static static ADJ JJ Degree=Pos 6 compound _ _ 6 modules module NOUN NNS Number=Plur 8 nsubjpass _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 analyzed analyze VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 9 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # doc_id = 89 # sent_id = 1 # text = This paper defines a solution manifold and a stable submanifold for a system of differential equations. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 defines define VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 solution solution NOUN NN Number=Sing 3 dobj _ _ 6 manifold manifold ADJ JJ Degree=Pos 5 amod _ _ 7 and and CCONJ CC ConjType=Cmp 5 cc _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 stable stable ADJ JJ Degree=Pos 10 amod _ _ 10 submanifold submanifold NOUN NN Number=Sing 5 conj _ _ 11 for for ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 system system NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 differential differential ADJ JJ Degree=Pos 16 amod _ _ 16 equations equation NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = Although we eventually work in the smooth topos, the first two sections do not mention topos theory and should be of interest to non - topos theorists. 1 Although although SCONJ IN _ 4 mark _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 3 eventually eventually ADV RB _ 4 advmod _ _ 4 work work VERB VBP Tense=Pres|VerbForm=Fin 16 advcl _ _ 5 in in ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 smooth smooth ADJ JJ Degree=Pos 8 amod _ _ 8 topos topos NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 16 punct _ _ 10 the the DET DT Definite=Def|PronType=Art 13 det _ _ 11 first first ADJ JJ Degree=Pos 13 amod _ _ 12 two two NUM CD NumType=Card 13 nummod _ _ 13 sections section NOUN NNS Number=Plur 16 nsubj _ _ 14 do do AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 16 aux _ _ 15 not not PART RB Polarity=Neg 16 neg _ _ 16 mention mention VERB VB VerbForm=Inf 0 ROOT _ _ 17 topos topos NOUN NN Number=Sing 18 compound _ _ 18 theory theory NOUN NN Number=Sing 16 dobj _ _ 19 and and CCONJ CC ConjType=Cmp 16 cc _ _ 20 should should AUX MD VerbForm=Fin 21 aux _ _ 21 be be AUX VB VerbForm=Inf 16 conj _ _ 22 of of ADP IN _ 21 prep _ _ 23 interest interest NOUN NN Number=Sing 22 pobj _ _ 24 to to ADP IN _ 23 prep _ _ 25 non non ADJ JJ Degree=Pos 27 compound _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 topos topos ADJ JJ Degree=Pos 28 compound _ _ 28 theorists theorist NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 3 # text = The paper characterizes solutions in terms of barriers to growth and defines solutions in what are called filter rings (characterized as $ C^{infty} $ - reduced rings in a paper of Moerdijk and Reyes). 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 characterizes characterize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 solutions solution NOUN NNS Number=Plur 3 dobj _ _ 5 in in ADP IN _ 4 prep _ _ 6 terms term NOUN NNS Number=Plur 5 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 barriers barrier NOUN NNS Number=Plur 7 pobj _ _ 9 to to ADP IN _ 8 prep _ _ 10 growth growth NOUN NN Number=Sing 9 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 defines define VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 conj _ _ 13 solutions solution NOUN NNS Number=Plur 12 dobj _ _ 14 in in ADP IN _ 13 prep _ _ 15 what what PRON WP _ 17 nsubjpass _ _ 16 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 17 auxpass _ _ 17 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 pcomp _ _ 18 filter filter NOUN NN Number=Sing 19 compound _ _ 19 rings ring NOUN NNS Number=Plur 17 oprd _ _ 20 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 21 punct _ SpaceAfter=No 21 characterized characterize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 ccomp _ _ 22 as as ADP IN _ 21 prep _ _ 23 $ C^{infty} $ $ c^{infty} $ SYM $ _ 25 advmod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 reduced reduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 amod _ _ 26 rings ring NOUN NNS Number=Plur 22 pobj _ _ 27 in in ADP IN _ 26 prep _ _ 28 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 29 paper paper NOUN NN Number=Sing 27 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 Moerdijk Moerdijk PROPN NNP Number=Sing 30 pobj _ _ 32 and and CCONJ CC ConjType=Cmp 31 cc _ _ 33 Reyes Reyes PROPN NNP Number=Sing 31 conj _ SpaceAfter=No 34 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 21 punct _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = We examine standardization, stabilization, perturbation, change of variables, non - standard solutions, strange attractors and cycles at infinity. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 examine examine VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 standardization standardization NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 3 punct _ _ 5 stabilization stabilization NOUN NN Number=Sing 3 conj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 perturbation perturbation NOUN NN Number=Sing 5 conj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 change change NOUN NN Number=Sing 7 conj _ _ 10 of of ADP IN _ 9 prep _ _ 11 variables variable NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 non non ADJ JJ Degree=Pos 15 amod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 standard standard ADJ JJ Degree=Pos 16 amod _ _ 16 solutions solution NOUN NNS Number=Plur 11 conj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 9 punct _ _ 18 strange strange ADJ JJ Degree=Pos 19 amod _ _ 19 attractors attractor NOUN NNS Number=Plur 9 conj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 cycles cycle NOUN NNS Number=Plur 19 conj _ _ 22 at at ADP IN _ 9 prep _ _ 23 infinity infinity NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 90 # sent_id = 1 # text = In analogy with the varietal case, we give an abstract characterization of those categories occurring as regular epireflective subcategories of presheaf categories such that the inclusion functor preserves small sums. 1 In in ADP IN _ 9 prep _ _ 2 analogy analogy NOUN NN Number=Sing 1 pobj _ _ 3 with with ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 varietal varietal ADJ JJ Degree=Pos 6 amod _ _ 6 case case NOUN NN Number=Sing 3 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 9 punct _ _ 8 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 9 nsubj _ _ 9 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 11 abstract abstract ADJ JJ Degree=Pos 12 amod _ _ 12 characterization characterization NOUN NN Number=Sing 9 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 those those DET DT Number=Plur|PronType=Dem 15 det _ _ 15 categories category NOUN NNS Number=Plur 13 pobj _ _ 16 occurring occur VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 acl _ _ 17 as as ADP IN _ 16 prep _ _ 18 regular regular ADJ JJ Degree=Pos 20 amod _ _ 19 epireflective epireflective ADJ JJ Degree=Pos 20 amod _ _ 20 subcategories subcategorie NOUN NNS Number=Plur 17 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 presheaf presheaf ADJ JJ Degree=Pos 23 amod _ _ 23 categories category NOUN NNS Number=Plur 21 pobj _ _ 24 such such ADJ JJ Degree=Pos 29 amod _ _ 25 that that SCONJ IN _ 29 mark _ _ 26 the the DET DT Definite=Def|PronType=Art 28 det _ _ 27 inclusion inclusion NOUN NN Number=Sing 28 compound _ _ 28 functor functor NOUN NN Number=Sing 29 nsubj _ _ 29 preserves preserve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 advcl _ _ 30 small small ADJ JJ Degree=Pos 31 amod _ _ 31 sums sum NOUN NNS Number=Plur 29 dobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 91 # sent_id = 1 # text = We investigate preserving of projectivity and injectivity by the object - wise tensor product of $ RBbb{C} $ - modules, where $ Bbb{C} $ is a small category. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 investigate investigate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 preserving preserve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 dobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 projectivity projectivity NOUN NN Number=Sing 4 pobj _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 injectivity injectivity NOUN NN Number=Sing 5 conj _ _ 8 by by ADP IN _ 3 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 14 det _ _ 10 object object NOUN NN Number=Sing 12 npadvmod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 wise wise ADJ JJ Degree=Pos 14 amod _ _ 13 tensor tensor NOUN NN Number=Sing 14 compound _ _ 14 product product NOUN NN Number=Sing 8 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 $ RBbb{C} $ $ rbbb{c} $ SYM $ _ 18 compound _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 modules module NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 where where SCONJ WRB _ 22 advmod _ _ 21 $ Bbb{C} $ $ bbb{c} $ SYM $ _ 22 nsubj _ _ 22 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 relcl _ _ 23 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 24 small small ADJ JJ Degree=Pos 25 amod _ _ 25 category category NOUN NN Number=Sing 22 attr _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = In particular, let $ {cal O}(G, X) $ be the category of canonical orbits of a discrete group $ G $ , over a $ G $ - set $ X $ . 1 In in ADP IN _ 4 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 4 punct _ _ 4 let let VERB VB VerbForm=Inf 0 ROOT _ _ 5 $ {cal O}(G, X) $ $ {cal o}(g, x) $ SYM $ _ 6 nsubj _ _ 6 be be AUX VB VerbForm=Inf 4 ccomp _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 category category NOUN NN Number=Sing 6 attr _ _ 9 of of ADP IN _ 8 prep _ _ 10 canonical canonical ADJ JJ Degree=Pos 11 amod _ _ 11 orbits orbit NOUN NNS Number=Plur 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 discrete discrete ADJ JJ Degree=Pos 15 amod _ _ 15 group group NOUN NN Number=Sing 12 pobj _ _ 16 $ G $ $ g $ SYM $ _ 15 appos _ _ 17 , , PUNCT , PunctType=Comm 6 punct _ _ 18 over over ADP IN _ 6 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 20 $ G $ $ g $ SYM $ _ 22 dep _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 set set VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 amod _ _ 23 $ X $ $ x $ SYM $ _ 18 pobj _ _ 24 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = We show that projectivity of $ R{cal O}(G, X) $ - modules is preserved by this tensor product. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 10 mark _ _ 4 projectivity projectivity NOUN NN Number=Sing 10 nsubjpass _ _ 5 of of ADP IN _ 4 prep _ _ 6 $ R{cal O}(G, X) $ $ r{cal o}(g, x) $ SYM $ _ 8 compound _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 modules module NOUN NNS Number=Plur 10 nsubjpass _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 10 preserved preserve VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 11 by by ADP IN _ 10 agent _ _ 12 this this DET DT Number=Sing|PronType=Dem 14 det _ _ 13 tensor tensor NOUN NN Number=Sing 14 compound _ _ 14 product product NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = Moreover, if $ G $ is a finite group, $ X $ a finite $ G $ - set and $ R $ is an integral domain then such a tensor product of two injective $ R{cal O}(G, X) $ - modules is again injective. 1 Moreover moreover ADV RB _ 18 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 18 punct _ _ 3 if if SCONJ IN _ 5 mark _ _ 4 $ G $ $ g $ SYM $ _ 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 advcl _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 finite finite ADJ JJ Degree=Pos 8 amod _ _ 8 group group NOUN NN Number=Sing 5 attr _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 8 punct _ _ 10 $ X $ $ x $ SYM $ _ 17 nmod _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 finite finite NOUN NN Number=Sing 10 nsubj _ _ 13 $ G $ $ g $ SYM $ _ 15 advmod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 set set VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 conj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 $ R $ $ r $ SYM $ _ 18 nsubj _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 33 ccomp _ _ 19 an an DET DT Definite=Ind|PronType=Art 21 det _ _ 20 integral integral ADJ JJ Degree=Pos 21 amod _ _ 21 domain domain NOUN NN Number=Sing 18 attr _ _ 22 then then ADV RB PronType=Dem 18 advmod _ _ 23 such such DET PDT _ 26 predet _ _ 24 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 25 tensor tensor NOUN NN Number=Sing 26 compound _ _ 26 product product NOUN NN Number=Sing 33 nsubj _ _ 27 of of ADP IN _ 26 prep _ _ 28 two two NUM CD NumType=Card 32 nummod _ _ 29 injective injective ADJ JJ Degree=Pos 32 amod _ _ 30 $ R{cal O}(G, X) $ $ r{cal o}(g, x) $ SYM $ _ 32 compound _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 modules module NOUN NNS Number=Plur 27 pobj _ _ 33 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 34 again again ADV RB _ 35 advmod _ _ 35 injective injective ADJ JJ Degree=Pos 33 acomp _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 33 punct _ SpaceAfter=No # doc_id = 92 # sent_id = 1 # text = We show that every algebraically - central extension in a Maltsev variety - that is, every surjective homomorphism $ f : A longrightarrow B $ whose kernel - congruence is contained in the centre of $ A $ , as defined using the theory of commutators - is also a central extension in the sense of categorical Galois theory; this was previously known only for varieties of $ Omega $ - groups, while its converse is easily seen to hold for any congruence - modular variety. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 41 ccomp _ _ 3 that that SCONJ IN _ 26 mark _ _ 4 every every DET DT _ 8 det _ _ 5 algebraically algebraically ADV RB _ 7 advmod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 central central ADJ JJ Degree=Pos 8 amod _ _ 8 extension extension NOUN NN Number=Sing 26 nsubjpass _ _ 9 in in ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 Maltsev Maltsev PROPN NNP Number=Sing 12 compound _ _ 12 variety variety NOUN NN Number=Sing 9 pobj _ _ 13 - - PUNCT : _ 8 punct _ _ 14 that that ADV RB _ 15 nsubj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 advmod _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 19 punct _ _ 17 every every DET DT _ 19 det _ _ 18 surjective surjective ADJ JJ Degree=Pos 19 amod _ _ 19 homomorphism homomorphism NOUN NN Number=Sing 8 appos _ _ 20 $ f : A longrightarrow B $ $ f : a longrightarrow b $ SYM $ _ 19 nmod _ _ 21 whose whose DET WP$ Poss=Yes 24 poss _ _ 22 kernel kernel NOUN NN Number=Sing 24 compound _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 congruence congruence NOUN NN Number=Sing 26 nsubjpass _ _ 25 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 26 auxpass _ _ 26 contained contain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 27 in in ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 centre centre NOUN NN Number=Sing 27 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 $ A $ $ a $ SYM $ _ 30 pobj _ _ 32 , , PUNCT , PunctType=Comm 26 punct _ _ 33 as as SCONJ IN _ 34 mark _ _ 34 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 advcl _ _ 35 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 34 xcomp _ _ 36 the the DET DT Definite=Def|PronType=Art 37 det _ _ 37 theory theory NOUN NN Number=Sing 35 dobj _ _ 38 of of ADP IN _ 37 prep _ _ 39 commutators commutator NOUN NNS Number=Plur 38 pobj _ _ 40 - - PUNCT , PunctType=Comm 41 punct _ _ 41 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 57 ccomp _ _ 42 also also ADV RB _ 41 advmod _ _ 43 a a DET DT Definite=Ind|PronType=Art 45 det _ _ 44 central central ADJ JJ Degree=Pos 45 amod _ _ 45 extension extension NOUN NN Number=Sing 41 attr _ _ 46 in in ADP IN _ 45 prep _ _ 47 the the DET DT Definite=Def|PronType=Art 48 det _ _ 48 sense sense NOUN NN Number=Sing 46 pobj _ _ 49 of of ADP IN _ 48 prep _ _ 50 categorical categorical ADJ JJ Degree=Pos 52 amod _ _ 51 Galois Galois PROPN NNP Number=Sing 52 compound _ _ 52 theory theory NOUN NN Number=Sing 49 pobj _ SpaceAfter=No 53 ; ; PUNCT : _ 57 punct _ _ 54 this this PRON DT Number=Sing|PronType=Dem 57 nsubjpass _ _ 55 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 57 auxpass _ _ 56 previously previously ADV RB _ 57 advmod _ _ 57 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 58 only only ADV RB _ 59 advmod _ _ 59 for for ADP IN _ 57 prep _ _ 60 varieties variety NOUN NNS Number=Plur 59 pobj _ _ 61 of of ADP IN _ 60 prep _ _ 62 $ Omega $ $ omega $ SYM $ _ 64 compound _ _ 63 - - PUNCT HYPH PunctType=Dash 64 punct _ _ 64 groups group NOUN NNS Number=Plur 61 pobj _ SpaceAfter=No 65 , , PUNCT , PunctType=Comm 57 punct _ _ 66 while while SCONJ IN _ 71 mark _ _ 67 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 68 poss _ _ 68 converse converse NOUN NN Number=Sing 71 nsubjpass _ _ 69 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 71 auxpass _ _ 70 easily easily ADV RB _ 71 advmod _ _ 71 seen see VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 57 advcl _ _ 72 to to PART TO _ 73 aux _ _ 73 hold hold VERB VB VerbForm=Inf 71 xcomp _ _ 74 for for ADP IN _ 73 prep _ _ 75 any any DET DT _ 79 det _ _ 76 congruence congruence NOUN NN Number=Sing 78 compound _ _ 77 - - PUNCT HYPH PunctType=Dash 78 punct _ _ 78 modular modular ADJ JJ Degree=Pos 79 amod _ _ 79 variety variety NOUN NN Number=Sing 74 pobj _ SpaceAfter=No 80 . . PUNCT . PunctType=Peri 57 punct _ SpaceAfter=No # doc_id = 93 # sent_id = 1 # text = The notion of normal subobject having an intrinsic meaning in any protomodular category, we introduce the notion of normal functor, namely left exact conservative functor which reflects normal subobjects. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 notion notion NOUN NN Number=Sing 16 advcl _ _ 3 of of ADP IN _ 2 prep _ _ 4 normal normal ADJ JJ Degree=Pos 5 amod _ _ 5 subobject subobject NOUN NN Number=Sing 3 pobj _ _ 6 having have VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 acl _ _ 7 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 8 intrinsic intrinsic ADJ JJ Degree=Pos 9 amod _ _ 9 meaning meaning NOUN NN Number=Sing 6 dobj _ _ 10 in in ADP IN _ 9 prep _ _ 11 any any DET DT _ 13 det _ _ 12 protomodular protomodular ADJ JJ Degree=Pos 13 amod _ _ 13 category category NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 16 punct _ _ 15 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 16 nsubj _ _ 16 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 notion notion NOUN NN Number=Sing 16 dobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 normal normal ADJ JJ Degree=Pos 21 amod _ _ 21 functor functor NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 namely namely ADV RB _ 24 advmod _ _ 24 left leave VERB VBD Tense=Past|VerbForm=Fin 18 acl _ _ 25 exact exact ADJ JJ Degree=Pos 27 amod _ _ 26 conservative conservative ADJ JJ Degree=Pos 27 amod _ _ 27 functor functor NOUN NN Number=Sing 24 dobj _ _ 28 which which PRON WDT _ 29 nsubj _ _ 29 reflects reflect VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 27 relcl _ _ 30 normal normal ADJ JJ Degree=Pos 31 amod _ _ 31 subobjects subobject NOUN NNS Number=Plur 29 dobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 2 # text = The point is that for the category $ {bf Gp} $ of groups the change of base functors, with respect to the fibration of pointed objects, are not only conservative (this is the definition of a protomodular category), but also normal. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 point point NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 26 mark _ _ 5 for for ADP IN _ 26 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 category category NOUN NN Number=Sing 5 pobj _ _ 8 $ {bf Gp} $ $ {bf gp} $ SYM $ _ 7 appos _ _ 9 of of ADP IN _ 8 prep _ _ 10 groups group NOUN NNS Number=Plur 9 pobj _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 change change NOUN NN Number=Sing 26 nsubj _ _ 13 of of ADP IN _ 12 prep _ _ 14 base base NOUN NN Number=Sing 15 compound _ _ 15 functors functor NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 12 punct _ _ 17 with with ADP IN _ 12 prep _ _ 18 respect respect NOUN NN Number=Sing 17 pobj _ _ 19 to to ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 fibration fibration NOUN NN Number=Sing 19 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 pointed pointed ADJ JJ Degree=Pos 24 amod _ _ 24 objects object NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 26 punct _ _ 26 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 32 ccomp _ _ 27 not not PART RB Polarity=Neg 26 neg _ _ 28 only only ADV RB _ 26 advmod _ _ 29 conservative conservative ADJ JJ Degree=Pos 26 acomp _ _ 30 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 32 punct _ SpaceAfter=No 31 this this PRON DT Number=Sing|PronType=Dem 32 nsubj _ _ 32 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 33 the the DET DT Definite=Def|PronType=Art 34 det _ _ 34 definition definition NOUN NN Number=Sing 32 attr _ _ 35 of of ADP IN _ 34 prep _ _ 36 a a DET DT Definite=Ind|PronType=Art 38 det _ _ 37 protomodular protomodular ADJ JJ Degree=Pos 38 amod _ _ 38 category category NOUN NN Number=Sing 35 pobj _ SpaceAfter=No 39 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 32 punct _ SpaceAfter=No 40 , , PUNCT , PunctType=Comm 32 punct _ _ 41 but but CCONJ CC ConjType=Cmp 32 cc _ _ 42 also also ADV RB _ 41 advmod _ _ 43 normal normal ADJ JJ Degree=Pos 32 conj _ SpaceAfter=No 44 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = This leads to the notion of strongly protomodular category. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 leads lead VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 to to ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 notion notion NOUN NN Number=Sing 3 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 strongly strongly ADV RB _ 8 advmod _ _ 8 protomodular protomodular ADJ JJ Degree=Pos 9 amod _ _ 9 category category NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = Some of their properties are given, the main one being that this notion is inherited by the slice categories. 1 Some some PRON DT _ 6 nsubjpass _ _ 2 of of ADP IN _ 1 prep _ _ 3 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 4 poss _ _ 4 properties property NOUN NNS Number=Plur 2 pobj _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 6 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 10 punct _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 main main ADJ JJ Degree=Pos 10 amod _ _ 10 one one NOUN NN Number=Sing 6 dobj _ _ 11 being be AUX VBG VerbForm=Ger 10 acl _ _ 12 that that SCONJ IN _ 16 mark _ _ 13 this this DET DT Number=Sing|PronType=Dem 14 det _ _ 14 notion notion NOUN NN Number=Sing 16 nsubjpass _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 auxpass _ _ 16 inherited inherit VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 relcl _ _ 17 by by ADP IN _ 16 agent _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 slice slice NOUN NN Number=Sing 20 compound _ _ 20 categories category NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 94 # sent_id = 1 # text = For a set $ {cal M} $ of graphs the category $ {bf Cat}_{cal M} $ of all $ {cal M} $ - complete categories and all strictly $ {cal M} $ - continuous functors is known to be monadic over $ {bf Cat} $ . 1 For for ADP IN _ 24 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 set set NOUN NN Number=Sing 4 amod _ _ 4 $ {cal M} $ $ {cal m} $ SYM $ _ 22 nmod _ _ 5 of of ADP IN _ 4 prep _ _ 6 graphs graph NOUN NNS Number=Plur 5 pobj _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 category category NOUN NN Number=Sing 6 dobj _ _ 9 $ {bf Cat}_{cal M} $ $ {bf cat}_{cal m} $ SYM $ _ 8 appos _ _ 10 of of ADP IN _ 9 prep _ _ 11 all all DET DT _ 15 det _ _ 12 $ {cal M} $ $ {cal m} $ SYM $ _ 14 advmod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 complete complete ADJ JJ Degree=Pos 15 amod _ _ 15 categories category NOUN NNS Number=Plur 10 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 9 cc _ _ 17 all all PRON DT _ 21 advmod _ _ 18 strictly strictly ADV RB _ 21 advmod _ _ 19 $ {cal M} $ $ {cal m} $ X LS NumType=Ord 21 advmod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 continuous continuous ADJ JJ Degree=Pos 22 amod _ _ 22 functors functor NOUN NNS Number=Plur 24 nsubjpass _ _ 23 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 auxpass _ _ 24 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 25 to to PART TO _ 26 aux _ _ 26 be be AUX VB VerbForm=Inf 24 xcomp _ _ 27 monadic monadic ADJ JJ Degree=Pos 26 acomp _ _ 28 over over ADP IN _ 27 prep _ _ 29 $ {bf Cat} $ $ {bf cat} $ SYM $ _ 28 pobj _ _ 30 . . PUNCT . PunctType=Peri 24 punct _ SpaceAfter=No # sent_id = 2 # text = The question of monadicity of $ {bf Cat}_{cal M} $ over the category of graphs is known to have an affirmative answer when $ {cal M} $ specifies either (i) all finite limits, or (ii) all finite products, or (iii) equalizers and terminal objects, or (iv) just terminal objects. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 question question NOUN NN Number=Sing 13 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 monadicity monadicity NOUN NN Number=Sing 3 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 $ {bf Cat}_{cal M} $ $ {bf cat}_{cal m} $ SYM $ _ 5 pobj _ _ 7 over over ADP IN _ 2 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 category category NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 graphs graph NOUN NNS Number=Plur 10 pobj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 14 to to PART TO _ 15 aux _ _ 15 have have VERB VB VerbForm=Inf 13 xcomp _ _ 16 an an DET DT Definite=Ind|PronType=Art 18 det _ _ 17 affirmative affirmative ADJ JJ Degree=Pos 18 amod _ _ 18 answer answer NOUN NN Number=Sing 15 dobj _ _ 19 when when SCONJ WRB _ 21 advmod _ _ 20 $ {cal M} $ $ {cal m} $ SYM $ _ 21 nsubj _ _ 21 specifies specifie NOUN NNS Number=Plur 15 advcl _ _ 22 either either CCONJ CC ConjType=Cmp 21 preconj _ _ 23 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 24 punct _ SpaceAfter=No 24 i i NOUN NN Number=Sing 21 appos _ SpaceAfter=No 25 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 24 punct _ _ 26 all all DET DT _ 28 det _ _ 27 finite finite PROPN NNP Number=Sing 28 compound _ _ 28 limits limit NOUN NNS Number=Plur 21 conj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 28 punct _ _ 30 or or CCONJ CC ConjType=Cmp 28 cc _ _ 31 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 32 punct _ SpaceAfter=No 32 ii ii PROPN NNP Number=Sing 28 conj _ SpaceAfter=No 33 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 32 punct _ _ 34 all all DET DT _ 36 det _ _ 35 finite finite ADJ JJ Degree=Pos 36 compound _ _ 36 products product NOUN NNS Number=Plur 28 conj _ SpaceAfter=No 37 , , PUNCT , PunctType=Comm 36 punct _ _ 38 or or CCONJ CC ConjType=Cmp 36 cc _ _ 39 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 42 punct _ SpaceAfter=No 40 iii iii NOUN NN Number=Sing 42 nmod _ SpaceAfter=No 41 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 42 punct _ _ 42 equalizers equalizer NOUN NNS Number=Plur 36 conj _ _ 43 and and CCONJ CC ConjType=Cmp 42 cc _ _ 44 terminal terminal ADJ JJ Degree=Pos 45 amod _ _ 45 objects object NOUN NNS Number=Plur 42 conj _ SpaceAfter=No 46 , , PUNCT , PunctType=Comm 45 punct _ _ 47 or or CCONJ CC ConjType=Cmp 45 cc _ _ 48 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 49 punct _ SpaceAfter=No 49 iv iv PROPN NNP Number=Sing 28 appos _ SpaceAfter=No 50 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 49 punct _ _ 51 just just ADV RB _ 53 advmod _ _ 52 terminal terminal ADJ JJ Degree=Pos 53 amod _ _ 53 objects object NOUN NNS Number=Plur 28 appos _ SpaceAfter=No 54 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 3 # text = We prove that, conversely, these four cases are (essentially) the only cases of monadicity of $ Cat_M $ over the category of graphs, provided that $ {cal M} $ is a set of finite graphs containing the empty graph. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 10 mark _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 10 punct _ _ 5 conversely conversely ADV RB _ 10 advmod _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 10 punct _ _ 7 these these DET DT Number=Plur|PronType=Dem 9 det _ _ 8 four four NUM CD NumType=Card 9 nummod _ _ 9 cases case NOUN NNS Number=Plur 10 nsubj _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 11 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 10 punct _ SpaceAfter=No 12 essentially essentially ADV RB _ 10 advmod _ SpaceAfter=No 13 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 10 punct _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 only only ADJ JJ Degree=Pos 16 amod _ _ 16 cases case NOUN NNS Number=Plur 10 attr _ _ 17 of of ADP IN _ 16 prep _ _ 18 monadicity monadicity NOUN NN Number=Sing 17 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 $ Cat_M $ $ cat_m $ SYM $ _ 19 pobj _ _ 21 over over ADP IN _ 16 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 category category NOUN NN Number=Sing 21 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 graphs graph NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 16 punct _ _ 27 provided provide VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 prep _ _ 28 that that SCONJ IN _ 30 mark _ _ 29 $ {cal M} $ $ {cal m} $ SYM $ _ 30 nsubj _ _ 30 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 27 pcomp _ _ 31 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 32 set set NOUN NN Number=Sing 30 attr _ _ 33 of of ADP IN _ 32 prep _ _ 34 finite finite ADJ JJ Degree=Pos 35 amod _ _ 35 graphs graph NOUN NNS Number=Plur 33 pobj _ _ 36 containing contain VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 35 acl _ _ 37 the the DET DT Definite=Def|PronType=Art 39 det _ _ 38 empty empty ADJ JJ Degree=Pos 39 amod _ _ 39 graph graph NOUN NN Number=Sing 36 dobj _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 95 # sent_id = 1 # text = There is a 2 - category $ {cal J}{bf - Colim} $ of small categories equipped with a choice of colimit for each diagram whose domain $ J $ lies in a given small class $ {cal J} $ of small categories, functors strictly preserving such colimits, and natural transformations. 1 There there PRON EX _ 2 expl _ _ 2 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 4 2 2 NUM CD NumType=Card 6 nummod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 category category NOUN NN Number=Sing 7 nmod _ _ 7 $ {cal J}{bf - Colim} $ $ {cal j}{bf - colim} $ NOUN NN Number=Sing 2 attr _ _ 8 of of ADP IN _ 7 prep _ _ 9 small small ADJ JJ Degree=Pos 10 amod _ _ 10 categories category NOUN NNS Number=Plur 8 pobj _ _ 11 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 acl _ _ 12 with with ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 choice choice NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 colimit colimit NOUN NN Number=Sing 15 pobj _ _ 17 for for ADP IN _ 16 prep _ _ 18 each each DET DT _ 19 det _ _ 19 diagram diagram NOUN NN Number=Sing 17 pobj _ _ 20 whose whose DET WP$ Poss=Yes 21 poss _ _ 21 domain domain NOUN NN Number=Sing 23 nsubj _ _ 22 $ J $ $ j $ SYM $ _ 21 prep _ _ 23 lies lie VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 relcl _ _ 24 in in ADP IN _ 23 prep _ _ 25 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 26 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 amod _ _ 27 small small ADJ JJ Degree=Pos 28 amod _ _ 28 class class NOUN NN Number=Sing 24 pobj _ _ 29 $ {cal J} $ $ {cal J} $ PROPN NNP Number=Sing 28 appos _ _ 30 of of ADP IN _ 29 prep _ _ 31 small small ADJ JJ Degree=Pos 32 amod _ _ 32 categories category NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 33 , , PUNCT , PunctType=Comm 36 punct _ _ 34 functors functor NOUN NNS Number=Plur 36 nsubj _ _ 35 strictly strictly ADV RB _ 36 advmod _ _ 36 preserving preserve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 37 such such ADJ JJ Degree=Pos 38 amod _ _ 38 colimits colimit NOUN NNS Number=Plur 36 dobj _ SpaceAfter=No 39 , , PUNCT , PunctType=Comm 38 punct _ _ 40 and and CCONJ CC ConjType=Cmp 38 cc _ _ 41 natural natural ADJ JJ Degree=Pos 42 amod _ _ 42 transformations transformation NOUN NNS Number=Plur 38 conj _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The evident forgetful 2 - functor from $ {cal J}{bf - Colim} $ to the 2 - category $ {bf Cat} $ of small categories is known to be monadic. 1 The the DET DT Definite=Def|PronType=Art 6 det _ _ 2 evident evident ADJ JJ Degree=Pos 6 amod _ _ 3 forgetful forgetful ADJ JJ Degree=Pos 6 amod _ _ 4 2 2 NUM CD NumType=Card 6 nummod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 functor functor NOUN NN Number=Sing 19 nsubjpass _ _ 7 from from ADP IN _ 6 prep _ _ 8 $ {cal J}{bf - Colim} $ $ {cal j}{bf - colim} $ SYM $ _ 7 pobj _ _ 9 to to ADP IN _ 7 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 14 det _ _ 11 2 2 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 category category NOUN NN Number=Sing 14 nmod _ _ 14 $ {bf Cat} $ $ {bf cat} $ NOUN NN Number=Sing 9 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 small small ADJ JJ Degree=Pos 17 amod _ _ 17 categories category NOUN NNS Number=Plur 15 pobj _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 auxpass _ _ 19 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 20 to to PART TO _ 21 aux _ _ 21 be be AUX VB VerbForm=Inf 19 xcomp _ _ 22 monadic monadic ADJ JJ Degree=Pos 21 acomp _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 3 # text = We extend this result by considering not just conical colimits, but general weighted colimits; not just ordinary categories but enriched ones; and not just small classes of colimits but large ones; in this last case we are forced to move from the 2 - category $ {cal V}{bf - Cat} $ of small $ {cal V} $ - categories to $ {cal V} $ - categories with object - set in some larger universe. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 extend extend VERB VBP Tense=Pres|VerbForm=Fin 42 ccomp _ _ 3 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 4 result result NOUN NN Number=Sing 2 dobj _ _ 5 by by ADP IN _ 2 prep _ _ 6 considering consider VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 pcomp _ _ 7 not not PART RB Polarity=Neg 10 neg _ _ 8 just just ADV RB _ 7 advmod _ _ 9 conical conical ADJ JJ Degree=Pos 10 amod _ _ 10 colimits colimit NOUN NNS Number=Plur 6 dobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 2 punct _ _ 12 but but CCONJ CC ConjType=Cmp 2 cc _ _ 13 general general ADJ JJ Degree=Pos 14 nsubj _ _ 14 weighted weight VERB VBD Tense=Past|VerbForm=Fin 2 conj _ _ 15 colimits colimit NOUN NNS Number=Plur 14 dobj _ SpaceAfter=No 16 ; ; PUNCT : _ 14 punct _ _ 17 not not PART RB Polarity=Neg 20 neg _ _ 18 just just ADV RB _ 20 advmod _ _ 19 ordinary ordinary ADJ JJ Degree=Pos 20 amod _ _ 20 categories category NOUN NNS Number=Plur 14 dep _ _ 21 but but CCONJ CC ConjType=Cmp 20 cc _ _ 22 enriched enriched ADJ JJ Degree=Pos 23 amod _ _ 23 ones one NOUN NNS Number=Plur 20 conj _ SpaceAfter=No 24 ; ; PUNCT : _ 20 punct _ _ 25 and and CCONJ CC ConjType=Cmp 20 cc _ _ 26 not not PART RB Polarity=Neg 29 neg _ _ 27 just just ADV RB _ 29 advmod _ _ 28 small small ADJ JJ Degree=Pos 29 amod _ _ 29 classes class NOUN NNS Number=Plur 20 conj _ _ 30 of of ADP IN _ 29 prep _ _ 31 colimits colimit NOUN NNS Number=Plur 30 pobj _ _ 32 but but CCONJ CC ConjType=Cmp 29 cc _ _ 33 large large ADJ JJ Degree=Pos 34 amod _ _ 34 ones one NOUN NNS Number=Plur 29 conj _ SpaceAfter=No 35 ; ; PUNCT : _ 42 punct _ _ 36 in in ADP IN _ 42 prep _ _ 37 this this DET DT Number=Sing|PronType=Dem 39 det _ _ 38 last last ADJ JJ Degree=Pos 39 amod _ _ 39 case case NOUN NN Number=Sing 36 pobj _ _ 40 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 42 nsubjpass _ _ 41 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 42 auxpass _ _ 42 forced force VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 43 to to PART TO _ 44 aux _ _ 44 move move VERB VB VerbForm=Inf 42 xcomp _ _ 45 from from ADP IN _ 44 prep _ _ 46 the the DET DT Definite=Def|PronType=Art 50 det _ _ 47 2 2 NUM CD NumType=Card 49 nummod _ _ 48 - - PUNCT HYPH PunctType=Dash 49 punct _ _ 49 category category NOUN NN Number=Sing 50 nmod _ _ 50 $ {cal V}{bf - Cat} $ $ {cal v}{bf - cat} $ NOUN NN Number=Sing 45 pobj _ _ 51 of of ADP IN _ 50 prep _ _ 52 small small ADJ JJ Degree=Pos 55 amod _ _ 53 $ {cal V} $ $ {cal v} $ SYM $ _ 55 compound _ _ 54 - - PUNCT HYPH PunctType=Dash 55 punct _ _ 55 categories category NOUN NNS Number=Plur 51 pobj _ _ 56 to to ADP IN _ 44 prep _ _ 57 $ {cal V} $ $ {cal v} $ SYM $ _ 59 nmod _ _ 58 - - PUNCT HYPH PunctType=Dash 59 punct _ _ 59 categories category NOUN NNS Number=Plur 56 pobj _ _ 60 with with ADP IN _ 44 prep _ _ 61 object object NOUN NN Number=Sing 63 npadvmod _ _ 62 - - PUNCT HYPH PunctType=Dash 63 punct _ _ 63 set set VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 60 pobj _ _ 64 in in ADP IN _ 63 prep _ _ 65 some some DET DT _ 67 det _ _ 66 larger large ADJ JJR Degree=Cmp 67 amod _ _ 67 universe universe NOUN NN Number=Sing 64 pobj _ SpaceAfter=No 68 . . PUNCT . PunctType=Peri 42 punct _ SpaceAfter=No # sent_id = 4 # text = In each case, the functors preserving the colimits in the usual ``up - to - isomorphism'' sense are recovered as the $ {em pseudomorphisms} $ between algebras for the 2 - monad in question. 1 In in ADP IN _ 23 prep _ _ 2 each each DET DT _ 3 det _ _ 3 case case NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 23 punct _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 functors functor NOUN NNS Number=Plur 23 nsubjpass _ _ 7 preserving preserve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 acl _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 colimits colimit NOUN NNS Number=Plur 7 dobj _ _ 10 in in ADP IN _ 7 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 21 det _ _ 12 usual usual ADJ JJ Degree=Pos 21 amod _ _ 13 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 21 punct _ SpaceAfter=No 14 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 21 punct _ SpaceAfter=No 15 up up ADV RB _ 21 nmod _ _ 16 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 17 to to ADP IN _ 15 prep _ _ 18 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 19 isomorphism isomorphism NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 20 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 21 punct _ _ 21 sense sense NOUN NN Number=Sing 10 pobj _ _ 22 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 23 auxpass _ _ 23 recovered recover VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 24 as as ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 $ {em pseudomorphisms} $ $ {em pseudomorphisms} $ SYM $ _ 24 pobj _ _ 27 between between ADP IN _ 26 prep _ _ 28 algebras algebra NOUN NNS Number=Plur 27 pobj _ _ 29 for for ADP IN _ 28 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 33 det _ _ 31 2 2 NUM CD NumType=Card 33 nummod _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 monad monad NOUN NNS Number=Plur 29 pobj _ _ 34 in in ADP IN _ 33 prep _ _ 35 question question NOUN NN Number=Sing 34 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 23 punct _ SpaceAfter=No # doc_id = 96 # sent_id = 1 # text = A balanced coalgebroid is a $ {cal V}^{op} $ - category with extra structure ensuring that its category of representations is a balanced monoidal category. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 balanced balanced ADJ JJ Degree=Pos 3 amod _ _ 3 coalgebroid coalgebroid NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 6 $ {cal V}^{op} $ $ {cal v}^{op} $ ADV RB _ 8 compound _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 category category NOUN NN Number=Sing 4 attr _ _ 9 with with ADP IN _ 8 prep _ _ 10 extra extra ADJ JJ Degree=Pos 11 amod _ _ 11 structure structure NOUN NN Number=Sing 9 pobj _ _ 12 ensuring ensure VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 acl _ _ 13 that that SCONJ IN _ 18 mark _ _ 14 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 15 poss _ _ 15 category category NOUN NN Number=Sing 18 nsubj _ _ 16 of of ADP IN _ 15 prep _ _ 17 representations representation NOUN NNS Number=Plur 16 pobj _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 ccomp _ _ 19 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 20 balanced balanced ADJ JJ Degree=Pos 22 amod _ _ 21 monoidal monoidal ADJ JJ Degree=Pos 22 amod _ _ 22 category category NOUN NN Number=Sing 18 attr _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = We show, in a sense to be made precise, that a balanced structure on a coalgebroid may be reconstructed from the corresponding structure on its category of representations. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 2 punct _ _ 4 in in ADP IN _ 2 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 sense sense NOUN NN Number=Sing 4 pobj _ _ 7 to to PART TO _ 9 aux _ _ 8 be be AUX VB VerbForm=Inf 9 auxpass _ _ 9 made make VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 acl _ _ 10 precise precise ADJ JJ Degree=Pos 9 oprd _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 2 punct _ _ 12 that that SCONJ IN _ 21 mark _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 balanced balanced ADJ JJ Degree=Pos 15 amod _ _ 15 structure structure NOUN NN Number=Sing 21 nsubjpass _ _ 16 on on ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 coalgebroid coalgebroid NOUN NN Number=Sing 16 pobj _ _ 19 may may AUX MD VerbForm=Fin 21 aux _ _ 20 be be AUX VB VerbForm=Inf 21 auxpass _ _ 21 reconstructed reconstruct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 22 from from ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 corresponding corresponding ADJ JJ Degree=Pos 25 amod _ _ 25 structure structure NOUN NN Number=Sing 22 pobj _ _ 26 on on ADP IN _ 25 prep _ _ 27 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 28 poss _ _ 28 category category NOUN NN Number=Sing 26 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 representations representation NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = This includes the reconstruction of dual quasi - bialgebras, quasi - triangular dual quasi - bialgebras, and balanced quasi - triangular dual quasi - bialgebras; the latter of which is a quantum group when equipped with a compatible antipode. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 includes include VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 33 ccomp _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 reconstruction reconstruction NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 dual dual ADJ JJ Degree=Pos 7 amod _ _ 7 quasi quasi NOUN NNS Number=Plur 5 pobj _ _ 8 - - NOUN NNS Number=Plur 5 pobj _ _ 9 bialgebras bialgebra NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 quasi quasi ADJ JJ Degree=Pos 15 amod _ _ 12 - - ADJ JJ Degree=Pos 15 amod _ _ 13 triangular triangular ADJ JJ Degree=Pos 15 amod _ _ 14 dual dual ADJ JJ Degree=Pos 15 amod _ _ 15 quasi quasi NOUN NNS Number=Plur 9 conj _ _ 16 - - NOUN NNS Number=Plur 9 conj _ _ 17 bialgebras bialgebra NOUN NNS Number=Plur 9 conj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 and and CCONJ CC ConjType=Cmp 17 cc _ _ 20 balanced balanced ADJ JJ Degree=Pos 25 amod _ _ 21 quasi quasi ADJ JJ Degree=Pos 25 compound _ _ 22 - - ADJ JJ Degree=Pos 25 amod _ _ 23 triangular triangular ADJ JJ Degree=Pos 25 amod _ _ 24 dual dual ADJ JJ Degree=Pos 25 amod _ _ 25 quasi quasi NOUN NNS Number=Plur 17 conj _ _ 26 - - NOUN NNS Number=Plur 9 conj _ _ 27 bialgebras bialgebra NOUN NNS Number=Plur 9 conj _ SpaceAfter=No 28 ; ; PUNCT : _ 33 punct _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 latter latter ADJ JJ Degree=Pos 33 nsubj _ _ 31 of of ADP IN _ 30 prep _ _ 32 which which PRON WDT _ 31 pobj _ _ 33 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 34 a a DET DT Definite=Ind|PronType=Art 36 det _ _ 35 quantum quantum NOUN NN Number=Sing 36 compound _ _ 36 group group NOUN NN Number=Sing 33 attr _ _ 37 when when SCONJ WRB _ 38 advmod _ _ 38 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 33 advcl _ _ 39 with with ADP IN _ 38 prep _ _ 40 a a DET DT Definite=Ind|PronType=Art 42 det _ _ 41 compatible compatible ADJ JJ Degree=Pos 42 amod _ _ 42 antipode antipode NOUN NN Number=Sing 39 pobj _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 33 punct _ SpaceAfter=No # sent_id = 4 # text = As an application we construct a balanced coalgebroid whose category of representations is equivalent to the symmetric monoidal category of chain complexes. 1 As as ADP IN _ 5 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 application application NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 balanced balanced ADJ JJ Degree=Pos 8 amod _ _ 8 coalgebroid coalgebroid NOUN NN Number=Sing 5 dobj _ _ 9 whose whose DET WP$ Poss=Yes 10 poss _ _ 10 category category NOUN NN Number=Sing 13 nsubj _ _ 11 of of ADP IN _ 10 prep _ _ 12 representations representation NOUN NNS Number=Plur 11 pobj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 relcl _ _ 14 equivalent equivalent ADJ JJ Degree=Pos 13 acomp _ _ 15 to to ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 19 det _ _ 17 symmetric symmetric ADJ JJ Degree=Pos 19 amod _ _ 18 monoidal monoidal ADJ JJ Degree=Pos 19 amod _ _ 19 category category NOUN NN Number=Sing 15 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 chain chain NOUN NN Number=Sing 22 compound _ _ 22 complexes complex NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 5 # text = The appendix provides the definitions of a braided monoidal bicategory and sylleptic monoidal bicategory. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 appendix appendix NOUN NN Number=Sing 3 nsubj _ _ 3 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 definitions definition NOUN NNS Number=Plur 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 8 braided braid VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 9 monoidal monoidal ADJ JJ Degree=Pos 10 amod _ _ 10 bicategory bicategory NOUN NN Number=Sing 6 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 sylleptic sylleptic ADJ JJ Degree=Pos 14 amod _ _ 13 monoidal monoidal ADJ JJ Degree=Pos 14 amod _ _ 14 bicategory bicategory NOUN NN Number=Sing 10 conj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 97 # sent_id = 1 # text = This paper is a first step in the study of symmetric cat - groups as the 2 - dimensional analogue of abelian groups. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 first first ADJ JJ Degree=Pos 6 amod _ _ 6 step step NOUN NN Number=Sing 3 attr _ _ 7 in in ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 study study NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 symmetric symmetric ADJ JJ Degree=Pos 14 amod _ _ 12 cat cat NOUN NN Number=Sing 14 compound _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 groups group NOUN NNS Number=Plur 10 pobj _ _ 15 as as ADP IN _ 6 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 20 det _ _ 17 2 2 NUM CD NumType=Card 19 advmod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 dimensional dimensional ADJ JJ Degree=Pos 20 amod _ _ 20 analogue analogue NOUN NN Number=Sing 15 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 abelian abelian ADJ JJ Degree=Pos 23 compound _ _ 23 groups group NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = We show that a morphism of symmetric cat - groups can be factorized as an essentially surjective functor followed by a full and faithful one, as well as a full and essentially surjective functor followed by a faithful one. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 13 mark _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 morphism morphism NOUN NN Number=Sing 13 nsubjpass _ _ 6 of of ADP IN _ 5 prep _ _ 7 symmetric symmetric ADJ JJ Degree=Pos 10 amod _ _ 8 cat cat NOUN NN Number=Sing 10 compound _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 groups group NOUN NNS Number=Plur 6 pobj _ _ 11 can can AUX MD VerbForm=Fin 13 aux _ _ 12 be be AUX VB VerbForm=Inf 13 auxpass _ _ 13 factorized factorize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 14 as as ADP IN _ 13 prep _ _ 15 an an DET DT Definite=Ind|PronType=Art 18 det _ _ 16 essentially essentially ADV RB _ 17 advmod _ _ 17 surjective surjective ADJ JJ Degree=Pos 18 amod _ _ 18 functor functor NOUN NN Number=Sing 14 pobj _ _ 19 followed follow VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 acl _ _ 20 by by ADP IN _ 19 agent _ _ 21 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 22 full full ADJ JJ Degree=Pos 25 amod _ _ 23 and and CCONJ CC ConjType=Cmp 22 cc _ _ 24 faithful faithful ADJ JJ Degree=Pos 22 conj _ _ 25 one one NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 25 punct _ _ 27 as as ADV RB _ 29 advmod _ _ 28 well well ADV RB Degree=Pos 29 advmod _ _ 29 as as ADP IN _ 25 cc _ _ 30 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 31 full full ADJ JJ Degree=Pos 35 amod _ _ 32 and and CCONJ CC ConjType=Cmp 31 cc _ _ 33 essentially essentially ADV RB _ 34 advmod _ _ 34 surjective surjective ADJ JJ Degree=Pos 31 conj _ _ 35 functor functor NOUN NN Number=Sing 13 dobj _ _ 36 followed follow VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 35 acl _ _ 37 by by ADP IN _ 36 agent _ _ 38 a a DET DT Definite=Ind|PronType=Art 40 det _ _ 39 faithful faithful ADJ JJ Degree=Pos 40 amod _ _ 40 one one NUM CD NumType=Card 37 pobj _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Both these factorizations give rise to a factorization system, in a suitable 2 - categorical sense, in the 2 - category of symmetric cat - groups. 1 Both both PRON DT _ 3 predet _ _ 2 these these DET DT Number=Plur|PronType=Dem 3 det _ _ 3 factorizations factorization NOUN NNS Number=Plur 4 nsubj _ _ 4 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 rise rise NOUN NN Number=Sing 4 dobj _ _ 6 to to ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 factorization factorization NOUN NN Number=Sing 9 compound _ _ 9 system system NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 4 punct _ _ 11 in in ADP IN _ 4 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 13 suitable suitable ADJ JJ Degree=Pos 17 amod _ _ 14 2 2 NUM CD NumType=Card 16 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 categorical categorical ADJ JJ Degree=Pos 17 amod _ _ 17 sense sense NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 4 punct _ _ 19 in in ADP IN _ 4 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 23 det _ _ 21 2 2 NUM CD NumType=Card 23 nummod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 category category NOUN NN Number=Sing 19 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 symmetric symmetric ADJ JJ Degree=Pos 28 amod _ _ 26 cat cat NOUN NN Number=Sing 28 compound _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 groups group NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = An application to exact sequences is given. 1 An an DET DT Definite=Ind|PronType=Art 2 det _ _ 2 application application NOUN NN Number=Sing 7 nsubjpass _ _ 3 to to PART TO _ 4 aux _ _ 4 exact exact VERB VB VerbForm=Inf 2 acl _ _ 5 sequences sequence NOUN NNS Number=Plur 4 dobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 7 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 8 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # doc_id = 98 # sent_id = 1 # text = The term ``saturated, '' referring to a class of morphisms in a category, is used in the literature for two nonequivalent concepts. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 term term NOUN NN Number=Sing 5 nsubj _ _ 3 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 5 punct _ SpaceAfter=No 4 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 5 punct _ SpaceAfter=No 5 saturated saturate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 csubjpass _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 5 punct _ _ 8 referring refer VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 advcl _ _ 9 to to ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 class class NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 morphisms morphism NOUN NNS Number=Plur 12 pobj _ _ 14 in in ADP IN _ 8 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 category category NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 5 punct _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 auxpass _ _ 19 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 20 in in ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 literature literature NOUN NN Number=Sing 20 pobj _ _ 23 for for ADP IN _ 19 prep _ _ 24 two two NUM CD NumType=Card 26 nummod _ _ 25 nonequivalent nonequivalent ADJ JJ Degree=Pos 26 amod _ _ 26 concepts concept NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 2 # text = We make precise the relationship between these two concepts and show that the class of equivalences associated with any monad is saturated in both senses. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 make make VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 precise precise ADJ JJ Degree=Pos 2 ccomp _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 relationship relationship NOUN NN Number=Sing 2 dobj _ _ 6 between between ADP IN _ 5 prep _ _ 7 these these DET DT Number=Plur|PronType=Dem 9 det _ _ 8 two two NUM CD NumType=Card 9 nummod _ _ 9 concepts concept NOUN NNS Number=Plur 6 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 2 cc _ _ 11 show show VERB VB VerbForm=Inf 2 conj _ _ 12 that that SCONJ IN _ 22 mark _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 class class NOUN NN Number=Sing 22 nsubjpass _ _ 15 of of ADP IN _ 14 prep _ _ 16 equivalences equivalence NOUN NNS Number=Plur 15 pobj _ _ 17 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 acl _ _ 18 with with ADP IN _ 17 prep _ _ 19 any any DET DT _ 20 det _ _ 20 monad monad NOUN NNS Number=Plur 18 pobj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 auxpass _ _ 22 saturated saturate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 ccomp _ _ 23 in in ADP IN _ 22 prep _ _ 24 both both DET DT _ 25 det _ _ 25 senses sense NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 99 # sent_id = 1 # text = The purpose of this paper is to give a new proof of the Joyal - Tierney theorem (unpublished), which asserts that a morphism $ f:Rrightarrow S $ of commutative rings is an effective descent morphism for modules if and only if $ f $ is pure as a morphism of $ R $ - modules. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 purpose purpose NOUN NN Number=Sing 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 paper paper NOUN NN Number=Sing 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 to to PART TO _ 8 aux _ _ 8 give give VERB VB VerbForm=Inf 6 xcomp _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 new new ADJ JJ Degree=Pos 11 amod _ _ 11 proof proof NOUN NN Number=Sing 8 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 17 det _ _ 14 Joyal Joyal PROPN NNP Number=Sing 16 compound _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 Tierney Tierney PROPN NNP Number=Sing 17 compound _ _ 17 theorem theorem NOUN NN Number=Sing 12 pobj _ _ 18 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 19 punct _ SpaceAfter=No 19 unpublished unpublished ADJ JJ Degree=Pos 17 amod _ SpaceAfter=No 20 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 17 punct _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 17 punct _ _ 22 which which PRON WDT _ 23 nsubj _ _ 23 asserts assert VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 relcl _ _ 24 that that SCONJ IN _ 31 mark _ _ 25 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 26 morphism morphism NOUN NN Number=Sing 31 nsubj _ _ 27 $ f:Rrightarrow S $ $ f:rrightarrow s $ SYM $ _ 26 appos _ _ 28 of of ADP IN _ 27 prep _ _ 29 commutative commutative ADJ JJ Degree=Pos 30 amod _ _ 30 rings ring NOUN NNS Number=Plur 28 pobj _ _ 31 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 ccomp _ _ 32 an an DET DT Definite=Ind|PronType=Art 35 det _ _ 33 effective effective ADJ JJ Degree=Pos 35 amod _ _ 34 descent descent NOUN NN Number=Sing 35 compound _ _ 35 morphism morphism NOUN NN Number=Sing 31 attr _ _ 36 for for ADP IN _ 35 prep _ _ 37 modules module NOUN NNS Number=Plur 36 pobj _ _ 38 if if SCONJ IN _ 43 mark _ _ 39 and and CCONJ CC ConjType=Cmp 43 cc _ _ 40 only only ADV RB _ 41 advmod _ _ 41 if if SCONJ IN _ 43 mark _ _ 42 $ f $ $ f $ SYM $ _ 43 nsubj _ _ 43 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 31 advcl _ _ 44 pure pure ADJ JJ Degree=Pos 43 acomp _ _ 45 as as ADP IN _ 44 prep _ _ 46 a a DET DT Definite=Ind|PronType=Art 47 det _ _ 47 morphism morphism NOUN NN Number=Sing 45 pobj _ _ 48 of of ADP IN _ 47 prep _ _ 49 $ R $ $ r $ SYM $ _ 51 compound _ _ 50 - - PUNCT HYPH PunctType=Dash 51 punct _ _ 51 modules module NOUN NNS Number=Plur 48 pobj _ SpaceAfter=No 52 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 100 # sent_id = 1 # text = It is well - known that, given a Dedekind category $ {cal R} $ the category of (typed) matrices with coefficients from $ {cal R} $ is a Dedekind category with arbitrary relational sums. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 well well ADV RB Degree=Pos 5 advmod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 acomp _ _ 6 that that SCONJ IN _ 24 mark _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 24 punct _ _ 8 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 nmod _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 Dedekind Dedekind PROPN NNP Number=Sing 11 compound _ _ 11 category category NOUN NN Number=Sing 8 pobj _ _ 12 $ {cal R} $ $ {cal r} $ SYM $ _ 24 nsubj _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 category category NOUN NN Number=Sing 12 dobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 15 punct _ SpaceAfter=No 17 typed type VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 amod _ SpaceAfter=No 18 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 17 punct _ _ 19 matrices matrix NOUN NNS Number=Plur 15 pobj _ _ 20 with with ADP IN _ 19 prep _ _ 21 coefficients coefficient NOUN NNS Number=Plur 20 pobj _ _ 22 from from ADP IN _ 21 prep _ _ 23 $ {cal R} $ $ {cal r} $ SYM $ _ 22 pobj _ _ 24 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 25 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 26 Dedekind Dedekind PROPN NNP Number=Sing 27 compound _ _ 27 category category NOUN NN Number=Sing 24 attr _ _ 28 with with ADP IN _ 27 prep _ _ 29 arbitrary arbitrary ADJ JJ Degree=Pos 31 amod _ _ 30 relational relational ADJ JJ Degree=Pos 31 amod _ _ 31 sums sum NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = In this paper we show that under slightly stronger assumptions the converse is also true. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 that that SCONJ IN _ 13 mark _ _ 7 under under ADP IN _ 13 prep _ _ 8 slightly slightly ADV RB _ 9 advmod _ _ 9 stronger strong ADJ JJR Degree=Cmp 10 amod _ _ 10 assumptions assumption NOUN NNS Number=Plur 7 pobj _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 converse converse NOUN NN Number=Sing 13 nsubj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 ccomp _ _ 14 also also ADV RB _ 13 advmod _ _ 15 true true ADJ JJ Degree=Pos 13 acomp _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = Every atomic Dedekind category $ {cal R} $ with relational sums and subobjects is equivalent to a category of matrices over a suitable basis. 1 Every every DET DT _ 4 det _ _ 2 atomic atomic ADJ JJ Degree=Pos 3 amod _ _ 3 Dedekind dedekind NOUN NN Number=Sing 4 compound _ _ 4 category category NOUN NN Number=Sing 11 nsubj _ _ 5 $ {cal R} $ $ {cal r} $ SYM $ _ 4 appos _ _ 6 with with ADP IN _ 4 prep _ _ 7 relational relational ADJ JJ Degree=Pos 8 amod _ _ 8 sums sum NOUN NNS Number=Plur 6 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 subobjects subobject NOUN NNS Number=Plur 8 conj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 equivalent equivalent ADJ JJ Degree=Pos 11 acomp _ _ 13 to to ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 category category NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 matrices matrix NOUN NNS Number=Plur 16 pobj _ _ 18 over over ADP IN _ 15 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 20 suitable suitable ADJ JJ Degree=Pos 21 amod _ _ 21 basis basis NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 4 # text = This basis is the full proper subcategory induced by the integral objects of $ {cal R} $ . 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 basis basis NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 full full ADJ JJ Degree=Pos 7 amod _ _ 6 proper proper ADJ JJ Degree=Pos 7 amod _ _ 7 subcategory subcategory NOUN NN Number=Sing 3 attr _ _ 8 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 acl _ _ 9 by by ADP IN _ 8 agent _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 integral integral ADJ JJ Degree=Pos 12 amod _ _ 12 objects object NOUN NNS Number=Plur 9 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 $ {cal R} $ $ {cal r} $ SYM $ _ 13 pobj _ _ 15 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = Furthermore, we use our concept of a basis to extend a known result from the theory of heterogeneous relation algebras. 1 Furthermore furthermore ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 6 poss _ _ 6 concept concept NOUN NN Number=Sing 4 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 basis basis NOUN NN Number=Sing 7 pobj _ _ 10 to to PART TO _ 11 aux _ _ 11 extend extend VERB VB VerbForm=Inf 9 acl _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 14 result result NOUN NN Number=Sing 11 dobj _ _ 15 from from ADP IN _ 11 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 theory theory NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 heterogeneous heterogeneous ADJ JJ Degree=Pos 21 amod _ _ 20 relation relation NOUN NN Number=Sing 21 compound _ _ 21 algebras algebra NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 101 # sent_id = 1 # text = We show, for a monoidal closed category $ V = (V_0, otimes, I) $ , that the category $ V $ - Cat of small $ V $ - categories is locally $ lambda $ - presentable if $ V_0 $ is so, and that it is locally $ lambda $ - bounded if the closed category $ V $ is so, meaning that $ V_0 $ is locally $ lambda $ - bounded and that a side condition involving the monoidal structure is satisfied. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 2 punct _ _ 4 for for ADP IN _ 2 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 monoidal monoidal ADJ JJ Degree=Pos 7 nsubj _ _ 7 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 8 category category NOUN NN Number=Sing 4 pobj _ _ 9 $ V = (V_0, otimes, I) $ $ v = (v_0, otimes, i) $ SYM $ _ 2 dep _ _ 10 , , PUNCT , PunctType=Comm 2 punct _ _ 11 that that SCONJ IN _ 22 mark _ _ 12 the the DET DT Definite=Def|PronType=Art 16 det _ _ 13 category category NOUN NN Number=Sing 16 nmod _ _ 14 $ V $ $ v $ SYM $ _ 16 nmod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 Cat cat NOUN NN Number=Sing 22 nsubj _ _ 17 of of ADP IN _ 16 prep _ _ 18 small small ADJ JJ Degree=Pos 21 amod _ _ 19 $ V $ $ v $ SYM $ _ 21 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 categories category NOUN NNS Number=Plur 17 pobj _ _ 22 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 23 locally locally ADV RB _ 22 advmod _ _ 24 $ lambda $ $ lambda $ SYM $ _ 26 advmod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 presentable presentable ADJ JJ Degree=Pos 22 acomp _ _ 27 if if SCONJ IN _ 29 mark _ _ 28 $ V_0 $ $ v_0 $ SYM $ _ 29 nsubj _ _ 29 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 advcl _ _ 30 so so ADV RB _ 29 acomp _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 22 punct _ _ 32 and and CCONJ CC ConjType=Cmp 22 cc _ _ 33 that that SCONJ IN _ 35 mark _ _ 34 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 35 nsubj _ _ 35 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 conj _ _ 36 locally locally ADV RB _ 35 advmod _ _ 37 $ lambda $ $ lambda $ SYM $ _ 39 advmod _ _ 38 - - PUNCT HYPH PunctType=Dash 39 punct _ _ 39 bounded bound VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 35 acomp _ _ 40 if if SCONJ IN _ 45 mark _ _ 41 the the DET DT Definite=Def|PronType=Art 43 det _ _ 42 closed closed ADJ JJ Degree=Pos 43 amod _ _ 43 category category NOUN NN Number=Sing 45 nsubj _ _ 44 $ V $ $ v $ SYM $ _ 43 appos _ _ 45 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 35 advcl _ _ 46 so so ADV RB _ 45 acomp _ SpaceAfter=No 47 , , PUNCT , PunctType=Comm 45 punct _ _ 48 meaning mean VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 45 advcl _ _ 49 that that SCONJ IN _ 51 mark _ _ 50 $ V_0 $ $ v_0 $ SYM $ _ 51 nsubj _ _ 51 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 48 ccomp _ _ 52 locally locally ADV RB _ 55 advmod _ _ 53 $ lambda $ $ lambda $ SYM $ _ 55 advmod _ _ 54 - - PUNCT HYPH PunctType=Dash 55 punct _ _ 55 bounded bound VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 51 acomp _ _ 56 and and CCONJ CC ConjType=Cmp 51 cc _ _ 57 that that SCONJ IN _ 65 mark _ _ 58 a a DET DT Definite=Ind|PronType=Art 60 det _ _ 59 side side NOUN NN Number=Sing 60 compound _ _ 60 condition condition NOUN NN Number=Sing 65 nsubj _ _ 61 involving involve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 60 acl _ _ 62 the the DET DT Definite=Def|PronType=Art 64 det _ _ 63 monoidal monoidal ADJ JJ Degree=Pos 64 amod _ _ 64 structure structure NOUN NN Number=Sing 61 dobj _ _ 65 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 51 conj _ _ 66 satisfied satisfied ADJ JJ Degree=Pos 65 acomp _ SpaceAfter=No 67 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 102 # sent_id = 1 # text = We present some new findings concerning branched covers in topos theory. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 some some DET DT _ 5 det _ _ 4 new new ADJ JJ Degree=Pos 5 amod _ _ 5 findings finding NOUN NNS Number=Plur 2 dobj _ _ 6 concerning concern VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 acl _ _ 7 branched branched NOUN NN Number=Sing 8 compound _ _ 8 covers cover NOUN NNS Number=Plur 6 dobj _ _ 9 in in ADP IN _ 8 prep _ _ 10 topos topos NOUN NN Number=Sing 11 compound _ _ 11 theory theory NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Our discussion involves a particular subtopos of a given topos that can be described as the smallest subtopos closed under small coproducts in the including topos. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 discussion discussion NOUN NN Number=Sing 3 nsubj _ _ 3 involves involve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 particular particular ADJ JJ Degree=Pos 6 amod _ _ 6 subtopos subtopos NOUN NN Number=Sing 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 10 topos topo NOUN NNS Number=Plur 7 pobj _ _ 11 that that PRON WDT PronType=Rel 14 nsubjpass _ _ 12 can can AUX MD VerbForm=Fin 14 aux _ _ 13 be be AUX VB VerbForm=Inf 14 auxpass _ _ 14 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 relcl _ _ 15 as as ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 smallest small ADJ JJS Degree=Sup 18 amod _ _ 18 subtopos subtopo NOUN NNS Number=Plur 15 pobj _ _ 19 closed close VERB VBD Tense=Past|VerbForm=Fin 18 acl _ _ 20 under under ADP IN _ 19 prep _ _ 21 small small ADJ JJ Degree=Pos 22 amod _ _ 22 coproducts coproduct NOUN NNS Number=Plur 20 pobj _ _ 23 in in ADP IN _ 22 prep _ _ 24 the the PRON DT Definite=Def|PronType=Art 23 pobj _ _ 25 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 prep _ _ 26 topos topos NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = Our main result is a description of the covers of this subtopos as a category of fractions of branched covers, in the sense of Fox, of the including topos. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 3 poss _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 result result NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 description description NOUN NN Number=Sing 4 attr _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 covers cover NOUN NNS Number=Plur 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 this this DET DT Number=Sing|PronType=Dem 12 det _ _ 12 subtopos subtopos NOUN NN Number=Sing 10 pobj _ _ 13 as as ADP IN _ 6 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 category category NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 fractions fraction NOUN NNS Number=Plur 16 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 branched branched NOUN NN Number=Sing 20 compound _ _ 20 covers cover NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 6 punct _ _ 22 in in ADP IN _ 6 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 sense sense NOUN NN Number=Sing 22 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 Fox Fox PROPN NNP Number=Sing 25 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 26 punct _ _ 28 of of ADP IN _ 26 prep _ _ 29 the the PRON DT Definite=Def|PronType=Art 28 pobj _ _ 30 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 29 prep _ _ 31 topos topos NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = We also have some new results concerning the general theory of KZ - doctrines, such as the closure under composition of discrete fibrations for a KZ - doctrine, in the sense of Bunge and Funk. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 some some DET DT _ 6 det _ _ 5 new new ADJ JJ Degree=Pos 6 amod _ _ 6 results result NOUN NNS Number=Plur 3 dobj _ _ 7 concerning concern VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 acl _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 general general ADJ JJ Degree=Pos 10 amod _ _ 10 theory theory NOUN NN Number=Sing 7 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 KZ KZ PROPN NNP Number=Sing 14 compound _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 doctrines doctrine NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 such such ADJ JJ Degree=Pos 17 amod _ _ 17 as as ADP IN _ 14 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 closure closure NOUN NN Number=Sing 17 pobj _ _ 20 under under ADP IN _ 19 prep _ _ 21 composition composition NOUN NN Number=Sing 20 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 discrete discrete ADJ JJ Degree=Pos 24 amod _ _ 24 fibrations fibration NOUN NNS Number=Plur 22 pobj _ _ 25 for for ADP IN _ 24 prep _ _ 26 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 27 KZ KZ PROPN NNP Number=Sing 29 compound _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 doctrine doctrine NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 3 punct _ _ 31 in in ADP IN _ 3 prep _ _ 32 the the DET DT Definite=Def|PronType=Art 33 det _ _ 33 sense sense NOUN NN Number=Sing 31 pobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 Bunge Bunge PROPN NNP Number=Sing 34 pobj _ _ 36 and and CCONJ CC ConjType=Cmp 35 cc _ _ 37 Funk Funk PROPN NNP Number=Sing 35 conj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 103 # sent_id = 1 # text = A category with finite products and finite coproducts is said to be distributive if the canonical map $ A times B + A times C to A times (B + C) $ is invertible for all objects $ A $ , $ B $ , and $ C $ . 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 category category NOUN NN Number=Sing 10 nsubjpass _ _ 3 with with ADP IN _ 2 prep _ _ 4 finite finite ADJ JJ Degree=Pos 5 amod _ _ 5 products product NOUN NNS Number=Plur 3 pobj _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 finite finite ADJ JJ Degree=Pos 8 amod _ _ 8 coproducts coproduct NOUN NNS Number=Plur 5 conj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 10 said say VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 11 to to PART TO _ 12 aux _ _ 12 be be AUX VB VerbForm=Inf 10 xcomp _ _ 13 distributive distributive ADJ JJ Degree=Pos 12 acomp _ _ 14 if if SCONJ IN _ 19 mark _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 canonical canonical NOUN NN Number=Sing 17 amod _ _ 17 map map NOUN NN Number=Sing 19 nsubj _ _ 18 $ A times B + A times C to A times (B + C) $ $ a times b + a times c to a times (b + c) $ SYM $ _ 19 nsubj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 advcl _ _ 20 invertible invertible ADJ JJ Degree=Pos 19 acomp _ _ 21 for for ADP IN _ 20 prep _ _ 22 all all DET DT _ 23 det _ _ 23 objects object NOUN NNS Number=Plur 21 pobj _ _ 24 $ A $ $ a $ SYM $ _ 23 nummod _ _ 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 $ B $ $ b $ SYM $ _ 24 conj _ _ 27 , , PUNCT , PunctType=Comm 24 punct _ _ 28 and and CCONJ CC ConjType=Cmp 23 cc _ _ 29 $ C $ $ c $ SYM $ _ 19 dep _ _ 30 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = Given a distributive category $ cal D $ , we describe a universal functor $ cal D to cal D_{ex} $ preserving finite products and finite coproducts, for which $ cal D_{ex} $ is extensive; that is, for all objects $ A $ and $ B $ the functor $ cal D_{ex}/A times cal D_{ex}/B to cal D_{ex}/(A + B) $ is an equivalence of categories. 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 distributive distributive ADJ JJ Degree=Pos 4 amod _ _ 4 category category NOUN NN Number=Sing 1 pobj _ _ 5 $ cal D $ $ cal d $ SYM $ _ 4 nummod _ _ 6 , , PUNCT , PunctType=Comm 8 punct _ _ 7 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 8 nsubj _ _ 8 describe describe VERB VBP Tense=Pres|VerbForm=Fin 38 ccomp _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 universal universal ADJ JJ Degree=Pos 11 amod _ _ 11 functor functor NOUN NN Number=Sing 8 dobj _ _ 12 $ cal D to cal D_{ex} $ $ cal d to cal d_{ex} $ SYM $ _ 13 advmod _ _ 13 preserving preserve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 advcl _ _ 14 finite finite ADJ JJ Degree=Pos 15 compound _ _ 15 products product NOUN NNS Number=Plur 13 dobj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 finite finite ADJ JJ Degree=Pos 18 amod _ _ 18 coproducts coproduct NOUN NNS Number=Plur 15 conj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 15 punct _ _ 20 for for ADP IN _ 22 prep _ _ 21 which which PRON WDT _ 20 pobj _ _ 22 $ cal D_{ex} $ $ cal d_{ex} $ SYM $ _ 23 nsubj _ _ 23 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 conj _ _ 24 extensive extensive ADJ JJ Degree=Pos 23 acomp _ SpaceAfter=No 25 ; ; PUNCT : _ 38 punct _ _ 26 that that PRON DT Number=Sing|PronType=Dem 27 nsubj _ _ 27 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 38 advmod _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 27 punct _ _ 29 for for ADP IN _ 27 prep _ _ 30 all all DET DT _ 31 det _ _ 31 objects object NOUN NNS Number=Plur 29 pobj _ _ 32 $ A $ $ a $ SYM $ _ 31 nmod _ _ 33 and and CCONJ CC ConjType=Cmp 32 cc _ _ 34 $ B $ $ b $ SYM $ _ 32 conj _ _ 35 the the DET DT Definite=Def|PronType=Art 36 det _ _ 36 functor functor NOUN NN Number=Sing 38 nsubj _ _ 37 $ cal D_{ex}/A times cal D_{ex}/B to cal D_{ex}/(A + B) $ $ cal d_{ex}/a times cal d_{ex}/b to cal d_{ex}/(a + b) $ SYM $ _ 38 nsubj _ _ 38 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 39 an an DET DT Definite=Ind|PronType=Art 40 det _ _ 40 equivalence equivalence NOUN NN Number=Sing 38 attr _ _ 41 of of ADP IN _ 40 prep _ _ 42 categories category NOUN NNS Number=Plur 41 pobj _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 38 punct _ SpaceAfter=No # sent_id = 3 # text = As an application, we show that a distributive category $ cal D $ has a full distributive embedding into the product of an extensive category with products and a distributive preorder. 1 As as ADP IN _ 6 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 application application NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 that that SCONJ IN _ 12 mark _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 distributive distributive ADJ JJ Degree=Pos 10 amod _ _ 10 category category NOUN NN Number=Sing 12 nsubj _ _ 11 $ cal D $ $ cal d $ SYM $ _ 10 appos _ _ 12 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 13 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 14 full full ADJ JJ Degree=Pos 15 amod _ _ 15 distributive distributive ADJ JJ Degree=Pos 16 amod _ _ 16 embedding embed VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 dobj _ _ 17 into into ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 product product NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 an an DET DT Definite=Ind|PronType=Art 23 det _ _ 22 extensive extensive ADJ JJ Degree=Pos 23 amod _ _ 23 category category NOUN NN Number=Sing 20 pobj _ _ 24 with with ADP IN _ 23 prep _ _ 25 products product NOUN NNS Number=Plur 24 pobj _ _ 26 and and CCONJ CC ConjType=Cmp 25 cc _ _ 27 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 28 distributive distributive ADJ JJ Degree=Pos 29 amod _ _ 29 preorder preorder NOUN NN Number=Sing 25 conj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 104 # sent_id = 1 # text = In analogy with the relation between closure operators in presheaf toposes and Grothendieck topologies, we identify the structure in a category with finite limits that corresponds to universal closure operators in its regular and exact completions. 1 In in ADP IN _ 17 prep _ _ 2 analogy analogy NOUN NN Number=Sing 1 pobj _ _ 3 with with ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 relation relation NOUN NN Number=Sing 3 pobj _ _ 6 between between ADP IN _ 5 prep _ _ 7 closure closure NOUN NN Number=Sing 8 compound _ _ 8 operators operator NOUN NNS Number=Plur 6 pobj _ _ 9 in in ADP IN _ 8 prep _ _ 10 presheaf presheaf ADJ JJ Degree=Pos 11 compound _ _ 11 toposes topos NOUN NNS Number=Plur 9 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 Grothendieck Grothendieck PROPN NNP Number=Sing 14 compound _ _ 14 topologies topology NOUN NNS Number=Plur 11 conj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 17 punct _ _ 16 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 17 nsubj _ _ 17 identify identify VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 structure structure NOUN NN Number=Sing 17 dobj _ _ 20 in in ADP IN _ 17 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 category category NOUN NN Number=Sing 20 pobj _ _ 23 with with ADP IN _ 22 prep _ _ 24 finite finite ADJ JJ Degree=Pos 25 compound _ _ 25 limits limit NOUN NNS Number=Plur 23 pobj _ _ 26 that that PRON WDT PronType=Rel 27 nsubj _ _ 27 corresponds correspond VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 25 relcl _ _ 28 to to ADP IN _ 27 prep _ _ 29 universal universal ADJ JJ Degree=Pos 31 amod _ _ 30 closure closure NOUN NN Number=Sing 31 compound _ _ 31 operators operator NOUN NNS Number=Plur 28 pobj _ _ 32 in in ADP IN _ 31 prep _ _ 33 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 37 poss _ _ 34 regular regular ADJ JJ Degree=Pos 37 amod _ _ 35 and and CCONJ CC ConjType=Cmp 34 cc _ _ 36 exact exact ADJ JJ Degree=Pos 34 conj _ _ 37 completions completion NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 2 # text = The study of separated objects in exact completions will then allow us to give conceptual proofs of local cartesian closure of different categories of pseudo equivalence relations. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 study study NOUN NN Number=Sing 11 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 separated separate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 amod _ _ 5 objects object NOUN NNS Number=Plur 3 pobj _ _ 6 in in ADP IN _ 5 prep _ _ 7 exact exact ADJ JJ Degree=Pos 8 amod _ _ 8 completions completion NOUN NNS Number=Plur 6 pobj _ _ 9 will will AUX MD VerbForm=Fin 11 aux _ _ 10 then then ADV RB PronType=Dem 11 advmod _ _ 11 allow allow VERB VB VerbForm=Inf 0 ROOT _ _ 12 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 14 nsubj _ _ 13 to to PART TO _ 14 aux _ _ 14 give give VERB VB VerbForm=Inf 11 ccomp _ _ 15 conceptual conceptual ADJ JJ Degree=Pos 16 amod _ _ 16 proofs proof NOUN NNS Number=Plur 14 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 local local ADJ JJ Degree=Pos 20 amod _ _ 19 cartesian cartesian ADJ JJ Degree=Pos 20 compound _ _ 20 closure closure NOUN NN Number=Sing 17 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 different different ADJ JJ Degree=Pos 23 amod _ _ 23 categories category NOUN NNS Number=Plur 21 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 pseudo pseudo NOUN NN Number=Sing 26 compound _ _ 26 equivalence equivalence NOUN NN Number=Sing 27 compound _ _ 27 relations relation NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 3 # text = Finally, we characterize when certain categories of sheaves are toposes. 1 Finally finally ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 when when SCONJ WRB _ 10 advmod _ _ 6 certain certain ADJ JJ Degree=Pos 7 amod _ _ 7 categories category NOUN NNS Number=Plur 10 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 sheaves sheaf NOUN NNS Number=Plur 8 pobj _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 advcl _ _ 11 toposes topos NOUN NNS Number=Plur 10 attr _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 105 # sent_id = 1 # text = We show that lax epimorphisms in the category Cat are precisely the functors $ P : {cal E} to {cal B} $ for which the functor $ P^{*}: [{cal B}, Set] to [{cal E}, Set] $ of composition with $ P $ is fully faithful. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 10 mark _ _ 4 lax lax ADJ JJ Degree=Pos 5 amod _ _ 5 epimorphisms epimorphism NOUN NNS Number=Plur 10 nsubj _ _ 6 in in ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 category category NOUN NN Number=Sing 6 pobj _ _ 9 Cat Cat PROPN NNP Number=Sing 8 appos _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 11 precisely precisely ADV RB _ 10 advmod _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 functors functor NOUN NNS Number=Plur 10 attr _ _ 14 $ P : {cal E} to {cal B} $ $ p : {cal e} to {cal b} $ SYM $ _ 13 appos _ _ 15 for for ADP IN _ 24 prep _ _ 16 which which PRON WDT _ 15 pobj _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 functor functor NOUN NN Number=Sing 24 nsubj _ _ 19 $ P^{*}: [{cal B}, Set] to [{cal E}, Set] $ $ p^{*}: [{cal b}, set] to [{cal e}, set] $ SYM $ _ 24 nsubj _ _ 20 of of ADP IN _ 19 prep _ _ 21 composition composition NOUN NN Number=Sing 20 pobj _ _ 22 with with ADP IN _ 21 prep _ _ 23 $ P $ $ p $ SYM $ _ 22 pobj _ _ 24 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 relcl _ _ 25 fully fully ADV RB _ 26 advmod _ _ 26 faithful faithful ADJ JJ Degree=Pos 24 acomp _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We present two other characterizations. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 two two NUM CD NumType=Card 5 nummod _ _ 4 other other ADJ JJ Degree=Pos 5 amod _ _ 5 characterizations characterization NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 6 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Firstly, lax epimorphisms are precisely the ``absolutely dense'' functors, that is, functors $ P $ such that every object $ B $ of $ {cal B} $ is an absolute colimit of all arrows $ P(E)to B $ for $ E $ in $ {cal E} $ . 1 Firstly firstly ADV RB _ 5 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 5 punct _ _ 3 lax lax ADJ JJ Degree=Pos 4 amod _ _ 4 epimorphisms epimorphism NOUN NNS Number=Plur 5 nsubj _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 precisely precisely ADV RB _ 5 advmod _ _ 7 the the DET DT Definite=Def|PronType=Art 13 det _ _ 8 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 13 punct _ SpaceAfter=No 9 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 13 punct _ SpaceAfter=No 10 absolutely absolutely ADV RB _ 11 advmod _ _ 11 dense dense ADJ JJ Degree=Pos 13 amod _ SpaceAfter=No 12 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 13 punct _ _ 13 functors functor NOUN NNS Number=Plur 5 attr _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 13 punct _ _ 15 that that ADV RB _ 16 advmod _ _ 16 is is ADV RB _ 13 relcl _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 13 punct _ _ 18 functors functor VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 appos _ _ 19 $ P $ $ p $ SYM $ _ 13 appos _ _ 20 such such ADJ JJ Degree=Pos 13 appos _ _ 21 that that SCONJ IN _ 27 mark _ _ 22 every every DET DT _ 23 det _ _ 23 object object NOUN NN Number=Sing 27 nsubj _ _ 24 $ B $ $ b $ SYM $ _ 23 appos _ _ 25 of of ADP IN _ 24 prep _ _ 26 $ {cal B} $ $ {cal b} $ SYM $ _ 25 pobj _ _ 27 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 relcl _ _ 28 an an DET DT Definite=Ind|PronType=Art 30 det _ _ 29 absolute absolute ADJ JJ Degree=Pos 30 amod _ _ 30 colimit colimit NOUN NN Number=Sing 27 attr _ _ 31 of of ADP IN _ 30 prep _ _ 32 all all DET DT _ 33 det _ _ 33 arrows arrow NOUN NNS Number=Plur 31 pobj _ _ 34 $ P(E)to B $ $ p(e)to b $ SYM $ _ 33 appos _ _ 35 for for ADP IN _ 30 prep _ _ 36 $ E $ $ e $ SYM $ _ 35 pobj _ _ 37 in in ADP IN _ 36 prep _ _ 38 $ {cal E} $ $ {cal e} $ SYM $ _ 37 pobj _ _ 39 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = Secondly, lax epimorphisms are precisely the functors $ P $ such that for every morphism $ f $ of $ {cal B} $ the category of all factorizations through objects of $ P[{cal E}] $ is connected. 1 Secondly secondly ADV RB _ 5 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 5 punct _ _ 3 lax lax ADJ JJ Degree=Pos 4 amod _ _ 4 epimorphisms epimorphism NOUN NNS Number=Plur 5 nsubj _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 28 ccomp _ _ 6 precisely precisely ADV RB _ 5 advmod _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 functors functor NOUN NNS Number=Plur 5 attr _ _ 9 $ P $ $ p $ SYM $ _ 8 appos _ _ 10 such such ADJ JJ Degree=Pos 11 amod _ _ 11 that that SCONJ IN _ 4 appos _ _ 12 for for ADP IN _ 11 prep _ _ 13 every every DET DT _ 14 det _ _ 14 morphism morphism NOUN NN Number=Sing 12 pobj _ _ 15 $ f $ $ f $ SYM $ _ 14 prep _ _ 16 of of ADP IN _ 15 prep _ _ 17 $ {cal B} $ $ {cal b} $ SYM $ _ 5 dep _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 category category NOUN NN Number=Sing 17 dobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 all all DET DT _ 22 det _ _ 22 factorizations factorization NOUN NNS Number=Plur 20 pobj _ _ 23 through through ADP IN _ 19 prep _ _ 24 objects object NOUN NNS Number=Plur 23 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 $ P[{cal E}] $ $ p[{cal e}] $ SYM $ _ 28 nsubjpass _ _ 27 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 28 auxpass _ _ 28 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 28 punct _ SpaceAfter=No # sent_id = 5 # text = A relationship between pseudoepimorphisms and lax epimorphisms is discussed. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 relationship relationship NOUN NN Number=Sing 9 nsubjpass _ _ 3 between between ADP IN _ 2 prep _ _ 4 pseudoepimorphisms pseudoepimorphism NOUN NNS Number=Plur 3 pobj _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 lax lax ADJ JJ Degree=Pos 7 amod _ _ 7 epimorphisms epimorphism NOUN NNS Number=Plur 4 conj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 discussed discuss VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 106 # sent_id = 1 # text = The context of enriched sheaf theory introduced in the author's thesis provides a convenient viewpoint for models of the stable homotopy category as well as categories of finite loop spaces. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 context context NOUN NN Number=Sing 13 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 amod _ _ 5 sheaf sheaf NOUN NN Number=Sing 6 compound _ _ 6 theory theory NOUN NN Number=Sing 3 pobj _ _ 7 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 acl _ _ 8 in in ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 author author NOUN NN Number=Sing 12 poss _ SpaceAfter=No 11 's 's PART POS _ 10 case _ _ 12 thesis thesis NOUN NN Number=Sing 8 pobj _ _ 13 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 convenient convenient ADJ JJ Degree=Pos 16 amod _ _ 16 viewpoint viewpoint NOUN NN Number=Sing 13 dobj _ _ 17 for for ADP IN _ 16 prep _ _ 18 models model NOUN NNS Number=Plur 17 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 23 det _ _ 21 stable stable ADJ JJ Degree=Pos 23 amod _ _ 22 homotopy homotopy NOUN NN Number=Sing 23 compound _ _ 23 category category NOUN NN Number=Sing 19 pobj _ _ 24 as as ADV RB _ 26 advmod _ _ 25 well well ADV RB Degree=Pos 26 advmod _ _ 26 as as ADP IN _ 18 cc _ _ 27 categories category NOUN NNS Number=Plur 18 conj _ _ 28 of of ADP IN _ 27 prep _ _ 29 finite finite PROPN NNP Number=Sing 31 compound _ _ 30 loop loop NOUN NN Number=Sing 31 compound _ _ 31 spaces space NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 2 # text = Also, the languages of algebraic geometry and algebraic topology have been interacting quite heavily in recent years, primarily due to the work of Voevodsky and that of Hopkins. 1 Also also ADV RB _ 13 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 13 punct _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 languages language NOUN NNS Number=Plur 13 nsubj _ _ 5 of of ADP IN _ 4 prep _ _ 6 algebraic algebraic ADJ JJ Degree=Pos 7 amod _ _ 7 geometry geometry NOUN NN Number=Sing 5 pobj _ _ 8 and and CCONJ CC ConjType=Cmp 4 cc _ _ 9 algebraic algebraic ADJ JJ Degree=Pos 10 amod _ _ 10 topology topology NOUN NN Number=Sing 4 conj _ _ 11 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 aux _ _ 12 been be AUX VBN Tense=Past|VerbForm=Part 13 aux _ _ 13 interacting interact VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 0 ROOT _ _ 14 quite quite ADV RB _ 15 advmod _ _ 15 heavily heavily ADV RB _ 13 advmod _ _ 16 in in ADP IN _ 13 prep _ _ 17 recent recent ADJ JJ Degree=Pos 18 amod _ _ 18 years year NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 13 punct _ _ 20 primarily primarily ADV RB _ 21 advmod _ _ 21 due due ADP IN _ 13 prep _ _ 22 to to ADP IN _ 21 pcomp _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 work work NOUN NN Number=Sing 21 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 Voevodsky Voevodsky PROPN NNP Number=Sing 25 pobj _ _ 27 and and CCONJ CC ConjType=Cmp 24 cc _ _ 28 that that PRON DT Number=Sing|PronType=Dem 24 conj _ _ 29 of of ADP IN _ 28 prep _ _ 30 Hopkins Hopkins PROPN NNPS Number=Plur 29 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 3 # text = Thus, the language of Grothendieck topologies is becoming a necessary tool for the algebraic topologist. 1 Thus thus ADV RB _ 9 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 9 punct _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 language language NOUN NN Number=Sing 9 nsubj _ _ 5 of of ADP IN _ 4 prep _ _ 6 Grothendieck Grothendieck PROPN NNP Number=Sing 7 compound _ _ 7 topologies topology NOUN NNS Number=Plur 5 pobj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 aux _ _ 9 becoming become VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 0 ROOT _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 necessary necessary ADJ JJ Degree=Pos 12 amod _ _ 12 tool tool NOUN NN Number=Sing 9 attr _ _ 13 for for ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 algebraic algebraic ADJ JJ Degree=Pos 16 amod _ _ 16 topologist topologist NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 4 # text = The current article is intended to give a somewhat relaxed introduction to this language of sheaves in a topological context, using familiar examples such as n - fold loop spaces and pointed $ G $ - spaces. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 current current ADJ JJ Degree=Pos 3 amod _ _ 3 article article NOUN NN Number=Sing 5 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 intended intend VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 to to PART TO _ 7 aux _ _ 7 give give VERB VB VerbForm=Inf 5 xcomp _ _ 8 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 9 somewhat somewhat ADV RB _ 10 advmod _ _ 10 relaxed relaxed ADJ JJ Degree=Pos 11 amod _ _ 11 introduction introduction NOUN NN Number=Sing 7 dobj _ _ 12 to to ADP IN _ 11 prep _ _ 13 this this DET DT Number=Sing|PronType=Dem 14 det _ _ 14 language language NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 sheaves sheaf NOUN NNS Number=Plur 15 pobj _ _ 17 in in ADP IN _ 7 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 topological topological ADJ JJ Degree=Pos 20 amod _ _ 20 context context NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 5 punct _ _ 22 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 advcl _ _ 23 familiar familiar ADJ JJ Degree=Pos 24 amod _ _ 24 examples example NOUN NNS Number=Plur 22 dobj _ _ 25 such such ADJ JJ Degree=Pos 26 amod _ _ 26 as as ADP IN _ 24 prep _ _ 27 n n ADV RB _ 31 amod _ _ 28 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 29 fold fold VERB VB VerbForm=Inf 31 amod _ _ 30 loop loop NOUN NN Number=Sing 31 compound _ _ 31 spaces space NOUN NNS Number=Plur 26 pobj _ _ 32 and and CCONJ CC ConjType=Cmp 5 cc _ _ 33 pointed point VERB VBD Tense=Past|VerbForm=Fin 5 conj _ _ 34 $ G $ $ g $ SYM $ _ 36 compound _ _ 35 - - PUNCT HYPH PunctType=Dash 36 punct _ _ 36 spaces space NOUN NNS Number=Plur 33 dobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 5 # text = This language also includes the diagram categories of spectra as well as spectra in the sense of Lewis, which will be discussed in some detail. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 language language NOUN NN Number=Sing 4 nsubj _ _ 3 also also ADV RB _ 4 advmod _ _ 4 includes include VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 diagram diagram NOUN NN Number=Sing 7 compound _ _ 7 categories category NOUN NNS Number=Plur 4 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 spectra spectra PROPN NNP Number=Sing 8 pobj _ _ 10 as as ADV RB _ 12 advmod _ _ 11 well well ADV RB Degree=Pos 12 advmod _ _ 12 as as ADP IN _ 9 cc _ _ 13 spectra spectra PROPN NNP Number=Sing 9 conj _ _ 14 in in ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 sense sense NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 Lewis Lewis PROPN NNP Number=Sing 17 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 which which PRON WDT _ 23 nsubjpass _ _ 21 will will AUX MD VerbForm=Fin 23 aux _ _ 22 be be AUX VB VerbForm=Inf 23 auxpass _ _ 23 discussed discuss VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 relcl _ _ 24 in in ADP IN _ 23 prep _ _ 25 some some DET DT _ 26 det _ _ 26 detail detail NOUN NN Number=Sing 24 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 107 # sent_id = 1 # text = A cartesian closed topological hull of the construct $ CLS $ of closure spaces and continuous maps is constructed. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 cartesian cartesian NOUN NN Number=Sing 3 nsubj _ _ 3 closed close VERB VBD Tense=Past|VerbForm=Fin 17 nsubjpass _ _ 4 topological topological ADJ JJ Degree=Pos 5 amod _ _ 5 hull hull NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 construct construct NOUN NN Number=Sing 6 pobj _ _ 9 $ CLS $ $ cls $ SYM $ _ 3 dep _ _ 10 of of ADP IN _ 9 prep _ _ 11 closure closure NOUN NN Number=Sing 12 compound _ _ 12 spaces space NOUN NNS Number=Plur 10 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 continuous continuous ADJ JJ Degree=Pos 15 amod _ _ 15 maps map NOUN NNS Number=Plur 12 conj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 auxpass _ _ 17 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 2 # text = The construction is performed in two steps. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 construction construction NOUN NN Number=Sing 4 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 performed perform VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 in in ADP IN _ 4 prep _ _ 6 two two NUM CD NumType=Card 7 nummod _ _ 7 steps step NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 8 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = First a cartesian closed extension $ L $ of $ CLS $ is obtained. 1 First first ADV RB _ 4 advmod _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 cartesian cartesian NOUN NN Number=Sing 4 nsubj _ _ 4 closed closed ADJ JJ Degree=Pos 10 nsubjpass _ _ 5 extension extension NOUN NN Number=Sing 4 dobj _ _ 6 $ L $ $ l $ SYM $ _ 4 npadvmod _ _ 7 of of ADP IN _ 6 prep _ _ 8 $ CLS $ $ cls $ SYM $ _ 7 pobj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 10 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 4 # text = We apply a method worked out by Adamek and Reiterman for constructing extensions of constructs that in some sense ``resemble'' the construct of uniform spaces. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 apply apply VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 method method NOUN NN Number=Sing 2 dobj _ _ 5 worked work VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 acl _ _ 6 out out ADP RP _ 5 prt _ _ 7 by by ADP IN _ 5 agent _ _ 8 Adamek Adamek PROPN NNP Number=Sing 7 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 Reiterman Reiterman PROPN NNP Number=Sing 8 conj _ _ 11 for for ADP IN _ 5 prep _ _ 12 constructing construct VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 11 pcomp _ _ 13 extensions extension NOUN NNS Number=Plur 12 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 constructs construct NOUN NNS Number=Plur 14 pobj _ _ 16 that that SCONJ IN _ 22 mark _ _ 17 in in ADP IN _ 22 prep _ _ 18 some some DET DT _ 19 det _ _ 19 sense sense NOUN NN Number=Sing 17 pobj _ _ 20 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 22 punct _ SpaceAfter=No 21 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 22 punct _ SpaceAfter=No 22 resemble resemble VERB VB VerbForm=Inf 15 relcl _ SpaceAfter=No 23 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 22 punct _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 construct construct NOUN NN Number=Sing 22 dobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 uniform uniform ADJ JJ Degree=Pos 28 amod _ _ 28 spaces space NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = Secondly, within this extension $ L $ the cartesian closed topological hull $ L* $ of $ CLS $ is characterized as a full subconstruct. 1 Secondly secondly ADV RB _ 9 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 9 punct _ _ 3 within within ADP IN _ 9 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 extension extension NOUN NN Number=Sing 3 pobj _ _ 6 $ L $ $ l $ SYM $ _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 cartesian cartesian NOUN NN Number=Sing 9 nsubj _ _ 9 closed close VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 10 topological topological ADJ JJ Degree=Pos 11 amod _ _ 11 hull hull NOUN NN Number=Sing 9 dobj _ _ 12 $ L* $ $ l* $ SYM $ _ 16 nsubjpass _ _ 13 of of ADP IN _ 12 prep _ _ 14 $ CLS $ $ cls $ SYM $ _ 13 pobj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 auxpass _ _ 16 characterized characterize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 conj _ _ 17 as as ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 full full ADJ JJ Degree=Pos 20 amod _ _ 20 subconstruct subconstruct NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 6 # text = In order to find the internal characterization of the objects of $ L* $ we produce a concrete functor to the category of power closed collections based on $ CLS $ as introduced by Adamek, Reiterman and Strecker. 1 In in ADP IN _ 14 prep _ _ 2 order order NOUN NN Number=Sing 1 pobj _ _ 3 to to PART TO _ 4 aux _ _ 4 find find VERB VB VerbForm=Inf 2 acl _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 internal internal ADJ JJ Degree=Pos 7 amod _ _ 7 characterization characterization NOUN NN Number=Sing 4 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 objects object NOUN NNS Number=Plur 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 $ L* $ $ l* $ SYM $ _ 11 pobj _ _ 13 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 14 nsubj _ _ 14 produce produce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 concrete concrete ADJ JJ Degree=Pos 17 amod _ _ 17 functor functor NOUN NN Number=Sing 14 dobj _ _ 18 to to ADP IN _ 14 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 category category NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 power power NOUN NN Number=Sing 21 pobj _ _ 23 closed close VERB VBD Tense=Past|VerbForm=Fin 24 amod _ _ 24 collections collection NOUN NNS Number=Plur 14 dobj _ _ 25 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 acl _ _ 26 on on ADP IN _ 25 prep _ _ 27 $ CLS $ $ cls $ SYM $ _ 26 pobj _ _ 28 as as SCONJ IN _ 29 mark _ _ 29 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 25 advcl _ _ 30 by by ADP IN _ 29 agent _ _ 31 Adamek Adamek PROPN NNP Number=Sing 30 pobj _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 31 punct _ _ 33 Reiterman Reiterman PROPN NNP Number=Sing 31 conj _ _ 34 and and CCONJ CC ConjType=Cmp 33 cc _ _ 35 Strecker Strecker PROPN NNP Number=Sing 33 conj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # doc_id = 108 # sent_id = 1 # text = We prove the universal property of the infinitary exact completion of a category with weak small limits. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 universal universal ADJ JJ Degree=Pos 5 amod _ _ 5 property property NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 10 det _ _ 8 infinitary infinitary ADJ JJ Degree=Pos 10 amod _ _ 9 exact exact ADJ JJ Degree=Pos 10 amod _ _ 10 completion completion NOUN NN Number=Sing 6 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 category category NOUN NN Number=Sing 11 pobj _ _ 14 with with ADP IN _ 13 prep _ _ 15 weak weak ADJ JJ Degree=Pos 17 amod _ _ 16 small small ADJ JJ Degree=Pos 17 amod _ _ 17 limits limit NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = As an application, we slightly weaken the conditions characterizing essential localizations of varieties (in particular, of module categories) and of presheaf categories. 1 As as ADP IN _ 7 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 application application NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 7 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 6 slightly slightly ADV RB _ 7 advmod _ _ 7 weaken weaken VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 conditions condition NOUN NNS Number=Plur 7 dobj _ _ 10 characterizing characterize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 acl _ _ 11 essential essential ADJ JJ Degree=Pos 12 amod _ _ 12 localizations localization NOUN NNS Number=Plur 10 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 varieties variety NOUN NNS Number=Plur 13 pobj _ _ 15 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 14 punct _ SpaceAfter=No 16 in in ADP IN _ 14 prep _ _ 17 particular particular ADJ JJ Degree=Pos 16 amod _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 10 punct _ _ 19 of of ADP IN _ 10 prep _ _ 20 module module NOUN NN Number=Sing 21 compound _ _ 21 categories category NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 22 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 21 punct _ _ 23 and and CCONJ CC ConjType=Cmp 19 cc _ _ 24 of of ADP IN _ 19 conj _ _ 25 presheaf presheaf ADJ JJ Degree=Pos 26 amod _ _ 26 categories category NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # doc_id = 109 # sent_id = 1 # text = A categorical proof of the statement given by the title is provided, in generalization of a result for topological spaces proved recently by Clementino, Hofmann and Tholen. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 categorical categorical ADJ JJ Degree=Pos 3 amod _ _ 3 proof proof NOUN NN Number=Sing 0 ROOT _ _ 4 of of ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 statement statement NOUN NN Number=Sing 4 pobj _ _ 7 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 acl _ _ 8 by by ADP IN _ 7 agent _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 title title NOUN NN Number=Sing 8 pobj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 12 provided provide VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 acl _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 3 punct _ _ 14 in in ADP IN _ 3 prep _ _ 15 generalization generalization NOUN NN Number=Sing 14 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 result result NOUN NN Number=Sing 16 pobj _ _ 19 for for ADP IN _ 18 prep _ _ 20 topological topological ADJ JJ Degree=Pos 21 amod _ _ 21 spaces space NOUN NNS Number=Plur 19 pobj _ _ 22 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 acl _ _ 23 recently recently ADV RB _ 22 advmod _ _ 24 by by ADP IN _ 22 agent _ _ 25 Clementino Clementino PROPN NNP Number=Sing 24 pobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 25 punct _ _ 27 Hofmann Hofmann PROPN NNP Number=Sing 25 conj _ _ 28 and and CCONJ CC ConjType=Cmp 27 cc _ _ 29 Tholen Tholen PROPN NNP Number=Sing 27 conj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 110 # sent_id = 1 # text = In the context of Maltsev categories, a left exact root for the congruence distributive property is given and investigated, namely the property that there is no non trivial internal group inside the fibres of the fibration of pointed objects. 1 In in ADP IN _ 18 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 context context NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 Maltsev maltsev ADJ JJ Degree=Pos 6 amod _ _ 6 categories category NOUN NNS Number=Plur 4 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 6 punct _ _ 8 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 9 left left ADJ JJ Degree=Pos 11 amod _ _ 10 exact exact ADJ JJ Degree=Pos 11 amod _ _ 11 root root NOUN NN Number=Sing 18 nsubjpass _ _ 12 for for ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 16 det _ _ 14 congruence congruence NOUN NN Number=Sing 15 npadvmod _ _ 15 distributive distributive ADJ JJ Degree=Pos 16 amod _ _ 16 property property NOUN NN Number=Sing 12 pobj _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 auxpass _ _ 18 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 investigated investigate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 conj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 namely namely ADV RB _ 24 advmod _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 property property NOUN NN Number=Sing 20 dobj _ _ 25 that that PRON WDT PronType=Rel 27 mark _ _ 26 there there PRON EX _ 27 expl _ _ 27 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 acl _ _ 28 no no DET DT _ 32 det _ _ 29 non non ADJ JJ Degree=Pos 30 amod _ _ 30 trivial trivial ADJ JJ Degree=Pos 32 amod _ _ 31 internal internal ADJ JJ Degree=Pos 32 amod _ _ 32 group group NOUN NN Number=Sing 27 attr _ _ 33 inside inside ADP IN _ 32 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 35 det _ _ 35 fibres fibre NOUN NNS Number=Plur 33 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 the the DET DT Definite=Def|PronType=Art 38 det _ _ 38 fibration fibration NOUN NN Number=Sing 36 pobj _ _ 39 of of ADP IN _ 38 prep _ _ 40 pointed pointed ADJ JJ Degree=Pos 41 amod _ _ 41 objects object NOUN NNS Number=Plur 39 pobj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # sent_id = 2 # text = Indeed, when moreover the basic category $ mathbb{C} $ is Barr exact, the two previous properties are shown to be equivalent. 1 Indeed indeed ADV RB _ 9 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 9 punct _ _ 3 when when SCONJ WRB _ 4 advmod _ _ 4 moreover moreover ADV RB _ 9 advmod _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 basic basic ADJ JJ Degree=Pos 7 amod _ _ 7 category category NOUN NN Number=Sing 9 nsubj _ _ 8 $ mathbb{C} $ $ mathbb{c} $ SYM $ _ 7 appos _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 ccomp _ _ 10 Barr Barr PROPN NNP Number=Sing 11 compound _ _ 11 exact exact ADJ JJ Degree=Pos 9 attr _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 18 punct _ _ 13 the the DET DT Definite=Def|PronType=Art 16 det _ _ 14 two two NUM CD NumType=Card 16 nummod _ _ 15 previous previous ADJ JJ Degree=Pos 16 amod _ _ 16 properties property NOUN NNS Number=Plur 18 nsubjpass _ _ 17 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 18 auxpass _ _ 18 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 19 to to PART TO _ 20 aux _ _ 20 be be AUX VB VerbForm=Inf 18 xcomp _ _ 21 equivalent equivalent ADJ JJ Degree=Pos 20 acomp _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # doc_id = 111 # sent_id = 1 # text = For a broad collection of categories $ cal K $ , including all presheaf categories, the following statement is proved to be consistent: every left exact (that is, finite - limits preserving) functor from $ cal K $ to $ Set $ is small, that is, a small colimit of representables. 1 For for ADP IN _ 18 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 broad broad ADJ JJ Degree=Pos 4 amod _ _ 4 collection collection NOUN NN Number=Sing 1 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 categories category NOUN NNS Number=Plur 5 pobj _ _ 7 $ cal K $ $ cal k $ SYM $ _ 4 appos _ _ 8 , , PUNCT , PunctType=Comm 4 punct _ _ 9 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 prep _ _ 10 all all DET DT _ 12 det _ _ 11 presheaf presheaf ADJ JJ Degree=Pos 12 amod _ _ 12 categories category NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 18 punct _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 following follow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 amod _ _ 16 statement statement NOUN NN Number=Sing 18 nsubjpass _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 auxpass _ _ 18 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 40 ccomp _ _ 19 to to PART TO _ 20 aux _ _ 20 be be AUX VB VerbForm=Inf 18 xcomp _ _ 21 consistent consistent ADJ JJ Degree=Pos 20 acomp _ SpaceAfter=No 22 : : PUNCT : _ 18 punct _ _ 23 every every DET DT _ 25 det _ _ 24 left left ADJ JJ Degree=Pos 25 amod _ _ 25 exact exact ADJ JJ Degree=Pos 22 nmod _ _ 26 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 25 punct _ SpaceAfter=No 27 that that ADV RB _ 28 advmod _ _ 28 is is ADV RB _ 35 advmod _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 35 punct _ _ 30 finite finite NOUN NN Number=Sing 32 compound _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 limits limit NOUN NNS Number=Plur 33 nsubj _ _ 33 preserving preserve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 35 amod _ SpaceAfter=No 34 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 35 punct _ _ 35 functor functor NOUN NN Number=Sing 40 nsubj _ _ 36 from from ADP IN _ 35 prep _ _ 37 $ cal K $ $ cal k $ SYM $ _ 36 pobj _ _ 38 to to PART TO _ 36 prep _ _ 39 $ Set $ $ set $ SYM $ _ 38 pobj _ _ 40 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 41 small small ADJ JJ Degree=Pos 40 acomp _ SpaceAfter=No 42 , , PUNCT , PunctType=Comm 40 punct _ _ 43 that that ADV RB _ 44 advmod _ _ 44 is is ADV RB _ 48 advmod _ SpaceAfter=No 45 , , PUNCT , PunctType=Comm 48 punct _ _ 46 a a DET DT Definite=Ind|PronType=Art 48 det _ _ 47 small small ADJ JJ Degree=Pos 48 amod _ _ 48 colimit colimit NOUN NN Number=Sing 40 attr _ _ 49 of of ADP IN _ 48 prep _ _ 50 representables representable NOUN NNS Number=Plur 49 pobj _ SpaceAfter=No 51 . . PUNCT . PunctType=Peri 40 punct _ SpaceAfter=No # sent_id = 2 # text = In contrast, for the (presheaf) category $ {cal K}=Alg(1, 1) $ of unary algebras we construct a functor from $ Alg(1, 1) $ to $ Set $ which preserves finite products and is not small. 1 In in ADP IN _ 15 prep _ _ 2 contrast contrast NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 15 punct _ _ 4 for for ADP IN _ 15 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 9 det _ _ 6 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 9 punct _ SpaceAfter=No 7 presheaf presheaf ADJ JJ Degree=Pos 9 amod _ SpaceAfter=No 8 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 9 punct _ _ 9 category category NOUN NN Number=Sing 4 pobj _ _ 10 $ {cal K}=Alg(1, 1) $ $ {cal k}=alg(1, 1) $ SYM $ _ 9 appos _ _ 11 of of ADP IN _ 10 prep _ _ 12 unary unary ADJ JJ Degree=Pos 13 amod _ _ 13 algebras algebra NOUN NNS Number=Plur 11 pobj _ _ 14 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 15 nsubj _ _ 15 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 functor functor NOUN NN Number=Sing 15 dobj _ _ 18 from from ADP IN _ 15 prep _ _ 19 $ Alg(1, 1) $ $ alg(1, 1) $ SYM $ _ 18 pobj _ _ 20 to to ADP IN _ 18 prep _ _ 21 $ Set $ $ set $ SYM $ _ 20 pobj _ _ 22 which which PRON WDT _ 23 nsubj _ _ 23 preserves preserve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 advcl _ _ 24 finite finite ADJ JJ Degree=Pos 25 compound _ _ 25 products product NOUN NNS Number=Plur 23 dobj _ _ 26 and and CCONJ CC ConjType=Cmp 23 cc _ _ 27 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 conj _ _ 28 not not PART RB Polarity=Neg 27 neg _ _ 29 small small ADJ JJ Degree=Pos 27 acomp _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 3 # text = We also describe all left exact set - valued functors as directed unions of ``reduced representables'', generalizing reduced products. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 all all PRON DT _ 3 dobj _ _ 5 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 ccomp _ _ 6 exact exact ADJ JJ Degree=Pos 10 amod _ _ 7 set set NOUN NN Number=Sing 9 npadvmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 10 functors functor NOUN NNS Number=Plur 5 dobj _ _ 11 as as ADP IN _ 5 prep _ _ 12 directed direct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 amod _ _ 13 unions union NOUN NNS Number=Plur 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 18 punct _ SpaceAfter=No 16 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 18 punct _ SpaceAfter=No 17 reduced reduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 amod _ _ 18 representables representable NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 19 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 18 punct _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 5 punct _ _ 21 generalizing generalize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 advcl _ _ 22 reduced reduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 amod _ _ 23 products product NOUN NNS Number=Plur 21 dobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 112 # sent_id = 1 # text = We develop a new approach to Commutator theory based on the theory of internal categorical structures, especially of so called pseudogroupoids. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 develop develop VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 new new ADJ JJ Degree=Pos 5 amod _ _ 5 approach approach NOUN NN Number=Sing 2 dobj _ _ 6 to to ADP IN _ 5 prep _ _ 7 Commutator Commutator PROPN NNP Number=Sing 8 compound _ _ 8 theory theory NOUN NN Number=Sing 6 pobj _ _ 9 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 acl _ _ 10 on on ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 theory theory NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 internal internal ADJ JJ Degree=Pos 16 amod _ _ 15 categorical categorical ADJ JJ Degree=Pos 16 amod _ _ 16 structures structure NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 5 punct _ _ 18 especially especially ADV RB _ 19 advmod _ _ 19 of of ADP IN _ 5 prep _ _ 20 so so ADV RB _ 21 advmod _ _ 21 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 amod _ _ 22 pseudogroupoids pseudogroupoid NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = It is motivated by our previous work on internal categories and groupoids in congruence modular varieties. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 motivated motivate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 by by ADP IN _ 3 agent _ _ 5 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 7 poss _ _ 6 previous previous ADJ JJ Degree=Pos 7 amod _ _ 7 work work NOUN NN Number=Sing 4 pobj _ _ 8 on on ADP IN _ 7 prep _ _ 9 internal internal ADJ JJ Degree=Pos 10 amod _ _ 10 categories category NOUN NNS Number=Plur 8 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 groupoids groupoid NOUN NNS Number=Plur 10 conj _ _ 13 in in ADP IN _ 10 prep _ _ 14 congruence congruence NOUN NN Number=Sing 16 nmod _ _ 15 modular modular ADJ JJ Degree=Pos 16 amod _ _ 16 varieties variety NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 113 # sent_id = 1 # text = We explore the combinatorial properties of the branching areas of execution paths in higher dimensional automata. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 explore explore VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 combinatorial combinatorial ADJ JJ Degree=Pos 5 amod _ _ 5 properties property NOUN NNS Number=Plur 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 branching branching NOUN NN Number=Sing 9 compound _ _ 9 areas area NOUN NNS Number=Plur 6 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 execution execution NOUN NN Number=Sing 12 compound _ _ 12 paths path NOUN NNS Number=Plur 10 pobj _ _ 13 in in ADP IN _ 12 prep _ _ 14 higher high ADJ JJR Degree=Cmp 16 amod _ _ 15 dimensional dimensional ADJ JJ Degree=Pos 16 amod _ _ 16 automata automata NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Mathematically, this means that we investigate the combinatorics of the negative corner (or branching) homology of a globular $ omega $ - category and the combinatorics of a new homology theory called the reduced branching homology. 1 Mathematically mathematically ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 this this PRON DT Number=Sing|PronType=Dem 4 nsubj _ _ 4 means mean VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 7 mark _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 investigate investigate VERB VBP Tense=Pres|VerbForm=Fin 4 ccomp _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 combinatorics combinatoric NOUN NNS Number=Plur 7 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 negative negative ADJ JJ Degree=Pos 13 amod _ _ 13 corner corner NOUN NN Number=Sing 10 pobj _ _ 14 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 13 punct _ SpaceAfter=No 15 or or CCONJ CC ConjType=Cmp 13 cc _ _ 16 branching branching NOUN NN Number=Sing 18 nmod _ SpaceAfter=No 17 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 18 punct _ _ 18 homology homology NOUN NN Number=Sing 13 conj _ _ 19 of of ADP IN _ 18 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 21 globular globular ADJ JJ Degree=Pos 24 amod _ _ 22 $ omega $ $ omega $ SYM $ _ 24 compound _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 category category NOUN NN Number=Sing 19 pobj _ _ 25 and and CCONJ CC ConjType=Cmp 18 cc _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 combinatorics combinatoric NOUN NNS Number=Plur 18 conj _ _ 28 of of ADP IN _ 27 prep _ _ 29 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 30 new new ADJ JJ Degree=Pos 32 amod _ _ 31 homology homology NOUN NN Number=Sing 32 compound _ _ 32 theory theory NOUN NN Number=Sing 28 pobj _ _ 33 called call VERB VBD Tense=Past|VerbForm=Fin 9 acl _ _ 34 the the DET DT Definite=Def|PronType=Art 37 det _ _ 35 reduced reduced ADJ JJ Degree=Pos 37 amod _ _ 36 branching branching NOUN NN Number=Sing 37 compound _ _ 37 homology homology NOUN NN Number=Sing 33 oprd _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = The latter is the homology of the quotient of the branching complex by the sub - complex generated by its thin elements. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 latter latter ADJ JJ Degree=Pos 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 homology homology NOUN NN Number=Sing 3 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 quotient quotient NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 branching branch VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 amod _ _ 12 complex complex NOUN NN Number=Sing 9 pobj _ _ 13 by by ADP IN _ 8 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 17 det _ _ 15 sub sub NOUN NN Number=Sing 17 compound _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 complex complex ADJ JJ Degree=Pos 13 pobj _ _ 18 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 acl _ _ 19 by by ADP IN _ 18 agent _ _ 20 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 22 poss _ _ 21 thin thin ADJ JJ Degree=Pos 22 amod _ _ 22 elements element NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = Conjecturally it coincides with the non reduced theory for higher dimensional automata, that is $ omega $ - categories freely generated by precubical sets. 1 Conjecturally conjecturally ADV RB _ 3 advmod _ _ 2 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubj _ _ 3 coincides coincide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 with with ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 8 det _ _ 6 non non PROPN NNP Number=Sing 7 advmod _ _ 7 reduced reduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 8 theory theory NOUN NN Number=Sing 4 pobj _ _ 9 for for ADP IN _ 8 prep _ _ 10 higher high ADJ JJR Degree=Cmp 12 amod _ _ 11 dimensional dimensional ADJ JJ Degree=Pos 12 amod _ _ 12 automata automata NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 3 punct _ _ 14 that that PRON WDT PronType=Rel 15 nsubj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 advcl _ _ 16 $ omega $ $ omega $ SYM $ _ 18 compound _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 categories category NOUN NNS Number=Plur 15 attr _ _ 19 freely freely ADV RB _ 20 advmod _ _ 20 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 acl _ _ 21 by by ADP IN _ 20 agent _ _ 22 precubical precubical ADJ JJ Degree=Pos 23 amod _ _ 23 sets set NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = As application, we calculate the branching homology of some $ omega $ - categories and we give some invariance results for the reduced branching homology. 1 As as ADP IN _ 5 prep _ _ 2 application application NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 calculate calculate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 branching branching NOUN NN Number=Sing 8 compound _ _ 8 homology homology NOUN NN Number=Sing 5 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 some some DET DT _ 13 det _ _ 11 $ omega $ $ omega $ SYM $ _ 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 categories category NOUN NNS Number=Plur 9 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 5 cc _ _ 15 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 16 nsubj _ _ 16 give give VERB VBP Tense=Pres|VerbForm=Fin 5 conj _ _ 17 some some DET DT _ 19 det _ _ 18 invariance invariance NOUN NN Number=Sing 19 compound _ _ 19 results result NOUN NNS Number=Plur 16 dobj _ _ 20 for for ADP IN _ 16 dative _ _ 21 the the DET DT Definite=Def|PronType=Art 24 det _ _ 22 reduced reduced ADJ JJ Degree=Pos 24 amod _ _ 23 branching branching NOUN NN Number=Sing 24 compound _ _ 24 homology homology NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 6 # text = We only treat the branching side. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 only only ADV RB _ 3 advmod _ _ 3 treat treat VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 branching branching NOUN NN Number=Sing 6 compound _ _ 6 side side NOUN NN Number=Sing 3 dobj _ SpaceAfter=No 7 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 7 # text = The merging side, that is the case of merging areas of execution paths is similar and can be easily deduced from the branching side. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 merging merging NOUN NN Number=Sing 3 compound _ _ 3 side side NOUN NN Number=Sing 15 nsubj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 that that PRON DT Number=Sing|PronType=Dem 6 nsubj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 relcl _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 case case NOUN NN Number=Sing 6 attr _ _ 9 of of ADP IN _ 8 prep _ _ 10 merging merge VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 11 compound _ _ 11 areas area NOUN NNS Number=Plur 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 execution execution NOUN NN Number=Sing 14 compound _ _ 14 paths path NOUN NNS Number=Plur 12 pobj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 16 similar similar ADJ JJ Degree=Pos 15 acomp _ _ 17 and and CCONJ CC ConjType=Cmp 15 cc _ _ 18 can can AUX MD VerbForm=Fin 21 aux _ _ 19 be be AUX VB VerbForm=Inf 21 auxpass _ _ 20 easily easily ADV RB _ 21 advmod _ _ 21 deduced deduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 conj _ _ 22 from from ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 branching branching NOUN NN Number=Sing 25 compound _ _ 25 side side NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # doc_id = 114 # sent_id = 1 # text = We give an abstract characterization of the categories of models of sketches all of whose distinguished cones are based on connected (respectively non empty) categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 4 abstract abstract ADJ JJ Degree=Pos 5 amod _ _ 5 characterization characterization NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 categories category NOUN NNS Number=Plur 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 models model NOUN NNS Number=Plur 9 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 sketches sketch NOUN NNS Number=Plur 11 pobj _ _ 13 all all PRON DT _ 19 nsubjpass _ _ 14 of of ADP IN _ 13 prep _ _ 15 whose whose DET WP$ Poss=Yes 17 poss _ _ 16 distinguished distinguished ADJ JJ Degree=Pos 17 amod _ _ 17 cones cone NOUN NNS Number=Plur 14 pobj _ _ 18 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 19 auxpass _ _ 19 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 advcl _ _ 20 on on ADP IN _ 19 prep _ _ 21 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 amod _ _ 22 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 27 punct _ SpaceAfter=No 23 respectively respectively ADV RB _ 24 advmod _ _ 24 non non ADJ JJ Degree=Pos 25 nmod _ _ 25 empty empty ADJ JJ Degree=Pos 27 amod _ SpaceAfter=No 26 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 27 punct _ _ 27 categories category NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 115 # sent_id = 1 # text = The 2 - category $ VAR $ of finitary varieties is not varietal over $ CAT $ . 1 The the DET DT Definite=Def|PronType=Art 9 det _ _ 2 2 2 NUM CD NumType=Card 4 nummod _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 category category NOUN NN Number=Sing 9 nsubj _ _ 5 $ VAR $ $ var $ SYM $ _ 4 nummod _ _ 6 of of ADP IN _ 4 prep _ _ 7 finitary finitary ADJ JJ Degree=Pos 8 amod _ _ 8 varieties variety NOUN NNS Number=Plur 6 pobj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 not not PART RB Polarity=Neg 9 neg _ _ 11 varietal varietal ADJ JJ Degree=Pos 9 acomp _ _ 12 over over ADP IN _ 11 prep _ _ 13 $ CAT $ $ cat $ SYM $ _ 9 dep _ _ 14 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 2 # text = We introduce the concept of an algebraically exact category and prove that the 2 - category $ ALG $ of all algebraically exact categories is an equational hull of $ VAR $ with respect to all operations with rank. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 concept concept NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 7 algebraically algebraically ADV RB _ 8 advmod _ _ 8 exact exact ADJ JJ Degree=Pos 9 amod _ _ 9 category category NOUN NN Number=Sing 5 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 2 cc _ _ 11 prove prove VERB VB VerbForm=Inf 2 conj _ _ 12 that that SCONJ IN _ 23 mark _ _ 13 the the DET DT Definite=Def|PronType=Art 17 det _ _ 14 2 2 NUM CD NumType=Card 16 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 category category NOUN NN Number=Sing 17 compound _ _ 17 $ ALG $ $ alg $ SYM $ _ 23 nsubj _ _ 18 of of ADP IN _ 17 prep _ _ 19 all all DET DT _ 22 det _ _ 20 algebraically algebraically ADV RB _ 21 advmod _ _ 21 exact exact ADJ JJ Degree=Pos 22 amod _ _ 22 categories category NOUN NNS Number=Plur 18 pobj _ _ 23 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 ccomp _ _ 24 an an DET DT Definite=Ind|PronType=Art 26 det _ _ 25 equational equational ADJ JJ Degree=Pos 26 amod _ _ 26 hull hull NOUN NN Number=Sing 23 attr _ _ 27 of of ADP IN _ 26 prep _ _ 28 $ VAR $ $ var $ SYM $ _ 27 pobj _ _ 29 with with ADP IN _ 26 prep _ _ 30 respect respect NOUN NN Number=Sing 29 pobj _ _ 31 to to ADP IN _ 30 prep _ _ 32 all all DET DT _ 33 det _ _ 33 operations operation NOUN NNS Number=Plur 31 pobj _ _ 34 with with ADP IN _ 30 prep _ _ 35 rank rank NOUN NN Number=Sing 34 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Every algebraically exact category $ cal K $ is complete, exact, and has filtered colimits which (i) commute with finite limits and (ii) distribute over products; besides (iii) regular epimorphisms in $ cal K $ are product - stable. 1 Every every DET DT _ 4 det _ _ 2 algebraically algebraically ADV RB _ 3 advmod _ _ 3 exact exact ADJ JJ Degree=Pos 4 amod _ _ 4 category category NOUN NN Number=Sing 6 nsubj _ _ 5 $ cal K $ $ cal k $ SYM $ _ 4 appos _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 39 ccomp _ _ 7 complete complete ADJ JJ Degree=Pos 6 acomp _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 exact exact ADJ JJ Degree=Pos 7 conj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 6 punct _ _ 11 and and CCONJ CC ConjType=Cmp 6 cc _ _ 12 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 aux _ _ 13 filtered filter VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 conj _ _ 14 colimits colimit NOUN NNS Number=Plur 13 dobj _ _ 15 which which PRON WDT _ 19 nsubj _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 19 punct _ SpaceAfter=No 17 i i NOUN NN Number=Sing 19 nmod _ SpaceAfter=No 18 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 19 punct _ _ 19 commute commute NOUN NN Number=Sing 14 relcl _ _ 20 with with ADP IN _ 19 prep _ _ 21 finite finite ADJ JJ Degree=Pos 22 compound _ _ 22 limits limit NOUN NNS Number=Plur 20 pobj _ _ 23 and and CCONJ CC ConjType=Cmp 22 cc _ _ 24 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 25 punct _ SpaceAfter=No 25 ii ii PROPN NNP Number=Sing 22 conj _ SpaceAfter=No 26 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 22 punct _ _ 27 distribute distribute VERB VB VerbForm=Inf 13 conj _ _ 28 over over ADP IN _ 27 prep _ _ 29 products product NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 30 ; ; PUNCT : _ 39 punct _ _ 31 besides besides SCONJ IN _ 39 prep _ _ 32 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 33 punct _ SpaceAfter=No 33 iii iii NOUN NN Number=Sing 31 intj _ SpaceAfter=No 34 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 36 punct _ _ 35 regular regular ADJ JJ Degree=Pos 36 amod _ _ 36 epimorphisms epimorphism NOUN NNS Number=Plur 31 pobj _ _ 37 in in ADP IN _ 36 prep _ _ 38 $ cal K $ $ cal k $ SYM $ _ 37 pobj _ _ 39 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 40 product product NOUN NN Number=Sing 42 npadvmod _ _ 41 - - PUNCT HYPH PunctType=Dash 42 punct _ _ 42 stable stable ADJ JJ Degree=Pos 39 acomp _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 39 punct _ SpaceAfter=No # sent_id = 4 # text = It is not known whether the three conditions characterize algebraic exactness. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 4 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 3 not not PART RB Polarity=Neg 4 neg _ _ 4 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 whether whether SCONJ IN _ 9 mark _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 three three NUM CD NumType=Card 8 nummod _ _ 8 conditions condition NOUN NNS Number=Plur 9 nsubj _ _ 9 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 4 ccomp _ _ 10 algebraic algebraic ADJ JJ Degree=Pos 11 amod _ _ 11 exactness exactness NOUN NN Number=Sing 9 dobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = An equational hull of $ VAR $ with respect to all operations is also discussed. 1 An an DET DT Definite=Ind|PronType=Art 3 det _ _ 2 equational equational ADJ JJ Degree=Pos 3 amod _ _ 3 hull hull NOUN NN Number=Sing 13 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 $ VAR $ $ var $ SYM $ _ 4 pobj _ _ 6 with with ADP IN _ 3 prep _ _ 7 respect respect NOUN NN Number=Sing 6 pobj _ _ 8 to to ADP IN _ 7 prep _ _ 9 all all DET DT _ 10 det _ _ 10 operations operation NOUN NNS Number=Plur 8 pobj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 12 also also ADV RB _ 13 advmod _ _ 13 discussed discuss VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # doc_id = 116 # sent_id = 1 # text = Let $ cal C $ be a full subcategory of the category of topological abelian groups and $ SPcal C $ denote the full subcategory of subobjects of products of objects of $ cal C $ . 1 Let let VERB VB VerbForm=Inf 0 ROOT _ _ 2 $ cal C $ $ cal c $ SYM $ _ 3 nsubj _ _ 3 be be AUX VB VerbForm=Inf 1 ccomp _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 full full ADJ JJ Degree=Pos 6 amod _ _ 6 subcategory subcategory NOUN NN Number=Sing 3 attr _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 category category NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 topological topological ADJ JJ Degree=Pos 13 amod _ _ 12 abelian abelian ADJ JJ Degree=Pos 13 compound _ _ 13 groups group NOUN NNS Number=Plur 10 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 6 cc _ _ 15 $ SPcal C $ $ spcal c $ SYM $ _ 3 dep _ _ 16 denote denote VERB VBD Tense=Past|VerbForm=Fin 1 ccomp _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 full full ADJ JJ Degree=Pos 19 amod _ _ 19 subcategory subcategory NOUN NN Number=Sing 16 dobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 subobjects subobject NOUN NNS Number=Plur 20 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 products product NOUN NNS Number=Plur 22 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 objects object NOUN NNS Number=Plur 24 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 $ cal C $ $ cal c $ SYM $ _ 26 pobj _ _ 28 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = We say that $ SPcal C $ has Mackey coreflections if there is a functor that assigns to each object $ A $ of $ SPcal C $ an object $ tau A $ that has the same group of characters as $ A $ and is the finest topology with that property. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 say say VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 5 mark _ _ 4 $ SPcal C $ $ spcal c $ SYM $ _ 5 nsubj _ _ 5 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 6 Mackey Mackey PROPN NNP Number=Sing 7 compound _ _ 7 coreflections coreflection NOUN NNS Number=Plur 5 dobj _ _ 8 if if SCONJ IN _ 10 mark _ _ 9 there there PRON EX _ 10 expl _ _ 10 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 advcl _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 functor functor NOUN NN Number=Sing 10 attr _ _ 13 that that PRON WDT PronType=Rel 14 nsubj _ _ 14 assigns assign VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 relcl _ _ 15 to to ADP IN _ 14 prep _ _ 16 each each DET DT _ 17 det _ _ 17 object object NOUN NN Number=Sing 15 pobj _ _ 18 $ A $ $ a $ SYM $ _ 14 prep _ _ 19 of of ADP IN _ 18 prep _ _ 20 $ SPcal C $ $ spcal c $ SYM $ _ 14 punct _ _ 21 an an DET DT Definite=Ind|PronType=Art 22 det _ _ 22 object object NOUN NN Number=Sing 14 dobj _ _ 23 $ tau A $ $ tau a $ SYM $ _ 22 appos _ _ 24 that that PRON WDT PronType=Rel 25 nsubj _ _ 25 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 relcl _ _ 26 the the DET DT Definite=Def|PronType=Art 28 det _ _ 27 same same ADJ JJ Degree=Pos 28 amod _ _ 28 group group NOUN NN Number=Sing 25 dobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 characters character NOUN NNS Number=Plur 29 pobj _ _ 31 as as ADP IN _ 25 prep _ _ 32 $ A $ $ a $ SYM $ _ 31 pobj _ _ 33 and and CCONJ CC ConjType=Cmp 25 cc _ _ 34 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 25 conj _ _ 35 the the DET DT Definite=Def|PronType=Art 37 det _ _ 36 finest fine ADJ JJS Degree=Sup 37 amod _ _ 37 topology topology NOUN NN Number=Sing 34 attr _ _ 38 with with ADP IN _ 37 prep _ _ 39 that that DET DT Number=Sing|PronType=Dem 40 det _ _ 40 property property NOUN NN Number=Sing 38 pobj _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We show that the existence of Mackey coreflections in $ SPcal C $ is equivalent to the injectivity of the circle with respect to topological subgroups of groups in $ cal C $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 11 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 existence existence NOUN NN Number=Sing 11 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 Mackey Mackey PROPN NNP Number=Sing 8 compound _ _ 8 coreflections coreflection NOUN NNS Number=Plur 6 pobj _ _ 9 in in ADP IN _ 8 prep _ _ 10 $ SPcal C $ $ spcal c $ SYM $ _ 9 pobj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 12 equivalent equivalent ADJ JJ Degree=Pos 11 acomp _ _ 13 to to ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 injectivity injectivity NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 circle circle NOUN NN Number=Sing 16 pobj _ _ 19 with with ADP IN _ 11 prep _ _ 20 respect respect NOUN NN Number=Sing 19 pobj _ _ 21 to to ADP IN _ 20 prep _ _ 22 topological topological ADJ JJ Degree=Pos 23 amod _ _ 23 subgroups subgroup NOUN NNS Number=Plur 21 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 groups group NOUN NNS Number=Plur 24 pobj _ _ 26 in in ADP IN _ 25 prep _ _ 27 $ cal C $ $ cal c $ SYM $ _ 26 pobj _ _ 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 117 # sent_id = 1 # text = The category of finite cardinals (or, equivalently, of finite sets) is the symmetric analogue of the category of finite ordinals, and the ground category of a relevant category of presheaves, the augmented symmetric simplicial sets. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 category category NOUN NN Number=Sing 15 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 finite finite ADJ JJ Degree=Pos 5 amod _ _ 5 cardinals cardinal NOUN NNS Number=Plur 3 pobj _ _ 6 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 5 punct _ SpaceAfter=No 7 or or CCONJ CC ConjType=Cmp 2 cc _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 2 punct _ _ 9 equivalently equivalently ADV RB _ 2 advmod _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 2 punct _ _ 11 of of ADP IN _ 2 prep _ _ 12 finite finite PROPN NNP Number=Sing 13 compound _ _ 13 sets set NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 14 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 2 punct _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 symmetric symmetric ADJ JJ Degree=Pos 18 amod _ _ 18 analogue analogue NOUN NN Number=Sing 15 attr _ _ 19 of of ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 category category NOUN NN Number=Sing 19 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 finite finite ADJ JJ Degree=Pos 24 compound _ _ 24 ordinals ordinal NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 15 punct _ _ 26 and and CCONJ CC ConjType=Cmp 15 cc _ _ 27 the the DET DT Definite=Def|PronType=Art 29 det _ _ 28 ground ground NOUN NN Number=Sing 29 compound _ _ 29 category category NOUN NN Number=Sing 15 conj _ _ 30 of of ADP IN _ 29 prep _ _ 31 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 32 relevant relevant ADJ JJ Degree=Pos 33 amod _ _ 33 category category NOUN NN Number=Sing 30 pobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 presheaves presheave NOUN NNS Number=Plur 34 pobj _ SpaceAfter=No 36 , , PUNCT , PunctType=Comm 29 punct _ _ 37 the the DET DT Definite=Def|PronType=Art 41 det _ _ 38 augmented augment VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 41 amod _ _ 39 symmetric symmetric ADJ JJ Degree=Pos 41 amod _ _ 40 simplicial simplicial ADJ JJ Degree=Pos 41 amod _ _ 41 sets set NOUN NNS Number=Plur 29 appos _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 2 # text = We prove here that this ground category has characterisations similar to the classical ones for the category of finite ordinals, by the existence of a universal symmetric monoid, or by generators and relations. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 here here ADV RB PronType=Dem 2 advmod _ _ 4 that that SCONJ IN _ 8 mark _ _ 5 this this DET DT Number=Sing|PronType=Dem 7 det _ _ 6 ground ground NOUN NN Number=Sing 7 compound _ _ 7 category category NOUN NN Number=Sing 8 nsubj _ _ 8 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 9 characterisations characterisation NOUN NNS Number=Plur 8 dobj _ _ 10 similar similar ADJ JJ Degree=Pos 9 amod _ _ 11 to to ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 classical classical ADJ JJ Degree=Pos 14 amod _ _ 14 ones one NOUN NNS Number=Plur 11 pobj _ _ 15 for for ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 category category NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 finite finite ADJ JJ Degree=Pos 20 compound _ _ 20 ordinals ordinal NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 8 punct _ _ 22 by by ADP IN _ 8 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 existence existence NOUN NN Number=Sing 22 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 27 universal universal ADJ JJ Degree=Pos 29 amod _ _ 28 symmetric symmetric ADJ JJ Degree=Pos 29 amod _ _ 29 monoid monoid NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 22 punct _ _ 31 or or CCONJ CC ConjType=Cmp 22 cc _ _ 32 by by ADP IN _ 22 conj _ _ 33 generators generator NOUN NNS Number=Plur 32 pobj _ _ 34 and and CCONJ CC ConjType=Cmp 33 cc _ _ 35 relations relation NOUN NNS Number=Plur 33 conj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = The latter provides a definition of symmetric simplicial sets by faces, degeneracies and transpositions, under suitable relations. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 latter latter ADJ JJ Degree=Pos 3 nsubj _ _ 3 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 definition definition NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 symmetric symmetric ADJ JJ Degree=Pos 9 amod _ _ 8 simplicial simplicial ADJ JJ Degree=Pos 9 amod _ _ 9 sets set NOUN NNS Number=Plur 6 pobj _ _ 10 by by ADP IN _ 9 prep _ _ 11 faces face NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 degeneracies degeneracy NOUN NNS Number=Plur 11 conj _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 transpositions transposition NOUN NNS Number=Plur 13 conj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 3 punct _ _ 17 under under ADP IN _ 3 prep _ _ 18 suitable suitable ADJ JJ Degree=Pos 19 amod _ _ 19 relations relation NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 118 # sent_id = 1 # text = Joyal has introduced the category $ cal D $ of the so - called finite disks, and used it to define the concept of $ theta $ - category, a notion of weak $ omega $ - category. 1 Joyal Joyal PROPN NNP Number=Sing 3 nsubj _ _ 2 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 aux _ _ 3 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 3 dobj _ _ 6 $ cal D $ $ cal d $ SYM $ _ 5 appos _ _ 7 of of ADP IN _ 5 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 13 det _ _ 9 so so ADV RB _ 11 advmod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 amod _ _ 12 finite finite NOUN NN Number=Sing 13 compound _ _ 13 disks disk NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 3 punct _ _ 15 and and CCONJ CC ConjType=Cmp 3 cc _ _ 16 used use VERB VBD Tense=Past|VerbForm=Fin 3 conj _ _ 17 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 16 dobj _ _ 18 to to PART TO _ 19 aux _ _ 19 define define VERB VB VerbForm=Inf 16 xcomp _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 concept concept NOUN NN Number=Sing 19 dobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 $ theta $ $ theta $ SYM $ _ 25 compound _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 category category NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 16 punct _ _ 27 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 28 notion notion NOUN NN Number=Sing 16 dobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 weak weak ADJ JJ Degree=Pos 33 amod _ _ 31 $ omega $ $ omega $ SYM $ _ 33 compound _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 category category NOUN NN Number=Sing 29 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = We introduce the notion of an $ omega $ - graph being composable (meaning roughly that 'it has a unique composite'), and call an $ omega $ - category simple if it is freely generated by a composable $ omega $ - graph. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 notion notion NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 an an DET DT Definite=Ind|PronType=Art 10 det _ _ 7 $ omega $ $ omega $ SYM $ _ 9 nmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 graph graph NOUN NN Number=Sing 10 compound _ _ 10 being be AUX VBG VerbForm=Ger 5 pobj _ _ 11 composable composable ADJ JJ Degree=Pos 10 acomp _ _ 12 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 13 punct _ SpaceAfter=No 13 meaning mean VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 acl _ _ 14 roughly roughly ADV RB _ 18 advmod _ _ 15 that that SCONJ IN _ 18 mark _ _ 16 ' ' PUNCT `` PunctSide=Ini|PunctType=Quot 18 punct _ SpaceAfter=No 17 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 18 nsubj _ _ 18 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 ccomp _ _ 19 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 20 unique unique ADJ JJ Degree=Pos 21 amod _ _ 21 composite composite NOUN NN Number=Sing 18 dobj _ SpaceAfter=No 22 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 13 punct _ SpaceAfter=No 23 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 13 punct _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 13 punct _ _ 25 and and CCONJ CC ConjType=Cmp 13 cc _ _ 26 call call VERB VB VerbForm=Inf 13 conj _ _ 27 an an DET DT Definite=Ind|PronType=Art 31 det _ _ 28 $ omega $ $ omega $ SYM $ _ 30 nmod _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 category category NOUN NN Number=Sing 31 compound _ _ 31 simple simple ADJ JJ Degree=Pos 26 oprd _ _ 32 if if SCONJ IN _ 36 mark _ _ 33 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 36 nsubjpass _ _ 34 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 36 auxpass _ _ 35 freely freely ADV RB _ 36 advmod _ _ 36 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 advcl _ _ 37 by by ADP IN _ 36 agent _ _ 38 a a DET DT Definite=Ind|PronType=Art 42 det _ _ 39 composable composable ADJ JJ Degree=Pos 42 amod _ _ 40 $ omega $ $ omega $ SYM $ _ 42 compound _ _ 41 - - PUNCT HYPH PunctType=Dash 42 punct _ _ 42 graph graph NOUN NN Number=Sing 37 pobj _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = The category $ cal S $ of simple $ omega $ - categories is a full subcategory of the category, with strict $ omega $ - functors as morphisms, of all $ omega $ - categories. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 category category NOUN NN Number=Sing 9 nsubj _ _ 3 $ cal S $ $ cal s $ SYM $ _ 2 appos _ _ 4 of of ADP IN _ 2 prep _ _ 5 simple simple ADJ JJ Degree=Pos 8 amod _ _ 6 $ omega $ $ omega $ SYM $ _ 8 compound _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 categories category NOUN NNS Number=Plur 4 pobj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 full full ADJ JJ Degree=Pos 12 amod _ _ 12 subcategory subcategory NOUN NN Number=Sing 9 attr _ _ 13 of of ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 category category NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 9 punct _ _ 17 with with ADP IN _ 9 prep _ _ 18 strict strict ADJ JJ Degree=Pos 21 amod _ _ 19 $ omega $ $ omega $ SYM $ _ 21 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 functors functor NOUN NNS Number=Plur 17 pobj _ _ 22 as as ADP IN _ 21 prep _ _ 23 morphisms morphism NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 21 punct _ _ 25 of of ADP IN _ 21 prep _ _ 26 all all DET DT _ 29 det _ _ 27 $ omega $ $ omega $ SYM $ _ 29 compound _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 categories category NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 4 # text = The category $ cal S $ is a key ingredient in another concept of weak $ omega $ - category, called protocategory. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 category category NOUN NN Number=Sing 4 nsubj _ _ 3 $ cal S $ $ cal s $ SYM $ _ 2 appos _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 key key ADJ JJ Degree=Pos 7 amod _ _ 7 ingredient ingredient NOUN NN Number=Sing 4 attr _ _ 8 in in ADP IN _ 7 prep _ _ 9 another another DET DT _ 10 det _ _ 10 concept concept NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 weak weak ADJ JJ Degree=Pos 15 amod _ _ 13 $ omega $ $ omega $ SYM $ _ 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 category category NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 17 punct _ _ 17 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 dep _ _ 18 protocategory protocategory NOUN NN Number=Sing 17 oprd _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = We prove that $ cal D $ and $ cal S $ are contravariantly equivalent, by a duality induced by a suitable schizophrenic object living in both categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 7 mark _ _ 4 $ cal D $ $ cal d $ SYM $ _ 7 nsubj _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 $ cal S $ $ cal s $ SYM $ _ 4 conj _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 8 contravariantly contravariantly ADV RB _ 9 advmod _ _ 9 equivalent equivalent ADJ JJ Degree=Pos 7 acomp _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 7 punct _ _ 11 by by ADP IN _ 7 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 duality duality NOUN NN Number=Sing 11 pobj _ _ 14 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 acl _ _ 15 by by ADP IN _ 14 agent _ _ 16 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 17 suitable suitable ADJ JJ Degree=Pos 19 amod _ _ 18 schizophrenic schizophrenic ADJ JJ Degree=Pos 19 amod _ _ 19 object object NOUN NN Number=Sing 15 pobj _ _ 20 living live VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 19 acl _ _ 21 in in ADP IN _ 20 prep _ _ 22 both both DET DT _ 23 det _ _ 23 categories category NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = In one paper, this result is one of the tools used to show that the concept of $ theta $ - category and that of protocategory are equivalent in a suitable sense. 1 In in ADP IN _ 7 prep _ _ 2 one one NUM CD NumType=Card 3 nummod _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 7 punct _ _ 5 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 6 result result NOUN NN Number=Sing 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 one one NUM CD NumType=Card 7 attr _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 tools tool NOUN NNS Number=Plur 9 pobj _ _ 12 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 acl _ _ 13 to to PART TO _ 14 aux _ _ 14 show show VERB VB VerbForm=Inf 12 xcomp _ _ 15 that that SCONJ IN _ 26 mark _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 concept concept NOUN NN Number=Sing 26 nsubj _ _ 18 of of ADP IN _ 17 prep _ _ 19 $ theta $ $ theta $ SYM $ _ 21 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 category category NOUN NN Number=Sing 18 pobj _ _ 22 and and CCONJ CC ConjType=Cmp 17 cc _ _ 23 that that PRON DT Number=Sing|PronType=Dem 26 nsubj _ _ 24 of of ADP IN _ 23 prep _ _ 25 protocategory protocategory NOUN NN Number=Sing 24 pobj _ _ 26 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 14 ccomp _ _ 27 equivalent equivalent ADJ JJ Degree=Pos 26 acomp _ _ 28 in in ADP IN _ 27 prep _ _ 29 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 30 suitable suitable ADJ JJ Degree=Pos 31 amod _ _ 31 sense sense NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 7 # text = We also prove that composable $ omega $ - graphs coincide with the $ omega $ - graphs of the form $ T^* $ considered by Batanin, which were characterized by Street and called `globular cardinals'. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 9 mark _ _ 5 composable composable ADJ JJ Degree=Pos 9 amod _ _ 6 $ omega $ $ omega $ SYM $ _ 8 compound _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 graphs graph NOUN NNS Number=Plur 9 nsubj _ _ 9 coincide coincide NOUN NN Number=Sing 3 ccomp _ _ 10 with with ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 14 det _ _ 12 $ omega $ $ omega $ SYM $ _ 14 compound _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 graphs graph NOUN NNS Number=Plur 10 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 form form NOUN NN Number=Sing 15 pobj _ _ 18 $ T^* $ $ t^* $ SYM $ _ 9 punct _ _ 19 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 acl _ _ 20 by by ADP IN _ 19 agent _ _ 21 Batanin Batanin PROPN NNP Number=Sing 20 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 which which PRON WDT _ 25 nsubjpass _ _ 24 were be AUX VBD Mood=Ind|Tense=Past|VerbForm=Fin 25 auxpass _ _ 25 characterized characterize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 relcl _ _ 26 by by ADP IN _ 25 agent _ _ 27 Street Street PROPN NNP Number=Sing 26 pobj _ _ 28 and and CCONJ CC ConjType=Cmp 25 cc _ _ 29 called call VERB VBD Tense=Past|VerbForm=Fin 25 conj _ _ 30 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 32 punct _ SpaceAfter=No 31 globular globular ADJ JJ Degree=Pos 32 amod _ _ 32 cardinals cardinal NOUN NNS Number=Plur 29 oprd _ SpaceAfter=No 33 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 3 punct _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 8 # text = Batanin's construction, using globular cardinals, of the free $ omega $ - category on a globular set plays an important role in our paper. 1 Batanin Batanin PROPN NNP Number=Sing 3 poss _ SpaceAfter=No 2 's 's PART POS _ 1 case _ _ 3 construction construction NOUN NN Number=Sing 5 nsubj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 3 punct _ _ 5 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 19 csubj _ _ 6 globular globular ADJ JJ Degree=Pos 7 amod _ _ 7 cardinals cardinal NOUN NNS Number=Plur 5 dobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 5 punct _ _ 9 of of ADP IN _ 5 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 14 det _ _ 11 free free ADJ JJ Degree=Pos 14 amod _ _ 12 $ omega $ $ omega $ SYM $ _ 14 compound _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 category category NOUN NN Number=Sing 9 pobj _ _ 15 on on ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 globular globular ADJ JJ Degree=Pos 18 amod _ _ 18 set set NOUN NN Number=Sing 15 pobj _ _ 19 plays play VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 20 an an DET DT Definite=Ind|PronType=Art 22 det _ _ 21 important important ADJ JJ Degree=Pos 22 amod _ _ 22 role role NOUN NN Number=Sing 19 dobj _ _ 23 in in ADP IN _ 22 prep _ _ 24 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 25 poss _ _ 25 paper paper NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 9 # text = We give a self - contained presentation of Batanin's construction that suits our purposes. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 4 self self NOUN NN Number=Sing 6 npadvmod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 contained contain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 amod _ _ 7 presentation presentation NOUN NN Number=Sing 2 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 Batanin Batanin PROPN NNP Number=Sing 11 poss _ SpaceAfter=No 10 's 's PART POS _ 9 case _ _ 11 construction construction NOUN NN Number=Sing 8 pobj _ _ 12 that that PRON WDT PronType=Rel 13 nsubj _ _ 13 suits suit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 relcl _ _ 14 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 15 poss _ _ 15 purposes purpose NOUN NNS Number=Plur 13 dobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 119 # sent_id = 1 # text = There are well - known characterizations of the hereditary quotient maps in the category of topological spaces, (that is, of quotient maps stable under pullback along embeddings), as well as of universal quotient maps (that is, of quotient maps stable under pullback). 1 There there PRON EX _ 2 expl _ _ 2 are be VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 well well ADV RB Degree=Pos 5 advmod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 amod _ _ 6 characterizations characterization NOUN NNS Number=Plur 2 attr _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 11 det _ _ 9 hereditary hereditary ADJ JJ Degree=Pos 11 amod _ _ 10 quotient quotient NOUN NN Number=Sing 11 compound _ _ 11 maps map NOUN NNS Number=Plur 7 pobj _ _ 12 in in ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 category category NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 topological topological ADJ JJ Degree=Pos 17 amod _ _ 17 spaces space NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 6 punct _ _ 19 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 6 punct _ SpaceAfter=No 20 that that ADV RB _ 21 advmod _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 advmod _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 of of ADP IN _ 6 prep _ _ 24 quotient quotient NOUN NN Number=Sing 25 compound _ _ 25 maps map NOUN NNS Number=Plur 23 pobj _ _ 26 stable stable ADJ JJ Degree=Pos 25 amod _ _ 27 under under ADP IN _ 26 prep _ _ 28 pullback pullback NOUN NN Number=Sing 27 pobj _ _ 29 along along ADP IN _ 26 prep _ _ 30 embeddings embedding NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 31 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 25 punct _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 6 punct _ _ 33 as as ADV RB _ 35 advmod _ _ 34 well well ADV RB Degree=Pos 35 advmod _ _ 35 as as ADP IN _ 2 cc _ _ 36 of of ADP IN _ 35 prep _ _ 37 universal universal ADJ JJ Degree=Pos 39 amod _ _ 38 quotient quotient NOUN NN Number=Sing 39 compound _ _ 39 maps map NOUN NNS Number=Plur 36 pobj _ _ 40 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 39 punct _ SpaceAfter=No 41 that that ADV RB _ 42 advmod _ _ 42 is is ADV RB _ 39 parataxis _ SpaceAfter=No 43 , , PUNCT , PunctType=Comm 39 punct _ _ 44 of of ADP IN _ 39 prep _ _ 45 quotient quotient NOUN NN Number=Sing 46 compound _ _ 46 maps map NOUN NNS Number=Plur 44 pobj _ _ 47 stable stable ADJ JJ Degree=Pos 46 amod _ _ 48 under under ADP IN _ 47 prep _ _ 49 pullback pullback NOUN NN Number=Sing 48 pobj _ SpaceAfter=No 50 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 39 punct _ SpaceAfter=No 51 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = These are precisely the so - called pseudo - open maps, as shown by Arhangelskii, and the bi - quotient maps of Michael, as shown by Day and Kelly, respectively. 1 These these PRON DT Number=Plur|PronType=Dem 2 nsubj _ _ 2 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 precisely precisely ADV RB _ 11 advmod _ _ 4 the the DET DT Definite=Def|PronType=Art 11 det _ _ 5 so so ADV RB _ 7 advmod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 amod _ _ 8 pseudo pseudo NOUN NN Number=Sing 10 npadvmod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 open open ADJ JJ Degree=Pos 11 amod _ _ 11 maps map NOUN NNS Number=Plur 2 attr _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 2 punct _ _ 13 as as SCONJ IN _ 14 mark _ _ 14 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 advcl _ _ 15 by by ADP IN _ 14 agent _ _ 16 Arhangelskii Arhangelskii PROPN NNP Number=Sing 15 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 2 punct _ _ 18 and and CCONJ CC ConjType=Cmp 2 cc _ _ 19 the the DET DT Definite=Def|PronType=Art 23 det _ _ 20 bi bi PROPN NNP Number=Sing 22 compound _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 quotient quotient ADJ JJ Degree=Pos 23 compound _ _ 23 maps map NOUN NNS Number=Plur 2 conj _ _ 24 of of ADP IN _ 23 prep _ _ 25 Michael Michael PROPN NNP Number=Sing 24 pobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 23 punct _ _ 27 as as SCONJ IN _ 28 mark _ _ 28 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 advcl _ _ 29 by by ADP IN _ 28 agent _ _ 30 Day Day PROPN NNP Number=Sing 29 pobj _ _ 31 and and CCONJ CC ConjType=Cmp 30 cc _ _ 32 Kelly Kelly PROPN NNP Number=Sing 30 conj _ SpaceAfter=No 33 , , PUNCT , PunctType=Comm 23 punct _ _ 34 respectively respectively ADV RB _ 23 advmod _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = In this paper hereditary and stable quotient maps are characterized in the broader context given by a category equipped with a closure operator. 1 In in ADP IN _ 10 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 hereditary hereditary ADJ JJ Degree=Pos 8 amod _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 stable stable ADJ JJ Degree=Pos 4 conj _ _ 7 quotient quotient NOUN NN Number=Sing 8 compound _ _ 8 maps map NOUN NNS Number=Plur 10 nsubjpass _ _ 9 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 10 characterized characterize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 11 in in ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 broader broad ADJ JJR Degree=Cmp 14 amod _ _ 14 context context NOUN NN Number=Sing 11 pobj _ _ 15 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 acl _ _ 16 by by ADP IN _ 15 agent _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 category category NOUN NN Number=Sing 16 pobj _ _ 19 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 acl _ _ 20 with with ADP IN _ 19 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 22 closure closure NOUN NN Number=Sing 23 compound _ _ 23 operator operator NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 4 # text = To this end, we derive explicit formulae and conditions for the closure in the codomain of such a quotient map in terms of the closure in its domain. 1 To to ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 end end NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 derive derive VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 explicit explicit ADJ JJ Degree=Pos 8 amod _ _ 8 formulae formulae NOUN NN Number=Sing 6 dobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 conditions condition NOUN NNS Number=Plur 8 conj _ _ 11 for for ADP IN _ 6 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 closure closure NOUN NN Number=Sing 11 pobj _ _ 14 in in ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 codomain codomain NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 such such DET PDT _ 21 predet _ _ 19 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 20 quotient quotient NOUN NN Number=Sing 21 compound _ _ 21 map map NOUN NN Number=Sing 17 pobj _ _ 22 in in ADP IN _ 21 prep _ _ 23 terms term NOUN NNS Number=Plur 22 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 closure closure NOUN NN Number=Sing 24 pobj _ _ 27 in in ADP IN _ 26 prep _ _ 28 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 29 poss _ _ 29 domain domain NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 120 # sent_id = 1 # text = Filtered colimits, that is, colimits over schemes $ cal D $ such that $ cal D $ - colimits in $ Set $ commute with finite limits, have a natural generalization to sifted colimits: these are colimits over schemes $ cal D $ such that $ cal D $ - colimits in $ Set $ commute with finite products. 1 Filtered filter VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 amod _ _ 2 colimits colimit NOUN NNS Number=Plur 23 nsubj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 2 punct _ _ 4 that that ADV RB _ 5 advmod _ _ 5 is is ADV RB _ 7 advmod _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 colimits colimit NOUN NNS Number=Plur 2 appos _ _ 8 over over ADP IN _ 7 prep _ _ 9 schemes scheme NOUN NNS Number=Plur 8 pobj _ _ 10 $ cal D $ $ cal d $ SYM $ _ 11 amod _ _ 11 such such ADJ JJ Degree=Pos 9 appos _ _ 12 that that SCONJ IN _ 15 det _ _ 13 $ cal D $ $ cal d $ SYM $ _ 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 colimits colimit NOUN NNS Number=Plur 2 appos _ _ 16 in in ADP IN _ 15 prep _ _ 17 $ Set $ $ set $ SYM $ _ 18 nummod _ _ 18 commute commute NOUN NN Number=Sing 16 pobj _ _ 19 with with ADP IN _ 18 prep _ _ 20 finite finite ADJ JJ Degree=Pos 21 compound _ _ 21 limits limit NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 2 punct _ _ 23 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 32 ccomp _ _ 24 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 25 natural natural ADJ JJ Degree=Pos 26 amod _ _ 26 generalization generalization NOUN NN Number=Sing 23 dobj _ _ 27 to to ADP IN _ 26 prep _ _ 28 sifted sifted ADJ JJ Degree=Pos 29 amod _ _ 29 colimits colimit NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 30 : : PUNCT : _ 32 punct _ _ 31 these these PRON DT Number=Plur|PronType=Dem 32 nsubj _ _ 32 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 33 colimits colimit NOUN NNS Number=Plur 32 attr _ _ 34 over over ADP IN _ 33 prep _ _ 35 schemes scheme NOUN NNS Number=Plur 34 pobj _ _ 36 $ cal D $ $ cal d $ SYM $ _ 37 amod _ _ 37 such such ADJ JJ Degree=Pos 35 appos _ _ 38 that that SCONJ IN _ 41 det _ _ 39 $ cal D $ $ cal d $ SYM $ _ 41 compound _ _ 40 - - PUNCT HYPH PunctType=Dash 41 punct _ _ 41 colimits colimit NOUN NNS Number=Plur 32 dep _ _ 42 in in ADP IN _ 41 prep _ _ 43 $ Set $ $ set $ SYM $ _ 44 nummod _ _ 44 commute commute NOUN NN Number=Sing 42 pobj _ _ 45 with with ADP IN _ 44 prep _ _ 46 finite finite ADJ JJ Degree=Pos 47 amod _ _ 47 products product NOUN NNS Number=Plur 45 pobj _ SpaceAfter=No 48 . . PUNCT . PunctType=Peri 32 punct _ SpaceAfter=No # sent_id = 2 # text = An important example: reflexive coequalizers are sifted colimits. 1 An an DET DT Definite=Ind|PronType=Art 3 det _ _ 2 important important ADJ JJ Degree=Pos 3 amod _ _ 3 example example NOUN NN Number=Sing 0 ROOT _ SpaceAfter=No 4 : : PUNCT : _ 8 punct _ _ 5 reflexive reflexive ADJ JJ Degree=Pos 6 amod _ _ 6 coequalizers coequalizer NOUN NNS Number=Plur 7 nsubj _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 sifted sift VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 amod _ _ 9 colimits colimit NOUN NNS Number=Plur 3 appos _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = Generalized varieties are defined as free completions of small categories under sifted - colimits (analogously to finitely accessible categories which are free filtered - colimit completions of small categories). 1 Generalized generalized ADJ JJ Degree=Pos 2 amod _ _ 2 varieties variety NOUN NNS Number=Plur 4 nsubjpass _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 as as ADP IN _ 4 prep _ _ 6 free free ADJ JJ Degree=Pos 7 amod _ _ 7 completions completion NOUN NNS Number=Plur 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 small small ADJ JJ Degree=Pos 10 amod _ _ 10 categories category NOUN NNS Number=Plur 8 pobj _ _ 11 under under ADP IN _ 7 prep _ _ 12 sifted sift VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 colimits colimit NOUN NNS Number=Plur 11 pobj _ _ 15 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 14 punct _ SpaceAfter=No 16 analogously analogously ADV RB _ 14 advmod _ _ 17 to to PART TO _ 14 prep _ _ 18 finitely finitely ADV RB _ 19 advmod _ _ 19 accessible accessible ADJ JJ Degree=Pos 20 amod _ _ 20 categories category NOUN NNS Number=Plur 17 pobj _ _ 21 which which PRON WDT _ 22 nsubj _ _ 22 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 20 relcl _ _ 23 free free ADJ JJ Degree=Pos 27 amod _ _ 24 filtered filter VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 amod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 colimit colimit NOUN NN Number=Sing 27 compound _ _ 27 completions completion NOUN NNS Number=Plur 22 attr _ _ 28 of of ADP IN _ 27 prep _ _ 29 small small ADJ JJ Degree=Pos 30 amod _ _ 30 categories category NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 31 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 20 punct _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = Among complete categories, generalized varieties are precisely the varieties. 1 Among among ADP IN _ 7 prep _ _ 2 complete complete ADJ JJ Degree=Pos 3 amod _ _ 3 categories category NOUN NNS Number=Plur 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 7 punct _ _ 5 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 amod _ _ 6 varieties variety NOUN NNS Number=Plur 7 nsubj _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 precisely precisely ADV RB _ 7 advmod _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 varieties variety NOUN NNS Number=Plur 7 attr _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 5 # text = Further examples: category of fields, category of linearly ordered sets, category of nonempty sets. 1 Further further ADJ JJ Degree=Pos 2 amod _ _ 2 examples example NOUN NNS Number=Plur 0 ROOT _ SpaceAfter=No 3 : : PUNCT : _ 2 punct _ _ 4 category category NOUN NN Number=Sing 2 appos _ _ 5 of of ADP IN _ 4 prep _ _ 6 fields field NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 4 punct _ _ 8 category category NOUN NN Number=Sing 4 appos _ _ 9 of of ADP IN _ 8 prep _ _ 10 linearly linearly ADV RB _ 11 advmod _ _ 11 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 12 sets set NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 4 punct _ _ 14 category category NOUN NN Number=Sing 4 appos _ _ 15 of of ADP IN _ 14 prep _ _ 16 nonempty nonempty ADJ JJ Degree=Pos 17 amod _ _ 17 sets set NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 121 # sent_id = 1 # text = In this paper, we consider those morphisms $ p : Pto B $ of posets for which the induced geometric morphism of presheaf toposes is exponentiable in the category of Grothendieck toposes. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 those those DET DT Number=Plur|PronType=Dem 8 det _ _ 8 morphisms morphism NOUN NNS Number=Plur 9 nsubj _ _ 9 $ p : Pto B $ $ p : pto b $ SYM $ _ 28 nsubj _ _ 10 of of ADP IN _ 9 prep _ _ 11 posets poset NOUN NNS Number=Plur 10 pobj _ _ 12 for for ADP IN _ 21 prep _ _ 13 which which PRON WDT _ 12 pobj _ _ 14 the the DET DT Definite=Def|PronType=Art 17 det _ _ 15 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 16 geometric geometric ADJ JJ Degree=Pos 17 amod _ _ 17 morphism morphism NOUN NN Number=Sing 21 nsubj _ _ 18 of of ADP IN _ 17 prep _ _ 19 presheaf presheaf ADJ JJ Degree=Pos 20 compound _ _ 20 toposes topos NOUN NNS Number=Plur 18 pobj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 relcl _ _ 22 exponentiable exponentiable ADJ JJ Degree=Pos 21 acomp _ _ 23 in in ADP IN _ 21 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 category category NOUN NN Number=Sing 23 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 Grothendieck Grothendieck PROPN NNP Number=Sing 26 pobj _ _ 28 toposes topos NOUN NNS Number=Plur 6 ccomp _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = In particular, we show that a necessary condition is that the induced map $ p^{downarrow} : P^{downarrow}to B^{downarrow} $ is exponentiable in the category of topological spaces, where $ P^{downarrow} $ is the space whose points are elements of $ P $ and open sets are downward closed subsets of $ P $ . 1 In in ADP IN _ 5 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 that that SCONJ IN _ 10 mark _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 necessary necessary ADJ JJ Degree=Pos 9 amod _ _ 9 condition condition NOUN NN Number=Sing 10 nsubj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 ccomp _ _ 11 that that SCONJ IN _ 16 mark _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 14 map map NOUN NN Number=Sing 16 nsubj _ _ 15 $ p^{downarrow} : P^{downarrow}to B^{downarrow} $ $ p^{downarrow} : p^{downarrow}to b^{downarrow} $ SYM $ _ 16 nsubj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 ccomp _ _ 17 exponentiable exponentiable ADJ JJ Degree=Pos 16 acomp _ _ 18 in in ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 category category NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 topological topological ADJ JJ Degree=Pos 23 amod _ _ 23 spaces space NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 23 punct _ _ 25 where where SCONJ WRB _ 27 advmod _ _ 26 $ P^{downarrow} $ $ p^{downarrow} $ SYM $ _ 27 nsubj _ _ 27 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 relcl _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 space space NOUN NN Number=Sing 27 attr _ _ 30 whose whose DET WP$ Poss=Yes 31 poss _ _ 31 points point NOUN NNS Number=Plur 32 nsubj _ _ 32 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 29 relcl _ _ 33 elements element NOUN NNS Number=Plur 32 attr _ _ 34 of of ADP IN _ 33 prep _ _ 35 $ P $ $ p $ SYM $ _ 34 pobj _ _ 36 and and CCONJ CC ConjType=Cmp 33 cc _ _ 37 open open ADJ JJ Degree=Pos 38 amod _ _ 38 sets set NOUN NNS Number=Plur 39 nsubj _ _ 39 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 16 conj _ _ 40 downward downward ADV RB _ 42 amod _ _ 41 closed closed ADJ JJ Degree=Pos 42 amod _ _ 42 subsets subset NOUN NNS Number=Plur 39 attr _ _ 43 of of ADP IN _ 42 prep _ _ 44 $ P $ $ p $ SYM $ _ 43 pobj _ _ 45 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = Along the way, we show that $ p^{downarrow} : P^{downarrow}to B^{downarrow} $ is exponentiable if and only if $ p : Pto B $ is exponentiable in the category of posets and satisfies an additional compactness condition. 1 Along along ADP IN _ 6 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 way way NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 that that SCONJ IN _ 9 mark _ _ 8 $ p^{downarrow} : P^{downarrow}to B^{downarrow} $ $ p^{downarrow} : p^{downarrow}to b^{downarrow} $ SYM $ _ 9 nsubj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 10 exponentiable exponentiable ADJ JJ Degree=Pos 9 acomp _ _ 11 if if SCONJ IN _ 16 mark _ _ 12 and and CCONJ CC ConjType=Cmp 16 cc _ _ 13 only only ADV RB _ 16 advmod _ _ 14 if if SCONJ IN _ 16 mark _ _ 15 $ p : Pto B $ $ p : pto b $ SYM $ _ 16 nsubj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 advcl _ _ 17 exponentiable exponentiable ADJ JJ Degree=Pos 16 acomp _ _ 18 in in ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 category category NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 posets poset NOUN NNS Number=Plur 21 pobj _ _ 23 and and CCONJ CC ConjType=Cmp 20 cc _ _ 24 satisfies satisfie NOUN NNS Number=Plur 20 conj _ _ 25 an an DET DT Definite=Ind|PronType=Art 28 det _ _ 26 additional additional ADJ JJ Degree=Pos 28 amod _ _ 27 compactness compactness ADJ JJ Degree=Pos 28 amod _ _ 28 condition condition NOUN NN Number=Sing 24 dobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = The criteria for exponentiability of morphisms of posets is related to (but weaker than) the factorization - lifting property for exponentiability of morphisms in the category of small categories (considered independently by Giraud and Conduché). 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 criteria criterion NOUN NNS Number=Plur 10 nsubjpass _ _ 3 for for ADP IN _ 2 prep _ _ 4 exponentiability exponentiability NOUN NN Number=Sing 3 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 morphisms morphism NOUN NNS Number=Plur 5 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 posets poset NOUN NNS Number=Plur 7 pobj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 10 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 11 to to ADP IN _ 10 prep _ _ 12 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 11 punct _ SpaceAfter=No 13 but but CCONJ CC ConjType=Cmp 11 cc _ _ 14 weaker weak ADJ JJR Degree=Cmp 21 amod _ _ 15 than than ADP IN _ 14 prep _ SpaceAfter=No 16 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 15 punct _ _ 17 the the DET DT Definite=Def|PronType=Art 21 det _ _ 18 factorization factorization NOUN NN Number=Sing 20 npadvmod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 lifting lift VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 21 amod _ _ 21 property property NOUN NN Number=Sing 11 pobj _ _ 22 for for ADP IN _ 21 prep _ _ 23 exponentiability exponentiability NOUN NN Number=Sing 22 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 morphisms morphism NOUN NNS Number=Plur 24 pobj _ _ 26 in in ADP IN _ 21 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 category category NOUN NN Number=Sing 26 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 small small ADJ JJ Degree=Pos 31 amod _ _ 31 categories category NOUN NNS Number=Plur 29 pobj _ _ 32 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 31 punct _ SpaceAfter=No 33 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 31 acl _ _ 34 independently independently ADV RB _ 33 advmod _ _ 35 by by ADP IN _ 33 agent _ _ 36 Giraud Giraud PROPN NNP Number=Sing 35 pobj _ _ 37 and and CCONJ CC ConjType=Cmp 36 cc _ _ 38 Conduché Conduché PROPN NNP Number=Sing 36 conj _ SpaceAfter=No 39 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 21 punct _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # doc_id = 122 # sent_id = 1 # text = We characterize $ n $ - permutable locally finitely presentable categories $ Lex[{mathcal C}^{op}, Set] $ by a condition on the dual of the essentially algebraic theory $ mathcal C^{op} $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 $ n $ $ n $ SYM $ _ 5 advmod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 permutable permutable ADJ JJ Degree=Pos 9 amod _ _ 6 locally locally ADV RB _ 7 advmod _ _ 7 finitely finitely ADV RB _ 9 amod _ _ 8 presentable presentable ADJ JJ Degree=Pos 9 amod _ _ 9 categories category NOUN NNS Number=Plur 2 dobj _ _ 10 $ Lex[{mathcal C}^{op}, Set] $ $ lex[{mathcal c}^{op}, set] $ SYM $ _ 11 dep _ _ 11 by by ADP IN _ 2 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 condition condition NOUN NN Number=Sing 11 pobj _ _ 14 on on ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 dual dual ADJ JJ Degree=Pos 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 21 det _ _ 19 essentially essentially ADV RB _ 20 advmod _ _ 20 algebraic algebraic ADJ JJ Degree=Pos 21 amod _ _ 21 theory theory NOUN NN Number=Sing 17 pobj _ _ 22 $ mathcal C^{op} $ $ mathcal c^{op} $ SYM $ _ 21 appos _ _ 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We apply these results to exact Maltsev categories as well as to $ n $ - permutable quasivarieties and varieties. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 apply apply VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 these these DET DT Number=Plur|PronType=Dem 4 det _ _ 4 results result NOUN NNS Number=Plur 2 dobj _ _ 5 to to PART TO _ 6 aux _ _ 6 exact exact VERB VB VerbForm=Inf 2 advcl _ _ 7 Maltsev Maltsev PROPN NNP Number=Sing 8 amod _ _ 8 categories category NOUN NNS Number=Plur 6 dobj _ _ 9 as as ADV RB _ 11 advmod _ _ 10 well well ADV RB Degree=Pos 11 advmod _ _ 11 as as ADP IN _ 6 cc _ _ 12 to to ADP IN _ 6 prep _ _ 13 $ n $ $ n $ SYM $ _ 15 advmod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 permutable permutable ADJ JJ Degree=Pos 16 amod _ _ 16 quasivarieties quasivarietie NOUN NNS Number=Plur 12 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 varieties variety NOUN NNS Number=Plur 16 conj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 123 # sent_id = 1 # text = To a bicategory $ B $ (in the sense of Bénabou) we assign a simplicial set $ Ner(B) $ , the (geometric) nerve of $ B $ , which completely encodes the structure of $ B $ as a bicategory. 1 To to ADP IN _ 13 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 bicategory bicategory NOUN NN Number=Sing 1 pobj _ _ 4 $ B $ $ b $ SYM $ _ 3 prep _ _ 5 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 13 punct _ SpaceAfter=No 6 in in ADP IN _ 13 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 sense sense NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 Bénabou Bénabou PROPN NNP Number=Sing 9 pobj _ SpaceAfter=No 11 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 13 punct _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 assign assign VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 simplicial simplicial NOUN NN Number=Sing 13 dobj _ _ 16 set set VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 acl _ _ 17 $ Ner(B) $ $ ner(b) $ SYM $ _ 13 dep _ _ 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 the the DET DT Definite=Def|PronType=Art 23 det _ _ 20 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 23 punct _ SpaceAfter=No 21 geometric geometric ADJ JJ Degree=Pos 23 amod _ SpaceAfter=No 22 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 23 punct _ _ 23 nerve nerve NOUN NN Number=Sing 17 conj _ _ 24 of of ADP IN _ 23 prep _ _ 25 $ B $ $ b $ SYM $ _ 24 pobj _ _ 26 , , PUNCT , PunctType=Comm 23 punct _ _ 27 which which PRON WDT _ 29 nsubj _ _ 28 completely completely ADV RB _ 29 advmod _ _ 29 encodes encode VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 relcl _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 structure structure NOUN NN Number=Sing 29 dobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 $ B $ $ b $ SYM $ _ 32 pobj _ _ 34 as as ADP IN _ 29 prep _ _ 35 a a DET DT Definite=Ind|PronType=Art 36 det _ _ 36 bicategory bicategory NOUN NN Number=Sing 34 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 2 # text = As a simplicial set $ Ner(B) $ is a subcomplex of its 2 - Coskeleton and itself isomorphic to its 3 - Coskeleton, what we call a 2 - dimensional Postnikov complex. 1 As as SCONJ IN _ 6 mark _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 simplicial simplicial NOUN NN Number=Sing 6 nsubj _ _ 4 set set VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 acl _ _ 5 $ Ner(B) $ $ ner(b) $ SYM $ _ 6 nsubj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 subcomplex subcomplex NOUN NN Number=Sing 6 attr _ _ 9 of of ADP IN _ 8 prep _ _ 10 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 13 poss _ _ 11 2 2 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 Coskeleton Coskeleton PROPN NNP Number=Sing 9 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 itself itself PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs|Reflex=Yes 13 conj _ _ 16 isomorphic isomorphic ADJ JJ Degree=Pos 6 acomp _ _ 17 to to ADP IN _ 16 prep _ _ 18 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 21 poss _ _ 19 3 3 NUM CD NumType=Card 21 nummod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 Coskeleton Coskeleton PROPN NNP Number=Sing 17 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 what what PRON WP _ 25 dobj _ _ 24 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 25 nsubj _ _ 25 call call VERB VBP Tense=Pres|VerbForm=Fin 6 ccomp _ _ 26 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 27 2 2 NUM CD NumType=Card 29 npadvmod _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 dimensional dimensional ADJ JJ Degree=Pos 31 amod _ _ 30 Postnikov postnikov ADJ JJ Degree=Pos 31 compound _ _ 31 complex complex NOUN NN Number=Sing 25 oprd _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = We then give, somewhat more delicately, a complete characterization of those simplicial sets which are the nerves of bicategories as certain 2 - dimensional Postnikov complexes which satisfy certain restricted `exact horn - lifting' conditions whose satisfaction is controlled by (and here defines) subsets of (abstractly) invertible 2 and 1 - simplices. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 3 punct _ _ 5 somewhat somewhat ADV RB _ 6 advmod _ _ 6 more more ADV RBR Degree=Cmp 7 advmod _ _ 7 delicately delicately ADV RB _ 3 advmod _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 3 punct _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 complete complete ADJ JJ Degree=Pos 11 amod _ _ 11 characterization characterization NOUN NN Number=Sing 3 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 those those DET DT Number=Plur|PronType=Dem 15 det _ _ 14 simplicial simplicial ADJ JJ Degree=Pos 15 amod _ _ 15 sets set NOUN NNS Number=Plur 12 pobj _ _ 16 which which PRON WDT _ 17 nsubj _ _ 17 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 relcl _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 nerves nerve NOUN NNS Number=Plur 17 attr _ _ 20 of of ADP IN _ 19 prep _ _ 21 bicategories bicategorie NOUN NNS Number=Plur 20 pobj _ _ 22 as as ADP IN _ 17 prep _ _ 23 certain certain ADJ JJ Degree=Pos 28 amod _ _ 24 2 2 NUM CD NumType=Card 26 advmod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 dimensional dimensional ADJ JJ Degree=Pos 28 amod _ _ 27 Postnikov Postnikov PROPN NNP Number=Sing 28 compound _ _ 28 complexes complex NOUN NNS Number=Plur 22 pobj _ _ 29 which which PRON WDT _ 30 nsubj _ _ 30 satisfy satisfy VERB VBP Tense=Pres|VerbForm=Fin 28 relcl _ _ 31 certain certain ADJ JJ Degree=Pos 37 amod _ _ 32 restricted restrict VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 37 amod _ _ 33 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 37 punct _ SpaceAfter=No 34 exact exact ADJ JJ Degree=Pos 37 amod _ _ 35 horn horn NOUN NN Number=Sing 37 compound _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 lifting lift VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 39 poss _ SpaceAfter=No 38 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 37 case _ _ 39 conditions condition NOUN NNS Number=Plur 30 dobj _ _ 40 whose whose DET WP$ Poss=Yes 41 poss _ _ 41 satisfaction satisfaction NOUN NN Number=Sing 43 nsubjpass _ _ 42 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 43 auxpass _ _ 43 controlled control VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 39 relcl _ _ 44 by by ADP IN _ 43 agent _ _ 45 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 44 punct _ SpaceAfter=No 46 and and CCONJ CC ConjType=Cmp 28 cc _ _ 47 here here ADV RB PronType=Dem 48 advmod _ _ 48 defines define VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 28 conj _ SpaceAfter=No 49 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 48 punct _ _ 50 subsets subset NOUN NNS Number=Plur 48 nsubj _ _ 51 of of ADP IN _ 50 prep _ _ 52 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 51 punct _ SpaceAfter=No 53 abstractly abstractly ADV RB _ 51 pcomp _ SpaceAfter=No 54 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 51 punct _ _ 55 invertible invertible ADJ JJ Degree=Pos 60 amod _ _ 56 2 2 NUM CD NumType=Card 60 nummod _ _ 57 and and CCONJ CC ConjType=Cmp 56 cc _ _ 58 1 1 NUM CD NumType=Card 56 conj _ _ 59 - - PUNCT HYPH PunctType=Dash 60 punct _ _ 60 simplices simplice NOUN NNS Number=Plur 51 pobj _ SpaceAfter=No 61 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = Those complexes which have, at minimum, their degenerate 2 - simplices always invertible and have an invertible 2 - simplex $ chi_2^1(x_{12}, x_{01}) $ present for each `composable pair' $ (x_{12}, _ , x_{01}) in mhorn_2^1 $ are exactly the nerves of bicategories. 1 Those those DET DT Number=Plur|PronType=Dem 2 det _ _ 2 complexes complex NOUN NNS Number=Plur 15 nsubj _ _ 3 which which PRON WDT _ 4 nsubj _ _ 4 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 aux _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 15 punct _ _ 6 at at ADP IN _ 15 prep _ _ 7 minimum minimum NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 15 punct _ _ 9 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 13 poss _ _ 10 degenerate degenerate ADJ JJ Degree=Pos 13 amod _ _ 11 2 2 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 simplices simplice NOUN NNS Number=Plur 15 nsubj _ _ 14 always always ADV RB _ 15 advmod _ _ 15 invertible invertible ADJ JJ Degree=Pos 0 ROOT _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 conj _ _ 18 an an DET DT Definite=Ind|PronType=Art 24 det _ _ 19 invertible invertible ADJ JJ Degree=Pos 24 amod _ _ 20 2 2 NUM CD NumType=Card 22 nummod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 simplex simplex NOUN NN Number=Sing 24 nmod _ _ 23 $ chi_2^1(x_{12}, x_{01}) $ $ chi_2^1(x_{12}, x_{01}) $ PROPN NNP Number=Sing 24 nmod _ _ 24 present present ADJ JJ Degree=Pos 17 dobj _ _ 25 for for ADP IN _ 24 prep _ _ 26 each each DET DT _ 29 det _ _ 27 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 29 punct _ SpaceAfter=No 28 composable composable ADJ JJ Degree=Pos 29 amod _ _ 29 pair pair NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 30 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 29 punct _ _ 31 $ (x_{12}, _ , x_{01}) in mhorn_2^1 $ $ (x_{12}, _ , x_{01}) in mhorn_2^1 $ SYM $ _ 29 appos _ _ 32 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 conj _ _ 33 exactly exactly ADV RB _ 35 advmod _ _ 34 the the DET DT Definite=Def|PronType=Art 35 det _ _ 35 nerves nerve NOUN NNS Number=Plur 32 attr _ _ 36 of of ADP IN _ 35 prep _ _ 37 bicategories bicategorie NOUN NNS Number=Plur 36 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 5 # text = At the other extreme, where all 2 and 1 - simplices are invertible, are those Kan complexes in which the Kan conditions are satisfied exactly in all dimensions $ >2 $ . 1 At at ADP IN _ 16 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 other other ADJ JJ Degree=Pos 4 amod _ _ 4 extreme extreme NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 4 punct _ _ 6 where where SCONJ WRB _ 13 advmod _ _ 7 all all DET DT _ 12 det _ _ 8 2 2 NUM CD NumType=Card 12 nummod _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 1 1 NUM CD NumType=Card 8 conj _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 simplices simplice NOUN NNS Number=Plur 13 nsubj _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 relcl _ _ 14 invertible invertible ADJ JJ Degree=Pos 13 acomp _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 16 punct _ _ 16 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 17 those those DET DT Number=Plur|PronType=Dem 19 det _ _ 18 Kan Kan PROPN NNP Number=Sing 19 compound _ _ 19 complexes complex NOUN NNS Number=Plur 16 attr _ _ 20 in in ADP IN _ 25 prep _ _ 21 which which PRON WDT _ 20 pobj _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 Kan Kan PROPN NNP Number=Sing 24 compound _ _ 24 conditions condition NOUN NNS Number=Plur 25 nsubj _ _ 25 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 19 relcl _ _ 26 satisfied satisfied ADJ JJ Degree=Pos 25 acomp _ _ 27 exactly exactly ADV RB _ 28 advmod _ _ 28 in in ADP IN _ 26 prep _ _ 29 all all DET DT _ 30 det _ _ 30 dimensions dimension NOUN NNS Number=Plur 28 pobj _ _ 31 $ >2 $ $ >2 $ SYM $ _ 30 appos _ _ 32 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 6 # text = These are exactly the nerves of bigroupoids - all 2 - cells are isomorphisms and all 1 - cells are equivalences. 1 These these PRON DT Number=Plur|PronType=Dem 2 nsubj _ _ 2 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 exactly exactly ADV RB _ 5 advmod _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 nerves nerve NOUN NNS Number=Plur 2 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 bigroupoids bigroupoid NOUN NNS Number=Plur 6 pobj _ _ 8 - - PUNCT , PunctType=Comm 5 punct _ _ 9 all all DET DT _ 12 det _ _ 10 2 2 NUM CD NumType=Card 12 nummod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 cells cell NOUN NNS Number=Plur 13 nsubj _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 relcl _ _ 14 isomorphisms isomorphism NOUN NNS Number=Plur 13 attr _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 all all DET DT _ 19 det _ _ 17 1 1 NUM CD NumType=Card 19 nummod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 cells cell NOUN NNS Number=Plur 20 nsubj _ _ 20 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 relcl _ _ 21 equivalences equivalence NOUN NNS Number=Plur 20 attr _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 124 # sent_id = 1 # text = The alternation hierarchy problem asks whether every $ mu $ - term $ phi $ , that is, a term built up also using a least fixed point constructor as well as a greatest fixed point constructor, is equivalent to a $ mu $ - term where the number of nested fixed points of a different type is bounded by a constant independent of $ phi $ . 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 alternation alternation NOUN NN Number=Sing 3 compound _ _ 3 hierarchy hierarchy NOUN NN Number=Sing 4 compound _ _ 4 problem problem NOUN NN Number=Sing 5 nsubj _ _ 5 asks ask VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 whether whether SCONJ IN _ 36 mark _ _ 7 every every DET DT _ 10 det _ _ 8 $ mu $ $ mu $ SYM $ _ 10 amod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 term term NOUN NN Number=Sing 36 nsubj _ _ 11 $ phi $ $ phi $ SYM $ _ 10 appos _ _ 12 , , PUNCT , PunctType=Comm 36 punct _ _ 13 that that ADV RB _ 14 advmod _ _ 14 is is ADV RB _ 36 advmod _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 36 punct _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 term term NOUN NN Number=Sing 36 nsubj _ _ 18 built build VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 acl _ _ 19 up up ADP RP _ 18 prt _ _ 20 also also ADV RB _ 21 advmod _ _ 21 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 18 advcl _ _ 22 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 23 least least ADJ JJS Degree=Sup 24 advmod _ _ 24 fixed fix VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 25 amod _ _ 25 point point NOUN NN Number=Sing 26 compound _ _ 26 constructor constructor NOUN NN Number=Sing 21 dobj _ _ 27 as as ADV RB _ 29 advmod _ _ 28 well well ADV RB Degree=Pos 29 advmod _ _ 29 as as ADP IN _ 26 cc _ _ 30 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 31 greatest great ADJ JJS Degree=Sup 34 amod _ _ 32 fixed fix VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 33 amod _ _ 33 point point NOUN NN Number=Sing 34 compound _ _ 34 constructor constructor NOUN NN Number=Sing 26 conj _ SpaceAfter=No 35 , , PUNCT , PunctType=Comm 17 punct _ _ 36 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 ccomp _ _ 37 equivalent equivalent ADJ JJ Degree=Pos 36 acomp _ _ 38 to to ADP IN _ 37 prep _ _ 39 a a DET DT Definite=Ind|PronType=Art 42 det _ _ 40 $ mu $ $ mu $ SYM $ _ 42 amod _ _ 41 - - PUNCT HYPH PunctType=Dash 42 punct _ _ 42 term term NOUN NN Number=Sing 38 pobj _ _ 43 where where SCONJ WRB _ 55 advmod _ _ 44 the the DET DT Definite=Def|PronType=Art 45 det _ _ 45 number number NOUN NN Number=Sing 55 nsubjpass _ _ 46 of of ADP IN _ 45 prep _ _ 47 nested nested ADJ JJ Degree=Pos 49 amod _ _ 48 fixed fix VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 49 amod _ _ 49 points point NOUN NNS Number=Plur 46 pobj _ _ 50 of of ADP IN _ 49 prep _ _ 51 a a DET DT Definite=Ind|PronType=Art 53 det _ _ 52 different different ADJ JJ Degree=Pos 53 amod _ _ 53 type type NOUN NN Number=Sing 50 pobj _ _ 54 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 55 auxpass _ _ 55 bounded bound VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 42 relcl _ _ 56 by by ADP IN _ 55 agent _ _ 57 a a DET DT Definite=Ind|PronType=Art 59 det _ _ 58 constant constant ADJ JJ Degree=Pos 59 amod _ _ 59 independent independent NOUN NN Number=Sing 56 pobj _ _ 60 of of ADP IN _ 59 prep _ _ 61 $ phi $ $ phi $ SYM $ _ 60 pobj _ _ 62 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = In this paper we give a proof that the alternation hierarchy for the theory of $ mu $ - lattices is strict, meaning that such a constant does not exist if $ mu $ - terms are built up from the basic lattice operations and are interpreted as expected. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 proof proof NOUN NN Number=Sing 5 dobj _ _ 8 that that SCONJ IN _ 19 mark _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 alternation alternation NOUN NN Number=Sing 11 compound _ _ 11 hierarchy hierarchy NOUN NN Number=Sing 19 nsubj _ _ 12 for for ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 theory theory NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 $ mu $ $ mu $ SYM $ _ 18 compound _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 lattices lattice NOUN NNS Number=Plur 15 pobj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 acl _ _ 20 strict strict ADJ JJ Degree=Pos 19 acomp _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 5 punct _ _ 22 meaning mean VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 advcl _ _ 23 that that SCONJ IN _ 29 mark _ _ 24 such such DET PDT _ 26 predet _ _ 25 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 26 constant constant ADJ JJ Degree=Pos 29 nsubj _ _ 27 does do AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 29 aux _ _ 28 not not PART RB Polarity=Neg 29 neg _ _ 29 exist exist VERB VB VerbForm=Inf 22 ccomp _ _ 30 if if SCONJ IN _ 35 mark _ _ 31 $ mu $ $ mu $ SYM $ _ 33 nmod _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 terms term NOUN NNS Number=Plur 35 nsubjpass _ _ 34 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 35 auxpass _ _ 35 built build VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 advcl _ _ 36 up up ADP RP _ 35 prt _ _ 37 from from ADP IN _ 35 prep _ _ 38 the the DET DT Definite=Def|PronType=Art 41 det _ _ 39 basic basic ADJ JJ Degree=Pos 41 amod _ _ 40 lattice lattice NOUN NN Number=Sing 41 compound _ _ 41 operations operation NOUN NNS Number=Plur 37 pobj _ _ 42 and and CCONJ CC ConjType=Cmp 35 cc _ _ 43 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 44 auxpass _ _ 44 interpreted interpret VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 35 conj _ _ 45 as as SCONJ IN _ 46 mark _ _ 46 expected expect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 44 advcl _ SpaceAfter=No 47 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = The proof relies on the explicit characterization of free $ mu $ - lattices by means of games and strategies. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 proof proof NOUN NN Number=Sing 3 nsubj _ _ 3 relies rely VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 on on ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 explicit explicit ADJ JJ Degree=Pos 7 amod _ _ 7 characterization characterization NOUN NN Number=Sing 4 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 free free ADJ JJ Degree=Pos 12 amod _ _ 10 $ mu $ $ mu $ SYM $ _ 12 nmod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 lattices lattice NOUN NNS Number=Plur 8 pobj _ _ 13 by by ADP IN _ 3 prep _ _ 14 means mean NOUN NNS Number=Plur 13 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 games game NOUN NNS Number=Plur 15 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 strategies strategy NOUN NNS Number=Plur 16 conj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 125 # sent_id = 1 # text = We analyse the classical property of centrality of equivalence relations in terms of normal monomorphisms. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 analyse analyse VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 classical classical ADJ JJ Degree=Pos 5 amod _ _ 5 property property NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 centrality centrality NOUN NN Number=Sing 6 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 equivalence equivalence NOUN NN Number=Sing 10 compound _ _ 10 relations relation NOUN NNS Number=Plur 8 pobj _ _ 11 in in ADP IN _ 5 prep _ _ 12 terms term NOUN NNS Number=Plur 11 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 normal normal ADJ JJ Degree=Pos 15 amod _ _ 15 monomorphisms monomorphism NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = For this purpose, the internal structure of connector is introduced, allowing to clarify classical results in Maltsev categories and to prove new ones in protomodular categories. 1 For for ADP IN _ 11 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 purpose purpose NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 11 punct _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 internal internal ADJ JJ Degree=Pos 7 amod _ _ 7 structure structure NOUN NN Number=Sing 11 nsubjpass _ _ 8 of of ADP IN _ 7 prep _ _ 9 connector connector NOUN NN Number=Sing 8 pobj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 11 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 allowing allow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 11 advcl _ _ 14 to to PART TO _ 15 aux _ _ 15 clarify clarify VERB VB VerbForm=Inf 13 xcomp _ _ 16 classical classical ADJ JJ Degree=Pos 17 amod _ _ 17 results result NOUN NNS Number=Plur 15 dobj _ _ 18 in in ADP IN _ 17 prep _ _ 19 Maltsev Maltsev PROPN NNP Number=Sing 20 amod _ _ 20 categories category NOUN NNS Number=Plur 18 pobj _ _ 21 and and CCONJ CC ConjType=Cmp 15 cc _ _ 22 to to PART TO _ 23 aux _ _ 23 prove prove VERB VB VerbForm=Inf 15 conj _ _ 24 new new ADJ JJ Degree=Pos 25 amod _ _ 25 ones one NOUN NNS Number=Plur 23 dobj _ _ 26 in in ADP IN _ 25 prep _ _ 27 protomodular protomodular ADJ JJ Degree=Pos 28 amod _ _ 28 categories category NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 3 # text = This approach allows to work in the general context of finitely complete categories, without requiring the usual Barr exactness assumption. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 approach approach NOUN NN Number=Sing 3 nsubj _ _ 3 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 to to PART TO _ 5 aux _ _ 5 work work VERB VB VerbForm=Inf 3 xcomp _ _ 6 in in ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 general general ADJ JJ Degree=Pos 9 amod _ _ 9 context context NOUN NN Number=Sing 6 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 finitely finitely ADV RB _ 12 advmod _ _ 12 complete complete ADJ JJ Degree=Pos 13 amod _ _ 13 categories category NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 5 punct _ _ 15 without without ADP IN _ 5 prep _ _ 16 requiring require VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 pcomp _ _ 17 the the DET DT Definite=Def|PronType=Art 21 det _ _ 18 usual usual ADJ JJ Degree=Pos 21 amod _ _ 19 Barr Barr PROPN NNP Number=Sing 20 compound _ _ 20 exactness exactness NOUN NN Number=Sing 21 compound _ _ 21 assumption assumption NOUN NN Number=Sing 16 dobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 126 # sent_id = 1 # text = In connection with the so - called Hurwitz action of homeomorphisms in ramified covers we define a groupoid, which we call a ramification groupoid of the 2 - sphere, constructed as a certain path groupoid of the universal ramified cover of the 2 - sphere with finitely many marked - points. 1 In in ADP IN _ 16 prep _ _ 2 connection connection NOUN NN Number=Sing 1 pobj _ _ 3 with with ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 9 det _ _ 5 so so ADV RB _ 7 advmod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 amod _ _ 8 Hurwitz Hurwitz PROPN NNP Number=Sing 9 compound _ _ 9 action action NOUN NN Number=Sing 3 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 homeomorphisms homeomorphism NOUN NNS Number=Plur 10 pobj _ _ 12 in in ADP IN _ 11 prep _ _ 13 ramified ramify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 14 covers cover NOUN NNS Number=Plur 12 pobj _ _ 15 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 16 nsubj _ _ 16 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 groupoid groupoid NOUN NN Number=Sing 16 dobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 which which PRON WDT _ 22 dobj _ _ 21 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 22 nsubj _ _ 22 call call VERB VBP Tense=Pres|VerbForm=Fin 18 relcl _ _ 23 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 24 ramification ramification NOUN NN Number=Sing 25 compound _ _ 25 groupoid groupoid NOUN NN Number=Sing 22 oprd _ _ 26 of of ADP IN _ 25 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 30 det _ _ 28 2 2 NUM CD NumType=Card 30 nummod _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 sphere sphere NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 30 punct _ _ 32 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 acl _ _ 33 as as ADP IN _ 32 prep _ _ 34 a a DET DT Definite=Ind|PronType=Art 37 det _ _ 35 certain certain ADJ JJ Degree=Pos 37 amod _ _ 36 path path NOUN NN Number=Sing 37 compound _ _ 37 groupoid groupoid NOUN NN Number=Sing 33 pobj _ _ 38 of of ADP IN _ 37 prep _ _ 39 the the DET DT Definite=Def|PronType=Art 42 det _ _ 40 universal universal ADJ JJ Degree=Pos 42 amod _ _ 41 ramified ramify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 42 amod _ _ 42 cover cover NOUN NN Number=Sing 38 pobj _ _ 43 of of ADP IN _ 42 prep _ _ 44 the the DET DT Definite=Def|PronType=Art 47 det _ _ 45 2 2 NUM CD NumType=Card 47 nummod _ _ 46 - - PUNCT HYPH PunctType=Dash 47 punct _ _ 47 sphere sphere NOUN NN Number=Sing 43 pobj _ _ 48 with with ADP IN _ 47 prep _ _ 49 finitely finitely ADV RB _ 50 advmod _ _ 50 many many ADJ JJ Degree=Pos 53 amod _ _ 51 marked mark VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 53 amod _ _ 52 - - PUNCT HYPH PunctType=Dash 53 punct _ _ 53 points point NOUN NNS Number=Plur 48 pobj _ SpaceAfter=No 54 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 2 # text = Our approach to ramified covers is based on cosheaf spaces, which are closely related to Fox's complete spreads. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 approach approach NOUN NN Number=Sing 7 nsubjpass _ _ 3 to to ADP IN _ 2 prep _ _ 4 ramified ramify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 amod _ _ 5 covers cover NOUN NNS Number=Plur 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 7 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 on on ADP IN _ 7 prep _ _ 9 cosheaf cosheaf ADJ JJ Degree=Pos 10 amod _ _ 10 spaces space NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 which which PRON WDT _ 15 nsubjpass _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 auxpass _ _ 14 closely closely ADV RB _ 15 advmod _ _ 15 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 relcl _ _ 16 to to ADP IN _ 15 prep _ _ 17 Fox Fox PROPN NNP Number=Sing 20 poss _ SpaceAfter=No 18 's 's PART POS _ 17 case _ _ 19 complete complete ADJ JJ Degree=Pos 20 amod _ _ 20 spreads spread NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = A feature of a ramification groupoid is that it carries a certain order structure. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 feature feature NOUN NN Number=Sing 7 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 ramification ramification NOUN NN Number=Sing 6 compound _ _ 6 groupoid groupoid NOUN NN Number=Sing 3 pobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 that that SCONJ IN _ 10 mark _ _ 9 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 10 nsubj _ _ 10 carries carry VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 ccomp _ _ 11 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 12 certain certain ADJ JJ Degree=Pos 14 amod _ _ 13 order order NOUN NN Number=Sing 14 compound _ _ 14 structure structure NOUN NN Number=Sing 10 dobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = The Artin group of braids of $ n $ strands has an order - invariant action in the ramification groupoid of the sphere with $ n+1 $ marked - points. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 Artin Artin PROPN NNP Number=Sing 3 compound _ _ 3 group group NOUN NN Number=Sing 9 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 braids braid NOUN NNS Number=Plur 4 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 $ n $ $ n $ SYM $ _ 8 nmod _ _ 8 strands strand NOUN NNS Number=Plur 6 pobj _ _ 9 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 an an DET DT Definite=Ind|PronType=Art 14 det _ _ 11 order order NOUN NN Number=Sing 13 npadvmod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 invariant invariant ADJ JJ Degree=Pos 14 amod _ _ 14 action action NOUN NN Number=Sing 9 dobj _ _ 15 in in ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 ramification ramification NOUN NN Number=Sing 18 compound _ _ 18 groupoid groupoid NOUN NN Number=Sing 15 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 sphere sphere NOUN NN Number=Sing 19 pobj _ _ 22 with with ADP IN _ 14 prep _ _ 23 $ n+1 $ $ n+1 $ SYM $ _ 26 nmod _ _ 24 marked mark VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 amod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 points point NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 5 # text = Left - invariant linear orderings of the braid group such as the Dehornoy ordering may be retrieved. 1 Left left ADJ JJ Degree=Pos 3 amod _ _ 2 - - PUNCT HYPH PunctType=Dash 3 punct _ _ 3 invariant invariant ADJ JJ Degree=Pos 5 amod _ _ 4 linear linear ADJ JJ Degree=Pos 5 compound _ _ 5 orderings ordering NOUN NNS Number=Plur 17 nsubjpass _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 braid braid PROPN NNP Number=Sing 9 compound _ _ 9 group group NOUN NN Number=Sing 6 pobj _ _ 10 such such ADJ JJ Degree=Pos 11 amod _ _ 11 as as ADP IN _ 9 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 Dehornoy Dehornoy PROPN NNP Number=Sing 14 compound _ _ 14 ordering ordering NOUN NN Number=Sing 11 pobj _ _ 15 may may AUX MD VerbForm=Fin 17 aux _ _ 16 be be AUX VB VerbForm=Inf 17 auxpass _ _ 17 retrieved retrieve VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 6 # text = Our work extends naturally to the braid group on countably many generators. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 work work NOUN NN Number=Sing 3 nsubj _ _ 3 extends extend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 naturally naturally ADV RB _ 3 advmod _ _ 5 to to ADP IN _ 3 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 braid braid PROPN NNP Number=Sing 8 compound _ _ 8 group group NOUN NN Number=Sing 5 pobj _ _ 9 on on ADP IN _ 3 prep _ _ 10 countably countably ADV RB _ 11 advmod _ _ 11 many many ADJ JJ Degree=Pos 12 amod _ _ 12 generators generator NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 7 # text = In particular, we show that the underlying set of a free group on countably many generators (minus the identity element) can be linearly ordered in such a way that the classical Artin representation of a braid as an automorphism of the free group is an order - preserving action. 1 In in ADP IN _ 5 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 that that SCONJ IN _ 27 mark _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 underlying underlie VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 amod _ _ 9 set set NOUN NN Number=Sing 27 nsubjpass _ _ 10 of of ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 free free ADJ JJ Degree=Pos 13 amod _ _ 13 group group NOUN NN Number=Sing 10 pobj _ _ 14 on on ADP IN _ 9 prep _ _ 15 countably countably ADV RB _ 16 advmod _ _ 16 many many ADJ JJ Degree=Pos 17 amod _ _ 17 generators generator NOUN NNS Number=Plur 14 pobj _ _ 18 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 17 punct _ SpaceAfter=No 19 minus minus CCONJ CC ConjType=Cmp 17 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 identity identity NOUN NN Number=Sing 22 compound _ _ 22 element element NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 23 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 17 punct _ _ 24 can can AUX MD VerbForm=Fin 27 aux _ _ 25 be be AUX VB VerbForm=Inf 27 auxpass _ _ 26 linearly linearly ADV RB _ 27 advmod _ _ 27 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 ccomp _ _ 28 in in ADP IN _ 27 prep _ _ 29 such such DET PDT _ 31 predet _ _ 30 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 31 way way NOUN NN Number=Sing 28 pobj _ _ 32 that that PRON WDT PronType=Rel 47 mark _ _ 33 the the DET DT Definite=Def|PronType=Art 36 det _ _ 34 classical classical ADJ JJ Degree=Pos 36 amod _ _ 35 Artin Artin PROPN NNP Number=Sing 36 compound _ _ 36 representation representation NOUN NN Number=Sing 47 nsubj _ _ 37 of of ADP IN _ 36 prep _ _ 38 a a DET DT Definite=Ind|PronType=Art 39 det _ _ 39 braid braid NOUN NN Number=Sing 37 pobj _ _ 40 as as ADP IN _ 39 prep _ _ 41 an an DET DT Definite=Ind|PronType=Art 42 det _ _ 42 automorphism automorphism NOUN NN Number=Sing 40 pobj _ _ 43 of of ADP IN _ 42 prep _ _ 44 the the DET DT Definite=Def|PronType=Art 46 det _ _ 45 free free ADJ JJ Degree=Pos 46 amod _ _ 46 group group NOUN NN Number=Sing 43 pobj _ _ 47 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 31 acl _ _ 48 an an DET DT Definite=Ind|PronType=Art 52 det _ _ 49 order order NOUN NN Number=Sing 51 npadvmod _ _ 50 - - PUNCT HYPH PunctType=Dash 51 punct _ _ 51 preserving preserve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 52 amod _ _ 52 action action NOUN NN Number=Sing 47 attr _ SpaceAfter=No 53 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 127 # sent_id = 1 # text = In the present article we continue recent work in the direction of domain theory were certain (accessible) categories are used as generalized domains. 1 In in ADP IN _ 6 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 present present ADJ JJ Degree=Pos 4 amod _ _ 4 article article NOUN NN Number=Sing 1 pobj _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 continue continue VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 recent recent ADJ JJ Degree=Pos 8 amod _ _ 8 work work NOUN NN Number=Sing 6 dobj _ _ 9 in in ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 direction direction NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 domain domain NOUN NN Number=Sing 14 compound _ _ 14 theory theory NOUN NN Number=Sing 12 pobj _ _ 15 were be AUX VBD Mood=Ind|Tense=Past|VerbForm=Fin 6 conj _ _ 16 certain certain ADJ JJ Degree=Pos 15 acomp _ _ 17 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 20 punct _ SpaceAfter=No 18 accessible accessible ADJ JJ Degree=Pos 20 amod _ SpaceAfter=No 19 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 20 punct _ _ 20 categories category NOUN NNS Number=Plur 22 nsubjpass _ _ 21 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 22 auxpass _ _ 22 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 conj _ _ 23 as as ADP IN _ 22 prep _ _ 24 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 25 amod _ _ 25 domains domain NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 22 punct _ SpaceAfter=No # sent_id = 2 # text = We discuss the possibility of using certain presheaf toposes as generalizations of the Scott topology at this level. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 discuss discuss VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 possibility possibility NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 pcomp _ _ 7 certain certain ADJ JJ Degree=Pos 9 amod _ _ 8 presheaf presheaf NOUN NN Number=Sing 9 compound _ _ 9 toposes topos NOUN NNS Number=Plur 6 dobj _ _ 10 as as ADP IN _ 6 prep _ _ 11 generalizations generalization NOUN NNS Number=Plur 10 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 Scott Scott PROPN NNP Number=Sing 15 compound _ _ 15 topology topology NOUN NN Number=Sing 12 pobj _ _ 16 at at ADP IN _ 6 prep _ _ 17 this this DET DT Number=Sing|PronType=Dem 18 det _ _ 18 level level NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We show that the toposes associated with Scott complete categories are injective with respect to dense inclusions of toposes. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 11 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 toposes topos NOUN NNS Number=Plur 11 nsubj _ _ 6 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 acl _ _ 7 with with ADP IN _ 6 prep _ _ 8 Scott Scott PROPN NNP Number=Sing 10 nmod _ _ 9 complete complete ADJ JJ Degree=Pos 10 amod _ _ 10 categories category NOUN NNS Number=Plur 7 pobj _ _ 11 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 12 injective injective ADJ JJ Degree=Pos 11 acomp _ _ 13 with with ADP IN _ 12 prep _ _ 14 respect respect NOUN NN Number=Sing 13 pobj _ _ 15 to to ADP IN _ 14 prep _ _ 16 dense dense ADJ JJ Degree=Pos 17 amod _ _ 17 inclusions inclusion NOUN NNS Number=Plur 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 toposes topos NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We propose analogues of the upper and lower powerdomain in terms of the Scott topology at the level of categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 propose propose VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 analogues analogue NOUN NNS Number=Plur 2 dobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 9 det _ _ 6 upper upper ADJ JJ Degree=Pos 9 amod _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 lower low ADJ JJR Degree=Cmp 6 conj _ _ 9 powerdomain powerdomain NOUN NN Number=Sing 4 pobj _ _ 10 in in ADP IN _ 2 prep _ _ 11 terms term NOUN NNS Number=Plur 10 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 Scott Scott PROPN NNP Number=Sing 15 compound _ _ 15 topology topology NOUN NN Number=Sing 12 pobj _ _ 16 at at ADP IN _ 2 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 level level NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 categories category NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = We show that the class of finitely accessible categories is closed under this generalized upper powerdomain construction (the respective result about the lower powerdomain construction is essentially known). 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 11 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 class class NOUN NN Number=Sing 11 nsubjpass _ _ 6 of of ADP IN _ 5 prep _ _ 7 finitely finitely ADV RB _ 8 advmod _ _ 8 accessible accessible ADJ JJ Degree=Pos 9 amod _ _ 9 categories category NOUN NNS Number=Plur 6 pobj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 11 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 12 under under ADP IN _ 11 prep _ _ 13 this this DET DT Number=Sing|PronType=Dem 17 det _ _ 14 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 15 upper upper ADJ JJ Degree=Pos 17 amod _ _ 16 powerdomain powerdomain NOUN NN Number=Sing 17 compound _ _ 17 construction construction NOUN NN Number=Sing 12 pobj _ _ 18 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 21 punct _ SpaceAfter=No 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 respective respective ADJ JJ Degree=Pos 21 amod _ _ 21 result result NOUN NN Number=Sing 29 nsubjpass _ _ 22 about about ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 26 det _ _ 24 lower low ADJ JJR Degree=Cmp 25 amod _ _ 25 powerdomain powerdomain NOUN NN Number=Sing 26 compound _ _ 26 construction construction NOUN NN Number=Sing 22 pobj _ _ 27 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 29 auxpass _ _ 28 essentially essentially ADV RB _ 29 advmod _ _ 29 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 advcl _ SpaceAfter=No 30 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 29 punct _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = We also treat the notion of ``coherent domain'' by introducing two possible notions of coherence for a finitely accessible category (qua generalized domain). 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 treat treat VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 notion notion NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 10 punct _ SpaceAfter=No 8 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 10 punct _ SpaceAfter=No 9 coherent coherent ADJ JJ Degree=Pos 10 amod _ _ 10 domain domain NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 11 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 3 punct _ _ 12 by by ADP IN _ 3 prep _ _ 13 introducing introduce VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 pcomp _ _ 14 two two NUM CD NumType=Card 16 nummod _ _ 15 possible possible ADJ JJ Degree=Pos 16 amod _ _ 16 notions notion NOUN NNS Number=Plur 13 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 coherence coherence NOUN NN Number=Sing 17 pobj _ _ 19 for for ADP IN _ 13 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 21 finitely finitely ADV RB _ 22 advmod _ _ 22 accessible accessible ADJ JJ Degree=Pos 23 amod _ _ 23 category category NOUN NN Number=Sing 19 pobj _ _ 24 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 23 punct _ SpaceAfter=No 25 qua qua CCONJ CC ConjType=Cmp 23 cc _ _ 26 generalized generalized ADJ JJ Degree=Pos 27 amod _ _ 27 domain domain NOUN NN Number=Sing 23 conj _ SpaceAfter=No 28 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 3 punct _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 7 # text = The one of them imitates the stability of the compact saturated sets under intersection and the other one imitates the so - called ``2/3 SFP'' property. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 one one NUM CD NumType=Card 5 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 3 pobj _ _ 5 imitates imitate VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 stability stability NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 12 det _ _ 10 compact compact ADJ JJ Degree=Pos 12 amod _ _ 11 saturated saturate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 12 sets set NOUN NNS Number=Plur 8 pobj _ _ 13 under under ADP IN _ 12 prep _ _ 14 intersection intersection NOUN NN Number=Sing 13 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 7 cc _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 other other ADJ JJ Degree=Pos 18 amod _ _ 18 one one NOUN NN Number=Sing 19 nsubj _ _ 19 imitates imitate VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 conj _ _ 20 the the DET DT Definite=Def|PronType=Art 29 det _ _ 21 so so ADV RB _ 23 advmod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 amod _ _ 24 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 29 punct _ SpaceAfter=No 25 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 29 punct _ SpaceAfter=No 26 2/3 2/3 NUM CD NumType=Card 27 nummod _ _ 27 SFP SFP PROPN NNP Number=Sing 29 nmod _ SpaceAfter=No 28 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 29 punct _ _ 29 property property NOUN NN Number=Sing 19 dobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 8 # text = We show that the two notions are equivalent. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 7 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 two two NUM CD NumType=Card 6 nummod _ _ 6 notions notion NOUN NNS Number=Plur 7 nsubj _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 8 equivalent equivalent ADJ JJ Degree=Pos 7 acomp _ SpaceAfter=No 9 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 9 # text = This amounts to characterizing the small categories whose free cocompletion under finite colimits has finite limits. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 amounts amount VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 to to ADP IN _ 2 prep _ _ 4 characterizing characterize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 pcomp _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 small small ADJ JJ Degree=Pos 7 amod _ _ 7 categories category NOUN NNS Number=Plur 4 dobj _ _ 8 whose whose DET WP$ Poss=Yes 10 poss _ _ 9 free free ADJ JJ Degree=Pos 10 amod _ _ 10 cocompletion cocompletion NOUN NN Number=Sing 14 nsubj _ _ 11 under under ADP IN _ 10 prep _ _ 12 finite finite PROPN NNP Number=Sing 13 compound _ _ 13 colimits colimit NOUN NNS Number=Plur 11 pobj _ _ 14 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 relcl _ _ 15 finite finite ADJ JJ Degree=Pos 16 amod _ _ 16 limits limit NOUN NNS Number=Plur 14 dobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 128 # sent_id = 1 # text = In this paper we show how collapsing schemes can give us information on the homotopy type of the classifying space of a small category, when this category is presented by a complete rewrite system. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 how how SCONJ WRB _ 7 advmod _ _ 7 collapsing collapse VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 amod _ _ 8 schemes scheme NOUN NNS Number=Plur 10 nsubj _ _ 9 can can AUX MD VerbForm=Fin 10 aux _ _ 10 give give VERB VB VerbForm=Inf 5 ccomp _ _ 11 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 10 dative _ _ 12 information information NOUN NN Number=Sing 10 dobj _ _ 13 on on ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 homotopy homotopy NOUN NN Number=Sing 16 compound _ _ 16 type type NOUN NN Number=Sing 13 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 classifying classify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 20 amod _ _ 20 space space NOUN NN Number=Sing 17 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 23 small small ADJ JJ Degree=Pos 24 amod _ _ 24 category category NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 10 punct _ _ 26 when when SCONJ WRB _ 30 advmod _ _ 27 this this DET DT Number=Sing|PronType=Dem 28 det _ _ 28 category category NOUN NN Number=Sing 30 nsubjpass _ _ 29 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 auxpass _ _ 30 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 advcl _ _ 31 by by ADP IN _ 30 agent _ _ 32 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 33 complete complete ADJ JJ Degree=Pos 35 amod _ _ 34 rewrite rewrite NOUN NN Number=Sing 35 compound _ _ 35 system system NOUN NN Number=Sing 31 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 129 # sent_id = 1 # text = An action $ * : cal V times cal A to cal A $ of a monoidal category $ cal V $ on a category $ cal A $ corresponds to a strong monoidal functor $ F : cal V to [cal A, cal A] $ into the monoidal category of endofunctors of $ cal A $ . 1 An an DET DT Definite=Ind|PronType=Art 2 det _ _ 2 action action NOUN NN Number=Sing 13 nsubj _ _ 3 $ * : cal V times cal A to cal A $ $ * : cal v times cal a to cal a $ SYM $ _ 2 appos _ _ 4 of of ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 monoidal monoidal ADJ JJ Degree=Pos 7 amod _ _ 7 category category NOUN NN Number=Sing 4 pobj _ _ 8 $ cal V $ $ cal v $ SYM $ _ 2 appos _ _ 9 on on ADP IN _ 2 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 category category NOUN NN Number=Sing 9 pobj _ _ 12 $ cal A $ $ cal a $ SYM $ _ 13 nummod _ _ 13 corresponds correspond NOUN NNS Number=Plur 0 ROOT _ _ 14 to to ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 16 strong strong ADJ JJ Degree=Pos 18 amod _ _ 17 monoidal monoidal NOUN NN Number=Sing 18 amod _ _ 18 functor functor NOUN NN Number=Sing 14 pobj _ _ 19 $ F : cal V to [cal A, cal A] $ $ f : cal v to [cal a, cal a] $ SYM $ _ 18 appos _ _ 20 into into ADP IN _ 13 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 23 det _ _ 22 monoidal monoidal ADJ JJ Degree=Pos 23 amod _ _ 23 category category NOUN NN Number=Sing 20 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 endofunctors endofunctor NOUN NNS Number=Plur 24 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 $ cal A $ $ cal a $ SYM $ _ 26 pobj _ _ 28 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 2 # text = In many practical cases, the ordinary functor $ f : cal V to [cal A, cal A] $ underlying the monoidal $ F $ has a right adjoint $ g $ ; and when this is so, $ F $ itself has a right adjoint $ G $ as a monoidal functor - so that, passing to the categories of monoids (also called ``algebras'') in $ cal V $ and in $ [cal A, cal A] $ , we have an adjunction $ Mon F $ left adjoint to $ Mon G $ between the category $ Mon cal V $ of monoids in $ cal V $ and the category $ Mon [cal A, cal A] = Mnd cal A $ of monads on $ cal A $ . 1 In in ADP IN _ 10 prep _ _ 2 many many ADJ JJ Degree=Pos 4 amod _ _ 3 practical practical ADJ JJ Degree=Pos 4 amod _ _ 4 cases case NOUN NNS Number=Plur 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 10 punct _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 ordinary ordinary ADJ JJ Degree=Pos 8 amod _ _ 8 functor functor NOUN NN Number=Sing 10 nsubj _ _ 9 $ f : cal V to [cal A, cal A] $ $ f : cal v to [cal a, cal a] $ SYM $ _ 10 nsubj _ _ 10 underlying underlie VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 csubj _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 monoidal monoidal NOUN NN Number=Sing 10 dobj _ _ 13 $ F $ $ f $ SYM $ _ 10 npadvmod _ _ 14 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 right right ADJ JJ Degree=Pos 17 amod _ _ 17 adjoint adjoint NOUN NN Number=Sing 14 dobj _ _ 18 $ g $ $ g $ SYM $ _ 17 appos _ _ 19 ; ; PUNCT : _ 14 punct _ _ 20 and and CCONJ CC ConjType=Cmp 14 cc _ _ 21 when when SCONJ WRB _ 23 advmod _ _ 22 this this PRON DT Number=Sing|PronType=Dem 23 nsubj _ _ 23 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 28 advcl _ _ 24 so so ADV RB _ 23 advmod _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 28 punct _ _ 26 $ F $ $ f $ SYM $ _ 27 nmod _ _ 27 itself itself PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs|Reflex=Yes 28 nsubj _ _ 28 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 conj _ _ 29 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 30 right right ADJ JJ Degree=Pos 31 amod _ _ 31 adjoint adjoint NOUN NN Number=Sing 28 dobj _ _ 32 $ G $ $ g $ SYM $ _ 31 appos _ _ 33 as as ADP IN _ 28 prep _ _ 34 a a DET DT Definite=Ind|PronType=Art 36 det _ _ 35 monoidal monoidal ADJ JJ Degree=Pos 36 amod _ _ 36 functor functor NOUN NN Number=Sing 33 pobj _ _ 37 - - PUNCT : _ 28 punct _ _ 38 so so SCONJ IN _ 49 mark _ _ 39 that that SCONJ IN _ 49 mark _ SpaceAfter=No 40 , , PUNCT , PunctType=Comm 49 punct _ _ 41 passing pass VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 49 advcl _ _ 42 to to ADP IN _ 41 prep _ _ 43 the the DET DT Definite=Def|PronType=Art 44 det _ _ 44 categories category NOUN NNS Number=Plur 42 pobj _ _ 45 of of ADP IN _ 44 prep _ _ 46 monoids monoid NOUN NNS Number=Plur 45 pobj _ _ 47 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 49 punct _ SpaceAfter=No 48 also also ADV RB _ 49 advmod _ _ 49 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 advcl _ _ 50 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 52 punct _ SpaceAfter=No 51 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 52 punct _ SpaceAfter=No 52 algebras algebra NOUN NNS Number=Plur 49 oprd _ SpaceAfter=No 53 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 52 punct _ SpaceAfter=No 54 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 49 punct _ _ 55 in in ADP IN _ 49 prep _ _ 56 $ cal V $ $ cal v $ SYM $ _ 55 pobj _ _ 57 and and CCONJ CC ConjType=Cmp 55 cc _ _ 58 in in ADP IN _ 62 prep _ _ 59 $ [cal A, cal A] $ $ [cal a, cal a] $ SYM $ _ 58 pobj _ _ 60 , , PUNCT , PunctType=Comm 62 punct _ _ 61 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 62 nsubj _ _ 62 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 49 conj _ _ 63 an an DET DT Definite=Ind|PronType=Art 64 det _ _ 64 adjunction adjunction NOUN NN Number=Sing 62 dobj _ _ 65 $ Mon F $ $ mon f $ SYM $ _ 66 nsubj _ _ 66 left leave VERB VBD Tense=Past|VerbForm=Fin 28 conj _ _ 67 adjoint adjoint NOUN NN Number=Sing 66 dobj _ _ 68 to to ADP IN _ 66 prep _ _ 69 $ Mon G $ $ mon g $ SYM $ _ 68 pobj _ _ 70 between between ADP IN _ 66 prep _ _ 71 the the DET DT Definite=Def|PronType=Art 72 det _ _ 72 category category NOUN NN Number=Sing 70 pobj _ _ 73 $ Mon cal V $ $ mon cal v $ SYM $ _ 72 appos _ _ 74 of of ADP IN _ 73 prep _ _ 75 monoids monoid NOUN NNS Number=Plur 74 pobj _ _ 76 in in ADP IN _ 72 prep _ _ 77 $ cal V $ $ cal v $ SYM $ _ 76 pobj _ _ 78 and and CCONJ CC ConjType=Cmp 72 cc _ _ 79 the the DET DT Definite=Def|PronType=Art 80 det _ _ 80 category category NOUN NN Number=Sing 72 conj _ _ 81 $ Mon [cal A, cal A] = Mnd cal A $ $ mon [cal a, cal a] = mnd cal a $ SYM $ _ 80 appos _ _ 82 of of ADP IN _ 81 prep _ _ 83 monads monad NOUN NNS Number=Plur 82 pobj _ _ 84 on on ADP IN _ 80 prep _ _ 85 $ cal A $ $ cal a $ SYM $ _ 84 pobj _ _ 86 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 3 # text = We give sufficient conditions for the existence of the right adjoint $ g $ , which involve the existence of right adjoints for the functors $ X * - $ and $ * A $ , and make $ cal A $ (at least when $ cal V $ is symmetric and closed) into a tensored and cotensored $ cal V $ - category $ {bf A} $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 sufficient sufficient ADJ JJ Degree=Pos 4 amod _ _ 4 conditions condition NOUN NNS Number=Plur 2 dobj _ _ 5 for for ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 existence existence NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 right right ADJ JJ Degree=Pos 11 amod _ _ 11 adjoint adjoint NOUN NN Number=Sing 8 pobj _ _ 12 $ g $ $ g $ SYM $ _ 11 appos _ _ 13 , , PUNCT , PunctType=Comm 11 punct _ _ 14 which which PRON WDT _ 15 nsubj _ _ 15 involve involve VERB VBP Tense=Pres|VerbForm=Fin 11 relcl _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 existence existence NOUN NN Number=Sing 15 dobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 right right ADJ JJ Degree=Pos 20 amod _ _ 20 adjoints adjoint NOUN NNS Number=Plur 18 pobj _ _ 21 for for ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 functors functor NOUN NNS Number=Plur 21 pobj _ _ 24 $ X * - $ $ x * - $ SYM $ _ 2 dobj _ _ 25 and and CCONJ CC ConjType=Cmp 24 cc _ _ 26 $ * A $ $ * a $ SYM $ _ 24 conj _ _ 27 , , PUNCT , PunctType=Comm 2 punct _ _ 28 and and CCONJ CC ConjType=Cmp 2 cc _ _ 29 make make VERB VB VerbForm=Inf 2 conj _ _ 30 $ cal A $ $ cal a $ SYM $ _ 29 dobj _ _ 31 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 30 punct _ SpaceAfter=No 32 at at ADP IN _ 33 advmod _ _ 33 least least ADJ JJS Degree=Sup 34 advmod _ _ 34 when when SCONJ WRB _ 36 advmod _ _ 35 $ cal V $ $ cal v $ SYM $ _ 36 nsubj _ _ 36 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 29 advcl _ _ 37 symmetric symmetric ADJ JJ Degree=Pos 36 acomp _ _ 38 and and CCONJ CC ConjType=Cmp 37 cc _ _ 39 closed closed ADJ JJ Degree=Pos 37 conj _ SpaceAfter=No 40 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 36 punct _ _ 41 into into ADP IN _ 36 prep _ _ 42 a a DET DT Definite=Ind|PronType=Art 43 det _ _ 43 tensored tensored NOUN NN Number=Sing 41 pobj _ _ 44 and and CCONJ CC ConjType=Cmp 36 cc _ _ 45 cotensored cotensore VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 36 conj _ _ 46 $ cal V $ $ cal v $ SYM $ _ 48 nummod _ _ 47 - - PUNCT HYPH PunctType=Dash 48 punct _ _ 48 category category NOUN NN Number=Sing 49 nmod _ _ 49 $ {bf A} $ $ {bf a} $ NOUN NN Number=Sing 45 dobj _ _ 50 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We give explicit formulae, as large ends, for the right adjoints $ g $ and $ Mon G $ , and also for some related right adjoints, when they exist; as well as another explicit expression for $ Mon G $ as a large limit, which uses a new representation of any (large) limit of monads of two special kinds, and an analogous result for general endofunctors. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 explicit explicit ADJ JJ Degree=Pos 4 amod _ _ 4 formulae formulae NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 2 punct _ _ 6 as as ADP IN _ 2 prep _ _ 7 large large ADJ JJ Degree=Pos 8 amod _ _ 8 ends end NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 2 punct _ _ 10 for for ADP IN _ 2 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 right right ADJ JJ Degree=Pos 13 amod _ _ 13 adjoints adjoint NOUN NNS Number=Plur 10 pobj _ _ 14 $ g $ $ g $ SYM $ _ 13 appos _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 $ Mon G $ $ mon g $ SYM $ _ 14 conj _ _ 17 , , PUNCT , PunctType=Comm 10 punct _ _ 18 and and CCONJ CC ConjType=Cmp 10 cc _ _ 19 also also ADV RB _ 20 advmod _ _ 20 for for ADP IN _ 10 conj _ _ 21 some some DET DT _ 24 det _ _ 22 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 23 right right ADJ JJ Degree=Pos 24 amod _ _ 24 adjoints adjoint NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 when when SCONJ WRB _ 28 advmod _ _ 27 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 28 nsubj _ _ 28 exist exist VERB VBP Tense=Pres|VerbForm=Fin 24 relcl _ SpaceAfter=No 29 ; ; PUNCT : _ 24 punct _ _ 30 as as ADV RB _ 32 advmod _ _ 31 well well ADV RB Degree=Pos 32 advmod _ _ 32 as as ADP IN _ 24 cc _ _ 33 another another DET DT _ 35 det _ _ 34 explicit explicit ADJ JJ Degree=Pos 35 amod _ _ 35 expression expression NOUN NN Number=Sing 24 conj _ _ 36 for for ADP IN _ 35 prep _ _ 37 $ Mon G $ $ mon g $ SYM $ _ 36 pobj _ _ 38 as as ADP IN _ 35 prep _ _ 39 a a DET DT Definite=Ind|PronType=Art 41 det _ _ 40 large large ADJ JJ Degree=Pos 41 amod _ _ 41 limit limit NOUN NN Number=Sing 38 pobj _ SpaceAfter=No 42 , , PUNCT , PunctType=Comm 41 punct _ _ 43 which which PRON WDT _ 44 nsubj _ _ 44 uses use VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 41 relcl _ _ 45 a a DET DT Definite=Ind|PronType=Art 47 det _ _ 46 new new ADJ JJ Degree=Pos 47 amod _ _ 47 representation representation NOUN NN Number=Sing 44 dobj _ _ 48 of of ADP IN _ 47 prep _ _ 49 any any DET DT _ 53 det _ _ 50 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 53 punct _ SpaceAfter=No 51 large large ADJ JJ Degree=Pos 53 amod _ SpaceAfter=No 52 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 53 punct _ _ 53 limit limit NOUN NN Number=Sing 48 pobj _ _ 54 of of ADP IN _ 53 prep _ _ 55 monads monad NOUN NNS Number=Plur 54 pobj _ _ 56 of of ADP IN _ 55 prep _ _ 57 two two NUM CD NumType=Card 59 nummod _ _ 58 special special ADJ JJ Degree=Pos 59 amod _ _ 59 kinds kind NOUN NNS Number=Plur 56 pobj _ SpaceAfter=No 60 , , PUNCT , PunctType=Comm 41 punct _ _ 61 and and CCONJ CC ConjType=Cmp 35 cc _ _ 62 an an DET DT Definite=Ind|PronType=Art 64 det _ _ 63 analogous analogous ADJ JJ Degree=Pos 64 amod _ _ 64 result result NOUN NN Number=Sing 35 conj _ _ 65 for for ADP IN _ 64 prep _ _ 66 general general ADJ JJ Degree=Pos 67 amod _ _ 67 endofunctors endofunctor NOUN NNS Number=Plur 65 pobj _ SpaceAfter=No 68 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 130 # sent_id = 1 # text = The interpretation by Duskin and Glenn of abelian sheaf cohomology as connected components of a category of torsors is extended to homotopy classes. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 interpretation interpretation NOUN NN Number=Sing 20 nsubjpass _ _ 3 by by ADP IN _ 2 prep _ _ 4 Duskin Duskin PROPN NNP Number=Sing 3 pobj _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 Glenn Glenn PROPN NNP Number=Sing 4 conj _ _ 7 of of ADP IN _ 4 prep _ _ 8 abelian abelian PROPN NNP Number=Sing 10 compound _ _ 9 sheaf sheaf PROPN NNP Number=Sing 10 compound _ _ 10 cohomology cohomology NOUN NN Number=Sing 7 pobj _ _ 11 as as ADP IN _ 2 prep _ _ 12 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 amod _ _ 13 components component NOUN NNS Number=Plur 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 category category NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 torsors torsor NOUN NNS Number=Plur 17 pobj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 auxpass _ _ 20 extended extend VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 21 to to PART TO _ 22 aux _ _ 22 homotopy homotopy VERB VB VerbForm=Inf 20 xcomp _ _ 23 classes class NOUN NNS Number=Plur 22 dobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # sent_id = 2 # text = This is simultaneously an extension of Verdier's version of Cech cohomology to homotopy. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 simultaneously simultaneously ADV RB _ 2 advmod _ _ 4 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 5 extension extension NOUN NN Number=Sing 2 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 Verdier verdier NOUN NN Number=Sing 9 poss _ SpaceAfter=No 8 's 's PART POS _ 7 case _ _ 9 version version NOUN NN Number=Sing 6 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 Cech Cech PROPN NNP Number=Sing 12 compound _ _ 12 cohomology cohomology NOUN NN Number=Sing 10 pobj _ _ 13 to to PART TO _ 14 aux _ _ 14 homotopy homotopy VERB VB VerbForm=Inf 5 acl _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 131 # sent_id = 1 # text = Exact sequences are a well known notion in homological algebra. 1 Exact exact ADJ JJ Degree=Pos 2 amod _ _ 2 sequences sequence NOUN NNS Number=Plur 3 nsubj _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 5 well well ADV RB Degree=Pos 6 advmod _ _ 6 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 amod _ _ 7 notion notion NOUN NN Number=Sing 3 attr _ _ 8 in in ADP IN _ 7 prep _ _ 9 homological homological ADJ JJ Degree=Pos 10 amod _ _ 10 algebra algebra NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = We investigate here the more vague properties of `homotopical exactness', appearing for instance in the fibre or cofibre sequence of a map. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 investigate investigate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 here here ADV RB PronType=Dem 2 advmod _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 more more ADV RBR Degree=Cmp 6 advmod _ _ 6 vague vague ADJ JJ Degree=Pos 7 amod _ _ 7 properties property NOUN NNS Number=Plur 2 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 8 punct _ SpaceAfter=No 10 homotopical homotopical ADJ JJ Degree=Pos 11 amod _ _ 11 exactness exactness NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 12 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 7 punct _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 7 punct _ _ 14 appearing appear VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 acl _ _ 15 for for ADP IN _ 14 prep _ _ 16 instance instance NOUN NN Number=Sing 15 pobj _ _ 17 in in ADP IN _ 14 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 fibre fibre NOUN NN Number=Sing 17 pobj _ _ 20 or or CCONJ CC ConjType=Cmp 19 cc _ _ 21 cofibre cofibre PROPN NNP Number=Sing 22 compound _ _ 22 sequence sequence NOUN NN Number=Sing 19 conj _ _ 23 of of ADP IN _ 19 prep _ _ 24 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 25 map map NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Such notions of exactness can be given for very general `categories with homotopies' having homotopy kernels and cokernels, but become more interesting under suitable `stability' hypotheses, satisfied - in particular - by chain complexes. 1 Such such ADJ JJ Degree=Pos 2 amod _ _ 2 notions notion NOUN NNS Number=Plur 7 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 exactness exactness NOUN NN Number=Sing 3 pobj _ _ 5 can can AUX MD VerbForm=Fin 7 aux _ _ 6 be be AUX VB VerbForm=Inf 7 auxpass _ _ 7 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 for for ADP IN _ 7 prep _ _ 9 very very ADV RB _ 10 advmod _ _ 10 general general ADJ JJ Degree=Pos 12 amod _ _ 11 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 12 punct _ SpaceAfter=No 12 categories category NOUN NNS Number=Plur 8 pobj _ _ 13 with with ADP IN _ 12 prep _ _ 14 homotopies homotopie NOUN NNS Number=Plur 16 nsubj _ SpaceAfter=No 15 ' ' PART POS _ 14 case _ _ 16 having have VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 pcomp _ _ 17 homotopy homotopy NOUN NN Number=Sing 18 compound _ _ 18 kernels kernel NOUN NNS Number=Plur 16 dobj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 cokernels cokernel NOUN NNS Number=Plur 18 conj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 7 punct _ _ 22 but but CCONJ CC ConjType=Cmp 7 cc _ _ 23 become become VERB VB VerbForm=Inf 7 conj _ _ 24 more more ADV RBR Degree=Cmp 25 advmod _ _ 25 interesting interesting ADJ JJ Degree=Pos 23 acomp _ _ 26 under under ADP IN _ 23 prep _ _ 27 suitable suitable ADJ JJ Degree=Pos 31 amod _ _ 28 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 31 punct _ SpaceAfter=No 29 stability stability NOUN NN Number=Sing 31 nmod _ SpaceAfter=No 30 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 31 punct _ _ 31 hypotheses hypothesis NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 31 punct _ _ 33 satisfied satisfied ADJ JJ Degree=Pos 31 amod _ _ 34 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 35 in in ADP RP _ 33 prt _ _ 36 particular particular ADJ JJ Degree=Pos 35 amod _ _ 37 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 38 by by ADP IN _ 33 prep _ _ 39 chain chain NOUN NN Number=Sing 40 compound _ _ 40 complexes complex NOUN NNS Number=Plur 38 pobj _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = It is then possible to measure the default of homotopical exactness of a sequence by the homotopy type of a certain object, a sort of `homotopical homology'. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 then then ADV RB PronType=Dem 2 advmod _ _ 4 possible possible ADJ JJ Degree=Pos 2 acomp _ _ 5 to to PART TO _ 6 aux _ _ 6 measure measure VERB VB VerbForm=Inf 2 xcomp _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 default default NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 homotopical homotopical ADJ JJ Degree=Pos 11 amod _ _ 11 exactness exactness NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 sequence sequence NOUN NN Number=Sing 12 pobj _ _ 15 by by ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 homotopy homotopy NOUN NN Number=Sing 18 compound _ _ 18 type type NOUN NN Number=Sing 15 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 certain certain ADJ JJ Degree=Pos 22 amod _ _ 22 object object NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 2 punct _ _ 24 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 25 sort sort NOUN NN Number=Sing 2 attr _ _ 26 of of ADP IN _ 25 prep _ _ 27 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 26 punct _ SpaceAfter=No 28 homotopical homotopical ADJ JJ Degree=Pos 29 amod _ _ 29 homology homology NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 30 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 2 punct _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 132 # sent_id = 1 # text = We give a unified proof of Gabriel - Ulmer duality for locally finitely presentable categories, Adamek - Lawvere - Rosicky duality for varieties and Morita duality for presheaf categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 unified unified ADJ JJ Degree=Pos 5 amod _ _ 5 proof proof NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 Gabriel Gabriel PROPN NNP Number=Sing 9 compound _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 Ulmer Ulmer PROPN NNP Number=Sing 10 compound _ _ 10 duality duality NOUN NN Number=Sing 6 pobj _ _ 11 for for ADP IN _ 10 prep _ _ 12 locally locally ADV RB _ 13 advmod _ _ 13 finitely finitely ADV RB _ 15 amod _ _ 14 presentable presentable ADJ JJ Degree=Pos 15 amod _ _ 15 categories category NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 Adamek Adamek PROPN NNP Number=Sing 22 nmod _ _ 18 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 19 Lawvere Lawvere PROPN NNP Number=Sing 21 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 Rosicky rosicky ADJ JJ Degree=Pos 22 amod _ _ 22 duality duality NOUN NN Number=Sing 15 appos _ _ 23 for for ADP IN _ 22 prep _ _ 24 varieties variety NOUN NNS Number=Plur 23 pobj _ _ 25 and and CCONJ CC ConjType=Cmp 24 cc _ _ 26 Morita Morita PROPN NNP Number=Sing 27 compound _ _ 27 duality duality NOUN NN Number=Sing 24 conj _ _ 28 for for ADP IN _ 27 prep _ _ 29 presheaf presheaf ADJ JJ Degree=Pos 30 amod _ _ 30 categories category NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = As an application, we compare presheaf categories and varieties. 1 As as ADP IN _ 6 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 application application NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 compare compare VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 presheaf presheaf ADJ JJ Degree=Pos 8 amod _ _ 8 categories category NOUN NNS Number=Plur 6 dobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 varieties variety NOUN NNS Number=Plur 8 conj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 133 # sent_id = 1 # text = In the context of synthetic differential geometry, we study the Laplace operator an a Riemannian manifold. 1 In in ADP IN _ 10 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 context context NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 synthetic synthetic ADJ JJ Degree=Pos 7 amod _ _ 6 differential differential ADJ JJ Degree=Pos 7 amod _ _ 7 geometry geometry NOUN NN Number=Sing 4 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 10 punct _ _ 9 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 10 nsubj _ _ 10 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 Laplace Laplace PROPN NNP Number=Sing 13 compound _ _ 13 operator operator NOUN NN Number=Sing 10 dobj _ _ 14 an an DET DT Definite=Ind|PronType=Art 17 det _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 Riemannian riemannian ADJ JJ Degree=Pos 17 amod _ _ 17 manifold manifold NOUN NN Number=Sing 13 appos _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = The main new aspect is a neighbourhood of the diagonal, smaller than the second neighbourhood usually required as support for second order differential operators. 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 main main ADJ JJ Degree=Pos 4 amod _ _ 3 new new ADJ JJ Degree=Pos 4 amod _ _ 4 aspect aspect NOUN NN Number=Sing 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 neighbourhood neighbourhood NOUN NN Number=Sing 5 attr _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 diagonal diagonal ADJ JJ Degree=Pos 12 amod _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 12 punct _ _ 12 smaller small ADJ JJR Degree=Cmp 8 pobj _ _ 13 than than ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 second second ADJ JJ Degree=Pos 16 amod _ _ 16 neighbourhood neighbourhood NOUN NN Number=Sing 13 pobj _ _ 17 usually usually ADV RB _ 18 advmod _ _ 18 required require VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 acl _ _ 19 as as ADP IN _ 18 prep _ _ 20 support support NOUN NN Number=Sing 19 pobj _ _ 21 for for ADP IN _ 20 prep _ _ 22 second second ADJ JJ Degree=Pos 23 amod _ _ 23 order order NOUN NN Number=Sing 25 nmod _ _ 24 differential differential NOUN NN Number=Sing 25 amod _ _ 25 operators operator NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = The new neighbourhood has the property that a function is affine on it if and only if it is harmonic. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 new new ADJ JJ Degree=Pos 3 amod _ _ 3 neighbourhood neighbourhood NOUN NN Number=Sing 4 nsubj _ _ 4 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 property property NOUN NN Number=Sing 4 dobj _ _ 7 that that PRON WDT PronType=Rel 10 mark _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 function function NOUN NN Number=Sing 10 nsubj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 relcl _ _ 11 affine affine NOUN NN Number=Sing 10 attr _ _ 12 on on ADP IN _ 11 prep _ _ 13 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 12 pobj _ _ 14 if if SCONJ IN _ 19 advmod _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 only only ADV RB _ 19 advmod _ _ 17 if if SCONJ IN _ 19 mark _ _ 18 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 19 nsubj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 advcl _ _ 20 harmonic harmonic ADJ JJ Degree=Pos 19 acomp _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 134 # sent_id = 1 # text = Let $ V $ be a symmetric monoidal closed category with a suitably compatible simplicial model category structure. 1 Let let VERB VB VerbForm=Inf 0 ROOT _ _ 2 $ V $ $ v $ SYM $ _ 1 ccomp _ _ 3 be be AUX VB VerbForm=Inf 1 ccomp _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 symmetric symmetric ADJ JJ Degree=Pos 6 amod _ _ 6 monoidal monoidal NOUN NN Number=Sing 3 attr _ _ 7 closed close VERB VBD Tense=Past|VerbForm=Fin 1 ccomp _ _ 8 category category NOUN NN Number=Sing 7 dobj _ _ 9 with with ADP IN _ 7 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 11 suitably suitably ADV RB _ 12 advmod _ _ 12 compatible compatible ADJ JJ Degree=Pos 16 amod _ _ 13 simplicial simplicial ADJ JJ Degree=Pos 14 amod _ _ 14 model model NOUN NN Number=Sing 16 compound _ _ 15 category category NOUN NN Number=Sing 16 compound _ _ 16 structure structure NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = We show how to extend Dwyer and Kan's notion of simplicial localization to $ V $ - categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 how how SCONJ WRB _ 5 advmod _ _ 4 to to PART TO _ 5 aux _ _ 5 extend extend VERB VB VerbForm=Inf 2 xcomp _ _ 6 Dwyer Dwyer PROPN NNP Number=Sing 5 dobj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 Kan Kan PROPN NNP Number=Sing 10 poss _ SpaceAfter=No 9 's 's PART POS _ 8 case _ _ 10 notion notion NOUN NN Number=Sing 6 conj _ _ 11 of of ADP IN _ 10 prep _ _ 12 simplicial simplicial ADJ JJ Degree=Pos 13 amod _ _ 13 localization localization NOUN NN Number=Sing 11 pobj _ _ 14 to to ADP IN _ 5 prep _ _ 15 $ V $ $ v $ SYM $ _ 17 nummod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 categories category NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = This may for instance be applied to the case where our categories are enriched in suitable models for spectra. 1 This this PRON DT Number=Sing|PronType=Dem 6 nsubjpass _ _ 2 may may AUX MD VerbForm=Fin 6 aux _ _ 3 for for ADP IN _ 6 prep _ _ 4 instance instance NOUN NN Number=Sing 3 pobj _ _ 5 be be AUX VB VerbForm=Inf 6 auxpass _ _ 6 applied apply VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 to to ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 case case NOUN NN Number=Sing 7 pobj _ _ 10 where where SCONJ WRB _ 14 advmod _ _ 11 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 12 poss _ _ 12 categories category NOUN NNS Number=Plur 14 nsubjpass _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 relcl _ _ 15 in in ADP IN _ 14 prep _ _ 16 suitable suitable ADJ JJ Degree=Pos 17 amod _ _ 17 models model NOUN NNS Number=Plur 15 pobj _ _ 18 for for ADP IN _ 17 prep _ _ 19 spectra spectra PROPN NNP Number=Sing 18 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 135 # sent_id = 1 # text = Hopf monads are identified with monads in the 2 - category Opmon of monoidal categories, opmonoidal functors and transformations. 1 Hopf hopf NOUN NN Number=Sing 2 compound _ _ 2 monads monad NOUN NNS Number=Plur 4 nsubjpass _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 identified identify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 with with ADP IN _ 4 prep _ _ 6 monads monad NOUN NNS Number=Plur 5 pobj _ _ 7 in in ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 12 det _ _ 9 2 2 NUM CD NumType=Card 11 nummod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 category category NOUN NN Number=Sing 12 compound _ _ 12 Opmon Opmon PROPN NNP Number=Sing 7 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 monoidal monoidal ADJ JJ Degree=Pos 15 amod _ _ 15 categories category NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 12 punct _ _ 17 opmonoidal opmonoidal ADJ JJ Degree=Pos 18 amod _ _ 18 functors functor NOUN NNS Number=Plur 12 conj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 transformations transformation NOUN NNS Number=Plur 18 conj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = Using Eilenberg - Moore objects, it is shown that for a Hopf monad $ S $ , the categories $ Alg(Coalg(S)) $ and $ Coalg(Alg(S)) $ are canonically isomorphic. 1 Using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 advcl _ _ 2 Eilenberg Eilenberg PROPN NNP Number=Sing 4 compound _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 Moore Moore PROPN NNP Number=Sing 5 compound _ _ 5 objects object NOUN NNS Number=Plur 1 dobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 9 punct _ _ 7 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 9 nsubjpass _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 that that SCONJ IN _ 9 dobj _ _ 11 for for ADP IN _ 9 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 Hopf Hopf PROPN NNP Number=Sing 14 compound _ _ 14 monad monad VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 pobj _ _ 15 $ S $ $ s $ SYM $ _ 14 dobj _ _ 16 , , PUNCT , PunctType=Comm 14 punct _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 categories category NOUN NNS Number=Plur 22 nsubj _ _ 19 $ Alg(Coalg(S)) $ $ alg(coalg(s)) $ SYM $ _ 22 nsubj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 $ Coalg(Alg(S)) $ $ coalg(alg(s)) $ SYM $ _ 19 conj _ _ 22 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 ccomp _ _ 23 canonically canonically ADV RB _ 24 advmod _ _ 24 isomorphic isomorphic ADJ JJ Degree=Pos 22 acomp _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 3 # text = The monadic arrows Opmon are then characterized. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 monadic monadic ADJ JJ Degree=Pos 3 amod _ _ 3 arrows arrow NOUN NNS Number=Plur 7 nsubjpass _ _ 4 Opmon Opmon PROPN NNP Number=Sing 7 nsubjpass _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 6 then then ADV RB PronType=Dem 7 advmod _ _ 7 characterized characterize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 8 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = Finally, the theory of multicategories and a generalization of structure and semantics are used to identify the categories of algebras of Hopf monads. 1 Finally finally ADV RB _ 15 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 15 punct _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 theory theory NOUN NN Number=Sing 15 nsubjpass _ _ 5 of of ADP IN _ 4 prep _ _ 6 multicategories multicategorie NOUN NNS Number=Plur 5 pobj _ _ 7 and and CCONJ CC ConjType=Cmp 4 cc _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 generalization generalization NOUN NN Number=Sing 4 conj _ _ 10 of of ADP IN _ 9 prep _ _ 11 structure structure NOUN NN Number=Sing 10 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 9 cc _ _ 13 semantics semantic NOUN NNS Number=Plur 9 conj _ _ 14 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 auxpass _ _ 15 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 16 to to PART TO _ 17 aux _ _ 17 identify identify VERB VB VerbForm=Inf 15 xcomp _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 categories category NOUN NNS Number=Plur 17 dobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 algebras algebra NOUN NNS Number=Plur 20 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 Hopf Hopf PROPN NNP Number=Sing 24 compound _ _ 24 monads monad NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # doc_id = 136 # sent_id = 1 # text = Given a triple $ T $ on a complete category $ C $ and a factorization system $ E/M $ on the category of algebras, we show there is a one - to - one correspondence between full subcategories of the category of algebras that are closed under $ U $ - split epimorphisms, products, and $ M $ - subobjects and triple morphisms $ T - > S $ for which the induced natural transformation between free functors belongs to $ E $ . 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 triple triple ADJ JJ Degree=Pos 4 amod _ _ 4 $ T $ $ t $ SYM $ _ 1 pobj _ _ 5 on on ADP IN _ 1 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 complete complete ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 5 pobj _ _ 9 $ C $ $ c $ SYM $ _ 8 appos _ _ 10 and and CCONJ CC ConjType=Cmp 8 cc _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 factorization factorization NOUN NN Number=Sing 13 compound _ _ 13 system system NOUN NN Number=Sing 8 conj _ _ 14 $ E/M $ $ e/m $ SYM $ _ 1 dep _ _ 15 on on ADP IN _ 1 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 category category NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 algebras algebras PROPN NNP Number=Sing 18 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 22 punct _ _ 21 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 22 nsubj _ _ 22 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 23 there there PRON EX _ 24 expl _ _ 24 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 ccomp _ _ 25 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 26 one one NUM CD NumType=Card 31 nummod _ _ 27 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 28 to to ADP IN _ 26 prep _ _ 29 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 30 one one NUM CD NumType=Card 28 pobj _ _ 31 correspondence correspondence NOUN NN Number=Sing 24 attr _ _ 32 between between ADP IN _ 31 prep _ _ 33 full full ADJ JJ Degree=Pos 34 amod _ _ 34 subcategories subcategorie NOUN NNS Number=Plur 32 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 37 det _ _ 37 category category NOUN NN Number=Sing 35 pobj _ _ 38 of of ADP IN _ 37 prep _ _ 39 algebras algebra NOUN NNS Number=Plur 38 pobj _ _ 40 that that PRON WDT PronType=Rel 42 nsubjpass _ _ 41 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 42 auxpass _ _ 42 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 37 relcl _ _ 43 under under ADP IN _ 42 prep _ _ 44 $ U $ $ u $ SYM $ _ 46 advmod _ _ 45 - - PUNCT HYPH PunctType=Dash 46 punct _ _ 46 split split VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 47 amod _ _ 47 epimorphisms epimorphism NOUN NNS Number=Plur 43 pobj _ SpaceAfter=No 48 , , PUNCT , PunctType=Comm 47 punct _ _ 49 products product NOUN NNS Number=Plur 47 conj _ SpaceAfter=No 50 , , PUNCT , PunctType=Comm 49 punct _ _ 51 and and CCONJ CC ConjType=Cmp 49 cc _ _ 52 $ M $ $ m $ SYM $ _ 54 compound _ _ 53 - - PUNCT HYPH PunctType=Dash 54 punct _ _ 54 subobjects subobject NOUN NNS Number=Plur 49 conj _ _ 55 and and CCONJ CC ConjType=Cmp 54 cc _ _ 56 triple triple ADJ JJ Degree=Pos 57 amod _ _ 57 morphisms morphism NOUN NNS Number=Plur 54 conj _ _ 58 $ T - > S $ $ t - > s $ SYM $ _ 47 appos _ _ 59 for for ADP IN _ 68 prep _ _ 60 which which PRON WDT _ 59 pobj _ _ 61 the the DET DT Definite=Def|PronType=Art 64 det _ _ 62 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 64 amod _ _ 63 natural natural ADJ JJ Degree=Pos 64 amod _ _ 64 transformation transformation NOUN NN Number=Sing 68 nsubj _ _ 65 between between ADP IN _ 64 prep _ _ 66 free free ADJ JJ Degree=Pos 67 amod _ _ 67 functors functor NOUN NNS Number=Plur 65 pobj _ _ 68 belongs belong VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 47 relcl _ _ 69 to to ADP IN _ 68 prep _ _ 70 $ E $ $ e $ SYM $ _ 69 pobj _ _ 71 . . PUNCT . PunctType=Peri 22 punct _ SpaceAfter=No # doc_id = 137 # sent_id = 1 # text = We give a definition of categorical model for the multiplicative fragment of non - commutative logic. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 definition definition NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 categorical categorical ADJ JJ Degree=Pos 7 amod _ _ 7 model model NOUN NN Number=Sing 5 pobj _ _ 8 for for ADP IN _ 2 dative _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 multiplicative multiplicative ADJ JJ Degree=Pos 11 amod _ _ 11 fragment fragment NOUN NN Number=Sing 8 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 non non ADJ JJ Degree=Pos 15 amod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 commutative commutative ADJ JJ Degree=Pos 16 amod _ _ 16 logic logic NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We call such structures entropic categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 call call VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 such such ADJ JJ Degree=Pos 4 amod _ _ 4 structures structure NOUN NNS Number=Plur 6 compound _ _ 5 entropic entropic NOUN NN Number=Sing 6 compound _ _ 6 categories category NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 7 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We demonstrate the soundness and completeness of our axiomatization with respect to cut - elimination. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 demonstrate demonstrate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 soundness soundness NOUN NN Number=Sing 2 dobj _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 completeness completeness NOUN NN Number=Sing 4 conj _ _ 7 of of ADP IN _ 4 prep _ _ 8 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 9 poss _ _ 9 axiomatization axiomatization NOUN NN Number=Sing 7 pobj _ _ 10 with with ADP IN _ 4 prep _ _ 11 respect respect NOUN NN Number=Sing 10 pobj _ _ 12 to to ADP IN _ 11 prep _ _ 13 cut cut VERB VB VerbForm=Inf 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 elimination elimination NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We then focus on several methods of building entropic categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 focus focus VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 on on ADP IN _ 3 prep _ _ 5 several several ADJ JJ Degree=Pos 6 amod _ _ 6 methods method NOUN NNS Number=Plur 4 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 building build VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 pcomp _ _ 9 entropic entropic NOUN NN Number=Sing 10 compound _ _ 10 categories category NOUN NNS Number=Plur 8 dobj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = Our first models are constructed via the notion of a partial bimonoid acting on a cocomplete category. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 3 poss _ _ 2 first first ADJ JJ Degree=Pos 3 amod _ _ 3 models model NOUN NNS Number=Plur 5 nsubjpass _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 via via ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 notion notion NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 partial partial ADJ JJ Degree=Pos 12 amod _ _ 12 bimonoid bimonoid NOUN NN Number=Sing 9 pobj _ _ 13 acting act VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 acl _ _ 14 on on ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 cocomplete cocomplete ADJ JJ Degree=Pos 17 amod _ _ 17 category category NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 6 # text = We also explore an entropic version of the Chu construction, and apply it in this setting. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 explore explore VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 an an DET DT Definite=Ind|PronType=Art 6 det _ _ 5 entropic entropic ADJ JJ Degree=Pos 6 amod _ _ 6 version version NOUN NN Number=Sing 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 Chu Chu PROPN NNP Number=Sing 10 compound _ _ 10 construction construction NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 3 punct _ _ 12 and and CCONJ CC ConjType=Cmp 3 cc _ _ 13 apply apply VERB VB VerbForm=Inf 3 conj _ _ 14 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 13 dobj _ _ 15 in in ADP IN _ 13 prep _ _ 16 this this DET DT Number=Sing|PronType=Dem 17 det _ _ 17 setting setting NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 7 # text = It has recently been demonstrated that Hopf algebras provide an excellent framework for modeling a number of variants of multiplicative linear logic, such as commutative, braided and cyclic. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 5 nsubjpass _ _ 2 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 aux _ _ 3 recently recently ADV RB _ 5 advmod _ _ 4 been be AUX VBN Tense=Past|VerbForm=Part 5 auxpass _ _ 5 demonstrated demonstrate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 that that SCONJ IN _ 9 mark _ _ 7 Hopf Hopf PROPN NNP Number=Sing 8 compound _ _ 8 algebras algebra NOUN NNS Number=Plur 9 nsubj _ _ 9 provide provide VERB VBP Tense=Pres|VerbForm=Fin 5 ccomp _ _ 10 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 11 excellent excellent ADJ JJ Degree=Pos 12 amod _ _ 12 framework framework NOUN NN Number=Sing 9 dobj _ _ 13 for for ADP IN _ 12 prep _ _ 14 modeling model VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 pcomp _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 number number NOUN NN Number=Sing 14 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 variants variant NOUN NNS Number=Plur 17 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 multiplicative multiplicative ADJ JJ Degree=Pos 22 amod _ _ 21 linear linear ADJ JJ Degree=Pos 22 compound _ _ 22 logic logic NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 such such ADJ JJ Degree=Pos 25 amod _ _ 25 as as ADP IN _ 22 prep _ _ 26 commutative commutative ADJ JJ Degree=Pos 25 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 26 punct _ _ 28 braided braid VERB VBD Tense=Past|VerbForm=Fin 26 conj _ _ 29 and and CCONJ CC ConjType=Cmp 28 cc _ _ 30 cyclic cyclic NOUN NN Number=Sing 28 conj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 8 # text = We extend these ideas to the entropic setting by developing a new type of Hopf algebra, which we call entropic Hopf algebras. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 extend extend VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 these these DET DT Number=Plur|PronType=Dem 4 det _ _ 4 ideas idea NOUN NNS Number=Plur 2 dobj _ _ 5 to to ADP IN _ 2 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 entropic entropic NOUN NN Number=Sing 8 amod _ _ 8 setting setting NOUN NN Number=Sing 5 pobj _ _ 9 by by ADP IN _ 2 prep _ _ 10 developing develop VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 pcomp _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 new new ADJ JJ Degree=Pos 13 amod _ _ 13 type type NOUN NN Number=Sing 10 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 Hopf Hopf PROPN NNP Number=Sing 16 compound _ _ 16 algebra algebra NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 which which PRON WDT _ 20 dobj _ _ 19 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 20 nsubj _ _ 20 call call VERB VBP Tense=Pres|VerbForm=Fin 16 relcl _ _ 21 entropic entropic ADJ JJ Degree=Pos 23 amod _ _ 22 Hopf Hopf PROPN NNP Number=Sing 23 compound _ _ 23 algebras algebra NOUN NNS Number=Plur 20 dobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 9 # text = We show that the category of modules over an entropic Hopf algebra is an entropic category (possibly after application of the Chu construction). 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 13 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 13 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 modules module NOUN NNS Number=Plur 6 pobj _ _ 8 over over ADP IN _ 5 prep _ _ 9 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 10 entropic entropic NOUN NN Number=Sing 12 amod _ _ 11 Hopf hopf NOUN NN Number=Sing 12 compound _ _ 12 algebra algebra NOUN NN Number=Sing 8 pobj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 14 an an DET DT Definite=Ind|PronType=Art 16 det _ _ 15 entropic entropic ADJ JJ Degree=Pos 16 amod _ _ 16 category category NOUN NN Number=Sing 13 attr _ _ 17 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 16 punct _ SpaceAfter=No 18 possibly possibly ADV RB _ 19 advmod _ _ 19 after after ADP IN _ 13 prep _ _ 20 application application NOUN NN Number=Sing 19 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 Chu Chu PROPN NNP Number=Sing 24 compound _ _ 24 construction construction NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 25 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 13 punct _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 10 # text = Several examples are discussed, based first on the notion of a bigroup. 1 Several several ADJ JJ Degree=Pos 2 amod _ _ 2 examples example NOUN NNS Number=Plur 4 nsubjpass _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 discussed discuss VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 4 punct _ _ 6 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 advcl _ _ 7 first first ADV RB _ 6 advmod _ _ 8 on on ADP IN _ 6 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 notion notion NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 bigroup bigroup NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 11 # text = Finally the Tannaka - Krein reconstruction theorem is extended to the entropic setting. 1 Finally finally ADV RB _ 7 advmod _ _ 2 the the DET DT Definite=Def|PronType=Art 6 det _ _ 3 Tannaka Tannaka PROPN NNP Number=Sing 5 compound _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 Krein Krein PROPN NNP Number=Sing 6 compound _ _ 6 reconstruction reconstruction NOUN NN Number=Sing 7 nsubj _ _ 7 theorem theorem ADJ JJ Degree=Pos 9 nsubjpass _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 extended extend VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 to to ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 entropic entropic NOUN NN Number=Sing 13 amod _ _ 13 setting setting NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 138 # sent_id = 1 # text = By abstract Stone duality we mean that the topology or contravariant powerset functor, seen as a self - adjoint exponential $ Sigma^{( - )} $ on some category, is monadic. 1 By by ADP IN _ 6 prep _ _ 2 abstract abstract ADJ JJ Degree=Pos 4 amod _ _ 3 Stone Stone PROPN NNP Number=Sing 4 compound _ _ 4 duality duality NOUN NN Number=Sing 1 pobj _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 mean mean VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 that that SCONJ IN _ 27 mark _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 topology topology NOUN NN Number=Sing 22 nsubj _ _ 10 or or CCONJ CC ConjType=Cmp 9 cc _ _ 11 contravariant contravariant ADJ JJ Degree=Pos 13 amod _ _ 12 powerset powerset NOUN NN Number=Sing 13 compound _ _ 13 functor functor NOUN NN Number=Sing 9 conj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 9 punct _ _ 15 seen see VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 acl _ _ 16 as as ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 18 self self NOUN NN Number=Sing 20 compound _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 adjoint adjoint NOUN NN Number=Sing 21 compound _ _ 21 exponential exponential NOUN NN Number=Sing 16 pobj _ _ 22 $ Sigma^{( - )} $ $ sigma^{( - )} $ SYM $ _ 27 nsubj _ _ 23 on on ADP IN _ 22 prep _ _ 24 some some DET DT _ 25 det _ _ 25 category category NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 22 punct _ _ 27 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 28 monadic monadic ADJ JJ Degree=Pos 27 acomp _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = Using Beck's theorem, this means that certain equalisers exist and carry the subspace topology. 1 Using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 advcl _ _ 2 Beck Beck PROPN NNP Number=Sing 4 poss _ SpaceAfter=No 3 's 's PART POS _ 2 case _ _ 4 theorem theorem ADJ JJ Degree=Pos 1 dobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 this this PRON DT Number=Sing|PronType=Dem 7 nsubj _ _ 7 means mean VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 that that SCONJ IN _ 11 mark _ _ 9 certain certain ADJ JJ Degree=Pos 10 amod _ _ 10 equalisers equaliser NOUN NNS Number=Plur 11 nsubj _ _ 11 exist exist VERB VBP Tense=Pres|VerbForm=Fin 7 ccomp _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 carry carry VERB VB VerbForm=Inf 11 conj _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 subspace subspace NOUN NN Number=Sing 16 compound _ _ 16 topology topology NOUN NN Number=Sing 13 dobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = These subspaces are encoded by idempotents that play a role similar to that of nuclei in locale theory. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 subspaces subspace NOUN NNS Number=Plur 4 nsubjpass _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 encoded encode VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 by by ADP IN _ 4 agent _ _ 6 idempotents idempotent NOUN NNS Number=Plur 5 pobj _ _ 7 that that PRON WDT PronType=Rel 8 nsubj _ _ 8 play play VERB VBP Tense=Pres|VerbForm=Fin 6 relcl _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 role role NOUN NN Number=Sing 8 dobj _ _ 11 similar similar ADJ JJ Degree=Pos 10 amod _ _ 12 to to ADP IN _ 11 prep _ _ 13 that that PRON DT Number=Sing|PronType=Dem 12 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 nuclei nucleus NOUN NNS Number=Plur 14 pobj _ _ 16 in in ADP IN _ 8 prep _ _ 17 locale locale NOUN NN Number=Sing 18 compound _ _ 18 theory theory NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = Paré showed that any elementary topos has this duality, and we prove it intuitionistically for the category of locally compact locales. 1 Paré Paré PROPN NNP Number=Sing 2 nsubj _ _ 2 showed show VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 7 mark _ _ 4 any any DET DT _ 6 det _ _ 5 elementary elementary ADJ JJ Degree=Pos 6 amod _ _ 6 topos topos NOUN NN Number=Sing 7 nsubj _ _ 7 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 8 this this DET DT Number=Sing|PronType=Dem 9 det _ _ 9 duality duality NOUN NN Number=Sing 7 dobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 2 punct _ _ 11 and and CCONJ CC ConjType=Cmp 2 cc _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 prove prove VERB VBP Tense=Pres|VerbForm=Fin 2 conj _ _ 14 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 13 dobj _ _ 15 intuitionistically intuitionistically ADV RB _ 13 advmod _ _ 16 for for ADP IN _ 13 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 category category NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 locally locally ADV RB _ 21 advmod _ _ 21 compact compact ADJ JJ Degree=Pos 22 amod _ _ 22 locales locale NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 5 # text = The paper is largely concerned with the construction of such a category out of one that merely has powers of some fixed object $ Sigma $ . 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 largely largely ADV RB _ 5 advmod _ _ 5 concerned concerned ADJ JJ Degree=Pos 3 acomp _ _ 6 with with ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 construction construction NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 such such DET PDT _ 12 predet _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 category category NOUN NN Number=Sing 9 pobj _ _ 13 out out ADP IN _ 8 prep _ _ 14 of of ADP IN _ 13 prep _ _ 15 one one NUM CD NumType=Card 14 pobj _ _ 16 that that PRON WDT PronType=Rel 18 nsubj _ _ 17 merely merely ADV RB _ 18 advmod _ _ 18 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 relcl _ _ 19 powers power NOUN NNS Number=Plur 18 dobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 some some DET DT _ 23 det _ _ 22 fixed fix VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 amod _ _ 23 object object NOUN NN Number=Sing 20 pobj _ _ 24 $ Sigma $ $ sigma $ SYM $ _ 5 dep _ _ 25 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = It builds on Sober Spaces and Continuations, where the related but weaker notion of abstract sobriety was considered. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 builds build VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 on on ADP IN _ 2 prep _ _ 4 Sober Sober PROPN NNP Number=Sing 5 compound _ _ 5 Spaces Spaces PROPN NNPS Number=Plur 3 pobj _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 Continuations Continuations PROPN NNP Number=Sing 5 conj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 5 punct _ _ 9 where where SCONJ WRB _ 19 advmod _ _ 10 the the DET DT Definite=Def|PronType=Art 14 det _ _ 11 related related ADJ JJ Degree=Pos 14 amod _ _ 12 but but CCONJ CC ConjType=Cmp 11 cc _ _ 13 weaker weak ADJ JJR Degree=Cmp 11 conj _ _ 14 notion notion NOUN NN Number=Sing 19 nsubjpass _ _ 15 of of ADP IN _ 14 prep _ _ 16 abstract abstract ADJ JJ Degree=Pos 17 amod _ _ 17 sobriety sobriety NOUN NN Number=Sing 15 pobj _ _ 18 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 19 auxpass _ _ 19 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 relcl _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 7 # text = The construction is done first by formally adjoining certain equalisers that $ Sigma^{( - )} $ takes to coequalisers, then using Eilenberg - Moore algebras, and finally presented as a lambda calculus similar to the axiom of comprehension in set theory. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 construction construction NOUN NN Number=Sing 4 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 done do VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 first first ADV RB _ 4 advmod _ _ 6 by by ADP IN _ 4 agent _ _ 7 formally formally ADV RB _ 8 advmod _ _ 8 adjoining adjoin VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 amod _ _ 9 certain certain ADJ JJ Degree=Pos 10 amod _ _ 10 equalisers equaliser NOUN NNS Number=Plur 6 pobj _ _ 11 that that SCONJ IN _ 13 dobj _ _ 12 $ Sigma^{( - )} $ $ sigma^{( - )} $ SYM $ _ 13 nsubj _ _ 13 takes take VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 relcl _ _ 14 to to ADP IN _ 13 prep _ _ 15 coequalisers coequaliser NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 4 punct _ _ 17 then then ADV RB PronType=Dem 4 advmod _ _ 18 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 advcl _ _ 19 Eilenberg Eilenberg PROPN NNP Number=Sing 21 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 Moore Moore PROPN NNP Number=Sing 22 compound _ _ 22 algebras algebra NOUN NNS Number=Plur 18 dobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 4 punct _ _ 24 and and CCONJ CC ConjType=Cmp 4 cc _ _ 25 finally finally ADV RB _ 26 advmod _ _ 26 presented present VERB VBD Tense=Past|VerbForm=Fin 4 conj _ _ 27 as as ADP IN _ 26 prep _ _ 28 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 29 lambda lambda ADJ JJ Degree=Pos 30 amod _ _ 30 calculus calculus NOUN NN Number=Sing 27 pobj _ _ 31 similar similar ADJ JJ Degree=Pos 30 amod _ _ 32 to to ADP IN _ 31 prep _ _ 33 the the DET DT Definite=Def|PronType=Art 34 det _ _ 34 axiom axiom NOUN NN Number=Sing 32 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 comprehension comprehension NOUN NN Number=Sing 35 pobj _ _ 37 in in ADP IN _ 36 prep _ _ 38 set set ADJ JJ Degree=Pos 39 amod _ _ 39 theory theory NOUN NN Number=Sing 37 pobj _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 8 # text = The comprehension calculus has a normalisation theorem, by which every type can be embedded as a subspace of a type formed without comprehension, and terms also normalise in a simple way. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 comprehension comprehension NOUN NN Number=Sing 3 compound _ _ 3 calculus calculus NOUN NN Number=Sing 4 nsubj _ _ 4 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 normalisation normalisation NOUN NN Number=Sing 4 dobj _ _ 7 theorem theorem ADJ JJ Degree=Pos 6 acl _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 6 punct _ _ 9 by by ADP IN _ 15 prep _ _ 10 which which PRON WDT _ 9 pobj _ _ 11 every every DET DT _ 12 det _ _ 12 type type NOUN NN Number=Sing 15 nsubjpass _ _ 13 can can AUX MD VerbForm=Fin 15 aux _ _ 14 be be AUX VB VerbForm=Inf 15 auxpass _ _ 15 embedded embed VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 relcl _ _ 16 as as ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 subspace subspace NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 21 type type NOUN NN Number=Sing 19 pobj _ _ 22 formed form VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 acl _ _ 23 without without ADP IN _ 22 prep _ _ 24 comprehension comprehension NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 15 punct _ _ 26 and and CCONJ CC ConjType=Cmp 15 cc _ _ 27 terms term NOUN NNS Number=Plur 29 nsubj _ _ 28 also also ADV RB _ 29 advmod _ _ 29 normalise normalise VERB VBP Tense=Pres|VerbForm=Fin 15 conj _ _ 30 in in ADP IN _ 29 prep _ _ 31 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 32 simple simple ADJ JJ Degree=Pos 33 amod _ _ 33 way way NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 29 punct _ SpaceAfter=No # sent_id = 9 # text = The symbolic and categorical structures are thereby shown to be equivalent. 1 The the DET DT Definite=Def|PronType=Art 5 det _ _ 2 symbolic symbolic ADJ JJ Degree=Pos 5 amod _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 categorical categorical ADJ JJ Degree=Pos 2 conj _ _ 5 structures structure NOUN NNS Number=Plur 8 nsubjpass _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 7 thereby thereby ADV RB _ 8 advmod _ _ 8 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 to to PART TO _ 10 aux _ _ 10 be be AUX VB VerbForm=Inf 8 xcomp _ _ 11 equivalent equivalent ADJ JJ Degree=Pos 10 acomp _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 10 # text = Finally, sums and certain quotients are constructed using the comprehension calculus, giving an extensive category. 1 Finally finally ADV RB _ 8 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 8 punct _ _ 3 sums sum NOUN NNS Number=Plur 8 nsubjpass _ _ 4 and and CCONJ CC ConjType=Cmp 3 cc _ _ 5 certain certain ADJ JJ Degree=Pos 6 amod _ _ 6 quotients quotient NOUN NNS Number=Plur 3 conj _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 advcl _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 comprehension comprehension NOUN NN Number=Sing 12 compound _ _ 12 calculus calculus NOUN NN Number=Sing 9 dobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 8 punct _ _ 14 giving give VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 advcl _ _ 15 an an DET DT Definite=Ind|PronType=Art 17 det _ _ 16 extensive extensive ADJ JJ Degree=Pos 17 amod _ _ 17 category category NOUN NN Number=Sing 14 dobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # doc_id = 139 # sent_id = 1 # text = It is proved that any category $ cal{K} $ which is equivalent to a simultaneously reflective and coreflective full subcategory of presheaves $ [cal{A}^{op}, Set] $ , is itself equivalent to the category of the form $ [cal{B}^{op}, Set] $ and the inclusion is induced by a functor $ cal{A} to cal{B} $ which is surjective on objects. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 that that SCONJ IN _ 23 mark _ _ 5 any any DET DT _ 6 det _ _ 6 category category NOUN NN Number=Sing 23 nsubj _ _ 7 $ cal{K} $ $ cal{k} $ SYM $ _ 6 appos _ _ 8 which which PRON WDT _ 9 nsubj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 relcl _ _ 10 equivalent equivalent ADJ JJ Degree=Pos 9 acomp _ _ 11 to to ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 13 simultaneously simultaneously ADV RB _ 14 advmod _ _ 14 reflective reflective ADJ JJ Degree=Pos 18 amod _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 coreflective coreflective ADJ JJ Degree=Pos 14 conj _ _ 17 full full ADJ JJ Degree=Pos 18 amod _ _ 18 subcategory subcategory NOUN NN Number=Sing 11 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 presheaves presheave NOUN NNS Number=Plur 19 pobj _ _ 21 $ [cal{A}^{op}, Set] $ $ [cal{a}^{op}, set] $ SYM $ _ 20 appos _ _ 22 , , PUNCT , PunctType=Comm 23 punct _ _ 23 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 24 itself itself PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs|Reflex=Yes 23 attr _ _ 25 equivalent equivalent ADJ JJ Degree=Pos 23 acomp _ _ 26 to to ADP IN _ 25 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 category category NOUN NN Number=Sing 26 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 form form NOUN NN Number=Sing 29 pobj _ _ 32 $ [cal{B}^{op}, Set] $ $ [cal{b}^{op}, set] $ SYM $ _ 23 dep _ _ 33 and and CCONJ CC ConjType=Cmp 32 cc _ _ 34 the the DET DT Definite=Def|PronType=Art 35 det _ _ 35 inclusion inclusion NOUN NN Number=Sing 37 nsubjpass _ _ 36 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 37 auxpass _ _ 37 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 conj _ _ 38 by by ADP IN _ 37 agent _ _ 39 a a DET DT Definite=Ind|PronType=Art 41 det _ _ 40 functor functor NOUN NN Number=Sing 41 compound _ _ 41 $ cal{A} to cal{B} $ $ cal{a} to cal{b} $ SYM $ _ 38 pobj _ _ 42 which which PRON WDT _ 43 nsubj _ _ 43 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 41 relcl _ _ 44 surjective surjective ADJ JJ Degree=Pos 43 acomp _ _ 45 on on ADP IN _ 44 prep _ _ 46 objects object NOUN NNS Number=Plur 45 pobj _ SpaceAfter=No 47 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = We obtain a characterization of such functors. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 characterization characterization NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 such such ADJ JJ Degree=Pos 7 amod _ _ 7 functors functor NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 8 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Moreover, the base category $ Set $ can be replaced with any symmetric monoidal closed category $ V $ which is complete and cocomplete, and then analogy of the above result holds if we replace categories by $ V $ - categories and functors by $ V $ - functors. 1 Moreover moreover ADV RB _ 9 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 9 punct _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 base base NOUN NN Number=Sing 5 compound _ _ 5 category category NOUN NN Number=Sing 9 nsubjpass _ _ 6 $ Set $ $ set $ SYM $ _ 5 appos _ _ 7 can can AUX MD VerbForm=Fin 9 aux _ _ 8 be be AUX VB VerbForm=Inf 9 auxpass _ _ 9 replaced replace VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 with with ADP IN _ 9 prep _ _ 11 any any DET DT _ 13 det _ _ 12 symmetric symmetric ADJ JJ Degree=Pos 13 amod _ _ 13 monoidal monoidal NOUN NN Number=Sing 14 nsubj _ _ 14 closed close VERB VBD Tense=Past|VerbForm=Fin 10 pcomp _ _ 15 category category NOUN NN Number=Sing 14 dobj _ _ 16 $ V $ $ v $ SYM $ _ 14 dep _ _ 17 which which PRON WDT _ 18 nsubj _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 advcl _ _ 19 complete complete ADJ JJ Degree=Pos 18 acomp _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 cocomplete cocomplete ADJ JJ Degree=Pos 19 conj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 14 punct _ _ 23 and and CCONJ CC ConjType=Cmp 14 cc _ _ 24 then then ADV RB PronType=Dem 30 advmod _ _ 25 analogy analogy NOUN NN Number=Sing 30 nsubj _ _ 26 of of ADP IN _ 25 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 29 det _ _ 28 above above ADJ JJ Degree=Pos 29 amod _ _ 29 result result NOUN NN Number=Sing 26 pobj _ _ 30 holds hold VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 conj _ _ 31 if if SCONJ IN _ 33 mark _ _ 32 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 33 nsubj _ _ 33 replace replace VERB VBP Tense=Pres|VerbForm=Fin 30 ccomp _ _ 34 categories category NOUN NNS Number=Plur 33 dobj _ _ 35 by by ADP IN _ 33 prep _ _ 36 $ V $ $ v $ SYM $ _ 38 compound _ _ 37 - - PUNCT HYPH PunctType=Dash 38 punct _ _ 38 categories category NOUN NNS Number=Plur 35 pobj _ _ 39 and and CCONJ CC ConjType=Cmp 38 cc _ _ 40 functors functor NOUN NNS Number=Plur 38 conj _ _ 41 by by ADP IN _ 33 prep _ _ 42 $ V $ $ v $ SYM $ _ 44 compound _ _ 43 - - PUNCT HYPH PunctType=Dash 44 punct _ _ 44 functors functor NOUN NNS Number=Plur 41 pobj _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 4 # text = As a consequence we are able to derive well - known results on simultaneously reflective and coreflective categories of sets, Abelian groups, et cetera. 1 As as ADP IN _ 5 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 consequence consequence NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 able able ADJ JJ Degree=Pos 5 acomp _ _ 7 to to PART TO _ 8 aux _ _ 8 derive derive VERB VB VerbForm=Inf 6 xcomp _ _ 9 well well ADV RB Degree=Pos 11 advmod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 12 results result NOUN NNS Number=Plur 8 dobj _ _ 13 on on ADP IN _ 8 prep _ _ 14 simultaneously simultaneously ADV RB _ 15 advmod _ _ 15 reflective reflective ADJ JJ Degree=Pos 18 amod _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 coreflective coreflective ADJ JJ Degree=Pos 15 conj _ _ 18 categories category NOUN NNS Number=Plur 13 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 sets set NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 23 punct _ _ 22 Abelian abelian ADJ JJ Degree=Pos 23 amod _ _ 23 groups group NOUN NNS Number=Plur 4 appos _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 23 punct _ _ 25 et et NOUN NN Number=Sing 26 compound _ _ 26 cetera cetera NOUN NN Number=Sing 23 appos _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 140 # sent_id = 1 # text = This paper defines flows (or discrete dynamical systems) and cyclic flows in a category and investigates how the trajectories of a point might approach a cycle. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 defines define VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 flows flow NOUN NNS Number=Plur 3 dobj _ _ 5 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 4 punct _ SpaceAfter=No 6 or or CCONJ CC ConjType=Cmp 4 cc _ _ 7 discrete discrete ADJ JJ Degree=Pos 9 amod _ _ 8 dynamical dynamical ADJ JJ Degree=Pos 9 amod _ _ 9 systems system NOUN NNS Number=Plur 4 conj _ SpaceAfter=No 10 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 9 punct _ _ 11 and and CCONJ CC ConjType=Cmp 4 cc _ _ 12 cyclic cyclic ADJ JJ Degree=Pos 13 amod _ _ 13 flows flow NOUN NNS Number=Plur 4 conj _ _ 14 in in ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 category category NOUN NN Number=Sing 14 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 13 cc _ _ 18 investigates investigate VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 conj _ _ 19 how how SCONJ WRB _ 26 advmod _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 trajectories trajectory NOUN NNS Number=Plur 26 nsubj _ _ 22 of of ADP IN _ 21 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 24 point point NOUN NN Number=Sing 22 pobj _ _ 25 might might AUX MD VerbForm=Fin 26 aux _ _ 26 approach approach VERB VB VerbForm=Inf 18 ccomp _ _ 27 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 28 cycle cycle NOUN NN Number=Sing 26 dobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = The paper considers cyclic flows in the categories of Sets and of Boolean algebras and their duals and characterizes the Stone representation of a cyclic flow in Boolean algebras. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 considers consider VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 cyclic cyclic ADJ JJ Degree=Pos 5 amod _ _ 5 flows flow NOUN NNS Number=Plur 3 dobj _ _ 6 in in ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 categories category NOUN NNS Number=Plur 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 Sets Sets PROPN NNPS Number=Plur 9 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 9 cc _ _ 12 of of ADP IN _ 9 conj _ _ 13 Boolean boolean ADJ JJ Degree=Pos 14 amod _ _ 14 algebras algebra NOUN NNS Number=Plur 12 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 17 poss _ _ 17 duals dual NOUN NNS Number=Plur 14 conj _ _ 18 and and CCONJ CC ConjType=Cmp 3 cc _ _ 19 characterizes characterize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 conj _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 Stone Stone PROPN NNP Number=Sing 22 compound _ _ 22 representation representation NOUN NN Number=Sing 19 dobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 25 cyclic cyclic ADJ JJ Degree=Pos 26 amod _ _ 26 flow flow NOUN NN Number=Sing 23 pobj _ _ 27 in in ADP IN _ 26 prep _ _ 28 Boolean Boolean PROPN NNP Number=Sing 29 amod _ _ 29 algebras algebra NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = A cyclic spectrum is constructed for Boolean flows. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 cyclic cyclic ADJ JJ Degree=Pos 3 amod _ _ 3 spectrum spectrum NOUN NN Number=Sing 5 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 for for ADP IN _ 5 prep _ _ 7 Boolean boolean ADJ JJ Degree=Pos 8 amod _ _ 8 flows flow NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 9 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = Examples include attractive fixpoints, repulsive fixpoints, strange attractors and the logistic equation. 1 Examples example NOUN NNS Number=Plur 2 nsubj _ _ 2 include include VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 attractive attractive ADJ JJ Degree=Pos 4 amod _ _ 4 fixpoints fixpoint NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 4 punct _ _ 6 repulsive repulsive ADJ JJ Degree=Pos 7 amod _ _ 7 fixpoints fixpoint NOUN NNS Number=Plur 4 conj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 strange strange ADJ JJ Degree=Pos 10 amod _ _ 10 attractors attractor NOUN NNS Number=Plur 7 conj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 logistic logistic ADJ JJ Degree=Pos 14 amod _ _ 14 equation equation NOUN NN Number=Sing 10 conj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 141 # sent_id = 1 # text = Directed Algebraic Topology studies phenomena where privileged directions appear, derived from the analysis of concurrency, traffic networks, space - time models, et cetera. 1 Directed Directed PROPN NNP Number=Sing 4 amod _ _ 2 Algebraic Algebraic PROPN NNP Number=Sing 3 compound _ _ 3 Topology Topology PROPN NNP Number=Sing 4 compound _ _ 4 studies study NOUN NNS Number=Plur 5 nsubj _ _ 5 phenomena phenomena VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 where where SCONJ WRB _ 9 advmod _ _ 7 privileged privileged ADJ JJ Degree=Pos 8 amod _ _ 8 directions direction NOUN NNS Number=Plur 9 nsubj _ _ 9 appear appear VERB VBP Tense=Pres|VerbForm=Fin 5 relcl _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 derived derive VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 acl _ _ 12 from from ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 analysis analysis NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 concurrency concurrency NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 traffic traffic NOUN NN Number=Sing 19 compound _ _ 19 networks network NOUN NNS Number=Plur 16 conj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 19 punct _ _ 21 space space NOUN NN Number=Sing 23 compound _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 time time NOUN NN Number=Sing 24 compound _ _ 24 models model NOUN NNS Number=Plur 19 conj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 et et NOUN NN Number=Sing 27 compound _ _ 27 cetera cetera NOUN NN Number=Sing 16 appos _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = This is the sequel of a paper, where we introduced directed spaces, their non reversible homotopies and their fundamental category. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 sequel sequel NOUN NN Number=Sing 2 attr _ _ 5 of of ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 paper paper NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 where where SCONJ WRB _ 11 advmod _ _ 10 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 11 nsubj _ _ 11 introduced introduce VERB VBD Tense=Past|VerbForm=Fin 7 relcl _ _ 12 directed direct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 amod _ _ 13 spaces space NOUN NNS Number=Plur 11 dobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 13 punct _ _ 15 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 18 poss _ _ 16 non non ADJ JJ Degree=Pos 17 amod _ _ 17 reversible reversible ADJ JJ Degree=Pos 18 amod _ _ 18 homotopies homotopie NOUN NNS Number=Plur 13 conj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 22 poss _ _ 21 fundamental fundamental ADJ JJ Degree=Pos 22 amod _ _ 22 category category NOUN NN Number=Sing 18 conj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Here we study some basic constructs of homotopy, like homotopy pushouts and pullbacks, mapping cones and homotopy fibres, suspensions and loops, cofibre and fibre sequences. 1 Here here ADV RB PronType=Dem 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 some some DET DT _ 6 det _ _ 5 basic basic ADJ JJ Degree=Pos 6 amod _ _ 6 constructs construct NOUN NNS Number=Plur 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 homotopy homotopy NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 3 punct _ _ 10 like like ADP IN _ 3 prep _ _ 11 homotopy homotopy NOUN NN Number=Sing 12 compound _ _ 12 pushouts pushout NOUN NNS Number=Plur 10 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 pullbacks pullback NOUN NNS Number=Plur 12 conj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 12 punct _ _ 16 mapping mapping NOUN NN Number=Sing 17 compound _ _ 17 cones cone NOUN NNS Number=Plur 12 conj _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 homotopy homotopy NOUN NN Number=Sing 20 compound _ _ 20 fibres fibre NOUN NNS Number=Plur 17 conj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 suspensions suspension NOUN NNS Number=Plur 20 conj _ _ 23 and and CCONJ CC ConjType=Cmp 22 cc _ _ 24 loops loop NOUN NNS Number=Plur 22 conj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 cofibre cofibre PROPN NNP Number=Sing 24 conj _ _ 27 and and CCONJ CC ConjType=Cmp 26 cc _ _ 28 fibre fibre PROPN NNP Number=Sing 29 compound _ _ 29 sequences sequence NOUN NNS Number=Plur 26 conj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 142 # sent_id = 1 # text = A topological space is sober if it has exactly the points that are dictated by its open sets. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 topological topological ADJ JJ Degree=Pos 3 amod _ _ 3 space space NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 sober sober ADJ JJ Degree=Pos 4 acomp _ _ 6 if if SCONJ IN _ 8 mark _ _ 7 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 8 nsubj _ _ 8 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 advcl _ _ 9 exactly exactly ADV RB _ 11 advmod _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 points point NOUN NNS Number=Plur 8 dobj _ _ 12 that that PRON WDT PronType=Rel 14 nsubjpass _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 dictated dictate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 relcl _ _ 15 by by ADP IN _ 14 agent _ _ 16 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 18 poss _ _ 17 open open ADJ JJ Degree=Pos 18 amod _ _ 18 sets set NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = We explain the analogy with the way in which computational values are determined by the observations that can be made of them. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 explain explain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 analogy analogy NOUN NN Number=Sing 2 dobj _ _ 5 with with ADP IN _ 2 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 way way NOUN NN Number=Sing 5 pobj _ _ 8 in in ADP IN _ 13 prep _ _ 9 which which PRON WDT _ 8 pobj _ _ 10 computational computational ADJ JJ Degree=Pos 11 amod _ _ 11 values value NOUN NNS Number=Plur 13 nsubjpass _ _ 12 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 determined determine VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 relcl _ _ 14 by by ADP IN _ 13 agent _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 observations observation NOUN NNS Number=Plur 14 pobj _ _ 17 that that PRON WDT PronType=Rel 20 nsubjpass _ _ 18 can can AUX MD VerbForm=Fin 20 aux _ _ 19 be be AUX VB VerbForm=Inf 20 auxpass _ _ 20 made make VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 relcl _ _ 21 of of ADP IN _ 20 prep _ _ 22 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 21 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = A new definition of sobriety is formulated in terms of lambda calculus and elementary category theory, with no reference to lattice structure, but, for topological spaces, this coincides with the standard lattice - theoretic definition. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 new new ADJ JJ Degree=Pos 3 amod _ _ 3 definition definition NOUN NN Number=Sing 7 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 sobriety sobriety NOUN NN Number=Sing 4 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 7 formulated formulate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 in in ADP IN _ 7 prep _ _ 9 terms term NOUN NNS Number=Plur 8 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 lambda lambda PROPN NNP Number=Sing 12 compound _ _ 12 calculus calculus PROPN NNP Number=Sing 10 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 elementary elementary ADJ JJ Degree=Pos 15 amod _ _ 15 category category NOUN NN Number=Sing 16 compound _ _ 16 theory theory NOUN NN Number=Sing 12 conj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 7 punct _ _ 18 with with ADP IN _ 7 prep _ _ 19 no no DET DT _ 20 det _ _ 20 reference reference NOUN NN Number=Sing 18 pobj _ _ 21 to to PART TO _ 22 aux _ _ 22 lattice lattice VERB VB VerbForm=Inf 20 acl _ _ 23 structure structure NOUN NN Number=Sing 22 dobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 7 punct _ _ 25 but but CCONJ CC ConjType=Cmp 7 cc _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 7 punct _ _ 27 for for ADP IN _ 32 prep _ _ 28 topological topological ADJ JJ Degree=Pos 29 amod _ _ 29 spaces space NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 32 punct _ _ 31 this this PRON DT Number=Sing|PronType=Dem 32 nsubj _ _ 32 coincides coincide NOUN NNS Number=Plur 7 conj _ _ 33 with with ADP IN _ 32 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 39 det _ _ 35 standard standard ADJ JJ Degree=Pos 39 amod _ _ 36 lattice lattice NOUN NN Number=Sing 38 npadvmod _ _ 37 - - PUNCT HYPH PunctType=Dash 38 punct _ _ 38 theoretic theoretic ADJ JJ Degree=Pos 39 amod _ _ 39 definition definition NOUN NN Number=Sing 33 pobj _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 32 punct _ SpaceAfter=No # sent_id = 4 # text = The primitive symbolic and categorical structures are extended to make their types sober. 1 The the DET DT Definite=Def|PronType=Art 6 det _ _ 2 primitive primitive ADJ JJ Degree=Pos 6 amod _ _ 3 symbolic symbolic ADJ JJ Degree=Pos 6 amod _ _ 4 and and CCONJ CC ConjType=Cmp 3 cc _ _ 5 categorical categorical ADJ JJ Degree=Pos 3 conj _ _ 6 structures structure NOUN NNS Number=Plur 8 nsubjpass _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 extended extend VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 to to PART TO _ 10 aux _ _ 10 make make VERB VB VerbForm=Inf 8 xcomp _ _ 11 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 12 poss _ _ 12 types type NOUN NNS Number=Plur 13 nsubj _ _ 13 sober sober ADJ JJ Degree=Pos 10 ccomp _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 5 # text = For the natural numbers, the additional structure provides definition by description and general recursion. 1 For for ADP IN _ 9 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 natural natural ADJ JJ Degree=Pos 4 amod _ _ 4 numbers number NOUN NNS Number=Plur 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 9 punct _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 additional additional ADJ JJ Degree=Pos 8 amod _ _ 8 structure structure NOUN NN Number=Sing 9 nsubj _ _ 9 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 definition definition NOUN NN Number=Sing 9 dobj _ _ 11 by by ADP IN _ 9 prep _ _ 12 description description NOUN NN Number=Sing 11 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 general general ADJ JJ Degree=Pos 15 amod _ _ 15 recursion recursion NOUN NN Number=Sing 12 conj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 6 # text = We use the same basic categorical construction that Thielecke, Fuhrmann and Selinger use to study continuations, but our emphasis is completely different: we concentrate on the fragment of their calculus that excludes computational effects, but show how it nevertheless defines new denotational values. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 7 det _ _ 4 same same ADJ JJ Degree=Pos 7 amod _ _ 5 basic basic ADJ JJ Degree=Pos 7 amod _ _ 6 categorical categorical ADJ JJ Degree=Pos 7 amod _ _ 7 construction construction NOUN NN Number=Sing 2 dobj _ _ 8 that that PRON WDT PronType=Rel 14 dobj _ _ 9 Thielecke Thielecke PROPN NNP Number=Sing 14 nsubj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 Fuhrmann Fuhrmann PROPN NNP Number=Sing 9 conj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 Selinger Selinger PROPN NNP Number=Sing 11 conj _ _ 14 use use VERB VBP Tense=Pres|VerbForm=Fin 7 relcl _ _ 15 to to PART TO _ 16 aux _ _ 16 study study VERB VB VerbForm=Inf 14 xcomp _ _ 17 continuations continuation NOUN NNS Number=Plur 16 dobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 2 punct _ _ 19 but but CCONJ CC ConjType=Cmp 2 cc _ _ 20 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 21 poss _ _ 21 emphasis emphasis NOUN NN Number=Sing 22 nsubj _ _ 22 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 27 ccomp _ _ 23 completely completely ADV RB _ 24 advmod _ _ 24 different different ADJ JJ Degree=Pos 22 acomp _ SpaceAfter=No 25 : : PUNCT : _ 27 punct _ _ 26 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 27 nsubj _ _ 27 concentrate concentrate VERB VBP Tense=Pres|VerbForm=Fin 2 conj _ _ 28 on on ADP IN _ 27 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 fragment fragment NOUN NN Number=Sing 28 pobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 33 poss _ _ 33 calculus calculus NOUN NN Number=Sing 31 pobj _ _ 34 that that PRON WDT PronType=Rel 35 nsubj _ _ 35 excludes exclude VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 relcl _ _ 36 computational computational ADJ JJ Degree=Pos 37 amod _ _ 37 effects effect NOUN NNS Number=Plur 35 dobj _ SpaceAfter=No 38 , , PUNCT , PunctType=Comm 27 punct _ _ 39 but but CCONJ CC ConjType=Cmp 27 cc _ _ 40 show show VERB VB VerbForm=Inf 27 conj _ _ 41 how how SCONJ WRB _ 44 advmod _ _ 42 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 44 nsubj _ _ 43 nevertheless nevertheless ADV RB _ 44 advmod _ _ 44 defines define VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 40 ccomp _ _ 45 new new ADJ JJ Degree=Pos 47 amod _ _ 46 denotational denotational ADJ JJ Degree=Pos 47 amod _ _ 47 values value NOUN NNS Number=Plur 44 dobj _ SpaceAfter=No 48 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 7 # text = Nor is this ``denotational semantics of continuations using sober spaces'', though that could easily be derived. 1 Nor nor CCONJ CC ConjType=Cmp 2 cc _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 this this DET DT Number=Sing|PronType=Dem 7 det _ _ 4 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 7 punct _ SpaceAfter=No 5 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 7 punct _ SpaceAfter=No 6 denotational denotational ADJ JJ Degree=Pos 7 amod _ _ 7 semantics semantic NOUN NNS Number=Plur 2 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 continuations continuation NOUN NNS Number=Plur 8 pobj _ _ 10 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 acl _ _ 11 sober sober ADJ JJ Degree=Pos 12 amod _ _ 12 spaces space NOUN NNS Number=Plur 10 dobj _ SpaceAfter=No 13 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 7 punct _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 2 punct _ _ 15 though though SCONJ IN _ 20 mark _ _ 16 that that PRON DT Number=Sing|PronType=Dem 20 nsubjpass _ _ 17 could could AUX MD VerbForm=Fin 20 aux _ _ 18 easily easily ADV RB _ 20 advmod _ _ 19 be be AUX VB VerbForm=Inf 20 auxpass _ _ 20 derived derive VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 advcl _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 8 # text = On the contrary, this paper provides the underlying $ lambda $ - calculus on the basis of which abstract Stone duality will re - axiomatise general topology. 1 On on ADP IN _ 7 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 contrary contrary NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 7 punct _ _ 5 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 6 paper paper NOUN NN Number=Sing 7 nsubj _ _ 7 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 the the DET DT Definite=Def|PronType=Art 12 det _ _ 9 underlying underlie VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 amod _ _ 10 $ lambda $ $ lambda $ SYM $ _ 12 compound _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 calculus calculus NOUN NN Number=Sing 7 dobj _ _ 13 on on ADP IN _ 7 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 basis basis NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 22 prep _ _ 17 which which PRON WDT _ 16 pobj _ _ 18 abstract abstract ADJ JJ Degree=Pos 20 amod _ _ 19 Stone Stone PROPN NNP Number=Sing 20 compound _ _ 20 duality duality NOUN NN Number=Sing 22 nsubj _ _ 21 will will AUX MD VerbForm=Fin 22 aux _ _ 22 re re VERB VB VerbForm=Inf 15 relcl _ _ 23 - - VERB VB VerbForm=Inf 22 punct _ _ 24 axiomatise axiomatise VERB VB VerbForm=Inf 22 xcomp _ _ 25 general general ADJ JJ Degree=Pos 26 amod _ _ 26 topology topology NOUN NN Number=Sing 24 dobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 9 # text = The leading model of the new axioms is the category of locally compact locales and continuous maps. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 leading lead VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 amod _ _ 3 model model NOUN NN Number=Sing 8 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 new new ADJ JJ Degree=Pos 7 amod _ _ 7 axioms axiom NOUN NNS Number=Plur 4 pobj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 category category NOUN NN Number=Sing 8 attr _ _ 11 of of ADP IN _ 10 prep _ _ 12 locally locally ADV RB _ 13 advmod _ _ 13 compact compact ADJ JJ Degree=Pos 14 amod _ _ 14 locales locale NOUN NNS Number=Plur 11 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 continuous continuous ADJ JJ Degree=Pos 17 amod _ _ 17 maps map NOUN NNS Number=Plur 14 conj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # doc_id = 143 # sent_id = 1 # text = Goguen categories were introduced in as a suitable categorical description of $ {mathcal L} $ - fuzzy relations, that is, of relations taking values from an arbitrary complete Brouwerian lattice $ {mathcal L} $ instead of the unit interval $ [0, 1] $ of the real numbers. 1 Goguen Goguen PROPN NNP Number=Sing 2 compound _ _ 2 categories category NOUN NNS Number=Plur 4 nsubjpass _ _ 3 were be AUX VBD Mood=Ind|Tense=Past|VerbForm=Fin 4 auxpass _ _ 4 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 in in ADP RP _ 4 prt _ _ 6 as as ADP IN _ 4 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 8 suitable suitable ADJ JJ Degree=Pos 10 amod _ _ 9 categorical categorical ADJ JJ Degree=Pos 10 amod _ _ 10 description description NOUN NN Number=Sing 6 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 $ {mathcal L} $ $ {mathcal l} $ SYM $ _ 14 quantmod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 fuzzy fuzzy ADJ JJ Degree=Pos 15 amod _ _ 15 relations relation NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 4 punct _ _ 17 that that ADV RB _ 18 advmod _ _ 18 is is ADV RB _ 30 advmod _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 of of ADP IN _ 18 prep _ _ 21 relations relation NOUN NNS Number=Plur 20 pobj _ _ 22 taking take VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 21 acl _ _ 23 values value NOUN NNS Number=Plur 22 dobj _ _ 24 from from ADP IN _ 22 prep _ _ 25 an an DET DT Definite=Ind|PronType=Art 29 det _ _ 26 arbitrary arbitrary ADJ JJ Degree=Pos 29 amod _ _ 27 complete complete ADJ JJ Degree=Pos 29 amod _ _ 28 Brouwerian brouwerian ADJ JJ Degree=Pos 29 amod _ _ 29 lattice lattice NOUN NN Number=Sing 24 pobj _ _ 30 $ {mathcal L} $ $ {mathcal l} $ SYM $ _ 2 appos _ _ 31 instead instead ADV RB _ 32 advmod _ _ 32 of of ADP IN _ 30 prep _ _ 33 the the DET DT Definite=Def|PronType=Art 35 det _ _ 34 unit unit NOUN NN Number=Sing 35 compound _ _ 35 interval interval NOUN NN Number=Sing 32 pobj _ _ 36 $ [0, 1] $ $ [0, 1] $ SYM $ _ 30 conj _ _ 37 of of ADP IN _ 36 prep _ _ 38 the the DET DT Definite=Def|PronType=Art 40 det _ _ 39 real real ADJ JJ Degree=Pos 40 amod _ _ 40 numbers number NOUN NNS Number=Plur 37 pobj _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = In this paper we want to study operations on morphisms of a Goguen category which are derived from suitable binary functions on the underlying lattice of scalar elements, that is, on the abstract counterpart of $ {mathcal L} $ . 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 want want VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 to to PART TO _ 7 aux _ _ 7 study study VERB VB VerbForm=Inf 5 xcomp _ _ 8 operations operation NOUN NNS Number=Plur 7 dobj _ _ 9 on on ADP IN _ 7 prep _ _ 10 morphisms morphism NOUN NNS Number=Plur 9 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 Goguen Goguen PROPN NNP Number=Sing 14 compound _ _ 14 category category NOUN NN Number=Sing 11 pobj _ _ 15 which which PRON WDT _ 17 nsubjpass _ _ 16 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 17 auxpass _ _ 17 derived derive VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 relcl _ _ 18 from from ADP IN _ 17 prep _ _ 19 suitable suitable ADJ JJ Degree=Pos 21 amod _ _ 20 binary binary ADJ JJ Degree=Pos 21 amod _ _ 21 functions function NOUN NNS Number=Plur 18 pobj _ _ 22 on on ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 underlying underlie VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 25 amod _ _ 25 lattice lattice NOUN NN Number=Sing 22 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 scalar scalar ADJ JJ Degree=Pos 28 amod _ _ 28 elements element NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 7 punct _ _ 30 that that ADV RB _ 31 advmod _ _ 31 is is ADV RB _ 33 advmod _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 33 punct _ _ 33 on on ADP IN _ 7 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 36 det _ _ 35 abstract abstract ADJ JJ Degree=Pos 36 amod _ _ 36 counterpart counterpart NOUN NN Number=Sing 33 pobj _ _ 37 of of ADP IN _ 36 prep _ _ 38 $ {mathcal L} $ $ {mathcal l} $ SYM $ _ 37 pobj _ _ 39 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 144 # sent_id = 1 # text = Injectivity with respect to morphisms having $ lambda $ - presentable domains and codomains is characterized: such injectivity classes are precisely those closed under products, $ lambda $ - directed colimits, and $ lambda $ - pure subobjects. 1 Injectivity injectivity VERB VB VerbForm=Inf 14 nsubjpass _ _ 2 with with ADP IN _ 1 prep _ _ 3 respect respect NOUN NN Number=Sing 2 pobj _ _ 4 to to ADP IN _ 3 prep _ _ 5 morphisms morphism NOUN NNS Number=Plur 4 pobj _ _ 6 having have VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 1 advcl _ _ 7 $ lambda $ $ lambda $ SYM $ _ 9 advmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 presentable presentable ADJ JJ Degree=Pos 10 amod _ _ 10 domains domain NOUN NNS Number=Plur 6 dobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 codomains codomain NOUN NNS Number=Plur 10 conj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 characterized characterize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 ccomp _ SpaceAfter=No 15 : : PUNCT : _ 19 punct _ _ 16 such such ADJ JJ Degree=Pos 18 amod _ _ 17 injectivity injectivity NOUN NN Number=Sing 18 compound _ _ 18 classes class NOUN NNS Number=Plur 19 nsubj _ _ 19 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 20 precisely precisely ADV RB _ 21 advmod _ _ 21 those those PRON DT Number=Plur|PronType=Dem 19 attr _ _ 22 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 acl _ _ 23 under under ADP IN _ 22 prep _ _ 24 products product NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 21 punct _ _ 26 $ lambda $ $ lambda $ SYM $ _ 28 advmod _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 directed direct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 amod _ _ 29 colimits colimit NOUN NNS Number=Plur 21 conj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 19 punct _ _ 31 and and CCONJ CC ConjType=Cmp 19 cc _ _ 32 $ lambda $ $ lambda $ SYM $ _ 34 advmod _ _ 33 - - PUNCT HYPH PunctType=Dash 34 punct _ _ 34 pure pure ADJ JJ Degree=Pos 35 amod _ _ 35 subobjects subobject NOUN NNS Number=Plur 19 conj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 2 # text = This sharpens the result of the first two authors. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 sharpens sharpen VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 result result NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 9 det _ _ 7 first first ADJ JJ Degree=Pos 9 amod _ _ 8 two two NUM CD NumType=Card 9 nummod _ _ 9 authors author NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = In contrast, for geometric logic an example is found of a class closed under directed colimits and pure subobjects, but not axiomatizable by a geometric theory. 1 In in ADP IN _ 10 prep _ _ 2 contrast contrast NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 10 punct _ _ 4 for for ADP IN _ 10 prep _ _ 5 geometric geometric ADJ JJ Degree=Pos 6 amod _ _ 6 logic logic NOUN NN Number=Sing 4 pobj _ _ 7 an an DET DT Definite=Ind|PronType=Art 8 det _ _ 8 example example NOUN NN Number=Sing 10 nsubjpass _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 10 found find VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 11 of of ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 class class NOUN NN Number=Sing 11 pobj _ _ 14 closed close VERB VBD Tense=Past|VerbForm=Fin 13 acl _ _ 15 under under ADP IN _ 14 prep _ _ 16 directed direct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 17 colimits colimit NOUN NNS Number=Plur 15 pobj _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 pure pure ADJ JJ Degree=Pos 20 amod _ _ 20 subobjects subobject NOUN NNS Number=Plur 17 conj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 14 punct _ _ 22 but but CCONJ CC ConjType=Cmp 14 cc _ _ 23 not not PART RB Polarity=Neg 24 neg _ _ 24 axiomatizable axiomatizable ADJ JJ Degree=Pos 14 conj _ _ 25 by by ADP IN _ 24 prep _ _ 26 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 27 geometric geometric ADJ JJ Degree=Pos 28 amod _ _ 28 theory theory NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 4 # text = A more technical characterization of axiomatizable classes in geometric logic is presented. 1 A a DET DT Definite=Ind|PronType=Art 4 det _ _ 2 more more ADV RBR Degree=Cmp 3 advmod _ _ 3 technical technical ADJ JJ Degree=Pos 4 amod _ _ 4 characterization characterization NOUN NN Number=Sing 12 nsubjpass _ _ 5 of of ADP IN _ 4 prep _ _ 6 axiomatizable axiomatizable ADJ JJ Degree=Pos 7 amod _ _ 7 classes class NOUN NNS Number=Plur 5 pobj _ _ 8 in in ADP IN _ 7 prep _ _ 9 geometric geometric ADJ JJ Degree=Pos 10 amod _ _ 10 logic logic NOUN NN Number=Sing 8 pobj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 12 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # doc_id = 145 # sent_id = 1 # text = We prove that pure morphisms of commutative rings are effective $ A $ - descent morphisms where $ A $ is a $ (COMMUTATIVE RINGS)^op $ - indexed category given by (i) finitely generated modules, or (ii) flat modules, or (iii) finitely generated flat modules, or (iv) finitely generated projective modules. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 9 mark _ _ 4 pure pure ADJ JJ Degree=Pos 5 amod _ _ 5 morphisms morphism NOUN NNS Number=Plur 9 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 commutative commutative ADJ JJ Degree=Pos 8 amod _ _ 8 rings ring NOUN NNS Number=Plur 6 pobj _ _ 9 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 10 effective effective ADJ JJ Degree=Pos 14 amod _ _ 11 $ A $ $ a $ SYM $ _ 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 descent descent NOUN NN Number=Sing 14 compound _ _ 14 morphisms morphism NOUN NNS Number=Plur 9 attr _ _ 15 where where SCONJ WRB _ 17 advmod _ _ 16 $ A $ $ a $ SYM $ _ 17 nsubj _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 relcl _ _ 18 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 19 $ (COMMUTATIVE RINGS)^op $ $ (commutative rings)^op $ NUM CD NumType=Card 21 advmod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 indexed index VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 amod _ _ 22 category category NOUN NN Number=Sing 17 attr _ _ 23 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 acl _ _ 24 by by ADP IN _ 23 agent _ _ 25 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 24 punct _ SpaceAfter=No 26 i i NOUN NN Case=Acc|Number=Sing|Person=1|PronType=Prs 24 pobj _ SpaceAfter=No 27 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 24 punct _ _ 28 finitely finitely ADV RB _ 29 advmod _ _ 29 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 30 amod _ _ 30 modules module NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 30 punct _ _ 32 or or CCONJ CC ConjType=Cmp 30 cc _ _ 33 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 37 punct _ SpaceAfter=No 34 ii ii PROPN NNP Number=Sing 37 nmod _ SpaceAfter=No 35 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 37 punct _ _ 36 flat flat ADJ JJ Degree=Pos 37 amod _ _ 37 modules module NOUN NNS Number=Plur 30 conj _ SpaceAfter=No 38 , , PUNCT , PunctType=Comm 37 punct _ _ 39 or or CCONJ CC ConjType=Cmp 37 cc _ _ 40 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 41 punct _ SpaceAfter=No 41 iii iii PROPN NNP Number=Sing 37 conj _ SpaceAfter=No 42 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 41 punct _ _ 43 finitely finitely ADV RB _ 44 advmod _ _ 44 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 46 amod _ _ 45 flat flat ADJ JJ Degree=Pos 46 amod _ _ 46 modules module NOUN NNS Number=Plur 22 appos _ SpaceAfter=No 47 , , PUNCT , PunctType=Comm 46 punct _ _ 48 or or CCONJ CC ConjType=Cmp 46 cc _ _ 49 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 50 punct _ SpaceAfter=No 50 iv iv ADV RB _ 53 dep _ SpaceAfter=No 51 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 53 punct _ _ 52 finitely finitely ADV RB _ 53 advmod _ _ 53 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 55 amod _ _ 54 projective projective ADJ JJ Degree=Pos 55 amod _ _ 55 modules module NOUN NNS Number=Plur 46 conj _ SpaceAfter=No 56 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 146 # sent_id = 1 # text = We investigate the effect on Cauchy complete objects of the change of base 2 - functor $ {cal V} - Cat rightarrow {cal W} - Cat $ induced by a two - sided enrichment $ {cal V} rightarrow {cal W} $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 investigate investigate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 effect effect NOUN NN Number=Sing 2 dobj _ _ 5 on on ADP IN _ 4 prep _ _ 6 Cauchy Cauchy PROPN NNP Number=Sing 8 amod _ _ 7 complete complete ADJ JJ Degree=Pos 8 amod _ _ 8 objects object NOUN NNS Number=Plur 5 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 change change NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 base base NOUN NN Number=Sing 12 pobj _ _ 14 2 2 NUM CD NumType=Card 16 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 functor functor NOUN NN Number=Sing 17 nmod _ _ 17 $ {cal V} - Cat rightarrow {cal W} - Cat $ $ {cal v} - cat rightarrow {cal w} - cat $ SYM $ _ 11 appos _ _ 18 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 acl _ _ 19 by by ADP IN _ 18 agent _ _ 20 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 21 two two NUM CD NumType=Card 23 advmod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 sided sided ADJ JJ Degree=Pos 24 amod _ _ 24 enrichment enrichment NOUN NN Number=Sing 19 pobj _ _ 25 $ {cal V} rightarrow {cal W} $ $ {cal v} rightarrow {cal w} $ SYM $ _ 18 dobj _ _ 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We restrict our study to the case of locally partially ordered bases. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 restrict restrict VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 4 poss _ _ 4 study study NOUN NN Number=Sing 2 dobj _ _ 5 to to ADP IN _ 2 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 case case NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 locally locally ADV RB _ 11 advmod _ _ 10 partially partially ADV RB _ 11 advmod _ _ 11 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 12 bases basis NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = The reversibility notion introduced by Walters is extended to two - sided enrichments and Cauchy completion. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 reversibility reversibility NOUN NN Number=Sing 3 compound _ _ 3 notion notion NOUN NN Number=Sing 8 nsubjpass _ _ 4 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 acl _ _ 5 by by ADP IN _ 4 agent _ _ 6 Walters Walters PROPN NNP Number=Sing 5 pobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 extended extend VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 to to ADP IN _ 8 prep _ _ 10 two two NUM CD NumType=Card 12 advmod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 sided side VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 amod _ _ 13 enrichments enrichment NOUN NNS Number=Plur 9 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 Cauchy Cauchy PROPN NNP Number=Sing 16 compound _ _ 16 completion completion NOUN NN Number=Sing 13 conj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 4 # text = We show that a reversible left adjoint two - sided enrichment $ F: {cal V} rightarrow {cal W} $ between locally partially ordered reversible bicategories induces an adjunction $ F_{sim} dashv F^{sim}: VSkCRcCat rightharpoonup WSkCRcCat $ between sub - categories of skeletal and Cauchy - reversible complete enrichments. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 19 mark _ _ 4 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 5 reversible reversible ADJ JJ Degree=Pos 7 amod _ _ 6 left left ADJ JJ Degree=Pos 7 amod _ _ 7 adjoint adjoint NOUN NN Number=Sing 11 nmod _ _ 8 two two NUM CD NumType=Card 10 advmod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 sided sided ADJ JJ Degree=Pos 11 amod _ _ 11 enrichment enrichment NOUN NN Number=Sing 19 nsubj _ _ 12 $ F: {cal V} rightarrow {cal W} $ $ f: {cal v} rightarrow {cal w} $ SYM $ _ 11 appos _ _ 13 between between ADP IN _ 11 prep _ _ 14 locally locally ADV RB _ 16 advmod _ _ 15 partially partially ADV RB _ 16 advmod _ _ 16 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 amod _ _ 17 reversible reversible ADJ JJ Degree=Pos 18 amod _ _ 18 bicategories bicategorie NOUN NNS Number=Plur 13 pobj _ _ 19 induces induce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 20 an an DET DT Definite=Ind|PronType=Art 21 det _ _ 21 adjunction adjunction NOUN NN Number=Sing 19 dobj _ _ 22 $ F_{sim} dashv F^{sim}: VSkCRcCat rightharpoonup WSkCRcCat $ $ f_{sim} dashv f^{sim}: vskcrccat rightharpoonup wskcrccat $ SYM $ _ 21 dep _ _ 23 between between ADP IN _ 21 prep _ _ 24 sub sub NOUN NN Number=Sing 26 compound _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 categories category NOUN NNS Number=Plur 23 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 skeletal skeletal ADJ JJ Degree=Pos 34 amod _ _ 29 and and CCONJ CC ConjType=Cmp 28 cc _ _ 30 Cauchy cauchy NOUN NN Number=Sing 32 npadvmod _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 reversible reversible ADJ JJ Degree=Pos 28 conj _ _ 33 complete complete ADJ JJ Degree=Pos 34 amod _ _ 34 enrichments enrichment NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = We give two applications: sheaves over locales and group actions. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 two two NUM CD NumType=Card 4 nummod _ _ 4 applications application NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 5 : : PUNCT : _ 4 punct _ _ 6 sheaves sheaf NOUN NNS Number=Plur 2 dobj _ _ 7 over over ADP IN _ 6 prep _ _ 8 locales locale NOUN NNS Number=Plur 7 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 group group NOUN NN Number=Sing 11 compound _ _ 11 actions action NOUN NNS Number=Plur 8 conj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 147 # sent_id = 1 # text = Every chain functor $ A_* $ , admits a $ L $ - colocalization $ A^L_* $ which (in contrast to the case of $ L $ - localizations) in general does not allow a realization as a spectrum (even if $ A_* $ stems from a spectrum itself). 1 Every every DET DT _ 2 det _ _ 2 chain chain NOUN NN Number=Sing 3 nsubj _ _ 3 functor functor VERB VBP Tense=Pres|VerbForm=Fin 6 nsubj _ _ 4 $ A_* $ $ a_* $ SYM $ _ 3 nummod _ _ 5 , , PUNCT , PunctType=Comm 6 punct _ _ 6 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 8 $ L $ $ l $ SYM $ _ 10 compound _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 colocalization colocalization NOUN NN Number=Sing 6 dobj _ _ 11 $ A^L_* $ $ a^l_* $ SYM $ _ 10 nmod _ _ 12 which which PRON WDT _ 28 nsubj _ _ 13 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 28 punct _ SpaceAfter=No 14 in in ADP IN _ 28 prep _ _ 15 contrast contrast NOUN NN Number=Sing 14 pobj _ _ 16 to to ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 case case NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 $ L $ $ l $ SYM $ _ 22 compound _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 localizations localization NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 23 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 28 punct _ _ 24 in in ADP IN _ 28 prep _ _ 25 general general ADJ JJ Degree=Pos 24 amod _ _ 26 does do AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 28 aux _ _ 27 not not PART RB Polarity=Neg 28 neg _ _ 28 allow allow VERB VB VerbForm=Inf 6 advcl _ _ 29 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 30 realization realization NOUN NN Number=Sing 28 dobj _ _ 31 as as ADP IN _ 30 prep _ _ 32 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 33 spectrum spectrum NOUN NN Number=Sing 31 pobj _ _ 34 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 33 punct _ SpaceAfter=No 35 even even ADV RB _ 38 advmod _ _ 36 if if SCONJ IN _ 38 mark _ _ 37 $ A_* $ $ a_* $ SYM $ _ 38 nsubj _ _ 38 stems stem VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 28 advcl _ _ 39 from from ADP IN _ 38 prep _ _ 40 a a DET DT Definite=Ind|PronType=Art 41 det _ _ 41 spectrum spectrum NOUN NN Number=Sing 39 pobj _ _ 42 itself itself PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs|Reflex=Yes 41 appos _ SpaceAfter=No 43 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 28 punct _ SpaceAfter=No 44 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = The $ [E, ]_* $ - colocalization of A. K. Bousfield is retrieved as a special case of a general colocalization process for chain functors. 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 $ [E, ]_* $ $ [e, ]_* $ SYM $ _ 4 quantmod _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 colocalization colocalization NOUN NN Number=Sing 10 nsubjpass _ _ 5 of of ADP IN _ 4 prep _ _ 6 A. A. PROPN NNP Number=Sing 8 compound _ _ 7 K. K. PROPN NNP Number=Sing 8 compound _ _ 8 Bousfield Bousfield PROPN NNP Number=Sing 5 pobj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 10 retrieved retrieve VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 11 as as ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 special special ADJ JJ Degree=Pos 14 amod _ _ 14 case case NOUN NN Number=Sing 11 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 17 general general ADJ JJ Degree=Pos 19 amod _ _ 18 colocalization colocalization NOUN NN Number=Sing 19 compound _ _ 19 process process NOUN NN Number=Sing 15 pobj _ _ 20 for for ADP IN _ 19 prep _ _ 21 chain chain NOUN NN Number=Sing 22 compound _ _ 22 functors functor NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # doc_id = 148 # sent_id = 1 # text = For the 2 - monad $ (( - )^2, I, C) $ on CAT, with unit $ I $ described by identities and multiplication $ C $ described by composition, we show that a functor $ F : {cal K}^2 rightarrow cal K $ satisfying $ FI_{cal K} = 1_{cal K} $ admits a unique, normal, pseudo - algebra structure for $ ( - )^2 $ if and only if there is a mere natural isomorphism $ F F^2 rightarrow F C_{cal K} $ . 1 For for ADP IN _ 24 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 6 det _ _ 3 2 2 NUM CD NumType=Card 5 nummod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 monad monad NOUN NNS Number=Plur 6 compound _ _ 6 $ (( - )^2, I, C) $ $ (( - )^2, i, c) $ SYM $ _ 1 pobj _ _ 7 on on ADP IN _ 6 prep _ _ 8 CAT CAT PROPN NNP Number=Sing 7 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 6 punct _ _ 10 with with ADP IN _ 13 prep _ _ 11 unit unit NOUN NN Number=Sing 10 pobj _ _ 12 $ I $ $ i $ SYM $ _ 10 dep _ _ 13 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 advcl _ _ 14 by by ADP IN _ 13 agent _ _ 15 identities identity NOUN NNS Number=Plur 14 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 multiplication multiplication NOUN NN Number=Sing 15 conj _ _ 18 $ C $ $ c $ SYM $ _ 13 dep _ _ 19 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 xcomp _ _ 20 by by ADP IN _ 19 agent _ _ 21 composition composition NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 24 punct _ _ 23 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 24 nsubj _ _ 24 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 25 that that SCONJ IN _ 31 mark _ _ 26 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 27 functor functor NOUN NN Number=Sing 31 nsubj _ _ 28 $ F : {cal K}^2 rightarrow cal K $ $ f : {cal k}^2 rightarrow cal k $ SYM $ _ 27 appos _ _ 29 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 27 acl _ _ 30 $ FI_{cal K} = 1_{cal K} $ $ fi_{cal k} = 1_{cal k} $ SYM $ _ 31 nsubj _ _ 31 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 ccomp _ _ 32 a a DET DT Definite=Ind|PronType=Art 40 det _ _ 33 unique unique ADJ JJ Degree=Pos 40 amod _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 40 punct _ _ 35 normal normal ADJ JJ Degree=Pos 40 amod _ SpaceAfter=No 36 , , PUNCT , PunctType=Comm 40 punct _ _ 37 pseudo pseudo NOUN NN Number=Sing 39 compound _ _ 38 - - PUNCT HYPH PunctType=Dash 39 punct _ _ 39 algebra algebra NOUN NN Number=Sing 40 compound _ _ 40 structure structure NOUN NN Number=Sing 31 dobj _ _ 41 for for ADP IN _ 31 prep _ _ 42 $ ( - )^2 $ $ ( - )^2 $ SYM $ _ 43 nummod _ _ 43 if if SCONJ IN _ 41 pobj _ _ 44 and and CCONJ CC ConjType=Cmp 43 cc _ _ 45 only only ADV RB _ 48 advmod _ _ 46 if if SCONJ IN _ 48 mark _ _ 47 there there PRON EX _ 48 expl _ _ 48 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 31 advcl _ _ 49 a a DET DT Definite=Ind|PronType=Art 52 det _ _ 50 mere mere ADJ JJ Degree=Pos 52 amod _ _ 51 natural natural ADJ JJ Degree=Pos 52 amod _ _ 52 isomorphism isomorphism NOUN NN Number=Sing 48 attr _ _ 53 $ F F^2 rightarrow F C_{cal K} $ $ f f^2 rightarrow f c_{cal k} $ SYM $ _ 52 appos _ _ 54 . . PUNCT . PunctType=Peri 24 punct _ SpaceAfter=No # sent_id = 2 # text = We show that when this is the case the set of all natural transformations $ F F^2 rightarrow F C_{cal K} $ forms a commutative monoid isomorphic to the centre of $ cal K $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 16 mark _ _ 4 when when SCONJ WRB _ 6 advmod _ _ 5 this this PRON DT Number=Sing|PronType=Dem 6 nsubj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 advcl _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 case case NOUN NN Number=Sing 6 attr _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 set set NOUN NN Number=Sing 16 nsubj _ _ 11 of of ADP IN _ 10 prep _ _ 12 all all DET DT _ 14 det _ _ 13 natural natural ADJ JJ Degree=Pos 14 amod _ _ 14 transformations transformation NOUN NNS Number=Plur 11 pobj _ _ 15 $ F F^2 rightarrow F C_{cal K} $ $ f f^2 rightarrow f c_{cal k} $ SYM $ _ 16 nsubj _ _ 16 forms form VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 17 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 18 commutative commutative ADJ JJ Degree=Pos 20 amod _ _ 19 monoid monoid NOUN NN Number=Sing 20 amod _ _ 20 isomorphic isomorphic NOUN NN Number=Sing 16 dobj _ _ 21 to to ADP IN _ 16 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 centre centre NOUN NN Number=Sing 21 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 $ cal K $ $ cal k $ SYM $ _ 24 pobj _ _ 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 149 # sent_id = 1 # text = In this paper we describe a deductive system for categories with finite products and coproducts, prove decidability of equality of morphisms via cut elimination, and prove a ``Whitman theorem'' for the free such categories over arbitrary base categories. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 deductive deductive ADJ JJ Degree=Pos 8 amod _ _ 8 system system NOUN NN Number=Sing 5 dobj _ _ 9 for for ADP IN _ 8 prep _ _ 10 categories category NOUN NNS Number=Plur 9 pobj _ _ 11 with with ADP IN _ 10 prep _ _ 12 finite finite ADJ JJ Degree=Pos 13 amod _ _ 13 products product NOUN NNS Number=Plur 11 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 coproducts coproduct NOUN NNS Number=Plur 13 conj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 5 punct _ _ 17 prove prove VERB VBP Tense=Pres|VerbForm=Fin 5 conj _ _ 18 decidability decidability NOUN NN Number=Sing 17 dobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 equality equality NOUN NN Number=Sing 19 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 morphisms morphism NOUN NNS Number=Plur 21 pobj _ _ 23 via via ADP IN _ 17 prep _ _ 24 cut cut NOUN NN Number=Sing 25 compound _ _ 25 elimination elimination NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 17 punct _ _ 27 and and CCONJ CC ConjType=Cmp 17 cc _ _ 28 prove prove VERB VB VerbForm=Inf 17 conj _ _ 29 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 30 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 33 punct _ SpaceAfter=No 31 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 33 punct _ SpaceAfter=No 32 Whitman Whitman PROPN NNP Number=Sing 33 compound _ _ 33 theorem theorem VERB VBD Tense=Past|VerbForm=Fin 28 oprd _ SpaceAfter=No 34 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 33 punct _ _ 35 for for ADP IN _ 33 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 39 det _ _ 37 free free ADJ JJ Degree=Pos 39 amod _ _ 38 such such ADJ JJ Degree=Pos 39 amod _ _ 39 categories category NOUN NNS Number=Plur 35 pobj _ _ 40 over over ADP IN _ 39 prep _ _ 41 arbitrary arbitrary ADJ JJ Degree=Pos 43 amod _ _ 42 base base NOUN NN Number=Sing 43 compound _ _ 43 categories category NOUN NNS Number=Plur 40 pobj _ SpaceAfter=No 44 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = This result provides a nice illustration of some basic techniques in categorical proof theory, and also seems to have slipped past unproved in previous work in this field. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 result result NOUN NN Number=Sing 3 nsubj _ _ 3 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 nice nice ADJ JJ Degree=Pos 6 amod _ _ 6 illustration illustration NOUN NN Number=Sing 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 some some DET DT _ 10 det _ _ 9 basic basic ADJ JJ Degree=Pos 10 amod _ _ 10 techniques technique NOUN NNS Number=Plur 7 pobj _ _ 11 in in ADP IN _ 10 prep _ _ 12 categorical categorical ADJ JJ Degree=Pos 13 amod _ _ 13 proof proof NOUN NN Number=Sing 14 compound _ _ 14 theory theory NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 3 punct _ _ 16 and and CCONJ CC ConjType=Cmp 3 cc _ _ 17 also also ADV RB _ 18 advmod _ _ 18 seems seem VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 conj _ _ 19 to to PART TO _ 21 aux _ _ 20 have have AUX VB VerbForm=Inf 21 aux _ _ 21 slipped slip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 xcomp _ _ 22 past past ADV RB _ 23 advmod _ _ 23 unproved unprove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 advcl _ _ 24 in in ADP IN _ 23 prep _ _ 25 previous previous ADJ JJ Degree=Pos 26 amod _ _ 26 work work NOUN NN Number=Sing 24 pobj _ _ 27 in in ADP IN _ 26 prep _ _ 28 this this DET DT Number=Sing|PronType=Dem 29 det _ _ 29 field field NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = Furthermore, it suggests a type - theoretic approach to 2 - player input - output games. 1 Furthermore furthermore ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 4 nsubj _ _ 4 suggests suggest VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 6 type type NOUN NN Number=Sing 8 npadvmod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 theoretic theoretic ADJ JJ Degree=Pos 9 amod _ _ 9 approach approach NOUN NN Number=Sing 4 dobj _ _ 10 to to ADP IN _ 9 prep _ _ 11 2 2 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 player player NOUN NN Number=Sing 17 compound _ _ 14 input input NOUN NN Number=Sing 16 compound _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 output output NOUN NN Number=Sing 17 compound _ _ 17 games game NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 150 # sent_id = 1 # text = Two proofs of the exponentiability of perfect maps are presented and compared to two other recent approaches. 1 Two two NUM CD NumType=Card 2 nummod _ _ 2 proofs proof NOUN NNS Number=Plur 10 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 exponentiability exponentiability NOUN NN Number=Sing 3 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 perfect perfect ADJ JJ Degree=Pos 8 amod _ _ 8 maps map NOUN NNS Number=Plur 6 pobj _ _ 9 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 10 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 compared compare VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 conj _ _ 13 to to ADP IN _ 12 prep _ _ 14 two two NUM CD NumType=Card 17 nummod _ _ 15 other other ADJ JJ Degree=Pos 17 amod _ _ 16 recent recent ADJ JJ Degree=Pos 17 amod _ _ 17 approaches approach NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = One of the proofs is an elementary approach including a direct construction of the exponentials. 1 One one NUM CD NumType=Card 5 nsubj _ _ 2 of of ADP IN _ 1 prep _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 proofs proof NOUN NNS Number=Plur 2 pobj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 an an DET DT Definite=Ind|PronType=Art 8 det _ _ 7 elementary elementary ADJ JJ Degree=Pos 8 amod _ _ 8 approach approach NOUN NN Number=Sing 5 attr _ _ 9 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 direct direct ADJ JJ Degree=Pos 12 amod _ _ 12 construction construction NOUN NN Number=Sing 9 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 exponentials exponential NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = The other, implicit in the literature, uses internal locales in the topos of set - valued sheaves on a topological space. 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 other other ADJ JJ Degree=Pos 4 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 4 punct _ _ 4 implicit implicit ADJ JJ Degree=Pos 9 nsubj _ _ 5 in in ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 literature literature NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 9 punct _ _ 9 uses use VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 internal internal ADJ JJ Degree=Pos 11 amod _ _ 11 locales locale NOUN NNS Number=Plur 9 dobj _ _ 12 in in ADP IN _ 9 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 topos topos NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 set set NOUN NN Number=Sing 18 npadvmod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 amod _ _ 19 sheaves sheaf NOUN NNS Number=Plur 15 pobj _ _ 20 on on ADP IN _ 9 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 22 topological topological ADJ JJ Degree=Pos 23 amod _ _ 23 space space NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 151 # sent_id = 1 # text = Using the long exact sequence of nonabelian derived functors, an eight term exact sequence of Lie algebra homology with $ Lambda/qLambda $ coefficients is obtained, where $ Lambda $ is a ground ring and $ q $ is a nonnegative integer. 1 Using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 34 csubj _ _ 2 the the DET DT Definite=Def|PronType=Art 5 det _ _ 3 long long ADJ JJ Degree=Pos 5 amod _ _ 4 exact exact ADJ JJ Degree=Pos 5 amod _ _ 5 sequence sequence NOUN NN Number=Sing 1 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 nonabelian nonabelian ADJ JJ Degree=Pos 8 amod _ _ 8 derived derive VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 compound _ _ 9 functors functor NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 an an DET DT Definite=Ind|PronType=Art 15 det _ _ 12 eight eight NUM CD NumType=Card 13 nummod _ _ 13 term term NOUN NN Number=Sing 15 nmod _ _ 14 exact exact ADJ JJ Degree=Pos 15 amod _ _ 15 sequence sequence NOUN NN Number=Sing 9 appos _ _ 16 of of ADP IN _ 15 prep _ _ 17 Lie Lie PROPN NNP Number=Sing 19 compound _ _ 18 algebra algebra PROPN NNP Number=Sing 19 compound _ _ 19 homology homology NOUN NN Number=Sing 16 pobj _ _ 20 with with ADP IN _ 15 prep _ _ 21 $ Lambda/qLambda $ $ lambda/qlambda $ SYM $ _ 22 poss _ _ 22 coefficients coefficient NOUN NNS Number=Plur 24 nsubjpass _ _ 23 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 auxpass _ _ 24 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 relcl _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 where where SCONJ WRB _ 28 advmod _ _ 27 $ Lambda $ $ lambda $ SYM $ _ 28 nsubj _ _ 28 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 relcl _ _ 29 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 30 ground ground NOUN NN Number=Sing 31 compound _ _ 31 ring ring NOUN NN Number=Sing 28 attr _ _ 32 and and CCONJ CC ConjType=Cmp 31 cc _ _ 33 $ q $ $ q $ SYM $ _ 15 appos _ _ 34 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 35 a a DET DT Definite=Ind|PronType=Art 37 det _ _ 36 nonnegative nonnegative ADJ JJ Degree=Pos 37 amod _ _ 37 integer integer NOUN NN Number=Sing 34 attr _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 34 punct _ SpaceAfter=No # sent_id = 2 # text = Hopf formulas for the second and third homology of a Lie algebra are proved. 1 Hopf hopf NOUN NN Number=Sing 2 compound _ _ 2 formulas formula NOUN NNS Number=Plur 14 nsubjpass _ _ 3 for for ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 8 det _ _ 5 second second ADJ JJ Degree=Pos 8 amod _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 third third ADJ JJ Degree=Pos 5 conj _ _ 8 homology homology NOUN NN Number=Sing 3 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 Lie lie NOUN NN Number=Sing 12 compound _ _ 12 algebra algebra NOUN NNS Number=Plur 9 pobj _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 3 # text = The condition for the existence and the description of the universal $ q $ - central relative extension of a Lie epimorphism in terms of relative homologies are given. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 condition condition NOUN NN Number=Sing 27 nsubjpass _ _ 3 for for ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 existence existence NOUN NN Number=Sing 3 pobj _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 description description NOUN NN Number=Sing 5 conj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 16 det _ _ 11 universal universal ADJ JJ Degree=Pos 16 amod _ _ 12 $ q $ $ q $ SYM $ _ 14 advmod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 central central ADJ JJ Degree=Pos 16 amod _ _ 15 relative relative ADJ JJ Degree=Pos 16 amod _ _ 16 extension extension NOUN NN Number=Sing 9 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 Lie lie NOUN NN Number=Sing 20 compound _ _ 20 epimorphism epimorphism NOUN NN Number=Sing 17 pobj _ _ 21 in in ADP IN _ 8 prep _ _ 22 terms term NOUN NNS Number=Plur 21 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 relative relative ADJ JJ Degree=Pos 25 amod _ _ 25 homologies homology NOUN NNS Number=Plur 23 pobj _ _ 26 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 27 auxpass _ _ 27 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 27 punct _ SpaceAfter=No # doc_id = 152 # sent_id = 1 # text = Entity - Relationship - Attribute ideas are commonly used to specify and design information systems. 1 Entity entity NOUN NN Number=Sing 3 compound _ _ 2 - - PUNCT HYPH PunctType=Dash 3 punct _ _ 3 Relationship Relationship PROPN NNP Number=Sing 5 compound _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 Attribute Attribute PROPN NNP Number=Sing 6 compound _ _ 6 ideas idea NOUN NNS Number=Plur 9 nsubjpass _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 8 commonly commonly ADV RB _ 9 advmod _ _ 9 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 to to PART TO _ 11 aux _ _ 11 specify specify VERB VB VerbForm=Inf 9 xcomp _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 design design NOUN NN Number=Sing 11 conj _ _ 14 information information NOUN NN Number=Sing 15 compound _ _ 15 systems system NOUN NNS Number=Plur 13 dobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 2 # text = They use a graphical technique for displaying the objects of the system and relationships among them. 1 They they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 2 nsubj _ _ 2 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 graphical graphical ADJ JJ Degree=Pos 5 amod _ _ 5 technique technique NOUN NN Number=Sing 2 dobj _ _ 6 for for ADP IN _ 5 prep _ _ 7 displaying display VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 pcomp _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 objects object NOUN NNS Number=Plur 7 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 system system NOUN NN Number=Sing 10 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 relationships relationship NOUN NNS Number=Plur 12 conj _ _ 15 among among ADP IN _ 9 prep _ _ 16 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 15 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = The design process can be enhanced by specifying constraints of the system and the natural environment for these is the categorical notion of sketch. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 design design NOUN NN Number=Sing 3 compound _ _ 3 process process NOUN NN Number=Sing 6 nsubjpass _ _ 4 can can AUX MD VerbForm=Fin 6 aux _ _ 5 be be AUX VB VerbForm=Inf 6 auxpass _ _ 6 enhanced enhance VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 by by ADP IN _ 6 agent _ _ 8 specifying specify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 amod _ _ 9 constraints constraint NOUN NNS Number=Plur 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 system system NOUN NN Number=Sing 10 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 9 cc _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 natural natural ADJ JJ Degree=Pos 16 amod _ _ 16 environment environment NOUN NN Number=Sing 19 nsubj _ _ 17 for for ADP IN _ 16 prep _ _ 18 these these PRON DT Number=Plur|PronType=Dem 17 pobj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 conj _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 categorical categorical ADJ JJ Degree=Pos 22 amod _ _ 22 notion notion NOUN NN Number=Sing 19 attr _ _ 23 of of ADP IN _ 22 prep _ _ 24 sketch sketch NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 4 # text = Here we argue that the finite - limit, finite - sum sketches with a terminal node are the appropriate class and call them EA sketches. 1 Here here ADV RB PronType=Dem 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 argue argue VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 18 mark _ _ 5 the the DET DT Definite=Def|PronType=Art 8 det _ _ 6 finite finite PROPN NNP Number=Sing 8 compound _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 limit limit NOUN NN Number=Sing 13 nmod _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 13 punct _ _ 10 finite finite ADJ JJ Degree=Pos 12 compound _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 sum sum NOUN NN Number=Sing 13 compound _ _ 13 sketches sketch NOUN NNS Number=Plur 18 nsubj _ _ 14 with with ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 terminal terminal ADJ JJ Degree=Pos 17 amod _ _ 17 node node NOUN NN Number=Sing 14 pobj _ _ 18 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 appropriate appropriate ADJ JJ Degree=Pos 21 amod _ _ 21 class class NOUN NN Number=Sing 18 attr _ _ 22 and and CCONJ CC ConjType=Cmp 18 cc _ _ 23 call call VERB VB VerbForm=Inf 18 conj _ _ 24 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 23 dobj _ _ 25 EA EA PROPN NNP Number=Sing 26 compound _ _ 26 sketches sketch NOUN NNS Number=Plur 23 oprd _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = A model for an EA sketch in a lextensive category is a `snapshot' of a database with values in that category. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 model model NOUN NN Number=Sing 11 nsubj _ _ 3 for for ADP IN _ 2 prep _ _ 4 an an DET DT Definite=Ind|PronType=Art 6 det _ _ 5 EA EA PROPN NNP Number=Sing 6 compound _ _ 6 sketch sketch NOUN NN Number=Sing 3 pobj _ _ 7 in in ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 lextensive lextensive ADJ JJ Degree=Pos 10 amod _ _ 10 category category NOUN NN Number=Sing 7 pobj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 14 punct _ SpaceAfter=No 14 snapshot snapshot NOUN NN Number=Sing 11 attr _ SpaceAfter=No 15 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 14 punct _ _ 16 of of ADP IN _ 14 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 database database NOUN NN Number=Sing 16 pobj _ _ 19 with with ADP IN _ 18 prep _ _ 20 values value NOUN NNS Number=Plur 19 pobj _ _ 21 in in ADP IN _ 20 prep _ _ 22 that that DET DT Number=Sing|PronType=Dem 23 det _ _ 23 category category NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 6 # text = The category of models of an EA sketch is an object of models of the sketch in a 2 - category of lextensive categories. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 category category NOUN NN Number=Sing 9 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 models model NOUN NNS Number=Plur 3 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 an an DET DT Definite=Ind|PronType=Art 8 det _ _ 7 EA EA PROPN NNP Number=Sing 8 compound _ _ 8 sketch sketch NOUN NN Number=Sing 5 pobj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 an an DET DT Definite=Ind|PronType=Art 11 det _ _ 11 object object NOUN NN Number=Sing 9 attr _ _ 12 of of ADP IN _ 11 prep _ _ 13 models model NOUN NNS Number=Plur 12 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 sketch sketch NOUN NN Number=Sing 14 pobj _ _ 17 in in ADP IN _ 11 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 19 2 2 NUM CD NumType=Card 21 nummod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 category category NOUN NN Number=Sing 17 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 lextensive lextensive ADJ JJ Degree=Pos 24 amod _ _ 24 categories category NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 7 # text = Moreover, modelling the same sketch in certain objects in other 2 - categories defines both the query language for the database and the updates (the dynamics) for the database. 1 Moreover moreover ADV RB _ 15 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 15 punct _ _ 3 modelling model VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 csubj _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 same same ADJ JJ Degree=Pos 6 amod _ _ 6 sketch sketch NOUN NN Number=Sing 3 dobj _ _ 7 in in ADP IN _ 6 prep _ _ 8 certain certain ADJ JJ Degree=Pos 9 amod _ _ 9 objects object NOUN NNS Number=Plur 7 pobj _ _ 10 in in ADP IN _ 6 prep _ _ 11 other other ADJ JJ Degree=Pos 14 amod _ _ 12 2 2 NUM CD NumType=Card 14 nummod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 categories category NOUN NNS Number=Plur 10 pobj _ _ 15 defines define VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 16 both both CCONJ CC ConjType=Cmp 19 preconj _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 query query NOUN NN Number=Sing 19 compound _ _ 19 language language NOUN NN Number=Sing 15 dobj _ _ 20 for for ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 database database NOUN NN Number=Sing 20 pobj _ _ 23 and and CCONJ CC ConjType=Cmp 19 cc _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 updates update NOUN NNS Number=Plur 19 conj _ _ 26 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 25 punct _ SpaceAfter=No 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 dynamics dynamic NOUN NNS Number=Plur 25 appos _ SpaceAfter=No 29 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 25 punct _ _ 30 for for ADP IN _ 25 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 database database NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # doc_id = 153 # sent_id = 1 # text = We associate to a Hausdorff space, $ X $ , a double groupoid, $ mbox{boldmath rho }^{square}_{2} (X) $ , the homotopy double groupoid of $ X $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 associate associate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 to to ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 Hausdorff Hausdorff PROPN NNP Number=Sing 6 compound _ _ 6 space space NOUN NN Number=Sing 3 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 6 punct _ _ 8 $ X $ $ x $ SYM $ _ 6 appos _ _ 9 , , PUNCT , PunctType=Comm 6 punct _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 double double ADJ JJ Degree=Pos 12 amod _ _ 12 groupoid groupoid NOUN NN Number=Sing 6 appos _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 $ mbox{boldmath rho }^{square}_{2} (X) $ $ mbox{boldmath rho }^{square}_{2} (x) $ SYM $ _ 12 appos _ _ 15 , , PUNCT , PunctType=Comm 12 punct _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 homotopy homotopy NOUN NN Number=Sing 12 conj _ _ 18 double double ADJ JJ Degree=Pos 19 amod _ _ 19 groupoid groupoid NOUN NN Number=Sing 17 appos _ _ 20 of of ADP IN _ 19 prep _ _ 21 $ X $ $ x $ SYM $ _ 20 pobj _ _ 22 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The construction is based on the geometric notion of thin square. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 construction construction NOUN NN Number=Sing 4 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 on on ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 geometric geometric ADJ JJ Degree=Pos 8 amod _ _ 8 notion notion NOUN NN Number=Sing 5 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 thin thin ADJ JJ Degree=Pos 11 amod _ _ 11 square square NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = Under the equivalence of categories between small $ 2 $ - categories and double categories with connection the homotopy double groupoid corresponds to the homotopy 2 - groupoid, $ {bf G}_{2} (X) $ . 1 Under under ADP IN _ 20 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 equivalence equivalence NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 categories category NOUN NNS Number=Plur 4 pobj _ _ 6 between between ADP IN _ 3 prep _ _ 7 small small ADJ JJ Degree=Pos 10 amod _ _ 8 $ 2 $ $ 2 $ SYM $ _ 10 nummod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 categories category NOUN NNS Number=Plur 6 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 double double ADJ JJ Degree=Pos 13 amod _ _ 13 categories category NOUN NNS Number=Plur 10 conj _ _ 14 with with ADP IN _ 3 prep _ _ 15 connection connection NOUN NN Number=Sing 14 pobj _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 homotopy homotopy NOUN NN Number=Sing 15 appos _ _ 18 double double ADJ JJ Degree=Pos 20 amod _ _ 19 groupoid groupoid NOUN NN Number=Sing 20 compound _ _ 20 corresponds correspond NOUN NNS Number=Plur 0 ROOT _ _ 21 to to ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 homotopy homotopy NOUN NN Number=Sing 21 pobj _ _ 24 2 2 NUM CD NumType=Card 26 nummod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 groupoid groupoid NOUN NN Number=Sing 23 npadvmod _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 26 punct _ _ 28 $ {bf G}_{2} (X) $ $ {bf g}_{2} (x) $ SYM $ _ 23 appos _ _ 29 . . PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # sent_id = 4 # text = The cubical nature of $ mbox{boldmath rho }^{square}_{2} (X) $ as opposed to the globular nature of $ {bf G}_{2} (X) $ should provide a convenient tool when handling `local - to - global' problems as encountered in a generalised van Kampen theorem and dealing with tensor products and enrichments of the category of compactly generated Hausdorff spaces. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 cubical cubical ADJ JJ Degree=Pos 3 amod _ _ 3 nature nature NOUN NN Number=Sing 15 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 $ mbox{boldmath rho }^{square}_{2} (X) $ $ mbox{boldmath rho }^{square}_{2} (x) $ SYM $ _ 4 pobj _ _ 6 as as SCONJ IN _ 7 mark _ _ 7 opposed oppose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 advcl _ _ 8 to to ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 globular globular ADJ JJ Degree=Pos 11 amod _ _ 11 nature nature NOUN NN Number=Sing 8 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 $ {bf G}_{2} (X) $ $ {bf g}_{2} (x) $ SYM $ _ 12 pobj _ _ 14 should should AUX MD VerbForm=Fin 15 aux _ _ 15 provide provide VERB VB VerbForm=Inf 0 ROOT _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 convenient convenient ADJ JJ Degree=Pos 18 amod _ _ 18 tool tool NOUN NN Number=Sing 15 dobj _ _ 19 when when SCONJ WRB _ 20 advmod _ _ 20 handling handle VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 36 csubj _ _ 21 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 28 punct _ SpaceAfter=No 22 local local ADJ JJ Degree=Pos 28 amod _ _ 23 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 24 to to ADP IN _ 22 prep _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 global global ADJ JJ Degree=Pos 24 pobj _ SpaceAfter=No 27 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 22 punct _ _ 28 problems problem NOUN NNS Number=Plur 20 dobj _ _ 29 as as SCONJ IN _ 30 mark _ _ 30 encountered encounter VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 advcl _ _ 31 in in ADP IN _ 30 prep _ _ 32 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 33 generalised generalise VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 35 amod _ _ 34 van van PROPN NNP Number=Sing 35 compound _ _ 35 Kampen Kampen PROPN NNP Number=Sing 31 pobj _ _ 36 theorem theorem VERB VBD Tense=Past|VerbForm=Fin 15 advcl _ _ 37 and and CCONJ CC ConjType=Cmp 36 cc _ _ 38 dealing deal VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 36 conj _ _ 39 with with ADP IN _ 38 prep _ _ 40 tensor tensor NOUN NN Number=Sing 41 compound _ _ 41 products product NOUN NNS Number=Plur 39 pobj _ _ 42 and and CCONJ CC ConjType=Cmp 41 cc _ _ 43 enrichments enrichment NOUN NNS Number=Plur 41 conj _ _ 44 of of ADP IN _ 41 prep _ _ 45 the the DET DT Definite=Def|PronType=Art 46 det _ _ 46 category category NOUN NN Number=Sing 44 pobj _ _ 47 of of ADP IN _ 46 prep _ _ 48 compactly compactly ADV RB _ 49 advmod _ _ 49 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 51 amod _ _ 50 Hausdorff Hausdorff PROPN NNP Number=Sing 51 compound _ _ 51 spaces space NOUN NNS Number=Plur 47 pobj _ SpaceAfter=No 52 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # doc_id = 154 # sent_id = 1 # text = Many people have proposed definitions of `weak $ n $ - category'. 1 Many many ADJ JJ Degree=Pos 2 amod _ _ 2 people people NOUN NNS Number=Plur 4 nsubj _ _ 3 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 aux _ _ 4 proposed propose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 definitions definition NOUN NNS Number=Plur 4 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 6 punct _ SpaceAfter=No 8 weak weak ADJ JJ Degree=Pos 11 amod _ _ 9 $ n $ $ n $ SYM $ _ 11 compound _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 category category NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 12 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 4 punct _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = Ten of them are presented here. 1 Ten ten NUM CD NumType=Card 5 nsubjpass _ _ 2 of of ADP IN _ 1 prep _ _ 3 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 2 pobj _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 here here ADV RB PronType=Dem 5 advmod _ SpaceAfter=No 7 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = Each definition is given in two pages, with a further two pages on what happens when $ nleq 2 $ . 1 Each each DET DT _ 2 det _ _ 2 definition definition NOUN NN Number=Sing 4 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 in in ADP IN _ 4 prep _ _ 6 two two NUM CD NumType=Card 7 nummod _ _ 7 pages page NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 4 punct _ _ 9 with with ADP IN _ 4 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 11 further further ADJ JJ Degree=Pos 13 amod _ _ 12 two two NUM CD NumType=Card 13 nummod _ _ 13 pages page NOUN NNS Number=Plur 9 pobj _ _ 14 on on ADP IN _ 13 prep _ _ 15 what what PRON WP _ 16 nsubj _ _ 16 happens happen VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 pcomp _ _ 17 when when SCONJ WRB _ 18 advmod _ _ 18 $ nleq 2 $ $ nleq 2 $ SYM $ _ 16 advcl _ _ 19 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = The definitions can be read independently. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 definitions definition NOUN NNS Number=Plur 5 nsubjpass _ _ 3 can can AUX MD VerbForm=Fin 5 aux _ _ 4 be be AUX VB VerbForm=Inf 5 auxpass _ _ 5 read read VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 independently independently ADV RB _ 5 advmod _ SpaceAfter=No 7 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 5 # text = Chatty bibliography follows. 1 Chatty chatty ADJ JJ Degree=Pos 2 amod _ _ 2 bibliography bibliography NOUN NN Number=Sing 3 nsubj _ _ 3 follows follow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 4 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 155 # sent_id = 1 # text = Codescent morphisms are described in regular categories which satisfy the so - called strong amalgamation property. 1 Codescent codescent NOUN NN Number=Sing 2 compound _ _ 2 morphisms morphism NOUN NNS Number=Plur 4 nsubjpass _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 in in ADP IN _ 4 prep _ _ 6 regular regular ADJ JJ Degree=Pos 7 amod _ _ 7 categories category NOUN NNS Number=Plur 5 pobj _ _ 8 which which PRON WDT _ 9 nsubj _ _ 9 satisfy satisfy VERB VBP Tense=Pres|VerbForm=Fin 7 relcl _ _ 10 the the DET DT Definite=Def|PronType=Art 16 det _ _ 11 so so ADV RB _ 13 advmod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 14 strong strong ADJ JJ Degree=Pos 16 amod _ _ 15 amalgamation amalgamation NOUN NN Number=Sing 16 compound _ _ 16 property property NOUN NN Number=Sing 9 dobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = Among varieties of universal algebras possessing this property are, as is known, categories of groups, not necessarily associative rings, $ M $ - sets (for a monoid $ M $ ), Lie algebras (over a field), quasi - groups, commutative quasi - groups, Steiner quasi - groups, medial quasi - groups, semilattice $ lattices, weakly associative lattices, Boolean algebras, Heyting algebras. 1 Among among ADP IN _ 61 prep _ _ 2 varieties variety NOUN NNS Number=Plur 1 pobj _ _ 3 of of ADP IN _ 2 prep _ _ 4 universal universal ADJ JJ Degree=Pos 5 amod _ _ 5 algebras algebra NOUN NNS Number=Plur 3 pobj _ _ 6 possessing possess VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 csubj _ _ 7 this this DET DT Number=Sing|PronType=Dem 8 det _ _ 8 property property NOUN NN Number=Sing 6 dobj _ _ 9 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 relcl _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 61 punct _ _ 11 as as SCONJ IN _ 13 mark _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 61 advcl _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 61 punct _ _ 15 categories category NOUN NNS Number=Plur 61 nsubj _ _ 16 of of ADP IN _ 15 prep _ _ 17 groups group NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 15 punct _ _ 19 not not PART RB Polarity=Neg 20 neg _ _ 20 necessarily necessarily ADV RB _ 22 advmod _ _ 21 associative associative ADJ JJ Degree=Pos 22 amod _ _ 22 rings ring NOUN NNS Number=Plur 15 appos _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 $ M $ $ m $ SYM $ _ 26 nummod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 sets set NOUN NNS Number=Plur 22 appos _ _ 27 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 15 punct _ SpaceAfter=No 28 for for ADP IN _ 15 prep _ _ 29 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 30 monoid monoid NOUN NN Number=Sing 28 pobj _ _ 31 $ M $ $ m $ SYM $ _ 28 pobj _ _ 32 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 15 punct _ SpaceAfter=No 33 , , PUNCT , PunctType=Comm 15 punct _ _ 34 Lie Lie PROPN NNP Number=Sing 35 compound _ _ 35 algebras algebras PROPN NNPS Number=Plur 15 appos _ _ 36 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 35 punct _ SpaceAfter=No 37 over over ADP IN _ 35 prep _ _ 38 a a DET DT Definite=Ind|PronType=Art 39 det _ _ 39 field field NOUN NN Number=Sing 37 pobj _ SpaceAfter=No 40 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 35 punct _ SpaceAfter=No 41 , , PUNCT , PunctType=Comm 35 punct _ _ 42 quasi quasi PROPN NNPS Number=Plur 35 conj _ _ 43 - - NOUN NNS Number=Plur 35 conj _ _ 44 groups group NOUN NNS Number=Plur 35 conj _ SpaceAfter=No 45 , , PUNCT , PunctType=Comm 44 punct _ _ 46 commutative commutative ADJ JJ Degree=Pos 47 amod _ _ 47 quasi quasi NOUN NNS Number=Plur 44 conj _ _ 48 - - PUNCT : _ 44 conj _ _ 49 groups group NOUN NNS Number=Plur 44 conj _ SpaceAfter=No 50 , , PUNCT , PunctType=Comm 49 punct _ _ 51 Steiner Steiner PROPN NNP Number=Sing 52 compound _ _ 52 quasi quasi NOUN NNS Number=Plur 49 conj _ _ 53 - - PUNCT : _ 49 conj _ _ 54 groups group NOUN NNS Number=Plur 49 conj _ SpaceAfter=No 55 , , PUNCT , PunctType=Comm 54 punct _ _ 56 medial medial ADJ JJ Degree=Pos 57 amod _ _ 57 quasi quasi NOUN NNS Number=Plur 54 conj _ _ 58 - - NOUN NNS Number=Plur 54 conj _ _ 59 groups group NOUN NNS Number=Plur 54 conj _ SpaceAfter=No 60 , , PUNCT , PunctType=Comm 35 punct _ _ 61 semilattice semilattice VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 62 $ $ SYM $ _ 63 nmod _ _ 63 lattices lattice NOUN NNS Number=Plur 61 dobj _ SpaceAfter=No 64 , , PUNCT , PunctType=Comm 63 punct _ _ 65 weakly weakly ADJ JJ Degree=Pos 67 amod _ _ 66 associative associative ADJ JJ Degree=Pos 67 amod _ _ 67 lattices lattice NOUN NNS Number=Plur 63 appos _ SpaceAfter=No 68 , , PUNCT , PunctType=Comm 67 punct _ _ 69 Boolean boolean ADJ JJ Degree=Pos 70 amod _ _ 70 algebras algebra NOUN NNS Number=Plur 67 conj _ SpaceAfter=No 71 , , PUNCT , PunctType=Comm 70 punct _ _ 72 Heyting heyte VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 73 compound _ _ 73 algebras algebra NOUN NNS Number=Plur 70 conj _ SpaceAfter=No 74 . . PUNCT . PunctType=Peri 61 punct _ SpaceAfter=No # sent_id = 3 # text = It is shown that every codescent morphism of groups is effective. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 that that SCONJ IN _ 10 mark _ _ 5 every every DET DT _ 7 det _ _ 6 codescent codescent NOUN NN Number=Sing 7 compound _ _ 7 morphism morphism NOUN NN Number=Sing 10 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 groups group NOUN NNS Number=Plur 8 pobj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 11 effective effective ADJ JJ Degree=Pos 10 acomp _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 156 # sent_id = 1 # text = We generalize Dress and Müller's main result on decomposable functors and the exponential principle. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 generalize generalize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 Dress Dress PROPN NNP Number=Sing 8 nmod _ _ 4 and and CCONJ CC ConjType=Cmp 3 cc _ _ 5 Müller Müller PROPN NNP Number=Sing 8 poss _ SpaceAfter=No 6 's 's PART POS _ 5 case _ _ 7 main main ADJ JJ Degree=Pos 8 amod _ _ 8 result result NOUN NN Number=Sing 2 dobj _ _ 9 on on ADP IN _ 8 prep _ _ 10 decomposable decomposable ADJ JJ Degree=Pos 11 amod _ _ 11 functors functor NOUN NNS Number=Plur 9 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 exponential exponential ADJ JJ Degree=Pos 15 amod _ _ 15 principle principle NOUN NN Number=Sing 11 conj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We observe that their result can be seen as a characterization of free algebras for certain monad on the category of species. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 observe observe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 8 mark _ _ 4 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 5 poss _ _ 5 result result NOUN NN Number=Sing 8 nsubjpass _ _ 6 can can AUX MD VerbForm=Fin 8 aux _ _ 7 be be AUX VB VerbForm=Inf 8 auxpass _ _ 8 seen see VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 9 as as ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 characterization characterization NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 free free ADJ JJ Degree=Pos 14 amod _ _ 14 algebras algebra NOUN NNS Number=Plur 12 pobj _ _ 15 for for ADP IN _ 11 prep _ _ 16 certain certain ADJ JJ Degree=Pos 17 amod _ _ 17 monad monad NOUN NNS Number=Plur 15 pobj _ _ 18 on on ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 category category NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 species specie NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = This perspective allows to formulate a general exponential principle in a symmetric monoidal category. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 perspective perspective NOUN NN Number=Sing 3 nsubj _ _ 3 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 to to PART TO _ 5 aux _ _ 5 formulate formulate VERB VB VerbForm=Inf 3 xcomp _ _ 6 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 7 general general ADJ JJ Degree=Pos 9 amod _ _ 8 exponential exponential ADJ JJ Degree=Pos 9 amod _ _ 9 principle principle NOUN NN Number=Sing 5 dobj _ _ 10 in in ADP IN _ 5 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 12 symmetric symmetric ADJ JJ Degree=Pos 14 amod _ _ 13 monoidal monoidal ADJ JJ Degree=Pos 14 amod _ _ 14 category category NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = We show that for any groupoid $ G $ , the category of presheaves on the symmetric monoidal completion $ clikG $ of $ G $ satisfies the exponential principle. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 21 mark _ _ 4 for for ADP IN _ 21 prep _ _ 5 any any DET DT _ 6 det _ _ 6 groupoid groupoid NOUN NN Number=Sing 4 pobj _ _ 7 $ G $ $ g $ SYM $ _ 6 nummod _ _ 8 , , PUNCT , PunctType=Comm 21 punct _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 category category NOUN NN Number=Sing 21 nsubj _ _ 11 of of ADP IN _ 10 prep _ _ 12 presheaves presheave NOUN NNS Number=Plur 11 pobj _ _ 13 on on ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 17 det _ _ 15 symmetric symmetric ADJ JJ Degree=Pos 17 amod _ _ 16 monoidal monoidal ADJ JJ Degree=Pos 17 amod _ _ 17 completion completion NOUN NN Number=Sing 13 pobj _ _ 18 $ clikG $ $ clikg $ SYM $ _ 17 nmod _ _ 19 of of ADP IN _ 18 prep _ _ 20 $ G $ $ g $ SYM $ _ 19 pobj _ _ 21 satisfies satisfie NOUN NNS Number=Plur 2 ccomp _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 exponential exponential ADJ JJ Degree=Pos 24 amod _ _ 24 principle principle NOUN NN Number=Sing 21 dobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = The main result in Dress and Müller reduces to the case $ G = 1 $ . 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 result result NOUN NN Number=Sing 8 nsubj _ _ 4 in in ADP IN _ 3 prep _ _ 5 Dress Dress PROPN NNP Number=Sing 4 pobj _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 Müller Müller PROPN NNP Number=Sing 5 conj _ _ 8 reduces reduce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 to to ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 case case NOUN NN Number=Sing 9 pobj _ _ 12 $ G = 1 $ $ g = 1 $ SYM $ _ 8 dobj _ _ 13 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 6 # text = We discuss two notions of functor between categories satisfying the exponential principle and express some well known combinatorial identities as instances of the preservation properties of these functors. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 discuss discuss VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 two two NUM CD NumType=Card 4 nummod _ _ 4 notions notion NOUN NNS Number=Plur 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 functor functor NOUN NN Number=Sing 5 pobj _ _ 7 between between ADP IN _ 4 prep _ _ 8 categories category NOUN NNS Number=Plur 7 pobj _ _ 9 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 acl _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 exponential exponential ADJ JJ Degree=Pos 12 amod _ _ 12 principle principle NOUN NN Number=Sing 9 dobj _ _ 13 and and CCONJ CC ConjType=Cmp 9 cc _ _ 14 express express VERB VB VerbForm=Inf 9 conj _ _ 15 some some DET DT _ 19 det _ _ 16 well well ADV RB Degree=Pos 17 advmod _ _ 17 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 amod _ _ 18 combinatorial combinatorial ADJ JJ Degree=Pos 19 amod _ _ 19 identities identity NOUN NNS Number=Plur 14 dobj _ _ 20 as as ADP IN _ 14 prep _ _ 21 instances instance NOUN NNS Number=Plur 20 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 preservation preservation NOUN NN Number=Sing 25 compound _ _ 25 properties property NOUN NNS Number=Plur 22 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 these these DET DT Number=Plur|PronType=Dem 28 det _ _ 28 functors functor NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 7 # text = Finally, we give a characterization of $ G $ as a subcategory of presheaves on $ clikG $ . 1 Finally finally ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 characterization characterization NOUN NN Number=Sing 4 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 $ G $ $ g $ SYM $ _ 7 pobj _ _ 9 as as ADP IN _ 4 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 subcategory subcategory NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 presheaves presheave NOUN NNS Number=Plur 12 pobj _ _ 14 on on ADP IN _ 13 prep _ _ 15 $ clikG $ $ clikg $ SYM $ _ 14 pobj _ _ 16 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 157 # sent_id = 1 # text = A specific property applicable to subsets of a hom - set in any small category is defined. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 specific specific ADJ JJ Degree=Pos 3 amod _ _ 3 property property NOUN NN Number=Sing 17 nsubjpass _ _ 4 applicable applicable ADJ JJ Degree=Pos 3 amod _ _ 5 to to ADP IN _ 4 prep _ _ 6 subsets subset NOUN NNS Number=Plur 5 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 9 hom hom ADV RB _ 11 advmod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 set set VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 pobj _ _ 12 in in ADP IN _ 11 prep _ _ 13 any any DET DT _ 15 det _ _ 14 small small ADJ JJ Degree=Pos 15 amod _ _ 15 category category NOUN NN Number=Sing 12 pobj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 auxpass _ _ 17 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 2 # text = Subsets with this property are called composition - representative. 1 Subsets subset NOUN NNS Number=Plur 6 nsubjpass _ _ 2 with with ADP IN _ 1 prep _ _ 3 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 4 property property NOUN NN Number=Sing 2 pobj _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 6 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 composition composition NOUN NN Number=Sing 9 compound _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 representative representative NOUN NN Number=Sing 6 oprd _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = The notion of composition - representability is motivated both by the representability of a linear functional on an associative algebra, and, by the recognizability of a subset of a monoid. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 notion notion NOUN NN Number=Sing 8 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 composition composition NOUN NN Number=Sing 6 compound _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 representability representability NOUN NN Number=Sing 3 pobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 motivated motivate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 both both PRON DT _ 10 preconj _ _ 10 by by ADP IN _ 8 agent _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 representability representability NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 linear linear ADJ JJ Degree=Pos 16 amod _ _ 16 functional functional NOUN NN Number=Sing 13 pobj _ _ 17 on on ADP IN _ 12 prep _ _ 18 an an DET DT Definite=Ind|PronType=Art 20 det _ _ 19 associative associative ADJ JJ Degree=Pos 20 amod _ _ 20 algebra algebra NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 8 punct _ _ 22 and and CCONJ CC ConjType=Cmp 8 cc _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 8 punct _ _ 24 by by ADP IN _ 8 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 recognizability recognizability NOUN NN Number=Sing 24 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 29 subset subset NOUN NN Number=Sing 27 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 32 monoid monoid NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 4 # text = Various characterizations are provided which therefore may be regarded as analogs of certain characterizations for representability and recognizablity. 1 Various various ADJ JJ Degree=Pos 2 amod _ _ 2 characterizations characterization NOUN NNS Number=Plur 4 nsubjpass _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 provided provide VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 which which PRON WDT _ 9 nsubjpass _ _ 6 therefore therefore ADV RB _ 9 advmod _ _ 7 may may AUX MD VerbForm=Fin 9 aux _ _ 8 be be AUX VB VerbForm=Inf 9 auxpass _ _ 9 regarded regard VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 ccomp _ _ 10 as as ADP IN _ 9 prep _ _ 11 analogs analog NOUN NNS Number=Plur 10 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 certain certain ADJ JJ Degree=Pos 14 amod _ _ 14 characterizations characterization NOUN NNS Number=Plur 12 pobj _ _ 15 for for ADP IN _ 14 prep _ _ 16 representability representability NOUN NN Number=Sing 15 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 recognizablity recognizablity NOUN NN Number=Sing 16 conj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = As an application, the special case of an algebraic theory $ T $ is considered and simple characterizations for a recognizable forest are given. 1 As as ADP IN _ 14 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 application application NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 14 punct _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 special special ADJ JJ Degree=Pos 7 amod _ _ 7 case case NOUN NN Number=Sing 14 nsubjpass _ _ 8 of of ADP IN _ 7 prep _ _ 9 an an DET DT Definite=Ind|PronType=Art 11 det _ _ 10 algebraic algebraic ADJ JJ Degree=Pos 11 amod _ _ 11 theory theory NOUN NN Number=Sing 8 pobj _ _ 12 $ T $ $ t $ SYM $ _ 11 appos _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 simple simple ADJ JJ Degree=Pos 17 amod _ _ 17 characterizations characterization NOUN NNS Number=Plur 23 nsubjpass _ _ 18 for for ADP IN _ 17 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 20 recognizable recognizable ADJ JJ Degree=Pos 21 amod _ _ 21 forest forest NOUN NN Number=Sing 18 pobj _ _ 22 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 23 auxpass _ _ 23 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 conj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 23 punct _ SpaceAfter=No # sent_id = 6 # text = In particular, it is shown that the composition - representative subsets of the hom - set $ T([1], [0]) $ , the set of all trees, are the recognizable forests and that they, in turn, are characterized by a corresponding finite `syntactic congruence.' 1 In in ADP IN _ 6 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 6 punct _ _ 4 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 6 nsubjpass _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 6 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 that that SCONJ IN _ 26 mark _ _ 8 the the DET DT Definite=Def|PronType=Art 12 det _ _ 9 composition composition NOUN NN Number=Sing 11 npadvmod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 representative representative NOUN NN Number=Sing 12 amod _ _ 12 subsets subset NOUN NNS Number=Plur 26 nsubj _ _ 13 of of ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 18 det _ _ 15 hom hom ADV RB _ 17 advmod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 set set VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 amod _ _ 18 $ T([1], [0]) $ $ t([1], [0]) $ SYM $ _ 13 pobj _ _ 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 set set NOUN NN Number=Sing 18 appos _ _ 22 of of ADP IN _ 21 prep _ _ 23 all all DET DT _ 24 det _ _ 24 trees tree NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 18 punct _ _ 26 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 27 the the DET DT Definite=Def|PronType=Art 29 det _ _ 28 recognizable recognizable ADJ JJ Degree=Pos 29 amod _ _ 29 forests forest NOUN NNS Number=Plur 26 attr _ _ 30 and and CCONJ CC ConjType=Cmp 26 cc _ _ 31 that that SCONJ IN _ 38 mark _ _ 32 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 38 nsubjpass _ SpaceAfter=No 33 , , PUNCT , PunctType=Comm 38 punct _ _ 34 in in ADP IN _ 38 prep _ _ 35 turn turn NOUN NN Number=Sing 34 pobj _ SpaceAfter=No 36 , , PUNCT , PunctType=Comm 38 punct _ _ 37 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 38 auxpass _ _ 38 characterized characterize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 conj _ _ 39 by by ADP IN _ 38 agent _ _ 40 a a DET DT Definite=Ind|PronType=Art 45 det _ _ 41 corresponding corresponding ADJ JJ Degree=Pos 45 amod _ _ 42 finite finite ADJ JJ Degree=Pos 45 nmod _ _ 43 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 45 punct _ SpaceAfter=No 44 syntactic syntactic ADJ JJ Degree=Pos 45 amod _ _ 45 congruence congruence NOUN NN Number=Sing 39 pobj _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No 47 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 6 punct _ SpaceAfter=No # sent_id = 7 # text = Using a decomposition result (proved here), the composition - representative subsets of the hom - set $ T([m], [0]) $ for $ (0 leq m) $ are shown to be finite unions of $ m $ - fold (cartesian) products of recognizable forests. 1 Using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 24 advcl _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 decomposition decomposition NOUN NN Number=Sing 4 compound _ _ 4 result result NOUN NN Number=Sing 1 dobj _ _ 5 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 6 punct _ SpaceAfter=No 6 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 acl _ _ 7 here here ADV RB PronType=Dem 6 advmod _ SpaceAfter=No 8 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 6 punct _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 4 punct _ _ 10 the the DET DT Definite=Def|PronType=Art 14 det _ _ 11 composition composition NOUN NN Number=Sing 13 npadvmod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 representative representative NOUN NN Number=Sing 14 amod _ _ 14 subsets subset NOUN NNS Number=Plur 24 nsubjpass _ _ 15 of of ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 20 det _ _ 17 hom hom ADV RB _ 19 advmod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 set set VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 amod _ _ 20 $ T([m], [0]) $ $ t([m], [0]) $ SYM $ _ 15 pobj _ _ 21 for for ADP IN _ 20 prep _ _ 22 $ (0 leq m) $ $ (0 leq m) $ SYM $ _ 21 pobj _ _ 23 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 24 auxpass _ _ 24 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 25 to to PART TO _ 26 aux _ _ 26 be be AUX VB VerbForm=Inf 24 xcomp _ _ 27 finite finite ADJ JJ Degree=Pos 28 amod _ _ 28 unions union NOUN NNS Number=Plur 26 attr _ _ 29 of of ADP IN _ 28 prep _ _ 30 $ m $ $ m $ SYM $ _ 36 nmod _ _ 31 - - ADJ JJ Degree=Pos 30 advmod _ _ 32 fold fold ADJ JJ Degree=Pos 36 amod _ _ 33 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 36 punct _ SpaceAfter=No 34 cartesian cartesian NOUN NN Number=Sing 36 nmod _ SpaceAfter=No 35 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 36 punct _ _ 36 products product NOUN NNS Number=Plur 29 pobj _ _ 37 of of ADP IN _ 36 prep _ _ 38 recognizable recognizable ADJ JJ Degree=Pos 39 amod _ _ 39 forests forest NOUN NNS Number=Plur 37 pobj _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 24 punct _ SpaceAfter=No # doc_id = 158 # sent_id = 1 # text = This paper studies lax higher dimensional structure over bicategories. 1 This this DET DT Number=Sing|PronType=Dem 3 det _ _ 2 paper paper NOUN NN Number=Sing 3 compound _ _ 3 studies study NOUN NNS Number=Plur 4 nsubj _ _ 4 lax lax VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 higher high ADJ JJR Degree=Cmp 7 amod _ _ 6 dimensional dimensional ADJ JJ Degree=Pos 7 amod _ _ 7 structure structure NOUN NN Number=Sing 4 dobj _ _ 8 over over ADP IN _ 7 prep _ _ 9 bicategories bicategorie NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = The general notion of a module between two morphisms of bicategories is described. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 general general ADJ JJ Degree=Pos 3 amod _ _ 3 notion notion NOUN NN Number=Sing 13 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 module module NOUN NN Number=Sing 4 pobj _ _ 7 between between ADP IN _ 6 prep _ _ 8 two two NUM CD NumType=Card 9 nummod _ _ 9 morphisms morphism NOUN NNS Number=Plur 13 nsubjpass _ _ 10 of of ADP IN _ 9 prep _ _ 11 bicategories bicategorie NOUN NNS Number=Plur 10 pobj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 3 # text = These modules together with their (multi - )2 - cells, which we call modulations, organize themselves into a multi - bicategory. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 modules module NOUN NNS Number=Plur 19 nsubj _ _ 3 together together ADV RB _ 4 advmod _ _ 4 with with ADP IN _ 2 prep _ _ 5 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 12 poss _ _ 6 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 12 punct _ SpaceAfter=No 7 multi multi NOUN NN Number=Sing 12 nmod _ _ 8 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 9 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 12 punct _ SpaceAfter=No 10 2 2 NUM CD NumType=Card 12 nummod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 cells cell NOUN NNS Number=Plur 4 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 which which PRON WDT _ 16 dobj _ _ 15 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 16 nsubj _ _ 16 call call VERB VBP Tense=Pres|VerbForm=Fin 12 relcl _ _ 17 modulations modulation NOUN NNS Number=Plur 16 dobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 12 punct _ _ 19 organize organize VERB VB VerbForm=Inf 0 ROOT _ _ 20 themselves themselves PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs|Reflex=Yes 19 dobj _ _ 21 into into ADP IN _ 19 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 23 multi multi ADJ JJ Degree=Pos 25 amod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 bicategory bicategory NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 4 # text = The usual notion of a module can be recovered from this general notion by simply choosing the domain bicategory to be the terminal or final bicategory. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 usual usual ADJ JJ Degree=Pos 3 amod _ _ 3 notion notion NOUN NN Number=Sing 9 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 module module NOUN NN Number=Sing 4 pobj _ _ 7 can can AUX MD VerbForm=Fin 9 aux _ _ 8 be be AUX VB VerbForm=Inf 9 auxpass _ _ 9 recovered recover VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 from from ADP IN _ 9 prep _ _ 11 this this DET DT Number=Sing|PronType=Dem 13 det _ _ 12 general general ADJ JJ Degree=Pos 13 amod _ _ 13 notion notion NOUN NN Number=Sing 10 pobj _ _ 14 by by ADP IN _ 9 prep _ _ 15 simply simply ADV RB _ 16 advmod _ _ 16 choosing choose VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 pcomp _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 domain domain NOUN NN Number=Sing 19 compound _ _ 19 bicategory bicategory NOUN NN Number=Sing 16 dobj _ _ 20 to to PART TO _ 21 aux _ _ 21 be be AUX VB VerbForm=Inf 16 advcl _ _ 22 the the DET DT Definite=Def|PronType=Art 26 det _ _ 23 terminal terminal ADJ JJ Degree=Pos 26 amod _ _ 24 or or CCONJ CC ConjType=Cmp 23 cc _ _ 25 final final ADJ JJ Degree=Pos 23 conj _ _ 26 bicategory bicategory NOUN NN Number=Sing 21 attr _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 5 # text = The composite of two such modules need not exist. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 composite composite NOUN NN Number=Sing 9 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 two two NUM CD NumType=Card 6 nummod _ _ 5 such such ADJ JJ Degree=Pos 6 amod _ _ 6 modules module NOUN NNS Number=Plur 3 pobj _ _ 7 need need AUX MD VerbType=Mod 9 aux _ _ 8 not not PART RB Polarity=Neg 9 neg _ _ 9 exist exist VERB VB VerbForm=Inf 0 ROOT _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 6 # text = However, when the domain bicategory is small and the codomain bicategory is locally cocomplete then the composite of any two modules does exist and has a simple construction using the local colimits. 1 However however ADV RB _ 7 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 7 punct _ _ 3 when when SCONJ WRB _ 7 advmod _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 domain domain NOUN NN Number=Sing 6 compound _ _ 6 bicategory bicategory NOUN NN Number=Sing 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 small small ADJ JJ Degree=Pos 7 acomp _ _ 9 and and CCONJ CC ConjType=Cmp 7 cc _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 codomain codomain ADJ JJ Degree=Pos 12 amod _ _ 12 bicategory bicategory NOUN NN Number=Sing 13 nsubj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 conj _ _ 14 locally locally ADV RB _ 15 advmod _ _ 15 cocomplete cocomplete ADJ JJ Degree=Pos 13 acomp _ _ 16 then then ADV RB PronType=Dem 18 advmod _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 composite composite NOUN NN Number=Sing 24 nsubj _ _ 19 of of ADP IN _ 18 prep _ _ 20 any any DET DT _ 22 det _ _ 21 two two NUM CD NumType=Card 22 nummod _ _ 22 modules module NOUN NNS Number=Plur 19 pobj _ _ 23 does do AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 aux _ _ 24 exist exist VERB VB VerbForm=Inf 13 conj _ _ 25 and and CCONJ CC ConjType=Cmp 24 cc _ _ 26 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 conj _ _ 27 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 28 simple simple ADJ JJ Degree=Pos 29 amod _ _ 29 construction construction NOUN NN Number=Sing 26 dobj _ _ 30 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 29 acl _ _ 31 the the DET DT Definite=Def|PronType=Art 33 det _ _ 32 local local ADJ JJ Degree=Pos 33 amod _ _ 33 colimits colimit NOUN NNS Number=Plur 30 dobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 7 # text = These modules and their modulations then give rise to a bicategory. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 modules module NOUN NNS Number=Plur 7 nsubj _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 5 poss _ _ 5 modulations modulation NOUN NNS Number=Plur 2 conj _ _ 6 then then ADV RB PronType=Dem 7 advmod _ _ 7 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 rise rise NOUN NN Number=Sing 7 dobj _ _ 9 to to ADP IN _ 7 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 bicategory bicategory NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 8 # text = Recall that neither transformations nor optransformations (respectively lax natural transformations and oplax natural transformations) between morphisms of bicategories give rise to a smooth 3 - dimensional structure. 1 Recall recall VERB VB VerbForm=Inf 0 ROOT _ _ 2 that that SCONJ IN _ 21 mark _ _ 3 neither neither CCONJ CC ConjType=Cmp 4 preconj _ _ 4 transformations transformation NOUN NNS Number=Plur 21 nsubj _ _ 5 nor nor CCONJ CC ConjType=Cmp 4 cc _ _ 6 optransformations optransformation NOUN NNS Number=Plur 4 conj _ _ 7 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 4 punct _ SpaceAfter=No 8 respectively respectively ADV RB _ 9 advmod _ _ 9 lax lax ADJ JJ Degree=Pos 11 amod _ _ 10 natural natural ADJ JJ Degree=Pos 11 amod _ _ 11 transformations transformation NOUN NNS Number=Plur 4 conj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 oplax oplax NOUN NN Number=Sing 11 conj _ _ 14 natural natural ADJ JJ Degree=Pos 15 amod _ _ 15 transformations transformation NOUN NNS Number=Plur 11 conj _ SpaceAfter=No 16 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 4 punct _ _ 17 between between ADP IN _ 4 prep _ _ 18 morphisms morphism NOUN NNS Number=Plur 17 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 bicategories bicategorie NOUN NNS Number=Plur 19 pobj _ _ 21 give give VERB VBP Tense=Pres|VerbForm=Fin 1 ccomp _ _ 22 rise rise NOUN NN Number=Sing 21 dobj _ _ 23 to to ADP IN _ 22 prep _ _ 24 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 25 smooth smooth ADJ JJ Degree=Pos 29 amod _ _ 26 3 3 NUM CD NumType=Card 28 advmod _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 dimensional dimensional ADJ JJ Degree=Pos 29 amod _ _ 29 structure structure NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 9 # text = However, there is a smooth 3 - dimensional structure for modules, and both transformations and optransformations give rise to associated modules. 1 However however ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 there there PRON EX _ 4 expl _ _ 4 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 6 smooth smooth ADJ JJ Degree=Pos 10 amod _ _ 7 3 3 NUM CD NumType=Card 9 advmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 dimensional dimensional ADJ JJ Degree=Pos 10 amod _ _ 10 structure structure NOUN NN Number=Sing 4 attr _ _ 11 for for ADP IN _ 10 prep _ _ 12 modules module NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 4 punct _ _ 14 and and CCONJ CC ConjType=Cmp 4 cc _ _ 15 both both DET DT _ 16 det _ _ 16 transformations transformation NOUN NNS Number=Plur 19 nsubj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 optransformations optransformation NOUN NNS Number=Plur 16 conj _ _ 19 give give VERB VBP Tense=Pres|VerbForm=Fin 4 conj _ _ 20 rise rise NOUN NN Number=Sing 19 dobj _ _ 21 to to ADP IN _ 20 prep _ _ 22 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 amod _ _ 23 modules module NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 10 # text = Furthermore, the modulations between two modules associated with transformations can then be described directly as a new sort of modification between the transformations. 1 Furthermore furthermore ADV RB _ 14 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 14 punct _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 modulations modulation NOUN NNS Number=Plur 14 nsubjpass _ _ 5 between between ADP IN _ 4 prep _ _ 6 two two NUM CD NumType=Card 7 nummod _ _ 7 modules module NOUN NNS Number=Plur 5 pobj _ _ 8 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 acl _ _ 9 with with ADP IN _ 8 prep _ _ 10 transformations transformation NOUN NNS Number=Plur 9 pobj _ _ 11 can can AUX MD VerbForm=Fin 14 aux _ _ 12 then then ADV RB PronType=Dem 14 advmod _ _ 13 be be AUX VB VerbForm=Inf 14 auxpass _ _ 14 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 15 directly directly ADV RB _ 14 advmod _ _ 16 as as ADP IN _ 14 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 18 new new ADJ JJ Degree=Pos 19 amod _ _ 19 sort sort NOUN NN Number=Sing 16 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 modification modification NOUN NN Number=Sing 20 pobj _ _ 22 between between ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 transformations transformation NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 11 # text = This provides a locally full and faithful homomorphism from transformations and modifications into the bicategory of modules. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 4 locally locally ADV RB _ 5 advmod _ _ 5 full full ADJ JJ Degree=Pos 8 amod _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 faithful faithful ADJ JJ Degree=Pos 5 conj _ _ 8 homomorphism homomorphism NOUN NN Number=Sing 2 dobj _ _ 9 from from ADP IN _ 8 prep _ _ 10 transformations transformation NOUN NNS Number=Plur 9 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 modifications modification NOUN NNS Number=Plur 10 conj _ _ 13 into into ADP IN _ 2 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 bicategory bicategory NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 modules module NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 12 # text = Finally, if each 1 - cell component of a transformation is a left - adjoint then the right - adjoints provide an optransformation. 1 Finally finally ADV RB _ 22 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 22 punct _ _ 3 if if SCONJ IN _ 12 mark _ _ 4 each each DET DT _ 8 det _ _ 5 1 1 NUM CD NumType=Card 7 nummod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 cell cell NOUN NN Number=Sing 8 compound _ _ 8 component component NOUN NN Number=Sing 12 nsubj _ _ 9 of of ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 transformation transformation NOUN NN Number=Sing 9 pobj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 advcl _ _ 13 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 14 left left ADJ JJ Degree=Pos 16 amod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 adjoint adjoint NOUN NN Number=Sing 12 attr _ _ 17 then then ADV RB PronType=Dem 22 advmod _ _ 18 the the DET DT Definite=Def|PronType=Art 21 det _ _ 19 right right ADJ JJ Degree=Pos 21 amod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 adjoints adjoint NOUN NNS Number=Plur 22 nsubj _ _ 22 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 23 an an DET DT Definite=Ind|PronType=Art 24 det _ _ 24 optransformation optransformation NOUN NN Number=Sing 22 dobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 22 punct _ SpaceAfter=No # sent_id = 13 # text = In the module bicategory the module associated with this optransformation is right - adjoint to the module associated with the transformation. 1 In in ADP IN _ 11 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 module module NOUN NN Number=Sing 4 compound _ _ 4 bicategory bicategory NOUN NN Number=Sing 1 pobj _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 module module NOUN NN Number=Sing 11 nsubj _ _ 7 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 acl _ _ 8 with with ADP IN _ 7 prep _ _ 9 this this DET DT Number=Sing|PronType=Dem 10 det _ _ 10 optransformation optransformation NOUN NN Number=Sing 8 pobj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 right right ADJ JJ Degree=Pos 14 amod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 adjoint adjoint NOUN NN Number=Sing 11 acomp _ _ 15 to to ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 module module NOUN NN Number=Sing 15 pobj _ _ 18 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 acl _ _ 19 with with ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 transformation transformation NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 14 # text = Therefore the inclusion of transformations whose 1 - cells have left adjoints into the (multi - )bicategory of modules provides a source of proarrow equipment. 1 Therefore therefore ADV RB _ 22 advmod _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 inclusion inclusion NOUN NN Number=Sing 22 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 transformations transformation NOUN NNS Number=Plur 4 pobj _ _ 6 whose whose DET WP$ Poss=Yes 9 poss _ _ 7 1 1 NUM CD NumType=Card 9 nummod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 cells cell NOUN NNS Number=Plur 11 nsubj _ _ 10 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 11 aux _ _ 11 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 relcl _ _ 12 adjoints adjoint NOUN NNS Number=Plur 11 dobj _ _ 13 into into ADP IN _ 11 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 19 det _ _ 15 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 19 punct _ SpaceAfter=No 16 multi multi ADJ JJ Degree=Pos 19 nmod _ _ 17 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 18 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 19 punct _ SpaceAfter=No 19 bicategory bicategory NOUN NN Number=Sing 13 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 modules module NOUN NNS Number=Plur 20 pobj _ _ 22 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 23 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 24 source source NOUN NN Number=Sing 22 dobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 proarrow proarrow NOUN NN Number=Sing 27 compound _ _ 27 equipment equipment NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 22 punct _ SpaceAfter=No # doc_id = 159 # sent_id = 1 # text = We give an explicit construction of the category $ Opetope $ of opetopes. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 4 explicit explicit ADJ JJ Degree=Pos 5 amod _ _ 5 construction construction NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 category category NOUN NN Number=Sing 6 pobj _ _ 9 $ Opetope $ $ opetope $ SYM $ _ 8 appos _ _ 10 of of ADP IN _ 9 prep _ _ 11 opetopes opetope NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We prove that the category of opetopic sets is equivalent to the category of presheaves over Opetope. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 9 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 9 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 opetopic opetopic ADJ JJ Degree=Pos 8 amod _ _ 8 sets set NOUN NNS Number=Plur 6 pobj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 10 equivalent equivalent ADJ JJ Degree=Pos 9 acomp _ _ 11 to to ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 category category NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 presheaves presheave NOUN NNS Number=Plur 14 pobj _ _ 16 over over ADP IN _ 15 prep _ _ 17 Opetope Opetope PROPN NNP Number=Sing 16 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 160 # sent_id = 1 # text = For a complete cartesian - closed category $ V $ with coproducts, and for any pointed endofunctor $ T $ of the category of sets satisfying a suitable Beck - Chevalley - type condition, it is shown that the category of lax reflexive $ (T, V) $ - algebras is a quasitopos. 1 For for ADP IN _ 35 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 3 complete complete ADJ JJ Degree=Pos 7 amod _ _ 4 cartesian cartesian NOUN NN Number=Sing 6 npadvmod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 closed closed ADJ JJ Degree=Pos 7 amod _ _ 7 category category NOUN NN Number=Sing 1 pobj _ _ 8 $ V $ $ v $ SYM $ _ 1 dep _ _ 9 with with ADP IN _ 8 prep _ _ 10 coproducts coproduct NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 8 punct _ _ 12 and and CCONJ CC ConjType=Cmp 1 cc _ _ 13 for for ADP IN _ 35 prep _ _ 14 any any DET DT _ 16 det _ _ 15 pointed pointed ADJ JJ Degree=Pos 16 amod _ _ 16 endofunctor endofunctor NOUN NN Number=Sing 13 pobj _ _ 17 $ T $ $ t $ SYM $ _ 16 appos _ _ 18 of of ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 category category NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 sets set NOUN NNS Number=Plur 21 pobj _ _ 23 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 acl _ _ 24 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 25 suitable suitable ADJ JJ Degree=Pos 31 amod _ _ 26 Beck Beck PROPN NNP Number=Sing 30 compound _ _ 27 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 28 Chevalley Chevalley PROPN NNP Number=Sing 30 compound _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 type type NOUN NN Number=Sing 31 compound _ _ 31 condition condition NOUN NN Number=Sing 23 dobj _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 35 punct _ _ 33 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 35 nsubjpass _ _ 34 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 35 auxpass _ _ 35 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 36 that that SCONJ IN _ 45 mark _ _ 37 the the DET DT Definite=Def|PronType=Art 38 det _ _ 38 category category NOUN NN Number=Sing 45 nsubj _ _ 39 of of ADP IN _ 38 prep _ _ 40 lax lax PROPN NNP Number=Sing 44 amod _ _ 41 reflexive reflexive ADJ JJ Degree=Pos 44 amod _ _ 42 $ (T, V) $ $ (t, v) $ SYM $ _ 44 compound _ _ 43 - - PUNCT HYPH PunctType=Dash 44 punct _ _ 44 algebras algebras PROPN NNP Number=Sing 39 pobj _ _ 45 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 35 ccomp _ _ 46 a a DET DT Definite=Ind|PronType=Art 47 det _ _ 47 quasitopos quasitopos NOUN NN Number=Sing 45 attr _ SpaceAfter=No 48 . . PUNCT . PunctType=Peri 35 punct _ SpaceAfter=No # sent_id = 2 # text = This result encompasses many known and new examples of quasitopoi. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 result result NOUN NN Number=Sing 3 nsubj _ _ 3 encompasses encompass VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 many many ADJ JJ Degree=Pos 5 advmod _ _ 5 known known ADJ JJ Degree=Pos 8 amod _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 new new ADJ JJ Degree=Pos 5 conj _ _ 8 examples example NOUN NNS Number=Plur 3 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 quasitopoi quasitopoi PROPN NNP Number=Sing 9 pobj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 161 # sent_id = 1 # text = We take some first steps in providing a synthetic theory of distributions. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 take take VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 some some DET DT _ 5 det _ _ 4 first first ADJ JJ Degree=Pos 5 amod _ _ 5 steps step NOUN NNS Number=Plur 2 dobj _ _ 6 in in ADP IN _ 2 prep _ _ 7 providing provide VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 pcomp _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 synthetic synthetic ADJ JJ Degree=Pos 10 amod _ _ 10 theory theory NOUN NN Number=Sing 7 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 distributions distribution NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = In particular, we are interested in the use of distribution theory as foundation, not just as tool, in the study of the wave equation. 1 In in ADP IN _ 5 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 interested interested ADJ JJ Degree=Pos 5 acomp _ _ 7 in in ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 use use NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 distribution distribution NOUN NN Number=Sing 12 compound _ _ 12 theory theory NOUN NN Number=Sing 10 pobj _ _ 13 as as ADP IN _ 9 prep _ _ 14 foundation foundation NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 6 punct _ _ 16 not not PART RB Polarity=Neg 19 neg _ _ 17 just just ADV RB _ 19 advmod _ _ 18 as as SCONJ IN _ 19 mark _ _ 19 tool tool NOUN NN Number=Sing 6 conj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 19 punct _ _ 21 in in ADP IN _ 19 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 study study NOUN NN Number=Sing 21 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 27 det _ _ 26 wave wave NOUN NN Number=Sing 27 compound _ _ 27 equation equation NOUN NN Number=Sing 24 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 162 # sent_id = 1 # text = We introduce various notions of partial topos, that is, `topos without terminal object'. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 various various ADJ JJ Degree=Pos 4 amod _ _ 4 notions notion NOUN NNS Number=Plur 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 partial partial ADJ JJ Degree=Pos 7 amod _ _ 7 topos topos NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 2 punct _ _ 9 that that ADV RB _ 10 advmod _ _ 10 is is ADV RB _ 13 advmod _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 13 punct _ _ 12 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 13 punct _ SpaceAfter=No 13 topos topos NOUN NN Number=Sing 2 dobj _ _ 14 without without ADP IN _ 13 prep _ _ 15 terminal terminal ADJ JJ Degree=Pos 16 amod _ _ 16 object object NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 17 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 13 punct _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The strongest one, called local topos, is motivated by the key examples of finite trees and sheaves with compact support. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 strongest strong ADJ JJS Degree=Sup 3 amod _ _ 3 one one NUM CD NumType=Card 10 nsubjpass _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 3 punct _ _ 5 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 acl _ _ 6 local local ADJ JJ Degree=Pos 7 amod _ _ 7 topos topos NOUN NN Number=Sing 5 oprd _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 3 punct _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 10 motivated motivate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 11 by by ADP IN _ 10 agent _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 key key ADJ JJ Degree=Pos 14 amod _ _ 14 examples example NOUN NNS Number=Plur 11 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 finite finite ADJ JJ Degree=Pos 17 amod _ _ 17 trees tree NOUN NNS Number=Plur 15 pobj _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 sheaves sheaf NOUN NNS Number=Plur 17 conj _ _ 20 with with ADP IN _ 14 prep _ _ 21 compact compact ADJ JJ Degree=Pos 22 amod _ _ 22 support support NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 3 # text = Local toposes satisfy all the usual exactness properties of toposes but are neither cartesian closed nor have a subobject classifier. 1 Local local ADJ JJ Degree=Pos 2 amod _ _ 2 toposes topos NOUN NNS Number=Plur 3 nsubj _ _ 3 satisfy satisfy VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 all all DET PDT _ 8 predet _ _ 5 the the DET DT Definite=Def|PronType=Art 8 det _ _ 6 usual usual ADJ JJ Degree=Pos 8 amod _ _ 7 exactness exactness NOUN NN Number=Sing 8 compound _ _ 8 properties property NOUN NNS Number=Plur 3 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 toposes topos NOUN NNS Number=Plur 9 pobj _ _ 11 but but CCONJ CC ConjType=Cmp 3 cc _ _ 12 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 conj _ _ 13 neither neither DET DT _ 14 det _ _ 14 cartesian cartesian NOUN NN Number=Sing 12 attr _ _ 15 closed close VERB VBD Tense=Past|VerbForm=Fin 12 acomp _ _ 16 nor nor CCONJ CC ConjType=Cmp 15 cc _ _ 17 have have VERB VB VerbForm=Inf 15 conj _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 subobject subobject NOUN NN Number=Sing 20 compound _ _ 20 classifier classifier NOUN NN Number=Sing 17 dobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = Examples for the weaker notions are local homeomorphisms and discrete fibrations. 1 Examples example NOUN NNS Number=Plur 6 nsubj _ _ 2 for for ADP IN _ 1 prep _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 weaker weak ADJ JJR Degree=Cmp 5 amod _ _ 5 notions notion NOUN NNS Number=Plur 2 pobj _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 local local ADJ JJ Degree=Pos 8 amod _ _ 8 homeomorphisms homeomorphism NOUN NNS Number=Plur 6 attr _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 discrete discrete ADJ JJ Degree=Pos 11 amod _ _ 11 fibrations fibration NOUN NNS Number=Plur 8 conj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 5 # text = Finally, for partial toposes with supports we show how they can be completed to toposes via an inverse limit construction. 1 Finally finally ADV RB _ 9 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 9 punct _ _ 3 for for ADP IN _ 9 prep _ _ 4 partial partial ADJ JJ Degree=Pos 5 amod _ _ 5 toposes topos NOUN NNS Number=Plur 3 pobj _ _ 6 with with ADP IN _ 5 prep _ _ 7 supports support NOUN NNS Number=Plur 6 pobj _ _ 8 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 9 nsubj _ _ 9 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 how how SCONJ WRB _ 14 advmod _ _ 11 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 14 nsubjpass _ _ 12 can can AUX MD VerbForm=Fin 14 aux _ _ 13 be be AUX VB VerbForm=Inf 14 auxpass _ _ 14 completed complete VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 ccomp _ _ 15 to to PART TO _ 16 aux _ _ 16 toposes topos NOUN NNS Number=Plur 14 advcl _ _ 17 via via ADP IN _ 16 prep _ _ 18 an an DET DT Definite=Ind|PronType=Art 21 det _ _ 19 inverse inverse ADJ JJ Degree=Pos 20 amod _ _ 20 limit limit NOUN NN Number=Sing 21 compound _ _ 21 construction construction NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 163 # sent_id = 1 # text = This paper studies the homomorphism of rings of continuous functions $ rho : C(X)to C(Y) $ , $ Y $ a subspace of a Tychonoff space $ X $ , induced by restriction. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 studies study VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 homomorphism homomorphism NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 rings ring NOUN NNS Number=Plur 6 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 continuous continuous ADJ JJ Degree=Pos 10 amod _ _ 10 functions function NOUN NNS Number=Plur 8 pobj _ _ 11 $ rho : C(X)to C(Y) $ $ rho : c(x)to c(y) $ SYM $ _ 3 dep _ _ 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 $ Y $ $ y $ SYM $ _ 15 quantmod _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 subspace subspace NOUN NN Number=Sing 3 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 18 Tychonoff Tychonoff PROPN NNP Number=Sing 19 compound _ _ 19 space space NOUN NN Number=Sing 16 pobj _ _ 20 $ X $ $ x $ SYM $ _ 19 appos _ _ 21 , , PUNCT , PunctType=Comm 15 punct _ _ 22 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 acl _ _ 23 by by ADP IN _ 22 agent _ _ 24 restriction restriction NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = We ask when $ rho $ is an epimorphism in the categorical sense. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 ask ask VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 when when SCONJ WRB _ 5 advmod _ _ 4 $ rho $ $ rho $ SYM $ _ 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 6 an an DET DT Definite=Ind|PronType=Art 7 det _ _ 7 epimorphism epimorphism NOUN NN Number=Sing 5 attr _ _ 8 in in ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 categorical categorical ADJ JJ Degree=Pos 11 amod _ _ 11 sense sense NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = There are several appropriate categories: we look at CR, all commutative rings, and $ R/N $ , all reduced commutative rings. 1 There there PRON EX _ 2 expl _ _ 2 are be VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 ccomp _ _ 3 several several ADJ JJ Degree=Pos 5 amod _ _ 4 appropriate appropriate ADJ JJ Degree=Pos 5 amod _ _ 5 categories category NOUN NNS Number=Plur 2 attr _ SpaceAfter=No 6 : : PUNCT : _ 8 punct _ _ 7 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 8 nsubj _ _ 8 look look VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 at at ADP IN _ 8 prep _ _ 10 CR CR PROPN NNP Number=Sing 9 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 all all DET DT _ 14 det _ _ 13 commutative commutative ADJ JJ Degree=Pos 14 amod _ _ 14 rings ring NOUN NNS Number=Plur 10 conj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 and and CCONJ CC ConjType=Cmp 14 cc _ _ 17 $ R/N $ $ r/n $ SYM $ _ 14 conj _ _ 18 , , PUNCT , PunctType=Comm 8 punct _ _ 19 all all DET DT _ 22 det _ _ 20 reduced reduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 amod _ _ 21 commutative commutative ADJ JJ Degree=Pos 22 amod _ _ 22 rings ring NOUN NNS Number=Plur 8 npadvmod _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 4 # text = When $ X $ is first countable and perfectly normal (for example, a metric space), $ rho $ is a $ CR $ - epimorphism if and only if it is an $ R/N $ - epimorphism if and only if $ Y $ is locally closed in $ X $ . 1 When when SCONJ WRB _ 3 advmod _ _ 2 $ X $ $ x $ SYM $ _ 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 advcl _ _ 4 first first ADV RB _ 5 advmod _ _ 5 countable countable ADJ JJ Degree=Pos 3 acomp _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 perfectly perfectly ADV RB _ 8 advmod _ _ 8 normal normal ADJ JJ Degree=Pos 5 conj _ _ 9 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 3 punct _ SpaceAfter=No 10 for for ADP IN _ 3 prep _ _ 11 example example NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 3 punct _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 metric metric ADJ JJ Degree=Pos 15 amod _ _ 15 space space NOUN NN Number=Sing 3 attr _ SpaceAfter=No 16 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 15 punct _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 19 punct _ _ 18 $ rho $ $ rho $ SYM $ _ 19 nsubj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 20 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 21 $ CR $ $ cr $ SYM $ _ 23 compound _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 epimorphism epimorphism NOUN NN Number=Sing 19 attr _ _ 24 if if SCONJ IN _ 29 mark _ _ 25 and and CCONJ CC ConjType=Cmp 29 cc _ _ 26 only only ADV RB _ 29 advmod _ _ 27 if if SCONJ IN _ 29 mark _ _ 28 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 29 nsubj _ _ 29 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 advcl _ _ 30 an an DET DT Definite=Ind|PronType=Art 33 det _ _ 31 $ R/N $ $ r/n $ SYM $ _ 33 nmod _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 epimorphism epimorphism NOUN NN Number=Sing 29 attr _ _ 34 if if SCONJ IN _ 41 mark _ _ 35 and and CCONJ CC ConjType=Cmp 34 cc _ _ 36 only only ADV RB _ 41 advmod _ _ 37 if if SCONJ IN _ 41 mark _ _ 38 $ Y $ $ y $ SYM $ _ 41 nsubjpass _ _ 39 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 41 auxpass _ _ 40 locally locally ADV RB _ 41 advmod _ _ 41 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 advcl _ _ 42 in in ADP IN _ 41 prep _ _ 43 $ X $ $ x $ SYM $ _ 42 pobj _ _ 44 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 5 # text = It is also shown that the restriction of $ rho $ to $ C^*(X)to C^*(Y) $ , when $ X $ is normal, is a $ CR $ - epimorphism if and only if it is a surjection. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 4 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 3 also also ADV RB _ 4 advmod _ _ 4 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 that that SCONJ IN _ 18 mark _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 restriction restriction NOUN NN Number=Sing 18 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 $ rho $ $ rho $ SYM $ _ 8 pobj _ _ 10 to to ADP IN _ 7 prep _ _ 11 $ C^*(X)to C^*(Y) $ $ c^*(x)to c^*(y) $ SYM $ _ 10 pobj _ _ 12 , , PUNCT , PunctType=Comm 7 punct _ _ 13 when when SCONJ WRB _ 15 advmod _ _ 14 $ X $ $ x $ SYM $ _ 15 nsubj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 relcl _ _ 16 normal normal ADJ JJ Degree=Pos 15 acomp _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 18 punct _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 19 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 20 $ CR $ $ cr $ SYM $ _ 22 nmod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 epimorphism epimorphism NOUN NN Number=Sing 18 attr _ _ 23 if if SCONJ IN _ 28 mark _ _ 24 and and CCONJ CC ConjType=Cmp 28 cc _ _ 25 only only ADV RB _ 28 advmod _ _ 26 if if SCONJ IN _ 28 mark _ _ 27 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 28 nsubj _ _ 28 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 advcl _ _ 29 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 30 surjection surjection NOUN NN Number=Sing 28 attr _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 6 # text = In general spaces the picture is more complicated, as is shown by various examples. 1 In in ADP IN _ 6 prep _ _ 2 general general ADJ JJ Degree=Pos 3 amod _ _ 3 spaces space NOUN NNS Number=Plur 1 pobj _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 picture picture NOUN NN Number=Sing 6 nsubj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 more more ADV RBR Degree=Cmp 8 advmod _ _ 8 complicated complicated ADJ JJ Degree=Pos 6 acomp _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 6 punct _ _ 10 as as SCONJ IN _ 12 mark _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 12 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 advcl _ _ 13 by by ADP IN _ 12 agent _ _ 14 various various ADJ JJ Degree=Pos 15 amod _ _ 15 examples example NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 7 # text = Information about $ Spec rho $ and $ Spec rho $ restricted to the proconstructible set of prime $ z $ - ideals is given. 1 Information information NOUN NN Number=Sing 6 nsubj _ _ 2 about about ADP IN _ 3 advmod _ _ 3 $ Spec rho $ $ spec rho $ SYM $ _ 1 appos _ _ 4 and and CCONJ CC ConjType=Cmp 3 cc _ _ 5 $ Spec rho $ $ spec rho $ SYM $ _ 6 nsubj _ _ 6 restricted restrict VERB VBD Tense=Past|VerbForm=Fin 17 nsubjpass _ _ 7 to to ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 proconstructible proconstructible ADJ JJ Degree=Pos 7 pobj _ _ 10 set set NOUN NN Number=Sing 9 acl _ _ 11 of of ADP IN _ 10 prep _ _ 12 prime prime ADJ JJ Degree=Pos 15 amod _ _ 13 $ z $ $ z $ SYM $ _ 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 ideals ideal NOUN NNS Number=Plur 11 pobj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 auxpass _ _ 17 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # doc_id = 164 # sent_id = 1 # text = Generalizing the fact that Scott's continuous lattices form the equational hull of the class of all algebraic lattices, we describe an equational hull of $ LFP $ , the category of locally finitely presentable categories, over $ CAT $ . 1 Generalizing generalize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 advcl _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 fact fact NOUN NN Number=Sing 1 dobj _ _ 4 that that SCONJ IN _ 9 mark _ _ 5 Scott Scott PROPN NNP Number=Sing 8 poss _ SpaceAfter=No 6 's 's PART POS _ 5 case _ _ 7 continuous continuous ADJ JJ Degree=Pos 8 amod _ _ 8 lattices lattice NOUN NNS Number=Plur 9 nsubj _ _ 9 form form VERB VBP Tense=Pres|VerbForm=Fin 3 acl _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 equational equational ADJ JJ Degree=Pos 12 amod _ _ 12 hull hull NOUN NN Number=Sing 9 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 class class NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 all all DET DT _ 19 det _ _ 18 algebraic algebraic ADJ JJ Degree=Pos 19 amod _ _ 19 lattices lattice NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 22 punct _ _ 21 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 22 nsubj _ _ 22 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 23 an an DET DT Definite=Ind|PronType=Art 25 det _ _ 24 equational equational ADJ JJ Degree=Pos 25 amod _ _ 25 hull hull NOUN NN Number=Sing 22 dobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 $ LFP $ $ lfp $ SYM $ _ 26 pobj _ _ 28 , , PUNCT , PunctType=Comm 25 punct _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 category category NOUN NN Number=Sing 25 appos _ _ 31 of of ADP IN _ 30 prep _ _ 32 locally locally ADV RB _ 33 advmod _ _ 33 finitely finitely ADV RB _ 35 amod _ _ 34 presentable presentable ADJ JJ Degree=Pos 35 amod _ _ 35 categories category NOUN NNS Number=Plur 31 pobj _ SpaceAfter=No 36 , , PUNCT , PunctType=Comm 25 punct _ _ 37 over over ADP IN _ 25 prep _ _ 38 $ CAT $ $ cat $ SYM $ _ 37 pobj _ _ 39 . . PUNCT . PunctType=Peri 22 punct _ SpaceAfter=No # sent_id = 2 # text = Up to a set - theoretical hypothesis this hull is formed by the category of all precontinuous categories, that is, categories in which limits and filtered colimits distribute. 1 Up up ADP IN _ 23 prep _ _ 2 to to ADP IN _ 1 prep _ _ 3 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 4 set set VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 amod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 theoretical theoretical ADJ JJ Degree=Pos 7 amod _ _ 7 hypothesis hypothesis NOUN NN Number=Sing 2 pobj _ _ 8 this this DET DT Number=Sing|PronType=Dem 9 det _ _ 9 hull hull NOUN NN Number=Sing 11 nsubjpass _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 11 formed form VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 relcl _ _ 12 by by ADP IN _ 11 agent _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 category category NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 all all DET DT _ 18 det _ _ 17 precontinuous precontinuous ADJ JJ Degree=Pos 18 amod _ _ 18 categories category NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 that that ADV RB _ 21 advmod _ _ 21 is is ADV RB _ 23 advmod _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 categories category NOUN NNS Number=Plur 0 ROOT _ _ 24 in in ADP IN _ 28 prep _ _ 25 which which PRON WDT _ 24 pobj _ _ 26 limits limit NOUN NNS Number=Plur 24 pobj _ _ 27 and and CCONJ CC ConjType=Cmp 26 cc _ _ 28 filtered filter VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 relcl _ _ 29 colimits colimits PROPN NNPS Number=Plur 28 dobj _ _ 30 distribute distribute VERB VB VerbForm=Inf 28 oprd _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 23 punct _ SpaceAfter=No # sent_id = 3 # text = This concept is closely related to the continuous categories of Johnstone and Joyal. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 concept concept NOUN NN Number=Sing 5 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 4 closely closely ADV RB _ 5 advmod _ _ 5 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 to to ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 continuous continuous ADJ JJ Degree=Pos 9 amod _ _ 9 categories category NOUN NNS Number=Plur 6 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 Johnstone Johnstone PROPN NNP Number=Sing 10 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 Joyal Joyal PROPN NNP Number=Sing 11 conj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 165 # sent_id = 1 # text = The homotopy classification of graded categorical groups and their homomorphisms is applied, in this paper, to obtain appropriate treatments for diverse crossed product constructions with operators which appear in several algebraic contexts. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 homotopy homotopy NOUN NN Number=Sing 3 compound _ _ 3 classification classification NOUN NN Number=Sing 12 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 graded grade VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 amod _ _ 6 categorical categorical ADJ JJ Degree=Pos 7 amod _ _ 7 groups group NOUN NNS Number=Plur 4 pobj _ _ 8 and and CCONJ CC ConjType=Cmp 3 cc _ _ 9 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 10 poss _ _ 10 homomorphisms homomorphism NOUN NNS Number=Plur 3 conj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 12 applied apply VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 in in ADP IN _ 12 prep _ _ 15 this this DET DT Number=Sing|PronType=Dem 16 det _ _ 16 paper paper NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 12 punct _ _ 18 to to PART TO _ 19 aux _ _ 19 obtain obtain VERB VB VerbForm=Inf 12 advcl _ _ 20 appropriate appropriate ADJ JJ Degree=Pos 21 amod _ _ 21 treatments treatment NOUN NNS Number=Plur 19 dobj _ _ 22 for for ADP IN _ 21 prep _ _ 23 diverse diverse ADJ JJ Degree=Pos 26 amod _ _ 24 crossed cross VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 amod _ _ 25 product product NOUN NN Number=Sing 26 compound _ _ 26 constructions construction NOUN NNS Number=Plur 22 pobj _ _ 27 with with ADP IN _ 26 prep _ _ 28 operators operator NOUN NNS Number=Plur 27 pobj _ _ 29 which which PRON WDT _ 30 nsubj _ _ 30 appear appear VERB VBP Tense=Pres|VerbForm=Fin 28 relcl _ _ 31 in in ADP IN _ 30 prep _ _ 32 several several ADJ JJ Degree=Pos 34 amod _ _ 33 algebraic algebraic ADJ JJ Degree=Pos 34 amod _ _ 34 contexts context NOUN NNS Number=Plur 31 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 2 # text = Precise classification theorems are therefore stated for equivariant extensions by groups either of monoids, or groups, or rings, or rings - groups or algebras as well as for graded Clifford systems with operators, equivariant Azumaya algebras over Galois extensions of commutative rings and for strongly graded bialgebras and Hopf algebras with operators. 1 Precise precise ADJ JJ Degree=Pos 3 amod _ _ 2 classification classification NOUN NN Number=Sing 3 compound _ _ 3 theorems theorem NOUN NNS Number=Plur 6 nsubjpass _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 5 therefore therefore ADV RB _ 6 advmod _ _ 6 stated state VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 40 ccomp _ _ 7 for for ADP IN _ 6 prep _ _ 8 equivariant equivariant ADJ JJ Degree=Pos 9 amod _ _ 9 extensions extension NOUN NNS Number=Plur 7 pobj _ _ 10 by by ADP IN _ 9 prep _ _ 11 groups group NOUN NNS Number=Plur 10 pobj _ _ 12 either either CCONJ CC ConjType=Cmp 13 preconj _ _ 13 of of ADP IN _ 6 prep _ _ 14 monoids monoid NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 or or CCONJ CC ConjType=Cmp 14 cc _ _ 17 groups group NOUN NNS Number=Plur 14 conj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 or or CCONJ CC ConjType=Cmp 17 cc _ _ 20 rings ring NOUN NNS Number=Plur 17 conj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 or or CCONJ CC ConjType=Cmp 20 cc _ _ 23 rings ring NOUN NNS Number=Plur 25 compound _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 groups group NOUN NNS Number=Plur 20 conj _ _ 26 or or CCONJ CC ConjType=Cmp 25 cc _ _ 27 algebras algebra NOUN NNS Number=Plur 25 conj _ _ 28 as as ADV RB _ 30 advmod _ _ 29 well well ADV RB Degree=Pos 30 advmod _ _ 30 as as ADP IN _ 13 cc _ _ 31 for for ADP IN _ 13 conj _ _ 32 graded grade VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 31 pcomp _ _ 33 Clifford Clifford PROPN NNP Number=Sing 34 compound _ _ 34 systems system NOUN NNS Number=Plur 32 dobj _ _ 35 with with ADP IN _ 32 prep _ _ 36 operators operator NOUN NNS Number=Plur 35 pobj _ SpaceAfter=No 37 , , PUNCT , PunctType=Comm 40 punct _ _ 38 equivariant equivariant ADJ JJ Degree=Pos 40 amod _ _ 39 Azumaya Azumaya PROPN NNP Number=Sing 40 compound _ _ 40 algebras algebra NOUN NNS Number=Plur 0 ROOT _ _ 41 over over ADP IN _ 40 prep _ _ 42 Galois Galois PROPN NNP Number=Sing 43 compound _ _ 43 extensions extension NOUN NNS Number=Plur 41 pobj _ _ 44 of of ADP IN _ 43 prep _ _ 45 commutative commutative ADJ JJ Degree=Pos 46 amod _ _ 46 rings ring NOUN NNS Number=Plur 44 pobj _ _ 47 and and CCONJ CC ConjType=Cmp 41 cc _ _ 48 for for ADP IN _ 41 conj _ _ 49 strongly strongly ADV RB _ 50 advmod _ _ 50 graded grade VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 51 amod _ _ 51 bialgebras bialgebra NOUN NNS Number=Plur 48 pobj _ _ 52 and and CCONJ CC ConjType=Cmp 51 cc _ _ 53 Hopf Hopf PROPN NNP Number=Sing 54 compound _ _ 54 algebras algebra NOUN NNS Number=Plur 51 conj _ _ 55 with with ADP IN _ 51 prep _ _ 56 operators operator NOUN NNS Number=Plur 55 pobj _ SpaceAfter=No 57 . . PUNCT . PunctType=Peri 40 punct _ SpaceAfter=No # sent_id = 3 # text = These specialized classifications follow from the theory of graded categorical groups after identifying, in each case, adequate systems of factor sets with graded monoidal functors to suitable graded categorical groups associated to the structure dealt with. 1 These these DET DT Number=Plur|PronType=Dem 3 det _ _ 2 specialized specialized ADJ JJ Degree=Pos 3 amod _ _ 3 classifications classification NOUN NNS Number=Plur 4 nsubj _ _ 4 follow follow VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 from from ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 theory theory NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 graded grade VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 amod _ _ 10 categorical categorical ADJ JJ Degree=Pos 11 amod _ _ 11 groups group NOUN NNS Number=Plur 8 pobj _ _ 12 after after ADP IN _ 4 prep _ _ 13 identifying identify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 pcomp _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 4 punct _ _ 15 in in ADP IN _ 37 prep _ _ 16 each each DET DT _ 17 det _ _ 17 case case NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 37 punct _ _ 19 adequate adequate ADJ JJ Degree=Pos 20 amod _ _ 20 systems system NOUN NNS Number=Plur 37 nsubj _ _ 21 of of ADP IN _ 20 prep _ _ 22 factor factor NOUN NN Number=Sing 23 compound _ _ 23 sets set NOUN NNS Number=Plur 21 pobj _ _ 24 with with ADP IN _ 23 prep _ _ 25 graded grade VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 amod _ _ 26 monoidal monoidal ADJ JJ Degree=Pos 27 amod _ _ 27 functors functor NOUN NNS Number=Plur 24 pobj _ _ 28 to to ADP IN _ 20 prep _ _ 29 suitable suitable ADJ JJ Degree=Pos 32 amod _ _ 30 graded grade VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 amod _ _ 31 categorical categorical ADJ JJ Degree=Pos 32 amod _ _ 32 groups group NOUN NNS Number=Plur 28 pobj _ _ 33 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 acl _ _ 34 to to ADP IN _ 33 prep _ _ 35 the the DET DT Definite=Def|PronType=Art 36 det _ _ 36 structure structure NOUN NN Number=Sing 34 pobj _ _ 37 dealt deal VERB VBD Tense=Past|VerbForm=Fin 4 conj _ _ 38 with with ADP IN _ 37 prep _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 166 # sent_id = 1 # text = We characterize pointed varieties of universal algebras in which $ (Atimes B)/A approx B $ , that is, all product projections are normal epimorphisms. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 pointed point VERB VBD Tense=Past|VerbForm=Fin 2 ccomp _ _ 4 varieties variety NOUN NNS Number=Plur 3 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 universal universal ADJ JJ Degree=Pos 7 amod _ _ 7 algebras algebra NOUN NNS Number=Plur 5 pobj _ _ 8 in in ADP IN _ 10 prep _ _ 9 which which PRON WDT _ 8 pobj _ _ 10 $ (Atimes B)/A approx B $ $ (atimes b)/a approx b $ DET WP$ Poss=Yes 2 dep _ _ 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 that that ADV RB _ 13 advmod _ _ 13 is is ADV RB _ 18 advmod _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 18 punct _ _ 15 all all DET DT _ 17 det _ _ 16 product product NOUN NN Number=Sing 17 compound _ _ 17 projections projection NOUN NNS Number=Plur 18 nsubj _ _ 18 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 19 normal normal ADJ JJ Degree=Pos 20 amod _ _ 20 epimorphisms epimorphism NOUN NNS Number=Plur 18 attr _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 167 # sent_id = 1 # text = A notion of resolution for higher - dimensional categories is defined, by using polygraphs, and basic invariance theorems are proved. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 notion notion NOUN NN Number=Sing 11 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 resolution resolution NOUN NN Number=Sing 3 pobj _ _ 5 for for ADP IN _ 4 prep _ _ 6 higher high ADJ JJR Degree=Cmp 8 advmod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 dimensional dimensional ADJ JJ Degree=Pos 9 amod _ _ 9 categories category NOUN NNS Number=Plur 5 pobj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 11 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 by by ADP IN _ 11 prep _ _ 14 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 pcomp _ _ 15 polygraphs polygraph NOUN NNS Number=Plur 14 dobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 11 punct _ _ 17 and and CCONJ CC ConjType=Cmp 11 cc _ _ 18 basic basic ADJ JJ Degree=Pos 20 amod _ _ 19 invariance invariance NOUN NN Number=Sing 20 compound _ _ 20 theorems theorem NOUN NNS Number=Plur 22 nsubjpass _ _ 21 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 22 auxpass _ _ 22 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 conj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 22 punct _ SpaceAfter=No # doc_id = 168 # sent_id = 1 # text = Extended cubical sets (with connections and interchanges) are presheaves on a ground category, the extended cubical site $ K $ , corresponding to the (augmented) simplicial site, the category of finite ordinals. 1 Extended extend VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 amod _ _ 2 cubical cubical ADJ JJ Degree=Pos 3 amod _ _ 3 sets set NOUN NNS Number=Plur 10 nsubj _ _ 4 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 3 punct _ SpaceAfter=No 5 with with ADP IN _ 3 prep _ _ 6 connections connection NOUN NNS Number=Plur 5 pobj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 interchanges interchange NOUN NNS Number=Plur 6 conj _ SpaceAfter=No 9 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 3 punct _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 presheaves presheave NOUN NNS Number=Plur 10 attr _ _ 12 on on ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 ground ground NOUN NN Number=Sing 15 compound _ _ 15 category category NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 10 punct _ _ 17 the the DET DT Definite=Def|PronType=Art 20 det _ _ 18 extended extended ADJ JJ Degree=Pos 20 amod _ _ 19 cubical cubical ADJ JJ Degree=Pos 20 amod _ _ 20 site site NOUN NN Number=Sing 10 npadvmod _ _ 21 $ K $ $ k $ SYM $ _ 20 appos _ _ 22 , , PUNCT , PunctType=Comm 20 punct _ _ 23 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 20 amod _ _ 24 to to ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 30 det _ _ 26 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 30 punct _ SpaceAfter=No 27 augmented augmented ADJ JJ Degree=Pos 30 amod _ SpaceAfter=No 28 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 30 punct _ _ 29 simplicial simplicial ADJ JJ Degree=Pos 30 amod _ _ 30 site site NOUN NN Number=Sing 24 pobj _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 30 punct _ _ 32 the the DET DT Definite=Def|PronType=Art 33 det _ _ 33 category category NOUN NN Number=Sing 30 appos _ _ 34 of of ADP IN _ 33 prep _ _ 35 finite finite ADJ JJ Degree=Pos 36 compound _ _ 36 ordinals ordinal NOUN NNS Number=Plur 34 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = We prove here that $ K $ has characterisations similar to the classical ones for the simplicial analogue, by generators and relations, or by the existence of a universal symmetric cubical monoid; in fact, $ K $ is the classifying category of a monoidal algebraic theory of such monoids. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 38 ccomp _ _ 3 here here ADV RB PronType=Dem 2 advmod _ _ 4 that that SCONJ IN _ 6 mark _ _ 5 $ K $ $ k $ SYM $ _ 6 nsubj _ _ 6 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 7 characterisations characterisation NOUN NNS Number=Plur 6 dobj _ _ 8 similar similar ADJ JJ Degree=Pos 7 amod _ _ 9 to to ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 classical classical ADJ JJ Degree=Pos 12 amod _ _ 12 ones one NOUN NNS Number=Plur 9 pobj _ _ 13 for for ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 simplicial simplicial ADJ JJ Degree=Pos 16 amod _ _ 16 analogue analogue NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 6 punct _ _ 18 by by ADP IN _ 6 prep _ _ 19 generators generator NOUN NNS Number=Plur 18 pobj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 relations relation NOUN NNS Number=Plur 19 conj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 18 punct _ _ 23 or or CCONJ CC ConjType=Cmp 18 cc _ _ 24 by by ADP IN _ 18 conj _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 existence existence NOUN NN Number=Sing 24 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 29 universal universal ADJ JJ Degree=Pos 32 amod _ _ 30 symmetric symmetric ADJ JJ Degree=Pos 32 amod _ _ 31 cubical cubical ADJ JJ Degree=Pos 32 amod _ _ 32 monoid monoid NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 33 ; ; PUNCT : _ 38 punct _ _ 34 in in ADP IN _ 38 prep _ _ 35 fact fact NOUN NN Number=Sing 34 pobj _ SpaceAfter=No 36 , , PUNCT , PunctType=Comm 38 punct _ _ 37 $ K $ $ k $ SYM $ _ 38 nsubj _ _ 38 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 39 the the DET DT Definite=Def|PronType=Art 41 det _ _ 40 classifying classify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 41 amod _ _ 41 category category NOUN NN Number=Sing 38 attr _ _ 42 of of ADP IN _ 41 prep _ _ 43 a a DET DT Definite=Ind|PronType=Art 46 det _ _ 44 monoidal monoidal ADJ JJ Degree=Pos 46 amod _ _ 45 algebraic algebraic ADJ JJ Degree=Pos 46 amod _ _ 46 theory theory NOUN NN Number=Sing 42 pobj _ _ 47 of of ADP IN _ 46 prep _ _ 48 such such ADJ JJ Degree=Pos 49 amod _ _ 49 monoids monoid NOUN NNS Number=Plur 47 pobj _ SpaceAfter=No 50 . . PUNCT . PunctType=Peri 38 punct _ SpaceAfter=No # sent_id = 3 # text = Analogous results are given for the restricted cubical site $ I $ , of ordinary cubical sets (just faces and degeneracies) and for the intermediate site $ J $ (including connections). 1 Analogous analogous ADJ JJ Degree=Pos 2 amod _ _ 2 results result NOUN NNS Number=Plur 4 nsubjpass _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 for for ADP IN _ 4 dative _ _ 6 the the DET DT Definite=Def|PronType=Art 9 det _ _ 7 restricted restricted ADJ JJ Degree=Pos 9 amod _ _ 8 cubical cubical ADJ JJ Degree=Pos 9 amod _ _ 9 site site NOUN NN Number=Sing 5 pobj _ _ 10 $ I $ $ i $ SYM $ _ 9 appos _ _ 11 , , PUNCT , PunctType=Comm 9 punct _ _ 12 of of ADP IN _ 9 prep _ _ 13 ordinary ordinary ADJ JJ Degree=Pos 15 amod _ _ 14 cubical cubical ADJ JJ Degree=Pos 15 amod _ _ 15 sets set NOUN NNS Number=Plur 12 pobj _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 15 punct _ SpaceAfter=No 17 just just ADV RB _ 18 advmod _ _ 18 faces face NOUN NNS Number=Plur 15 appos _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 degeneracies degeneracy NOUN NNS Number=Plur 18 conj _ SpaceAfter=No 21 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 15 punct _ _ 22 and and CCONJ CC ConjType=Cmp 12 cc _ _ 23 for for ADP IN _ 4 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 26 det _ _ 25 intermediate intermediate ADJ JJ Degree=Pos 26 amod _ _ 26 site site NOUN NN Number=Sing 23 pobj _ _ 27 $ J $ $ j $ SYM $ _ 26 appos _ _ 28 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 26 punct _ SpaceAfter=No 29 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 26 prep _ _ 30 connections connection NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 31 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 4 punct _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = We also consider briefly the reversible analogue, $ clikK $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 briefly briefly ADV RB _ 3 advmod _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 reversible reversible ADJ JJ Degree=Pos 7 amod _ _ 7 analogue analogue NOUN NN Number=Sing 3 dobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 $ clikK $ $ clikk $ SYM $ _ 7 appos _ _ 10 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 169 # sent_id = 1 # text = Protomodular categories were introduced by the first author more than ten years ago. 1 Protomodular protomodular ADJ JJ Degree=Pos 2 amod _ _ 2 categories category NOUN NNS Number=Plur 4 nsubjpass _ _ 3 were be AUX VBD Mood=Ind|Tense=Past|VerbForm=Fin 4 auxpass _ _ 4 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 by by ADP IN _ 4 agent _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 first first ADJ JJ Degree=Pos 8 amod _ _ 8 author author NOUN NN Number=Sing 5 pobj _ _ 9 more more ADJ JJR Degree=Cmp 11 amod _ _ 10 than than ADP IN _ 11 quantmod _ _ 11 ten ten NUM CD NumType=Card 12 nummod _ _ 12 years year NOUN NNS Number=Plur 13 npadvmod _ _ 13 ago ago ADV RB _ 8 advmod _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = We show that a variety $ mathcal V $ of universal algebras is protomodular if and only if it has 0 - ary terms $ e_1, ..., e_n $ , binary terms $ t_1, ..., t_n $ , and (n+1) - ary term $ t $ satisfying the identities $ t(x, t_1(x, y), ..., t_n(x, y)) = y $ and $ t_i(x, x) = e_i $ for each $ i = 1, ..., n $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 10 mark _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 variety variety NOUN NN Number=Sing 10 nsubj _ _ 6 $ mathcal V $ $ mathcal v $ SYM $ _ 5 prep _ _ 7 of of ADP IN _ 6 prep _ _ 8 universal universal ADJ JJ Degree=Pos 9 amod _ _ 9 algebras algebra NOUN NNS Number=Plur 7 pobj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 11 protomodular protomodular ADJ JJ Degree=Pos 10 acomp _ _ 12 if if SCONJ IN _ 10 prep _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 only only ADV RB _ 17 advmod _ _ 15 if if SCONJ IN _ 17 mark _ _ 16 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 17 nsubj _ _ 17 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 advcl _ _ 18 0 0 NUM CD NumType=Card 20 nummod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 ary ary ADJ JJ Degree=Pos 21 amod _ _ 21 terms term NOUN NNS Number=Plur 17 dobj _ _ 22 $ e_1, ..., e_n $ $ e_1, ..., e_n $ SYM $ _ 25 nmod _ _ 23 , , PUNCT , PunctType=Comm 25 punct _ _ 24 binary binary ADJ JJ Degree=Pos 25 amod _ _ 25 terms term NOUN NNS Number=Plur 2 dobj _ _ 26 $ t_1, ..., t_n $ $ t_1, ..., t_n $ SYM $ _ 34 nmod _ _ 27 , , PUNCT , PunctType=Comm 26 punct _ _ 28 and and CCONJ CC ConjType=Cmp 26 cc _ _ 29 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 30 punct _ SpaceAfter=No 30 n+1 n+1 X XX _ 26 conj _ SpaceAfter=No 31 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 26 punct _ _ 32 - - PUNCT : _ 33 punct _ _ 33 ary ary PROPN NNP Number=Sing 34 compound _ _ 34 term term NOUN NN Number=Sing 25 appos _ _ 35 $ t $ $ t $ SYM $ _ 34 appos _ _ 36 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 34 acl _ _ 37 the the DET DT Definite=Def|PronType=Art 38 det _ _ 38 identities identity NOUN NNS Number=Plur 36 dobj _ _ 39 $ t(x, t_1(x, y), ..., t_n(x, y)) = y $ $ t(x, t_1(x, y), ..., t_n(x, y)) = y $ SYM $ _ 34 appos _ _ 40 and and CCONJ CC ConjType=Cmp 34 cc _ _ 41 $ t_i(x, x) = e_i $ $ t_i(x, x) = e_i $ SYM $ _ 25 conj _ _ 42 for for ADP IN _ 41 prep _ _ 43 each each DET DT _ 44 det _ _ 44 $ i = 1, ..., n $ $ i = 1, ..., n $ SYM $ _ 42 pobj _ _ 45 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 170 # sent_id = 1 # text = One can associate to any strict globular $ omega $ - category three augmented simplicial nerves called the globular nerve, the branching and the merging semi - cubical nerves. 1 One one PRON PRP PronType=Prs 3 nsubj _ _ 2 can can AUX MD VerbForm=Fin 3 aux _ _ 3 associate associate VERB VB VerbForm=Inf 0 ROOT _ _ 4 to to ADP IN _ 3 prep _ _ 5 any any DET DT _ 14 det _ _ 6 strict strict ADJ JJ Degree=Pos 14 amod _ _ 7 globular globular ADJ JJ Degree=Pos 14 amod _ _ 8 $ omega $ $ omega $ SYM $ _ 10 nmod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 category category NOUN NN Number=Sing 14 nmod _ _ 11 three three NUM CD NumType=Card 10 nummod _ _ 12 augmented augmented ADJ JJ Degree=Pos 14 amod _ _ 13 simplicial simplicial ADJ JJ Degree=Pos 14 amod _ _ 14 nerves nerve NOUN NNS Number=Plur 4 pobj _ _ 15 called call VERB VBD Tense=Past|VerbForm=Fin 14 acl _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 globular globular ADJ JJ Degree=Pos 18 amod _ _ 18 nerve nerve NOUN NN Number=Sing 15 oprd _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 branching branching NOUN NN Number=Sing 18 conj _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 the the DET DT Definite=Def|PronType=Art 28 det _ _ 24 merging merge VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 28 amod _ _ 25 semi semi ADJ JJ Degree=Pos 28 amod _ _ 26 - - ADJ JJ Degree=Pos 28 amod _ _ 27 cubical cubical ADJ JJ Degree=Pos 28 amod _ _ 28 nerves nerve NOUN NNS Number=Plur 21 conj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = If this strict globular $ omega $ - category is freely generated by a precubical set, then the corresponding homology theories contain different informations about the geometry of the higher dimensional automaton modeled by the precubical set. 1 If if SCONJ IN _ 10 mark _ _ 2 this this DET DT Number=Sing|PronType=Dem 7 det _ _ 3 strict strict ADJ JJ Degree=Pos 7 amod _ _ 4 globular globular ADJ JJ Degree=Pos 7 amod _ _ 5 $ omega $ $ omega $ SYM $ _ 7 compound _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 category category NOUN NN Number=Sing 10 nsubjpass _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 9 freely freely ADV RB _ 10 advmod _ _ 10 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 advcl _ _ 11 by by ADP IN _ 10 agent _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 precubical precubical ADJ JJ Degree=Pos 14 amod _ _ 14 set set NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 21 punct _ _ 16 then then ADV RB PronType=Dem 21 advmod _ _ 17 the the DET DT Definite=Def|PronType=Art 20 det _ _ 18 corresponding corresponding ADJ JJ Degree=Pos 20 amod _ _ 19 homology homology NOUN NN Number=Sing 20 compound _ _ 20 theories theory NOUN NNS Number=Plur 21 nsubj _ _ 21 contain contain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 22 different different ADJ JJ Degree=Pos 23 amod _ _ 23 informations information NOUN NNS Number=Plur 21 dobj _ _ 24 about about ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 geometry geometry NOUN NN Number=Sing 24 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 31 det _ _ 29 higher high ADJ JJR Degree=Cmp 31 amod _ _ 30 dimensional dimensional ADJ JJ Degree=Pos 31 amod _ _ 31 automaton automaton NOUN NN Number=Sing 27 pobj _ _ 32 modeled model VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 31 acl _ _ 33 by by ADP IN _ 32 agent _ _ 34 the the DET DT Definite=Def|PronType=Art 36 det _ _ 35 precubical precubical ADJ JJ Degree=Pos 36 compound _ _ 36 set set NOUN NN Number=Sing 33 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 21 punct _ SpaceAfter=No # sent_id = 3 # text = Adding inverses in this $ omega $ - category to any morphism of dimension greater than 2 and with respect to any composition laws of dimension greater than 1 does not change these homology theories. 1 Adding add VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 30 csubj _ _ 2 inverses inverse NOUN NNS Number=Plur 1 dobj _ _ 3 in in ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 7 det _ _ 5 $ omega $ $ omega $ SYM $ _ 7 compound _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 category category NOUN NN Number=Sing 3 pobj _ _ 8 to to ADP IN _ 1 prep _ _ 9 any any DET DT _ 10 det _ _ 10 morphism morphism NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 dimension dimension NOUN NN Number=Sing 11 pobj _ _ 13 greater great ADJ JJR Degree=Cmp 10 amod _ _ 14 than than ADP IN _ 13 prep _ _ 15 2 2 NUM CD NumType=Card 14 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 8 cc _ _ 17 with with ADP IN _ 30 prep _ _ 18 respect respect NOUN NN Number=Sing 17 pobj _ _ 19 to to ADP IN _ 18 prep _ _ 20 any any DET DT _ 22 det _ _ 21 composition composition NOUN NN Number=Sing 22 compound _ _ 22 laws law NOUN NNS Number=Plur 19 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 dimension dimension NOUN NN Number=Sing 23 pobj _ _ 25 greater great ADJ JJR Degree=Cmp 22 amod _ _ 26 than than ADP IN _ 25 prep _ _ 27 1 1 NUM CD NumType=Card 26 pobj _ _ 28 does do AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 aux _ _ 29 not not PART RB Polarity=Neg 30 neg _ _ 30 change change VERB VB VerbForm=Inf 0 ROOT _ _ 31 these these DET DT Number=Plur|PronType=Dem 33 det _ _ 32 homology homology NOUN NN Number=Sing 33 compound _ _ 33 theories theory NOUN NNS Number=Plur 30 dobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 30 punct _ SpaceAfter=No # sent_id = 4 # text = In such a framework, the globular nerve always satisfies the Kan condition. 1 In in ADP IN _ 10 prep _ _ 2 such such DET PDT _ 4 predet _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 framework framework NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 10 punct _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 globular globular ADJ JJ Degree=Pos 8 amod _ _ 8 nerve nerve NOUN NN Number=Sing 10 nsubj _ _ 9 always always ADV RB _ 10 advmod _ _ 10 satisfies satisfy VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 Kan Kan PROPN NNP Number=Sing 13 compound _ _ 13 condition condition NOUN NN Number=Sing 10 dobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 5 # text = On the other hand, both branching and merging nerves never satisfy it, except in some very particular and uninteresting situations. 1 On on ADP IN _ 12 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 other other ADJ JJ Degree=Pos 4 amod _ _ 4 hand hand NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 12 punct _ _ 6 both both PRON DT _ 7 nsubj _ _ 7 branching branch VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 csubj _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 merging merge VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 conj _ _ 10 nerves nerve NOUN NNS Number=Plur 9 dobj _ _ 11 never never ADV RB _ 12 neg _ _ 12 satisfy satisfy VERB VB VerbForm=Inf 0 ROOT _ _ 13 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 12 dobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 12 punct _ _ 15 except except SCONJ IN _ 12 prep _ _ 16 in in ADP IN _ 15 prep _ _ 17 some some DET DT _ 22 det _ _ 18 very very ADV RB _ 19 advmod _ _ 19 particular particular ADJ JJ Degree=Pos 22 amod _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 uninteresting uninteresting NOUN NN Number=Sing 19 conj _ _ 22 situations situation NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 6 # text = In this paper, we introduce two new nerves (the branching and merging semi - globular nerves) satisfying the Kan condition and having conjecturally the same simplicial homology as the branching and merging semi - cubical nerves respectively in such framework. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 two two NUM CD NumType=Card 9 nummod _ _ 8 new new ADJ JJ Degree=Pos 9 amod _ _ 9 nerves nerve NOUN NNS Number=Plur 6 dobj _ _ 10 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 9 punct _ SpaceAfter=No 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 branching branching NOUN NN Number=Sing 9 appos _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 merging merge VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 conj _ _ 15 semi semi ADJ JJ Degree=Pos 18 amod _ _ 16 - - ADJ JJ Degree=Pos 15 nmod _ _ 17 globular globular ADJ JJ Degree=Pos 18 amod _ _ 18 nerves nerve NOUN NNS Number=Plur 14 dobj _ SpaceAfter=No 19 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 9 punct _ _ 20 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 advcl _ _ 21 the the DET DT Definite=Def|PronType=Art 23 det _ _ 22 Kan Kan PROPN NNP Number=Sing 23 compound _ _ 23 condition condition NOUN NN Number=Sing 20 dobj _ _ 24 and and CCONJ CC ConjType=Cmp 20 cc _ _ 25 having have VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 20 conj _ _ 26 conjecturally conjecturally ADV RB _ 25 advmod _ _ 27 the the DET DT Definite=Def|PronType=Art 30 det _ _ 28 same same ADJ JJ Degree=Pos 30 amod _ _ 29 simplicial simplicial ADJ JJ Degree=Pos 30 amod _ _ 30 homology homology NOUN NN Number=Sing 25 dobj _ _ 31 as as ADP IN _ 25 prep _ _ 32 the the DET DT Definite=Def|PronType=Art 33 det _ _ 33 branching branching NOUN NN Number=Sing 31 pobj _ _ 34 and and CCONJ CC ConjType=Cmp 33 cc _ _ 35 merging merge VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 25 conj _ _ 36 semi semi ADJ JJ Degree=Pos 39 amod _ _ 37 - - ADJ JJ Degree=Pos 39 amod _ _ 38 cubical cubical ADJ JJ Degree=Pos 39 amod _ _ 39 nerves nerve NOUN NNS Number=Plur 35 dobj _ _ 40 respectively respectively ADV RB _ 35 advmod _ _ 41 in in ADP IN _ 35 prep _ _ 42 such such ADJ JJ Degree=Pos 43 amod _ _ 43 framework framework NOUN NN Number=Sing 41 pobj _ SpaceAfter=No 44 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 7 # text = The latter conjecture is related to the thin elements conjecture already introduced in our previous papers. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 latter latter ADJ JJ Degree=Pos 3 amod _ _ 3 conjecture conjecture NOUN NN Number=Sing 5 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 to to ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 10 det _ _ 8 thin thin ADJ JJ Degree=Pos 9 amod _ _ 9 elements element NOUN NNS Number=Plur 10 compound _ _ 10 conjecture conjecture NOUN NN Number=Sing 6 pobj _ _ 11 already already ADV RB _ 12 advmod _ _ 12 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 acl _ _ 13 in in ADP IN _ 12 prep _ _ 14 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 16 poss _ _ 15 previous previous ADJ JJ Degree=Pos 16 amod _ _ 16 papers paper NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 171 # sent_id = 1 # text = We show how the formal Wirthmuller isomorphism theorem simplifies the proof of the Wirthmuller isomorphism in equivariant stable homotopy theory. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 how how SCONJ WRB _ 8 advmod _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 formal formal ADJ JJ Degree=Pos 7 amod _ _ 6 Wirthmuller Wirthmuller PROPN NNP Number=Sing 7 compound _ _ 7 isomorphism isomorphism NOUN NN Number=Sing 8 nsubj _ _ 8 theorem theorem VERB VBD Tense=Past|VerbForm=Fin 2 ccomp _ _ 9 simplifies simplifie NOUN NNS Number=Plur 8 dobj _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 proof proof NOUN NN Number=Sing 9 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 Wirthmuller Wirthmuller PROPN NNP Number=Sing 15 compound _ _ 15 isomorphism isomorphism NOUN NN Number=Sing 12 pobj _ _ 16 in in ADP IN _ 15 prep _ _ 17 equivariant equivariant ADJ JJ Degree=Pos 20 amod _ _ 18 stable stable ADJ JJ Degree=Pos 19 amod _ _ 19 homotopy homotopy NOUN NN Number=Sing 20 compound _ _ 20 theory theory NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Other examples from equivariant stable homotopy theory show that the hypotheses of the formal Wirthmuller and formal Grothendieck isomorphism theorems cannot be weakened. 1 Other other ADJ JJ Degree=Pos 2 amod _ _ 2 examples example NOUN NNS Number=Plur 8 nsubj _ _ 3 from from ADP IN _ 2 prep _ _ 4 equivariant equivariant ADJ JJ Degree=Pos 7 amod _ _ 5 stable stable ADJ JJ Degree=Pos 6 amod _ _ 6 homotopy homotopy NOUN NN Number=Sing 7 compound _ _ 7 theory theory NOUN NN Number=Sing 3 pobj _ _ 8 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 that that SCONJ IN _ 24 mark _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 hypotheses hypothesis NOUN NNS Number=Plur 24 nsubjpass _ _ 12 of of ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 formal formal ADJ JJ Degree=Pos 15 amod _ _ 15 Wirthmuller wirthmuller NOUN NN Number=Sing 12 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 formal formal ADJ JJ Degree=Pos 18 amod _ _ 18 Grothendieck Grothendieck PROPN NNP Number=Sing 20 compound _ _ 19 isomorphism isomorphism NOUN NN Number=Sing 20 compound _ _ 20 theorems theorem NOUN NNS Number=Plur 15 conj _ _ 21 can can AUX MD VerbForm=Fin 24 aux _ SpaceAfter=No 22 not not PART RB Polarity=Neg 24 neg _ _ 23 be be AUX VB VerbForm=Inf 24 auxpass _ _ 24 weakened weaken VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 ccomp _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # doc_id = 172 # sent_id = 1 # text = There are many contexts in algebraic geometry, algebraic topology, and homological algebra where one encounters a functor that has both a left and right adjoint, with the right adjoint being isomorphic to a shift of the left adjoint specified by an appropriate `dualizing object'. 1 There there PRON EX _ 2 expl _ _ 2 are be VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 many many ADJ JJ Degree=Pos 4 amod _ _ 4 contexts context NOUN NNS Number=Plur 2 attr _ _ 5 in in ADP IN _ 4 prep _ _ 6 algebraic algebraic ADJ JJ Degree=Pos 7 amod _ _ 7 geometry geometry NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 4 punct _ _ 9 algebraic algebraic ADJ JJ Degree=Pos 10 amod _ _ 10 topology topology NOUN NN Number=Sing 4 conj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 and and CCONJ CC ConjType=Cmp 10 cc _ _ 13 homological homological ADJ JJ Degree=Pos 14 amod _ _ 14 algebra algebra NOUN NN Number=Sing 10 conj _ _ 15 where where SCONJ WRB _ 17 advmod _ _ 16 one one PRON PRP PronType=Prs 17 nsubj _ _ 17 encounters encounter VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 relcl _ _ 18 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 19 functor functor NOUN NN Number=Sing 17 dobj _ _ 20 that that PRON WDT PronType=Rel 21 nsubj _ _ 21 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 relcl _ _ 22 both both CCONJ CC ConjType=Cmp 27 preconj _ _ 23 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 24 left left ADJ JJ Degree=Pos 27 amod _ _ 25 and and CCONJ CC ConjType=Cmp 24 cc _ _ 26 right right ADJ JJ Degree=Pos 24 conj _ _ 27 adjoint adjoint NOUN NN Number=Sing 21 dobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 27 punct _ _ 29 with with ADP IN _ 21 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 32 det _ _ 31 right right ADJ JJ Degree=Pos 32 amod _ _ 32 adjoint adjoint NOUN NN Number=Sing 33 nsubj _ _ 33 being be AUX VBG VerbForm=Ger 29 pcomp _ _ 34 isomorphic isomorphic ADJ JJ Degree=Pos 33 acomp _ _ 35 to to ADP IN _ 34 prep _ _ 36 a a DET DT Definite=Ind|PronType=Art 37 det _ _ 37 shift shift NOUN NN Number=Sing 35 pobj _ _ 38 of of ADP IN _ 37 prep _ _ 39 the the DET DT Definite=Def|PronType=Art 41 det _ _ 40 left left ADJ JJ Degree=Pos 41 amod _ _ 41 adjoint adjoint NOUN NN Number=Sing 38 pobj _ _ 42 specified specify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 41 acl _ _ 43 by by ADP IN _ 42 agent _ _ 44 an an DET DT Definite=Ind|PronType=Art 48 det _ _ 45 appropriate appropriate ADJ JJ Degree=Pos 48 amod _ _ 46 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 48 punct _ SpaceAfter=No 47 dualizing dualize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 48 amod _ _ 48 object object NOUN NN Number=Sing 43 pobj _ SpaceAfter=No 49 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 2 punct _ SpaceAfter=No 50 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Typically the left adjoint is well understood while the right adjoint is more mysterious, and the result identifies the right adjoint in familiar terms. 1 Typically typically ADV RB _ 7 advmod _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 left left ADJ JJ Degree=Pos 4 amod _ _ 4 adjoint adjoint NOUN NN Number=Sing 7 nsubjpass _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 6 well well ADV RB Degree=Pos 7 advmod _ _ 7 understood understand VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 while while SCONJ IN _ 12 mark _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 right right ADJ JJ Degree=Pos 11 amod _ _ 11 adjoint adjoint NOUN NN Number=Sing 12 nsubj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 advcl _ _ 13 more more ADV RBR Degree=Cmp 14 advmod _ _ 14 mysterious mysterious ADJ JJ Degree=Pos 12 acomp _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 7 punct _ _ 16 and and CCONJ CC ConjType=Cmp 7 cc _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 result result NOUN NN Number=Sing 19 nsubj _ _ 19 identifies identify VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 conj _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 right right ADJ JJ Degree=Pos 22 amod _ _ 22 adjoint adjoint NOUN NN Number=Sing 19 dobj _ _ 23 in in ADP IN _ 22 prep _ _ 24 familiar familiar ADJ JJ Degree=Pos 25 amod _ _ 25 terms term NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 3 # text = We give a categorical discussion of such results. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 categorical categorical ADJ JJ Degree=Pos 5 amod _ _ 5 discussion discussion NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 such such ADJ JJ Degree=Pos 8 amod _ _ 8 results result NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 9 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = One essential point is to differentiate between the classical framework that arises in algebraic geometry and a deceptively similar, but genuinely different, framework that arises in algebraic topology. 1 One one NUM CD NumType=Card 3 nummod _ _ 2 essential essential ADJ JJ Degree=Pos 3 amod _ _ 3 point point NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 to to PART TO _ 6 aux _ _ 6 differentiate differentiate VERB VB VerbForm=Inf 4 xcomp _ _ 7 between between ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 classical classical ADJ JJ Degree=Pos 10 amod _ _ 10 framework framework NOUN NN Number=Sing 7 pobj _ _ 11 that that PRON WDT PronType=Rel 12 nsubj _ _ 12 arises arise VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 relcl _ _ 13 in in ADP IN _ 12 prep _ _ 14 algebraic algebraic ADJ JJ Degree=Pos 15 amod _ _ 15 geometry geometry NOUN NN Number=Sing 13 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 18 deceptively deceptively ADV RB _ 19 advmod _ _ 19 similar similar ADJ JJ Degree=Pos 25 amod _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 19 punct _ _ 21 but but CCONJ CC ConjType=Cmp 19 cc _ _ 22 genuinely genuinely ADV RB _ 23 advmod _ _ 23 different different ADJ JJ Degree=Pos 19 conj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 23 punct _ _ 25 framework framework NOUN NN Number=Sing 15 conj _ _ 26 that that PRON WDT PronType=Rel 27 nsubj _ _ 27 arises arise VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 25 relcl _ _ 28 in in ADP IN _ 27 prep _ _ 29 algebraic algebraic ADJ JJ Degree=Pos 30 amod _ _ 30 topology topology NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = Another is to make clear which parts of the proofs of such results are formal. 1 Another another PRON DT _ 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 to to PART TO _ 4 aux _ _ 4 make make VERB VB VerbForm=Inf 2 xcomp _ _ 5 clear clear ADJ JJ Degree=Pos 4 ccomp _ _ 6 which which DET WDT _ 7 det _ _ 7 parts part NOUN NNS Number=Plur 14 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 proofs proof NOUN NNS Number=Plur 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 such such ADJ JJ Degree=Pos 13 amod _ _ 13 results result NOUN NNS Number=Plur 11 pobj _ _ 14 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 15 formal formal ADJ JJ Degree=Pos 14 acomp _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = The analysis significantly simplifies the proofs of particular cases, as we illustrate in a sequel discussing applications to equivariant stable homotopy theory. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 analysis analysis NOUN NN Number=Sing 4 nsubj _ _ 3 significantly significantly ADV RB _ 4 advmod _ _ 4 simplifies simplify VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 proofs proof NOUN NNS Number=Plur 4 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 particular particular ADJ JJ Degree=Pos 9 amod _ _ 9 cases case NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 4 punct _ _ 11 as as SCONJ IN _ 13 mark _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 illustrate illustrate VERB VBP Tense=Pres|VerbForm=Fin 4 advcl _ _ 14 in in ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 sequel sequel NOUN NN Number=Sing 14 pobj _ _ 17 discussing discuss VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 acl _ _ 18 applications application NOUN NNS Number=Plur 17 dobj _ _ 19 to to ADP IN _ 18 prep _ _ 20 equivariant equivariant ADJ JJ Degree=Pos 23 amod _ _ 21 stable stable ADJ JJ Degree=Pos 22 amod _ _ 22 homotopy homotopy NOUN NN Number=Sing 23 compound _ _ 23 theory theory NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 173 # sent_id = 1 # text = Linear bicategories are a generalization of ordinary bicategories in which there are two horizontal (1 - cell) compositions corresponding to the ``tensor'' and ``par'' of linear logic. 1 Linear Linear PROPN NNP Number=Sing 2 compound _ _ 2 bicategories bicategorie NOUN NNS Number=Plur 3 nsubj _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 generalization generalization NOUN NN Number=Sing 3 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 ordinary ordinary ADJ JJ Degree=Pos 8 amod _ _ 8 bicategories bicategorie NOUN NNS Number=Plur 6 pobj _ _ 9 in in ADP IN _ 12 prep _ _ 10 which which PRON WDT _ 9 pobj _ _ 11 there there PRON EX _ 12 expl _ _ 12 are be VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 relcl _ _ 13 two two NUM CD NumType=Card 20 nummod _ _ 14 horizontal horizontal ADJ JJ Degree=Pos 18 amod _ _ 15 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 18 punct _ SpaceAfter=No 16 1 1 NUM CD NumType=Card 18 nummod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 cell cell NOUN NN Number=Sing 20 nmod _ SpaceAfter=No 19 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 20 punct _ _ 20 compositions composition NOUN NNS Number=Plur 12 attr _ _ 21 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 20 amod _ _ 22 to to ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 26 det _ _ 24 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 26 punct _ SpaceAfter=No 25 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 26 punct _ SpaceAfter=No 26 tensor tensor NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 27 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 26 punct _ _ 28 and and CCONJ CC ConjType=Cmp 26 cc _ _ 29 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 31 punct _ SpaceAfter=No 30 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 31 punct _ SpaceAfter=No 31 par par NOUN NN Number=Sing 26 conj _ SpaceAfter=No 32 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 31 punct _ _ 33 of of ADP IN _ 31 prep _ _ 34 linear linear ADJ JJ Degree=Pos 35 amod _ _ 35 logic logic NOUN NN Number=Sing 33 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = Benabou's notion of a morphism (lax 2 - functor) of bicategories may be generalized to linear bicategories, where they are called linear functors. 1 Benabou Benabou PROPN NNP Number=Sing 3 poss _ SpaceAfter=No 2 's 's PART POS _ 1 case _ _ 3 notion notion NOUN NN Number=Sing 17 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 morphism morphism NOUN NN Number=Sing 4 pobj _ _ 7 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 17 punct _ SpaceAfter=No 8 lax lax PROPN NNP Number=Sing 17 nsubjpass _ _ 9 2 2 NUM CD NumType=Card 11 nummod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 functor functor NOUN NN Number=Sing 8 npadvmod _ SpaceAfter=No 12 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 8 punct _ _ 13 of of ADP IN _ 8 prep _ _ 14 bicategories bicategorie NOUN NNS Number=Plur 13 pobj _ _ 15 may may AUX MD VerbForm=Fin 17 aux _ _ 16 be be AUX VB VerbForm=Inf 17 auxpass _ _ 17 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 18 to to ADP IN _ 17 prep _ _ 19 linear linear ADJ JJ Degree=Pos 20 amod _ _ 20 bicategories bicategorie NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 where where SCONJ WRB _ 25 advmod _ _ 23 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 25 nsubjpass _ _ 24 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 25 auxpass _ _ 25 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 relcl _ _ 26 linear linear PROPN NNP Number=Sing 27 compound _ _ 27 functors functor NOUN NNS Number=Plur 25 oprd _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 3 # text = Unfortunately, as for the bicategorical case, it is not obvious how to organize linear functors smoothly into a higher dimensional structure. 1 Unfortunately unfortunately ADV RB _ 10 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 10 punct _ _ 3 as as ADP IN _ 10 prep _ _ 4 for for ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 bicategorical bicategorical ADJ JJ Degree=Pos 7 amod _ _ 7 case case NOUN NN Number=Sing 4 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 10 punct _ _ 9 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 10 nsubj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 not not PART RB Polarity=Neg 10 neg _ _ 12 obvious obvious ADJ JJ Degree=Pos 10 acomp _ _ 13 how how SCONJ WRB _ 15 advmod _ _ 14 to to PART TO _ 15 aux _ _ 15 organize organize VERB VB VerbForm=Inf 10 xcomp _ _ 16 linear linear ADJ JJ Degree=Pos 17 amod _ _ 17 functors functor NOUN NNS Number=Plur 15 dobj _ _ 18 smoothly smoothly ADV RB _ 15 advmod _ _ 19 into into ADP IN _ 15 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 21 higher high ADJ JJR Degree=Cmp 22 advmod _ _ 22 dimensional dimensional ADJ JJ Degree=Pos 23 amod _ _ 23 structure structure NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 4 # text = Not only do linear functors seem to lack the two compositions expected for a linear bicategory but, even worse, they inherit from the bicategorical level the failure to combine well with the obvious notion of transformation. 1 Not not PART RB Polarity=Neg 6 preconj _ _ 2 only only ADV RB _ 1 advmod _ _ 3 do do AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 aux _ _ 4 linear linear ADJ JJ Degree=Pos 5 compound _ _ 5 functors functor NOUN NNS Number=Plur 6 nsubj _ _ 6 seem seem VERB VBP Tense=Pres|VerbForm=Fin 23 ccomp _ _ 7 to to PART TO _ 8 aux _ _ 8 lack lack VERB VB VerbForm=Inf 6 xcomp _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 two two NUM CD NumType=Card 11 nummod _ _ 11 compositions composition NOUN NNS Number=Plur 8 dobj _ _ 12 expected expect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 acl _ _ 13 for for ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 linear linear ADJ JJ Degree=Pos 16 amod _ _ 16 bicategory bicategory NOUN NN Number=Sing 13 pobj _ _ 17 but but CCONJ CC ConjType=Cmp 6 cc _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 6 punct _ _ 19 even even ADV RB _ 20 advmod _ _ 20 worse bad ADJ JJR Degree=Cmp 6 advmod _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 23 punct _ _ 22 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 23 nsubj _ _ 23 inherit inherit VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 24 from from ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 27 det _ _ 26 bicategorical bicategorical ADJ JJ Degree=Pos 27 amod _ _ 27 level level NOUN NN Number=Sing 24 pobj _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 failure failure NOUN NN Number=Sing 23 dobj _ _ 30 to to PART TO _ 31 aux _ _ 31 combine combine VERB VB VerbForm=Inf 29 acl _ _ 32 well well ADV RB Degree=Pos 31 advmod _ _ 33 with with ADP IN _ 31 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 36 det _ _ 35 obvious obvious ADJ JJ Degree=Pos 36 amod _ _ 36 notion notion NOUN NN Number=Sing 33 pobj _ _ 37 of of ADP IN _ 36 prep _ _ 38 transformation transformation NOUN NN Number=Sing 37 pobj _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 23 punct _ SpaceAfter=No # sent_id = 5 # text = As we shall see, there are also problems with lifting the notion of lax transformation to the linear setting. 1 As as SCONJ IN _ 4 mark _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 3 shall shall AUX MD VerbType=Mod 4 aux _ _ 4 see see VERB VB VerbForm=Inf 7 advcl _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 there there PRON EX _ 7 expl _ _ 7 are be VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 also also ADV RB _ 7 advmod _ _ 9 problems problem NOUN NNS Number=Plur 7 attr _ _ 10 with with ADP IN _ 9 prep _ _ 11 lifting lift VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 pcomp _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 notion notion NOUN NN Number=Sing 11 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 lax lax ADJ JJ Degree=Pos 16 amod _ _ 16 transformation transformation NOUN NN Number=Sing 14 pobj _ _ 17 to to ADP IN _ 13 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 linear linear ADJ JJ Degree=Pos 20 compound _ _ 20 setting setting NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 6 # text = One possible resolution is to step up one dimension, taking morphisms as the 0 - cell level. 1 One one NUM CD NumType=Card 3 nummod _ _ 2 possible possible ADJ JJ Degree=Pos 3 amod _ _ 3 resolution resolution NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 to to PART TO _ 6 aux _ _ 6 step step VERB VB VerbForm=Inf 4 xcomp _ _ 7 up up ADP RP _ 6 prt _ _ 8 one one NUM CD NumType=Card 9 nummod _ _ 9 dimension dimension NOUN NN Number=Sing 6 dobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 6 punct _ _ 11 taking take VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 advcl _ _ 12 morphisms morphism NOUN NNS Number=Plur 11 dobj _ _ 13 as as ADP IN _ 11 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 18 det _ _ 15 0 0 NUM CD NumType=Card 17 nummod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 cell cell NOUN NN Number=Sing 18 compound _ _ 18 level level NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 7 # text = In the linear setting, this suggests making linear functors 0 - cells, but what structure should sit above them? 1 In in ADP IN _ 7 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 linear linear ADJ JJ Degree=Pos 4 compound _ _ 4 setting setting NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 this this PRON DT Number=Sing|PronType=Dem 7 nsubj _ _ 7 suggests suggest VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 making make VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 xcomp _ _ 9 linear linear ADJ JJ Degree=Pos 10 compound _ _ 10 functors functor NOUN NNS Number=Plur 13 nsubj _ _ 11 0 0 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 cells cell NOUN NNS Number=Plur 8 dobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 7 punct _ _ 15 but but CCONJ CC ConjType=Cmp 7 cc _ _ 16 what what DET WDT _ 17 det _ _ 17 structure structure NOUN NN Number=Sing 19 nsubj _ _ 18 should should AUX MD VerbForm=Fin 19 aux _ _ 19 sit sit VERB VB VerbForm=Inf 7 conj _ _ 20 above above ADP IN _ 19 prep _ _ 21 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 20 pobj _ SpaceAfter=No 22 ? ? PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 8 # text = Lax transformations in a suitable sense just do not seem to work very well for this purpose. 1 Lax lax NOUN NN Number=Sing 2 compound _ _ 2 transformations transformation NOUN NNS Number=Plur 10 nsubj _ _ 3 in in ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 suitable suitable ADJ JJ Degree=Pos 6 amod _ _ 6 sense sense NOUN NN Number=Sing 3 pobj _ _ 7 just just ADV RB _ 10 advmod _ _ 8 do do AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 10 aux _ _ 9 not not PART RB Polarity=Neg 10 neg _ _ 10 seem seem VERB VB VerbForm=Inf 0 ROOT _ _ 11 to to PART TO _ 12 aux _ _ 12 work work VERB VB VerbForm=Inf 10 xcomp _ _ 13 very very ADV RB _ 14 advmod _ _ 14 well well ADV RB Degree=Pos 12 advmod _ _ 15 for for ADP IN _ 12 prep _ _ 16 this this DET DT Number=Sing|PronType=Dem 17 det _ _ 17 purpose purpose NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 9 # text = Modules provide a more promising direction, but raise a number of technical issues concerning the composability of both the modules and their transformations. 1 Modules module NOUN NNS Number=Plur 2 nsubj _ _ 2 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 4 more more ADV RBR Degree=Cmp 5 advmod _ _ 5 promising promising ADJ JJ Degree=Pos 6 amod _ _ 6 direction direction NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 2 punct _ _ 8 but but CCONJ CC ConjType=Cmp 2 cc _ _ 9 raise raise VERB VB VerbForm=Inf 2 conj _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 number number NOUN NN Number=Sing 9 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 technical technical ADJ JJ Degree=Pos 14 amod _ _ 14 issues issue NOUN NNS Number=Plur 12 pobj _ _ 15 concerning concern VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 composability composability NOUN NN Number=Sing 15 dobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 both both CCONJ CC ConjType=Cmp 21 preconj _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 modules module NOUN NNS Number=Plur 18 pobj _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 24 poss _ _ 24 transformations transformation NOUN NNS Number=Plur 21 conj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 10 # text = In general the required composites will not exist in either the linear bicategorical or ordinary bicategorical setting. 1 In in ADP IN _ 8 prep _ _ 2 general general ADJ JJ Degree=Pos 1 amod _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 required require VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 amod _ _ 5 composites composite NOUN NNS Number=Plur 8 nsubj _ _ 6 will will AUX MD VerbForm=Fin 8 aux _ _ 7 not not PART RB Polarity=Neg 8 neg _ _ 8 exist exist VERB VB VerbForm=Inf 0 ROOT _ _ 9 in in ADP IN _ 8 prep _ _ 10 either either CCONJ CC ConjType=Cmp 17 preconj _ _ 11 the the DET DT Definite=Def|PronType=Art 17 det _ _ 12 linear linear ADJ JJ Degree=Pos 17 amod _ _ 13 bicategorical bicategorical ADJ JJ Degree=Pos 17 amod _ _ 14 or or CCONJ CC ConjType=Cmp 13 cc _ _ 15 ordinary ordinary ADJ JJ Degree=Pos 13 conj _ _ 16 bicategorical bicategorical ADJ JJ Degree=Pos 17 amod _ _ 17 setting setting NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 11 # text = However, when these composites do exist modules between linear functors do combine to form a linear bicategory. 1 However however ADV RB _ 13 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 13 punct _ _ 3 when when SCONJ WRB _ 7 advmod _ _ 4 these these DET DT Number=Plur|PronType=Dem 5 det _ _ 5 composites composite NOUN NNS Number=Plur 7 nsubj _ _ 6 do do AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 aux _ _ 7 exist exist VERB VB VerbForm=Inf 13 advcl _ _ 8 modules module NOUN NNS Number=Plur 7 dobj _ _ 9 between between ADP IN _ 8 prep _ _ 10 linear linear ADJ JJ Degree=Pos 11 amod _ _ 11 functors functor NOUN NNS Number=Plur 9 pobj _ _ 12 do do AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 aux _ _ 13 combine combine VERB VB VerbForm=Inf 0 ROOT _ _ 14 to to PART TO _ 15 aux _ _ 15 form form VERB VB VerbForm=Inf 13 advcl _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 linear linear ADJ JJ Degree=Pos 18 amod _ _ 18 bicategory bicategory NOUN NN Number=Sing 15 dobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 12 # text = In order to better understand the conditions for the existence of composites, we have found it convenient, particularly in the linear setting, to develop the theory of ``poly - bicategories''. 1 In in ADP IN _ 16 prep _ _ 2 order order NOUN NN Number=Sing 1 pobj _ _ 3 to to PART TO _ 5 aux _ _ 4 better well ADV RBR Degree=Cmp 5 advmod _ _ 5 understand understand VERB VB VerbForm=Inf 2 acl _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 conditions condition NOUN NNS Number=Plur 5 dobj _ _ 8 for for ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 existence existence NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 composites composite NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 16 punct _ _ 14 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 16 nsubj _ _ 15 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 16 aux _ _ 16 found find VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 17 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 18 nsubj _ _ 18 convenient convenient ADJ JJ Degree=Pos 16 ccomp _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 16 punct _ _ 20 particularly particularly ADV RB _ 21 advmod _ _ 21 in in ADP IN _ 16 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 linear linear ADJ JJ Degree=Pos 24 compound _ _ 24 setting setting NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 16 punct _ _ 26 to to PART TO _ 27 aux _ _ 27 develop develop VERB VB VerbForm=Inf 16 advcl _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 theory theory NOUN NN Number=Sing 27 dobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 35 punct _ SpaceAfter=No 32 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 35 punct _ SpaceAfter=No 33 poly poly ADJ JJ Degree=Pos 35 amod _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 bicategories bicategorie NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 36 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 16 punct _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 13 # text = In this setting we can develop the theory so as to extract the answers to these problems not only for linear bicategories but also for ordinary bicategories. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 setting setting NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 5 can can AUX MD VerbForm=Fin 6 aux _ _ 6 develop develop VERB VB VerbForm=Inf 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 theory theory NOUN NN Number=Sing 6 dobj _ _ 9 so so SCONJ IN _ 12 mark _ _ 10 as as SCONJ IN _ 12 mark _ _ 11 to to PART TO _ 12 aux _ _ 12 extract extract VERB VB VerbForm=Inf 6 advcl _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 answers answer NOUN NNS Number=Plur 12 dobj _ _ 15 to to ADP IN _ 12 prep _ _ 16 these these DET DT Number=Plur|PronType=Dem 17 det _ _ 17 problems problem NOUN NNS Number=Plur 15 pobj _ _ 18 not not PART RB Polarity=Neg 20 preconj _ _ 19 only only ADV RB _ 18 advmod _ _ 20 for for ADP IN _ 12 prep _ _ 21 linear linear ADJ JJ Degree=Pos 22 amod _ _ 22 bicategories bicategorie NOUN NNS Number=Plur 20 pobj _ _ 23 but but CCONJ CC ConjType=Cmp 20 cc _ _ 24 also also ADV RB _ 23 advmod _ _ 25 for for ADP IN _ 20 conj _ _ 26 ordinary ordinary ADJ JJ Degree=Pos 27 amod _ _ 27 bicategories bicategorie NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 14 # text = Poly - bicategories are 2 - dimensional generalizations of Szabo's poly - categories, consisting of objects, 1 - cells, and poly - 2 - cells. 1 Poly poly ADJ JJ Degree=Pos 3 amod _ _ 2 - - PUNCT HYPH PunctType=Dash 3 punct _ _ 3 bicategories bicategorie NOUN NNS Number=Plur 4 nsubj _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 2 2 NUM CD NumType=Card 7 advmod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 dimensional dimensional ADJ JJ Degree=Pos 8 amod _ _ 8 generalizations generalization NOUN NNS Number=Plur 4 attr _ _ 9 of of ADP IN _ 8 prep _ _ 10 Szabo Szabo PROPN NNP Number=Sing 14 poss _ SpaceAfter=No 11 's 's PART POS _ 10 case _ _ 12 poly poly ADJ JJ Degree=Pos 14 amod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 categories category NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 8 punct _ _ 16 consisting consist VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 acl _ _ 17 of of ADP IN _ 16 prep _ _ 18 objects object NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 8 punct _ _ 20 1 1 NUM CD NumType=Card 22 nummod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 cells cell NOUN NNS Number=Plur 8 conj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 and and CCONJ CC ConjType=Cmp 22 cc _ _ 25 poly poly ADJ JJ Degree=Pos 29 amod _ _ 26 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 27 2 2 NUM CD NumType=Card 29 nummod _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 cells cell NOUN NNS Number=Plur 22 conj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 15 # text = The latter may have several 1 - cells as input and as output and can be composed by means of cutting along a single 1 - cell. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 latter latter ADJ JJ Degree=Pos 4 nsubj _ _ 3 may may AUX MD VerbForm=Fin 4 aux _ _ 4 have have VERB VB VerbForm=Inf 0 ROOT _ _ 5 several several ADJ JJ Degree=Pos 8 amod _ _ 6 1 1 NUM CD NumType=Card 8 nummod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 cells cell NOUN NNS Number=Plur 4 dobj _ _ 9 as as ADP IN _ 4 prep _ _ 10 input input NOUN NN Number=Sing 9 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 9 cc _ _ 12 as as ADP IN _ 9 conj _ _ 13 output output NOUN NN Number=Sing 12 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 4 cc _ _ 15 can can AUX MD VerbForm=Fin 17 aux _ _ 16 be be AUX VB VerbForm=Inf 17 auxpass _ _ 17 composed compose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 conj _ _ 18 by by ADP IN _ 17 agent _ _ 19 means mean NOUN NNS Number=Plur 18 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 cutting cut VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 20 pcomp _ _ 22 along along ADP RP _ 21 prt _ _ 23 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 24 single single ADJ JJ Degree=Pos 27 amod _ _ 25 1 1 NUM CD NumType=Card 27 nummod _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 cell cell NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 16 # text = While a poly - bicategory does not require that there be any compositions for the 1 - cells, such composites are determined (up to 1 - cell isomorphism) by their universal properties. 1 While while SCONJ IN _ 8 mark _ _ 2 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 3 poly poly ADJ JJ Degree=Pos 5 amod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 bicategory bicategory NOUN NN Number=Sing 8 nsubj _ _ 6 does do AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 aux _ _ 7 not not PART RB Polarity=Neg 8 neg _ _ 8 require require VERB VB VerbForm=Inf 23 advcl _ _ 9 that that SCONJ IN _ 11 mark _ _ 10 there there PRON EX _ 11 expl _ _ 11 be be VERB VBP Tense=Pres|VerbForm=Fin 8 ccomp _ _ 12 any any DET DT _ 13 det _ _ 13 compositions composition NOUN NNS Number=Plur 11 attr _ _ 14 for for ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 18 det _ _ 16 1 1 NUM CD NumType=Card 18 nummod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 cells cell NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 23 punct _ _ 20 such such ADJ JJ Degree=Pos 21 amod _ _ 21 composites composite NOUN NNS Number=Plur 23 nsubjpass _ _ 22 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 23 auxpass _ _ 23 determined determine VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 24 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 30 punct _ SpaceAfter=No 25 up up ADP IN _ 30 nmod _ _ 26 to to PART TO _ 25 prep _ _ 27 1 1 NUM CD NumType=Card 29 nummod _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 cell cell NOUN NN Number=Sing 26 pobj _ _ 30 isomorphism isomorphism NOUN NN Number=Sing 23 dobj _ SpaceAfter=No 31 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 30 punct _ _ 32 by by ADP IN _ 30 prep _ _ 33 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 35 poss _ _ 34 universal universal ADJ JJ Degree=Pos 35 amod _ _ 35 properties property NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 23 punct _ SpaceAfter=No # sent_id = 17 # text = We say a poly - bicategory is representable when there is a representing 1 - cell for each of the two possible 1 - cell compositions geared towards the domains and codomains of the poly 2 - cells. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 say say VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 4 poly poly ADJ JJ Degree=Pos 6 amod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 bicategory bicategory NOUN NN Number=Sing 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 8 representable representable ADJ JJ Degree=Pos 7 acomp _ _ 9 when when SCONJ WRB _ 11 advmod _ _ 10 there there PRON EX _ 11 expl _ _ 11 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 advcl _ _ 12 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 13 representing represent VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 amod _ _ 14 1 1 NUM CD NumType=Card 16 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 cell cell NOUN NN Number=Sing 11 attr _ _ 17 for for ADP IN _ 16 prep _ _ 18 each each PRON DT _ 17 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 26 det _ _ 21 two two NUM CD NumType=Card 26 nummod _ _ 22 possible possible ADJ JJ Degree=Pos 26 amod _ _ 23 1 1 NUM CD NumType=Card 25 nummod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 cell cell NOUN NN Number=Sing 26 compound _ _ 26 compositions composition NOUN NNS Number=Plur 19 pobj _ _ 27 geared gear VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 acl _ _ 28 towards towards ADP IN _ 27 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 domains domain NOUN NNS Number=Plur 28 pobj _ _ 31 and and CCONJ CC ConjType=Cmp 30 cc _ _ 32 codomains codomain NOUN NNS Number=Plur 30 conj _ _ 33 of of ADP IN _ 30 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 38 det _ _ 35 poly poly ADJ JJ Degree=Pos 38 amod _ _ 36 2 2 NUM CD NumType=Card 38 nummod _ _ 37 - - PUNCT HYPH PunctType=Dash 38 punct _ _ 38 cells cell NOUN NNS Number=Plur 33 pobj _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 18 # text = In this case we recover the notion of a linear bicategory. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 case case NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 recover recover VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 notion notion NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 linear linear ADJ JJ Degree=Pos 11 amod _ _ 11 bicategory bicategory NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 19 # text = The poly notions of functors, modules and their transformations are introduced as well. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 poly poly ADJ JJ Degree=Pos 3 amod _ _ 3 notions notion NOUN NNS Number=Plur 12 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 functors functor NOUN NNS Number=Plur 4 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 modules module NOUN NNS Number=Plur 12 nsubjpass _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 10 poss _ _ 10 transformations transformation NOUN NNS Number=Plur 7 conj _ _ 11 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 12 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 13 as as ADV RB _ 14 advmod _ _ 14 well well ADV RB Degree=Pos 12 advmod _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 20 # text = The poly - functors between two given poly - bicategories $ P $ and $ P' $ together with poly - modules between poly - functors and their transformations form a new poly - bicategory provided $ P $ is representable and closed in the sense that every 1 - cell has both a left and a right adjoint (in the appropriate linear sense). 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 poly poly ADJ JJ Degree=Pos 4 amod _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 functors functor NOUN NNS Number=Plur 26 nsubj _ _ 5 between between ADP IN _ 4 prep _ _ 6 two two NUM CD NumType=Card 10 nummod _ _ 7 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 8 poly poly ADJ JJ Degree=Pos 10 amod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 bicategories bicategorie NOUN NNS Number=Plur 5 pobj _ _ 11 $ P $ $ p $ SYM $ _ 10 advmod _ _ 12 and and CCONJ CC ConjType=Cmp 10 cc _ _ 13 $ P' $ $ p' $ SYM $ _ 14 nmod _ _ 14 together together ADV RB _ 26 advmod _ _ 15 with with ADP IN _ 14 prep _ _ 16 poly poly NOUN NN Number=Sing 18 compound _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 modules module NOUN NNS Number=Plur 15 pobj _ _ 19 between between ADP IN _ 18 prep _ _ 20 poly poly ADJ JJ Degree=Pos 22 amod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 functors functor NOUN NNS Number=Plur 19 pobj _ _ 23 and and CCONJ CC ConjType=Cmp 22 cc _ _ 24 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 25 poss _ _ 25 transformations transformation NOUN NNS Number=Plur 22 conj _ _ 26 form form VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 27 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 28 new new ADJ JJ Degree=Pos 31 amod _ _ 29 poly poly ADJ JJ Degree=Pos 31 amod _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 bicategory bicategory NOUN NN Number=Sing 26 dobj _ _ 32 provided provide VERB VBD Tense=Past|VerbForm=Fin 31 acl _ _ 33 $ P $ $ p $ SYM $ _ 32 dobj _ _ 34 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 26 conj _ _ 35 representable representable ADJ JJ Degree=Pos 34 acomp _ _ 36 and and CCONJ CC ConjType=Cmp 34 cc _ _ 37 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 34 conj _ _ 38 in in ADP IN _ 37 prep _ _ 39 the the DET DT Definite=Def|PronType=Art 40 det _ _ 40 sense sense NOUN NN Number=Sing 38 pobj _ _ 41 that that SCONJ IN _ 46 mark _ _ 42 every every DET DT _ 45 det _ _ 43 1 1 NUM CD NumType=Card 45 nummod _ _ 44 - - PUNCT HYPH PunctType=Dash 45 punct _ _ 45 cell cell NOUN NN Number=Sing 46 nsubj _ _ 46 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 40 acl _ _ 47 both both CCONJ CC ConjType=Cmp 49 preconj _ _ 48 a a DET DT Definite=Ind|PronType=Art 49 det _ _ 49 left left NOUN NN Number=Sing 46 dobj _ _ 50 and and CCONJ CC ConjType=Cmp 49 cc _ _ 51 a a DET DT Definite=Ind|PronType=Art 53 det _ _ 52 right right ADJ JJ Degree=Pos 53 amod _ _ 53 adjoint adjoint NOUN NN Number=Sing 49 conj _ _ 54 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 49 punct _ SpaceAfter=No 55 in in ADP IN _ 49 prep _ _ 56 the the DET DT Definite=Def|PronType=Art 59 det _ _ 57 appropriate appropriate ADJ JJ Degree=Pos 59 amod _ _ 58 linear linear ADJ JJ Degree=Pos 59 amod _ _ 59 sense sense NOUN NN Number=Sing 55 pobj _ SpaceAfter=No 60 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 46 punct _ SpaceAfter=No 61 . . PUNCT . PunctType=Peri 26 punct _ SpaceAfter=No # sent_id = 21 # text = Finally we revisit the notion of linear (or lax) natural transformations, which can only be defined for representable poly - bicategories. 1 Finally finally ADV RB _ 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 revisit revisit VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 notion notion NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 linear linear PROPN NNP Number=Sing 13 nmod _ _ 8 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 7 punct _ SpaceAfter=No 9 or or CCONJ CC ConjType=Cmp 7 cc _ _ 10 lax lax ADJ JJ Degree=Pos 7 conj _ SpaceAfter=No 11 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 13 punct _ _ 12 natural natural ADJ JJ Degree=Pos 13 amod _ _ 13 transformations transformation NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 13 punct _ _ 15 which which PRON WDT _ 19 nsubjpass _ _ 16 can can AUX MD VerbForm=Fin 19 aux _ _ 17 only only ADV RB _ 19 advmod _ _ 18 be be AUX VB VerbForm=Inf 19 auxpass _ _ 19 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 relcl _ _ 20 for for ADP IN _ 19 prep _ _ 21 representable representable ADJ JJ Degree=Pos 24 amod _ _ 22 poly poly ADJ JJ Degree=Pos 24 amod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 bicategories bicategorie NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 22 # text = These in fact correspond to modules having special properties. 1 These these PRON DT Number=Plur|PronType=Dem 4 nsubj _ _ 2 in in ADP IN _ 4 prep _ _ 3 fact fact NOUN NN Number=Sing 2 pobj _ _ 4 correspond correspond VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 to to ADP IN _ 4 prep _ _ 6 modules module NOUN NNS Number=Plur 5 pobj _ _ 7 having have VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 advcl _ _ 8 special special ADJ JJ Degree=Pos 9 amod _ _ 9 properties property NOUN NNS Number=Plur 7 dobj _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 174 # sent_id = 1 # text = In many applications of quasigroups isotopies and homotopies are more important than isomorphisms and homomorphisms. 1 In in ADP IN _ 9 prep _ _ 2 many many ADJ JJ Degree=Pos 3 amod _ _ 3 applications application NOUN NNS Number=Plur 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 quasigroups quasigroup NOUN NNS Number=Plur 6 compound _ _ 6 isotopies isotopie NOUN NNS Number=Plur 4 pobj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 homotopies homotopie NOUN NNS Number=Plur 6 conj _ _ 9 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 more more ADV RBR Degree=Cmp 11 advmod _ _ 11 important important ADJ JJ Degree=Pos 9 acomp _ _ 12 than than ADP IN _ 11 prep _ _ 13 isomorphisms isomorphism NOUN NNS Number=Plur 12 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 homomorphisms homomorphism NOUN NNS Number=Plur 13 conj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 2 # text = In this paper, the way homotopies may arise in the context of categorical quasigroup model theory is investigated. 1 In in ADP IN _ 19 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 19 punct _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 way way NOUN NN Number=Sing 19 nsubjpass _ _ 7 homotopies homotopie NOUN NNS Number=Plur 9 nsubj _ _ 8 may may AUX MD VerbForm=Fin 9 aux _ _ 9 arise arise VERB VB VerbForm=Inf 6 relcl _ _ 10 in in ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 context context NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 categorical categorical ADJ JJ Degree=Pos 16 amod _ _ 15 quasigroup quasigroup NOUN NN Number=Sing 16 compound _ _ 16 model model NOUN NN Number=Sing 17 compound _ _ 17 theory theory NOUN NN Number=Sing 13 pobj _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 auxpass _ _ 19 investigated investigate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 3 # text = In this context, the algebraic structures are specified by diagram - based logics, such as sketches, and categories of models become functor categories. 1 In in ADP IN _ 9 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 context context NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 9 punct _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 algebraic algebraic ADJ JJ Degree=Pos 7 amod _ _ 7 structures structure NOUN NNS Number=Plur 9 nsubjpass _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 specified specify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 by by ADP IN _ 9 agent _ _ 11 diagram diagram NOUN NN Number=Sing 13 npadvmod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 14 logics logic NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 such such ADJ JJ Degree=Pos 17 amod _ _ 17 as as ADP IN _ 14 prep _ _ 18 sketches sketch NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 and and CCONJ CC ConjType=Cmp 18 cc _ _ 21 categories category NOUN NNS Number=Plur 18 conj _ _ 22 of of ADP IN _ 21 prep _ _ 23 models model NOUN NNS Number=Plur 22 pobj _ _ 24 become become VERB VBP Tense=Pres|VerbForm=Fin 9 conj _ _ 25 functor functor NOUN NN Number=Sing 26 compound _ _ 26 categories category NOUN NNS Number=Plur 24 attr _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 4 # text = An idea, pioneered by Gvaramiya and Plotkin, is used to give a construction of a model category naturally equivalent to the category of quasigroups with homotopies between them. 1 An an DET DT Definite=Ind|PronType=Art 2 det _ _ 2 idea idea NOUN NN Number=Sing 11 nsubjpass _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 2 punct _ _ 4 pioneered pioneer VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 acl _ _ 5 by by ADP IN _ 4 agent _ _ 6 Gvaramiya Gvaramiya PROPN NNP Number=Sing 5 pobj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 Plotkin Plotkin PROPN NNP Number=Sing 6 conj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 2 punct _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 11 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 12 to to PART TO _ 13 aux _ _ 13 give give VERB VB VerbForm=Inf 11 xcomp _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 construction construction NOUN NN Number=Sing 13 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 18 model model NOUN NN Number=Sing 19 compound _ _ 19 category category NOUN NN Number=Sing 16 pobj _ _ 20 naturally naturally ADV RB _ 21 advmod _ _ 21 equivalent equivalent ADJ JJ Degree=Pos 19 amod _ _ 22 to to ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 category category NOUN NN Number=Sing 22 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 quasigroups quasigroup NOUN NNS Number=Plur 25 pobj _ _ 27 with with ADP IN _ 26 prep _ _ 28 homotopies homotopie NOUN NNS Number=Plur 27 pobj _ _ 29 between between ADP IN _ 28 prep _ _ 30 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 29 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # doc_id = 175 # sent_id = 1 # text = A 2 - group is a `categorified' version of a group, in which the underlying set $ G $ has been replaced by a category and the multiplication map $ m ; G x G - > G $ has been replaced by a functor. 1 A a DET DT Definite=Ind|PronType=Art 4 det _ _ 2 2 2 NUM CD NumType=Card 4 nummod _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 group group NOUN NN Number=Sing 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 7 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 10 punct _ SpaceAfter=No 8 categorified categorified ADJ JJ Degree=Pos 10 amod _ SpaceAfter=No 9 ' ' PART POS _ 8 punct _ _ 10 version version NOUN NN Number=Sing 5 attr _ _ 11 of of ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 group group NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 13 punct _ _ 15 in in ADP IN _ 23 prep _ _ 16 which which PRON WDT _ 15 pobj _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 underlying underlie VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 19 amod _ _ 19 set set VERB VBD Tense=Past|VerbForm=Fin 23 nsubjpass _ _ 20 $ G $ $ g $ SYM $ _ 19 npadvmod _ _ 21 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 aux _ _ 22 been be AUX VBN Tense=Past|VerbForm=Part 23 auxpass _ _ 23 replaced replace VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 relcl _ _ 24 by by ADP IN _ 23 agent _ _ 25 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 26 category category NOUN NN Number=Sing 24 pobj _ _ 27 and and CCONJ CC ConjType=Cmp 26 cc _ _ 28 the the DET DT Definite=Def|PronType=Art 30 det _ _ 29 multiplication multiplication NOUN NN Number=Sing 30 compound _ _ 30 map map VERB VBP Tense=Pres|VerbForm=Fin 23 conj _ _ 31 $ m ; G x G - > G $ $ m ; g x g - > g $ SYM $ _ 34 nsubjpass _ _ 32 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 34 aux _ _ 33 been be AUX VBN Tense=Past|VerbForm=Part 34 auxpass _ _ 34 replaced replace VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 conj _ _ 35 by by ADP IN _ 34 agent _ _ 36 a a DET DT Definite=Ind|PronType=Art 37 det _ _ 37 functor functor NOUN NN Number=Sing 35 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 34 punct _ SpaceAfter=No # sent_id = 2 # text = Various versions of this notion have already been explored; our goal here is to provide a detailed introduction to two, which we call `weak' and `coherent' 2 - groups. 1 Various various ADJ JJ Degree=Pos 2 amod _ _ 2 versions version NOUN NNS Number=Plur 9 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 notion notion NOUN NN Number=Sing 3 pobj _ _ 6 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 aux _ _ 7 already already ADV RB _ 9 advmod _ _ 8 been be AUX VBN Tense=Past|VerbForm=Part 9 auxpass _ _ 9 explored explore VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 ccomp _ SpaceAfter=No 10 ; ; PUNCT : _ 14 punct _ _ 11 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 12 poss _ _ 12 goal goal NOUN NN Number=Sing 14 nsubj _ _ 13 here here ADV RB PronType=Dem 12 advmod _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 to to PART TO _ 16 aux _ _ 16 provide provide VERB VB VerbForm=Inf 14 xcomp _ _ 17 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 18 detailed detailed ADJ JJ Degree=Pos 19 amod _ _ 19 introduction introduction NOUN NN Number=Sing 16 dobj _ _ 20 to to ADP IN _ 19 prep _ _ 21 two two NUM CD NumType=Card 20 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 which which PRON WDT _ 25 dobj _ _ 24 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 25 nsubj _ _ 25 call call VERB VBP Tense=Pres|VerbForm=Fin 21 relcl _ _ 26 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 27 punct _ SpaceAfter=No 27 weak weak ADJ JJ Degree=Pos 25 oprd _ SpaceAfter=No 28 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 27 punct _ _ 29 and and CCONJ CC ConjType=Cmp 27 cc _ _ 30 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 31 punct _ SpaceAfter=No 31 coherent coherent ADJ JJ Degree=Pos 27 conj _ SpaceAfter=No 32 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 31 punct _ _ 33 2 2 NUM CD NumType=Card 35 nummod _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 groups group NOUN NNS Number=Plur 25 oprd _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 3 # text = A weak 2 - group is a weak monoidal category in which every morphism has an inverse and every object x has a `weak inverse': an object $ y $ such that $ x tensor y iso 1 iso y tensor x $ . 1 A a DET DT Definite=Ind|PronType=Art 5 det _ _ 2 weak weak ADJ JJ Degree=Pos 5 amod _ _ 3 2 2 NUM CD NumType=Card 5 nummod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 group group NOUN NN Number=Sing 6 nsubj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 8 weak weak ADJ JJ Degree=Pos 10 amod _ _ 9 monoidal monoidal ADJ JJ Degree=Pos 10 amod _ _ 10 category category NOUN NN Number=Sing 6 attr _ _ 11 in in ADP IN _ 15 prep _ _ 12 which which PRON WDT _ 11 pobj _ _ 13 every every DET DT _ 14 det _ _ 14 morphism morphism NOUN NN Number=Sing 15 nsubj _ _ 15 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 relcl _ _ 16 an an DET DT Definite=Ind|PronType=Art 17 det _ _ 17 inverse inverse NOUN NN Number=Sing 15 dobj _ _ 18 and and CCONJ CC ConjType=Cmp 15 cc _ _ 19 every every DET DT _ 20 det _ _ 20 object object NOUN NN Number=Sing 22 nsubj _ _ 21 x x PUNCT : _ 20 punct _ _ 22 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 conj _ _ 23 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 24 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 26 punct _ SpaceAfter=No 25 weak weak ADJ JJ Degree=Pos 26 amod _ _ 26 inverse inverse NOUN NN Number=Sing 22 dobj _ SpaceAfter=No 27 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 26 punct _ SpaceAfter=No 28 : : PUNCT : _ 26 punct _ _ 29 an an DET DT Definite=Ind|PronType=Art 30 det _ _ 30 object object NOUN NN Number=Sing 26 appos _ _ 31 $ y $ $ y $ SYM $ _ 30 appos _ _ 32 such such ADJ JJ Degree=Pos 33 amod _ _ 33 that that SCONJ IN _ 34 nsubj _ _ 34 $ x tensor y iso 1 iso y tensor x $ $ x tensor y iso 1 iso y tensor x $ SYM $ _ 30 appos _ _ 35 . . PUNCT . PunctType=Peri 22 punct _ SpaceAfter=No # sent_id = 4 # text = A coherent 2 - group is a weak 2 - group in which every object $ x $ is equipped with a specified weak inverse $ x' $ and isomorphisms $ i_x : 1 - > x tensor x', e_x : x' tensor x - > 1 $ forming an adjunction. 1 A a DET DT Definite=Ind|PronType=Art 5 det _ _ 2 coherent coherent ADJ JJ Degree=Pos 5 amod _ _ 3 2 2 NUM CD NumType=Card 5 nummod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 group group NOUN NN Number=Sing 6 nsubj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 8 weak weak ADJ JJ Degree=Pos 11 amod _ _ 9 2 2 NUM CD NumType=Card 11 nummod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 group group NOUN NN Number=Sing 6 attr _ _ 12 in in ADP IN _ 18 prep _ _ 13 which which PRON WDT _ 12 pobj _ _ 14 every every DET DT _ 15 det _ _ 15 object object NOUN NN Number=Sing 18 nsubjpass _ _ 16 $ x $ $ x $ SYM $ _ 15 prep _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 auxpass _ _ 18 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 relcl _ _ 19 with with ADP IN _ 18 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 21 specified specify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 amod _ _ 22 weak weak ADJ JJ Degree=Pos 23 amod _ _ 23 inverse inverse NOUN NN Number=Sing 24 compound _ _ 24 $ x' $ $ x' $ SYM $ _ 19 pobj _ _ 25 and and CCONJ CC ConjType=Cmp 18 cc _ _ 26 isomorphisms isomorphism VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 conj _ _ 27 $ i_x : 1 - > x tensor x', e_x : x' tensor x - > 1 $ $ i_x : 1 - > x tensor x', e_x : x' tensor x - > 1 $ SYM $ _ 28 nsubj _ _ 28 forming form VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 advcl _ _ 29 an an DET DT Definite=Ind|PronType=Art 30 det _ _ 30 adjunction adjunction NOUN NN Number=Sing 28 dobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 5 # text = We describe 2 - categories of weak and coherent 2 - groups and an `improvement' 2 - functor that turns weak 2 - groups into coherent ones, and prove that this 2 - functor is a 2 - equivalence of 2 - categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 2 2 NUM CD NumType=Card 5 nummod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 categories category NOUN NNS Number=Plur 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 weak weak ADJ JJ Degree=Pos 12 amod _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 coherent coherent ADJ JJ Degree=Pos 7 conj _ _ 10 2 2 NUM CD NumType=Card 12 nummod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 groups group NOUN NNS Number=Plur 6 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 5 cc _ _ 14 an an DET DT Definite=Ind|PronType=Art 16 det _ _ 15 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 16 punct _ SpaceAfter=No 16 improvement improvement NOUN NN Number=Sing 5 conj _ SpaceAfter=No 17 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 16 punct _ _ 18 2 2 NUM CD NumType=Card 20 nummod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 functor functor NOUN NN Number=Sing 16 appos _ _ 21 that that PRON WDT PronType=Rel 22 nsubj _ _ 22 turns turn VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 relcl _ _ 23 weak weak ADJ JJ Degree=Pos 26 amod _ _ 24 2 2 NUM CD NumType=Card 26 nummod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 groups group NOUN NNS Number=Plur 22 dobj _ _ 27 into into ADP IN _ 22 prep _ _ 28 coherent coherent ADJ JJ Degree=Pos 29 amod _ _ 29 ones one NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 16 punct _ _ 31 and and CCONJ CC ConjType=Cmp 2 cc _ _ 32 prove prove VERB VB VerbForm=Inf 2 conj _ _ 33 that that SCONJ IN _ 38 mark _ _ 34 this this DET DT Number=Sing|PronType=Dem 37 det _ _ 35 2 2 NUM CD NumType=Card 37 nummod _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 functor functor NOUN NN Number=Sing 38 nsubj _ _ 38 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 32 ccomp _ _ 39 a a DET DT Definite=Ind|PronType=Art 42 det _ _ 40 2 2 NUM CD NumType=Card 42 nummod _ _ 41 - - PUNCT HYPH PunctType=Dash 42 punct _ _ 42 equivalence equivalence NOUN NN Number=Sing 38 attr _ _ 43 of of ADP IN _ 42 prep _ _ 44 2 2 NUM CD NumType=Card 46 nummod _ _ 45 - - PUNCT HYPH PunctType=Dash 46 punct _ _ 46 categories category NOUN NNS Number=Plur 43 pobj _ SpaceAfter=No 47 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = We internalize the concept of coherent 2 - group, which gives a quick way to define Lie 2 - groups. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 internalize internalize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 concept concept NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 coherent coherent ADJ JJ Degree=Pos 9 amod _ _ 7 2 2 NUM CD NumType=Card 9 nummod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 group group NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 which which PRON WDT _ 12 nsubj _ _ 12 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 relcl _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 quick quick ADJ JJ Degree=Pos 15 amod _ _ 15 way way NOUN NN Number=Sing 12 dobj _ _ 16 to to PART TO _ 17 aux _ _ 17 define define VERB VB VerbForm=Inf 15 relcl _ _ 18 Lie Lie PROPN NNP Number=Sing 17 dobj _ _ 19 2 2 NUM CD NumType=Card 21 nummod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 groups group NOUN NNS Number=Plur 17 dobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 7 # text = We give a tour of examples, including the `fundamental 2 - group' of a space and various Lie 2 - groups. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 tour tour NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 examples example NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 4 punct _ _ 8 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 14 det _ _ 10 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 14 punct _ SpaceAfter=No 11 fundamental fundamental ADJ JJ Degree=Pos 14 amod _ _ 12 2 2 NUM CD NumType=Card 14 nummod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 group group NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 15 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 14 punct _ _ 16 of of ADP IN _ 14 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 space space NOUN NN Number=Sing 16 pobj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 various various ADJ JJ Degree=Pos 21 amod _ _ 21 Lie lie NOUN NN Number=Sing 18 conj _ _ 22 2 2 NUM CD NumType=Card 24 nummod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 groups group NOUN NNS Number=Plur 14 appos _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 8 # text = We also explain how coherent 2 - groups can be classified in terms of 3rd cohomology classes in group cohomology. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 explain explain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 how how SCONJ WRB _ 5 advmod _ _ 5 coherent coherent ADJ JJ Degree=Pos 11 nsubjpass _ _ 6 2 2 NUM CD NumType=Card 8 nummod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 groups group NOUN NNS Number=Plur 11 nsubjpass _ _ 9 can can AUX MD VerbForm=Fin 11 aux _ _ 10 be be AUX VB VerbForm=Inf 11 auxpass _ _ 11 classified classify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 ccomp _ _ 12 in in ADP IN _ 11 prep _ _ 13 terms term NOUN NNS Number=Plur 12 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 3rd 3rd ADJ JJ Degree=Pos 17 amod _ _ 16 cohomology cohomology NOUN NN Number=Sing 17 compound _ _ 17 classes class NOUN NNS Number=Plur 14 pobj _ _ 18 in in ADP IN _ 17 prep _ _ 19 group group NOUN NN Number=Sing 20 compound _ _ 20 cohomology cohomology NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 9 # text = Finally, using this classification, we construct for any connected and simply - connected compact simple Lie group $ G $ a family of 2 - groups $ G_h (h in Z) $ having $ G $ as its group of objects and $ U(1) $ as the group of automorphisms of its identity object. 1 Finally finally ADV RB _ 8 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 8 punct _ _ 3 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 advcl _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 classification classification NOUN NN Number=Sing 3 dobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 8 punct _ _ 7 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 8 nsubj _ _ 8 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 for for ADP IN _ 8 prep _ _ 10 any any DET DT _ 19 det _ _ 11 connected connected ADJ JJ Degree=Pos 19 amod _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 simply simply ADV RB _ 15 advmod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 conj _ _ 16 compact compact ADJ JJ Degree=Pos 17 amod _ _ 17 simple simple ADJ JJ Degree=Pos 19 amod _ _ 18 Lie lie NOUN NN Number=Sing 19 compound _ _ 19 group group NOUN NN Number=Sing 9 pobj _ _ 20 $ G $ $ g $ SYM $ _ 22 nmod _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 family family NOUN NN Number=Sing 8 dobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 2 2 NUM CD NumType=Card 26 nummod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 groups group NOUN NNS Number=Plur 23 pobj _ _ 27 $ G_h (h in Z) $ $ g_h (h in z) $ SYM $ _ 28 nsubj _ _ 28 having have VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 advcl _ _ 29 $ G $ $ g $ SYM $ _ 28 dobj _ _ 30 as as ADP IN _ 28 prep _ _ 31 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 32 poss _ _ 32 group group NOUN NN Number=Sing 30 pobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 objects object NOUN NNS Number=Plur 33 pobj _ _ 35 and and CCONJ CC ConjType=Cmp 32 cc _ _ 36 $ U(1) $ $ u(1) $ SYM $ _ 32 conj _ _ 37 as as ADP IN _ 32 prep _ _ 38 the the DET DT Definite=Def|PronType=Art 39 det _ _ 39 group group NOUN NN Number=Sing 37 pobj _ _ 40 of of ADP IN _ 39 prep _ _ 41 automorphisms automorphism NOUN NNS Number=Plur 40 pobj _ _ 42 of of ADP IN _ 41 prep _ _ 43 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 45 poss _ _ 44 identity identity NOUN NN Number=Sing 45 compound _ _ 45 object object NOUN NN Number=Sing 42 pobj _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 10 # text = These 2 - groups are built using Chern - Simons theory, and are closely related to the Lie 2 - algebras $ g_h (h in R) $ described in a companion paper. 1 These these DET DT Number=Plur|PronType=Dem 4 det _ _ 2 2 2 NUM CD NumType=Card 4 nummod _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 groups group NOUN NNS Number=Plur 6 nsubjpass _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 6 built build VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 advcl _ _ 8 Chern Chern PROPN NNP Number=Sing 10 compound _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 Simons Simons PROPN NNPS Number=Plur 11 compound _ _ 11 theory theory NOUN NN Number=Sing 7 dobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 6 punct _ _ 13 and and CCONJ CC ConjType=Cmp 6 cc _ _ 14 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 16 auxpass _ _ 15 closely closely ADV RB _ 16 advmod _ _ 16 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 conj _ _ 17 to to ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 Lie lie NOUN NN Number=Sing 17 pobj _ _ 20 2 2 NUM CD NumType=Card 22 nummod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 algebras algebra NOUN NNS Number=Plur 19 appos _ _ 23 $ g_h (h in R) $ $ g_h (h in r) $ SYM $ _ 24 nsubj _ _ 24 described describe VERB VBD Tense=Past|VerbForm=Fin 6 conj _ _ 25 in in ADP IN _ 24 prep _ _ 26 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 27 companion companion NOUN NN Number=Sing 28 compound _ _ 28 paper paper NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 176 # sent_id = 1 # text = The theory of Lie algebras can be categorified starting from a new notion of `2 - vector space', which we define as an internal category in Vect. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 theory theory NOUN NN Number=Sing 8 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 Lie Lie PROPN NNP Number=Sing 5 compound _ _ 5 algebras algebra NOUN NNS Number=Plur 3 pobj _ _ 6 can can AUX MD VerbForm=Fin 8 aux _ _ 7 be be AUX VB VerbForm=Inf 8 auxpass _ _ 8 categorified categorifie VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 starting start VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 xcomp _ _ 10 from from ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 new new ADJ JJ Degree=Pos 13 amod _ _ 13 notion notion NOUN NN Number=Sing 10 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 19 punct _ SpaceAfter=No 16 2 2 NUM CD NumType=Card 18 nummod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 vector vector NOUN NN Number=Sing 19 compound _ _ 19 space space NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 20 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 19 punct _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 19 punct _ _ 22 which which PRON WDT _ 24 dobj _ _ 23 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 24 nsubj _ _ 24 define define VERB VBP Tense=Pres|VerbForm=Fin 19 relcl _ _ 25 as as ADP IN _ 24 prep _ _ 26 an an DET DT Definite=Ind|PronType=Art 28 det _ _ 27 internal internal ADJ JJ Degree=Pos 28 amod _ _ 28 category category NOUN NN Number=Sing 25 pobj _ _ 29 in in ADP IN _ 28 prep _ _ 30 Vect Vect PROPN NNP Number=Sing 29 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 2 # text = There is a 2 - category 2Vect having these 2 - vector spaces as objects, `linear functors' as morphisms and `linear natural transformations' as 2 - morphisms. 1 There there PRON EX _ 2 expl _ _ 2 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 4 2 2 NUM CD NumType=Card 6 nummod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 category category NOUN NN Number=Sing 7 compound _ _ 7 2Vect 2vect NOUN NN Number=Sing 2 attr _ _ 8 having have VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 acl _ _ 9 these these DET DT Number=Plur|PronType=Dem 13 det _ _ 10 2 2 NUM CD NumType=Card 12 nummod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 vector vector NOUN NN Number=Sing 13 compound _ _ 13 spaces space NOUN NNS Number=Plur 8 dobj _ _ 14 as as ADP IN _ 13 prep _ _ 15 objects object NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 15 punct _ SpaceAfter=No 18 linear linear PROPN NNP Number=Sing 19 compound _ _ 19 functors functor NOUN NNS Number=Plur 15 appos _ SpaceAfter=No 20 ' ' PART POS _ 19 case _ _ 21 as as ADP IN _ 19 prep _ _ 22 morphisms morphism NOUN NNS Number=Plur 21 pobj _ _ 23 and and CCONJ CC ConjType=Cmp 22 cc _ _ 24 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 27 punct _ SpaceAfter=No 25 linear linear ADJ JJ Degree=Pos 27 amod _ _ 26 natural natural ADJ JJ Degree=Pos 27 amod _ _ 27 transformations transformation NOUN NNS Number=Plur 22 conj _ SpaceAfter=No 28 ' ' PART POS _ 19 punct _ _ 29 as as ADP IN _ 19 prep _ _ 30 2 2 NUM CD NumType=Card 32 nummod _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 morphisms morphism NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We define a `semistrict Lie 2 - algebra' to be a 2 - vector space $ L $ equipped with a skew - symmetric bilinear functor $ [ . , . ] : L x L - > L $ satisfying the Jacobi identity up to a completely antisymmetric trilinear natural transformation called the `Jacobiator', which in turn must satisfy a certain law of its own. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 4 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 6 punct _ SpaceAfter=No 5 semistrict semistrict ADJ JJ Degree=Pos 6 nmod _ _ 6 Lie Lie PROPN NNP Number=Sing 9 nmod _ _ 7 2 2 NUM CD NumType=Card 9 nummod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 algebra algebra NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 10 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 9 punct _ _ 11 to to PART TO _ 12 aux _ _ 12 be be AUX VB VerbForm=Inf 2 xcomp _ _ 13 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 14 2 2 NUM CD NumType=Card 16 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 vector vector NOUN NN Number=Sing 17 compound _ _ 17 space space NOUN NN Number=Sing 12 attr _ _ 18 $ L $ $ l $ SYM $ _ 17 appos _ _ 19 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 acl _ _ 20 with with ADP IN _ 19 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 22 skew skew NOUN NN Number=Sing 24 advmod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 symmetric symmetric ADJ JJ Degree=Pos 26 amod _ _ 25 bilinear bilinear PROPN NNP Number=Sing 26 compound _ _ 26 functor functor NOUN NN Number=Sing 20 pobj _ _ 27 $ [ . , . ] : L x L - > L $ $ [ . , . ] : l x l - > l $ SYM $ _ 12 advmod _ _ 28 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 advcl _ _ 29 the the DET DT Definite=Def|PronType=Art 31 det _ _ 30 Jacobi Jacobi PROPN NNP Number=Sing 31 compound _ _ 31 identity identity NOUN NN Number=Sing 28 dobj _ _ 32 up up ADP IN _ 28 prep _ _ 33 to to ADP IN _ 32 prep _ _ 34 a a DET DT Definite=Ind|PronType=Art 39 det _ _ 35 completely completely ADV RB _ 36 advmod _ _ 36 antisymmetric antisymmetric ADJ JJ Degree=Pos 39 amod _ _ 37 trilinear trilinear ADJ JJ Degree=Pos 39 nmod _ _ 38 natural natural ADJ JJ Degree=Pos 39 amod _ _ 39 transformation transformation NOUN NN Number=Sing 33 pobj _ _ 40 called call VERB VBD Tense=Past|VerbForm=Fin 39 acl _ _ 41 the the DET DT Definite=Def|PronType=Art 43 det _ _ 42 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 43 punct _ SpaceAfter=No 43 Jacobiator Jacobiator PROPN NNP Number=Sing 40 oprd _ SpaceAfter=No 44 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 43 punct _ SpaceAfter=No 45 , , PUNCT , PunctType=Comm 43 punct _ _ 46 which which PRON WDT _ 50 nsubj _ _ 47 in in ADP IN _ 50 prep _ _ 48 turn turn NOUN NN Number=Sing 47 pobj _ _ 49 must must AUX MD VerbForm=Fin 50 aux _ _ 50 satisfy satisfy VERB VB VerbForm=Inf 43 relcl _ _ 51 a a DET DT Definite=Ind|PronType=Art 53 det _ _ 52 certain certain ADJ JJ Degree=Pos 53 amod _ _ 53 law law NOUN NN Number=Sing 50 dobj _ _ 54 of of ADP IN _ 53 prep _ _ 55 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 56 poss _ _ 56 own own ADJ JJ Degree=Pos 54 pobj _ SpaceAfter=No 57 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = This law is closely related to the Zamolodchikov tetrahedron equation, and indeed we prove that any semistrict Lie 2 - algebra gives a solution of this equation, just as any Lie algebra gives a solution of the Yang - Baxter equation. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 law law NOUN NN Number=Sing 5 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 4 closely closely ADV RB _ 5 advmod _ _ 5 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 to to ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 10 det _ _ 8 Zamolodchikov Zamolodchikov PROPN NNP Number=Sing 10 compound _ _ 9 tetrahedron tetrahedron NOUN NN Number=Sing 10 compound _ _ 10 equation equation NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 5 punct _ _ 12 and and CCONJ CC ConjType=Cmp 5 cc _ _ 13 indeed indeed ADV RB _ 15 advmod _ _ 14 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 15 nsubj _ _ 15 prove prove VERB VBP Tense=Pres|VerbForm=Fin 5 conj _ _ 16 that that SCONJ IN _ 23 mark _ _ 17 any any DET DT _ 19 det _ _ 18 semistrict semistrict ADJ JJ Degree=Pos 19 amod _ _ 19 Lie lie NOUN NN Number=Sing 23 nsubj _ _ 20 2 2 NUM CD NumType=Card 22 nummod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 algebra algebra PROPN NNP Number=Sing 23 nsubj _ _ 23 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 ccomp _ _ 24 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 25 solution solution NOUN NN Number=Sing 23 dobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 this this DET DT Number=Sing|PronType=Dem 28 det _ _ 28 equation equation NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 23 punct _ _ 30 just just ADV RB _ 35 advmod _ _ 31 as as SCONJ IN _ 35 mark _ _ 32 any any DET DT _ 34 det _ _ 33 Lie lie NOUN NN Number=Sing 34 compound _ _ 34 algebra algebra NOUN NN Number=Sing 35 nsubj _ _ 35 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 advcl _ _ 36 a a DET DT Definite=Ind|PronType=Art 37 det _ _ 37 solution solution NOUN NN Number=Sing 35 dobj _ _ 38 of of ADP IN _ 37 prep _ _ 39 the the DET DT Definite=Def|PronType=Art 43 det _ _ 40 Yang Yang PROPN NNP Number=Sing 42 compound _ _ 41 - - PUNCT HYPH PunctType=Dash 42 punct _ _ 42 Baxter Baxter PROPN NNP Number=Sing 43 compound _ _ 43 equation equation NOUN NN Number=Sing 38 pobj _ SpaceAfter=No 44 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 5 # text = We construct a 2 - category of semistrict Lie 2 - algebras and prove that it is 2 - equivalent to the 2 - category of 2 - term $ L_infty $ - algebras in the sense of Stasheff. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 4 2 2 NUM CD NumType=Card 6 nummod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 category category NOUN NN Number=Sing 12 nmod _ _ 7 of of ADP IN _ 6 prep _ _ 8 semistrict semistrict ADJ JJ Degree=Pos 9 compound _ _ 9 Lie Lie PROPN NNP Number=Sing 7 pobj _ _ 10 2 2 NUM CD NumType=Card 12 nummod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 algebras algebra NOUN NNS Number=Plur 2 dobj _ _ 13 and and CCONJ CC ConjType=Cmp 2 cc _ _ 14 prove prove VERB VB VerbForm=Inf 2 conj _ _ 15 that that SCONJ IN _ 17 mark _ _ 16 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 17 nsubj _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 ccomp _ _ 18 2 2 NUM CD NumType=Card 20 npadvmod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 equivalent equivalent ADJ JJ Degree=Pos 17 acomp _ _ 21 to to ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 25 det _ _ 23 2 2 NUM CD NumType=Card 25 nummod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 category category NOUN NN Number=Sing 21 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 2 2 NUM CD NumType=Card 29 nummod _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 term term NOUN NN Number=Sing 32 compound _ _ 30 $ L_infty $ $ l_infty $ SYM $ _ 32 compound _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 algebras algebra NOUN NNS Number=Plur 26 pobj _ _ 33 in in ADP IN _ 17 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 35 det _ _ 35 sense sense NOUN NN Number=Sing 33 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 Stasheff Stasheff PROPN NNP Number=Sing 36 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = We also study strict and skeletal Lie 2 - algebras, obtaining the former from strict Lie 2 - groups and using the latter to classify Lie 2 - algebras in terms of 3rd cohomology classes in Lie algebra cohomology. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 strict strict ADJ JJ Degree=Pos 7 amod _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 skeletal skeletal ADJ JJ Degree=Pos 4 conj _ _ 7 Lie lie NOUN NN Number=Sing 3 dobj _ _ 8 2 2 NUM CD NumType=Card 10 nummod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 algebras algebra NOUN NNS Number=Plur 3 dobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 3 punct _ _ 12 obtaining obtain VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 advcl _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 former former ADJ JJ Degree=Pos 12 dobj _ _ 15 from from ADP IN _ 12 prep _ _ 16 strict strict ADJ JJ Degree=Pos 17 amod _ _ 17 Lie lie NOUN NN Number=Sing 20 nmod _ _ 18 2 2 NUM CD NumType=Card 20 nummod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 groups group NOUN NNS Number=Plur 15 pobj _ _ 21 and and CCONJ CC ConjType=Cmp 12 cc _ _ 22 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 conj _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 latter latter ADJ JJ Degree=Pos 22 dobj _ _ 25 to to PART TO _ 26 aux _ _ 26 classify classify VERB VB VerbForm=Inf 22 xcomp _ _ 27 Lie Lie PROPN NNP Number=Sing 26 dobj _ _ 28 2 2 NUM CD NumType=Card 30 nummod _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 algebras algebra NOUN NNS Number=Plur 26 dobj _ _ 31 in in ADP IN _ 26 prep _ _ 32 terms term NOUN NNS Number=Plur 31 pobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 3rd 3rd ADJ JJ Degree=Pos 36 amod _ _ 35 cohomology cohomology NOUN NN Number=Sing 36 compound _ _ 36 classes class NOUN NNS Number=Plur 33 pobj _ _ 37 in in ADP IN _ 36 prep _ _ 38 Lie Lie PROPN NNP Number=Sing 40 compound _ _ 39 algebra algebra PROPN NNP Number=Sing 40 compound _ _ 40 cohomology cohomology NOUN NN Number=Sing 37 pobj _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 7 # text = This classification allows us to construct for any finite - dimensional Lie algebra $ g $ a canonical 1 - parameter family of Lie 2 - algebras $ g_h $ which reduces to $ g $ at $ h = 0 $ . 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 classification classification NOUN NN Number=Sing 3 nsubj _ _ 3 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 5 to to PART TO _ 6 aux _ _ 6 construct construct VERB VB VerbForm=Inf 3 ccomp _ _ 7 for for ADP IN _ 6 prep _ _ 8 any any DET DT _ 13 det _ _ 9 finite finite ADJ JJ Degree=Pos 11 npadvmod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 dimensional dimensional ADJ JJ Degree=Pos 12 amod _ _ 12 Lie lie NOUN NN Number=Sing 13 compound _ _ 13 algebra algebra PROPN NNP Number=Sing 7 pobj _ _ 14 $ g $ $ g $ SYM $ _ 20 nmod _ _ 15 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 16 canonical canonical ADJ JJ Degree=Pos 20 amod _ _ 17 1 1 NUM CD NumType=Card 19 nummod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 parameter parameter NOUN NN Number=Sing 20 compound _ _ 20 family family NOUN NN Number=Sing 13 appos _ _ 21 of of ADP IN _ 20 prep _ _ 22 Lie Lie PROPN NNP Number=Sing 21 pobj _ _ 23 2 2 NUM CD NumType=Card 25 nummod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 algebras algebra NOUN NNS Number=Plur 6 npadvmod _ _ 26 $ g_h $ $ g_h $ SYM $ _ 25 prep _ _ 27 which which PRON WDT _ 28 nsubj _ _ 28 reduces reduce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 26 relcl _ _ 29 to to ADP IN _ 28 prep _ _ 30 $ g $ $ g $ SYM $ _ 29 pobj _ _ 31 at at ADP IN _ 28 prep _ _ 32 $ h = 0 $ $ h = 0 $ SYM $ _ 31 pobj _ _ 33 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 8 # text = These are closely related to the 2 - groups $ G_h $ constructed in a companion paper. 1 These these PRON DT Number=Plur|PronType=Dem 2 nsubj _ _ 2 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 closely closely ADV RB _ 4 advmod _ _ 4 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 acomp _ _ 5 to to ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 9 det _ _ 7 2 2 NUM CD NumType=Card 9 nummod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 groups group NOUN NNS Number=Plur 5 pobj _ _ 10 $ G_h $ $ g_h $ SYM $ _ 9 appos _ _ 11 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 acl _ _ 12 in in ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 companion companion NOUN NN Number=Sing 15 compound _ _ 15 paper paper NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 177 # sent_id = 1 # text = If $ X $ is a locale, then its double powerlocale $ PX $ is defined to be $ PU(PL(X)) $ where $ PU $ and $ PL $ are the upper and lower powerlocale constructions. 1 If if SCONJ IN _ 3 mark _ _ 2 $ X $ $ x $ SYM $ _ 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 advcl _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 locale locale NOUN NN Number=Sing 3 attr _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 13 punct _ _ 7 then then ADV RB PronType=Dem 13 advmod _ _ 8 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 10 poss _ _ 9 double double ADJ JJ Degree=Pos 10 amod _ _ 10 powerlocale powerlocale NOUN NN Number=Sing 13 nsubjpass _ _ 11 $ PX $ $ px $ SYM $ _ 10 appos _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 14 to to PART TO _ 15 aux _ _ 15 be be AUX VB VerbForm=Inf 13 xcomp _ _ 16 $ PU(PL(X)) $ $ pu(pl(x)) $ SYM $ _ 21 nsubj _ _ 17 where where SCONJ WRB _ 18 advmod _ _ 18 $ PU $ $ pu $ SYM $ _ 16 relcl _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 $ PL $ $ pl $ SYM $ _ 18 conj _ _ 21 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 conj _ _ 22 the the DET DT Definite=Def|PronType=Art 27 det _ _ 23 upper upper ADJ JJ Degree=Pos 27 amod _ _ 24 and and CCONJ CC ConjType=Cmp 23 cc _ _ 25 lower low ADJ JJR Degree=Cmp 23 conj _ _ 26 powerlocale powerlocale NOUN NN Number=Sing 27 compound _ _ 27 constructions construction NOUN NNS Number=Plur 21 attr _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 21 punct _ SpaceAfter=No # sent_id = 2 # text = We prove various results relating it to exponentiation of locales, including the following. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 various various ADJ JJ Degree=Pos 4 amod _ _ 4 results result NOUN NNS Number=Plur 2 dobj _ _ 5 relating relate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 acl _ _ 6 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 5 dobj _ _ 7 to to ADP IN _ 5 prep _ _ 8 exponentiation exponentiation NOUN NN Number=Sing 7 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 locales locale NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 8 punct _ _ 12 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 following following NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = First, if $ X $ is a locale for which the exponential $ S^X $ exists (where $ S $ is the Sierpinski locale), then $ PX $ is an exponential $ S^(S^X) $ . 1 First first ADV RB _ 5 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 5 punct _ _ 3 if if SCONJ IN _ 5 mark _ _ 4 $ X $ $ x $ SYM $ _ 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 25 ccomp _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 locale locale NOUN NN Number=Sing 5 attr _ _ 8 for for ADP IN _ 13 prep _ _ 9 which which PRON WDT _ 8 pobj _ _ 10 the the DET DT Definite=Def|PronType=Art 13 det _ _ 11 exponential exponential ADJ JJ Degree=Pos 13 amod _ _ 12 $ S^X $ $ s^x $ X ADD _ 13 nmod _ _ 13 exists exist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 relcl _ _ 14 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 13 punct _ SpaceAfter=No 15 where where SCONJ WRB _ 17 advmod _ _ 16 $ S $ $ s $ SYM $ _ 17 nsubj _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 ccomp _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 Sierpinski Sierpinski PROPN NNP Number=Sing 20 compound _ _ 20 locale locale NOUN NN Number=Sing 17 attr _ SpaceAfter=No 21 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 17 punct _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 25 punct _ _ 23 then then ADV RB PronType=Dem 25 advmod _ _ 24 $ PX $ $ px $ SYM $ _ 25 nsubj _ _ 25 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 26 an an DET DT Definite=Ind|PronType=Art 27 det _ _ 27 exponential exponential ADJ JJ Degree=Pos 25 attr _ _ 28 $ S^(S^X) $ $ s^(s^x) $ SYM $ _ 25 attr _ _ 29 . . PUNCT . PunctType=Peri 25 punct _ SpaceAfter=No # sent_id = 4 # text = Second, if in addition $ W $ is a locale for which $ PW $ is homeomorphic to $ S^X $ , then $ X $ is an exponential $ S^W $ . 1 Second second ADJ JJ Degree=Pos 7 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 7 punct _ _ 3 if if SCONJ IN _ 7 mark _ _ 4 in in ADP IN _ 7 prep _ _ 5 addition addition NOUN NN Number=Sing 4 pobj _ _ 6 $ W $ $ w $ SYM $ _ 4 dep _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 ccomp _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 locale locale NOUN NN Number=Sing 7 attr _ _ 10 for for ADP IN _ 13 prep _ _ 11 which which PRON WDT _ 10 pobj _ _ 12 $ PW $ $ pw $ SYM $ _ 13 nsubj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 relcl _ _ 14 homeomorphic homeomorphic ADJ JJ Degree=Pos 13 acomp _ _ 15 to to ADP IN _ 13 prep _ _ 16 $ S^X $ $ s^x $ SYM $ _ 7 dep _ _ 17 , , PUNCT , PunctType=Comm 20 punct _ _ 18 then then ADV RB PronType=Dem 19 advmod _ _ 19 $ X $ $ x $ SYM $ _ 20 nsubj _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 21 an an DET DT Definite=Ind|PronType=Art 23 det _ _ 22 exponential exponential ADJ JJ Degree=Pos 23 amod _ _ 23 $ S^W $ $ s^w $ SYM $ _ 20 attr _ _ 24 . . PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # sent_id = 5 # text = The work uses geometric reasoning, that is, reasoning stable under pullback along geometric morphisms, and this enables the locales to be discussed in terms of their points as though they were spaces. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 work work NOUN NN Number=Sing 3 nsubj _ _ 3 uses use VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 geometric geometric ADJ JJ Degree=Pos 5 amod _ _ 5 reasoning reasoning NOUN NN Number=Sing 3 dobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 3 punct _ _ 7 that that ADV RB _ 8 advmod _ _ 8 is is ADV RB _ 10 advmod _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 10 punct _ _ 10 reasoning reasoning NOUN NN Number=Sing 3 advcl _ _ 11 stable stable ADJ JJ Degree=Pos 10 advmod _ _ 12 under under ADP IN _ 11 prep _ _ 13 pullback pullback NOUN NN Number=Sing 12 pobj _ _ 14 along along ADP IN _ 10 prep _ _ 15 geometric geometric ADJ JJ Degree=Pos 16 amod _ _ 16 morphisms morphism NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 3 punct _ _ 18 and and CCONJ CC ConjType=Cmp 3 cc _ _ 19 this this PRON DT Number=Sing|PronType=Dem 20 nsubj _ _ 20 enables enable VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 conj _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 locales locale NOUN NNS Number=Plur 25 nsubjpass _ _ 23 to to PART TO _ 25 aux _ _ 24 be be AUX VB VerbForm=Inf 25 auxpass _ _ 25 discussed discuss VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 ccomp _ _ 26 in in ADP IN _ 25 prep _ _ 27 terms term NOUN NNS Number=Plur 26 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 30 poss _ _ 30 points point NOUN NNS Number=Plur 28 pobj _ _ 31 as as SCONJ IN _ 34 mark _ _ 32 though though SCONJ IN _ 34 mark _ _ 33 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 34 nsubj _ _ 34 were be AUX VBD Mood=Ind|Tense=Past|VerbForm=Fin 25 advcl _ _ 35 spaces space NOUN NNS Number=Plur 34 attr _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # sent_id = 6 # text = It relies on a number of geometricity results including those for locale presentations and for powerlocales. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 relies rely VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 on on ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 number number NOUN NN Number=Sing 3 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 geometricity geometricity NOUN NN Number=Sing 8 compound _ _ 8 results result NOUN NNS Number=Plur 6 pobj _ _ 9 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 prep _ _ 10 those those PRON DT Number=Plur|PronType=Dem 9 pobj _ _ 11 for for ADP IN _ 10 prep _ _ 12 locale locale NOUN NN Number=Sing 13 compound _ _ 13 presentations presentation NOUN NNS Number=Plur 11 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 11 cc _ _ 15 for for ADP IN _ 11 conj _ _ 16 powerlocales powerlocale NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 178 # sent_id = 1 # text = Adamek and Sousa recently solved the problem of characterizing the subcategories $ K $ of a locally $ lambda $ - presentable category C which are $ lambda $ - orthogonal in $ C $ , using their concept of $ Klambda $ - pure morphism. 1 Adamek Adamek PROPN NNP Number=Sing 5 nsubj _ _ 2 and and CCONJ CC ConjType=Cmp 1 cc _ _ 3 Sousa Sousa PROPN NNP Number=Sing 1 conj _ _ 4 recently recently ADV RB _ 5 advmod _ _ 5 solved solve VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 problem problem NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 characterizing characterize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 pcomp _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 subcategories subcategorie NOUN NNS Number=Plur 9 dobj _ _ 12 $ K $ $ k $ SYM $ _ 9 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 15 locally locally ADV RB _ 18 advmod _ _ 16 $ lambda $ $ lambda $ SYM $ _ 18 advmod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 presentable presentable ADJ JJ Degree=Pos 20 amod _ _ 19 category category NOUN NN Number=Sing 20 compound _ _ 20 C c NOUN NN Number=Sing 13 pobj _ _ 21 which which PRON WDT _ 22 nsubj _ _ 22 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 20 relcl _ _ 23 $ lambda $ $ lambda $ SYM $ _ 25 advmod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 orthogonal orthogonal ADJ JJ Degree=Pos 22 acomp _ _ 26 in in ADP IN _ 25 prep _ _ 27 $ C $ $ c $ SYM $ _ 26 pobj _ _ 28 , , PUNCT , PunctType=Comm 5 punct _ _ 29 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 advcl _ _ 30 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 31 poss _ _ 31 concept concept NOUN NN Number=Sing 29 dobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 $ Klambda $ $ klambda $ SYM $ _ 35 advmod _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 pure pure ADJ JJ Degree=Pos 36 amod _ _ 36 morphism morphism NOUN NN Number=Sing 32 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = We strengthen the latter definition, in order to obtain a characterization of the classes defined by orthogonality with respect to $ lambda $ - presentable morphisms (where $ f : A rightarrow B $ is called $ lambda $ - presentable if it is a $ lambda $ - presentable object of the comma category $ A/C $ ). 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 strengthen strengthen VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 latter latter ADJ JJ Degree=Pos 5 amod _ _ 5 definition definition NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 2 punct _ _ 7 in in ADP IN _ 2 prep _ _ 8 order order NOUN NN Number=Sing 7 pobj _ _ 9 to to PART TO _ 10 aux _ _ 10 obtain obtain VERB VB VerbForm=Inf 8 acl _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 characterization characterization NOUN NN Number=Sing 10 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 classes class NOUN NNS Number=Plur 13 pobj _ _ 16 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 acl _ _ 17 by by ADP IN _ 16 agent _ _ 18 orthogonality orthogonality NOUN NN Number=Sing 17 pobj _ _ 19 with with ADP IN _ 18 prep _ _ 20 respect respect NOUN NN Number=Sing 19 pobj _ _ 21 to to ADP IN _ 20 prep _ _ 22 $ lambda $ $ lambda $ SYM $ _ 24 advmod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 presentable presentable ADJ JJ Degree=Pos 25 amod _ _ 25 morphisms morphism NOUN NNS Number=Plur 21 pobj _ _ 26 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 25 punct _ SpaceAfter=No 27 where where SCONJ WRB _ 30 advmod _ _ 28 $ f : A rightarrow B $ $ f : a rightarrow b $ SYM $ _ 30 nsubjpass _ _ 29 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 auxpass _ _ 30 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 25 relcl _ _ 31 $ lambda $ $ lambda $ SYM $ _ 33 advmod _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 presentable presentable ADJ JJ Degree=Pos 30 oprd _ _ 34 if if SCONJ IN _ 36 mark _ _ 35 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 36 nsubj _ _ 36 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 advcl _ _ 37 a a DET DT Definite=Ind|PronType=Art 41 det _ _ 38 $ lambda $ $ lambda $ SYM $ _ 40 advmod _ _ 39 - - PUNCT HYPH PunctType=Dash 40 punct _ _ 40 presentable presentable ADJ JJ Degree=Pos 41 amod _ _ 41 object object NOUN NN Number=Sing 36 attr _ _ 42 of of ADP IN _ 41 prep _ _ 43 the the DET DT Definite=Def|PronType=Art 45 det _ _ 44 comma comma ADJ JJ Degree=Pos 45 amod _ _ 45 category category NOUN NN Number=Sing 42 pobj _ _ 46 $ A/C $ $ a/c $ SYM $ _ 36 npadvmod _ _ 47 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 2 punct _ SpaceAfter=No 48 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Those classes are natural examples of reflective subcategories defined by proper classes of morphisms. 1 Those those DET DT Number=Plur|PronType=Dem 2 det _ _ 2 classes class NOUN NNS Number=Plur 3 nsubj _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 natural natural ADJ JJ Degree=Pos 5 amod _ _ 5 examples example NOUN NNS Number=Plur 3 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 reflective reflective ADJ JJ Degree=Pos 8 amod _ _ 8 subcategories subcategorie NOUN NNS Number=Plur 6 pobj _ _ 9 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 acl _ _ 10 by by ADP IN _ 9 agent _ _ 11 proper proper ADJ JJ Degree=Pos 12 amod _ _ 12 classes class NOUN NNS Number=Plur 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 morphisms morphism NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = Adamek and Sousa's result follows from ours. 1 Adamek Adamek PROPN NNP Number=Sing 6 nsubj _ _ 2 and and CCONJ CC ConjType=Cmp 1 cc _ _ 3 Sousa Sousa PROPN NNP Number=Sing 5 poss _ SpaceAfter=No 4 's 's PART POS _ 3 case _ _ 5 result result NOUN NN Number=Sing 1 conj _ _ 6 follows follow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 from from ADP IN _ 6 prep _ _ 8 ours ours PRON PRP Number=Plur|Person=1|Poss=Yes|PronType=Prs 7 pobj _ SpaceAfter=No 9 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 5 # text = We also prove that $ lambda $ - presentable morphisms are precisely the pushouts of morphisms between $ lambda $ - presentable objects of $ C $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 9 mark _ _ 5 $ lambda $ $ lambda $ SYM $ _ 7 advmod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 presentable presentable ADJ JJ Degree=Pos 8 amod _ _ 8 morphisms morphism NOUN NNS Number=Plur 9 nsubj _ _ 9 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 10 precisely precisely ADV RB _ 9 advmod _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 pushouts pushout NOUN NNS Number=Plur 9 attr _ _ 13 of of ADP IN _ 12 prep _ _ 14 morphisms morphism NOUN NNS Number=Plur 13 pobj _ _ 15 between between ADP IN _ 12 prep _ _ 16 $ lambda $ $ lambda $ SYM $ _ 18 advmod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 presentable presentable ADJ JJ Degree=Pos 19 amod _ _ 19 objects object NOUN NNS Number=Plur 15 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 $ C $ $ c $ SYM $ _ 20 pobj _ _ 22 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 179 # sent_id = 1 # text = The paper develops the previously proposed approach to constructing factorization systems in general categories. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 develops develop VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 previously previously ADV RB _ 6 advmod _ _ 6 proposed propose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 amod _ _ 7 approach approach NOUN NN Number=Sing 3 dobj _ _ 8 to to ADP IN _ 7 prep _ _ 9 constructing construct VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 pcomp _ _ 10 factorization factorization NOUN NN Number=Sing 11 compound _ _ 11 systems system NOUN NNS Number=Plur 9 dobj _ _ 12 in in ADP IN _ 11 prep _ _ 13 general general ADJ JJ Degree=Pos 14 amod _ _ 14 categories category NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = This approach is applied to the problem of finding conditions under which a functor (not necessarily admitting a right adjoint) `reflects' factorization systems. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 approach approach NOUN NN Number=Sing 4 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 applied apply VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 to to ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 problem problem NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 finding find VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 pcomp _ _ 10 conditions condition NOUN NNS Number=Plur 9 dobj _ _ 11 under under ADP IN _ 24 prep _ _ 12 which which PRON WDT _ 11 pobj _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 functor functor NOUN NN Number=Sing 24 nsubj _ _ 15 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 18 punct _ SpaceAfter=No 16 not not PART RB Polarity=Neg 18 neg _ _ 17 necessarily necessarily ADV RB _ 18 advmod _ _ 18 admitting admit VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 acl _ _ 19 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 20 right right ADJ JJ Degree=Pos 21 amod _ _ 21 adjoint adjoint NOUN NN Number=Sing 18 dobj _ SpaceAfter=No 22 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 18 punct _ _ 23 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 24 punct _ SpaceAfter=No 24 reflects reflect VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 relcl _ SpaceAfter=No 25 ' ' PART POS _ 24 case _ _ 26 factorization factorization NOUN NN Number=Sing 27 compound _ _ 27 systems system NOUN NNS Number=Plur 24 dobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = In particular, a generalization of the well - known Cassidy - Héebert - Kelly factorization theorem is given. 1 In in ADP IN _ 19 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 19 punct _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 generalization generalization NOUN NN Number=Sing 19 nsubjpass _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 16 det _ _ 8 well well ADV RB Degree=Pos 10 advmod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 11 Cassidy Cassidy PROPN NNP Number=Sing 15 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 13 Héebert Héebert PROPN NNP Number=Sing 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 Kelly Kelly PROPN NNP Number=Sing 16 compound _ _ 16 factorization factorization NOUN NN Number=Sing 6 pobj _ _ 17 theorem theorem VERB VBD Tense=Past|VerbForm=Fin 5 amod _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 auxpass _ _ 19 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 4 # text = The problem of relating a factorization system to a pointed endofunctor is considered. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 problem problem NOUN NN Number=Sing 13 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 relating relate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 pcomp _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 factorization factorization NOUN NN Number=Sing 7 compound _ _ 7 system system NOUN NN Number=Sing 4 dobj _ _ 8 to to ADP IN _ 4 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 pointed point VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 amod _ _ 11 endofunctor endofunctor NOUN NN Number=Sing 8 pobj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 5 # text = Some relevant examples in concrete categories are given. 1 Some some DET DT _ 3 det _ _ 2 relevant relevant ADJ JJ Degree=Pos 3 amod _ _ 3 examples example NOUN NNS Number=Plur 8 nsubjpass _ _ 4 in in ADP IN _ 3 prep _ _ 5 concrete concrete ADJ JJ Degree=Pos 6 amod _ _ 6 categories category NOUN NNS Number=Plur 4 pobj _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 9 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # doc_id = 180 # sent_id = 1 # text = Lyubashenko has described enriched 2 - categories as categories enriched over $ V $ - Cat, the 2 - category of categories enriched over a symmetric monoidal $ V $ . 1 Lyubashenko Lyubashenko PROPN NNP Number=Sing 3 nsubj _ _ 2 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 aux _ _ 3 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 amod _ _ 5 2 2 NUM CD NumType=Card 7 nummod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 categories category NOUN NNS Number=Plur 3 dobj _ _ 8 as as SCONJ IN _ 10 mark _ _ 9 categories category NOUN NNS Number=Plur 10 nsubj _ _ 10 enriched enrich VERB VBD Tense=Past|VerbForm=Fin 3 advcl _ _ 11 over over ADP IN _ 10 prep _ _ 12 $ V $ $ v $ SYM $ _ 14 compound _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 Cat Cat PROPN NNP Number=Sing 11 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 10 punct _ _ 16 the the DET DT Definite=Def|PronType=Art 19 det _ _ 17 2 2 NUM CD NumType=Card 19 nummod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 category category NOUN NN Number=Sing 10 npadvmod _ _ 20 of of ADP IN _ 19 prep _ _ 21 categories category NOUN NNS Number=Plur 20 pobj _ _ 22 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 acl _ _ 23 over over ADP IN _ 22 prep _ _ 24 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 25 symmetric symmetric ADJ JJ Degree=Pos 26 amod _ _ 26 monoidal monoidal NOUN NN Number=Sing 23 pobj _ _ 27 $ V $ $ v $ SYM $ _ 22 npadvmod _ _ 28 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = This construction is the strict analogue for $ V $ - functors in $ V $ - Cat of Brian Day's probicategories for $ V $ - modules in $ V - Mod $ . 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 construction construction NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 strict strict ADJ JJ Degree=Pos 6 amod _ _ 6 analogue analogue NOUN NN Number=Sing 3 attr _ _ 7 for for ADP IN _ 6 prep _ _ 8 $ V $ $ v $ SYM $ _ 10 compound _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 functors functor NOUN NNS Number=Plur 7 pobj _ _ 11 in in ADP IN _ 10 prep _ _ 12 $ V $ $ v $ SYM $ _ 14 nmod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 Cat cat NOUN NN Number=Sing 11 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 Brian Brian PROPN NNP Number=Sing 17 compound _ _ 17 Day Day PROPN NNP Number=Sing 19 poss _ SpaceAfter=No 18 's 's PART POS _ 17 case _ _ 19 probicategories probicategorie NOUN NNS Number=Plur 15 pobj _ _ 20 for for ADP IN _ 14 prep _ _ 21 $ V $ $ v $ SYM $ _ 23 compound _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 modules module NOUN NNS Number=Plur 20 pobj _ _ 24 in in ADP IN _ 23 prep _ _ 25 $ V - Mod $ $ v - mod $ SYM $ _ 24 pobj _ _ 26 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = Here I generalize the strict version to enriched $ n $ - categories for $ k $ - fold monoidal $ V $ . 1 Here here ADV RB PronType=Dem 3 advmod _ _ 2 I I PRON PRP Case=Nom|Number=Sing|Person=1|PronType=Prs 3 nsubj _ _ 3 generalize generalize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 strict strict ADJ JJ Degree=Pos 6 amod _ _ 6 version version NOUN NN Number=Sing 3 dobj _ _ 7 to to PART TO _ 8 aux _ _ 8 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 acl _ _ 9 $ n $ $ n $ SYM $ _ 11 nummod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 categories category NOUN NNS Number=Plur 8 dobj _ _ 12 for for ADP IN _ 8 prep _ _ 13 $ k $ $ k $ SYM $ _ 14 nmod _ _ 14 - - ADJ JJ Degree=Pos 16 amod _ _ 15 fold fold ADJ JJ Degree=Pos 16 amod _ _ 16 monoidal monoidal NOUN NN Number=Sing 12 pobj _ _ 17 $ V $ $ v $ SYM $ _ 3 dobj _ _ 18 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = The latter is defined as by Balteanu, Fiedorowicz, Schwanzl and Vogt but with the addition of making visible the coherent associators. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 latter latter NOUN NN Number=Sing 4 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 as as ADP IN _ 4 prep _ _ 6 by by ADP IN _ 5 prep _ _ 7 Balteanu Balteanu PROPN NNP Number=Sing 6 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 Fiedorowicz Fiedorowicz PROPN NNP Number=Sing 7 conj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 Schwanzl Schwanzl PROPN NNP Number=Sing 9 conj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 Vogt Vogt PROPN NNP Number=Sing 11 conj _ _ 14 but but CCONJ CC ConjType=Cmp 4 cc _ _ 15 with with ADP IN _ 4 conj _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 addition addition NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 making make VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 18 pcomp _ _ 20 visible visible ADJ JJ Degree=Pos 19 ccomp _ _ 21 the the DET DT Definite=Def|PronType=Art 23 det _ _ 22 coherent coherent ADJ JJ Degree=Pos 23 amod _ _ 23 associators associator NOUN NNS Number=Plur 20 dobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = The symmetric case can easily be recovered. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 symmetric symmetric ADJ JJ Degree=Pos 3 amod _ _ 3 case case NOUN NN Number=Sing 7 nsubjpass _ _ 4 can can AUX MD VerbForm=Fin 7 aux _ _ 5 easily easily ADV RB _ 7 advmod _ _ 6 be be AUX VB VerbForm=Inf 7 auxpass _ _ 7 recovered recover VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 8 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 6 # text = This paper proposes a recursive definition of $ V - n $ - categories and their morphisms. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 proposes propose VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 recursive recursive ADJ JJ Degree=Pos 6 amod _ _ 6 definition definition NOUN NN Number=Sing 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 $ V - n $ $ v - n $ SYM $ _ 10 nummod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 categories category NOUN NNS Number=Plur 7 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 13 poss _ _ 13 morphisms morphism NOUN NNS Number=Plur 10 conj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 7 # text = We show that for $ V k $ - fold monoidal the structure of a $ (k - n) $ - fold monoidal strict $ (n+1) $ - category is possessed by $ V - n - Cat $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 22 mark _ _ 4 for for ADP IN _ 22 prep _ _ 5 $ V k $ $ v k $ SYM $ _ 6 nmod _ _ 6 - - ADJ JJ Degree=Pos 8 amod _ _ 7 fold fold ADJ JJ Degree=Pos 8 amod _ _ 8 monoidal monoidal NOUN NN Number=Sing 4 pobj _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 structure structure NOUN NN Number=Sing 22 nsubjpass _ _ 11 of of ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 $ (k - n) $ $ (k - n) $ SYM $ _ 14 nmod _ _ 14 - - PUNCT : _ 11 pobj _ _ 15 fold fold VERB VB VerbForm=Inf 11 pcomp _ _ 16 monoidal monoidal NOUN NN Number=Sing 15 dobj _ _ 17 strict strict ADJ JJ Degree=Pos 20 amod _ _ 18 $ (n+1) $ $ (n+1) $ SYM $ _ 20 nmod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 category category NOUN NN Number=Sing 22 nsubjpass _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 auxpass _ _ 22 possessed possess VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 23 by by ADP IN _ 22 agent _ _ 24 $ V - n - Cat $ $ v - n - cat $ SYM $ _ 23 pobj _ _ 25 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 8 # text = This article is a completion of the work begun by the author in the preprint entitled Higher dimensional enrichment, and the initial sections duplicate the . 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 article article NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 completion completion NOUN NN Number=Sing 3 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 work work NOUN NN Number=Sing 6 pobj _ _ 9 begun begin VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 acl _ _ 10 by by ADP IN _ 9 agent _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 author author NOUN NN Number=Sing 10 pobj _ _ 13 in in ADP IN _ 9 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 preprint preprint NOUN NN Number=Sing 13 pobj _ _ 16 entitled entitle VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 acl _ _ 17 Higher high ADJ JJR Degree=Cmp 19 amod _ _ 18 dimensional dimensional ADJ JJ Degree=Pos 19 amod _ _ 19 enrichment enrichment NOUN NN Number=Sing 16 oprd _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 3 punct _ _ 21 and and CCONJ CC ConjType=Cmp 3 cc _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 initial initial ADJ JJ Degree=Pos 24 amod _ _ 24 sections section NOUN NNS Number=Plur 25 nsubj _ _ 25 duplicate duplicate VERB VBP Tense=Pres|VerbForm=Fin 3 conj _ _ 26 the the PRON DT Definite=Def|PronType=Art 25 dobj _ _ 27 . . PUNCT . PunctType=Peri 25 punct _ SpaceAfter=No # doc_id = 181 # sent_id = 1 # text = We investigate categorical versions of algebraically closed (that is, pure) embeddings, existentially closed embeddings, and the like, in the context of locally presentable categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 investigate investigate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 categorical categorical ADJ JJ Degree=Pos 4 amod _ _ 4 versions version NOUN NNS Number=Plur 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 algebraically algebraically ADV RB _ 7 advmod _ _ 7 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 8 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 14 punct _ SpaceAfter=No 9 that that ADV RB _ 10 advmod _ _ 10 is is ADV RB _ 14 advmod _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 14 punct _ _ 12 pure pure ADJ JJ Degree=Pos 14 amod _ SpaceAfter=No 13 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 14 punct _ _ 14 embeddings embedding NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 existentially existentially ADV RB _ 17 advmod _ _ 17 closed closed ADJ JJ Degree=Pos 18 amod _ _ 18 embeddings embedding NOUN NNS Number=Plur 14 conj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 14 punct _ _ 20 and and CCONJ CC ConjType=Cmp 14 cc _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 like like ADJ JJ Degree=Pos 2 conj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 in in ADP IN _ 22 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 context context NOUN NN Number=Sing 24 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 locally locally ADV RB _ 29 advmod _ _ 29 presentable presentable ADJ JJ Degree=Pos 30 amod _ _ 30 categories category NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The definitions of Fakir, as well as some of his results, are revisited and extended. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 definitions definition NOUN NNS Number=Plur 15 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 Fakir Fakir PROPN NNP Number=Sing 3 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 4 punct _ _ 6 as as ADV RB _ 8 advmod _ _ 7 well well ADV RB Degree=Pos 8 advmod _ _ 8 as as ADP IN _ 4 cc _ _ 9 some some PRON DT _ 4 conj _ _ 10 of of ADP IN _ 9 prep _ _ 11 his his PRON PRP$ Gender=Masc|Number=Sing|Person=3|Poss=Yes|PronType=Prs 12 poss _ _ 12 results result NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 15 punct _ _ 14 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 auxpass _ _ 15 revisited revisit VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 extended extend VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 conj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 3 # text = Related preservation theorems are obtained, and a new proof of the main result of Rosicky, Adamek and Borceux, characterizing $ lambda $ - injectivity classes in locally $ lambda $ - presentable categories, is given. 1 Related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 amod _ _ 2 preservation preservation NOUN NN Number=Sing 3 compound _ _ 3 theorems theorem NOUN NNS Number=Plur 5 nsubjpass _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 and and CCONJ CC ConjType=Cmp 5 cc _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 new new ADJ JJ Degree=Pos 10 amod _ _ 10 proof proof NOUN NN Number=Sing 35 nsubjpass _ _ 11 of of ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 main main ADJ JJ Degree=Pos 14 amod _ _ 14 result result NOUN NN Number=Sing 11 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 Rosicky rosicky ADJ JJ Degree=Pos 15 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 Adamek Adamek PROPN NNP Number=Sing 16 conj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 Borceux Borceux PROPN NNP Number=Sing 18 conj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 10 punct _ _ 22 characterizing characterize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 acl _ _ 23 $ lambda $ $ lambda $ SYM $ _ 25 amod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 injectivity injectivity NOUN NN Number=Sing 26 compound _ _ 26 classes class NOUN NNS Number=Plur 22 dobj _ _ 27 in in ADP IN _ 22 prep _ _ 28 locally locally ADV RB _ 32 advmod _ _ 29 $ lambda $ $ lambda $ SYM $ _ 31 advmod _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 presentable presentable ADJ JJ Degree=Pos 32 amod _ _ 32 categories category NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 33 , , PUNCT , PunctType=Comm 10 punct _ _ 34 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 35 auxpass _ _ 35 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 conj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 35 punct _ SpaceAfter=No # doc_id = 182 # sent_id = 1 # text = Following Ghilardi and Meloni, a relational variable set on a category $ B $ is a lax functor $ B $ to $ Rel $ , where $ Rel $ is the category of sets and relations. 1 Following follow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 prep _ _ 2 Ghilardi Ghilardi PROPN NNP Number=Sing 1 pobj _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 Meloni Meloni PROPN NNP Number=Sing 2 conj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 14 punct _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 relational relational ADJ JJ Degree=Pos 8 amod _ _ 8 variable variable NOUN NN Number=Sing 14 nsubj _ _ 9 set set VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 acl _ _ 10 on on ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 category category NOUN NN Number=Sing 13 compound _ _ 13 $ B $ $ b $ SYM $ _ 10 pobj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 lax lax ADJ JJ Degree=Pos 17 amod _ _ 17 functor functor NOUN NN Number=Sing 14 attr _ _ 18 $ B $ $ b $ SYM $ _ 17 nmod _ _ 19 to to PART TO _ 17 prep _ _ 20 $ Rel $ $ rel $ SYM $ _ 19 pobj _ _ 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 where where SCONJ WRB _ 24 advmod _ _ 23 $ Rel $ $ rel $ SYM $ _ 24 nsubj _ _ 24 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 relcl _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 category category NOUN NN Number=Sing 24 attr _ _ 27 of of ADP IN _ 26 prep _ _ 28 sets set NOUN NNS Number=Plur 27 pobj _ _ 29 and and CCONJ CC ConjType=Cmp 28 cc _ _ 30 relations relation NOUN NNS Number=Plur 28 conj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 2 # text = Change - of - base functors and their adjoints are considered for certain categories of relational variable sets and applied to construct the simplification of a dynamic set (in the sense of Stell). 1 Change change NOUN NN Number=Sing 6 nmod _ _ 2 - - PUNCT HYPH PunctType=Dash 1 punct _ _ 3 of of ADP IN _ 1 prep _ _ 4 - - PUNCT HYPH PunctType=Dash 3 punct _ _ 5 base base NOUN NN Number=Sing 3 pobj _ _ 6 functors functor NOUN NNS Number=Plur 11 nsubjpass _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 9 poss _ _ 9 adjoints adjoint NOUN NNS Number=Plur 6 conj _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 11 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 12 for for ADP IN _ 11 prep _ _ 13 certain certain ADJ JJ Degree=Pos 14 amod _ _ 14 categories category NOUN NNS Number=Plur 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 relational relational ADJ JJ Degree=Pos 18 amod _ _ 17 variable variable ADJ JJ Degree=Pos 18 amod _ _ 18 sets set NOUN NNS Number=Plur 15 pobj _ _ 19 and and CCONJ CC ConjType=Cmp 11 cc _ _ 20 applied apply VERB VBD Tense=Past|VerbForm=Fin 11 conj _ _ 21 to to PART TO _ 22 aux _ _ 22 construct construct VERB VB VerbForm=Inf 20 xcomp _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 simplification simplification NOUN NN Number=Sing 22 dobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 27 dynamic dynamic ADJ JJ Degree=Pos 28 amod _ _ 28 set set NOUN NN Number=Sing 25 pobj _ _ 29 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 28 punct _ SpaceAfter=No 30 in in ADP IN _ 22 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 sense sense NOUN NN Number=Sing 30 pobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 Stell Stell PROPN NNP Number=Sing 33 pobj _ SpaceAfter=No 35 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 20 punct _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # doc_id = 183 # sent_id = 1 # text = In 1970, Gerstenhaber introduced a list of axioms defining Moore categories in order to develop the Baer Extension Theory. 1 In in ADP IN _ 5 prep _ _ 2 1970 1970 NUM CD NumType=Card 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 Gerstenhaber Gerstenhaber PROPN NNP Number=Sing 5 nsubj _ _ 5 introduced introduce VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 list list NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 axioms axiom NOUN NNS Number=Plur 8 pobj _ _ 10 defining define VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 acl _ _ 11 Moore Moore PROPN NNP Number=Sing 12 compound _ _ 12 categories category NOUN NNS Number=Plur 10 dobj _ _ 13 in in ADP IN _ 5 prep _ _ 14 order order NOUN NN Number=Sing 13 pobj _ _ 15 to to PART TO _ 16 aux _ _ 16 develop develop VERB VB VerbForm=Inf 14 acl _ _ 17 the the DET DT Definite=Def|PronType=Art 20 det _ _ 18 Baer Baer PROPN NNP Number=Sing 19 compound _ _ 19 Extension Extension PROPN NNP Number=Sing 20 compound _ _ 20 Theory Theory PROPN NNP Number=Sing 16 dobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = In this paper, we study some implications between the axioms and compare them with more recent notions, showing that, apart from size restrictions, a Moore category is a pointed, strongly protomodular and Barr - exact category with cokernels. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 some some DET DT _ 8 det _ _ 8 implications implication NOUN NNS Number=Plur 6 dobj _ _ 9 between between ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 axioms axiom NOUN NNS Number=Plur 9 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 6 cc _ _ 13 compare compare VERB VB VerbForm=Inf 6 conj _ _ 14 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 13 dobj _ _ 15 with with ADP IN _ 13 prep _ _ 16 more more ADV RBR Degree=Cmp 17 advmod _ _ 17 recent recent ADJ JJ Degree=Pos 18 amod _ _ 18 notions notion NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 13 punct _ _ 20 showing show VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 advcl _ _ 21 that that SCONJ IN _ 31 mark _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 31 punct _ _ 23 apart apart ADV RB _ 31 advmod _ _ 24 from from ADP IN _ 23 prep _ _ 25 size size NOUN NN Number=Sing 26 compound _ _ 26 restrictions restriction NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 31 punct _ _ 28 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 29 Moore Moore PROPN NNP Number=Sing 30 compound _ _ 30 category category NOUN NN Number=Sing 31 nsubj _ _ 31 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 ccomp _ _ 32 a a DET DT Definite=Ind|PronType=Art 41 det _ _ 33 pointed point VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 36 amod _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 33 punct _ _ 35 strongly strongly ADV RB _ 36 advmod _ _ 36 protomodular protomodular ADJ JJ Degree=Pos 41 amod _ _ 37 and and CCONJ CC ConjType=Cmp 36 cc _ _ 38 Barr Barr PROPN NNP Number=Sing 40 npadvmod _ _ 39 - - PUNCT HYPH PunctType=Dash 40 punct _ _ 40 exact exact ADJ JJ Degree=Pos 41 amod _ _ 41 category category NOUN NN Number=Sing 31 attr _ _ 42 with with ADP IN _ 41 prep _ _ 43 cokernels cokernel NOUN NNS Number=Plur 42 pobj _ SpaceAfter=No 44 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 184 # sent_id = 1 # text = Completions of (small) categories under certain kinds of colimits and exactness conditions have been studied extensively in the literature. 1 Completions completion NOUN NNS Number=Plur 17 nsubjpass _ _ 2 of of ADP IN _ 1 prep _ _ 3 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 6 punct _ SpaceAfter=No 4 small small ADJ JJ Degree=Pos 6 amod _ SpaceAfter=No 5 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 6 punct _ _ 6 categories category NOUN NNS Number=Plur 2 pobj _ _ 7 under under ADP IN _ 6 prep _ _ 8 certain certain ADJ JJ Degree=Pos 9 amod _ _ 9 kinds kind NOUN NNS Number=Plur 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 colimits colimit NOUN NNS Number=Plur 14 nmod _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 exactness exactness ADJ JJ Degree=Pos 14 compound _ _ 14 conditions condition NOUN NNS Number=Plur 10 pobj _ _ 15 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 17 aux _ _ 16 been be AUX VBN Tense=Past|VerbForm=Part 17 auxpass _ _ 17 studied study VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 18 extensively extensively ADV RB _ 17 advmod _ _ 19 in in ADP IN _ 17 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 literature literature NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 2 # text = When the category that we complete is not left exact but has some weaker kind of limit for finite diagrams, the universal property of the completion is usually stated with respect to functors that enjoy a property reminiscent of flatness. 1 When when SCONJ WRB _ 9 advmod _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 category category NOUN NN Number=Sing 9 nsubjpass _ _ 4 that that PRON WDT PronType=Rel 6 dobj _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 complete complete VERB VBP Tense=Pres|VerbForm=Fin 3 relcl _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 8 not not PART RB Polarity=Neg 9 neg _ _ 9 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 30 advcl _ _ 10 exact exact ADJ JJ Degree=Pos 9 oprd _ _ 11 but but CCONJ CC ConjType=Cmp 9 cc _ _ 12 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 conj _ _ 13 some some DET DT _ 15 det _ _ 14 weaker weak ADJ JJR Degree=Cmp 15 amod _ _ 15 kind kind NOUN NN Number=Sing 12 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 limit limit NOUN NN Number=Sing 16 pobj _ _ 18 for for ADP IN _ 17 prep _ _ 19 finite finite PROPN NNP Number=Sing 20 compound _ _ 20 diagrams diagram NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 30 punct _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 universal universal ADJ JJ Degree=Pos 24 amod _ _ 24 property property NOUN NN Number=Sing 30 nsubjpass _ _ 25 of of ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 completion completion NOUN NN Number=Sing 25 pobj _ _ 28 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 auxpass _ _ 29 usually usually ADV RB _ 30 advmod _ _ 30 stated state VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 31 with with ADP IN _ 30 prep _ _ 32 respect respect NOUN NN Number=Sing 31 pobj _ _ 33 to to ADP IN _ 32 prep _ _ 34 functors functor NOUN NNS Number=Plur 33 pobj _ _ 35 that that PRON WDT PronType=Rel 36 nsubj _ _ 36 enjoy enjoy VERB VBP Tense=Pres|VerbForm=Fin 34 relcl _ _ 37 a a DET DT Definite=Ind|PronType=Art 38 det _ _ 38 property property NOUN NN Number=Sing 36 dobj _ _ 39 reminiscent reminiscent ADJ JJ Degree=Pos 38 amod _ _ 40 of of ADP IN _ 39 prep _ _ 41 flatness flatness NOUN NN Number=Sing 40 pobj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 30 punct _ SpaceAfter=No # sent_id = 3 # text = In this fashion notions like that of a left covering or a multilimit merging functor have appeared in the literature. 1 In in ADP IN _ 17 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 3 fashion fashion NOUN NN Number=Sing 4 compound _ _ 4 notions notion NOUN NNS Number=Plur 17 nsubj _ _ 5 like like ADP IN _ 4 prep _ _ 6 that that PRON DT Number=Sing|PronType=Dem 5 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 left left ADJ JJ Degree=Pos 10 amod _ _ 10 covering covering NOUN NN Number=Sing 7 pobj _ _ 11 or or CCONJ CC ConjType=Cmp 10 cc _ _ 12 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 13 multilimit multilimit NOUN NN Number=Sing 15 compound _ _ 14 merging merging NOUN NN Number=Sing 15 compound _ _ 15 functor functor NOUN NN Number=Sing 10 conj _ _ 16 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 17 aux _ _ 17 appeared appear VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 18 in in ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 literature literature NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 4 # text = We show here that such notions coincide with flatness when the latter is interpreted relative to (the internal logic of) a site structure associated to the target category. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 here here ADV RB PronType=Dem 2 advmod _ _ 4 that that SCONJ IN _ 7 mark _ _ 5 such such ADJ JJ Degree=Pos 6 amod _ _ 6 notions notion NOUN NNS Number=Plur 7 nsubj _ _ 7 coincide coincide VERB VBP Tense=Pres|VerbForm=Fin 2 ccomp _ _ 8 with with ADP IN _ 7 prep _ _ 9 flatness flatness NOUN NN Number=Sing 8 pobj _ _ 10 when when SCONJ WRB _ 14 advmod _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 latter latter NOUN NN Number=Sing 14 nsubjpass _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 interpreted interpret VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 advcl _ _ 15 relative relative ADJ JJ Degree=Pos 14 advmod _ _ 16 to to ADP IN _ 15 prep _ _ 17 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 16 punct _ SpaceAfter=No 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 internal internal ADJ JJ Degree=Pos 20 amod _ _ 20 logic logic NOUN NN Number=Sing 16 pobj _ _ 21 of of ADP IN _ 20 prep _ SpaceAfter=No 22 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 21 punct _ _ 23 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 24 site site NOUN NN Number=Sing 25 compound _ _ 25 structure structure NOUN NN Number=Sing 21 pobj _ _ 26 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 25 acl _ _ 27 to to ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 30 det _ _ 29 target target NOUN NN Number=Sing 30 compound _ _ 30 category category NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = We exploit this in order to show that the left Kan extensions of such functors, along the inclusion of their domain into its completion, are left exact. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 exploit exploit VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 this this PRON DT Number=Sing|PronType=Dem 2 dobj _ _ 4 in in ADP IN _ 2 prep _ _ 5 order order NOUN NN Number=Sing 4 pobj _ _ 6 to to PART TO _ 7 aux _ _ 7 show show VERB VB VerbForm=Inf 5 acl _ _ 8 that that SCONJ IN _ 28 mark _ _ 9 the the DET DT Definite=Def|PronType=Art 12 det _ _ 10 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 11 Kan Kan PROPN NNP Number=Sing 12 compound _ _ 12 extensions extension NOUN NNS Number=Plur 28 nsubjpass _ _ 13 of of ADP IN _ 12 prep _ _ 14 such such ADJ JJ Degree=Pos 15 amod _ _ 15 functors functor NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 12 punct _ _ 17 along along ADP IN _ 12 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 inclusion inclusion NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 22 poss _ _ 22 domain domain NOUN NN Number=Sing 20 pobj _ _ 23 into into ADP IN _ 19 prep _ _ 24 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 25 poss _ _ 25 completion completion NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 28 punct _ _ 27 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 28 auxpass _ _ 28 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 ccomp _ _ 29 exact exact ADJ JJ Degree=Pos 28 oprd _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = This gives in a very economical and uniform manner the universal property of such completions. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 in in ADP IN _ 2 prt _ _ 4 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 5 very very ADV RB _ 6 advmod _ _ 6 economical economical ADJ JJ Degree=Pos 9 amod _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 uniform uniform ADJ JJ Degree=Pos 6 conj _ _ 9 manner manner NOUN NN Number=Sing 2 dobj _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 universal universal ADJ JJ Degree=Pos 12 amod _ _ 12 property property NOUN NN Number=Sing 2 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 such such ADJ JJ Degree=Pos 15 amod _ _ 15 completions completion NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 7 # text = Our result relies heavily on some unpublished work of Kock from 1989. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 result result NOUN NN Number=Sing 3 nsubj _ _ 3 relies rely VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 heavily heavily ADV RB _ 3 advmod _ _ 5 on on ADP IN _ 3 prep _ _ 6 some some DET DT _ 8 det _ _ 7 unpublished unpublished ADJ JJ Degree=Pos 8 amod _ _ 8 work work NOUN NN Number=Sing 5 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 Kock Kock PROPN NNP Number=Sing 9 pobj _ _ 11 from from ADP IN _ 8 prep _ _ 12 1989 1989 NUM CD NumType=Card 11 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 8 # text = We further apply this to give a pretopos completion process for small categories having a weak finite limit property. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 further far ADV RB _ 3 advmod _ _ 3 apply apply VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 this this PRON DT Number=Sing|PronType=Dem 3 dobj _ _ 5 to to PART TO _ 6 aux _ _ 6 give give VERB VB VerbForm=Inf 3 advcl _ _ 7 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 8 pretopos pretopos NOUN NN Number=Sing 10 compound _ _ 9 completion completion NOUN NN Number=Sing 10 compound _ _ 10 process process NOUN NN Number=Sing 6 dobj _ _ 11 for for ADP IN _ 10 prep _ _ 12 small small ADJ JJ Degree=Pos 13 amod _ _ 13 categories category NOUN NNS Number=Plur 11 pobj _ _ 14 having have VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 acl _ _ 15 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 16 weak weak ADJ JJ Degree=Pos 19 amod _ _ 17 finite finite ADJ JJ Degree=Pos 18 compound _ _ 18 limit limit NOUN NN Number=Sing 19 compound _ _ 19 property property NOUN NN Number=Sing 14 dobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 185 # sent_id = 1 # text = The purpose of this paper is to set up a theory of generalized operads and multicategories and to use it as a language in which to propose a definition of weak $ n $ - category. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 purpose purpose NOUN NN Number=Sing 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 paper paper NOUN NN Number=Sing 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 to to PART TO _ 8 aux _ _ 8 set set VERB VB VerbForm=Inf 6 xcomp _ _ 9 up up ADP RP _ 8 prt _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 theory theory NOUN NN Number=Sing 8 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 14 operads operad NOUN NNS Number=Plur 12 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 multicategories multicategorie NOUN NNS Number=Plur 14 conj _ _ 17 and and CCONJ CC ConjType=Cmp 8 cc _ _ 18 to to PART TO _ 19 aux _ _ 19 use use VERB VB VerbForm=Inf 8 conj _ _ 20 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 19 dobj _ _ 21 as as ADP IN _ 19 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 23 language language NOUN NN Number=Sing 21 pobj _ _ 24 in in ADP IN _ 27 prep _ _ 25 which which PRON WDT _ 24 pobj _ _ 26 to to PART TO _ 27 aux _ _ 27 propose propose VERB VB VerbForm=Inf 23 relcl _ _ 28 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 29 definition definition NOUN NN Number=Sing 27 dobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 weak weak ADJ JJ Degree=Pos 34 amod _ _ 32 $ n $ $ n $ SYM $ _ 34 compound _ _ 33 - - PUNCT HYPH PunctType=Dash 34 punct _ _ 34 category category NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = Included is a full explanation of why the proposed definition of $ n $ - category is a reasonable one, and of what happens when $ n $ is less than or equal to 2. 1 Included include VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 csubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 full full ADJ JJ Degree=Pos 5 amod _ _ 5 explanation explanation NOUN NN Number=Sing 2 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 why why SCONJ WRB _ 15 advmod _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 proposed propose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 10 definition definition NOUN NN Number=Sing 15 nsubj _ _ 11 of of ADP IN _ 10 prep _ _ 12 $ n $ $ n $ SYM $ _ 14 nummod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 category category NOUN NN Number=Sing 11 pobj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 pcomp _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 reasonable reasonable ADJ JJ Degree=Pos 18 amod _ _ 18 one one NOUN NN Number=Sing 15 attr _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 15 punct _ _ 20 and and CCONJ CC ConjType=Cmp 6 cc _ _ 21 of of ADP IN _ 6 conj _ _ 22 what what PRON WP _ 23 nsubj _ _ 23 happens happen VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 21 pcomp _ _ 24 when when SCONJ WRB _ 26 advmod _ _ 25 $ n $ $ n $ SYM $ _ 26 nsubj _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 advcl _ _ 27 less less ADJ JJR Degree=Cmp 26 acomp _ _ 28 than than ADP IN _ 27 prep _ _ 29 or or CCONJ CC ConjType=Cmp 28 cc _ _ 30 equal equal ADJ JJ Degree=Pos 28 conj _ _ 31 to to ADP IN _ 30 prep _ _ 32 2 2 NUM CD NumType=Card 31 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Generalized operads and multicategories play other parts in higher - dimensional algebra too, some of which are outlined here: for instance, they can be used to simplify the opetopic approach to $ n $ - categories expounded by Baez, Dolan and others, and are a natural language in which to discuss enrichment of categorical structures. 1 Generalized generalized ADJ JJ Degree=Pos 2 amod _ _ 2 operads operad NOUN NNS Number=Plur 5 nsubj _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 multicategories multicategorie NOUN NNS Number=Plur 2 conj _ _ 5 play play VERB VBP Tense=Pres|VerbForm=Fin 28 ccomp _ _ 6 other other ADJ JJ Degree=Pos 7 amod _ _ 7 parts part NOUN NNS Number=Plur 5 dobj _ _ 8 in in ADP IN _ 7 prep _ _ 9 higher high ADJ JJR Degree=Cmp 11 amod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 dimensional dimensional ADJ JJ Degree=Pos 12 amod _ _ 12 algebra algebra NOUN NNS Number=Plur 8 pobj _ _ 13 too too ADV RB _ 5 advmod _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 5 punct _ _ 15 some some PRON DT _ 19 nsubjpass _ _ 16 of of ADP IN _ 15 prep _ _ 17 which which PRON WDT _ 16 pobj _ _ 18 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 19 auxpass _ _ 19 outlined outline VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 conj _ _ 20 here here ADV RB PronType=Dem 19 advmod _ SpaceAfter=No 21 : : PUNCT : _ 28 punct _ _ 22 for for ADP IN _ 28 prep _ _ 23 instance instance NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 28 punct _ _ 25 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 28 nsubjpass _ _ 26 can can AUX MD VerbForm=Fin 28 aux _ _ 27 be be AUX VB VerbForm=Inf 28 auxpass _ _ 28 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 29 to to PART TO _ 30 aux _ _ 30 simplify simplify VERB VB VerbForm=Inf 28 xcomp _ _ 31 the the DET DT Definite=Def|PronType=Art 33 det _ _ 32 opetopic opetopic ADJ JJ Degree=Pos 33 amod _ _ 33 approach approach NOUN NN Number=Sing 30 dobj _ _ 34 to to ADP IN _ 33 prep _ _ 35 $ n $ $ n $ SYM $ _ 37 nummod _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 categories category NOUN NNS Number=Plur 34 pobj _ _ 38 expounded expound VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 37 acl _ _ 39 by by ADP IN _ 38 agent _ _ 40 Baez Baez PROPN NNP Number=Sing 39 pobj _ SpaceAfter=No 41 , , PUNCT , PunctType=Comm 40 punct _ _ 42 Dolan Dolan PROPN NNP Number=Sing 40 conj _ _ 43 and and CCONJ CC ConjType=Cmp 42 cc _ _ 44 others other NOUN NNS Number=Plur 42 conj _ SpaceAfter=No 45 , , PUNCT , PunctType=Comm 28 punct _ _ 46 and and CCONJ CC ConjType=Cmp 28 cc _ _ 47 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 28 conj _ _ 48 a a DET DT Definite=Ind|PronType=Art 50 det _ _ 49 natural natural ADJ JJ Degree=Pos 50 amod _ _ 50 language language NOUN NN Number=Sing 47 attr _ _ 51 in in ADP IN _ 54 prep _ _ 52 which which PRON WDT _ 51 pobj _ _ 53 to to PART TO _ 54 aux _ _ 54 discuss discuss VERB VB VerbForm=Inf 50 relcl _ _ 55 enrichment enrichment NOUN NN Number=Sing 54 dobj _ _ 56 of of ADP IN _ 55 prep _ _ 57 categorical categorical ADJ JJ Degree=Pos 58 amod _ _ 58 structures structure NOUN NNS Number=Plur 56 pobj _ SpaceAfter=No 59 . . PUNCT . PunctType=Peri 28 punct _ SpaceAfter=No # doc_id = 186 # sent_id = 1 # text = This paper displays an approach to the construction of the homotopy theory of simplicial sets and the corresponding equivalence with the homotopy theory of topological spaces which is based on simplicial approximation techniques. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 displays display VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 5 approach approach NOUN NN Number=Sing 3 dobj _ _ 6 to to ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 construction construction NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 homotopy homotopy NOUN NN Number=Sing 12 compound _ _ 12 theory theory NOUN NN Number=Sing 9 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 simplicial simplicial ADJ JJ Degree=Pos 15 amod _ _ 15 sets set NOUN NNS Number=Plur 13 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 8 cc _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 corresponding corresponding ADJ JJ Degree=Pos 19 amod _ _ 19 equivalence equivalence NOUN NN Number=Sing 8 conj _ _ 20 with with ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 23 det _ _ 22 homotopy homotopy NOUN NN Number=Sing 23 compound _ _ 23 theory theory NOUN NN Number=Sing 20 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 topological topological ADJ JJ Degree=Pos 26 amod _ _ 26 spaces space NOUN NNS Number=Plur 24 pobj _ _ 27 which which PRON WDT _ 29 nsubjpass _ _ 28 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 29 auxpass _ _ 29 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 relcl _ _ 30 on on ADP IN _ 29 prep _ _ 31 simplicial simplicial ADJ JJ Degree=Pos 33 amod _ _ 32 approximation approximation NOUN NN Number=Sing 33 compound _ _ 33 techniques technique NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = The required simplicial approximation results for simplicial sets and their proofs are given in full. 1 The the DET DT Definite=Def|PronType=Art 5 det _ _ 2 required require VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 amod _ _ 3 simplicial simplicial ADJ JJ Degree=Pos 5 amod _ _ 4 approximation approximation NOUN NN Number=Sing 5 compound _ _ 5 results result NOUN NNS Number=Plur 13 nsubjpass _ _ 6 for for ADP IN _ 5 prep _ _ 7 simplicial simplicial ADJ JJ Degree=Pos 8 amod _ _ 8 sets set NOUN NNS Number=Plur 6 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 5 cc _ _ 10 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 11 poss _ _ 11 proofs proof NOUN NNS Number=Plur 13 nsubjpass _ _ 12 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 14 in in ADP IN _ 13 prep _ _ 15 full full ADJ JJ Degree=Pos 14 amod _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 3 # text = Subdivision behaves like a covering in the context of the techniques displayed here. 1 Subdivision subdivision NOUN NN Number=Sing 2 nsubj _ _ 2 behaves behave VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 like like ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 covering covering NOUN NN Number=Sing 3 pobj _ _ 6 in in ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 context context NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 techniques technique NOUN NNS Number=Plur 9 pobj _ _ 12 displayed display VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 acl _ _ 13 here here ADV RB PronType=Dem 12 advmod _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 187 # sent_id = 1 # text = This article treats the problem of deriving the reflector of a semi - abelian category $ cal A $ onto a Birkhoff subcategory $ cal B $ of $ cal A $ . 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 article article NOUN NN Number=Sing 3 nsubj _ _ 3 treats treat VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 problem problem NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 deriving derive VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 pcomp _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 reflector reflector NOUN NN Number=Sing 7 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 12 semi semi ADJ JJ Degree=Pos 15 amod _ _ 13 - - ADJ JJ Degree=Pos 15 amod _ _ 14 abelian abelian ADJ JJ Degree=Pos 15 amod _ _ 15 category category NOUN NN Number=Sing 10 pobj _ _ 16 $ cal A $ $ cal a $ SYM $ _ 15 appos _ _ 17 onto onto ADP IN _ 7 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 Birkhoff Birkhoff PROPN NNP Number=Sing 20 compound _ _ 20 subcategory subcategory ADJ JJ Degree=Pos 17 pobj _ _ 21 $ cal B $ $ cal b $ SYM $ _ 3 dep _ _ 22 of of ADP IN _ 21 prep _ _ 23 $ cal A $ $ cal a $ SYM $ _ 22 pobj _ _ 24 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = Basing ourselves on Carrasco, Cegarra and Grandjean's homology theory for crossed modules, we establish a connection between our theory of Baer invariants with a generalization—to semi - abelian categories—of Barr and Beck's cotriple homology theory. 1 Basing base VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 17 advcl _ _ 2 ourselves ourselves PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs|Reflex=Yes 1 dobj _ _ 3 on on ADP IN _ 1 prep _ _ 4 Carrasco Carrasco PROPN NNP Number=Sing 3 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 4 punct _ _ 6 Cegarra Cegarra PROPN NNP Number=Sing 4 conj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 Grandjean Grandjean PROPN NNP Number=Sing 11 poss _ SpaceAfter=No 9 's 's PART POS _ 8 case _ _ 10 homology homology NOUN NN Number=Sing 11 compound _ _ 11 theory theory NOUN NN Number=Sing 6 conj _ _ 12 for for ADP IN _ 11 prep _ _ 13 crossed crossed ADJ JJ Degree=Pos 14 amod _ _ 14 modules module NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 17 punct _ _ 16 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 17 nsubj _ _ 17 establish establish VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 18 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 19 connection connection NOUN NN Number=Sing 17 dobj _ _ 20 between between ADP IN _ 19 prep _ _ 21 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 22 poss _ _ 22 theory theory NOUN NN Number=Sing 20 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 Baer Baer PROPN NNP Number=Sing 25 compound _ _ 25 invariants invariant VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 pobj _ _ 26 with with ADP IN _ 25 prep _ _ 27 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 28 generalization generalization NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 29 — — PUNCT : _ 28 punct _ SpaceAfter=No 30 to to ADP IN _ 28 prep _ _ 31 semi semi ADJ JJ Degree=Pos 34 amod _ _ 32 - - ADJ JJ Degree=Pos 34 punct _ _ 33 abelian abelian ADJ JJ Degree=Pos 34 amod _ _ 34 categories category NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 35 — — PUNCT : _ 34 punct _ SpaceAfter=No 36 of of ADP IN _ 34 prep _ _ 37 Barr Barr PROPN NNP Number=Sing 36 pobj _ _ 38 and and CCONJ CC ConjType=Cmp 37 cc _ _ 39 Beck Beck PROPN NNP Number=Sing 43 poss _ SpaceAfter=No 40 's 's PART POS _ 39 case _ _ 41 cotriple cotriple NOUN NN Number=Sing 42 compound _ _ 42 homology homology NOUN NN Number=Sing 43 compound _ _ 43 theory theory NOUN NN Number=Sing 37 conj _ SpaceAfter=No 44 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 3 # text = This results in a semi - abelian version of Hopf's formula and the Stallings - Stammbach sequence from group homology. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 results result VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 in in ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 5 semi semi ADJ JJ Degree=Pos 7 amod _ _ 6 - - ADJ JJ Degree=Pos 7 punct _ _ 7 abelian abelian ADJ JJ Degree=Pos 8 amod _ _ 8 version version NOUN NN Number=Sing 3 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 Hopf Hopf PROPN NNP Number=Sing 12 poss _ SpaceAfter=No 11 's 's PART POS _ 10 case _ _ 12 formula formula NOUN NN Number=Sing 9 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 the the DET DT Definite=Def|PronType=Art 18 det _ _ 15 Stallings Stallings PROPN NNP Number=Sing 17 compound _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 Stammbach Stammbach PROPN NNP Number=Sing 18 compound _ _ 18 sequence sequence NOUN NN Number=Sing 12 conj _ _ 19 from from ADP IN _ 18 prep _ _ 20 group group NOUN NN Number=Sing 21 compound _ _ 21 homology homology NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 188 # sent_id = 1 # text = Extending the work of Fröhlich, Lue and Furtado - Coelho, we consider the theory of Baer invariants in the context of semi - abelian categories. 1 Extending extend VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 advcl _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 work work NOUN NN Number=Sing 1 dobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 Fröhlich Fröhlich PROPN NNP Number=Sing 4 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 Lue Lue PROPN NNP Number=Sing 5 conj _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 Furtado Furtado PROPN NNP Number=Sing 11 compound _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 Coelho Coelho PROPN NNP Number=Sing 7 conj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 14 punct _ _ 13 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 14 nsubj _ _ 14 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 theory theory NOUN NN Number=Sing 14 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 Baer Baer PROPN NNP Number=Sing 19 compound _ _ 19 invariants invariant VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 pobj _ _ 20 in in ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 context context NOUN NN Number=Sing 20 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 semi semi ADJ JJ Degree=Pos 27 amod _ _ 25 - - ADJ JJ Degree=Pos 27 amod _ _ 26 abelian abelian ADJ JJ Degree=Pos 27 amod _ _ 27 categories category NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 2 # text = Several exact sequences, relative to a subfunctor of the identity functor, are obtained. 1 Several several ADJ JJ Degree=Pos 3 amod _ _ 2 exact exact ADJ JJ Degree=Pos 3 amod _ _ 3 sequences sequence NOUN NNS Number=Plur 15 nsubjpass _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 3 punct _ _ 5 relative relative ADJ JJ Degree=Pos 3 amod _ _ 6 to to ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 subfunctor subfunctor NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 identity identity NOUN NN Number=Sing 12 compound _ _ 12 functor functor NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 3 punct _ _ 14 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 auxpass _ _ 15 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 3 # text = We consider a notion of commutator which, in the case of abelianization, corresponds to Smith's. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 notion notion NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 commutator commutator NOUN NN Number=Sing 5 pobj _ _ 7 which which PRON WDT _ 15 nsubj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 15 punct _ _ 9 in in ADP IN _ 15 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 case case NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 abelianization abelianization NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 15 punct _ _ 15 corresponds correspond VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 relcl _ _ 16 to to ADP IN _ 15 prep _ _ 17 Smith Smith PROPN NNP Number=Sing 16 pobj _ SpaceAfter=No 18 's 's PART POS _ 17 case _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = The resulting notion of centrality fits into Janelidze and Kelly's theory of central extensions. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 resulting result VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 amod _ _ 3 notion notion NOUN NN Number=Sing 6 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 centrality centrality NOUN NN Number=Sing 4 pobj _ _ 6 fits fit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 into into ADP IN _ 6 prep _ _ 8 Janelidze Janelidze PROPN NNP Number=Sing 7 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 Kelly Kelly PROPN NNP Number=Sing 12 poss _ SpaceAfter=No 11 's 's PART POS _ 10 case _ _ 12 theory theory NOUN NN Number=Sing 8 conj _ _ 13 of of ADP IN _ 12 prep _ _ 14 central central ADJ JJ Degree=Pos 15 amod _ _ 15 extensions extension NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 5 # text = Finally we propose a notion of nilpotency, relative to a Birkhoff subcategory of a semi - abelian category. 1 Finally finally ADV RB _ 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 propose propose VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 notion notion NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 nilpotency nilpotency NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 relative relative ADJ JJ Degree=Pos 7 amod _ _ 10 to to ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 Birkhoff Birkhoff PROPN NNP Number=Sing 13 compound _ _ 13 subcategory subcategory NOUN NN Number=Sing 10 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 16 semi semi ADJ JJ Degree=Pos 19 amod _ _ 17 - - ADJ JJ Degree=Pos 19 amod _ _ 18 abelian abelian ADJ JJ Degree=Pos 19 amod _ _ 19 category category NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 189 # sent_id = 1 # text = It is shown that, for a finitely - complete category $ C $ with coequalizers of kernel pairs, if every product - regular epi is also stably - regular then there exist the reflections $ (R)Grphs(C) - - > (R)Rel(C) $ , from (reflexive) graphs into (reflexive) relations in $ C $ , and $ Cat(C) - - > Preord(C) $ , from categories into preorders in $ C $ . 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 that that SCONJ IN _ 32 mark _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 32 punct _ _ 6 for for ADP IN _ 32 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 8 finitely finitely ADV RB _ 10 advmod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 complete complete ADJ JJ Degree=Pos 11 amod _ _ 11 category category NOUN NN Number=Sing 6 pobj _ _ 12 $ C $ $ c $ SYM $ _ 6 dep _ _ 13 with with ADP IN _ 6 prep _ _ 14 coequalizers coequalizer NOUN NNS Number=Plur 13 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 kernel kernel NOUN NN Number=Sing 17 compound _ _ 17 pairs pair NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 32 punct _ _ 19 if if SCONJ IN _ 25 mark _ _ 20 every every DET DT _ 24 det _ _ 21 product product NOUN NN Number=Sing 23 npadvmod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 regular regular ADJ JJ Degree=Pos 24 amod _ _ 24 epi epi NOUN NN Number=Sing 25 nsubj _ _ 25 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 32 advcl _ _ 26 also also ADV RB _ 25 advmod _ _ 27 stably stably ADV RB _ 29 advmod _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 regular regular ADJ JJ Degree=Pos 25 acomp _ _ 30 then then ADV RB PronType=Dem 32 advmod _ _ 31 there there PRON EX _ 32 expl _ _ 32 exist exist VERB VBP Tense=Pres|VerbForm=Fin 3 ccomp _ _ 33 the the DET DT Definite=Def|PronType=Art 34 det _ _ 34 reflections reflection NOUN NNS Number=Plur 32 dobj _ _ 35 $ (R)Grphs(C) - - > (R)Rel(C) $ $ (R)Grphs(C) - - > (R)Rel(C) $ PROPN NNP Number=Sing 34 appos _ _ 36 , , PUNCT , PunctType=Comm 35 punct _ _ 37 from from ADP IN _ 32 prep _ _ 38 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 41 punct _ SpaceAfter=No 39 reflexive reflexive ADJ JJ Degree=Pos 41 amod _ SpaceAfter=No 40 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 41 punct _ _ 41 graphs graph NOUN NNS Number=Plur 37 pobj _ _ 42 into into ADP IN _ 41 prep _ _ 43 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 46 punct _ SpaceAfter=No 44 reflexive reflexive ADJ JJ Degree=Pos 46 amod _ SpaceAfter=No 45 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 46 punct _ _ 46 relations relation NOUN NNS Number=Plur 42 pobj _ _ 47 in in ADP IN _ 46 prep _ _ 48 $ C $ $ c $ SYM $ _ 47 pobj _ _ 49 , , PUNCT , PunctType=Comm 41 punct _ _ 50 and and CCONJ CC ConjType=Cmp 41 cc _ _ 51 $ Cat(C) - - > Preord(C) $ $ cat(c) - - > preord(c) $ SYM $ _ 41 conj _ _ 52 , , PUNCT , PunctType=Comm 41 punct _ _ 53 from from ADP IN _ 37 prep _ _ 54 categories category NOUN NNS Number=Plur 53 pobj _ _ 55 into into ADP IN _ 54 prep _ _ 56 preorders preorder NOUN NNS Number=Plur 55 pobj _ _ 57 in in ADP IN _ 56 prep _ _ 58 $ C $ $ c $ SYM $ _ 57 pobj _ _ 59 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = Furthermore, such a sufficient condition ensures as well that these reflections do have stable units. 1 Furthermore furthermore ADV RB _ 7 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 7 punct _ _ 3 such such DET PDT _ 6 predet _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 sufficient sufficient ADJ JJ Degree=Pos 6 amod _ _ 6 condition condition NOUN NN Number=Sing 7 nsubj _ _ 7 ensures ensure VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 as as ADV RB _ 9 advmod _ _ 9 well well ADV RB Degree=Pos 7 advmod _ _ 10 that that SCONJ IN _ 14 mark _ _ 11 these these DET DT Number=Plur|PronType=Dem 12 det _ _ 12 reflections reflection NOUN NNS Number=Plur 14 nsubj _ _ 13 do do AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 14 aux _ _ 14 have have VERB VB VerbForm=Inf 7 ccomp _ _ 15 stable stable ADJ JJ Degree=Pos 16 amod _ _ 16 units unit NOUN NNS Number=Plur 14 dobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = This last property is equivalent to the existence of a monotone - light factorization system, provided there are sufficiently many effective descent morphisms with domain in the respective full subcategory. 1 This this DET DT Number=Sing|PronType=Dem 3 det _ _ 2 last last ADJ JJ Degree=Pos 3 amod _ _ 3 property property NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 equivalent equivalent ADJ JJ Degree=Pos 4 acomp _ _ 6 to to ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 existence existence NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 11 monotone monotone NOUN NN Number=Sing 13 amod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 light light ADJ JJ Degree=Pos 15 amod _ _ 14 factorization factorization NOUN NN Number=Sing 15 compound _ _ 15 system system NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 4 punct _ _ 17 provided provide VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 prep _ _ 18 there there PRON EX _ 19 expl _ _ 19 are be VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 conj _ _ 20 sufficiently sufficiently ADV RB _ 21 advmod _ _ 21 many many ADJ JJ Degree=Pos 24 amod _ _ 22 effective effective ADJ JJ Degree=Pos 24 amod _ _ 23 descent descent NOUN NN Number=Sing 24 compound _ _ 24 morphisms morphism NOUN NNS Number=Plur 19 attr _ _ 25 with with ADP IN _ 19 prep _ _ 26 domain domain NOUN NN Number=Sing 25 pobj _ _ 27 in in ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 31 det _ _ 29 respective respective ADJ JJ Degree=Pos 31 amod _ _ 30 full full ADJ JJ Degree=Pos 31 amod _ _ 31 subcategory subcategory NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = In this way, we have internalized the monotone - light factorization for small categories via preordered sets, associated with the reflection $ Cat - - > Preord $ , which is now just the special case $ C = Set $ . 1 In in ADP IN _ 7 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 way way NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 7 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 6 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 aux _ _ 7 internalized internalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 the the DET DT Definite=Def|PronType=Art 12 det _ _ 9 monotone monotone NOUN NN Number=Sing 11 amod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 light light ADJ JJ Degree=Pos 12 amod _ _ 12 factorization factorization NOUN NN Number=Sing 7 dobj _ _ 13 for for ADP IN _ 12 prep _ _ 14 small small ADJ JJ Degree=Pos 15 amod _ _ 15 categories category NOUN NNS Number=Plur 13 pobj _ _ 16 via via ADP IN _ 7 prep _ _ 17 preordered preordere VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 amod _ _ 18 sets set NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 7 punct _ _ 20 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 advcl _ _ 21 with with ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 reflection reflection NOUN NN Number=Sing 21 pobj _ _ 24 $ Cat - - > Preord $ $ cat - - > preord $ SYM $ _ 20 npadvmod _ _ 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 which which PRON WDT _ 27 nsubj _ _ 27 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 relcl _ _ 28 now now ADV RB _ 27 advmod _ _ 29 just just ADV RB _ 32 advmod _ _ 30 the the DET DT Definite=Def|PronType=Art 32 det _ _ 31 special special ADJ JJ Degree=Pos 32 amod _ _ 32 case case NOUN NN Number=Sing 27 attr _ _ 33 $ C = Set $ $ c = set $ SYM $ _ 27 attr _ _ 34 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # doc_id = 190 # sent_id = 1 # text = Two notions, generic morphisms and parametric representations, useful for the analysis of endofunctors arising in enumerative combinatorics, higher dimensional category theory, and logic, are defined and examined. 1 Two two NUM CD NumType=Card 2 nummod _ _ 2 notions notion NOUN NNS Number=Plur 30 nsubjpass _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 2 punct _ _ 4 generic generic ADJ JJ Degree=Pos 5 amod _ _ 5 morphisms morphism NOUN NNS Number=Plur 2 conj _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 parametric parametric ADJ JJ Degree=Pos 8 amod _ _ 8 representations representation NOUN NNS Number=Plur 5 conj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 2 punct _ _ 10 useful useful ADJ JJ Degree=Pos 2 amod _ _ 11 for for ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 analysis analysis NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 endofunctors endofunctor NOUN NNS Number=Plur 14 pobj _ _ 16 arising arise VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 acl _ _ 17 in in ADP IN _ 16 prep _ _ 18 enumerative enumerative ADJ JJ Degree=Pos 19 amod _ _ 19 combinatorics combinatoric NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 2 punct _ _ 21 higher high ADJ JJR Degree=Cmp 24 amod _ _ 22 dimensional dimensional ADJ JJ Degree=Pos 24 amod _ _ 23 category category NOUN NN Number=Sing 24 compound _ _ 24 theory theory NOUN NN Number=Sing 2 appos _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 and and CCONJ CC ConjType=Cmp 24 cc _ _ 27 logic logic NOUN NN Number=Sing 24 conj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 2 punct _ _ 29 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 30 auxpass _ _ 30 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 31 and and CCONJ CC ConjType=Cmp 30 cc _ _ 32 examined examine VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 30 conj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 30 punct _ SpaceAfter=No # sent_id = 2 # text = Applications to the Batanin approach to higher category theory, Joyal species and operads are provided. 1 Applications application NOUN NNS Number=Plur 16 nsubjpass _ _ 2 to to ADP IN _ 1 prep _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 Batanin Batanin PROPN NNP Number=Sing 5 amod _ _ 5 approach approach NOUN NN Number=Sing 2 pobj _ _ 6 to to ADP IN _ 5 prep _ _ 7 higher high ADJ JJR Degree=Cmp 9 amod _ _ 8 category category NOUN NN Number=Sing 9 compound _ _ 9 theory theory NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 16 punct _ _ 11 Joyal joyal ADJ JJ Degree=Pos 12 amod _ _ 12 species specie NOUN NNS Number=Plur 16 nsubjpass _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 operads operad NOUN NNS Number=Plur 12 conj _ _ 15 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 16 auxpass _ _ 16 provided provide VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # doc_id = 191 # sent_id = 1 # text = The centre of a monoidal category is a braided monoidal category. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 centre centre NOUN NN Number=Sing 7 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 monoidal monoidal ADJ JJ Degree=Pos 6 amod _ _ 6 category category NOUN NN Number=Sing 3 pobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 9 braided braid VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 amod _ _ 10 monoidal monoidal ADJ JJ Degree=Pos 11 amod _ _ 11 category category NOUN NN Number=Sing 7 attr _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 2 # text = Monoidal categories are monoidal objects (or pseudomonoids) in the monoidal bicategory of categories. 1 Monoidal monoidal ADJ JJ Degree=Pos 2 amod _ _ 2 categories category NOUN NNS Number=Plur 3 nsubj _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 monoidal monoidal ADJ JJ Degree=Pos 5 amod _ _ 5 objects object NOUN NNS Number=Plur 3 attr _ _ 6 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 5 punct _ SpaceAfter=No 7 or or CCONJ CC ConjType=Cmp 5 cc _ _ 8 pseudomonoids pseudomonoid NOUN NNS Number=Plur 5 conj _ SpaceAfter=No 9 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 5 punct _ _ 10 in in ADP IN _ 3 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 monoidal monoidal ADJ JJ Degree=Pos 13 amod _ _ 13 bicategory bicategory NOUN NN Number=Sing 10 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 categories category NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = This paper provides a universal construction in a braided monoidal bicategory that produces a braided monoidal object from any monoidal object. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 universal universal ADJ JJ Degree=Pos 6 amod _ _ 6 construction construction NOUN NN Number=Sing 3 dobj _ _ 7 in in ADP IN _ 3 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 9 braided braid VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 amod _ _ 10 monoidal monoidal ADJ JJ Degree=Pos 11 amod _ _ 11 bicategory bicategory NOUN NN Number=Sing 7 pobj _ _ 12 that that PRON WDT PronType=Rel 13 nsubj _ _ 13 produces produce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 relcl _ _ 14 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 15 braided braid VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 16 monoidal monoidal ADJ JJ Degree=Pos 17 amod _ _ 17 object object NOUN NN Number=Sing 13 dobj _ _ 18 from from ADP IN _ 17 prep _ _ 19 any any DET DT _ 21 det _ _ 20 monoidal monoidal ADJ JJ Degree=Pos 21 amod _ _ 21 object object NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = Some properties and sufficient conditions for existence of the construction are examined. 1 Some some DET DT _ 2 det _ _ 2 properties property NOUN NNS Number=Plur 12 nsubjpass _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 sufficient sufficient ADJ JJ Degree=Pos 5 amod _ _ 5 conditions condition NOUN NNS Number=Plur 2 conj _ _ 6 for for ADP IN _ 2 prep _ _ 7 existence existence NOUN NN Number=Sing 6 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 construction construction NOUN NN Number=Sing 8 pobj _ _ 11 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 12 examined examine VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # doc_id = 192 # sent_id = 1 # text = In the early 1990's the authors proved that the full subcategory of `sup - lattices' determined by the constructively completely distributive (CCD) lattices is equivalent to the idempotent splitting completion of the bicategory of sets and relations. 1 In in ADP IN _ 8 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 early early ADJ JJ Degree=Pos 4 amod _ _ 4 1990 1990 NUM CD NumType=Card 7 poss _ SpaceAfter=No 5 's 's PART POS _ 4 case _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 authors author NOUN NNS Number=Plur 8 nsubj _ _ 8 proved prove VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 9 that that SCONJ IN _ 29 mark _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 full full ADJ JJ Degree=Pos 12 amod _ _ 12 subcategory subcategory NOUN NN Number=Sing 29 nsubj _ _ 13 of of ADP IN _ 12 prep _ _ 14 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 13 punct _ SpaceAfter=No 15 sup sup NOUN NN Number=Sing 17 compound _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 lattices lattice NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 18 ' ' PART POS _ 17 case _ _ 19 determined determine VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 acl _ _ 20 by by ADP IN _ 19 agent _ _ 21 the the DET DT Definite=Def|PronType=Art 28 det _ _ 22 constructively constructively ADV RB _ 23 advmod _ _ 23 completely completely ADV RB _ 24 advmod _ _ 24 distributive distributive ADJ JJ Degree=Pos 28 amod _ _ 25 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 28 punct _ SpaceAfter=No 26 CCD CCD PROPN NNP Number=Sing 28 nmod _ SpaceAfter=No 27 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 28 punct _ _ 28 lattices lattice NOUN NNS Number=Plur 20 pobj _ _ 29 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 ccomp _ _ 30 equivalent equivalent ADJ JJ Degree=Pos 29 acomp _ _ 31 to to ADP IN _ 30 prep _ _ 32 the the DET DT Definite=Def|PronType=Art 35 det _ _ 33 idempotent idempotent ADJ JJ Degree=Pos 35 amod _ _ 34 splitting splitting NOUN NN Number=Sing 35 amod _ _ 35 completion completion NOUN NN Number=Sing 31 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 the the DET DT Definite=Def|PronType=Art 38 det _ _ 38 bicategory bicategory NOUN NN Number=Sing 36 pobj _ _ 39 of of ADP IN _ 38 prep _ _ 40 sets set NOUN NNS Number=Plur 39 pobj _ _ 41 and and CCONJ CC ConjType=Cmp 40 cc _ _ 42 relations relation NOUN NNS Number=Plur 40 conj _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 2 # text = Having many corollaries, this was an extremely useful result. 1 Having have VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 advcl _ _ 2 many many ADJ JJ Degree=Pos 3 amod _ _ 3 corollaries corollary NOUN NNS Number=Plur 1 dobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 this this PRON DT Number=Sing|PronType=Dem 6 nsubj _ _ 6 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 0 ROOT _ _ 7 an an DET DT Definite=Ind|PronType=Art 10 det _ _ 8 extremely extremely ADV RB _ 9 advmod _ _ 9 useful useful ADJ JJ Degree=Pos 10 amod _ _ 10 result result NOUN NN Number=Sing 6 attr _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = Moreover, as the authors soon suspected, it specializes a much more general result. 1 Moreover moreover ADV RB _ 10 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 10 punct _ _ 3 as as SCONJ IN _ 7 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 authors author NOUN NNS Number=Plur 7 nsubj _ _ 6 soon soon ADV RB _ 7 advmod _ _ 7 suspected suspect VERB VBD Tense=Past|VerbForm=Fin 10 advcl _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 10 punct _ _ 9 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 10 nsubj _ _ 10 specializes specialize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 12 much much ADV RB _ 13 advmod _ _ 13 more more ADJ JJR Degree=Cmp 15 amod _ _ 14 general general ADJ JJ Degree=Pos 15 amod _ _ 15 result result NOUN NN Number=Sing 10 dobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 4 # text = Let $ D $ be a monad on a category $ C $ in which idempotents split. 1 Let let VERB VB VerbForm=Inf 0 ROOT _ _ 2 $ D $ $ d $ SYM $ _ 3 nsubj _ _ 3 be be AUX VB VerbForm=Inf 1 ccomp _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 monad monad NOUN NNS Number=Plur 3 attr _ _ 6 on on ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 category category NOUN NN Number=Sing 6 pobj _ _ 9 $ C $ $ c $ SYM $ _ 8 appos _ _ 10 in in ADP IN _ 13 prep _ _ 11 which which PRON WDT _ 10 pobj _ _ 12 idempotents idempotent NOUN NNS Number=Plur 13 nsubj _ _ 13 split split VERB VBP Tense=Pres|VerbForm=Fin 9 relcl _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 5 # text = Write $ kar(C_D) $ for the idempotent splitting completion of the Kleisli category. 1 Write write VERB VB VerbForm=Inf 0 ROOT _ _ 2 $ kar(C_D) $ $ kar(c_d) $ SYM $ _ 1 dobj _ _ 3 for for ADP IN _ 1 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 idempotent idempotent ADJ JJ Degree=Pos 7 amod _ _ 6 splitting splitting NOUN NN Number=Sing 7 amod _ _ 7 completion completion NOUN NN Number=Sing 3 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 Kleisli Kleisli PROPN NNP Number=Sing 11 compound _ _ 11 category category NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 6 # text = Write $ spl(C^D) $ for the category whose objects are pairs $ ((L, s), t) $ , where $ (L, s) $ is an object of the Eilenberg - Moore category for $ D $ , and $ t $ is a homomorphism that splits $ s $ , with $ spl(C^D)(((L, s), t), ((L', s'), t'))=C^D((L, s)(L', s')) $ . 1 Write write VERB VB VerbForm=Inf 28 csubj _ _ 2 $ spl(C^D) $ $ spl(c^d) $ SYM $ _ 28 nsubj _ _ 3 for for ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 3 pobj _ _ 6 whose whose DET WP$ Poss=Yes 7 poss _ _ 7 objects object NOUN NNS Number=Plur 8 nsubj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 relcl _ _ 9 pairs pair NOUN NNS Number=Plur 8 attr _ _ 10 $ ((L, s), t) $ $ ((l, s), t) $ NUM CD NumType=Card 8 attr _ _ 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 where where SCONJ WRB _ 14 advmod _ _ 13 $ (L, s) $ $ (l, s) $ SYM $ _ 14 nsubj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 relcl _ _ 15 an an DET DT Definite=Ind|PronType=Art 16 det _ _ 16 object object NOUN NN Number=Sing 14 attr _ _ 17 of of ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 22 det _ _ 19 Eilenberg Eilenberg PROPN NNP Number=Sing 21 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 Moore Moore PROPN NNP Number=Sing 22 compound _ _ 22 category category NOUN NN Number=Sing 17 pobj _ _ 23 for for ADP IN _ 16 prep _ _ 24 $ D $ $ d $ SYM $ _ 23 pobj _ _ 25 , , PUNCT , PunctType=Comm 14 punct _ _ 26 and and CCONJ CC ConjType=Cmp 14 cc _ _ 27 $ t $ $ t $ SYM $ _ 10 appos _ _ 28 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 29 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 30 homomorphism homomorphism NOUN NN Number=Sing 28 attr _ _ 31 that that PRON WDT PronType=Rel 32 nsubj _ _ 32 splits split VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 relcl _ _ 33 $ s $ $ s $ SYM $ _ 32 dobj _ _ 34 , , PUNCT , PunctType=Comm 32 punct _ _ 35 with with ADP IN _ 32 prep _ _ 36 $ spl(C^D)(((L, s), t), ((L', s'), t'))=C^D((L, s)(L', s')) $ $ spl(c^d)(((l, s), t), ((l', s'), t'))=c^d((l, s)(l', s')) $ SYM $ _ 35 pobj _ _ 37 . . PUNCT . PunctType=Peri 28 punct _ SpaceAfter=No # sent_id = 7 # text = The main result is that $ kar(C_D) $ is isomorphic to $ spl(C^D) $ . 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 result result NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 7 mark _ _ 6 $ kar(C_D) $ $ kar(c_d) $ SYM $ _ 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 8 isomorphic isomorphic ADJ JJ Degree=Pos 7 acomp _ _ 9 to to ADP IN _ 8 prep _ _ 10 $ spl(C^D) $ $ spl(c^d) $ SYM $ _ 9 pobj _ _ 11 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 8 # text = We also show how this implies the CCD lattice characterization theorem and consider a more general context. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 how how SCONJ WRB _ 6 advmod _ _ 5 this this PRON DT Number=Sing|PronType=Dem 6 nsubj _ _ 6 implies imply VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 7 the the DET DT Definite=Def|PronType=Art 10 det _ _ 8 CCD CCD PROPN NNP Number=Sing 9 compound _ _ 9 lattice lattice NOUN NN Number=Sing 10 compound _ _ 10 characterization characterization NOUN NN Number=Sing 11 nsubj _ _ 11 theorem theorem VERB VBD Tense=Past|VerbForm=Fin 6 ccomp _ _ 12 and and CCONJ CC ConjType=Cmp 6 cc _ _ 13 consider consider VERB VB VerbForm=Inf 6 conj _ _ 14 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 15 more more ADV RBR Degree=Cmp 16 advmod _ _ 16 general general ADJ JJ Degree=Pos 17 amod _ _ 17 context context NOUN NN Number=Sing 13 dobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 193 # sent_id = 1 # text = Some unsolved problems about the classifying topos for Boolean algebras, as well as about the axiomatic arithmetic of finite combinatorial toposes, are closely connected with some simple distinctions between finite automata. 1 Some some DET DT _ 3 det _ _ 2 unsolved unsolved ADJ JJ Degree=Pos 3 amod _ _ 3 problems problem NOUN NNS Number=Plur 26 nsubjpass _ _ 4 about about ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 classifying classify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 amod _ _ 7 topos topos NOUN NN Number=Sing 4 pobj _ _ 8 for for ADP IN _ 7 prep _ _ 9 Boolean Boolean PROPN NNP Number=Sing 10 amod _ _ 10 algebras algebra NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 3 punct _ _ 12 as as ADV RB _ 14 advmod _ _ 13 well well ADV RB Degree=Pos 14 advmod _ _ 14 as as ADP IN _ 3 cc _ _ 15 about about ADP IN _ 3 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 axiomatic axiomatic ADJ JJ Degree=Pos 18 amod _ _ 18 arithmetic arithmetic NOUN NN Number=Sing 15 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 finite finite ADJ JJ Degree=Pos 22 amod _ _ 21 combinatorial combinatorial PROPN NNP Number=Sing 22 compound _ _ 22 toposes topos NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 3 punct _ _ 24 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 26 auxpass _ _ 25 closely closely ADV RB _ 26 advmod _ _ 26 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 27 with with ADP IN _ 26 prep _ _ 28 some some DET DT _ 30 det _ _ 29 simple simple ADJ JJ Degree=Pos 30 amod _ _ 30 distinctions distinction NOUN NNS Number=Plur 27 pobj _ _ 31 between between ADP IN _ 30 prep _ _ 32 finite finite PROPN NNP Number=Sing 33 compound _ _ 33 automata automata PROPN NNP Number=Sing 31 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 26 punct _ SpaceAfter=No # doc_id = 194 # sent_id = 1 # text = We show that every small category enriched over $ Sl $ —the symmetric monoidal closed category of sup - lattices and sup - preserving morphisms—is Morita equivalent to an $ Sl $ - monoid. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 26 ccomp _ _ 3 that that SCONJ IN _ 7 mark _ _ 4 every every DET DT _ 6 det _ _ 5 small small ADJ JJ Degree=Pos 6 amod _ _ 6 category category NOUN NN Number=Sing 7 nsubj _ _ 7 enriched enrich VERB VBD Tense=Past|VerbForm=Fin 14 ccomp _ _ 8 over over ADP IN _ 7 prep _ _ 9 $ Sl $ $ sl $ SYM $ _ 8 pobj _ _ 10 — — PUNCT : _ 14 punct _ SpaceAfter=No 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 symmetric symmetric ADJ JJ Degree=Pos 13 amod _ _ 13 monoidal monoidal NOUN NN Number=Sing 14 nsubj _ _ 14 closed close VERB VBD Tense=Past|VerbForm=Fin 2 ccomp _ _ 15 category category NOUN NN Number=Sing 14 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 sup sup NOUN NN Number=Sing 19 compound _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 lattices lattice NOUN NNS Number=Plur 16 pobj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 sup sup NOUN NN Number=Sing 23 npadvmod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 preserving preserve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 24 amod _ _ 24 morphisms morphism NOUN NNS Number=Plur 19 conj _ SpaceAfter=No 25 — — PUNCT : _ 26 punct _ SpaceAfter=No 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 27 Morita Morita PROPN NNP Number=Sing 28 compound _ _ 28 equivalent equivalent ADJ JJ Degree=Pos 26 attr _ _ 29 to to ADP IN _ 28 prep _ _ 30 an an DET DT Definite=Ind|PronType=Art 33 det _ _ 31 $ Sl $ $ sl $ SYM $ _ 33 compound _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 monoid monoid NOUN NN Number=Sing 29 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 26 punct _ SpaceAfter=No # sent_id = 2 # text = As a corollary, we obtain a result of Borceux and Vitale asserting that every separable $ Sl $ - category is Morita equivalent to a separable $ Sl $ - monoid. 1 As as ADP IN _ 6 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 corollary corollary NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 result result NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 Borceux Borceux PROPN NNP Number=Sing 13 nsubj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 Vitale Vitale PROPN NNP Number=Sing 10 conj _ _ 13 asserting assert VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 pcomp _ _ 14 that that SCONJ IN _ 20 mark _ _ 15 every every DET DT _ 19 det _ _ 16 separable separable ADJ JJ Degree=Pos 19 amod _ _ 17 $ Sl $ $ sl $ SYM $ _ 19 nummod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 category category NOUN NN Number=Sing 20 nsubj _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 ccomp _ _ 21 Morita Morita PROPN NNP Number=Sing 22 compound _ _ 22 equivalent equivalent ADJ JJ Degree=Pos 20 acomp _ _ 23 to to ADP IN _ 22 prep _ _ 24 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 25 separable separable ADJ JJ Degree=Pos 28 amod _ _ 26 $ Sl $ $ sl $ SYM $ _ 28 compound _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 monoid monoid NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 195 # sent_id = 1 # text = A PROP is a way of encoding structure borne by an object of a symmetric monoidal category. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 PROP prop NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 way way NOUN NN Number=Sing 3 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 encoding encode VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 pcomp _ _ 8 structure structure NOUN NN Number=Sing 7 dobj _ _ 9 borne bear VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 acl _ _ 10 by by ADP IN _ 9 agent _ _ 11 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 12 object object NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 15 symmetric symmetric ADJ JJ Degree=Pos 17 amod _ _ 16 monoidal monoidal ADJ JJ Degree=Pos 17 amod _ _ 17 category category NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = We describe a notion of distributive law for PROPs, based on Beck's distributive laws for monads. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 notion notion NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 distributive distributive ADJ JJ Degree=Pos 7 amod _ _ 7 law law NOUN NN Number=Sing 5 pobj _ _ 8 for for ADP IN _ 7 prep _ _ 9 PROPs prop NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 7 punct _ _ 11 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 acl _ _ 12 on on ADP IN _ 11 prep _ _ 13 Beck Beck PROPN NNP Number=Sing 16 poss _ SpaceAfter=No 14 's 's PART POS _ 13 case _ _ 15 distributive distributive ADJ JJ Degree=Pos 16 amod _ _ 16 laws law NOUN NNS Number=Plur 12 pobj _ _ 17 for for ADP IN _ 16 prep _ _ 18 monads monad NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = A distributive law between PROPs allows them to be composed, and an algebra for the composite PROP consists of a single object with an algebra structure for each of the original PROPs, subject to compatibility conditions encoded by the distributive law. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 distributive distributive ADJ JJ Degree=Pos 3 amod _ _ 3 law law NOUN NN Number=Sing 6 nsubj _ _ 4 between between ADP IN _ 3 prep _ _ 5 PROPs prop NOUN NNS Number=Plur 4 pobj _ _ 6 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 10 nsubjpass _ _ 8 to to PART TO _ 10 aux _ _ 9 be be AUX VB VerbForm=Inf 10 auxpass _ _ 10 composed compose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 ccomp _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 6 punct _ _ 12 and and CCONJ CC ConjType=Cmp 6 cc _ _ 13 an an DET DT Definite=Ind|PronType=Art 14 det _ _ 14 algebra algebra NOUN NN Number=Sing 19 nsubj _ _ 15 for for ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 composite composite ADJ JJ Degree=Pos 18 amod _ _ 18 PROP prop NOUN NN Number=Sing 15 pobj _ _ 19 consists consist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 conj _ _ 20 of of ADP IN _ 19 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 22 single single ADJ JJ Degree=Pos 23 amod _ _ 23 object object NOUN NN Number=Sing 20 pobj _ _ 24 with with ADP IN _ 23 prep _ _ 25 an an DET DT Definite=Ind|PronType=Art 27 det _ _ 26 algebra algebra NOUN NN Number=Sing 27 compound _ _ 27 structure structure NOUN NN Number=Sing 24 pobj _ _ 28 for for ADP IN _ 27 prep _ _ 29 each each PRON DT _ 28 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 33 det _ _ 32 original original ADJ JJ Degree=Pos 33 amod _ _ 33 PROPs prop NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 27 punct _ _ 35 subject subject ADJ JJ Degree=Pos 27 amod _ _ 36 to to ADP IN _ 35 prep _ _ 37 compatibility compatibility NOUN NN Number=Sing 38 compound _ _ 38 conditions condition NOUN NNS Number=Plur 36 pobj _ _ 39 encoded encode VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 38 acl _ _ 40 by by ADP IN _ 39 agent _ _ 41 the the DET DT Definite=Def|PronType=Art 43 det _ _ 42 distributive distributive ADJ JJ Degree=Pos 43 amod _ _ 43 law law NOUN NN Number=Sing 40 pobj _ SpaceAfter=No 44 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = An example is the PROP for bialgebras, which is a composite of the PROP for coalgebras and that for algebras. 1 An an DET DT Definite=Ind|PronType=Art 2 det _ _ 2 example example NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 PROP prop NOUN NN Number=Sing 3 attr _ _ 6 for for ADP IN _ 5 prep _ _ 7 bialgebras bialgebra NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 which which PRON WDT _ 10 nsubj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 relcl _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 composite composite NOUN NN Number=Sing 10 attr _ _ 13 of of ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 PROP prop NOUN NN Number=Sing 13 pobj _ _ 16 for for ADP IN _ 15 prep _ _ 17 coalgebras coalgebra NOUN NNS Number=Plur 16 pobj _ _ 18 and and CCONJ CC ConjType=Cmp 10 cc _ _ 19 that that SCONJ IN _ 10 conj _ _ 20 for for ADP IN _ 19 prep _ _ 21 algebras algebra NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 196 # sent_id = 1 # text = We show, for a monad $ T $ , that coalgebra structures on a $ T $ - algebra can be described in terms of "braidings", provided that the monad is equipped with an invertible distributive law satisfying the Yang - Baxter equation. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 2 punct _ _ 4 for for ADP IN _ 2 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 monad monad NOUN NNS Number=Plur 4 pobj _ _ 7 $ T $ $ t $ SYM $ _ 6 appos _ _ 8 , , PUNCT , PunctType=Comm 2 punct _ _ 9 that that SCONJ IN _ 19 mark _ _ 10 coalgebra coalgebra NOUN NNS Number=Plur 11 compound _ _ 11 structures structure NOUN NNS Number=Plur 19 nsubjpass _ _ 12 on on ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 14 $ T $ $ t $ SYM $ _ 16 compound _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 algebra algebra PROPN NNP Number=Sing 12 pobj _ _ 17 can can AUX MD VerbForm=Fin 19 aux _ _ 18 be be AUX VB VerbForm=Inf 19 auxpass _ _ 19 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 20 in in ADP IN _ 19 prep _ _ 21 terms term NOUN NNS Number=Plur 20 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 " " PUNCT `` PunctSide=Ini|PunctType=Quot 24 punct _ SpaceAfter=No 24 braidings braiding NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 25 " " PUNCT '' PunctSide=Fin|PunctType=Quot 24 punct _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 19 punct _ _ 27 provided provide VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 prep _ _ 28 that that SCONJ IN _ 32 mark _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 monad monad NOUN NNS Number=Plur 32 nsubjpass _ _ 31 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 32 auxpass _ _ 32 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 ccomp _ _ 33 with with ADP IN _ 32 prep _ _ 34 an an DET DT Definite=Ind|PronType=Art 37 det _ _ 35 invertible invertible ADJ JJ Degree=Pos 37 amod _ _ 36 distributive distributive ADJ JJ Degree=Pos 37 amod _ _ 37 law law NOUN NN Number=Sing 33 pobj _ _ 38 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 37 acl _ _ 39 the the DET DT Definite=Def|PronType=Art 43 det _ _ 40 Yang Yang PROPN NNP Number=Sing 42 compound _ _ 41 - - PUNCT HYPH PunctType=Dash 42 punct _ _ 42 Baxter Baxter PROPN NNP Number=Sing 43 compound _ _ 43 equation equation NOUN NN Number=Sing 38 dobj _ SpaceAfter=No 44 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 197 # sent_id = 1 # text = Cubical sets have a directed homology, studied in a previous paper and consisting of preordered abelian groups, with a positive cone generated by the structural cubes. 1 Cubical cubical ADJ JJ Degree=Pos 2 amod _ _ 2 sets set NOUN NNS Number=Plur 3 nsubj _ _ 3 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 directed direct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 amod _ _ 6 homology homology NOUN NN Number=Sing 3 dobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 6 punct _ _ 8 studied study VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 acl _ _ 9 in in ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 previous previous ADJ JJ Degree=Pos 12 amod _ _ 12 paper paper NOUN NN Number=Sing 9 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 8 cc _ _ 14 consisting consist VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 conj _ _ 15 of of ADP IN _ 14 prep _ _ 16 preordered preordere VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 amod _ _ 17 abelian abelian ADJ JJ Degree=Pos 18 compound _ _ 18 groups group NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 6 punct _ _ 20 with with ADP IN _ 3 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 22 positive positive ADJ JJ Degree=Pos 23 amod _ _ 23 cone cone NOUN NN Number=Sing 20 pobj _ _ 24 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 acl _ _ 25 by by ADP IN _ 24 agent _ _ 26 the the DET DT Definite=Def|PronType=Art 28 det _ _ 27 structural structural ADJ JJ Degree=Pos 28 amod _ _ 28 cubes cube NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = By this additional information, cubical sets can provide a sort of `noncommutative topology', agreeing with some results of noncommutative geometry but lacking the metric aspects of $ C* $ - algebras. 1 By by ADP IN _ 9 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 3 additional additional ADJ JJ Degree=Pos 4 amod _ _ 4 information information NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 9 punct _ _ 6 cubical cubical ADJ JJ Degree=Pos 7 amod _ _ 7 sets set NOUN NNS Number=Plur 9 nsubj _ _ 8 can can AUX MD VerbForm=Fin 9 aux _ _ 9 provide provide VERB VB VerbForm=Inf 0 ROOT _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 sort sort NOUN NN Number=Sing 9 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 12 punct _ SpaceAfter=No 14 noncommutative noncommutative ADJ JJ Degree=Pos 15 amod _ _ 15 topology topology NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 16 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 9 punct _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 9 punct _ _ 18 agreeing agree VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 advcl _ _ 19 with with ADP IN _ 18 prep _ _ 20 some some DET DT _ 21 det _ _ 21 results result NOUN NNS Number=Plur 19 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 noncommutative noncommutative ADJ JJ Degree=Pos 24 amod _ _ 24 geometry geometry NOUN NN Number=Sing 22 pobj _ _ 25 but but CCONJ CC ConjType=Cmp 18 cc _ _ 26 lacking lack VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 18 conj _ _ 27 the the DET DT Definite=Def|PronType=Art 29 det _ _ 28 metric metric ADJ JJ Degree=Pos 29 amod _ _ 29 aspects aspect NOUN NNS Number=Plur 26 dobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 $ C* $ $ c* $ SYM $ _ 30 pobj _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 algebras algebra NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 3 # text = Here, we make such similarity stricter by introducing normed cubical sets and their normed directed homology, formed of normed preordered abelian groups. 1 Here here ADV RB PronType=Dem 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 make make VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 such such ADJ JJ Degree=Pos 7 amod _ _ 6 similarity similarity NOUN NN Number=Sing 7 compound _ _ 7 stricter strict ADJ JJR Degree=Cmp 4 dobj _ _ 8 by by ADP IN _ 4 prep _ _ 9 introducing introduce VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 pcomp _ _ 10 normed normed ADJ JJ Degree=Pos 12 amod _ _ 11 cubical cubical ADJ JJ Degree=Pos 12 amod _ _ 12 sets set NOUN NNS Number=Plur 9 dobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 17 poss _ _ 15 normed normed ADJ JJ Degree=Pos 17 amod _ _ 16 directed direct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 17 homology homology NOUN NN Number=Sing 12 conj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 formed form VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 acl _ _ 20 of of ADP IN _ 19 prep _ _ 21 normed normed PROPN NNP Number=Sing 24 amod _ _ 22 preordered preordere VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 23 abelian abelian ADJ JJ Degree=Pos 24 compound _ _ 24 groups group NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = The normed cubical sets $ NC_theta $ associated with `irrational' rotations have thus the same classification up to isomorphism as the well - known irrational rotation $ C* $ - algebras $ A_theta $ . 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 normed normed ADJ JJ Degree=Pos 4 amod _ _ 3 cubical cubical ADJ JJ Degree=Pos 4 amod _ _ 4 sets set NOUN NNS Number=Plur 12 nsubj _ _ 5 $ NC_theta $ $ nc_theta $ SYM $ _ 4 appos _ _ 6 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 acl _ _ 7 with with ADP IN _ 6 prep _ _ 8 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 11 punct _ SpaceAfter=No 9 irrational irrational ADJ JJ Degree=Pos 11 amod _ SpaceAfter=No 10 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 11 punct _ _ 11 rotations rotation NOUN NNS Number=Plur 7 pobj _ _ 12 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 thus thus ADV RB _ 16 advmod _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 same same ADJ JJ Degree=Pos 16 amod _ _ 16 classification classification NOUN NN Number=Sing 12 dobj _ _ 17 up up ADP IN _ 16 prep _ _ 18 to to ADP IN _ 17 prep _ _ 19 isomorphism isomorphism NOUN NN Number=Sing 18 pobj _ _ 20 as as ADP IN _ 16 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 26 det _ _ 22 well well ADV RB Degree=Pos 24 advmod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 amod _ _ 25 irrational irrational ADJ JJ Degree=Pos 26 amod _ _ 26 rotation rotation NOUN NN Number=Sing 20 pobj _ _ 27 $ C* $ $ c* $ SYM $ _ 29 dep _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 algebras algebras PROPN NNP Number=Sing 26 appos _ _ 30 $ A_theta $ $ a_theta $ SYM $ _ 29 appos _ _ 31 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # doc_id = 198 # sent_id = 1 # text = We characterize semi - abelian monadic categories and their localizations. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 semi semi ADJ JJ Degree=Pos 7 amod _ _ 4 - - ADV RB _ 7 amod _ _ 5 abelian abelian ADJ JJ Degree=Pos 7 amod _ _ 6 monadic monadic ADJ JJ Degree=Pos 7 amod _ _ 7 categories category NOUN NNS Number=Plur 2 dobj _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 10 poss _ _ 10 localizations localization NOUN NNS Number=Plur 7 conj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = These results are then used to obtain a characterization of pointed protomodular quasimonadic categories, and in particular of protomodular quasivarieties. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 results result NOUN NNS Number=Plur 5 nsubjpass _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 4 then then ADV RB PronType=Dem 5 advmod _ _ 5 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 to to PART TO _ 7 aux _ _ 7 obtain obtain VERB VB VerbForm=Inf 5 xcomp _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 characterization characterization NOUN NN Number=Sing 7 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 pointed pointed ADJ JJ Degree=Pos 14 amod _ _ 12 protomodular protomodular ADJ JJ Degree=Pos 14 amod _ _ 13 quasimonadic quasimonadic ADJ JJ Degree=Pos 14 amod _ _ 14 categories category NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 5 punct _ _ 16 and and CCONJ CC ConjType=Cmp 5 cc _ _ 17 in in ADP IN _ 5 prep _ _ 18 particular particular ADJ JJ Degree=Pos 17 amod _ _ 19 of of ADP IN _ 18 prep _ _ 20 protomodular protomodular ADJ JJ Degree=Pos 21 amod _ _ 21 quasivarieties quasivarietie NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 199 # sent_id = 1 # text = A pregroup is a partially ordered monoid in which every element has a left and a right adjoint. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 pregroup pregroup NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 5 partially partially ADV RB _ 6 advmod _ _ 6 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 amod _ _ 7 monoid monoid NOUN NN Number=Sing 3 attr _ _ 8 in in ADP IN _ 12 prep _ _ 9 which which PRON WDT _ 8 pobj _ _ 10 every every DET DT _ 11 det _ _ 11 element element NOUN NN Number=Sing 12 nsubj _ _ 12 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 relcl _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 left left NOUN NN Number=Sing 12 dobj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 right right ADJ JJ Degree=Pos 18 amod _ _ 18 adjoint adjoint NOUN NN Number=Sing 14 conj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = The main result is that for some well - behaved subgroups of the group of diffeomorphisms of the real numbers, the set of all endofunctions of the integers that are asymptotic at $ pminfty $ to (the restriction to the integers of) a function in the subgroup is a pregroup. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 result result NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 49 mark _ _ 6 for for ADP IN _ 49 prep _ _ 7 some some DET DT _ 11 det _ _ 8 well well ADV RB Degree=Pos 10 advmod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 behaved behave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 amod _ _ 11 subgroups subgroup NOUN NNS Number=Plur 6 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 group group NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 diffeomorphisms diffeomorphism NOUN NNS Number=Plur 15 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 real real ADJ JJ Degree=Pos 20 amod _ _ 20 numbers number NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 49 punct _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 set set NOUN NN Number=Sing 49 nsubj _ _ 24 of of ADP IN _ 23 prep _ _ 25 all all DET DT _ 26 det _ _ 26 endofunctions endofunction NOUN NNS Number=Plur 24 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 integers integer NOUN NNS Number=Plur 27 pobj _ _ 30 that that PRON WDT PronType=Rel 31 nsubj _ _ 31 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 29 relcl _ _ 32 asymptotic asymptotic ADJ JJ Degree=Pos 31 acomp _ _ 33 at at ADP IN _ 31 prep _ _ 34 $ pminfty $ $ pminfty $ SYM $ _ 33 pobj _ _ 35 to to PART TO _ 23 prep _ _ 36 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 38 punct _ SpaceAfter=No 37 the the DET DT Definite=Def|PronType=Art 38 det _ _ 38 restriction restriction NOUN NN Number=Sing 35 pobj _ _ 39 to to ADP IN _ 38 prep _ _ 40 the the DET DT Definite=Def|PronType=Art 41 det _ _ 41 integers integer NOUN NNS Number=Plur 39 pobj _ _ 42 of of ADP IN _ 41 prep _ SpaceAfter=No 43 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 42 punct _ _ 44 a a DET DT Definite=Ind|PronType=Art 45 det _ _ 45 function function NOUN NN Number=Sing 23 appos _ _ 46 in in ADP IN _ 45 prep _ _ 47 the the DET DT Definite=Def|PronType=Art 48 det _ _ 48 subgroup subgroup NOUN NN Number=Sing 46 pobj _ _ 49 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 50 a a DET DT Definite=Ind|PronType=Art 51 det _ _ 51 pregroup pregroup NOUN NN Number=Sing 49 attr _ SpaceAfter=No 52 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 200 # sent_id = 1 # text = In this paper we introduce and study the categorical group of derivations, $ Der(G, A) $ , from a categorical group $ G $ into a braided categorical group $ (A, c) $ equipped with a given coherent left action of $ G $ . 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 study study VERB VB VerbForm=Inf 5 conj _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 categorical categorical ADJ JJ Degree=Pos 10 amod _ _ 10 group group NOUN NN Number=Sing 7 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 derivations derivation NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 10 punct _ _ 14 $ Der(G, A) $ $ der(g, a) $ SYM $ _ 7 dobj _ _ 15 , , PUNCT , PunctType=Comm 7 punct _ _ 16 from from ADP IN _ 7 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 18 categorical categorical ADJ JJ Degree=Pos 19 amod _ _ 19 group group NOUN NN Number=Sing 16 pobj _ _ 20 $ G $ $ g $ SYM $ _ 16 dep _ _ 21 into into ADP IN _ 7 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 23 braided braid VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 25 amod _ _ 24 categorical categorical ADJ JJ Degree=Pos 25 amod _ _ 25 group group NOUN NN Number=Sing 21 pobj _ _ 26 $ (A, c) $ $ (a, c) $ SYM $ _ 27 nsubj _ _ 27 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 conj _ _ 28 with with ADP IN _ 27 prep _ _ 29 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 30 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 33 amod _ _ 31 coherent coherent ADJ JJ Degree=Pos 33 amod _ _ 32 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 33 amod _ _ 33 action action NOUN NN Number=Sing 28 pobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 $ G $ $ g $ SYM $ _ 34 pobj _ _ 36 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = Categorical groups provide a 2 - dimensional vision of groups and so this object is a sort of 0 - cohomology at a higher level for categorical groups. 1 Categorical categorical ADJ JJ Degree=Pos 2 amod _ _ 2 groups group NOUN NNS Number=Plur 3 nsubj _ _ 3 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 5 2 2 NUM CD NumType=Card 7 advmod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 dimensional dimensional ADJ JJ Degree=Pos 8 amod _ _ 8 vision vision NOUN NN Number=Sing 3 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 groups group NOUN NNS Number=Plur 9 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 3 cc _ _ 12 so so ADV RB _ 15 advmod _ _ 13 this this DET DT Number=Sing|PronType=Dem 14 det _ _ 14 object object NOUN NN Number=Sing 15 nsubj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 conj _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 sort sort NOUN NN Number=Sing 15 attr _ _ 18 of of ADP IN _ 17 prep _ _ 19 0 0 NUM CD NumType=Card 21 nummod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 cohomology cohomology NOUN NN Number=Sing 18 pobj _ _ 22 at at ADP IN _ 17 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 24 higher high ADJ JJR Degree=Cmp 25 amod _ _ 25 level level NOUN NN Number=Sing 22 pobj _ _ 26 for for ADP IN _ 25 prep _ _ 27 categorical categorical ADJ JJ Degree=Pos 28 amod _ _ 28 groups group NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 3 # text = We show that the functor $ Der( - , A) $ is corepresentable by the semidirect product of $ A $ with $ G $ and that $ Der(G, - ) $ preserves homotopy kernels. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 7 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 functor functor NOUN NN Number=Sing 7 nsubj _ _ 6 $ Der( - , A) $ $ der( - , a) $ SYM $ _ 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 8 corepresentable corepresentable ADJ JJ Degree=Pos 7 acomp _ _ 9 by by ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 semidirect semidirect NOUN NN Number=Sing 12 compound _ _ 12 product product NOUN NN Number=Sing 9 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 $ A $ $ a $ SYM $ _ 13 pobj _ _ 15 with with ADP IN _ 12 prep _ _ 16 $ G $ $ g $ SYM $ _ 15 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 7 cc _ _ 18 that that SCONJ IN _ 20 mark _ _ 19 $ Der(G, - ) $ $ der(g, - ) $ SYM $ _ 20 nsubj _ _ 20 preserves preserve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 conj _ _ 21 homotopy homotopy PROPN NNP Number=Sing 22 compound _ _ 22 kernels kernels PROPN NNP Number=Sing 20 dobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = Well - known cohomology groups, and exact sequences relating these groups, in several different contexts are then obtained as examples of this general theory. 1 Well well ADV RB Degree=Pos 3 advmod _ _ 2 - - PUNCT HYPH PunctType=Dash 3 punct _ _ 3 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 amod _ _ 4 cohomology cohomology NOUN NN Number=Sing 5 compound _ _ 5 groups group NOUN NNS Number=Plur 20 nsubjpass _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 and and CCONJ CC ConjType=Cmp 5 cc _ _ 8 exact exact ADJ JJ Degree=Pos 9 amod _ _ 9 sequences sequence NOUN NNS Number=Plur 5 conj _ _ 10 relating relate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 acl _ _ 11 these these DET DT Number=Plur|PronType=Dem 12 det _ _ 12 groups group NOUN NNS Number=Plur 10 dobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 20 punct _ _ 14 in in ADP IN _ 20 prep _ _ 15 several several ADJ JJ Degree=Pos 17 amod _ _ 16 different different ADJ JJ Degree=Pos 17 amod _ _ 17 contexts context NOUN NNS Number=Plur 14 pobj _ _ 18 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 20 auxpass _ _ 19 then then ADV RB PronType=Dem 20 advmod _ _ 20 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 21 as as ADP IN _ 20 prep _ _ 22 examples example NOUN NNS Number=Plur 21 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 this this DET DT Number=Sing|PronType=Dem 26 det _ _ 25 general general ADJ JJ Degree=Pos 26 amod _ _ 26 theory theory NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # doc_id = 201 # sent_id = 1 # text = In this paper we construct extensions of $ Set $ - monads—and, more generally, of lax $ Rel $ - monads—into lax monads of the bicategory $ Mat(V) $ of generalized $ V $ - matrices, whenever $ V $ is a well - behaved lattice equipped with a tensor product. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 extensions extension NOUN NNS Number=Plur 5 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 $ Set $ $ set $ SYM $ _ 10 nummod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 monads monad NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 11 — — PUNCT : _ 6 punct _ SpaceAfter=No 12 and and CCONJ CC ConjType=Cmp 6 cc _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 5 punct _ _ 14 more more ADV RBR Degree=Cmp 15 advmod _ _ 15 generally generally ADV RB _ 5 advmod _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 of of ADP IN _ 15 prep _ _ 18 lax lax ADJ JJ Degree=Pos 21 amod _ _ 19 $ Rel $ $ rel $ SYM $ _ 21 nmod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 monads monad NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 22 — — PUNCT : _ 17 punct _ SpaceAfter=No 23 into into ADP IN _ 5 prep _ _ 24 lax lax ADJ JJ Degree=Pos 25 amod _ _ 25 monads monad NOUN NNS Number=Plur 23 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 bicategory bicategory NOUN NN Number=Sing 26 pobj _ _ 29 $ Mat(V) $ $ mat(v) $ SYM $ _ 38 nsubj _ _ 30 of of ADP IN _ 29 prep _ _ 31 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 34 amod _ _ 32 $ V $ $ v $ SYM $ _ 34 compound _ _ 33 - - PUNCT HYPH PunctType=Dash 34 punct _ _ 34 matrices matrix NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 35 , , PUNCT , PunctType=Comm 29 punct _ _ 36 whenever whenever SCONJ WRB _ 37 advmod _ _ 37 $ V $ $ v $ SYM $ _ 38 nsubj _ _ 38 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 conj _ _ 39 a a DET DT Definite=Ind|PronType=Art 43 det _ _ 40 well well ADV RB Degree=Pos 42 advmod _ _ 41 - - PUNCT HYPH PunctType=Dash 42 punct _ _ 42 behaved behave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 43 amod _ _ 43 lattice lattice NOUN NN Number=Sing 38 attr _ _ 44 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 43 acl _ _ 45 with with ADP IN _ 44 prep _ _ 46 a a DET DT Definite=Ind|PronType=Art 48 det _ _ 47 tensor tensor NOUN NN Number=Sing 48 compound _ _ 48 product product NOUN NN Number=Sing 45 pobj _ SpaceAfter=No 49 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = We add some guiding examples. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 add add VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 some some DET DT _ 5 det _ _ 4 guiding guide VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 amod _ _ 5 examples example NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 6 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 202 # sent_id = 1 # text = We show that strongly protomodular categories (as the category of groups for instance) provide an appropriate framework in which the commutator of two equivalence relations do coincide with the commutator of their associated normal subobjects, whereas it is not the case in any semi - abelian category. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 16 mark _ _ 4 strongly strongly ADV RB _ 5 advmod _ _ 5 protomodular protomodular ADJ JJ Degree=Pos 6 amod _ _ 6 categories category NOUN NNS Number=Plur 16 nsubj _ _ 7 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 6 punct _ SpaceAfter=No 8 as as ADP IN _ 6 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 category category NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 groups group NOUN NNS Number=Plur 11 pobj _ _ 13 for for ADP IN _ 12 prep _ _ 14 instance instance NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 15 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 6 punct _ _ 16 provide provide VERB VB VerbForm=Inf 2 ccomp _ _ 17 an an DET DT Definite=Ind|PronType=Art 19 det _ _ 18 appropriate appropriate ADJ JJ Degree=Pos 19 amod _ _ 19 framework framework NOUN NN Number=Sing 16 dobj _ _ 20 in in ADP IN _ 29 prep _ _ 21 which which PRON WDT _ 20 pobj _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 commutator commutator NOUN NN Number=Sing 29 nsubj _ _ 24 of of ADP IN _ 23 prep _ _ 25 two two NUM CD NumType=Card 27 nummod _ _ 26 equivalence equivalence NOUN NN Number=Sing 27 compound _ _ 27 relations relation NOUN NNS Number=Plur 24 pobj _ _ 28 do do AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 29 aux _ _ 29 coincide coincide VERB VB VerbForm=Inf 19 relcl _ _ 30 with with ADP IN _ 29 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 commutator commutator NOUN NN Number=Sing 30 pobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 37 poss _ _ 35 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 37 amod _ _ 36 normal normal ADJ JJ Degree=Pos 37 amod _ _ 37 subobjects subobject NOUN NNS Number=Plur 33 pobj _ SpaceAfter=No 38 , , PUNCT , PunctType=Comm 16 punct _ _ 39 whereas whereas SCONJ IN _ 41 mark _ _ 40 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 41 nsubj _ _ 41 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 advcl _ _ 42 not not PART RB Polarity=Neg 41 neg _ _ 43 the the DET DT Definite=Def|PronType=Art 44 det _ _ 44 case case NOUN NN Number=Sing 41 attr _ _ 45 in in ADP IN _ 44 prep _ _ 46 any any DET DT _ 50 det _ _ 47 semi semi ADJ JJ Degree=Pos 50 amod _ _ 48 - - ADJ JJ Degree=Pos 50 amod _ _ 49 abelian abelian ADJ JJ Degree=Pos 50 amod _ _ 50 category category NOUN NN Number=Sing 45 pobj _ SpaceAfter=No 51 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 203 # sent_id = 1 # text = We generalize to an arbitrary variety the von Neumann axiom for a ring. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 generalize generalize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 to to ADP IN _ 2 prep _ _ 4 an an DET DT Definite=Ind|PronType=Art 6 det _ _ 5 arbitrary arbitrary ADJ JJ Degree=Pos 6 amod _ _ 6 variety variety NOUN NN Number=Sing 3 pobj _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 von von PROPN NNP Number=Sing 9 compound _ _ 9 Neumann Neumann PROPN NNP Number=Sing 10 nsubj _ _ 10 axiom axiom VERB VBP Tense=Pres|VerbForm=Fin 2 ccomp _ _ 11 for for ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 ring ring NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = We study its implications on the purity of monomorphisms and the flatness of algebras. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 4 poss _ _ 4 implications implication NOUN NNS Number=Plur 2 dobj _ _ 5 on on ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 purity purity NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 monomorphisms monomorphism NOUN NNS Number=Plur 8 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 7 cc _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 flatness flatness NOUN NN Number=Sing 7 conj _ _ 13 of of ADP IN _ 12 prep _ _ 14 algebras algebra NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 204 # sent_id = 1 # text = Brown representability approximates the homotopy category of spectra by means of cohomology functors defined on finite spectra. 1 Brown brown ADJ JJ Degree=Pos 2 amod _ _ 2 representability representability NOUN NN Number=Sing 3 nsubj _ _ 3 approximates approximate VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 homotopy homotopy NOUN NN Number=Sing 6 compound _ _ 6 category category NOUN NN Number=Sing 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 spectra spectra PROPN NNP Number=Sing 7 pobj _ _ 9 by by ADP IN _ 3 prep _ _ 10 means mean NOUN NNS Number=Plur 9 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 cohomology cohomology NOUN NN Number=Sing 13 compound _ _ 13 functors functor NOUN NNS Number=Plur 11 pobj _ _ 14 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 acl _ _ 15 on on ADP IN _ 14 prep _ _ 16 finite finite PROPN NNP Number=Sing 17 compound _ _ 17 spectra spectra PROPN NNP Number=Sing 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = We will show that if a model category $ cal K $ is suitably determined by $ lambda $ - small objects then its homotopy category $ Ho(cal K) $ is approximated by cohomology functors defined on those $ lambda $ - small objects. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 will will AUX MD VerbForm=Fin 3 aux _ _ 3 show show VERB VB VerbForm=Inf 0 ROOT _ _ 4 that that SCONJ IN _ 24 mark _ _ 5 if if SCONJ IN _ 12 mark _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 model model NOUN NN Number=Sing 8 compound _ _ 8 category category NOUN NN Number=Sing 10 nsubj _ _ 9 $ cal K $ $ cal k $ SYM $ _ 8 appos _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 11 suitably suitably ADV RB _ 12 advmod _ _ 12 determined determine VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 advcl _ _ 13 by by ADP IN _ 12 agent _ _ 14 $ lambda $ $ lambda $ SYM $ _ 16 advmod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 small small ADJ JJ Degree=Pos 17 amod _ _ 17 objects object NOUN NNS Number=Plur 13 pobj _ _ 18 then then ADV RB PronType=Dem 17 advmod _ _ 19 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 21 poss _ _ 20 homotopy homotopy NOUN NN Number=Sing 21 compound _ _ 21 category category NOUN NN Number=Sing 24 nsubjpass _ _ 22 $ Ho(cal K) $ $ ho(cal k) $ SYM $ _ 21 appos _ _ 23 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 auxpass _ _ 24 approximated approximate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 ccomp _ _ 25 by by ADP IN _ 24 agent _ _ 26 cohomology cohomology NOUN NN Number=Sing 27 compound _ _ 27 functors functor NOUN NNS Number=Plur 25 pobj _ _ 28 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 acl _ _ 29 on on ADP IN _ 28 prep _ _ 30 those those DET DT Number=Plur|PronType=Dem 34 det _ _ 31 $ lambda $ $ lambda $ SYM $ _ 33 advmod _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 small small ADJ JJ Degree=Pos 34 amod _ _ 34 objects object NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = In the case of simplicial sets, we have $ lambda = omega_1 $ , that is, $ lambda $ - small means countable. 1 In in ADP IN _ 9 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 case case NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 simplicial simplicial ADJ JJ Degree=Pos 6 amod _ _ 6 sets set NOUN NNS Number=Plur 4 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 9 punct _ _ 8 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 9 nsubj _ _ 9 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 $ lambda = omega_1 $ $ lambda = omega_1 $ SYM $ _ 9 dobj _ _ 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 that that ADV RB _ 13 advmod _ _ 13 is is ADV RB _ 18 advmod _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 18 punct _ _ 15 $ lambda $ $ lambda $ SYM $ _ 17 advmod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 small small ADJ JJ Degree=Pos 18 amod _ _ 18 means mean NOUN NNS Number=Plur 19 nsubj _ _ 19 countable countable ADJ JJ Degree=Pos 9 ccomp _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 205 # sent_id = 1 # text = For large signatures $ Sigma $ we prove that Birkhoff's Variety Theorem holds (that is, equationally presentable collections of $ Sigma $ - algebras are precisely those closed under limits, subalgebras, and quotient algebras) 1 For for ADP IN _ 6 prep _ _ 2 large large ADJ JJ Degree=Pos 3 amod _ _ 3 signatures signature NOUN NNS Number=Plur 1 pobj _ _ 4 $ Sigma $ $ sigma $ SYM $ _ 1 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 that that SCONJ IN _ 12 mark _ _ 8 Birkhoff Birkhoff PROPN NNP Number=Sing 11 poss _ SpaceAfter=No 9 's 's PART POS _ 8 case _ _ 10 Variety Variety PROPN NNP Number=Sing 11 compound _ _ 11 Theorem Theorem PROPN NNP Number=Sing 12 nsubj _ _ 12 holds hold VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 13 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 12 punct _ SpaceAfter=No 14 that that ADV RB _ 15 nsubj _ _ 15 is is ADV RB _ 19 advmod _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 19 punct _ _ 17 equationally equationally ADV RB _ 18 advmod _ _ 18 presentable presentable ADJ JJ Degree=Pos 19 amod _ _ 19 collections collection NOUN NNS Number=Plur 24 nsubj _ _ 20 of of ADP IN _ 19 prep _ _ 21 $ Sigma $ $ sigma $ SYM $ _ 23 compound _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 algebras algebra NOUN NNS Number=Plur 20 pobj _ _ 24 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 25 precisely precisely ADV RB _ 26 advmod _ _ 26 those those PRON DT Number=Plur|PronType=Dem 24 attr _ _ 27 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 acl _ _ 28 under under ADP IN _ 27 prep _ _ 29 limits limit NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 29 punct _ _ 31 subalgebras subalgebras PROPN NNP Number=Sing 29 conj _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 31 punct _ _ 33 and and CCONJ CC ConjType=Cmp 31 cc _ _ 34 quotient quotient ADJ JJ Degree=Pos 35 compound _ _ 35 algebras algebra NOUN NNS Number=Plur 31 conj _ SpaceAfter=No 36 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 24 punct _ SpaceAfter=No # sent_id = 2 # text = iff the universe of small sets is not measurable. 1 iff iff PROPN NNP Number=Sing 7 nsubj _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 universe universe NOUN NN Number=Sing 7 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 small small ADJ JJ Degree=Pos 6 amod _ _ 6 sets set NOUN NNS Number=Plur 4 pobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 not not PART RB Polarity=Neg 7 neg _ _ 9 measurable measurable ADJ JJ Degree=Pos 7 acomp _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = Under that limitation Birkhoff's Variety Theorem holds in fact for $ F $ - algebras of an arbitrary endofunctor $ F $ of the category $ Class $ of classes and functions. 1 Under under ADP IN _ 8 prep _ _ 2 that that DET DT Number=Sing|PronType=Dem 3 det _ _ 3 limitation limitation NOUN NN Number=Sing 1 pobj _ _ 4 Birkhoff Birkhoff PROPN NNP Number=Sing 7 poss _ SpaceAfter=No 5 's 's PART POS _ 4 case _ _ 6 Variety Variety PROPN NNP Number=Sing 7 compound _ _ 7 Theorem Theorem PROPN NNP Number=Sing 8 nsubj _ _ 8 holds hold VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 in in ADP IN _ 8 prep _ _ 10 fact fact NOUN NN Number=Sing 9 pobj _ _ 11 for for ADP IN _ 8 prep _ _ 12 $ F $ $ f $ SYM $ _ 14 compound _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 algebras algebra NOUN NNS Number=Plur 11 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 an an DET DT Definite=Ind|PronType=Art 18 det _ _ 17 arbitrary arbitrary ADJ JJ Degree=Pos 18 amod _ _ 18 endofunctor endofunctor NOUN NN Number=Sing 15 pobj _ _ 19 $ F $ $ f $ SYM $ _ 18 appos _ _ 20 of of ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 category category NOUN NN Number=Sing 20 pobj _ _ 23 $ Class $ $ class $ SYM $ _ 22 nummod _ _ 24 of of ADP IN _ 22 prep _ _ 25 classes class NOUN NNS Number=Plur 24 pobj _ _ 26 and and CCONJ CC ConjType=Cmp 25 cc _ _ 27 functions function NOUN NNS Number=Plur 25 conj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 4 # text = For endofunctors $ F $ of $ Set $ , the category of small sets, Jan Reiterman proved that if $ F $ is a varietor (that is, if free $ F $ - algebras exist) then Birkhoff's Variety Theorem holds for $ F $ - algebras. 1 For for ADP IN _ 15 prep _ _ 2 endofunctors endofunctor NOUN NNS Number=Plur 1 pobj _ _ 3 $ F $ $ f $ SYM $ _ 2 prep _ _ 4 of of ADP IN _ 3 prep _ _ 5 $ Set $ $ set $ SYM $ _ 4 pobj _ _ 6 , , PUNCT , PunctType=Comm 15 punct _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 category category NOUN NN Number=Sing 15 nsubj _ _ 9 of of ADP IN _ 8 prep _ _ 10 small small ADJ JJ Degree=Pos 11 amod _ _ 11 sets set NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 15 punct _ _ 13 Jan Jan PROPN NNP Number=Sing 14 compound _ _ 14 Reiterman Reiterman PROPN NNP Number=Sing 15 nsubj _ _ 15 proved prove VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 16 that that SCONJ IN _ 38 mark _ _ 17 if if SCONJ IN _ 19 mark _ _ 18 $ F $ $ f $ SYM $ _ 19 nsubj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 38 advcl _ _ 20 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 21 varietor varietor NOUN NN Number=Sing 19 attr _ _ 22 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 21 punct _ SpaceAfter=No 23 that that ADV RB _ 24 nsubj _ _ 24 is is ADV RB _ 31 advmod _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 if if SCONJ IN _ 27 mark _ _ 27 free free ADJ JJ Degree=Pos 31 amod _ _ 28 $ F $ $ f $ SYM $ _ 30 compound _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 algebras algebra NOUN NNS Number=Plur 31 nsubj _ _ 31 exist exist VERB VBP Tense=Pres|VerbForm=Fin 21 appos _ SpaceAfter=No 32 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 21 punct _ _ 33 then then ADV RB PronType=Dem 38 advmod _ _ 34 Birkhoff Birkhoff PROPN NNP Number=Sing 37 poss _ SpaceAfter=No 35 's 's PART POS _ 34 case _ _ 36 Variety Variety PROPN NNP Number=Sing 37 compound _ _ 37 Theorem Theorem PROPN NNP Number=Sing 38 nsubj _ _ 38 holds hold VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 ccomp _ _ 39 for for ADP IN _ 38 prep _ _ 40 $ F $ $ f $ SYM $ _ 42 compound _ _ 41 - - PUNCT HYPH PunctType=Dash 42 punct _ _ 42 algebras algebra NOUN NNS Number=Plur 39 pobj _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 5 # text = We prove the converse, whenever $ F $ preserves preimages: if $ F $ is not a varietor, Birkhoff's Variety Theorem does not hold. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 converse converse NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 8 punct _ _ 6 whenever whenever SCONJ WRB _ 7 advmod _ _ 7 $ F $ $ f $ SYM $ _ 8 nsubj _ _ 8 preserves preserve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 9 preimages preimage NOUN NNS Number=Plur 8 dobj _ SpaceAfter=No 10 : : PUNCT : _ 8 punct _ _ 11 if if SCONJ IN _ 13 mark _ _ 12 $ F $ $ f $ SYM $ _ 13 nsubj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 advcl _ _ 14 not not PART RB Polarity=Neg 13 neg _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 varietor varietor NOUN NN Number=Sing 13 attr _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 24 punct _ _ 18 Birkhoff Birkhoff PROPN NNP Number=Sing 21 poss _ SpaceAfter=No 19 's 's PART POS _ 18 case _ _ 20 Variety Variety PROPN NNP Number=Sing 21 compound _ _ 21 Theorem Theorem PROPN NNP Number=Sing 24 nsubj _ _ 22 does do AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 aux _ _ 23 not not PART RB Polarity=Neg 24 neg _ _ 24 hold hold VERB VB VerbForm=Inf 2 ccomp _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = However, we also present a non - varietor satisfying Birkhoff's Variety Theorem. 1 However however ADV RB _ 5 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 5 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 4 also also ADV RB _ 5 advmod _ _ 5 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 7 non non ADJ JJ Degree=Pos 9 amod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 varietor varietor NOUN NN Number=Sing 5 dobj _ _ 10 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 advcl _ _ 11 Birkhoff Birkhoff PROPN NNP Number=Sing 14 poss _ SpaceAfter=No 12 's 's PART POS _ 11 case _ _ 13 Variety Variety PROPN NNP Number=Sing 14 compound _ _ 14 Theorem Theorem PROPN NNP Number=Sing 10 dobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 7 # text = Our most surprising example is two varietors whose coproduct does not satisfy Birkhoff's Variety Theorem. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 4 poss _ _ 2 most most ADV RBS Degree=Sup 3 advmod _ _ 3 surprising surprising ADJ JJ Degree=Pos 4 amod _ _ 4 example example NOUN NN Number=Sing 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 two two NUM CD NumType=Card 7 nummod _ _ 7 varietors varietor NOUN NNS Number=Plur 5 attr _ _ 8 whose whose DET WP$ Poss=Yes 9 poss _ _ 9 coproduct coproduct NOUN NN Number=Sing 12 nsubj _ _ 10 does do AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 aux _ _ 11 not not PART RB Polarity=Neg 12 neg _ _ 12 satisfy satisfy VERB VB VerbForm=Inf 7 relcl _ _ 13 Birkhoff Birkhoff PROPN NNP Number=Sing 16 poss _ SpaceAfter=No 14 's 's PART POS _ 13 case _ _ 15 Variety Variety PROPN NNP Number=Sing 16 compound _ _ 16 Theorem Theorem PROPN NNP Number=Sing 12 dobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 206 # sent_id = 1 # text = The paper is in essence a survey of categories having $ phi $ - weighted colimits for all the weights $ phi $ in some class $ Phi $ . 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 in in ADP IN _ 3 prep _ _ 5 essence essence NOUN NN Number=Sing 4 pobj _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 survey survey NOUN NN Number=Sing 3 attr _ _ 8 of of ADP IN _ 7 prep _ _ 9 categories category NOUN NNS Number=Plur 8 pobj _ _ 10 having have VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 acl _ _ 11 $ phi $ $ phi $ SYM $ _ 13 advmod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 weighted weight VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 14 colimits colimit NOUN NNS Number=Plur 10 dobj _ _ 15 for for ADP IN _ 14 prep _ _ 16 all all DET PDT _ 18 predet _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 weights weight NOUN NNS Number=Plur 15 pobj _ _ 19 $ phi $ $ phi $ SYM $ _ 7 appos _ _ 20 in in ADP IN _ 19 prep _ _ 21 some some DET DT _ 22 det _ _ 22 class class NOUN NN Number=Sing 20 pobj _ _ 23 $ Phi $ $ phi $ SYM $ _ 3 dep _ _ 24 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = We introduce the class $ Phi^+ $ of $ Phi $ - flat weights which are those $ psi $ for which $ psi $ - colimits commute in the base $ cal V $ with limits having weights in $ Phi $ ; and the class $ Phi^ - $ of $ Phi $ - atomic weights, which are those $ psi $ for which $ psi $ - limits commute in the base $ cal V $ with colimits having weights in $ Phi $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 class class NOUN NN Number=Sing 2 dobj _ _ 5 $ Phi^+ $ $ phi^+ $ SYM $ _ 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 $ Phi $ $ phi $ SYM $ _ 9 advmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 flat flat ADJ JJ Degree=Pos 10 amod _ _ 10 weights weight NOUN NNS Number=Plur 6 pobj _ _ 11 which which PRON WDT _ 12 nsubj _ _ 12 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 10 relcl _ _ 13 those those PRON DT Number=Plur|PronType=Dem 12 attr _ _ 14 $ psi $ $ psi $ SYM $ _ 12 attr _ _ 15 for for ADP IN _ 20 prep _ _ 16 which which PRON WDT _ 15 pobj _ _ 17 $ psi $ $ psi $ SYM $ _ 19 nummod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 colimits colimit NOUN NNS Number=Plur 20 compound _ _ 20 commute commute NOUN NN Number=Sing 14 relcl _ _ 21 in in ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 base base NOUN NN Number=Sing 21 pobj _ _ 24 $ cal V $ $ cal v $ SYM $ _ 12 attr _ _ 25 with with ADP IN _ 12 prep _ _ 26 limits limit NOUN NNS Number=Plur 25 pobj _ _ 27 having have VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 26 acl _ _ 28 weights weight NOUN NNS Number=Plur 27 dobj _ _ 29 in in ADP IN _ 28 prep _ _ 30 $ Phi $ $ phi $ SYM $ _ 29 pobj _ _ 31 ; ; PUNCT : _ 2 punct _ _ 32 and and CCONJ CC ConjType=Cmp 2 cc _ _ 33 the the DET DT Definite=Def|PronType=Art 35 det _ _ 34 class class NOUN NN Number=Sing 35 compound _ _ 35 $ Phi^ - $ $ phi^ - $ SYM $ _ 2 conj _ _ 36 of of ADP IN _ 35 prep _ _ 37 $ Phi $ $ phi $ SYM $ _ 39 amod _ _ 38 - - PUNCT HYPH PunctType=Dash 39 punct _ _ 39 atomic atomic ADJ JJ Degree=Pos 40 amod _ _ 40 weights weight NOUN NNS Number=Plur 36 pobj _ SpaceAfter=No 41 , , PUNCT , PunctType=Comm 35 punct _ _ 42 which which PRON WDT _ 43 nsubj _ _ 43 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 35 relcl _ _ 44 those those DET DT Number=Plur|PronType=Dem 45 det _ _ 45 $ psi $ $ psi $ SYM $ _ 43 attr _ _ 46 for for ADP IN _ 51 prep _ _ 47 which which PRON WDT _ 46 pobj _ _ 48 $ psi $ $ psi $ SYM $ _ 50 nummod _ _ 49 - - PUNCT HYPH PunctType=Dash 50 punct _ _ 50 limits limit NOUN NNS Number=Plur 51 compound _ _ 51 commute commute NOUN NN Number=Sing 45 relcl _ _ 52 in in ADP IN _ 51 prep _ _ 53 the the DET DT Definite=Def|PronType=Art 54 det _ _ 54 base base NOUN NN Number=Sing 52 pobj _ _ 55 $ cal V $ $ cal v $ SYM $ _ 43 dep _ _ 56 with with ADP IN _ 43 prep _ _ 57 colimits colimit NOUN NNS Number=Plur 56 pobj _ _ 58 having have VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 57 acl _ _ 59 weights weight NOUN NNS Number=Plur 58 dobj _ _ 60 in in ADP IN _ 59 prep _ _ 61 $ Phi $ $ phi $ SYM $ _ 60 pobj _ _ 62 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We show that both these classes are saturated (that is, what was called closed in the terminology of Albert and Kelly). 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 8 mark _ _ 4 both both CCONJ CC ConjType=Cmp 6 predet _ _ 5 these these DET DT Number=Plur|PronType=Dem 6 det _ _ 6 classes class NOUN NNS Number=Plur 8 nsubjpass _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 saturated saturate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 9 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 15 punct _ SpaceAfter=No 10 that that ADV RB _ 11 advmod _ _ 11 is is ADV RB _ 15 advmod _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 15 punct _ _ 13 what what PRON WP _ 15 nsubjpass _ _ 14 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 15 auxpass _ _ 15 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 parataxis _ _ 16 closed closed ADJ JJ Degree=Pos 15 oprd _ _ 17 in in ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 terminology terminology NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 Albert Albert PROPN NNP Number=Sing 20 pobj _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 Kelly Kelly PROPN NNP Number=Sing 21 conj _ SpaceAfter=No 24 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 15 punct _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We prove that for the class $ cal P $ of all weights, the classes $ cal P^+ $ and $ cal P^ - $ both coincide with the class $ Q $ of absolute weights. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 18 mark _ _ 4 for for ADP IN _ 18 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 class class NOUN NN Number=Sing 4 pobj _ _ 7 $ cal P $ $ cal p $ SYM $ _ 4 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 all all DET DT _ 10 det _ _ 10 weights weight NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 18 punct _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 classes class NOUN NNS Number=Plur 18 nsubj _ _ 14 $ cal P^+ $ $ cal p^+ $ SYM $ _ 13 appos _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 $ cal P^ - $ $ cal p^ - $ SYM $ _ 14 conj _ _ 17 both both PRON DT _ 16 appos _ _ 18 coincide coincide VERB VBP Tense=Pres|VerbForm=Fin 2 ccomp _ _ 19 with with ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 class class NOUN NN Number=Sing 19 pobj _ _ 22 $ Q $ $ q $ SYM $ _ 21 appos _ _ 23 of of ADP IN _ 21 prep _ _ 24 absolute absolute ADJ JJ Degree=Pos 25 amod _ _ 25 weights weight NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = For any class $ Phi $ and any category $ cal A $ , we have the free $ Phi $ - cocompletion $ Phi(cal A) $ of $ cal A $ ; and we recognize $ cal Q(cal A) $ as the Cauchy - completion of $ cal A $ . 1 For for ADP IN _ 11 prep _ _ 2 any any DET DT _ 3 det _ _ 3 class class NOUN NN Number=Sing 1 pobj _ _ 4 $ Phi $ $ phi $ SYM $ _ 1 pobj _ _ 5 and and CCONJ CC ConjType=Cmp 1 cc _ _ 6 any any DET DT _ 7 det _ _ 7 category category NOUN NN Number=Sing 1 pobj _ _ 8 $ cal A $ $ cal a $ SYM $ _ 7 nummod _ _ 9 , , PUNCT , PunctType=Comm 11 punct _ _ 10 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 11 nsubj _ _ 11 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 the the DET DT Definite=Def|PronType=Art 16 det _ _ 13 free free ADJ JJ Degree=Pos 16 amod _ _ 14 $ Phi $ $ phi $ SYM $ _ 16 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 cocompletion cocompletion NOUN NN Number=Sing 11 dobj _ _ 17 $ Phi(cal A) $ $ phi(cal a) $ SYM $ _ 16 appos _ _ 18 of of ADP IN _ 17 prep _ _ 19 $ cal A $ $ cal a $ SYM $ _ 18 pobj _ _ 20 ; ; PUNCT : _ 11 punct _ _ 21 and and CCONJ CC ConjType=Cmp 11 cc _ _ 22 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 23 nsubj _ _ 23 recognize recognize VERB VBP Tense=Pres|VerbForm=Fin 11 conj _ _ 24 $ cal Q(cal A) $ $ cal q(cal a) $ SYM $ _ 23 dobj _ _ 25 as as ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 29 det _ _ 27 Cauchy Cauchy PROPN NNP Number=Sing 29 compound _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 completion completion NOUN NN Number=Sing 25 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 $ cal A $ $ cal a $ SYM $ _ 30 pobj _ _ 32 . . PUNCT . PunctType=Peri 23 punct _ SpaceAfter=No # sent_id = 6 # text = We study the equivalence between $ {(cal Q(cal A^{op}))}^{op} $ and $ cal Q(cal A) $ , which we exhibit as the restriction of the Isbell adjunction between $ {[cal A, cal V]}^{op} $ and $ [cal A^{op}, cal V] $ when $ cal A $ is small; and we give a new Morita theorem for any class $ Phi $ containing $ cal Q $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 equivalence equivalence NOUN NN Number=Sing 2 dobj _ _ 5 between between ADP IN _ 4 prep _ _ 6 $ {(cal Q(cal A^{op}))}^{op} $ $ {(cal q(cal a^{op}))}^{op} $ SYM $ _ 5 pobj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 $ cal Q(cal A) $ $ cal q(cal a) $ SYM $ _ 6 conj _ _ 9 , , PUNCT , PunctType=Comm 6 punct _ _ 10 which which PRON WDT _ 12 dobj _ _ 11 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 12 nsubj _ _ 12 exhibit exhibit VERB VBP Tense=Pres|VerbForm=Fin 4 relcl _ _ 13 as as ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 restriction restriction NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 Isbell Isbell PROPN NNP Number=Sing 19 compound _ _ 19 adjunction adjunction NOUN NN Number=Sing 16 pobj _ _ 20 between between ADP IN _ 19 prep _ _ 21 $ {[cal A, cal V]}^{op} $ $ {[cal a, cal v]}^{op} $ SYM $ _ 20 pobj _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 $ [cal A^{op}, cal V] $ $ [cal a^{op}, cal v] $ SYM $ _ 21 conj _ _ 24 when when SCONJ WRB _ 25 advmod _ _ 25 $ cal A $ $ cal a $ SYM $ _ 26 nsubj _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 conj _ _ 27 small small ADJ JJ Degree=Pos 26 acomp _ SpaceAfter=No 28 ; ; PUNCT : _ 2 punct _ _ 29 and and CCONJ CC ConjType=Cmp 2 cc _ _ 30 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 31 nsubj _ _ 31 give give VERB VBP Tense=Pres|VerbForm=Fin 2 conj _ _ 32 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 33 new new ADJ JJ Degree=Pos 35 amod _ _ 34 Morita Morita PROPN NNP Number=Sing 35 compound _ _ 35 theorem theorem VERB VBD Tense=Past|VerbForm=Fin 31 dobj _ _ 36 for for ADP IN _ 35 prep _ _ 37 any any DET DT _ 38 det _ _ 38 class class NOUN NN Number=Sing 36 pobj _ _ 39 $ Phi $ $ phi $ SYM $ _ 31 dobj _ _ 40 containing contain VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 31 advcl _ _ 41 $ cal Q $ $ cal q $ SYM $ _ 40 dep _ _ 42 . . PUNCT . PunctType=Peri 31 punct _ SpaceAfter=No # sent_id = 7 # text = We end with the study of $ Phi $ - continuous weights and their relation to the $ Phi $ - flat weights. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 end end VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 with with ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 study study NOUN NN Number=Sing 3 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 $ Phi $ $ phi $ SYM $ _ 9 advmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 continuous continuous ADJ JJ Degree=Pos 10 amod _ _ 10 weights weight NOUN NNS Number=Plur 6 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 13 poss _ _ 13 relation relation NOUN NN Number=Sing 10 conj _ _ 14 to to ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 19 det _ _ 16 $ Phi $ $ phi $ SYM $ _ 18 advmod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 flat flat ADJ JJ Degree=Pos 19 amod _ _ 19 weights weight NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 207 # sent_id = 1 # text = In order to apply nonstandard methods to modern algebraic geometry, as a first step in this paper we study the applications of nonstandard constructions to category theory. 1 In in ADP IN _ 20 prep _ _ 2 order order NOUN NN Number=Sing 1 pobj _ _ 3 to to PART TO _ 4 aux _ _ 4 apply apply VERB VB VerbForm=Inf 2 acl _ _ 5 nonstandard nonstandard ADJ JJ Degree=Pos 6 amod _ _ 6 methods method NOUN NNS Number=Plur 4 dobj _ _ 7 to to ADP IN _ 4 prep _ _ 8 modern modern ADJ JJ Degree=Pos 10 amod _ _ 9 algebraic algebraic ADJ JJ Degree=Pos 10 amod _ _ 10 geometry geometry NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 4 punct _ _ 12 as as ADP IN _ 20 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 first first ADJ JJ Degree=Pos 15 amod _ _ 15 step step NOUN NN Number=Sing 12 pobj _ _ 16 in in ADP IN _ 15 prep _ _ 17 this this DET DT Number=Sing|PronType=Dem 18 det _ _ 18 paper paper NOUN NN Number=Sing 16 pobj _ _ 19 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 20 nsubj _ _ 20 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 applications application NOUN NNS Number=Plur 20 dobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 nonstandard nonstandard ADJ JJ Degree=Pos 25 amod _ _ 25 constructions construction NOUN NNS Number=Plur 23 pobj _ _ 26 to to ADP IN _ 20 prep _ _ 27 category category NOUN NN Number=Sing 28 compound _ _ 28 theory theory NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # sent_id = 2 # text = It turns out that many categorical properties are well behaved under enlargements. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 turns turn VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 out out ADP RP _ 2 prt _ _ 4 that that SCONJ IN _ 8 mark _ _ 5 many many ADJ JJ Degree=Pos 7 amod _ _ 6 categorical categorical ADJ JJ Degree=Pos 7 amod _ _ 7 properties property NOUN NNS Number=Plur 8 nsubj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 9 well well ADV RB Degree=Pos 10 advmod _ _ 10 behaved behave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 11 under under ADP IN _ 10 prep _ _ 12 enlargements enlargement NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 208 # sent_id = 1 # text = Following Lawvere, a generalized metric space is a set $ X $ equipped with a metric map from $ X^{2} $ to the interval of upper reals (approximated from above but not from below) from 0 to $ infty $ inclusive, and satisfying the zero self - distance law and the triangle inequality. 1 Following follow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 csubj _ _ 2 Lawvere Lawvere PROPN NNP Number=Sing 1 dobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 2 punct _ _ 4 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 5 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 amod _ _ 6 metric metric ADJ JJ Degree=Pos 7 amod _ _ 7 space space NOUN NN Number=Sing 2 appos _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 set set NOUN NN Number=Sing 8 attr _ _ 11 $ X $ $ x $ SYM $ _ 10 appos _ _ 12 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 acl _ _ 13 with with ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 metric metric ADJ JJ Degree=Pos 16 amod _ _ 16 map map NOUN NN Number=Sing 13 pobj _ _ 17 from from ADP IN _ 16 prep _ _ 18 $ X^{2} $ $ x^{2} $ SYM $ _ 17 pobj _ _ 19 to to ADP IN _ 10 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 interval interval NOUN NN Number=Sing 19 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 upper upper ADJ JJ Degree=Pos 24 amod _ _ 24 reals real NOUN NNS Number=Plur 22 pobj _ _ 25 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 24 punct _ SpaceAfter=No 26 approximated approximate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 acl _ _ 27 from from ADP IN _ 26 prep _ _ 28 above above ADV RB _ 27 pcomp _ _ 29 but but CCONJ CC ConjType=Cmp 27 cc _ _ 30 not not PART RB Polarity=Neg 31 neg _ _ 31 from from ADP IN _ 26 prep _ _ 32 below below ADV RB _ 31 pcomp _ SpaceAfter=No 33 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 24 punct _ _ 34 from from ADP IN _ 10 prep _ _ 35 0 0 NUM CD NumType=Card 34 pobj _ _ 36 to to PART TO _ 34 prep _ _ 37 $ infty $ $ infty $ SYM $ _ 38 nmod _ _ 38 inclusive inclusive ADJ JJ Degree=Pos 36 pobj _ SpaceAfter=No 39 , , PUNCT , PunctType=Comm 10 punct _ _ 40 and and CCONJ CC ConjType=Cmp 10 cc _ _ 41 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 conj _ _ 42 the the DET DT Definite=Def|PronType=Art 47 det _ _ 43 zero zero NUM CD NumType=Card 47 nummod _ _ 44 self self NOUN NN Number=Sing 46 compound _ _ 45 - - PUNCT HYPH PunctType=Dash 46 punct _ _ 46 distance distance NOUN NN Number=Sing 47 compound _ _ 47 law law NOUN NN Number=Sing 41 dobj _ _ 48 and and CCONJ CC ConjType=Cmp 47 cc _ _ 49 the the DET DT Definite=Def|PronType=Art 51 det _ _ 50 triangle triangle NOUN NN Number=Sing 51 compound _ _ 51 inequality inequality NOUN NN Number=Sing 47 conj _ SpaceAfter=No 52 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 2 # text = We describe a completion of generalized metric spacees by Cauchy filters of formal balls. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 completion completion NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 7 metric metric ADJ JJ Degree=Pos 8 amod _ _ 8 spacees spacee NOUN NNS Number=Plur 5 pobj _ _ 9 by by ADP IN _ 2 prep _ _ 10 Cauchy Cauchy PROPN NNP Number=Sing 11 compound _ _ 11 filters filter NOUN NNS Number=Plur 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 formal formal ADJ JJ Degree=Pos 14 amod _ _ 14 balls ball NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = In terms of Lawvere's approach using categories enriched over $ [0, infty] $ , the Cauchy filters are equivalent to flat left modules. 1 In in ADP IN _ 16 prep _ _ 2 terms term NOUN NNS Number=Plur 1 pobj _ _ 3 of of ADP IN _ 2 prep _ _ 4 Lawvere Lawvere PROPN NNP Number=Sing 6 poss _ SpaceAfter=No 5 's 's PART POS _ 4 case _ _ 6 approach approach NOUN NN Number=Sing 3 pobj _ _ 7 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 acl _ _ 8 categories category NOUN NNS Number=Plur 7 dobj _ _ 9 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 acl _ _ 10 over over ADP IN _ 9 prep _ _ 11 $ [0, infty] $ $ [0, infty] $ SYM $ _ 1 nmod _ _ 12 , , PUNCT , PunctType=Comm 16 punct _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 Cauchy Cauchy PROPN NNP Number=Sing 15 compound _ _ 15 filters filter NOUN NNS Number=Plur 16 nsubj _ _ 16 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 17 equivalent equivalent ADJ JJ Degree=Pos 16 acomp _ _ 18 to to ADP IN _ 17 prep _ _ 19 flat flat ADJ JJ Degree=Pos 21 amod _ _ 20 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 amod _ _ 21 modules module NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 4 # text = The completion generalizes the usual one for metric spaces. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 completion completion NOUN NN Number=Sing 3 nsubj _ _ 3 generalizes generalize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 usual usual ADJ JJ Degree=Pos 6 amod _ _ 6 one one NOUN NN Number=Sing 3 dobj _ _ 7 for for ADP IN _ 6 prep _ _ 8 metric metric ADJ JJ Degree=Pos 9 amod _ _ 9 spaces space NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = For quasimetrics it is equivalent to the Yoneda completion in its netwise form due to Kunzi and Schellekens and thereby gives a new and explicit characterization of the points of the Yoneda completion. 1 For for ADP IN _ 4 prep _ _ 2 quasimetrics quasimetric NOUN NNS Number=Plur 1 pobj _ _ 3 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 equivalent equivalent ADJ JJ Degree=Pos 4 acomp _ _ 6 to to ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 Yoneda Yoneda PROPN NNP Number=Sing 9 compound _ _ 9 completion completion NOUN NN Number=Sing 6 pobj _ _ 10 in in ADP IN _ 9 prep _ _ 11 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 13 poss _ _ 12 netwise netwise NOUN NN Number=Sing 13 compound _ _ 13 form form NOUN NN Number=Sing 10 pobj _ _ 14 due due ADP IN _ 4 prep _ _ 15 to to ADP IN _ 14 pcomp _ _ 16 Kunzi Kunzi PROPN NNP Number=Sing 14 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 Schellekens Schellekens PROPN NNP Number=Sing 16 conj _ _ 19 and and CCONJ CC ConjType=Cmp 4 cc _ _ 20 thereby thereby ADV RB _ 21 advmod _ _ 21 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 conj _ _ 22 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 23 new new ADJ JJ Degree=Pos 26 amod _ _ 24 and and CCONJ CC ConjType=Cmp 23 cc _ _ 25 explicit explicit ADJ JJ Degree=Pos 23 conj _ _ 26 characterization characterization NOUN NN Number=Sing 21 dobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 points point NOUN NNS Number=Plur 27 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 33 det _ _ 32 Yoneda Yoneda PROPN NNP Number=Sing 33 compound _ _ 33 completion completion NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 6 # text = Non - expansive functions between gms's lift to continuous maps between the completions. 1 Non non ADJ JJ Degree=Pos 3 amod _ _ 2 - - PUNCT HYPH PunctType=Dash 3 punct _ _ 3 expansive expansive ADJ JJ Degree=Pos 4 amod _ _ 4 functions function NOUN NNS Number=Plur 0 ROOT _ _ 5 between between ADP IN _ 4 prep _ _ 6 gms gms NOUN NN Number=Sing 8 poss _ SpaceAfter=No 7 's 's PART POS _ 6 case _ _ 8 lift lift NOUN NN Number=Sing 5 pobj _ _ 9 to to ADP IN _ 4 prep _ _ 10 continuous continuous ADJ JJ Degree=Pos 11 amod _ _ 11 maps map NOUN NNS Number=Plur 9 pobj _ _ 12 between between ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 completions completion NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 7 # text = Various examples and constructions are given, including finite products. 1 Various various ADJ JJ Degree=Pos 2 amod _ _ 2 examples example NOUN NNS Number=Plur 6 nsubjpass _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 constructions construction NOUN NNS Number=Plur 2 conj _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 6 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 6 punct _ _ 8 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 prep _ _ 9 finite finite ADJ JJ Degree=Pos 10 amod _ _ 10 products product NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 8 # text = The completion is easily adapted to produce a locale, and that part of the work is constructively valid. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 completion completion NOUN NN Number=Sing 5 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 4 easily easily ADV RB _ 5 advmod _ _ 5 adapted adapt VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 to to PART TO _ 7 aux _ _ 7 produce produce VERB VB VerbForm=Inf 5 xcomp _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 locale locale NOUN NN Number=Sing 7 dobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 5 punct _ _ 11 and and CCONJ CC ConjType=Cmp 5 cc _ _ 12 that that DET DT Number=Sing|PronType=Dem 13 det _ _ 13 part part NOUN NN Number=Sing 17 nsubj _ _ 14 of of ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 work work NOUN NN Number=Sing 14 pobj _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 conj _ _ 18 constructively constructively ADV RB _ 19 advmod _ _ 19 valid valid ADJ JJ Degree=Pos 17 acomp _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 9 # text = The exposition illustrates the use of geometric logic to enable point - based reasoning for locales. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 exposition exposition NOUN NN Number=Sing 3 nsubj _ _ 3 illustrates illustrate VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 use use NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 geometric geometric ADJ JJ Degree=Pos 8 amod _ _ 8 logic logic NOUN NN Number=Sing 6 pobj _ _ 9 to to PART TO _ 10 aux _ _ 10 enable enable VERB VB VerbForm=Inf 5 acl _ _ 11 point point NOUN NN Number=Sing 13 npadvmod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 14 reasoning reasoning NOUN NN Number=Sing 10 dobj _ _ 15 for for ADP IN _ 14 prep _ _ 16 locales locale NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 209 # sent_id = 1 # text = A precise concept of concrete geometrical category is introduced in an axiomatic way. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 precise precise ADJ JJ Degree=Pos 3 amod _ _ 3 concept concept NOUN NN Number=Sing 9 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 concrete concrete ADJ JJ Degree=Pos 7 amod _ _ 6 geometrical geometrical ADJ JJ Degree=Pos 7 amod _ _ 7 category category NOUN NN Number=Sing 4 pobj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 in in ADP IN _ 9 prep _ _ 11 an an DET DT Definite=Ind|PronType=Art 13 det _ _ 12 axiomatic axiomatic ADJ JJ Degree=Pos 13 amod _ _ 13 way way NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 2 # text = To any algebra $ L $ for an many - sorted infinitary algebraic theory $ T $ is associated a concrete geometrical category $ Geo(L) $ , the so - called classifying concrete geometrical category of $ L $ , satisfying a universal property. 1 To to ADP IN _ 15 prep _ _ 2 any any DET DT _ 3 det _ _ 3 algebra algebra NOUN NN Number=Sing 1 pobj _ _ 4 $ L $ $ l $ SYM $ _ 1 pcomp _ _ 5 for for ADP IN _ 1 prep _ _ 6 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 7 many many ADJ JJ Degree=Pos 9 advmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 sorted sort VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 10 infinitary infinitary ADJ JJ Degree=Pos 12 amod _ _ 11 algebraic algebraic ADJ JJ Degree=Pos 12 amod _ _ 12 theory theory NOUN NN Number=Sing 5 pobj _ _ 13 $ T $ $ t $ SYM $ _ 12 appos _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 auxpass _ _ 15 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 16 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 17 concrete concrete ADJ JJ Degree=Pos 19 amod _ _ 18 geometrical geometrical ADJ JJ Degree=Pos 19 amod _ _ 19 category category NOUN NN Number=Sing 15 dobj _ _ 20 $ Geo(L) $ $ geo(l) $ SYM $ _ 19 appos _ _ 21 , , PUNCT , PunctType=Comm 19 punct _ _ 22 the the DET DT Definite=Def|PronType=Art 26 det _ _ 23 so so ADV RB _ 25 advmod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 amod _ _ 26 classifying classify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 19 appos _ _ 27 concrete concrete ADJ JJ Degree=Pos 29 amod _ _ 28 geometrical geometrical ADJ JJ Degree=Pos 29 amod _ _ 29 category category NOUN NN Number=Sing 26 dobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 $ L $ $ l $ SYM $ _ 30 pobj _ _ 32 , , PUNCT , PunctType=Comm 26 punct _ _ 33 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 advcl _ _ 34 a a DET DT Definite=Ind|PronType=Art 36 det _ _ 35 universal universal ADJ JJ Degree=Pos 36 amod _ _ 36 property property NOUN NN Number=Sing 33 dobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 3 # text = The terminology "geometrical" is justified firstly for $ Geo(L) $ and secondly for any concrete geometrical category by proving that they are all classifying ones. 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 terminology terminology NOUN NN Number=Sing 4 nmod _ _ 3 " " PUNCT `` PunctSide=Ini|PunctType=Quot 4 punct _ SpaceAfter=No 4 geometrical geometrical ADJ JJ Degree=Pos 7 nsubjpass _ SpaceAfter=No 5 " " PUNCT '' PunctSide=Fin|PunctType=Quot 7 punct _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 7 justified justify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 firstly firstly ADV RB _ 7 advmod _ _ 9 for for ADP IN _ 7 prep _ _ 10 $ Geo(L) $ $ geo(l) $ SYM $ _ 9 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 secondly secondly ADV RB _ 13 advmod _ _ 13 for for ADP IN _ 10 conj _ _ 14 any any DET DT _ 17 det _ _ 15 concrete concrete ADJ JJ Degree=Pos 17 amod _ _ 16 geometrical geometrical ADJ JJ Degree=Pos 17 amod _ _ 17 category category NOUN NN Number=Sing 13 pobj _ _ 18 by by ADP IN _ 7 prep _ _ 19 proving prove VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 18 pcomp _ _ 20 that that SCONJ IN _ 24 mark _ _ 21 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 24 nsubj _ _ 22 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 24 aux _ _ 23 all all PRON DT _ 24 dep _ _ 24 classifying classify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 19 ccomp _ _ 25 ones one NOUN NNS Number=Plur 24 dobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = The legitimate category $ CGC $ of concrete geometrical categories is build up and proved to be the dual of the legitimate category $ TGC $ of topological geometrical categories. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 legitimate legitimate ADJ JJ Degree=Pos 3 amod _ _ 3 category category NOUN NN Number=Sing 10 nsubjpass _ _ 4 $ CGC $ $ cgc $ SYM $ _ 3 appos _ _ 5 of of ADP IN _ 3 prep _ _ 6 concrete concrete ADJ JJ Degree=Pos 8 amod _ _ 7 geometrical geometrical ADJ JJ Degree=Pos 8 amod _ _ 8 categories category NOUN NNS Number=Plur 5 pobj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 10 build build VERB VB VerbForm=Inf 0 ROOT _ _ 11 up up ADP RP _ 10 prt _ _ 12 and and CCONJ CC ConjType=Cmp 10 cc _ _ 13 proved prove VERB VBD Tense=Past|VerbForm=Fin 10 conj _ _ 14 to to PART TO _ 15 aux _ _ 15 be be AUX VB VerbForm=Inf 13 xcomp _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 dual dual ADJ JJ Degree=Pos 15 attr _ _ 18 of of ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 legitimate legitimate ADJ JJ Degree=Pos 21 amod _ _ 21 category category NOUN NN Number=Sing 18 pobj _ _ 22 $ TGC $ $ tgc $ SYM $ _ 21 appos _ _ 23 of of ADP IN _ 22 prep _ _ 24 topological topological ADJ JJ Degree=Pos 26 amod _ _ 25 geometrical geometrical ADJ JJ Degree=Pos 26 amod _ _ 26 categories category NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # doc_id = 210 # sent_id = 1 # text = For every group $ G $ , we construct a functor $ F : SET - - > SET $ (finitary for a finite group $ G $ ) such that the monoid of all natural endotransformations of $ F $ is a group isomorphic to $ G $ . 1 For for ADP IN _ 7 prep _ _ 2 every every DET DT _ 3 det _ _ 3 group group NOUN NN Number=Sing 1 pobj _ _ 4 $ G $ $ g $ SYM $ _ 1 pobj _ _ 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 functor functor NOUN NN Number=Sing 7 dobj _ _ 10 $ F : SET - - > SET $ $ f : set - - > set $ SYM $ _ 9 nummod _ _ 11 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 9 punct _ SpaceAfter=No 12 finitary finitary ADJ JJ Degree=Pos 9 amod _ _ 13 for for ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 finite finite ADJ JJ Degree=Pos 16 compound _ _ 16 group group NOUN NN Number=Sing 13 pobj _ _ 17 $ G $ $ g $ SYM $ _ 9 appos _ _ 18 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 9 punct _ _ 19 such such ADJ JJ Degree=Pos 29 acomp _ _ 20 that that SCONJ IN _ 29 mark _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 monoid monoid NOUN NN Number=Sing 29 nsubj _ _ 23 of of ADP IN _ 22 prep _ _ 24 all all DET DT _ 26 det _ _ 25 natural natural ADJ JJ Degree=Pos 26 amod _ _ 26 endotransformations endotransformation NOUN NNS Number=Plur 23 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 $ F $ $ f $ SYM $ _ 27 pobj _ _ 29 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 ccomp _ _ 30 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 31 group group NOUN NN Number=Sing 29 attr _ _ 32 isomorphic isomorphic ADJ JJ Degree=Pos 31 amod _ _ 33 to to ADP IN _ 29 prep _ _ 34 $ G $ $ g $ SYM $ _ 33 pobj _ _ 35 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # doc_id = 211 # sent_id = 1 # text = We consider a semi - abelian category $ V $ 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 4 semi semi ADJ JJ Degree=Pos 7 amod _ _ 5 - - ADJ JJ Degree=Pos 7 amod _ _ 6 abelian abelian ADJ JJ Degree=Pos 7 amod _ _ 7 category category NOUN NN Number=Sing 2 dobj _ _ 8 $ V $ $ v $ SYM $ _ 2 punct _ SpaceAfter=No # sent_id = 2 # text = and we write $ Act(G, X) $ for the set of actions of the object $ G $ on the object $ X $ , in the sense of the theory of semi - direct products in $ V $ . 1 and and CCONJ CC ConjType=Cmp 3 cc _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 write write VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 $ Act(G, X) $ $ act(g, x) $ SYM $ _ 3 dobj _ _ 5 for for ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 set set NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 actions action NOUN NNS Number=Plur 8 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 object object NOUN NN Number=Sing 10 pobj _ _ 13 $ G $ $ g $ SYM $ _ 4 appos _ _ 14 on on ADP IN _ 3 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 object object NOUN NN Number=Sing 14 pobj _ _ 17 $ X $ $ x $ SYM $ _ 16 appos _ _ 18 , , PUNCT , PunctType=Comm 3 punct _ _ 19 in in ADP IN _ 3 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 sense sense NOUN NN Number=Sing 19 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 theory theory NOUN NN Number=Sing 22 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 semi semi ADJ JJ Degree=Pos 28 advmod _ _ 27 - - ADJ JJ Degree=Pos 28 punct _ _ 28 direct direct ADJ JJ Degree=Pos 29 amod _ _ 29 products product NOUN NNS Number=Plur 25 pobj _ _ 30 in in ADP IN _ 29 prep _ _ 31 $ V $ $ v $ SYM $ _ 30 pobj _ _ 32 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = We investigate the representability of the functor $ Act( - , X) $ in the case where $ V $ is locally presentable, with finite limits commuting with filtered colimits. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 investigate investigate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 representability representability NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 functor functor PROPN NNP Number=Sing 5 pobj _ _ 8 $ Act( - , X) $ $ Act( - , X) $ PROPN NNP Number=Sing 7 appos _ _ 9 in in ADP IN _ 4 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 case case NOUN NN Number=Sing 9 pobj _ _ 12 where where SCONJ WRB _ 14 advmod _ _ 13 $ V $ $ v $ SYM $ _ 14 nsubj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 relcl _ _ 15 locally locally ADV RB _ 16 advmod _ _ 16 presentable presentable ADJ JJ Degree=Pos 14 acomp _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 14 punct _ _ 18 with with ADP IN _ 14 prep _ _ 19 finite finite ADJ JJ Degree=Pos 20 amod _ _ 20 limits limit NOUN NNS Number=Plur 18 pobj _ _ 21 commuting commute VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 20 acl _ _ 22 with with ADP IN _ 21 prep _ _ 23 filtered filter VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 24 colimits colimit NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = This contains all categories of models of a semi - abelian theory in a Grothendieck topos, thus in particular all semi - abelian varieties of universal algebra. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 contains contain VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 all all DET DT _ 4 det _ _ 4 categories category NOUN NNS Number=Plur 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 models model NOUN NNS Number=Plur 5 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 9 semi semi ADJ JJ Degree=Pos 11 amod _ _ 10 - - ADJ JJ Degree=Pos 11 punct _ _ 11 abelian abelian ADJ JJ Degree=Pos 12 amod _ _ 12 theory theory NOUN NN Number=Sing 7 pobj _ _ 13 in in ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 Grothendieck Grothendieck PROPN NNP Number=Sing 16 compound _ _ 16 topos topos NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 2 punct _ _ 18 thus thus ADV RB _ 25 advmod _ _ 19 in in ADP IN _ 25 prep _ _ 20 particular particular ADJ JJ Degree=Pos 19 amod _ _ 21 all all DET DT _ 25 det _ _ 22 semi semi ADJ JJ Degree=Pos 25 amod _ _ 23 - - ADJ JJ Degree=Pos 25 amod _ _ 24 abelian abelian ADJ JJ Degree=Pos 25 amod _ _ 25 varieties variety NOUN NNS Number=Plur 2 dep _ _ 26 of of ADP IN _ 25 prep _ _ 27 universal universal ADJ JJ Degree=Pos 28 amod _ _ 28 algebra algebra NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = For such categories, we prove first that the representability of $ Act( - , X) $ reduces to the preservation of binary coproducts. 1 For for ADP IN _ 6 prep _ _ 2 such such ADJ JJ Degree=Pos 3 amod _ _ 3 categories category NOUN NNS Number=Plur 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 first first ADV RB _ 6 advmod _ _ 8 that that SCONJ IN _ 13 mark _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 representability representability NOUN NN Number=Sing 13 nsubj _ _ 11 of of ADP IN _ 10 prep _ _ 12 $ Act( - , X) $ $ act( - , x) $ SYM $ _ 13 nmod _ _ 13 reduces reduce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 14 to to ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 preservation preservation NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 binary binary ADJ JJ Degree=Pos 19 amod _ _ 19 coproducts coproduct NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 6 # text = Next we give both a very simple necessary condition and a very simple sufficient condition, in terms of amalgamation properties, for the preservation of binary coproducts by the functor $ Act( - , X) $ in a general semi - abelian category. 1 Next next ADV RB _ 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 both both CCONJ CC ConjType=Cmp 9 preconj _ _ 5 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 6 very very ADV RB _ 7 advmod _ _ 7 simple simple ADJ JJ Degree=Pos 9 amod _ _ 8 necessary necessary ADJ JJ Degree=Pos 9 amod _ _ 9 condition condition NOUN NN Number=Sing 3 dobj _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 12 very very ADV RB _ 13 advmod _ _ 13 simple simple ADJ JJ Degree=Pos 15 amod _ _ 14 sufficient sufficient ADJ JJ Degree=Pos 15 amod _ _ 15 condition condition NOUN NN Number=Sing 9 conj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 3 punct _ _ 17 in in ADP IN _ 3 prep _ _ 18 terms term NOUN NNS Number=Plur 17 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 amalgamation amalgamation NOUN NN Number=Sing 21 compound _ _ 21 properties property NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 3 punct _ _ 23 for for ADP IN _ 3 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 preservation preservation NOUN NN Number=Sing 23 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 binary binary ADJ JJ Degree=Pos 28 amod _ _ 28 coproducts coproduct NOUN NNS Number=Plur 26 pobj _ _ 29 by by ADP IN _ 25 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 functor functor PROPN NNP Number=Sing 29 pobj _ _ 32 $ Act( - , X) $ $ Act( - , X) $ PROPN NNP Number=Sing 29 pobj _ _ 33 in in ADP IN _ 25 prep _ _ 34 a a DET DT Definite=Ind|PronType=Art 39 det _ _ 35 general general ADJ JJ Degree=Pos 39 amod _ _ 36 semi semi ADJ JJ Degree=Pos 39 amod _ _ 37 - - ADJ JJ Degree=Pos 39 amod _ _ 38 abelian abelian ADJ JJ Degree=Pos 39 amod _ _ 39 category category NOUN NN Number=Sing 33 pobj _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 7 # text = Finally, we exhibit the precise form of the more involved ``if and only if'' amalgamation property corresponding to the representability of actions: this condition is in particular related to a new notion of ``normalization of a morphism''. 1 Finally finally ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 exhibit exhibit VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 precise precise ADJ JJ Degree=Pos 7 amod _ _ 7 form form NOUN NN Number=Sing 4 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the PRON DT Definite=Def|PronType=Art 11 advmod _ _ 10 more more ADV RBR Degree=Cmp 11 advmod _ _ 11 involved involved ADJ JJ Degree=Pos 8 pobj _ _ 12 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 11 punct _ SpaceAfter=No 13 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 11 punct _ SpaceAfter=No 14 if if SCONJ IN _ 11 dep _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 only only ADV RB _ 14 conj _ _ 17 if if SCONJ IN _ 30 mark _ SpaceAfter=No 18 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 17 punct _ _ 19 amalgamation amalgamation NOUN NN Number=Sing 20 compound _ _ 20 property property NOUN NN Number=Sing 17 pobj _ _ 21 corresponding corresponding NOUN NN Number=Sing 20 amod _ _ 22 to to ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 representability representability NOUN NN Number=Sing 22 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 actions action NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 27 : : PUNCT : _ 30 punct _ _ 28 this this DET DT Number=Sing|PronType=Dem 29 det _ _ 29 condition condition NOUN NN Number=Sing 30 nsubj _ _ 30 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 advcl _ _ 31 in in ADP IN _ 33 prep _ _ 32 particular particular ADJ JJ Degree=Pos 31 amod _ _ 33 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 30 acomp _ _ 34 to to ADP IN _ 33 prep _ _ 35 a a DET DT Definite=Ind|PronType=Art 37 det _ _ 36 new new ADJ JJ Degree=Pos 37 amod _ _ 37 notion notion NOUN NN Number=Sing 34 pobj _ _ 38 of of ADP IN _ 37 prep _ _ 39 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 38 punct _ SpaceAfter=No 40 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 38 punct _ SpaceAfter=No 41 normalization normalization NOUN NN Number=Sing 38 pobj _ _ 42 of of ADP IN _ 41 prep _ _ 43 a a DET DT Definite=Ind|PronType=Art 44 det _ _ 44 morphism morphism NOUN NN Number=Sing 42 pobj _ SpaceAfter=No 45 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 30 punct _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 8 # text = We provide also a wide supply of algebraic examples and counter - examples, giving in particular evidence of the relevance of the object representing $ Act( - , X) $ , when it turns out to exist. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 also also ADV RB _ 2 advmod _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 wide wide ADJ JJ Degree=Pos 6 amod _ _ 6 supply supply NOUN NN Number=Sing 2 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 algebraic algebraic ADJ JJ Degree=Pos 9 amod _ _ 9 examples example NOUN NNS Number=Plur 7 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 counter counter NOUN NN Number=Sing 9 conj _ _ 12 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 13 examples example NOUN NNS Number=Plur 9 conj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 2 punct _ _ 15 giving give VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 16 in in ADP RP _ 15 prt _ _ 17 particular particular ADJ JJ Degree=Pos 18 amod _ _ 18 evidence evidence NOUN NN Number=Sing 15 dobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 relevance relevance NOUN NN Number=Sing 19 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 object object NOUN NN Number=Sing 22 pobj _ _ 25 representing represent VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 24 acl _ _ 26 $ Act( - , X) $ $ act( - , x) $ SYM $ _ 25 dobj _ _ 27 , , PUNCT , PunctType=Comm 26 punct _ _ 28 when when SCONJ WRB _ 30 advmod _ _ 29 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 30 nsubj _ _ 30 turns turn VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 advcl _ _ 31 out out ADP RP _ 30 prt _ _ 32 to to PART TO _ 33 aux _ _ 33 exist exist VERB VB VerbForm=Inf 30 xcomp _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 212 # sent_id = 1 # text = We generalize the Baues - Jibladze descent theorem to a large class of groupoid enriched categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 generalize generalize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 7 det _ _ 4 Baues Baues PROPN NNPS Number=Plur 6 compound _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 Jibladze Jibladze PROPN NNP Number=Sing 7 compound _ _ 7 descent descent NOUN NN Number=Sing 8 nsubj _ _ 8 theorem theorem VERB VBD Tense=Past|VerbForm=Fin 2 ccomp _ _ 9 to to ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 large large ADJ JJ Degree=Pos 12 amod _ _ 12 class class NOUN NN Number=Sing 9 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 groupoid groupoid NOUN NN Number=Sing 15 npadvmod _ _ 15 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 16 categories category NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 213 # sent_id = 1 # text = The definition of a category of $ (T, V) $ - algebras, where $ V $ is a unital commutative quantale and $ T $ is a $ Set $ - monad, requires the existence of a certain lax extension of $ T $ . 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 definition definition NOUN NN Number=Sing 20 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 3 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 $ (T, V) $ $ (t, v) $ SYM $ _ 9 compound _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 algebras algebra NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 where where SCONJ WRB _ 13 advmod _ _ 12 $ V $ $ v $ SYM $ _ 13 nsubj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 relcl _ _ 14 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 15 unital unital ADJ JJ Degree=Pos 17 amod _ _ 16 commutative commutative ADJ JJ Degree=Pos 17 amod _ _ 17 quantale quantale NOUN NN Number=Sing 13 attr _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 $ T $ $ t $ SYM $ _ 20 nsubj _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 21 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 22 $ Set $ $ set $ SYM $ _ 24 compound _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 monad monad NOUN NNS Number=Plur 20 attr _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 20 punct _ _ 26 requires require VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 conj _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 existence existence NOUN NN Number=Sing 26 dobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 31 certain certain ADJ JJ Degree=Pos 33 amod _ _ 32 lax lax ADJ JJ Degree=Pos 33 amod _ _ 33 extension extension NOUN NN Number=Sing 29 pobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 $ T $ $ t $ SYM $ _ 34 pobj _ _ 36 . . PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # sent_id = 2 # text = In this article, we present a general construction of such an extension. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 article article NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 general general ADJ JJ Degree=Pos 9 amod _ _ 9 construction construction NOUN NN Number=Sing 6 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 such such DET PDT _ 13 predet _ _ 12 an an DET DT Definite=Ind|PronType=Art 13 det _ _ 13 extension extension NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = This leads to the formation of two categories of $ (T, V) $ - algebras: the category $ Alg(T, V) $ of canonical $ (T, V) $ - algebras, and the category $ Alg(T', V) $ of op - canonical $ (T, V) $ - algebras. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 leads lead VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 to to ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 formation formation NOUN NN Number=Sing 3 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 two two NUM CD NumType=Card 8 nummod _ _ 8 categories category NOUN NNS Number=Plur 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 $ (T, V) $ $ (t, v) $ SYM $ _ 9 pobj _ _ 11 - - PUNCT : _ 12 punct _ _ 12 algebras algebra NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 13 : : PUNCT : _ 2 punct _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 category category NOUN NN Number=Sing 1 appos _ _ 16 $ Alg(T, V) $ $ alg(t, v) $ SYM $ _ 15 appos _ _ 17 of of ADP IN _ 16 prep _ _ 18 canonical canonical ADJ JJ Degree=Pos 21 amod _ _ 19 $ (T, V) $ $ (T, V) $ PROPN NNP Number=Sing 18 nmod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 algebras algebra NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 16 punct _ _ 23 and and CCONJ CC ConjType=Cmp 15 cc _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 category category NOUN NN Number=Sing 15 conj _ _ 26 $ Alg(T', V) $ $ alg(t', v) $ SYM $ _ 25 appos _ _ 27 of of ADP IN _ 26 prep _ _ 28 op op NOUN NN Number=Sing 27 pobj _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 canonical canonical NOUN NN Number=Sing 15 appos _ _ 31 $ (T, V) $ $ (t, v) $ SYM $ _ 33 compound _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 algebras algebra NOUN NNS Number=Plur 15 conj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = The usual topological - like examples of categories of $ (T, V) $ - algebras (preordered sets, topological, metric and approach spaces) are obtained in this way, and the category of closure spaces appears as a category of canonical $ (P, V) $ - algebras, where $ P $ is the powerset monad. 1 The the DET DT Definite=Def|PronType=Art 6 det _ _ 2 usual usual ADJ JJ Degree=Pos 6 amod _ _ 3 topological topological ADJ JJ Degree=Pos 5 amod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 like like ADJ JJ Degree=Pos 6 amod _ _ 6 examples example NOUN NNS Number=Plur 25 nsubjpass _ _ 7 of of ADP IN _ 6 prep _ _ 8 categories category NOUN NNS Number=Plur 7 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 $ (T, V) $ $ (t, v) $ SYM $ _ 12 nmod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 algebras algebras PROPN NNP Number=Sing 9 pobj _ _ 13 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 12 punct _ SpaceAfter=No 14 preordered preordere VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 amod _ _ 15 sets set NOUN NNS Number=Plur 12 appos _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 topological topological ADJ JJ Degree=Pos 22 amod _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 metric metric ADJ JJ Degree=Pos 17 conj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 approach approach NOUN NN Number=Sing 19 conj _ _ 22 spaces space NOUN NNS Number=Plur 12 appos _ SpaceAfter=No 23 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 12 punct _ _ 24 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 25 auxpass _ _ 25 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 26 in in ADP IN _ 25 prep _ _ 27 this this DET DT Number=Sing|PronType=Dem 28 det _ _ 28 way way NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 25 punct _ _ 30 and and CCONJ CC ConjType=Cmp 25 cc _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 category category NOUN NN Number=Sing 36 nsubj _ _ 33 of of ADP IN _ 32 prep _ _ 34 closure closure NOUN NN Number=Sing 35 compound _ _ 35 spaces space NOUN NNS Number=Plur 33 pobj _ _ 36 appears appear VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 25 conj _ _ 37 as as ADP IN _ 36 prep _ _ 38 a a DET DT Definite=Ind|PronType=Art 39 det _ _ 39 category category NOUN NN Number=Sing 37 pobj _ _ 40 of of ADP IN _ 39 prep _ _ 41 canonical canonical ADJ JJ Degree=Pos 44 amod _ _ 42 $ (P, V) $ $ (P, V) $ PROPN NNP Number=Sing 44 compound _ _ 43 - - PUNCT HYPH PunctType=Dash 44 punct _ _ 44 algebras algebra NOUN NNS Number=Plur 40 pobj _ SpaceAfter=No 45 , , PUNCT , PunctType=Comm 44 punct _ _ 46 where where SCONJ WRB _ 48 advmod _ _ 47 $ P $ $ p $ SYM $ _ 48 nsubj _ _ 48 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 44 relcl _ _ 49 the the DET DT Definite=Def|PronType=Art 51 det _ _ 50 powerset powerset NOUN NN Number=Sing 51 compound _ _ 51 monad monad NOUN NNS Number=Plur 48 attr _ SpaceAfter=No 52 . . PUNCT . PunctType=Peri 36 punct _ SpaceAfter=No # sent_id = 5 # text = This unified presentation allows us to study how these categories are related, and it is shown that under suitable hypotheses both $ Alg(T, V) $ and $ Alg(T', V) $ embed coreflectively into $ Alg(P, V) $ . 1 This this DET DT Number=Sing|PronType=Dem 3 det _ _ 2 unified unified ADJ JJ Degree=Pos 3 amod _ _ 3 presentation presentation NOUN NN Number=Sing 4 nsubj _ _ 4 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 6 to to PART TO _ 7 aux _ _ 7 study study VERB VB VerbForm=Inf 4 ccomp _ _ 8 how how SCONJ WRB _ 12 advmod _ _ 9 these these DET DT Number=Plur|PronType=Dem 10 det _ _ 10 categories category NOUN NNS Number=Plur 12 nsubjpass _ _ 11 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 12 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 ccomp _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 4 punct _ _ 14 and and CCONJ CC ConjType=Cmp 4 cc _ _ 15 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 17 nsubjpass _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 auxpass _ _ 17 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 conj _ _ 18 that that SCONJ IN _ 26 mark _ _ 19 under under ADP IN _ 26 prep _ _ 20 suitable suitable ADJ JJ Degree=Pos 21 amod _ _ 21 hypotheses hypothesis NOUN NNS Number=Plur 19 pobj _ _ 22 both both CCONJ CC ConjType=Cmp 23 preconj _ _ 23 $ Alg(T, V) $ $ alg(t, v) $ SYM $ _ 21 appos _ _ 24 and and CCONJ CC ConjType=Cmp 23 cc _ _ 25 $ Alg(T', V) $ $ alg(t', v) $ SYM $ _ 26 nsubj _ _ 26 embed embe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 ccomp _ _ 27 coreflectively coreflectively ADV RB _ 26 advmod _ _ 28 into into ADP IN _ 26 prep _ _ 29 $ Alg(P, V) $ $ alg(p, v) $ SYM $ _ 28 pobj _ _ 30 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # doc_id = 214 # sent_id = 1 # text = This paper is the second in a series exploring the properties of a functor which assigns a homotopy double groupoid with connections to a Hausdorff space. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 second second ADJ JJ Degree=Pos 3 attr _ _ 6 in in ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 series series NOUN NN Number=Sing 6 pobj _ _ 9 exploring explore VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 acl _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 properties property NOUN NNS Number=Plur 9 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 functor functor NOUN NN Number=Sing 12 pobj _ _ 15 which which PRON WDT _ 16 nsubj _ _ 16 assigns assign VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 relcl _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 homotopy homotopy NOUN NN Number=Sing 16 dobj _ _ 19 double double ADJ JJ Degree=Pos 20 amod _ _ 20 groupoid groupoid NOUN NN Number=Sing 16 dobj _ _ 21 with with ADP IN _ 16 prep _ _ 22 connections connection NOUN NNS Number=Plur 21 pobj _ _ 23 to to ADP IN _ 22 prep _ _ 24 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 25 Hausdorff Hausdorff PROPN NNP Number=Sing 26 compound _ _ 26 space space NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = We show that this functor satisfies a version of the van Kampen theorem, and so is a suitable tool for nonabelian, 2 - dimensional, local - to - global problems. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 6 mark _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 functor functor NOUN NN Number=Sing 6 nsubj _ _ 6 satisfies satisfy VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 version version NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 van van PROPN NNP Number=Sing 12 compound _ _ 12 Kampen Kampen PROPN NNP Number=Sing 9 pobj _ _ 13 theorem theorem VERB VBD Tense=Past|VerbForm=Fin 6 ccomp _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 6 punct _ _ 15 and and CCONJ CC ConjType=Cmp 6 cc _ _ 16 so so ADV RB _ 17 advmod _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 conj _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 suitable suitable ADJ JJ Degree=Pos 20 amod _ _ 20 tool tool NOUN NN Number=Sing 17 attr _ _ 21 for for ADP IN _ 20 prep _ _ 22 nonabelian nonabelian PROPN NNP Number=Sing 33 amod _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 2 2 NUM CD NumType=Card 26 npadvmod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 dimensional dimensional ADJ JJ Degree=Pos 33 amod _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 33 punct _ _ 28 local local ADJ JJ Degree=Pos 33 amod _ _ 29 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 30 to to ADP IN _ 28 prep _ _ 31 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 32 global global ADJ JJ Degree=Pos 30 pobj _ _ 33 problems problem NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = The methods are analogous to those developed by Brown and Higgins for similar theorems for other higher homotopy groupoids. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 methods method NOUN NNS Number=Plur 3 nsubj _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 analogous analogous ADJ JJ Degree=Pos 3 acomp _ _ 5 to to ADP IN _ 4 prep _ _ 6 those those PRON DT Number=Plur|PronType=Dem 5 pobj _ _ 7 developed develop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 acl _ _ 8 by by ADP IN _ 7 agent _ _ 9 Brown Brown PROPN NNP Number=Sing 8 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 Higgins Higgins PROPN NNP Number=Sing 9 conj _ _ 12 for for ADP IN _ 7 prep _ _ 13 similar similar ADJ JJ Degree=Pos 14 amod _ _ 14 theorems theorem NOUN NNS Number=Plur 12 pobj _ _ 15 for for ADP IN _ 14 prep _ _ 16 other other ADJ JJ Degree=Pos 19 amod _ _ 17 higher high ADJ JJR Degree=Cmp 19 amod _ _ 18 homotopy homotopy NOUN NN Number=Sing 19 compound _ _ 19 groupoids groupoid NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = An integral part of the proof is a detailed discussion of commutative cubes in a double category with connections, and a proof of the key result that any composition of commutative cubes is commutative. 1 An an DET DT Definite=Ind|PronType=Art 3 det _ _ 2 integral integral ADJ JJ Degree=Pos 3 amod _ _ 3 part part NOUN NN Number=Sing 7 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 proof proof NOUN NN Number=Sing 4 pobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 detailed detailed ADJ JJ Degree=Pos 10 amod _ _ 10 discussion discussion NOUN NN Number=Sing 7 attr _ _ 11 of of ADP IN _ 10 prep _ _ 12 commutative commutative ADJ JJ Degree=Pos 13 amod _ _ 13 cubes cube NOUN NNS Number=Plur 11 pobj _ _ 14 in in ADP IN _ 10 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 double double ADJ JJ Degree=Pos 17 amod _ _ 17 category category NOUN NN Number=Sing 14 pobj _ _ 18 with with ADP IN _ 10 prep _ _ 19 connections connection NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 10 punct _ _ 21 and and CCONJ CC ConjType=Cmp 10 cc _ _ 22 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 23 proof proof NOUN NN Number=Sing 10 conj _ _ 24 of of ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 27 det _ _ 26 key key ADJ JJ Degree=Pos 27 amod _ _ 27 result result NOUN NN Number=Sing 24 pobj _ _ 28 that that SCONJ IN _ 34 mark _ _ 29 any any DET DT _ 30 det _ _ 30 composition composition NOUN NN Number=Sing 34 nsubj _ _ 31 of of ADP IN _ 30 prep _ _ 32 commutative commutative ADJ JJ Degree=Pos 33 amod _ _ 33 cubes cube NOUN NNS Number=Plur 31 pobj _ _ 34 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 27 acl _ _ 35 commutative commutative ADJ JJ Degree=Pos 34 acomp _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 5 # text = These results have recently been generalised to all dimensions by Philip Higgins. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 results result NOUN NNS Number=Plur 6 nsubjpass _ _ 3 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 aux _ _ 4 recently recently ADV RB _ 6 advmod _ _ 5 been be AUX VBN Tense=Past|VerbForm=Part 6 auxpass _ _ 6 generalised generalise VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 to to ADP IN _ 6 prep _ _ 8 all all DET DT _ 9 det _ _ 9 dimensions dimension NOUN NNS Number=Plur 7 pobj _ _ 10 by by ADP IN _ 9 prep _ _ 11 Philip Philip PROPN NNP Number=Sing 12 compound _ _ 12 Higgins Higgins PROPN NNP Number=Sing 10 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 215 # sent_id = 1 # text = A survey of parts of General Coalgebra is presented with applications to the theory of systems. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 survey survey NOUN NN Number=Sing 9 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 parts part NOUN NNS Number=Plur 3 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 General General PROPN NNP Number=Sing 7 compound _ _ 7 Coalgebra Coalgebra PROPN NNP Number=Sing 5 pobj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 with with ADP IN _ 9 prep _ _ 11 applications application NOUN NNS Number=Plur 10 pobj _ _ 12 to to ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 theory theory NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 systems system NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 2 # text = Stress is laid on terminal coalgebras and coinduction as well as iterative algebras and iterative theories. 1 Stress stress NOUN NN Number=Sing 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 laid lay VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 on on ADP IN _ 3 prep _ _ 5 terminal terminal ADJ JJ Degree=Pos 6 amod _ _ 6 coalgebras coalgebra NOUN NNS Number=Plur 4 pobj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 coinduction coinduction NOUN NN Number=Sing 6 conj _ _ 9 as as ADV RB _ 11 advmod _ _ 10 well well ADV RB Degree=Pos 11 advmod _ _ 11 as as ADP IN _ 6 cc _ _ 12 iterative iterative ADJ JJ Degree=Pos 13 amod _ _ 13 algebras algebra NOUN NNS Number=Plur 6 conj _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 iterative iterative ADJ JJ Degree=Pos 16 amod _ _ 16 theories theory NOUN NNS Number=Plur 13 conj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 216 # sent_id = 1 # text = In the quest for an elegant formulation of the notion of ``polycategory'' we develop a more symmetric counterpart to Burroni's notion of `` $ T $ - category'', where $ T $ is a cartesian monad on a category $ X $ with pullbacks. 1 In in ADP IN _ 0 ROOT _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 quest quest NOUN NN Number=Sing 1 pobj _ _ 4 for for ADP IN _ 3 prep _ _ 5 an an DET DT Definite=Ind|PronType=Art 7 det _ _ 6 elegant elegant ADJ JJ Degree=Pos 7 amod _ _ 7 formulation formulation NOUN NN Number=Sing 4 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 notion notion NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 14 punct _ SpaceAfter=No 13 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 14 punct _ SpaceAfter=No 14 polycategory polycategory NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 15 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 14 punct _ _ 16 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 17 nsubj _ _ 17 develop develop VERB VBP Tense=Pres|VerbForm=Fin 14 relcl _ _ 18 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 19 more more ADV RBR Degree=Cmp 20 advmod _ _ 20 symmetric symmetric ADJ JJ Degree=Pos 21 amod _ _ 21 counterpart counterpart NOUN NN Number=Sing 17 dobj _ _ 22 to to ADP IN _ 21 prep _ _ 23 Burroni Burroni PROPN NNP Number=Sing 25 poss _ SpaceAfter=No 24 's 's PART POS _ 23 case _ _ 25 notion notion NOUN NN Number=Sing 22 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 26 punct _ SpaceAfter=No 28 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 26 punct _ _ 29 $ T $ $ t $ SYM $ _ 31 nummod _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 category category NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 32 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 25 punct _ SpaceAfter=No 33 , , PUNCT , PunctType=Comm 25 punct _ _ 34 where where SCONJ WRB _ 36 advmod _ _ 35 $ T $ $ t $ SYM $ _ 36 nsubj _ _ 36 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 25 relcl _ _ 37 a a DET DT Definite=Ind|PronType=Art 39 det _ _ 38 cartesian cartesian ADJ JJ Degree=Pos 39 amod _ _ 39 monad monad NOUN NNS Number=Plur 36 attr _ _ 40 on on ADP IN _ 39 prep _ _ 41 a a DET DT Definite=Ind|PronType=Art 42 det _ _ 42 category category NOUN NN Number=Sing 40 pobj _ _ 43 $ X $ $ x $ SYM $ _ 42 appos _ _ 44 with with ADP IN _ 39 prep _ _ 45 pullbacks pullback NOUN NNS Number=Plur 44 pobj _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = Our approach involves two such monads, $ S $ and $ T $ , that are linked by a suitable generalization of a distributive law in the sense of Beck. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 approach approach NOUN NN Number=Sing 3 nsubj _ _ 3 involves involve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 two two NUM CD NumType=Card 6 nummod _ _ 5 such such ADJ JJ Degree=Pos 6 amod _ _ 6 monads monad NOUN NNS Number=Plur 3 dobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 6 punct _ _ 8 $ S $ $ s $ SYM $ _ 6 appos _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 $ T $ $ t $ SYM $ _ 8 conj _ _ 11 , , PUNCT , PunctType=Comm 6 punct _ _ 12 that that PRON WDT PronType=Rel 14 nsubjpass _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 linked link VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 relcl _ _ 15 by by ADP IN _ 14 agent _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 suitable suitable ADJ JJ Degree=Pos 18 amod _ _ 18 generalization generalization NOUN NN Number=Sing 15 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 distributive distributive ADJ JJ Degree=Pos 22 amod _ _ 22 law law NOUN NN Number=Sing 19 pobj _ _ 23 in in ADP IN _ 14 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 sense sense NOUN NN Number=Sing 23 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 Beck Beck PROPN NNP Number=Sing 26 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = This takes the form of a span $ omega : TS ST $ in the functor category $ [X, X] $ and guarantees essential associativity for a canonical pullback - induced composition of $ S - T $ - spans over $ X $ , identifying them as the 1 - cells of a bicategory, whose (internal) monoids then qualify as `` $ omega $ - categories''. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 takes take VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 form form NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 span span NOUN NN Number=Sing 5 pobj _ _ 8 $ omega : TS ST $ $ omega : ts st $ SYM $ _ 7 appos _ _ 9 in in ADP IN _ 2 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 functor functor NOUN NN Number=Sing 12 compound _ _ 12 category category NOUN NN Number=Sing 9 pobj _ _ 13 $ [X, X] $ $ [x, x] $ SYM $ _ 12 appos _ _ 14 and and CCONJ CC ConjType=Cmp 2 cc _ _ 15 guarantees guarantee VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 conj _ _ 16 essential essential ADJ JJ Degree=Pos 17 amod _ _ 17 associativity associativity NOUN NN Number=Sing 15 dobj _ _ 18 for for ADP IN _ 15 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 20 canonical canonical ADJ JJ Degree=Pos 24 amod _ _ 21 pullback pullback NOUN NN Number=Sing 23 npadvmod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 24 composition composition NOUN NN Number=Sing 18 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 $ S - T $ $ s - t $ SYM $ _ 28 nmod _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 spans span NOUN NNS Number=Plur 25 pobj _ _ 29 over over ADP IN _ 24 prep _ _ 30 $ X $ $ x $ SYM $ _ 29 pobj _ _ 31 , , PUNCT , PunctType=Comm 15 punct _ _ 32 identifying identify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 advcl _ _ 33 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 32 dobj _ _ 34 as as ADP IN _ 32 prep _ _ 35 the the DET DT Definite=Def|PronType=Art 38 det _ _ 36 1 1 NUM CD NumType=Card 38 nummod _ _ 37 - - PUNCT HYPH PunctType=Dash 38 punct _ _ 38 cells cell NOUN NNS Number=Plur 34 pobj _ _ 39 of of ADP IN _ 38 prep _ _ 40 a a DET DT Definite=Ind|PronType=Art 41 det _ _ 41 bicategory bicategory NOUN NN Number=Sing 39 pobj _ SpaceAfter=No 42 , , PUNCT , PunctType=Comm 41 punct _ _ 43 whose whose DET WP$ Poss=Yes 47 poss _ _ 44 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 47 punct _ SpaceAfter=No 45 internal internal ADJ JJ Degree=Pos 47 amod _ SpaceAfter=No 46 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 47 punct _ _ 47 monoids monoid NOUN NNS Number=Plur 49 nsubj _ _ 48 then then ADV RB PronType=Dem 49 advmod _ _ 49 qualify qualify VERB VBP Tense=Pres|VerbForm=Fin 2 conj _ _ 50 as as ADP IN _ 49 prep _ _ 51 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 50 punct _ SpaceAfter=No 52 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 50 punct _ _ 53 $ omega $ $ omega $ SYM $ _ 55 compound _ _ 54 - - PUNCT HYPH PunctType=Dash 55 punct _ _ 55 categories category NOUN NNS Number=Plur 50 pobj _ SpaceAfter=No 56 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 49 punct _ SpaceAfter=No 57 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = In case that $ S $ and $ T $ both are the free monoid monad on set, we construct an omega utilizing an apparently new classical distributive law linking the free semigroup monad with itself. 1 In in ADP IN _ 17 prep _ _ 2 case case NOUN NN Number=Sing 1 pobj _ _ 3 that that SCONJ IN _ 8 mark _ _ 4 $ S $ $ s $ SYM $ _ 3 nmod _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 $ T $ $ t $ SYM $ _ 7 nmod _ _ 7 both both PRON DT _ 8 nsubj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 acl _ _ 9 the the DET DT Definite=Def|PronType=Art 12 det _ _ 10 free free ADJ JJ Degree=Pos 12 amod _ _ 11 monoid monoid NOUN NN Number=Sing 12 compound _ _ 12 monad monad NOUN NNS Number=Plur 8 attr _ _ 13 on on ADP IN _ 12 prep _ _ 14 set set NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 17 punct _ _ 16 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 17 nsubj _ _ 17 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 18 an an DET DT Definite=Ind|PronType=Art 19 det _ _ 19 omega omega NOUN NN Number=Sing 17 dobj _ _ 20 utilizing utilize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 19 acl _ _ 21 an an DET DT Definite=Ind|PronType=Art 26 det _ _ 22 apparently apparently ADV RB _ 23 advmod _ _ 23 new new ADJ JJ Degree=Pos 26 amod _ _ 24 classical classical ADJ JJ Degree=Pos 26 amod _ _ 25 distributive distributive ADJ JJ Degree=Pos 26 amod _ _ 26 law law NOUN NN Number=Sing 20 dobj _ _ 27 linking link VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 26 acl _ _ 28 the the DET DT Definite=Def|PronType=Art 30 det _ _ 29 free free ADJ JJ Degree=Pos 30 amod _ _ 30 semigroup semigroup NOUN NN Number=Sing 31 compound _ _ 31 monad monad NOUN NNS Number=Plur 27 dobj _ _ 32 with with ADP IN _ 31 prep _ _ 33 itself itself PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs|Reflex=Yes 32 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 5 # text = Our construction then gives rise to so - called ``planar polycategories'', which nowadays seem to be of more intrinsic interest than Szabo's original polycategories. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 construction construction NOUN NN Number=Sing 4 nsubj _ _ 3 then then ADV RB PronType=Dem 4 advmod _ _ 4 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 rise rise NOUN NN Number=Sing 4 dobj _ _ 6 to to ADP IN _ 5 prep _ _ 7 so so ADV RB _ 9 advmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 amod _ _ 10 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 13 punct _ SpaceAfter=No 11 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 13 punct _ SpaceAfter=No 12 planar planar ADJ JJ Degree=Pos 13 amod _ _ 13 polycategories polycategorie NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 14 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 13 punct _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 13 punct _ _ 16 which which PRON WDT _ 18 nsubj _ _ 17 nowadays nowadays ADV RB _ 18 advmod _ _ 18 seem seem VERB VBP Tense=Pres|VerbForm=Fin 13 relcl _ _ 19 to to PART TO _ 20 aux _ _ 20 be be AUX VB VerbForm=Inf 18 xcomp _ _ 21 of of ADP IN _ 20 prep _ _ 22 more more ADV RBR Degree=Cmp 23 advmod _ _ 23 intrinsic intrinsic ADJ JJ Degree=Pos 24 amod _ _ 24 interest interest NOUN NN Number=Sing 21 pobj _ _ 25 than than ADP IN _ 24 prep _ _ 26 Szabo Szabo PROPN NNP Number=Sing 29 poss _ SpaceAfter=No 27 's 's PART POS _ 26 case _ _ 28 original original ADJ JJ Degree=Pos 29 amod _ _ 29 polycategories polycategorie NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 6 # text = Weakly cartesian monads on $ X $ may be accommodated as well by first quotienting the bicategory of $ X $ - spans. 1 Weakly weakly ADJ JJ Degree=Pos 3 amod _ _ 2 cartesian cartesian ADJ JJ Degree=Pos 3 amod _ _ 3 monads monad NOUN NNS Number=Plur 8 nsubjpass _ _ 4 on on ADP IN _ 3 prep _ _ 5 $ X $ $ x $ SYM $ _ 4 pobj _ _ 6 may may AUX MD VerbForm=Fin 8 aux _ _ 7 be be AUX VB VerbForm=Inf 8 auxpass _ _ 8 accommodated accommodate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 as as ADV RB _ 10 advmod _ _ 10 well well ADV RB Degree=Pos 8 advmod _ _ 11 by by ADP IN _ 8 agent _ _ 12 first first ADV RB _ 13 advmod _ _ 13 quotienting quotiente VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 11 pcomp _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 bicategory bicategory NOUN NN Number=Sing 13 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 $ X $ $ x $ SYM $ _ 19 nmod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 spans span NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # doc_id = 217 # sent_id = 1 # text = We revise our `Physical Traces' paper in the light of the results in another work. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 revise revise VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 6 poss _ _ 4 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 6 punct _ SpaceAfter=No 5 Physical Physical PROPN NNP Number=Sing 6 compound _ _ 6 Traces Traces PROPN NNPS Number=Plur 8 poss _ SpaceAfter=No 7 ' ' PART POS _ 6 case _ _ 8 paper paper NOUN NN Number=Sing 2 dobj _ _ 9 in in ADP IN _ 2 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 light light NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 results result NOUN NNS Number=Plur 12 pobj _ _ 15 in in ADP IN _ 14 prep _ _ 16 another another DET DT _ 17 det _ _ 17 work work NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The key fact is that the notion of a strongly compact closed category allows abstract notions of adjoint, bipartite projector and inner product to be defined, and their key properties to be proved. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 key key ADJ JJ Degree=Pos 3 amod _ _ 3 fact fact NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 14 mark _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 notion notion NOUN NN Number=Sing 14 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 10 strongly strongly ADV RB _ 11 advmod _ _ 11 compact compact ADJ JJ Degree=Pos 13 amod _ _ 12 closed closed ADJ JJ Degree=Pos 13 amod _ _ 13 category category NOUN NN Number=Sing 8 pobj _ _ 14 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 15 abstract abstract ADJ JJ Degree=Pos 16 amod _ _ 16 notions notion NOUN NNS Number=Plur 27 nsubjpass _ _ 17 of of ADP IN _ 16 prep _ _ 18 adjoint adjoint NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 bipartite bipartite ADJ JJ Degree=Pos 21 amod _ _ 21 projector projector NOUN NN Number=Sing 18 conj _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 inner inner ADJ JJ Degree=Pos 24 amod _ _ 24 product product NOUN NN Number=Sing 21 conj _ _ 25 to to PART TO _ 27 aux _ _ 26 be be AUX VB VerbForm=Inf 27 auxpass _ _ 27 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 ccomp _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 14 punct _ _ 29 and and CCONJ CC ConjType=Cmp 14 cc _ _ 30 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 32 poss _ _ 31 key key ADJ JJ Degree=Pos 32 amod _ _ 32 properties property NOUN NNS Number=Plur 35 nsubjpass _ _ 33 to to PART TO _ 35 aux _ _ 34 be be AUX VB VerbForm=Inf 35 auxpass _ _ 35 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 conj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = In this paper we improve on the definition of strong compact closure as compared to the one presented in the other work. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 improve improve VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 on on ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 definition definition NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 strong strong ADJ JJ Degree=Pos 12 amod _ _ 11 compact compact ADJ JJ Degree=Pos 12 amod _ _ 12 closure closure NOUN NN Number=Sing 9 pobj _ _ 13 as as ADP IN _ 5 prep _ _ 14 compared compare VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 prep _ _ 15 to to ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 one one NOUN NN Number=Sing 15 pobj _ _ 18 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 acl _ _ 19 in in ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 other other ADJ JJ Degree=Pos 22 amod _ _ 22 work work NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = This modification enables an elegant characterization of strong compact closure in terms of adjoints and a Yanking axiom, and a better treatment of bipartite projectors. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 modification modification NOUN NN Number=Sing 3 nsubj _ _ 3 enables enable VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 an an DET DT Definite=Ind|PronType=Art 6 det _ _ 5 elegant elegant ADJ JJ Degree=Pos 6 amod _ _ 6 characterization characterization NOUN NN Number=Sing 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 strong strong ADJ JJ Degree=Pos 10 amod _ _ 9 compact compact ADJ JJ Degree=Pos 10 amod _ _ 10 closure closure NOUN NN Number=Sing 7 pobj _ _ 11 in in ADP IN _ 6 prep _ _ 12 terms term NOUN NNS Number=Plur 11 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 adjoints adjoint NOUN NNS Number=Plur 13 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 12 cc _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 Yanking Yanking PROPN NNP Number=Sing 18 compound _ _ 18 axiom axiom NOUN NN Number=Sing 12 conj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 and and CCONJ CC ConjType=Cmp 6 cc _ _ 21 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 22 better well ADJ JJR Degree=Cmp 23 amod _ _ 23 treatment treatment NOUN NN Number=Sing 6 conj _ _ 24 of of ADP IN _ 23 prep _ _ 25 bipartite bipartite ADJ JJ Degree=Pos 26 amod _ _ 26 projectors projector NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 218 # sent_id = 1 # text = We give two related universal properties of the span construction. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 two two NUM CD NumType=Card 6 nummod _ _ 4 related related ADJ JJ Degree=Pos 6 amod _ _ 5 universal universal ADJ JJ Degree=Pos 6 amod _ _ 6 properties property NOUN NNS Number=Plur 2 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 span span NOUN NN Number=Sing 10 compound _ _ 10 construction construction NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The first involves sinister morphisms out of the base category and sinister transformations. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 first first ADJ JJ Degree=Pos 3 nsubj _ _ 3 involves involve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 sinister sinister ADJ JJ Degree=Pos 5 amod _ _ 5 morphisms morphism NOUN NNS Number=Plur 3 dobj _ _ 6 out out ADP IN _ 3 prep _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 base base NOUN NN Number=Sing 10 compound _ _ 10 category category NOUN NN Number=Sing 7 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 sinister sinister ADJ JJ Degree=Pos 13 amod _ _ 13 transformations transformation NOUN NNS Number=Plur 10 conj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = The second involves oplax morphisms out of the bicategory of spans having an extra property; we call these `jointed' oplax morphisms. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 second second ADJ JJ Degree=Pos 3 nsubj _ _ 3 involves involve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 ccomp _ _ 4 oplax oplax PROPN NNP Number=Sing 5 compound _ _ 5 morphisms morphism NOUN NNS Number=Plur 3 dobj _ _ 6 out out ADP IN _ 3 prep _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 bicategory bicategory NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 spans span NOUN NNS Number=Plur 10 pobj _ _ 12 having have VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 11 acl _ _ 13 an an DET DT Definite=Ind|PronType=Art 15 det _ _ 14 extra extra ADJ JJ Degree=Pos 15 amod _ _ 15 property property NOUN NN Number=Sing 12 dobj _ SpaceAfter=No 16 ; ; PUNCT : _ 18 punct _ _ 17 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 18 nsubj _ _ 18 call call VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 19 these these DET DT Number=Plur|PronType=Dem 24 det _ _ 20 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 21 punct _ SpaceAfter=No 21 jointed joint VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ SpaceAfter=No 22 ' ' PART POS _ 21 punct _ _ 23 oplax oplax PROPN NNP Number=Sing 24 compound _ _ 24 morphisms morphism NOUN NNS Number=Plur 18 dobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # doc_id = 219 # sent_id = 1 # text = The relationships between thin elements, commutative shells and connections in cubical $ omega $ - categories are explored by a method which does not involve the use of pasting theory or nerves of $ omega $ - categories. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 relationships relationship NOUN NNS Number=Plur 17 nsubjpass _ _ 3 between between ADP IN _ 2 prep _ _ 4 thin thin ADJ JJ Degree=Pos 5 amod _ _ 5 elements element NOUN NNS Number=Plur 3 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 commutative commutative ADJ JJ Degree=Pos 8 amod _ _ 8 shells shell NOUN NNS Number=Plur 5 conj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 connections connection NOUN NNS Number=Plur 8 conj _ _ 11 in in ADP IN _ 8 prep _ _ 12 cubical cubical ADJ JJ Degree=Pos 15 amod _ _ 13 $ omega $ $ omega $ SYM $ _ 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 categories category NOUN NNS Number=Plur 11 pobj _ _ 16 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 17 auxpass _ _ 17 explored explore VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 18 by by ADP IN _ 17 agent _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 method method NOUN NN Number=Sing 18 pobj _ _ 21 which which PRON WDT _ 24 nsubj _ _ 22 does do AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 aux _ _ 23 not not PART RB Polarity=Neg 24 neg _ _ 24 involve involve VERB VB VerbForm=Inf 20 relcl _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 use use NOUN NN Number=Sing 24 dobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 pasting paste VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 27 pcomp _ _ 29 theory theory NOUN NN Number=Sing 28 dobj _ _ 30 or or CCONJ CC ConjType=Cmp 29 cc _ _ 31 nerves nerve NOUN NNS Number=Plur 29 conj _ _ 32 of of ADP IN _ 29 prep _ _ 33 $ omega $ $ omega $ SYM $ _ 35 compound _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 categories category NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 2 # text = It is shown that composites of commutative shells are commutative and that thin structures are equivalent to appropriate sets of connections; this work extends to all dimensions the results proved in dimensions 2 and 3 in other work. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 25 ccomp _ _ 4 that that SCONJ IN _ 9 mark _ _ 5 composites composite NOUN NNS Number=Plur 9 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 commutative commutative ADJ JJ Degree=Pos 8 amod _ _ 8 shells shell NOUN NNS Number=Plur 6 pobj _ _ 9 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 10 commutative commutative ADJ JJ Degree=Pos 9 acomp _ _ 11 and and CCONJ CC ConjType=Cmp 9 cc _ _ 12 that that SCONJ IN _ 15 mark _ _ 13 thin thin ADJ JJ Degree=Pos 14 amod _ _ 14 structures structure NOUN NNS Number=Plur 15 nsubj _ _ 15 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 conj _ _ 16 equivalent equivalent ADJ JJ Degree=Pos 15 acomp _ _ 17 to to PART TO _ 18 aux _ _ 18 appropriate appropriate ADJ JJ Degree=Pos 19 amod _ _ 19 sets set NOUN NNS Number=Plur 16 dobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 connections connection NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 22 ; ; PUNCT : _ 25 punct _ _ 23 this this DET DT Number=Sing|PronType=Dem 24 det _ _ 24 work work NOUN NN Number=Sing 25 nsubj _ _ 25 extends extend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 26 to to ADP IN _ 25 prep _ _ 27 all all DET DT _ 28 det _ _ 28 dimensions dimension NOUN NNS Number=Plur 26 pobj _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 results result NOUN NNS Number=Plur 31 nsubj _ _ 31 proved prove VERB VBD Tense=Past|VerbForm=Fin 28 relcl _ _ 32 in in ADP IN _ 31 prep _ _ 33 dimensions dimension NOUN NNS Number=Plur 32 pobj _ _ 34 2 2 NUM CD NumType=Card 33 nummod _ _ 35 and and CCONJ CC ConjType=Cmp 33 cc _ _ 36 3 3 NUM CD NumType=Card 33 conj _ _ 37 in in ADP IN _ 31 prep _ _ 38 other other ADJ JJ Degree=Pos 39 amod _ _ 39 work work NOUN NN Number=Sing 37 pobj _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 25 punct _ SpaceAfter=No # doc_id = 220 # sent_id = 1 # text = Call - by - push - value is a "semantic machine code", providing a set of simple primitives from which both the call - by - value and call - by - name paradigms are built. 1 Call call VERB VB VerbForm=Inf 7 nmod _ _ 2 - - PUNCT HYPH PunctType=Dash 1 punct _ _ 3 by by ADP IN _ 1 prep _ _ 4 - - PUNCT HYPH PunctType=Dash 3 punct _ _ 5 push push NOUN NN Number=Sing 3 pobj _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 value value NOUN NN Number=Sing 8 nsubj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 10 " " PUNCT `` PunctSide=Ini|PunctType=Quot 13 punct _ SpaceAfter=No 11 semantic semantic ADJ JJ Degree=Pos 13 amod _ _ 12 machine machine NOUN NN Number=Sing 13 compound _ _ 13 code code NOUN NN Number=Sing 8 attr _ SpaceAfter=No 14 " " PUNCT '' PunctSide=Fin|PunctType=Quot 13 punct _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 8 punct _ _ 16 providing provide VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 advcl _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 set set NOUN NN Number=Sing 16 dobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 simple simple ADJ JJ Degree=Pos 21 amod _ _ 21 primitives primitive NOUN NNS Number=Plur 19 pobj _ _ 22 from from ADP IN _ 39 prep _ _ 23 which which PRON WDT _ 22 pobj _ _ 24 both both CCONJ CC ConjType=Cmp 37 det _ _ 25 the the DET DT Definite=Def|PronType=Art 37 det _ _ 26 call call NOUN NN Number=Sing 37 nmod _ _ 27 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 28 by by ADP IN _ 26 prep _ _ 29 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 30 value value NOUN NN Number=Sing 28 pobj _ _ 31 and and CCONJ CC ConjType=Cmp 26 cc _ _ 32 call call NOUN NN Number=Sing 26 conj _ _ 33 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 34 by by ADP IN _ 32 prep _ _ 35 - - PUNCT HYPH PunctType=Dash 36 punct _ _ 36 name name NOUN NN Number=Sing 34 pobj _ _ 37 paradigms paradigm NOUN NNS Number=Plur 39 nsubjpass _ _ 38 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 39 auxpass _ _ 39 built build VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 relcl _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 2 # text = We present its operational semantics as a stack machine, suggesting a term judgement of stacks. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 5 poss _ _ 4 operational operational ADJ JJ Degree=Pos 5 amod _ _ 5 semantics semantic NOUN NNS Number=Plur 2 dobj _ _ 6 as as ADP IN _ 2 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 stack stack NOUN NN Number=Sing 9 amod _ _ 9 machine machine NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 2 punct _ _ 11 suggesting suggest VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 term term NOUN NN Number=Sing 14 compound _ _ 14 judgement judgement NOUN NN Number=Sing 11 dobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 stacks stack NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We then see that $ CBPV $ , incorporating these stack terms, has a simple categorical semantics based on an adjunction between values and stacks. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 see see VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 3 dobj _ _ 5 $ CBPV $ $ cbpv $ SYM $ _ 4 dep _ _ 6 , , PUNCT , PunctType=Comm 3 punct _ _ 7 incorporating incorporate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 advcl _ _ 8 these these DET DT Number=Plur|PronType=Dem 10 det _ _ 9 stack stack ADJ JJ Degree=Pos 10 amod _ _ 10 terms term NOUN NNS Number=Plur 7 dobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 12 punct _ _ 12 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 conj _ _ 13 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 14 simple simple ADJ JJ Degree=Pos 16 amod _ _ 15 categorical categorical ADJ JJ Degree=Pos 16 amod _ _ 16 semantics semantic NOUN NNS Number=Plur 12 dobj _ _ 17 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 acl _ _ 18 on on ADP IN _ 17 prep _ _ 19 an an DET DT Definite=Ind|PronType=Art 20 det _ _ 20 adjunction adjunction NOUN NN Number=Sing 18 pobj _ _ 21 between between ADP IN _ 20 prep _ _ 22 values value NOUN NNS Number=Plur 21 pobj _ _ 23 and and CCONJ CC ConjType=Cmp 22 cc _ _ 24 stacks stack NOUN NNS Number=Plur 22 conj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = There are no coherence requirements. 1 There there PRON EX _ 2 expl _ _ 2 are be VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 no no DET DT _ 5 det _ _ 4 coherence coherence NOUN NN Number=Sing 5 compound _ _ 5 requirements requirement NOUN NNS Number=Plur 2 attr _ SpaceAfter=No 6 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = We describe this semantics incrementally. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 4 semantics semantic NOUN NNS Number=Plur 2 dobj _ _ 5 incrementally incrementally ADV RB _ 2 advmod _ SpaceAfter=No 6 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = First, we introduce locally indexed categories and the op - Grothendieck construction, and use these to give the basic structure for interpreting the three judgements: values, stacks and computations. 1 First first ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 locally locally ADV RB _ 6 advmod _ _ 6 indexed index VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 amod _ _ 7 categories category NOUN NNS Number=Plur 4 dobj _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 the the DET DT Definite=Def|PronType=Art 13 det _ _ 10 op op NOUN NN Number=Sing 12 compound _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 Grothendieck Grothendieck PROPN NNP Number=Sing 13 compound _ _ 13 construction construction NOUN NN Number=Sing 7 conj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 4 punct _ _ 15 and and CCONJ CC ConjType=Cmp 4 cc _ _ 16 use use VERB VB VerbForm=Inf 4 conj _ _ 17 these these PRON DT Number=Plur|PronType=Dem 16 dobj _ _ 18 to to PART TO _ 19 aux _ _ 19 give give VERB VB VerbForm=Inf 16 xcomp _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 basic basic ADJ JJ Degree=Pos 22 amod _ _ 22 structure structure NOUN NN Number=Sing 19 dobj _ _ 23 for for ADP IN _ 19 prep _ _ 24 interpreting interpret VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 23 pcomp _ _ 25 the the DET DT Definite=Def|PronType=Art 27 det _ _ 26 three three NUM CD NumType=Card 27 nummod _ _ 27 judgements judgement NOUN NNS Number=Plur 24 dobj _ SpaceAfter=No 28 : : PUNCT : _ 27 punct _ _ 29 values value NOUN NNS Number=Plur 27 appos _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 29 punct _ _ 31 stacks stack NOUN NNS Number=Plur 29 conj _ _ 32 and and CCONJ CC ConjType=Cmp 31 cc _ _ 33 computations computation NOUN NNS Number=Plur 31 conj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 7 # text = Then we look at the universal property required to interpret each type constructor. 1 Then then ADV RB PronType=Dem 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 look look VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 at at ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 universal universal ADJ JJ Degree=Pos 7 amod _ _ 7 property property NOUN NN Number=Sing 4 pobj _ _ 8 required require VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 acl _ _ 9 to to PART TO _ 10 aux _ _ 10 interpret interpret VERB VB VerbForm=Inf 8 xcomp _ _ 11 each each DET DT _ 13 det _ _ 12 type type NOUN NN Number=Sing 13 compound _ _ 13 constructor constructor NOUN NN Number=Sing 10 dobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 8 # text = We define a model to be a strong adjunction with countable coproducts, countable products and exponentials. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 model model NOUN NN Number=Sing 2 dobj _ _ 5 to to PART TO _ 6 aux _ _ 6 be be AUX VB VerbForm=Inf 4 relcl _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 strong strong ADJ JJ Degree=Pos 9 amod _ _ 9 adjunction adjunction NOUN NN Number=Sing 6 attr _ _ 10 with with ADP IN _ 9 prep _ _ 11 countable countable ADJ JJ Degree=Pos 12 amod _ _ 12 coproducts coproduct NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 countable countable ADJ JJ Degree=Pos 15 amod _ _ 15 products product NOUN NNS Number=Plur 12 conj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 exponentials exponential NOUN NNS Number=Plur 15 conj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 9 # text = We see a wide range of instances of this structure: we give examples for divergence, storage, erratic choice, continuations, possible worlds and games (with or without a bracketing condition), in each case resolving the strong monad from the literature into a strong adjunction. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 see see VERB VBP Tense=Pres|VerbForm=Fin 13 ccomp _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 wide wide ADJ JJ Degree=Pos 5 amod _ _ 5 range range NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 instances instance NOUN NNS Number=Plur 6 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 this this DET DT Number=Sing|PronType=Dem 10 det _ _ 10 structure structure NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 11 : : PUNCT : _ 13 punct _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 examples example NOUN NNS Number=Plur 13 dobj _ _ 15 for for ADP IN _ 13 prep _ _ 16 divergence divergence NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 storage storage NOUN NN Number=Sing 16 conj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 erratic erratic ADJ JJ Degree=Pos 21 amod _ _ 21 choice choice NOUN NN Number=Sing 18 conj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 continuations continuation NOUN NNS Number=Plur 21 conj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 23 punct _ _ 25 possible possible ADJ JJ Degree=Pos 26 amod _ _ 26 worlds world NOUN NNS Number=Plur 23 conj _ _ 27 and and CCONJ CC ConjType=Cmp 26 cc _ _ 28 games game NOUN NNS Number=Plur 26 conj _ _ 29 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 16 punct _ SpaceAfter=No 30 with with ADP IN _ 13 prep _ _ 31 or or CCONJ CC ConjType=Cmp 30 cc _ _ 32 without without ADP IN _ 30 conj _ _ 33 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 34 bracketing bracket VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 35 amod _ _ 35 condition condition NOUN NN Number=Sing 32 pobj _ SpaceAfter=No 36 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 13 punct _ SpaceAfter=No 37 , , PUNCT , PunctType=Comm 13 punct _ _ 38 in in ADP IN _ 13 prep _ _ 39 each each DET DT _ 40 det _ _ 40 case case NOUN NN Number=Sing 38 pobj _ _ 41 resolving resolve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 38 pcomp _ _ 42 the the DET DT Definite=Def|PronType=Art 44 det _ _ 43 strong strong ADJ JJ Degree=Pos 44 amod _ _ 44 monad monad NOUN NNS Number=Plur 41 dobj _ _ 45 from from ADP IN _ 44 prep _ _ 46 the the DET DT Definite=Def|PronType=Art 47 det _ _ 47 literature literature NOUN NN Number=Sing 45 pobj _ _ 48 into into ADP IN _ 41 prep _ _ 49 a a DET DT Definite=Ind|PronType=Art 51 det _ _ 50 strong strong ADJ JJ Degree=Pos 51 amod _ _ 51 adjunction adjunction NOUN NN Number=Sing 48 pobj _ SpaceAfter=No 52 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 10 # text = And we give ways of constructing models from other models. 1 And and CCONJ CC ConjType=Cmp 3 cc _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 ways way NOUN NNS Number=Plur 3 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 constructing construct VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 pcomp _ _ 7 models model NOUN NNS Number=Plur 6 dobj _ _ 8 from from ADP IN _ 6 prep _ _ 9 other other ADJ JJ Degree=Pos 10 amod _ _ 10 models model NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 11 # text = Finally, we see that call - by - value and call - by - name are interpreted within the Kleisli and co - Kleisli parts, respectively, of a call - by - push - value adjunction. 1 Finally finally ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 see see VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that DET DT Number=Sing|PronType=Dem 16 det _ _ 6 call call NOUN NN Number=Sing 16 nmod _ _ 7 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 8 by by ADP IN _ 6 prep _ _ 9 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 10 value value NOUN NN Number=Sing 8 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 6 cc _ _ 12 call call NOUN NN Number=Sing 6 conj _ _ 13 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 14 by by ADP IN _ 12 prep _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 name name NOUN NN Number=Sing 18 nsubjpass _ _ 17 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 18 auxpass _ _ 18 interpreted interpret VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 ccomp _ _ 19 within within ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 Kleisli Kleisli PROPN NNP Number=Sing 26 nmod _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 co co NOUN NN Number=Sing 21 conj _ _ 24 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 25 Kleisli Kleisli PROPN NNP Number=Sing 26 amod _ _ 26 parts part NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 18 punct _ _ 28 respectively respectively ADV RB _ 18 advmod _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 18 punct _ _ 30 of of ADP IN _ 18 prep _ _ 31 a a DET DT Definite=Ind|PronType=Art 39 det _ _ 32 call call NOUN NN Number=Sing 39 nmod _ _ 33 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 34 by by ADP IN _ 32 prep _ _ 35 - - PUNCT HYPH PunctType=Dash 34 punct _ _ 36 push push NOUN NN Number=Sing 38 compound _ _ 37 - - PUNCT HYPH PunctType=Dash 38 punct _ _ 38 value value NOUN NN Number=Sing 34 pobj _ _ 39 adjunction adjunction NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # doc_id = 221 # sent_id = 1 # text = Call two maps, $ f $ , $ g $ from $ C $ to $ C' $ , of chain complexes absolutely homologous if for any additive functor $ F $ , the induced $ Ff $ and $ Fg $ are homologous (induce the same map on homology). 1 Call call VERB VB VerbForm=Inf 0 ROOT _ _ 2 two two NUM CD NumType=Card 3 nummod _ _ 3 maps map NOUN NNS Number=Plur 1 dobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 3 punct _ _ 5 $ f $ $ f $ SYM $ _ 3 appos _ _ 6 , , PUNCT , PunctType=Comm 3 punct _ _ 7 $ g $ $ g $ SYM $ _ 3 appos _ _ 8 from from ADP IN _ 1 prep _ _ 9 $ C $ $ c $ SYM $ _ 8 pobj _ _ 10 to to ADP IN _ 8 prep _ _ 11 $ C' $ $ c' $ SYM $ _ 10 pobj _ _ 12 , , PUNCT , PunctType=Comm 1 punct _ _ 13 of of ADP IN _ 1 prep _ _ 14 chain chain NOUN NN Number=Sing 15 compound _ _ 15 complexes complexe VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 pobj _ _ 16 absolutely absolutely ADV RB _ 17 advmod _ _ 17 homologous homologous ADJ JJ Degree=Pos 15 amod _ _ 18 if if SCONJ IN _ 26 mark _ _ 19 for for ADP IN _ 26 prep _ _ 20 any any DET DT _ 22 det _ _ 21 additive additive ADJ JJ Degree=Pos 22 amod _ _ 22 functor functor NOUN NN Number=Sing 19 pobj _ _ 23 $ F $ $ f $ SYM $ _ 22 appos _ _ 24 , , PUNCT , PunctType=Comm 26 punct _ _ 25 the the PRON DT Definite=Def|PronType=Art 26 nsubj _ _ 26 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 advcl _ _ 27 $ Ff $ $ ff $ SYM $ _ 26 dobj _ _ 28 and and CCONJ CC ConjType=Cmp 26 cc _ _ 29 $ Fg $ $ fg $ SYM $ _ 26 conj _ _ 30 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 1 conj _ _ 31 homologous homologous ADJ JJ Degree=Pos 30 acomp _ _ 32 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 33 punct _ SpaceAfter=No 33 induce induce VERB VB VerbForm=Inf 1 conj _ _ 34 the the DET DT Definite=Def|PronType=Art 36 det _ _ 35 same same ADJ JJ Degree=Pos 36 amod _ _ 36 map map NOUN NN Number=Sing 33 dobj _ _ 37 on on ADP IN _ 36 prep _ _ 38 homology homology NOUN NN Number=Sing 37 pobj _ SpaceAfter=No 39 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 33 punct _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = It is known that the identity is absolutely homologous to 0 if and only if it is homotopic to 0 and tempting to conjecture that $ f $ and $ g $ are absolutely homologous if and only if they are homotopic. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 that that SCONJ IN _ 7 mark _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 identity identity NOUN NN Number=Sing 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 8 absolutely absolutely ADV RB _ 9 advmod _ _ 9 homologous homologous ADJ JJ Degree=Pos 7 acomp _ _ 10 to to PART TO _ 9 prep _ _ 11 0 0 NUM CD NumType=Card 10 pobj _ _ 12 if if SCONJ IN _ 7 dep _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 only only ADV RB _ 17 advmod _ _ 15 if if SCONJ IN _ 17 mark _ _ 16 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 17 nsubj _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 advcl _ _ 18 homotopic homotopic NOUN NN Number=Sing 17 acomp _ _ 19 to to ADP IN _ 17 prep _ _ 20 0 0 NUM CD NumType=Card 19 pobj _ _ 21 and and CCONJ CC ConjType=Cmp 19 cc _ _ 22 tempting tempting ADJ JJ Degree=Pos 19 conj _ _ 23 to to PART TO _ 24 aux _ _ 24 conjecture conjecture VERB VB VerbForm=Inf 22 xcomp _ _ 25 that that SCONJ IN _ 29 mark _ _ 26 $ f $ $ f $ SYM $ _ 29 nsubj _ _ 27 and and CCONJ CC ConjType=Cmp 26 cc _ _ 28 $ g $ $ g $ SYM $ _ 26 conj _ _ 29 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 24 ccomp _ _ 30 absolutely absolutely ADV RB _ 31 advmod _ _ 31 homologous homologous ADJ JJ Degree=Pos 29 acomp _ _ 32 if if SCONJ IN _ 29 prep _ _ 33 and and CCONJ CC ConjType=Cmp 29 cc _ _ 34 only only ADV RB _ 37 advmod _ _ 35 if if SCONJ IN _ 37 mark _ _ 36 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 37 nsubj _ _ 37 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 29 conj _ _ 38 homotopic homotopic NOUN NN Number=Sing 37 attr _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = This conjecture is false, but there is an equational characterization of absolute homology. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 conjecture conjecture NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 false false ADJ JJ Degree=Pos 3 acomp _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 3 punct _ _ 6 but but CCONJ CC ConjType=Cmp 3 cc _ _ 7 there there PRON EX _ 8 expl _ _ 8 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 conj _ _ 9 an an DET DT Definite=Ind|PronType=Art 11 det _ _ 10 equational equational ADJ JJ Degree=Pos 11 amod _ _ 11 characterization characterization NOUN NN Number=Sing 8 attr _ _ 12 of of ADP IN _ 11 prep _ _ 13 absolute absolute ADJ JJ Degree=Pos 14 amod _ _ 14 homology homology NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 4 # text = I also characterize left absolute and right absolute (in which $ F $ is quantified over left or right exact functors). 1 I I PRON PRP Case=Nom|Number=Sing|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 ccomp _ _ 5 absolute absolute ADJ JJ Degree=Pos 4 oprd _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 right right ADV RB _ 5 conj _ _ 8 absolute absolute ADJ JJ Degree=Pos 5 conj _ _ 9 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 4 punct _ SpaceAfter=No 10 in in ADP IN _ 14 prep _ _ 11 which which PRON WDT _ 10 pobj _ _ 12 $ F $ $ f $ SYM $ _ 14 nsubjpass _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 quantified quantify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 advcl _ _ 15 over over ADP IN _ 14 prep _ _ 16 left left ADJ JJ Degree=Pos 20 amod _ _ 17 or or CCONJ CC ConjType=Cmp 16 cc _ _ 18 right right ADJ JJ Degree=Pos 16 conj _ _ 19 exact exact ADJ JJ Degree=Pos 20 amod _ _ 20 functors functor NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 21 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 4 punct _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 222 # sent_id = 1 # text = We thoroughly treat several familiar and less familiar definitions and results concerning categories, functors and distributors enriched in a base quantaloid $ Q $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 thoroughly thoroughly ADV RB _ 3 advmod _ _ 3 treat treat VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 several several ADJ JJ Degree=Pos 9 amod _ _ 5 familiar familiar ADJ JJ Degree=Pos 9 amod _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 less less ADV RBR Degree=Cmp 8 advmod _ _ 8 familiar familiar ADJ JJ Degree=Pos 5 conj _ _ 9 definitions definition NOUN NNS Number=Plur 3 dobj _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 results result NOUN NNS Number=Plur 9 conj _ _ 12 concerning concern VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 prep _ _ 13 categories category NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 13 punct _ _ 15 functors functor NOUN NNS Number=Plur 13 conj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 distributors distributor NOUN NNS Number=Plur 15 conj _ _ 18 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 acl _ _ 19 in in ADP IN _ 18 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 base base NOUN NN Number=Sing 22 compound _ _ 22 quantaloid quantaloid NOUN NN Number=Sing 19 pobj _ _ 23 $ Q $ $ q $ SYM $ _ 3 dep _ _ 24 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = In analogy with $ V $ - category theory we discuss such things as adjoint functors, (pointwise) left Kan extensions, weighted (co)limits, presheaves and free (co)completion, Cauchy completion and Morita equivalence. 1 In in ADP IN _ 9 prep _ _ 2 analogy analogy NOUN NN Number=Sing 1 pobj _ _ 3 with with ADP IN _ 2 prep _ _ 4 $ V $ $ v $ SYM $ _ 6 nummod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 category category NOUN NN Number=Sing 7 compound _ _ 7 theory theory NOUN NN Number=Sing 3 pobj _ _ 8 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 9 nsubj _ _ 9 discuss discuss VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 such such ADJ JJ Degree=Pos 11 amod _ _ 11 things thing NOUN NNS Number=Plur 9 dobj _ _ 12 as as ADP IN _ 11 prep _ _ 13 adjoint adjoint NOUN NN Number=Sing 14 compound _ _ 14 functors functor NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 9 punct _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 17 punct _ SpaceAfter=No 17 pointwise pointwise NOUN NN Number=Sing 19 nsubj _ SpaceAfter=No 18 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 17 punct _ _ 19 left leave VERB VBD Tense=Past|VerbForm=Fin 9 conj _ _ 20 Kan Kan PROPN NNP Number=Sing 21 compound _ _ 21 extensions extension NOUN NNS Number=Plur 19 dobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 19 punct _ _ 23 weighted weight VERB VBD Tense=Past|VerbForm=Fin 19 conj _ _ 24 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 23 punct _ SpaceAfter=No 25 co)limits co)limit NOUN NNS Number=Plur 23 dobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 25 punct _ _ 27 presheaves presheave NOUN NNS Number=Plur 25 conj _ _ 28 and and CCONJ CC ConjType=Cmp 27 cc _ _ 29 free free ADJ JJ Degree=Pos 31 amod _ _ 30 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 31 punct _ SpaceAfter=No 31 co)completion co)completion NOUN NN Number=Sing 27 conj _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 31 punct _ _ 33 Cauchy Cauchy PROPN NNP Number=Sing 34 compound _ _ 34 completion completion NOUN NN Number=Sing 31 conj _ _ 35 and and CCONJ CC ConjType=Cmp 34 cc _ _ 36 Morita Morita PROPN NNP Number=Sing 37 compound _ _ 37 equivalence equivalence NOUN NN Number=Sing 34 conj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 3 # text = With an appendix on the universality of the quantaloid $ Dist(Q) $ of $ Q $ - enriched categories and distributors. 1 With with ADP IN _ 0 ROOT _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 appendix appendix NOUN NN Number=Sing 1 pobj _ _ 4 on on ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 universality universality NOUN NN Number=Sing 4 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 quantaloid quantaloid ADJ JJ Degree=Pos 10 amod _ _ 10 $ Dist(Q) $ $ dist(q) $ SYM $ _ 7 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 $ Q $ $ q $ SYM $ _ 14 advmod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 amod _ _ 15 categories category NOUN NNS Number=Plur 11 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 distributors distributor NOUN NNS Number=Plur 15 conj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # doc_id = 223 # sent_id = 1 # text = We recall and reformulate certain known constructions, in order to make a convenient setting for obtaining generalized monotone - light factorizations in the sense of Carboni, Janelidze, Kelly and Paré. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 recall recall VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 reformulate reformulate VERB VB VerbForm=Inf 2 conj _ _ 5 certain certain ADJ JJ Degree=Pos 7 amod _ _ 6 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 amod _ _ 7 constructions construction NOUN NNS Number=Plur 4 dobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 4 punct _ _ 9 in in ADP IN _ 4 prep _ _ 10 order order NOUN NN Number=Sing 9 pobj _ _ 11 to to PART TO _ 12 aux _ _ 12 make make VERB VB VerbForm=Inf 10 acl _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 convenient convenient ADJ JJ Degree=Pos 15 amod _ _ 15 setting setting NOUN NN Number=Sing 12 dobj _ _ 16 for for ADP IN _ 15 prep _ _ 17 obtaining obtain VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 pcomp _ _ 18 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 amod _ _ 19 monotone monotone NOUN NN Number=Sing 21 npadvmod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 light light ADJ JJ Degree=Pos 22 amod _ _ 22 factorizations factorization NOUN NNS Number=Plur 17 dobj _ _ 23 in in ADP IN _ 17 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 sense sense NOUN NN Number=Sing 23 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 Carboni Carboni PROPN NNP Number=Sing 26 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 27 punct _ _ 29 Janelidze Janelidze PROPN NNP Number=Sing 27 conj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 29 punct _ _ 31 Kelly Kelly PROPN NNP Number=Sing 29 conj _ _ 32 and and CCONJ CC ConjType=Cmp 31 cc _ _ 33 Paré Paré PROPN NNP Number=Sing 31 conj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = This setting is used to study the existence of monotone - light factorizations both in categories of simplicial objects and in categories of internal categories. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 setting setting NOUN NN Number=Sing 4 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 to to PART TO _ 6 aux _ _ 6 study study VERB VB VerbForm=Inf 4 xcomp _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 existence existence NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 monotone monotone NOUN NN Number=Sing 12 npadvmod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 light light ADJ JJ Degree=Pos 13 amod _ _ 13 factorizations factorization NOUN NNS Number=Plur 9 pobj _ _ 14 both both PRON DT _ 15 preconj _ _ 15 in in ADP IN _ 13 prep _ _ 16 categories category NOUN NNS Number=Plur 15 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 simplicial simplicial ADJ JJ Degree=Pos 19 amod _ _ 19 objects object NOUN NNS Number=Plur 17 pobj _ _ 20 and and CCONJ CC ConjType=Cmp 15 cc _ _ 21 in in ADP IN _ 15 conj _ _ 22 categories category NOUN NNS Number=Plur 21 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 internal internal ADJ JJ Degree=Pos 25 amod _ _ 25 categories category NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = It is shown that there is a non - trivial monotone - light factorization for simplicial sets, such that the monotone - light factorization for reflexive graphs via reflexive relations is a special case of it, obtained by truncation. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 that that SCONJ IN _ 6 mark _ _ 5 there there PRON EX _ 6 expl _ _ 6 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 7 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 8 non non ADJ JJ Degree=Pos 10 amod _ _ 9 - - ADJ JJ Degree=Pos 10 punct _ _ 10 trivial trivial ADJ JJ Degree=Pos 14 amod _ _ 11 monotone monotone NOUN NN Number=Sing 13 npadvmod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 light light ADJ JJ Degree=Pos 14 amod _ _ 14 factorization factorization NOUN NN Number=Sing 6 attr _ _ 15 for for ADP IN _ 14 prep _ _ 16 simplicial simplicial ADJ JJ Degree=Pos 17 amod _ _ 17 sets set NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 14 punct _ _ 19 such such ADJ JJ Degree=Pos 32 acomp _ _ 20 that that SCONJ IN _ 32 mark _ _ 21 the the DET DT Definite=Def|PronType=Art 25 det _ _ 22 monotone monotone NOUN NN Number=Sing 24 amod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 light light ADJ JJ Degree=Pos 25 amod _ _ 25 factorization factorization NOUN NN Number=Sing 32 nsubj _ _ 26 for for ADP IN _ 25 prep _ _ 27 reflexive reflexive ADJ JJ Degree=Pos 28 amod _ _ 28 graphs graph NOUN NNS Number=Plur 26 pobj _ _ 29 via via ADP IN _ 28 prep _ _ 30 reflexive reflexive ADJ JJ Degree=Pos 31 amod _ _ 31 relations relation NOUN NNS Number=Plur 29 pobj _ _ 32 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 33 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 34 special special ADJ JJ Degree=Pos 35 amod _ _ 35 case case NOUN NN Number=Sing 32 attr _ _ 36 of of ADP IN _ 35 prep _ _ 37 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 36 pobj _ SpaceAfter=No 38 , , PUNCT , PunctType=Comm 32 punct _ _ 39 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 advcl _ _ 40 by by ADP IN _ 39 agent _ _ 41 truncation truncation NOUN NN Number=Sing 40 pobj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = More generally, we will show that there exists a monotone - light factorization associated with every full subcategory $ Mono(F_n), n >= 0 $ , consisting of all simplicial sets whose unit morphisms are monic for the localization $ F_n:mathbf{Set}^{Delta^{op}}rightarrowmathbf{Set}^{Delta^{op}_n} $ , which truncates each simplicial set after the object of $ n $ - simplices. 1 More more ADV RBR Degree=Cmp 2 advmod _ _ 2 generally generally ADV RB _ 6 advmod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 6 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 5 will will AUX MD VerbForm=Fin 6 aux _ _ 6 show show VERB VB VerbForm=Inf 0 ROOT _ _ 7 that that SCONJ IN _ 9 mark _ _ 8 there there PRON EX _ 9 expl _ _ 9 exists exist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 10 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 11 monotone monotone NOUN NN Number=Sing 13 amod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 light light ADJ JJ Degree=Pos 14 amod _ _ 14 factorization factorization NOUN NN Number=Sing 9 dobj _ _ 15 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 acl _ _ 16 with with ADP IN _ 15 prep _ _ 17 every every DET DT _ 20 det _ _ 18 full full ADJ JJ Degree=Pos 20 amod _ _ 19 subcategory subcategory ADJ JJ Degree=Pos 20 amod _ _ 20 $ Mono(F_n), n >= 0 $ $ mono(f_n), n >= 0 $ SYM $ _ 16 pobj _ _ 21 , , PUNCT , PunctType=Comm 9 punct _ _ 22 consisting consist VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 advcl _ _ 23 of of ADP IN _ 22 prep _ _ 24 all all DET DT _ 26 det _ _ 25 simplicial simplicial ADJ JJ Degree=Pos 26 amod _ _ 26 sets set NOUN NNS Number=Plur 23 pobj _ _ 27 whose whose DET WP$ Poss=Yes 28 poss _ _ 28 unit unit NOUN NN Number=Sing 29 compound _ _ 29 morphisms morphism NOUN NNS Number=Plur 30 nsubj _ _ 30 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 26 relcl _ _ 31 monic monic ADJ JJ Degree=Pos 30 acomp _ _ 32 for for ADP IN _ 30 prep _ _ 33 the the DET DT Definite=Def|PronType=Art 34 det _ _ 34 localization localization NOUN NN Number=Sing 32 pobj _ _ 35 $ F_n:mathbf{Set}^{Delta^{op}}rightarrowmathbf{Set}^{Delta^{op}_n} $ $ f_n:mathbf{set}^{delta^{op}}rightarrowmathbf{set}^{delta^{op}_n} $ SYM $ _ 34 appos _ _ 36 , , PUNCT , PunctType=Comm 35 punct _ _ 37 which which PRON WDT _ 38 nsubj _ _ 38 truncates truncate VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 34 relcl _ _ 39 each each DET DT _ 40 det _ _ 40 simplicial simplicial NOUN NN Number=Sing 41 nsubj _ _ 41 set set VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 38 ccomp _ _ 42 after after ADP IN _ 41 prep _ _ 43 the the DET DT Definite=Def|PronType=Art 44 det _ _ 44 object object NOUN NN Number=Sing 42 pobj _ _ 45 of of ADP IN _ 44 prep _ _ 46 $ n $ $ n $ SYM $ _ 48 compound _ _ 47 - - PUNCT HYPH PunctType=Dash 48 punct _ _ 48 simplices simplice NOUN NNS Number=Plur 45 pobj _ SpaceAfter=No 49 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 5 # text = The monotone - light factorization for categories via preorders is as well derived from the proposed setting. 1 The the DET DT Definite=Def|PronType=Art 5 det _ _ 2 monotone monotone NOUN NN Number=Sing 4 amod _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 light light ADJ JJ Degree=Pos 5 amod _ _ 5 factorization factorization NOUN NN Number=Sing 10 nsubj _ _ 6 for for ADP IN _ 5 prep _ _ 7 categories category NOUN NNS Number=Plur 6 pobj _ _ 8 via via ADP IN _ 5 prep _ _ 9 preorders preorder NOUN NNS Number=Plur 8 pobj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 as as ADV RB _ 12 advmod _ _ 12 well well ADV RB Degree=Pos 13 advmod _ _ 13 derived derive VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 acomp _ _ 14 from from ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 proposed propose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 17 setting setting NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 6 # text = We also show that, for regular Maltsev categories, the reflection of internal groupoids into internal equivalence relations necessarily produces monotone - light factorizations. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 21 mark _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 21 punct _ _ 6 for for ADP IN _ 21 prep _ _ 7 regular regular ADJ JJ Degree=Pos 9 amod _ _ 8 Maltsev Maltsev PROPN NNP Number=Sing 9 compound _ _ 9 categories category NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 21 punct _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 reflection reflection NOUN NN Number=Sing 21 nsubj _ _ 13 of of ADP IN _ 12 prep _ _ 14 internal internal ADJ JJ Degree=Pos 15 amod _ _ 15 groupoids groupoid NOUN NNS Number=Plur 13 pobj _ _ 16 into into ADP IN _ 12 prep _ _ 17 internal internal ADJ JJ Degree=Pos 18 amod _ _ 18 equivalence equivalence NOUN NN Number=Sing 19 compound _ _ 19 relations relation NOUN NNS Number=Plur 16 pobj _ _ 20 necessarily necessarily ADV RB _ 21 advmod _ _ 21 produces produce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 22 monotone monotone NOUN NN Number=Sing 24 npadvmod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 light light ADJ JJ Degree=Pos 25 amod _ _ 25 factorizations factorization NOUN NNS Number=Plur 21 dobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 7 # text = It turns out that all these reflections do have stable units, in the sense of Cassidy, Hébert and Kelly, giving rise to Galois theories. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 turns turn VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 out out ADP RP _ 2 prt _ _ 4 that that SCONJ IN _ 9 mark _ _ 5 all all DET PDT _ 7 predet _ _ 6 these these DET DT Number=Plur|PronType=Dem 7 det _ _ 7 reflections reflection NOUN NNS Number=Plur 9 nsubj _ _ 8 do do AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 aux _ _ 9 have have VERB VB VerbForm=Inf 2 ccomp _ _ 10 stable stable ADJ JJ Degree=Pos 11 amod _ _ 11 units unit NOUN NNS Number=Plur 9 dobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 9 punct _ _ 13 in in ADP IN _ 9 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 sense sense NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 Cassidy Cassidy PROPN NNP Number=Sing 16 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 Hébert Hébert PROPN NNP Number=Sing 17 conj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 Kelly Kelly PROPN NNP Number=Sing 19 conj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 9 punct _ _ 23 giving give VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 advcl _ _ 24 rise rise NOUN NN Number=Sing 23 dobj _ _ 25 to to ADP IN _ 24 prep _ _ 26 Galois Galois PROPN NNP Number=Sing 27 compound _ _ 27 theories theory NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 224 # sent_id = 1 # text = Storrer introduced the epimorphic hull of a commutative semiprime ring $ R $ and showed that it is (up to isomorphism) the unique essential epic von Neumann regular extension of $ R $ . 1 Storrer Storrer PROPN NNP Number=Sing 2 nsubj _ _ 2 introduced introduce VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 epimorphic epimorphic ADJ JJ Degree=Pos 5 amod _ _ 5 hull hull NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 commutative commutative ADJ JJ Degree=Pos 9 amod _ _ 9 semiprime semiprime NOUN NN Number=Sing 10 compound _ _ 10 ring ring VERB VB VerbForm=Inf 6 pobj _ _ 11 $ R $ $ r $ SYM $ _ 2 advmod _ _ 12 and and CCONJ CC ConjType=Cmp 2 cc _ _ 13 showed show VERB VBD Tense=Past|VerbForm=Fin 2 conj _ _ 14 that that SCONJ IN _ 16 mark _ _ 15 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 16 nsubj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 ccomp _ _ 17 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 16 punct _ SpaceAfter=No 18 up up ADP IN _ 16 acomp _ _ 19 to to ADP IN _ 18 prep _ _ 20 isomorphism isomorphism NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 21 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 16 punct _ _ 22 the the DET DT Definite=Def|PronType=Art 29 det _ _ 23 unique unique ADJ JJ Degree=Pos 29 amod _ _ 24 essential essential ADJ JJ Degree=Pos 27 nmod _ _ 25 epic epic ADJ JJ Degree=Pos 27 compound _ _ 26 von von PROPN NNP Number=Sing 27 compound _ _ 27 Neumann Neumann PROPN NNP Number=Sing 29 nmod _ _ 28 regular regular ADJ JJ Degree=Pos 29 amod _ _ 29 extension extension NOUN NN Number=Sing 16 attr _ _ 30 of of ADP IN _ 29 prep _ _ 31 $ R $ $ r $ SYM $ _ 30 pobj _ _ 32 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = In the case when $ R = C(X) $ with $ X $ a Tychonoff space, we show that the embedding induced by a dense subspace of $ X $ is always essential. 1 In in ADP IN _ 13 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 case case NOUN NN Number=Sing 1 pobj _ _ 4 when when SCONJ WRB _ 13 advmod _ _ 5 $ R = C(X) $ $ r = c(x) $ SYM $ _ 4 nmod _ _ 6 with with ADP IN _ 4 prep _ _ 7 $ X $ $ x $ SYM $ _ 10 predet _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 Tychonoff Tychonoff PROPN NNP Number=Sing 10 compound _ _ 10 space space NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 13 punct _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 that that SCONJ IN _ 24 mark _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 embedding embed VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 24 nsubj _ _ 17 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 acl _ _ 18 by by ADP IN _ 17 agent _ _ 19 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 20 dense dense ADJ JJ Degree=Pos 21 amod _ _ 21 subspace subspace NOUN NN Number=Sing 18 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 $ X $ $ x $ SYM $ _ 22 pobj _ _ 24 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 ccomp _ _ 25 always always ADV RB _ 24 advmod _ _ 26 essential essential ADJ JJ Degree=Pos 24 acomp _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 3 # text = This simplifies the search for spaces whose epimorphic hull is a full ring of continuous functions, and allows us to obtain new examples where this occurs. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 simplifies simplify VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 search search NOUN NN Number=Sing 2 dobj _ _ 5 for for ADP IN _ 4 prep _ _ 6 spaces space NOUN NNS Number=Plur 5 pobj _ _ 7 whose whose DET WP$ Poss=Yes 9 poss _ _ 8 epimorphic epimorphic ADJ JJ Degree=Pos 9 amod _ _ 9 hull hull NOUN NN Number=Sing 10 nsubj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 relcl _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 full full ADJ JJ Degree=Pos 13 amod _ _ 13 ring ring NOUN NN Number=Sing 10 attr _ _ 14 of of ADP IN _ 13 prep _ _ 15 continuous continuous ADJ JJ Degree=Pos 16 amod _ _ 16 functions function NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 10 punct _ _ 18 and and CCONJ CC ConjType=Cmp 10 cc _ _ 19 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 conj _ _ 20 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 22 nsubj _ _ 21 to to PART TO _ 22 aux _ _ 22 obtain obtain VERB VB VerbForm=Inf 19 ccomp _ _ 23 new new ADJ JJ Degree=Pos 24 amod _ _ 24 examples example NOUN NNS Number=Plur 22 dobj _ _ 25 where where SCONJ WRB _ 27 advmod _ _ 26 this this PRON DT Number=Sing|PronType=Dem 27 nsubj _ _ 27 occurs occur VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 relcl _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = The main theorem comes close to a characterisation of this phenomenon. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 theorem theorem NOUN NN Number=Sing 4 nsubj _ _ 4 comes come VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 close close ADV RB _ 4 advmod _ _ 6 to to ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 characterisation characterisation NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 this this DET DT Number=Sing|PronType=Dem 11 det _ _ 11 phenomenon phenomenon NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 225 # sent_id = 1 # text = We show that the generic symmetric monoidal category with a commutative separable algebra which has a $ Sigma $ - family of actions is the category of cospans of finite $ Sigma $ - labelled graphs restricted to finite sets as objects, thus providing a syntax for automata on the alphabet $ Sigma $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 22 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 8 det _ _ 5 generic generic ADJ JJ Degree=Pos 8 amod _ _ 6 symmetric symmetric ADJ JJ Degree=Pos 8 amod _ _ 7 monoidal monoidal ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 22 nsubj _ _ 9 with with ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 11 commutative commutative ADJ JJ Degree=Pos 13 amod _ _ 12 separable separable ADJ JJ Degree=Pos 13 amod _ _ 13 algebra algebra NOUN NN Number=Sing 9 pobj _ _ 14 which which PRON WDT _ 15 nsubj _ _ 15 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 relcl _ _ 16 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 17 $ Sigma $ $ sigma $ SYM $ _ 19 compound _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 family family NOUN NN Number=Sing 15 dobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 actions action NOUN NNS Number=Plur 20 pobj _ _ 22 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 category category NOUN NN Number=Sing 22 attr _ _ 25 of of ADP IN _ 24 prep _ _ 26 cospans cospan NOUN NNS Number=Plur 25 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 finite finite PROPN NNP Number=Sing 27 pobj _ _ 29 $ Sigma $ $ sigma $ SYM $ _ 31 advmod _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 labelled label VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 amod _ _ 32 graphs graph NOUN NNS Number=Plur 27 pobj _ _ 33 restricted restrict VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 acl _ _ 34 to to ADP IN _ 33 prep _ _ 35 finite finite ADJ JJ Degree=Pos 36 amod _ _ 36 sets set NOUN NNS Number=Plur 34 pobj _ _ 37 as as ADP IN _ 33 prep _ _ 38 objects object NOUN NNS Number=Plur 37 pobj _ SpaceAfter=No 39 , , PUNCT , PunctType=Comm 22 punct _ _ 40 thus thus ADV RB _ 41 advmod _ _ 41 providing provide VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 advcl _ _ 42 a a DET DT Definite=Ind|PronType=Art 43 det _ _ 43 syntax syntax NOUN NN Number=Sing 41 dobj _ _ 44 for for ADP IN _ 43 prep _ _ 45 automata automata NOUN NN Number=Sing 44 pobj _ _ 46 on on ADP IN _ 41 prep _ _ 47 the the DET DT Definite=Def|PronType=Art 48 det _ _ 48 alphabet alphabet NOUN NN Number=Sing 46 pobj _ _ 49 $ Sigma $ $ sigma $ SYM $ _ 41 dep _ _ 50 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We use this result to produce semantic functors for $ Sigma $ - automata. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 4 result result NOUN NN Number=Sing 2 dobj _ _ 5 to to PART TO _ 6 aux _ _ 6 produce produce VERB VB VerbForm=Inf 2 xcomp _ _ 7 semantic semantic ADJ JJ Degree=Pos 8 amod _ _ 8 functors functor NOUN NNS Number=Plur 6 dobj _ _ 9 for for ADP IN _ 6 prep _ _ 10 $ Sigma $ $ sigma $ SYM $ _ 12 compound _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 automata automata NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 226 # sent_id = 1 # text = This work is a contribution to a recent field, Directed Algebraic Topology. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 work work NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 contribution contribution NOUN NN Number=Sing 3 attr _ _ 6 to to ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 recent recent ADJ JJ Degree=Pos 9 amod _ _ 9 field field NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 5 punct _ _ 11 Directed Directed PROPN NNP Number=Sing 13 compound _ _ 12 Algebraic Algebraic PROPN NNP Number=Sing 13 compound _ _ 13 Topology Topology PROPN NNP Number=Sing 5 appos _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = Categories which appear as fundamental categories of `directed structures', for example ordered topological spaces, have to be studied up to appropriate notions of directed homotopy equivalence, which are more general than ordinary equivalence of categories. 1 Categories category NOUN NNS Number=Plur 15 nsubj _ _ 2 which which PRON WDT _ 3 nsubj _ _ 3 appear appear VERB VBP Tense=Pres|VerbForm=Fin 1 relcl _ _ 4 as as ADP IN _ 3 prep _ _ 5 fundamental fundamental ADJ JJ Degree=Pos 6 amod _ _ 6 categories category NOUN NNS Number=Plur 4 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 10 punct _ SpaceAfter=No 9 directed direct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 10 structures structure NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 11 ' ' PART POS _ 1 punct _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 15 punct _ _ 13 for for ADP IN _ 15 prep _ _ 14 example example NOUN NN Number=Sing 13 pobj _ _ 15 ordered order VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 16 topological topological ADJ JJ Degree=Pos 17 amod _ _ 17 spaces space NOUN NNS Number=Plur 15 dobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 ccomp _ _ 20 to to PART TO _ 22 aux _ _ 21 be be AUX VB VerbForm=Inf 22 auxpass _ _ 22 studied study VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 xcomp _ _ 23 up up ADP RP _ 22 prt _ _ 24 to to PART TO _ 22 prep _ _ 25 appropriate appropriate ADJ JJ Degree=Pos 26 amod _ _ 26 notions notion NOUN NNS Number=Plur 24 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 directed direct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 30 amod _ _ 29 homotopy homotopy NOUN NN Number=Sing 30 compound _ _ 30 equivalence equivalence NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 30 punct _ _ 32 which which PRON WDT _ 33 nsubj _ _ 33 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 30 relcl _ _ 34 more more ADV RBR Degree=Cmp 35 advmod _ _ 35 general general ADJ JJ Degree=Pos 33 acomp _ _ 36 than than ADP IN _ 35 prep _ _ 37 ordinary ordinary ADJ JJ Degree=Pos 38 amod _ _ 38 equivalence equivalence NOUN NN Number=Sing 36 pobj _ _ 39 of of ADP IN _ 38 prep _ _ 40 categories category NOUN NNS Number=Plur 39 pobj _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 3 # text = Here we introduce past and future equivalences of categories—sort of symmetric versions of an adjunction—and use them and their combinations to get `directed models' of a category; in the simplest case, these are the join of the least full reflective and the least full coreflective subcategory. 1 Here here ADV RB PronType=Dem 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 41 ccomp _ _ 4 past past NOUN NN Number=Sing 7 amod _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 future future ADJ JJ Degree=Pos 4 conj _ _ 7 equivalences equivalence NOUN NNS Number=Plur 3 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 categories category NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 10 — — PUNCT : _ 7 punct _ SpaceAfter=No 11 sort sort ADV RB _ 12 advmod _ _ 12 of of ADP IN _ 3 prep _ _ 13 symmetric symmetric ADJ JJ Degree=Pos 14 amod _ _ 14 versions version NOUN NNS Number=Plur 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 an an DET DT Definite=Ind|PronType=Art 17 det _ _ 17 adjunction adjunction NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 18 — — PUNCT : _ 3 punct _ SpaceAfter=No 19 and and CCONJ CC ConjType=Cmp 3 cc _ _ 20 use use VERB VB VerbForm=Inf 3 conj _ _ 21 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 20 dobj _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 24 poss _ _ 24 combinations combination NOUN NNS Number=Plur 21 conj _ _ 25 to to PART TO _ 26 aux _ _ 26 get get VERB VB VerbForm=Inf 20 xcomp _ _ 27 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 29 punct _ SpaceAfter=No 28 directed direct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 amod _ _ 29 models model NOUN NNS Number=Plur 26 dobj _ SpaceAfter=No 30 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 29 punct _ _ 31 of of ADP IN _ 29 prep _ _ 32 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 33 category category NOUN NN Number=Sing 31 pobj _ SpaceAfter=No 34 ; ; PUNCT : _ 41 punct _ _ 35 in in ADP IN _ 41 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 38 det _ _ 37 simplest simple ADJ JJS Degree=Sup 38 amod _ _ 38 case case NOUN NN Number=Sing 35 pobj _ SpaceAfter=No 39 , , PUNCT , PunctType=Comm 41 punct _ _ 40 these these PRON DT Number=Plur|PronType=Dem 41 nsubj _ _ 41 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 42 the the DET DT Definite=Def|PronType=Art 43 det _ _ 43 join join NOUN NN Number=Sing 41 attr _ _ 44 of of ADP IN _ 43 prep _ _ 45 the the DET DT Definite=Def|PronType=Art 48 det _ _ 46 least least ADJ JJS Degree=Sup 48 amod _ _ 47 full full ADJ JJ Degree=Pos 48 amod _ _ 48 reflective reflective NOUN NN Number=Sing 44 pobj _ _ 49 and and CCONJ CC ConjType=Cmp 48 cc _ _ 50 the the DET DT Definite=Def|PronType=Art 54 det _ _ 51 least least ADJ JJS Degree=Sup 52 advmod _ _ 52 full full ADJ JJ Degree=Pos 54 amod _ _ 53 coreflective coreflective ADJ JJ Degree=Pos 54 amod _ _ 54 subcategory subcategory NOUN NN Number=Sing 48 conj _ SpaceAfter=No 55 . . PUNCT . PunctType=Peri 41 punct _ SpaceAfter=No # doc_id = 227 # sent_id = 1 # text = This paper constructs models of intuitionistic set theory in suitable categories. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 constructs construct VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 models model NOUN NNS Number=Plur 3 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 intuitionistic intuitionistic ADJ JJ Degree=Pos 7 amod _ _ 7 set set VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 8 theory theory NOUN NN Number=Sing 5 pobj _ _ 9 in in ADP IN _ 4 prep _ _ 10 suitable suitable ADJ JJ Degree=Pos 11 amod _ _ 11 categories category NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = First, a Basic Intuitionistic Set Theory (BIST) is stated, and the categorical semantics are given. 1 First first ADV RB _ 12 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 12 punct _ _ 3 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 4 Basic Basic PROPN NNP Number=Sing 7 compound _ _ 5 Intuitionistic Intuitionistic PROPN NNP Number=Sing 6 compound _ _ 6 Set Set PROPN NNP Number=Sing 7 compound _ _ 7 Theory Theory PROPN NNP Number=Sing 12 nsubjpass _ _ 8 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 7 punct _ SpaceAfter=No 9 BIST BIST PROPN NNP Number=Sing 7 appos _ SpaceAfter=No 10 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 7 punct _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 12 stated state VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 and and CCONJ CC ConjType=Cmp 12 cc _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 categorical categorical ADJ JJ Degree=Pos 17 amod _ _ 17 semantics semantic NOUN NNS Number=Plur 19 nsubjpass _ _ 18 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 19 auxpass _ _ 19 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 conj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 3 # text = Second, we give a notion of an ideal over a category, using which one can build a model of BIST in which a given topos occurs as the sets. 1 Second second ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 notion notion NOUN NN Number=Sing 4 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 9 ideal ideal NOUN NN Number=Sing 7 pobj _ _ 10 over over ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 category category NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 4 punct _ _ 14 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 advcl _ _ 15 which which DET WDT _ 16 det _ _ 16 one one PRON PRP PronType=Prs 18 nsubj _ _ 17 can can AUX MD VerbForm=Fin 18 aux _ _ 18 build build VERB VB VerbForm=Inf 14 ccomp _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 model model NOUN NN Number=Sing 18 dobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 BIST BIST PROPN NNP Number=Sing 21 pobj _ _ 23 in in ADP IN _ 28 prep _ _ 24 which which PRON WDT _ 23 pobj _ _ 25 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 26 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 amod _ _ 27 topos topos NOUN NN Number=Sing 28 nsubj _ _ 28 occurs occur VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 relcl _ _ 29 as as ADP IN _ 28 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 sets set NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = And third, a sheaf model is given of a Basic Intuitionistic Class Theory conservatively extending BIST. 1 And and CCONJ CC ConjType=Cmp 8 cc _ _ 2 third third ADV RB _ 8 advmod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 8 punct _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 sheaf sheaf NOUN NN Number=Sing 6 compound _ _ 6 model model NOUN NN Number=Sing 8 nsubjpass _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 of of ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 11 Basic Basic PROPN NNP Number=Sing 14 compound _ _ 12 Intuitionistic Intuitionistic PROPN NNP Number=Sing 13 compound _ _ 13 Class Class PROPN NNP Number=Sing 14 compound _ _ 14 Theory Theory PROPN NNP Number=Sing 9 pobj _ _ 15 conservatively conservatively ADV RB _ 16 advmod _ _ 16 extending extend VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 acl _ _ 17 BIST BIST PROPN NNP Number=Sing 16 dobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 5 # text = The paper extends the results in work by Awodey, Butz, Simpson and Streicher by introducing a new and perhaps more natural notion of ideal, and in the class theory of part three. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 extends extend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 results result NOUN NNS Number=Plur 3 dobj _ _ 6 in in ADP IN _ 5 prep _ _ 7 work work NOUN NN Number=Sing 6 pobj _ _ 8 by by ADP IN _ 3 prep _ _ 9 Awodey Awodey PROPN NNP Number=Sing 8 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 Butz Butz PROPN NNP Number=Sing 9 conj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 Simpson Simpson PROPN NNP Number=Sing 11 conj _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 Streicher Streicher PROPN NNP Number=Sing 13 conj _ _ 16 by by ADP IN _ 3 prep _ _ 17 introducing introduce VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 pcomp _ _ 18 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 19 new new ADJ JJ Degree=Pos 24 amod _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 perhaps perhaps ADV RB _ 22 advmod _ _ 22 more more ADV RBR Degree=Cmp 23 advmod _ _ 23 natural natural ADJ JJ Degree=Pos 24 amod _ _ 24 notion notion NOUN NN Number=Sing 17 dobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 ideal ideal NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 3 punct _ _ 28 and and CCONJ CC ConjType=Cmp 3 cc _ _ 29 in in ADP IN _ 3 conj _ _ 30 the the DET DT Definite=Def|PronType=Art 32 det _ _ 31 class class NOUN NN Number=Sing 32 compound _ _ 32 theory theory NOUN NN Number=Sing 29 pobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 part part NOUN NN Number=Sing 33 pobj _ _ 35 three three NUM CD NumType=Card 34 nummod _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 228 # sent_id = 1 # text = The aim of this paper is to describe Quillen model category structures on the category $ CatC $ of internal categories and functors in a given finitely complete category $ C $ . 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 aim aim NOUN NN Number=Sing 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 paper paper NOUN NN Number=Sing 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 to to PART TO _ 8 aux _ _ 8 describe describe VERB VB VerbForm=Inf 6 xcomp _ _ 9 Quillen quillen ADJ JJ Degree=Pos 12 amod _ _ 10 model model NOUN NN Number=Sing 12 compound _ _ 11 category category NOUN NN Number=Sing 12 compound _ _ 12 structures structure NOUN NNS Number=Plur 8 dobj _ _ 13 on on ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 category category NOUN NN Number=Sing 13 pobj _ _ 16 $ CatC $ $ catc $ SYM $ _ 15 appos _ _ 17 of of ADP IN _ 15 prep _ _ 18 internal internal ADJ JJ Degree=Pos 19 amod _ _ 19 categories category NOUN NNS Number=Plur 17 pobj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 functors functor NOUN NNS Number=Plur 19 conj _ _ 22 in in ADP IN _ 8 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 24 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 amod _ _ 25 finitely finitely ADV RB _ 26 advmod _ _ 26 complete complete ADJ JJ Degree=Pos 27 amod _ _ 27 category category NOUN NN Number=Sing 22 pobj _ _ 28 $ C $ $ c $ SYM $ _ 8 dobj _ _ 29 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = Several non - equivalent notions of internal equivalence exist; to capture these notions, the model structures are defined relative to a given Grothendieck topology on $ C $ . 1 Several several ADJ JJ Degree=Pos 5 amod _ _ 2 non non ADJ JJ Degree=Pos 4 amod _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 equivalent equivalent ADJ JJ Degree=Pos 5 amod _ _ 5 notions notion NOUN NNS Number=Plur 9 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 internal internal ADJ JJ Degree=Pos 8 amod _ _ 8 equivalence equivalence NOUN NN Number=Sing 6 pobj _ _ 9 exist exist VERB VBP Tense=Pres|VerbForm=Fin 20 ccomp _ SpaceAfter=No 10 ; ; PUNCT : _ 20 punct _ _ 11 to to PART TO _ 12 aux _ _ 12 capture capture VERB VB VerbForm=Inf 20 advcl _ _ 13 these these DET DT Number=Plur|PronType=Dem 14 det _ _ 14 notions notion NOUN NNS Number=Plur 12 dobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 20 punct _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 model model NOUN NN Number=Sing 18 compound _ _ 18 structures structure NOUN NNS Number=Plur 20 nsubjpass _ _ 19 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 20 auxpass _ _ 20 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 21 relative relative ADJ JJ Degree=Pos 20 advmod _ _ 22 to to ADP IN _ 21 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 24 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 amod _ _ 25 Grothendieck Grothendieck PROPN NNP Number=Sing 26 compound _ _ 26 topology topology NOUN NN Number=Sing 22 pobj _ _ 27 on on ADP IN _ 20 prep _ _ 28 $ C $ $ c $ SYM $ _ 27 pobj _ _ 29 . . PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # sent_id = 3 # text = Under mild conditions on $ C $ , the regular epimorphism topology determines a model structure where we is the class of weak equivalences of internal categories (in the sense of Bunge and Pare). 1 Under under ADP IN _ 11 prep _ _ 2 mild mild ADJ JJ Degree=Pos 3 amod _ _ 3 conditions condition NOUN NNS Number=Plur 1 pobj _ _ 4 on on ADP IN _ 3 prep _ _ 5 $ C $ $ c $ SYM $ _ 4 pobj _ _ 6 , , PUNCT , PunctType=Comm 11 punct _ _ 7 the the DET DT Definite=Def|PronType=Art 10 det _ _ 8 regular regular ADJ JJ Degree=Pos 10 amod _ _ 9 epimorphism epimorphism NOUN NN Number=Sing 10 compound _ _ 10 topology topology NOUN NN Number=Sing 11 nsubj _ _ 11 determines determine VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 model model NOUN NN Number=Sing 14 compound _ _ 14 structure structure NOUN NN Number=Sing 11 dobj _ _ 15 where where SCONJ WRB _ 17 advmod _ _ 16 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 17 nsubj _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 relcl _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 class class NOUN NN Number=Sing 17 attr _ _ 20 of of ADP IN _ 19 prep _ _ 21 weak weak ADJ JJ Degree=Pos 22 amod _ _ 22 equivalences equivalence NOUN NNS Number=Plur 20 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 internal internal ADJ JJ Degree=Pos 25 amod _ _ 25 categories category NOUN NNS Number=Plur 23 pobj _ _ 26 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 27 punct _ SpaceAfter=No 27 in in ADP IN _ 11 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 sense sense NOUN NN Number=Sing 27 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 Bunge Bunge PROPN NNP Number=Sing 30 pobj _ _ 32 and and CCONJ CC ConjType=Cmp 31 cc _ _ 33 Pare Pare PROPN NNP Number=Sing 31 conj _ SpaceAfter=No 34 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 27 punct _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 4 # text = For a Grothendieck topos $ C $ we get a structure that, though different from Joyal and Tierney's, has an equivalent homotopy category. 1 For for ADP IN _ 7 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 Grothendieck Grothendieck PROPN NNP Number=Sing 4 compound _ _ 4 topos topos PROPN NNP Number=Sing 1 pobj _ _ 5 $ C $ $ c $ SYM $ _ 7 dep _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 get get VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 structure structure NOUN NN Number=Sing 7 dobj _ _ 10 that that PRON WDT PronType=Rel 20 nsubj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 20 punct _ _ 12 though though SCONJ IN _ 13 mark _ _ 13 different different ADJ JJ Degree=Pos 20 advcl _ _ 14 from from ADP IN _ 13 prep _ _ 15 Joyal Joyal PROPN NNP Number=Sing 14 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 Tierney Tierney PROPN NNP Number=Sing 15 conj _ SpaceAfter=No 18 's 's PART POS _ 17 case _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 20 punct _ _ 20 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 relcl _ _ 21 an an DET DT Definite=Ind|PronType=Art 24 det _ _ 22 equivalent equivalent ADJ JJ Degree=Pos 24 amod _ _ 23 homotopy homotopy NOUN NN Number=Sing 24 compound _ _ 24 category category NOUN NN Number=Sing 20 dobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 5 # text = In case $ C $ is semi - abelian, these weak equivalences turn out to be homology isomorphisms, and the model structure on $ CatC $ induces a notion of homotopy of internal crossed modules. 1 In in ADP IN _ 4 prep _ _ 2 case case NOUN NN Number=Sing 1 pobj _ _ 3 $ C $ $ c $ SYM $ _ 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 advcl _ _ 5 semi semi ADJ JJ Degree=Pos 4 acomp _ _ 6 - - ADJ JJ Degree=Pos 4 attr _ _ 7 abelian abelian ADJ JJ Degree=Pos 4 acomp _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 12 punct _ _ 9 these these DET DT Number=Plur|PronType=Dem 11 det _ _ 10 weak weak ADJ JJ Degree=Pos 11 amod _ _ 11 equivalences equivalence NOUN NNS Number=Plur 12 nsubj _ _ 12 turn turn VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 out out ADP RP _ 12 prt _ _ 14 to to PART TO _ 15 aux _ _ 15 be be AUX VB VerbForm=Inf 12 xcomp _ _ 16 homology homology NOUN NN Number=Sing 17 compound _ _ 17 isomorphisms isomorphism NOUN NNS Number=Plur 15 attr _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 12 punct _ _ 19 and and CCONJ CC ConjType=Cmp 12 cc _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 model model NOUN NN Number=Sing 22 compound _ _ 22 structure structure NOUN NN Number=Sing 25 nsubj _ _ 23 on on ADP IN _ 22 prep _ _ 24 $ CatC $ $ catc $ SYM $ _ 23 pobj _ _ 25 induces induce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 conj _ _ 26 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 27 notion notion NOUN NN Number=Sing 25 dobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 homotopy homotopy NOUN NN Number=Sing 28 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 internal internal ADJ JJ Degree=Pos 33 amod _ _ 32 crossed cross VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 33 amod _ _ 33 modules module NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 6 # text = In case $ C $ is the category $ Gp $ of groups and homomorphisms, it reduces to the case of crossed modules of groups. 1 In in ADP IN _ 4 prep _ _ 2 case case NOUN NN Number=Sing 1 pobj _ _ 3 $ C $ $ c $ SYM $ _ 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 ccomp _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 category category NOUN NN Number=Sing 4 attr _ _ 7 $ Gp $ $ gp $ SYM $ _ 6 appos _ _ 8 of of ADP IN _ 6 prep _ _ 9 groups group NOUN NNS Number=Plur 8 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 homomorphisms homomorphism NOUN NNS Number=Plur 9 conj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 14 punct _ _ 13 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 14 nsubj _ _ 14 reduces reduce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 to to ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 case case NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 crossed crossed ADJ JJ Degree=Pos 20 amod _ _ 20 modules module NOUN NNS Number=Plur 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 groups group NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 7 # text = The trivial topology on a category $ C $ determines a model structure on $ CatC $ where $ we $ is the class of strong equivalences (homotopy equivalences), $ fib $ the class of internal functors with the homotopy lifting property, and $ cof $ the class of functors with the homotopy extension property. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 trivial trivial ADJ JJ Degree=Pos 3 amod _ _ 3 topology topology NOUN NN Number=Sing 8 nsubj _ _ 4 on on ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 category category NOUN NN Number=Sing 4 pobj _ _ 7 $ C $ $ c $ SYM $ _ 3 appos _ _ 8 determines determine VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 model model NOUN NN Number=Sing 11 compound _ _ 11 structure structure NOUN NN Number=Sing 8 dobj _ _ 12 on on ADP IN _ 8 prep _ _ 13 $ CatC $ $ catc $ SYM $ _ 12 pobj _ _ 14 where where SCONJ WRB _ 15 advmod _ _ 15 $ we $ $ we $ SYM $ _ 13 relcl _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 conj _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 class class NOUN NN Number=Sing 16 attr _ _ 19 of of ADP IN _ 18 prep _ _ 20 strong strong ADJ JJ Degree=Pos 21 amod _ _ 21 equivalences equivalence NOUN NNS Number=Plur 19 pobj _ _ 22 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 21 punct _ SpaceAfter=No 23 homotopy homotopy NOUN NN Number=Sing 24 compound _ _ 24 equivalences equivalence NOUN NNS Number=Plur 21 appos _ SpaceAfter=No 25 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 21 punct _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 16 punct _ _ 27 $ fib $ $ fib $ SYM $ _ 29 predet _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 class class NOUN NN Number=Sing 8 dobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 internal internal ADJ JJ Degree=Pos 32 amod _ _ 32 functors functor NOUN NNS Number=Plur 30 pobj _ _ 33 with with ADP IN _ 29 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 37 det _ _ 35 homotopy homotopy NOUN NN Number=Sing 36 npadvmod _ _ 36 lifting lifting NOUN NN Number=Sing 37 amod _ _ 37 property property NOUN NN Number=Sing 33 pobj _ SpaceAfter=No 38 , , PUNCT , PunctType=Comm 29 punct _ _ 39 and and CCONJ CC ConjType=Cmp 29 cc _ _ 40 $ cof $ $ cof $ SYM $ _ 42 nmod _ _ 41 the the DET DT Definite=Def|PronType=Art 42 det _ _ 42 class class NOUN NN Number=Sing 29 conj _ _ 43 of of ADP IN _ 42 prep _ _ 44 functors functor NOUN NNS Number=Plur 43 pobj _ _ 45 with with ADP IN _ 42 prep _ _ 46 the the DET DT Definite=Def|PronType=Art 49 det _ _ 47 homotopy homotopy NOUN NN Number=Sing 48 compound _ _ 48 extension extension NOUN NN Number=Sing 49 compound _ _ 49 property property NOUN NN Number=Sing 45 pobj _ SpaceAfter=No 50 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 8 # text = As a special case, the ``folk'' Quillen model category structure on the category $ Cat = CatSet $ of small categories is recovered. 1 As as ADP IN _ 23 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 special special ADJ JJ Degree=Pos 4 amod _ _ 4 case case NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 23 punct _ _ 6 the the DET DT Definite=Def|PronType=Art 9 det _ _ 7 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 9 punct _ SpaceAfter=No 8 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 9 punct _ SpaceAfter=No 9 folk folk NOUN NN Number=Sing 14 nmod _ SpaceAfter=No 10 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 9 punct _ _ 11 Quillen quillen ADJ JJ Degree=Pos 14 amod _ _ 12 model model NOUN NN Number=Sing 14 compound _ _ 13 category category NOUN NN Number=Sing 14 compound _ _ 14 structure structure NOUN NN Number=Sing 23 nsubjpass _ _ 15 on on ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 category category NOUN NN Number=Sing 15 pobj _ _ 18 $ Cat = CatSet $ $ cat = catset $ SYM $ _ 23 nsubjpass _ _ 19 of of ADP IN _ 18 prep _ _ 20 small small ADJ JJ Degree=Pos 21 amod _ _ 21 categories category NOUN NNS Number=Plur 19 pobj _ _ 22 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 auxpass _ _ 23 recovered recover VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 23 punct _ SpaceAfter=No # doc_id = 229 # sent_id = 1 # text = It is well known that for any monad, the associated Kleisli category is embedded in the category of Eilenberg - Moore algebras as the free ones. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 3 well well ADV RB Degree=Pos 4 advmod _ _ 4 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 that that SCONJ IN _ 15 mark _ _ 6 for for ADP IN _ 15 prep _ _ 7 any any DET DT _ 8 det _ _ 8 monad monad NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 15 punct _ _ 10 the the DET DT Definite=Def|PronType=Art 13 det _ _ 11 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 amod _ _ 12 Kleisli Kleisli PROPN NNP Number=Sing 13 compound _ _ 13 category category NOUN NN Number=Sing 15 nsubjpass _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 auxpass _ _ 15 embedded embed VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 ccomp _ _ 16 in in ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 category category NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 Eilenberg Eilenberg PROPN NNP Number=Sing 22 compound _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 Moore Moore PROPN NNP Number=Sing 23 compound _ _ 23 algebras algebra NOUN NNS Number=Plur 19 pobj _ _ 24 as as ADP IN _ 15 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 27 det _ _ 26 free free ADJ JJ Degree=Pos 27 amod _ _ 27 ones one NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = We discovered some interesting examples in which this embedding is reflective; that is, it has a left adjoint. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 discovered discover VERB VBD Tense=Past|VerbForm=Fin 17 ccomp _ _ 3 some some DET DT _ 5 det _ _ 4 interesting interesting ADJ JJ Degree=Pos 5 amod _ _ 5 examples example NOUN NNS Number=Plur 2 dobj _ _ 6 in in ADP IN _ 10 prep _ _ 7 which which PRON WDT _ 6 pobj _ _ 8 this this DET DT Number=Sing|PronType=Dem 9 det _ _ 9 embedding embed VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 nsubj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 relcl _ _ 11 reflective reflective ADJ JJ Degree=Pos 10 acomp _ SpaceAfter=No 12 ; ; PUNCT : _ 17 punct _ _ 13 that that PRON DT Number=Sing|PronType=Dem 14 advmod _ _ 14 is is ADV RB _ 17 advmod _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 17 punct _ _ 16 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 17 nsubj _ _ 17 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 left left ADJ JJ Degree=Pos 20 amod _ _ 20 adjoint adjoint NOUN NN Number=Sing 17 dobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 3 # text = To understand this phenomenon we introduce and study a class of monads arising from factorization systems, and thereby termed factorization monads. 1 To to PART TO _ 2 aux _ _ 2 understand understand VERB VB VerbForm=Inf 20 advcl _ _ 3 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 4 phenomenon phenomenon NOUN NN Number=Sing 2 dobj _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 4 relcl _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 study study VERB VB VerbForm=Inf 6 conj _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 class class NOUN NN Number=Sing 8 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 monads monad NOUN NNS Number=Plur 11 pobj _ _ 13 arising arise VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 acl _ _ 14 from from ADP IN _ 13 prep _ _ 15 factorization factorization NOUN NN Number=Sing 16 compound _ _ 16 systems system NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 6 punct _ _ 18 and and CCONJ CC ConjType=Cmp 6 cc _ _ 19 thereby thereby ADV RB _ 20 advmod _ _ 20 termed term VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 21 factorization factorization NOUN NN Number=Sing 22 compound _ _ 22 monads monad NOUN NNS Number=Plur 20 dobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # sent_id = 4 # text = For them we show that under some simple conditions on the factorization system the free algebras are a full reflective subcategory of the algebras. 1 For for ADP IN _ 4 prep _ _ 2 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 1 pobj _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 17 mark _ _ 6 under under ADP IN _ 17 prep _ _ 7 some some DET DT _ 9 det _ _ 8 simple simple ADJ JJ Degree=Pos 9 amod _ _ 9 conditions condition NOUN NNS Number=Plur 6 pobj _ _ 10 on on ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 factorization factorization NOUN NN Number=Sing 13 compound _ _ 13 system system NOUN NN Number=Sing 10 pobj _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 free free ADJ JJ Degree=Pos 16 amod _ _ 16 algebras algebra NOUN NNS Number=Plur 17 nsubj _ _ 17 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 18 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 19 full full ADJ JJ Degree=Pos 21 amod _ _ 20 reflective reflective ADJ JJ Degree=Pos 21 amod _ _ 21 subcategory subcategory NOUN NN Number=Sing 17 attr _ _ 22 of of ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 algebras algebra NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = We provide various examples of this situation of a combinatorial nature. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 various various ADJ JJ Degree=Pos 4 amod _ _ 4 examples example NOUN NNS Number=Plur 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 this this DET DT Number=Sing|PronType=Dem 7 det _ _ 7 situation situation NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 combinatorial combinatorial ADJ JJ Degree=Pos 11 amod _ _ 11 nature nature NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 230 # sent_id = 1 # text = A generating family in a category $ C $ is a collection of objects $ {A_i|iin I} $ such that if for any subobject $ Y > - - > X $ , every $ f: A_i rightarrow X $ factors through $ m $ , then $ m $ is an isomorphism—that is, the functors $ C(A_i, - ) $ are collectively conservative. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 generating generate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 amod _ _ 3 family family NOUN NN Number=Sing 8 nsubj _ _ 4 in in ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 category category NOUN NN Number=Sing 4 pobj _ _ 7 $ C $ $ c $ SYM $ _ 4 pobj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 collection collection NOUN NN Number=Sing 8 attr _ _ 11 of of ADP IN _ 10 prep _ _ 12 objects object NOUN NNS Number=Plur 11 pobj _ _ 13 $ {A_i|iin I} $ $ {a_i|iin i} $ SYM $ _ 14 nmod _ _ 14 such such ADJ JJ Degree=Pos 24 amod _ _ 15 that that SCONJ IN _ 24 mark _ _ 16 if if SCONJ IN _ 17 mark _ _ 17 for for ADP IN _ 24 prep _ _ 18 any any DET DT _ 19 det _ _ 19 subobject subobject NOUN NN Number=Sing 17 pobj _ _ 20 $ Y > - - > X $ $ y > - - > x $ SYM $ _ 17 advmod _ _ 21 , , PUNCT , PunctType=Comm 24 punct _ _ 22 every every DET DT _ 24 det _ _ 23 $ f: A_i rightarrow X $ $ f: a_i rightarrow x $ SYM $ _ 24 nmod _ _ 24 factors factor NOUN NNS Number=Plur 8 attr _ _ 25 through through ADP IN _ 24 prep _ _ 26 $ m $ $ m $ SYM $ _ 25 pobj _ _ 27 , , PUNCT , PunctType=Comm 24 punct _ _ 28 then then ADV RB PronType=Dem 29 advmod _ _ 29 $ m $ $ m $ SYM $ _ 30 nsubj _ _ 30 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 conj _ _ 31 an an DET DT Definite=Ind|PronType=Art 32 det _ _ 32 isomorphism isomorphism NOUN NN Number=Sing 30 attr _ SpaceAfter=No 33 — — PUNCT : _ 32 punct _ SpaceAfter=No 34 that that PRON WDT PronType=Rel 35 nsubj _ _ 35 is is ADV RB _ 8 advmod _ SpaceAfter=No 36 , , PUNCT , PunctType=Comm 35 punct _ _ 37 the the DET DT Definite=Def|PronType=Art 38 det _ _ 38 functors functor NOUN NNS Number=Plur 35 attr _ _ 39 $ C(A_i, - ) $ $ c(a_i, - ) $ SYM $ _ 40 nsubj _ _ 40 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 conj _ _ 41 collectively collectively ADV RB _ 42 advmod _ _ 42 conservative conservative ADJ JJ Degree=Pos 40 acomp _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 40 punct _ SpaceAfter=No # sent_id = 2 # text = In this paper, we examine some circumstances under which subobjects of 1 form a generating family. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 examine examine VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 some some DET DT _ 8 det _ _ 8 circumstances circumstance NOUN NNS Number=Plur 6 dobj _ _ 9 under under ADP IN _ 14 prep _ _ 10 which which PRON WDT _ 9 pobj _ _ 11 subobjects subobject NOUN NNS Number=Plur 14 nsubj _ _ 12 of of ADP IN _ 11 prep _ _ 13 1 1 NUM CD NumType=Card 12 pobj _ _ 14 form form VERB VB VerbForm=Inf 8 relcl _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 generating generate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 17 amod _ _ 17 family family NOUN NN Number=Sing 14 dobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = Objects for which subobjects of 1 do form a generating family are called partially well - pointed. 1 Objects object NOUN NNS Number=Plur 13 nsubjpass _ _ 2 for for ADP IN _ 8 prep _ _ 3 which which PRON WDT _ 2 pobj _ _ 4 subobjects subobject NOUN NNS Number=Plur 8 nsubj _ _ 5 of of ADP IN _ 4 prep _ _ 6 1 1 NUM CD NumType=Card 5 pobj _ _ 7 do do AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 aux _ _ 8 form form VERB VB VerbForm=Inf 1 relcl _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 generating generating NOUN NN Number=Sing 11 amod _ _ 11 family family NOUN NN Number=Sing 8 dobj _ _ 12 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 14 partially partially ADV RB _ 17 advmod _ _ 15 well well ADV RB Degree=Pos 17 advmod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 pointed point VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 oprd _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 4 # text = For a Grothendieck topos, it is well known that subobjects of 1 form a generating family if and only if the topos is localic. 1 For for ADP IN _ 9 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 Grothendieck Grothendieck PROPN NNP Number=Sing 4 compound _ _ 4 topos topos NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 9 punct _ _ 6 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 9 nsubjpass _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 8 well well ADV RB Degree=Pos 9 advmod _ _ 9 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 that that SCONJ IN _ 14 mark _ _ 11 subobjects subobject NOUN NNS Number=Plur 14 nsubj _ _ 12 of of ADP IN _ 11 prep _ _ 13 1 1 NUM CD NumType=Card 12 pobj _ _ 14 form form VERB VB VerbForm=Inf 9 ccomp _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 generating generating NOUN NN Number=Sing 17 amod _ _ 17 family family NOUN NN Number=Sing 14 dobj _ _ 18 if if SCONJ IN _ 24 mark _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 only only ADV RB _ 24 advmod _ _ 21 if if SCONJ IN _ 24 mark _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 topos topos NOUN NN Number=Sing 24 nsubj _ _ 24 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 advcl _ _ 25 localic localic ADJ JJ Degree=Pos 24 acomp _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 5 # text = For the elementary case, little more is known. 1 For for ADP IN _ 9 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 elementary elementary ADJ JJ Degree=Pos 4 amod _ _ 4 case case NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 9 punct _ _ 6 little little ADJ JJ Degree=Pos 7 advmod _ _ 7 more more ADJ JJR Degree=Cmp 9 nsubjpass _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 6 # text = The problem is studied by Borceux, where it is shown that the result is internally true, an equivalent condition is found in the boolean case, and certain preservation properties are shown. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 problem problem NOUN NN Number=Sing 4 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 studied study VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 ccomp _ _ 5 by by ADP IN _ 4 agent _ _ 6 Borceux Borceux PROPN NNP Number=Sing 5 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 6 punct _ _ 8 where where SCONJ WRB _ 11 advmod _ _ 9 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 11 nsubjpass _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 11 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 relcl _ _ 12 that that SCONJ IN _ 15 mark _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 result result NOUN NN Number=Sing 15 nsubj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 ccomp _ _ 16 internally internally ADV RB _ 17 advmod _ _ 17 true true ADJ JJ Degree=Pos 15 acomp _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 23 punct _ _ 19 an an DET DT Definite=Ind|PronType=Art 21 det _ _ 20 equivalent equivalent ADJ JJ Degree=Pos 21 amod _ _ 21 condition condition NOUN NN Number=Sing 23 nsubjpass _ _ 22 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 auxpass _ _ 23 found find VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 24 in in ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 27 det _ _ 26 boolean boolean ADJ JJ Degree=Pos 27 amod _ _ 27 case case NOUN NN Number=Sing 24 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 23 punct _ _ 29 and and CCONJ CC ConjType=Cmp 23 cc _ _ 30 certain certain ADJ JJ Degree=Pos 32 amod _ _ 31 preservation preservation NOUN NN Number=Sing 32 compound _ _ 32 properties property NOUN NNS Number=Plur 34 nsubjpass _ _ 33 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 34 auxpass _ _ 34 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 conj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 23 punct _ SpaceAfter=No # sent_id = 7 # text = We look at two different approaches to the problem, one based on a generalization of projectivity, and the other based on looking at the most extreme sorts of counterexamples. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 look look VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 at at ADP IN _ 2 prep _ _ 4 two two NUM CD NumType=Card 6 nummod _ _ 5 different different ADJ JJ Degree=Pos 6 amod _ _ 6 approaches approach NOUN NNS Number=Plur 3 pobj _ _ 7 to to ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 problem problem NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 2 punct _ _ 11 one one NUM CD NumType=Card 2 npadvmod _ _ 12 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 acl _ _ 13 on on ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 generalization generalization NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 projectivity projectivity NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 11 punct _ _ 19 and and CCONJ CC ConjType=Cmp 11 cc _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 other other ADJ JJ Degree=Pos 11 conj _ _ 22 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 acl _ _ 23 on on ADP IN _ 22 prep _ _ 24 looking look VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 23 pcomp _ _ 25 at at ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 29 det _ _ 27 most most ADV RBS Degree=Sup 28 advmod _ _ 28 extreme extreme ADJ JJ Degree=Pos 29 amod _ _ 29 sorts sort NOUN NNS Number=Plur 25 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 counterexamples counterexample NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 231 # sent_id = 1 # text = In this paper the machinery and results developed in other work are extended to the study of constructive set theories. 1 In in ADP IN _ 13 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 machinery machinery NOUN NN Number=Sing 13 nsubjpass _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 results result NOUN NNS Number=Plur 5 conj _ _ 8 developed develop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 acl _ _ 9 in in ADP IN _ 8 prep _ _ 10 other other ADJ JJ Degree=Pos 11 amod _ _ 11 work work NOUN NN Number=Sing 9 pobj _ _ 12 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 extended extend VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 14 to to ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 study study NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 constructive constructive ADJ JJ Degree=Pos 20 amod _ _ 19 set set ADJ JJ Degree=Pos 20 amod _ _ 20 theories theory NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 2 # text = Specifically, we introduce two constructive set theories BCST and CST and prove that they are sound and complete with respect to models in categories with certain structure. 1 Specifically specifically ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 two two NUM CD NumType=Card 8 nummod _ _ 6 constructive constructive ADJ JJ Degree=Pos 8 amod _ _ 7 set set VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 8 theories theory NOUN NNS Number=Plur 4 dobj _ _ 9 BCST BCST PROPN NNP Number=Sing 8 appos _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 CST CST PROPN NNP Number=Sing 9 conj _ _ 12 and and CCONJ CC ConjType=Cmp 4 cc _ _ 13 prove prove VERB VB VerbForm=Inf 4 conj _ _ 14 that that SCONJ IN _ 16 mark _ _ 15 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 16 nsubj _ _ 16 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 ccomp _ _ 17 sound sound ADJ JJ Degree=Pos 16 acomp _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 complete complete ADJ JJ Degree=Pos 17 conj _ _ 20 with with ADP IN _ 19 prep _ _ 21 respect respect NOUN NN Number=Sing 20 pobj _ _ 22 to to ADP IN _ 21 prep _ _ 23 models model NOUN NNS Number=Plur 22 pobj _ _ 24 in in ADP IN _ 23 prep _ _ 25 categories category NOUN NNS Number=Plur 24 pobj _ _ 26 with with ADP IN _ 25 prep _ _ 27 certain certain ADJ JJ Degree=Pos 28 amod _ _ 28 structure structure NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = Specifically, basic categories of classes and categories of classes are axiomatized and shown to provide models of the aforementioned set theories. 1 Specifically specifically ADV RB _ 12 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 12 punct _ _ 3 basic basic ADJ JJ Degree=Pos 4 amod _ _ 4 categories category NOUN NNS Number=Plur 12 nsubjpass _ _ 5 of of ADP IN _ 4 prep _ _ 6 classes class NOUN NNS Number=Plur 5 pobj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 categories category NOUN NNS Number=Plur 6 conj _ _ 9 of of ADP IN _ 6 prep _ _ 10 classes class NOUN NNS Number=Plur 9 pobj _ _ 11 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 12 axiomatized axiomatize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 conj _ _ 15 to to PART TO _ 16 aux _ _ 16 provide provide VERB VB VerbForm=Inf 14 xcomp _ _ 17 models model NOUN NNS Number=Plur 16 dobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 22 det _ _ 20 aforementioned aforementioned ADJ JJ Degree=Pos 22 amod _ _ 21 set set ADJ JJ Degree=Pos 22 amod _ _ 22 theories theory NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 4 # text = Finally, models of these theories are constructed in the category of ideals. 1 Finally finally ADV RB _ 8 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 8 punct _ _ 3 models model NOUN NNS Number=Plur 8 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 these these DET DT Number=Plur|PronType=Dem 6 det _ _ 6 theories theory NOUN NNS Number=Plur 4 pobj _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 in in ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 category category NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 ideals ideal NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # doc_id = 232 # sent_id = 1 # text = In this paper, we examine a new approach to topos theory—rather than considering subobjects, look at quotients. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 examine examine VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 new new ADJ JJ Degree=Pos 9 amod _ _ 9 approach approach NOUN NN Number=Sing 6 dobj _ _ 10 to to ADP IN _ 9 prep _ _ 11 topos topos NOUN NN Number=Sing 12 compound _ _ 12 theory theory NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 13 — — PUNCT : _ 12 punct _ SpaceAfter=No 14 rather rather ADV RB _ 15 advmod _ _ 15 than than ADP IN _ 9 cc _ _ 16 considering consider VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 pcomp _ _ 17 subobjects subobject NOUN NNS Number=Plur 16 dobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 6 punct _ _ 19 look look VERB VB VerbForm=Inf 6 conj _ _ 20 at at ADP IN _ 19 prep _ _ 21 quotients quotient NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = This leads to the notion of a copower object, which is the object of quotients of a given object. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 leads lead VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 to to ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 notion notion NOUN NN Number=Sing 3 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 copower copower NOUN NN Number=Sing 9 compound _ _ 9 object object NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 which which PRON WDT _ 12 nsubj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 relcl _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 object object NOUN NN Number=Sing 12 attr _ _ 15 of of ADP IN _ 14 prep _ _ 16 quotients quotient NOUN NNS Number=Plur 15 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 amod _ _ 20 object object NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We study some properties of copower objects, many of which are similar to the properties of power objects. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 some some DET DT _ 4 det _ _ 4 properties property NOUN NNS Number=Plur 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 copower copower NOUN NN Number=Sing 7 compound _ _ 7 objects object NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 4 punct _ _ 9 many many ADJ JJ Degree=Pos 12 nsubj _ _ 10 of of ADP IN _ 9 prep _ _ 11 which which PRON WDT _ 10 pobj _ _ 12 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 relcl _ _ 13 similar similar ADJ JJ Degree=Pos 12 acomp _ _ 14 to to ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 properties property NOUN NNS Number=Plur 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 power power NOUN NN Number=Sing 19 compound _ _ 19 objects object NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = Given enough categorical structure (that is, in a pretopos) it is possible to get power objects from copower objects, and vice versa. 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 prep _ _ 2 enough enough ADJ JJ Degree=Pos 4 amod _ _ 3 categorical categorical ADJ JJ Degree=Pos 4 amod _ _ 4 structure structure NOUN NN Number=Sing 1 pobj _ _ 5 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 4 punct _ SpaceAfter=No 6 that that ADV RB _ 7 advmod _ _ 7 is is ADV RB _ 4 parataxis _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 in in ADP IN _ 7 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 pretopos pretopos NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 12 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 1 punct _ _ 13 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 14 nsubj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 possible possible ADJ JJ Degree=Pos 14 acomp _ _ 16 to to PART TO _ 17 aux _ _ 17 get get VERB VB VerbForm=Inf 14 xcomp _ _ 18 power power NOUN NN Number=Sing 19 compound _ _ 19 objects object NOUN NNS Number=Plur 17 dobj _ _ 20 from from ADP IN _ 17 prep _ _ 21 copower copower NOUN NN Number=Sing 22 amod _ _ 22 objects object NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 17 punct _ _ 24 and and CCONJ CC ConjType=Cmp 17 cc _ _ 25 vice vice ADV RB _ 26 advmod _ _ 26 versa versa ADV RB _ 17 conj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 5 # text = We then examine some new definitions of finiteness arising from the notion of a copower object. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 examine examine VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 some some DET DT _ 6 det _ _ 5 new new ADJ JJ Degree=Pos 6 amod _ _ 6 definitions definition NOUN NNS Number=Plur 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 finiteness finiteness NOUN NN Number=Sing 7 pobj _ _ 9 arising arise VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 acl _ _ 10 from from ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 notion notion NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 copower copower NOUN NN Number=Sing 16 compound _ _ 16 object object NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = We will see that the most naturally occurring such notions are equivalent to the standard notions, $ K $ - finiteness (at least for well - pointed objects) and $ tilde{K} $ - finiteness, but that this new way of looking at them gives new information, and in fact gives rise to another notion of finiteness, which is related to the classical notion of an amorphous set—that is, an infinite set that is not the disjoint union of two infinite sets. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 will will AUX MD VerbForm=Fin 3 aux _ _ 3 see see VERB VB VerbForm=Inf 0 ROOT _ _ 4 that that SCONJ IN _ 11 mark _ _ 5 the the DET DT Definite=Def|PronType=Art 8 det _ _ 6 most most ADV RBS Degree=Sup 7 advmod _ _ 7 naturally naturally ADV RB _ 8 advmod _ _ 8 occurring occur VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 11 csubj _ _ 9 such such ADJ JJ Degree=Pos 10 amod _ _ 10 notions notion NOUN NNS Number=Plur 8 dobj _ _ 11 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 12 equivalent equivalent ADJ JJ Degree=Pos 11 acomp _ _ 13 to to ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 standard standard ADJ JJ Degree=Pos 16 amod _ _ 16 notions notion NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 $ K $ $ k $ SYM $ _ 20 nummod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 finiteness finiteness NOUN NN Number=Sing 16 appos _ _ 21 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 16 punct _ SpaceAfter=No 22 at at ADP IN _ 23 advmod _ _ 23 least least ADJ JJS Degree=Sup 24 advmod _ _ 24 for for ADP IN _ 16 prep _ _ 25 well well ADV RB Degree=Pos 27 advmod _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 pointed point VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 amod _ _ 28 objects object NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 29 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 16 punct _ _ 30 and and CCONJ CC ConjType=Cmp 16 cc _ _ 31 $ tilde{K} $ $ tilde{k} $ SYM $ _ 33 nummod _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 finiteness finiteness NOUN NN Number=Sing 16 conj _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 11 punct _ _ 35 but but CCONJ CC ConjType=Cmp 11 cc _ _ 36 that that SCONJ IN _ 44 mark _ _ 37 this this DET DT Number=Sing|PronType=Dem 39 det _ _ 38 new new ADJ JJ Degree=Pos 39 amod _ _ 39 way way NOUN NN Number=Sing 44 nsubj _ _ 40 of of ADP IN _ 39 prep _ _ 41 looking look VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 40 pcomp _ _ 42 at at ADP IN _ 41 prep _ _ 43 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 42 pobj _ _ 44 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 conj _ _ 45 new new ADJ JJ Degree=Pos 46 amod _ _ 46 information information NOUN NN Number=Sing 44 dobj _ SpaceAfter=No 47 , , PUNCT , PunctType=Comm 44 punct _ _ 48 and and CCONJ CC ConjType=Cmp 44 cc _ _ 49 in in ADP IN _ 51 prep _ _ 50 fact fact NOUN NN Number=Sing 49 pobj _ _ 51 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 44 conj _ _ 52 rise rise NOUN NN Number=Sing 51 dobj _ _ 53 to to ADP IN _ 52 prep _ _ 54 another another DET DT _ 55 det _ _ 55 notion notion NOUN NN Number=Sing 53 pobj _ _ 56 of of ADP IN _ 55 prep _ _ 57 finiteness finiteness NOUN NN Number=Sing 56 pobj _ SpaceAfter=No 58 , , PUNCT , PunctType=Comm 57 punct _ _ 59 which which PRON WDT _ 61 nsubjpass _ _ 60 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 61 auxpass _ _ 61 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 57 relcl _ _ 62 to to ADP IN _ 61 prep _ _ 63 the the DET DT Definite=Def|PronType=Art 65 det _ _ 64 classical classical ADJ JJ Degree=Pos 65 amod _ _ 65 notion notion NOUN NN Number=Sing 62 pobj _ _ 66 of of ADP IN _ 65 prep _ _ 67 an an DET DT Definite=Ind|PronType=Art 69 det _ _ 68 amorphous amorphous ADJ JJ Degree=Pos 69 amod _ _ 69 set set NOUN NN Number=Sing 66 pobj _ SpaceAfter=No 70 — — PUNCT : _ 69 punct _ SpaceAfter=No 71 that that PRON DT Number=Sing|PronType=Dem 72 nsubj _ _ 72 is is ADV RB _ 69 relcl _ SpaceAfter=No 73 , , PUNCT , PunctType=Comm 72 punct _ _ 74 an an DET DT Definite=Ind|PronType=Art 76 det _ _ 75 infinite infinite ADJ JJ Degree=Pos 76 amod _ _ 76 set set NOUN NN Number=Sing 72 attr _ _ 77 that that PRON WDT PronType=Rel 78 nsubj _ _ 78 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 76 relcl _ _ 79 not not PART RB Polarity=Neg 78 neg _ _ 80 the the DET DT Definite=Def|PronType=Art 82 det _ _ 81 disjoint disjoint NOUN NN Number=Sing 82 compound _ _ 82 union union NOUN NN Number=Sing 78 attr _ _ 83 of of ADP IN _ 82 prep _ _ 84 two two NUM CD NumType=Card 86 nummod _ _ 85 infinite infinite ADJ JJ Degree=Pos 86 amod _ _ 86 sets set NOUN NNS Number=Plur 83 pobj _ SpaceAfter=No 87 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 7 # text = Finally, We look briefly at two similar notions: potency objects and per objects. 1 Finally finally ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 look look VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 briefly briefly ADV RB _ 4 advmod _ _ 6 at at ADP IN _ 4 prep _ _ 7 two two NUM CD NumType=Card 9 nummod _ _ 8 similar similar ADJ JJ Degree=Pos 9 amod _ _ 9 notions notion NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 10 : : PUNCT : _ 9 punct _ _ 11 potency potency NOUN NN Number=Sing 12 compound _ _ 12 objects object NOUN NNS Number=Plur 9 appos _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 per per ADP IN _ 12 prep _ _ 15 objects object NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 233 # sent_id = 1 # text = The process some call `categorification' consists of interpreting set - theoretic structures in mathematics as derived from category - theoretic structures. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 process process NOUN NN Number=Sing 8 nsubj _ _ 3 some some PRON DT _ 4 nsubj _ _ 4 call call VERB VBP Tense=Pres|VerbForm=Fin 2 appos _ _ 5 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 6 punct _ SpaceAfter=No 6 categorification categorification NOUN NN Number=Sing 4 dobj _ SpaceAfter=No 7 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 6 punct _ _ 8 consists consist NOUN NNS Number=Plur 0 ROOT _ _ 9 of of ADP IN _ 8 prep _ _ 10 interpreting interpret VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 pcomp _ _ 11 set set NOUN NN Number=Sing 13 amod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 theoretic theoretic NOUN NN Number=Sing 14 amod _ _ 14 structures structure NOUN NNS Number=Plur 10 dobj _ _ 15 in in ADP IN _ 14 prep _ _ 16 mathematics mathematic NOUN NNS Number=Plur 15 pobj _ _ 17 as as SCONJ IN _ 18 mark _ _ 18 derived derive VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 advcl _ _ 19 from from ADP IN _ 18 prep _ _ 20 category category NOUN NN Number=Sing 22 npadvmod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 theoretic theoretic ADJ JJ Degree=Pos 23 amod _ _ 23 structures structure NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 2 # text = Examples include the interpretation of $ N $ as the Burnside rig of the category of finite sets with product and coproduct, and of $ N[x] $ in terms the category of combinatorial species. 1 Examples example NOUN NNS Number=Plur 2 nsubj _ _ 2 include include VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 interpretation interpretation NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 $ N $ $ n $ SYM $ _ 5 pobj _ _ 7 as as ADP IN _ 4 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 Burnside Burnside PROPN NNP Number=Sing 10 compound _ _ 10 rig rig NOUN NN Number=Sing 7 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 category category NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 finite finite ADJ JJ Degree=Pos 16 compound _ _ 16 sets set NOUN NNS Number=Plur 14 pobj _ _ 17 with with ADP IN _ 13 prep _ _ 18 product product NOUN NN Number=Sing 17 pobj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 coproduct coproduct NOUN NN Number=Sing 18 conj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 4 punct _ _ 22 and and CCONJ CC ConjType=Cmp 4 cc _ _ 23 of of ADP IN _ 4 prep _ _ 24 $ N[x] $ $ n[x] $ SYM $ _ 23 pobj _ _ 25 in in ADP IN _ 2 prep _ _ 26 terms term NOUN NNS Number=Plur 25 pobj _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 category category NOUN NN Number=Sing 2 dobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 combinatorial combinatorial ADJ JJ Degree=Pos 31 amod _ _ 31 species specie NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = This has interesting applications to quantum mechanics, and in particular the quantum harmonic oscillator, via Joyal's `combinatorial species', and a new generalization called `stuff types' described by Baez and Dolan, which are a special case of Kelly's `clubs'. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 interesting interesting ADJ JJ Degree=Pos 4 amod _ _ 4 applications application NOUN NNS Number=Plur 2 dobj _ _ 5 to to ADP IN _ 4 prep _ _ 6 quantum quantum ADJ JJ Degree=Pos 7 compound _ _ 7 mechanics mechanic NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 2 punct _ _ 9 and and CCONJ CC ConjType=Cmp 2 cc _ _ 10 in in ADP IN _ 15 prep _ _ 11 particular particular ADJ JJ Degree=Pos 10 amod _ _ 12 the the DET DT Definite=Def|PronType=Art 15 det _ _ 13 quantum quantum PROPN NNP Number=Sing 15 amod _ _ 14 harmonic harmonic ADJ JJ Degree=Pos 15 compound _ _ 15 oscillator oscillator NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 via via ADP IN _ 15 prep _ _ 18 Joyal Joyal PROPN NNP Number=Sing 22 poss _ SpaceAfter=No 19 's 's PART POS _ 18 case _ _ 20 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 22 punct _ SpaceAfter=No 21 combinatorial combinatorial ADJ JJ Degree=Pos 22 amod _ _ 22 species specie NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 23 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 15 punct _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 15 punct _ _ 25 and and CCONJ CC ConjType=Cmp 15 cc _ _ 26 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 27 new new ADJ JJ Degree=Pos 28 amod _ _ 28 generalization generalization NOUN NN Number=Sing 15 conj _ _ 29 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 acl _ _ 30 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 32 punct _ SpaceAfter=No 31 stuff stuff NOUN NN Number=Sing 32 compound _ _ 32 types type NOUN NNS Number=Plur 29 oprd _ SpaceAfter=No 33 ' ' PART POS _ 32 case _ _ 34 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 acl _ _ 35 by by ADP IN _ 34 agent _ _ 36 Baez Baez PROPN NNP Number=Sing 35 pobj _ _ 37 and and CCONJ CC ConjType=Cmp 36 cc _ _ 38 Dolan Dolan PROPN NNP Number=Sing 36 conj _ SpaceAfter=No 39 , , PUNCT , PunctType=Comm 36 punct _ _ 40 which which PRON WDT _ 41 nsubj _ _ 41 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 36 relcl _ _ 42 a a DET DT Definite=Ind|PronType=Art 44 det _ _ 43 special special ADJ JJ Degree=Pos 44 amod _ _ 44 case case NOUN NN Number=Sing 41 attr _ _ 45 of of ADP IN _ 44 prep _ _ 46 Kelly Kelly PROPN NNP Number=Sing 49 poss _ SpaceAfter=No 47 's 's PART POS _ 46 case _ _ 48 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 49 punct _ SpaceAfter=No 49 clubs club NOUN NNS Number=Plur 45 pobj _ SpaceAfter=No 50 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 28 punct _ SpaceAfter=No 51 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = Operators between stuff types be represented as rudimentary Feynman diagrams for the oscillator. 1 Operators operator NOUN NNS Number=Plur 6 nsubjpass _ _ 2 between between ADP IN _ 1 prep _ _ 3 stuff stuff NOUN NN Number=Sing 4 compound _ _ 4 types type NOUN NNS Number=Plur 2 pobj _ _ 5 be be AUX VB VerbForm=Inf 6 auxpass _ _ 6 represented represent VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 as as ADP IN _ 6 prep _ _ 8 rudimentary rudimentary ADJ JJ Degree=Pos 10 amod _ _ 9 Feynman Feynman PROPN NNP Number=Sing 10 compound _ _ 10 diagrams diagram NOUN NNS Number=Plur 7 pobj _ _ 11 for for ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 oscillator oscillator NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 5 # text = In quantum mechanics, we want to represent states in an algebra over the complex numbers, and also want our Feynman diagrams to carry more structure than these `stuff operators' can do, and these turn out to be closely related. 1 In in ADP IN _ 6 prep _ _ 2 quantum quantum ADJ JJ Degree=Pos 3 amod _ _ 3 mechanics mechanic NOUN NNS Number=Plur 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 want want VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 to to PART TO _ 8 aux _ _ 8 represent represent VERB VB VerbForm=Inf 6 xcomp _ _ 9 states state NOUN NNS Number=Plur 8 dobj _ _ 10 in in ADP IN _ 9 prep _ _ 11 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 12 algebra algebra NOUN NN Number=Sing 10 pobj _ _ 13 over over ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 complex complex ADJ JJ Degree=Pos 16 amod _ _ 16 numbers number NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 6 punct _ _ 18 and and CCONJ CC ConjType=Cmp 6 cc _ _ 19 also also ADV RB _ 20 advmod _ _ 20 want want VERB VBP Tense=Pres|VerbForm=Fin 6 conj _ _ 21 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 23 poss _ _ 22 Feynman Feynman PROPN NNP Number=Sing 23 compound _ _ 23 diagrams diagram NOUN NNS Number=Plur 25 nsubj _ _ 24 to to PART TO _ 25 aux _ _ 25 carry carry VERB VB VerbForm=Inf 20 ccomp _ _ 26 more more ADJ JJR Degree=Cmp 27 amod _ _ 27 structure structure NOUN NN Number=Sing 25 dobj _ _ 28 than than SCONJ IN _ 35 mark _ _ 29 these these DET DT Number=Plur|PronType=Dem 32 det _ _ 30 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 32 punct _ SpaceAfter=No 31 stuff stuff NOUN NN Number=Sing 32 compound _ _ 32 operators operator NOUN NNS Number=Plur 35 nsubj _ SpaceAfter=No 33 ' ' PART POS _ 32 punct _ _ 34 can can AUX MD VerbForm=Fin 35 aux _ _ 35 do do VERB VB VerbForm=Inf 27 advcl _ SpaceAfter=No 36 , , PUNCT , PunctType=Comm 6 punct _ _ 37 and and CCONJ CC ConjType=Cmp 6 cc _ _ 38 these these PRON DT Number=Plur|PronType=Dem 39 nsubj _ _ 39 turn turn VERB VBP Tense=Pres|VerbForm=Fin 6 conj _ _ 40 out out ADP RP _ 39 prt _ _ 41 to to PART TO _ 44 aux _ _ 42 be be AUX VB VerbForm=Inf 44 auxpass _ _ 43 closely closely ADV RB _ 44 advmod _ _ 44 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 39 xcomp _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 39 punct _ SpaceAfter=No # sent_id = 6 # text = We will describe a categorification of the quantum harmonic oscillator in which the group of `phases'—that is, $ U(1) $ , the circle group—plays a special role. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 will will AUX MD VerbForm=Fin 3 aux _ _ 3 describe describe VERB VB VerbForm=Inf 26 ccomp _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 categorification categorification NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 10 det _ _ 8 quantum quantum PROPN NNP Number=Sing 10 amod _ _ 9 harmonic harmonic ADJ JJ Degree=Pos 10 compound _ _ 10 oscillator oscillator NOUN NN Number=Sing 6 pobj _ _ 11 in in ADP IN _ 18 prep _ _ 12 which which PRON WDT _ 11 pobj _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 group group NOUN NN Number=Sing 18 nsubj _ _ 15 of of ADP IN _ 14 prep _ _ 16 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 15 punct _ SpaceAfter=No 17 phases'—that phases'—that ADV RB _ 15 pobj _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 relcl _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 $ U(1) $ $ u(1) $ SYM $ _ 18 attr _ _ 21 , , PUNCT , PunctType=Comm 5 punct _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 circle circle NOUN NN Number=Sing 24 compound _ _ 24 group group NOUN NN Number=Sing 5 appos _ SpaceAfter=No 25 — — PUNCT : _ 26 punct _ SpaceAfter=No 26 plays play VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 27 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 28 special special ADJ JJ Degree=Pos 29 amod _ _ 29 role role NOUN NN Number=Sing 26 dobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 26 punct _ SpaceAfter=No # sent_id = 7 # text = We describe a general notion of ` $ M $ - stuff types' for any monoid $ M $ , and see that the case $ M = U(1) $ provides an interpretation of time evolution in the combinatorial setting, as well as recovering the usual Feynman rules for the quantum harmonic oscillator. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 general general ADJ JJ Degree=Pos 5 amod _ _ 5 notion notion NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 6 punct _ _ 8 $ M $ $ m $ SYM $ _ 10 compound _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 stuff stuff NOUN NN Number=Sing 11 compound _ _ 11 types type NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 12 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 5 punct _ _ 13 for for ADP IN _ 2 prep _ _ 14 any any DET DT _ 15 det _ _ 15 monoid monoid NOUN NN Number=Sing 13 pobj _ _ 16 $ M $ $ m $ SYM $ _ 2 dobj _ _ 17 , , PUNCT , PunctType=Comm 2 punct _ _ 18 and and CCONJ CC ConjType=Cmp 2 cc _ _ 19 see see VERB VB VerbForm=Inf 2 conj _ _ 20 that that SCONJ IN _ 24 mark _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 case case NOUN NN Number=Sing 24 nsubj _ _ 23 $ M = U(1) $ $ m = u(1) $ SYM $ _ 24 nsubj _ _ 24 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 ccomp _ _ 25 an an DET DT Definite=Ind|PronType=Art 26 det _ _ 26 interpretation interpretation NOUN NN Number=Sing 24 dobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 time time NOUN NN Number=Sing 29 compound _ _ 29 evolution evolution NOUN NN Number=Sing 27 pobj _ _ 30 in in ADP IN _ 24 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 33 det _ _ 32 combinatorial combinatorial NOUN NN Number=Sing 33 compound _ _ 33 setting setting NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 24 punct _ _ 35 as as ADV RB _ 37 advmod _ _ 36 well well ADV RB Degree=Pos 37 advmod _ _ 37 as as ADP IN _ 24 cc _ _ 38 recovering recover VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 37 pcomp _ _ 39 the the DET DT Definite=Def|PronType=Art 42 det _ _ 40 usual usual ADJ JJ Degree=Pos 42 amod _ _ 41 Feynman Feynman PROPN NNP Number=Sing 42 compound _ _ 42 rules rule NOUN NNS Number=Plur 38 dobj _ _ 43 for for ADP IN _ 42 prep _ _ 44 the the DET DT Definite=Def|PronType=Art 47 det _ _ 45 quantum quantum PROPN NNP Number=Sing 47 amod _ _ 46 harmonic harmonic ADJ JJ Degree=Pos 47 compound _ _ 47 oscillator oscillator NOUN NN Number=Sing 43 pobj _ SpaceAfter=No 48 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 234 # sent_id = 1 # text = Motivated by applications to Mackey functors, Serge Bouc characterized pullback and finite coproduct preserving functors between categories of permutation representations of finite groups. 1 Motivated motivate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 advcl _ _ 2 by by ADP IN _ 1 agent _ _ 3 applications application NOUN NNS Number=Plur 2 pobj _ _ 4 to to ADP IN _ 3 prep _ _ 5 Mackey Mackey PROPN NNP Number=Sing 6 compound _ _ 6 functors functor NOUN NNS Number=Plur 4 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 10 punct _ _ 8 Serge Serge PROPN NNP Number=Sing 9 compound _ _ 9 Bouc Bouc PROPN NNP Number=Sing 10 nsubj _ _ 10 characterized characterize VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 11 pullback pullback NOUN NN Number=Sing 14 nmod _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 finite finite ADJ JJ Degree=Pos 11 conj _ _ 14 coproduct coproduct NOUN NN Number=Sing 15 npadvmod _ _ 15 preserving preserve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 amod _ _ 16 functors functor NOUN NNS Number=Plur 10 dobj _ _ 17 between between ADP IN _ 16 prep _ _ 18 categories category NOUN NNS Number=Plur 17 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 permutation permutation NOUN NN Number=Sing 21 compound _ _ 21 representations representation NOUN NNS Number=Plur 19 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 finite finite ADJ JJ Degree=Pos 24 amod _ _ 24 groups group NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = Initially surprising to a category theorist, this result does have a categorical explanation which we provide. 1 Initially initially ADV RB _ 2 advmod _ _ 2 surprising surprising ADJ JJ Degree=Pos 11 advcl _ _ 3 to to ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 category category NOUN NN Number=Sing 6 compound _ _ 6 theorist theorist NOUN NN Number=Sing 3 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 11 punct _ _ 8 this this DET DT Number=Sing|PronType=Dem 9 det _ _ 9 result result NOUN NN Number=Sing 11 nsubj _ _ 10 does do AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 aux _ _ 11 have have VERB VB VerbForm=Inf 0 ROOT _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 categorical categorical ADJ JJ Degree=Pos 14 amod _ _ 14 explanation explanation NOUN NN Number=Sing 11 dobj _ _ 15 which which PRON WDT _ 17 dobj _ _ 16 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 17 nsubj _ _ 17 provide provide VERB VBP Tense=Pres|VerbForm=Fin 14 relcl _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # doc_id = 235 # sent_id = 1 # text = What remains of a geometrical notion like that of a principal bundle when the base space is not a manifold but a coarse graining of it, like the poset formed by a base for the topology ordered under inclusion? 1 What what PRON WP _ 2 nsubj _ _ 2 remains remain VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 of of ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 geometrical geometrical ADJ JJ Degree=Pos 6 amod _ _ 6 notion notion NOUN NN Number=Sing 3 pobj _ _ 7 like like ADP IN _ 6 prep _ _ 8 that that PRON DT Number=Sing|PronType=Dem 7 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 principal principal ADJ JJ Degree=Pos 12 amod _ _ 12 bundle bundle NOUN NN Number=Sing 9 pobj _ _ 13 when when SCONJ WRB _ 17 advmod _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 base base NOUN NN Number=Sing 16 compound _ _ 16 space space NOUN NN Number=Sing 17 nsubj _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 advcl _ _ 18 not not PART RB Polarity=Neg 17 neg _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 manifold manifold NOUN NN Number=Sing 17 attr _ _ 21 but but CCONJ CC ConjType=Cmp 17 cc _ _ 22 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 23 coarse coarse ADJ JJ Degree=Pos 24 amod _ _ 24 graining graining NOUN NN Number=Sing 2 npadvmod _ _ 25 of of ADP IN _ 24 prep _ _ 26 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 25 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 2 punct _ _ 28 like like ADP IN _ 2 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 poset poset NOUN NN Number=Sing 28 pobj _ _ 31 formed form VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 30 acl _ _ 32 by by ADP IN _ 31 agent _ _ 33 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 34 base base NOUN NN Number=Sing 32 pobj _ _ 35 for for ADP IN _ 34 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 37 det _ _ 37 topology topology NOUN NN Number=Sing 35 pobj _ _ 38 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 37 acl _ _ 39 under under ADP IN _ 38 prep _ _ 40 inclusion inclusion NOUN NN Number=Sing 39 pobj _ SpaceAfter=No 41 ? ? PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Motivated by the search for a geometrical framework for developing gauge theories in algebraic quantum field theory, we give, in the present paper, a first answer to this question. 1 Motivated motivate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 advcl _ _ 2 by by ADP IN _ 1 agent _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 search search NOUN NN Number=Sing 2 pobj _ _ 5 for for ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 geometrical geometrical ADJ JJ Degree=Pos 8 amod _ _ 8 framework framework NOUN NN Number=Sing 5 pobj _ _ 9 for for ADP IN _ 8 prep _ _ 10 developing develop VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 pcomp _ _ 11 gauge gauge NOUN NN Number=Sing 12 compound _ _ 12 theories theory NOUN NNS Number=Plur 10 dobj _ _ 13 in in ADP IN _ 10 prep _ _ 14 algebraic algebraic ADJ JJ Degree=Pos 16 amod _ _ 15 quantum quantum PROPN NNP Number=Sing 16 compound _ _ 16 field field NOUN NN Number=Sing 17 compound _ _ 17 theory theory NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 20 punct _ _ 19 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 20 nsubj _ _ 20 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 in in ADP IN _ 20 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 present present ADJ JJ Degree=Pos 25 amod _ _ 25 paper paper NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 20 punct _ _ 27 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 28 first first ADJ JJ Degree=Pos 29 amod _ _ 29 answer answer NOUN NN Number=Sing 20 dobj _ _ 30 to to ADP IN _ 29 prep _ _ 31 this this DET DT Number=Sing|PronType=Dem 32 det _ _ 32 question question NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # sent_id = 3 # text = The notions of transition function, connection form and curvature form find a nice description in terms of cohomology, in general non - Abelian, of a poset with values in a group $ G $ . 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 notions notion NOUN NNS Number=Plur 12 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 transition transition NOUN NN Number=Sing 5 compound _ _ 5 function function NOUN NN Number=Sing 3 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 connection connection NOUN NN Number=Sing 8 compound _ _ 8 form form NOUN NN Number=Sing 5 conj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 curvature curvature NOUN NN Number=Sing 11 compound _ _ 11 form form NOUN NN Number=Sing 8 conj _ _ 12 find find VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 nice nice ADJ JJ Degree=Pos 15 amod _ _ 15 description description NOUN NN Number=Sing 12 dobj _ _ 16 in in ADP IN _ 15 prep _ _ 17 terms term NOUN NNS Number=Plur 16 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 cohomology cohomology NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 15 punct _ _ 21 in in ADP IN _ 12 prep _ _ 22 general general ADJ JJ Degree=Pos 25 amod _ _ 23 non non PROPN NNP Number=Sing 25 compound _ _ 24 - - PROPN NNP Number=Sing 25 punct _ _ 25 Abelian Abelian PROPN NNP Number=Sing 21 pobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 21 punct _ _ 27 of of ADP IN _ 12 prep _ _ 28 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 29 poset poset NOUN NN Number=Sing 27 pobj _ _ 30 with with ADP IN _ 29 prep _ _ 31 values value NOUN NNS Number=Plur 30 pobj _ _ 32 in in ADP IN _ 31 prep _ _ 33 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 34 group group NOUN NN Number=Sing 32 pobj _ _ 35 $ G $ $ g $ SYM $ _ 12 dep _ _ 36 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 4 # text = Interpreting a 1 - cocycle as a principal bundle, a connection turns out to be a 1 - cochain associated in a suitable way with this 1 - cocycle; the curvature of a connection turns out to be its 2 - coboundary. 1 Interpreting interpret VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 advcl _ _ 2 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 3 1 1 NUM CD NumType=Card 5 nummod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 cocycle cocycle NOUN NN Number=Sing 1 dobj _ _ 6 as as ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 principal principal ADJ JJ Degree=Pos 9 amod _ _ 9 bundle bundle NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 13 punct _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 connection connection NOUN NN Number=Sing 13 nsubj _ _ 13 turns turn VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 37 ccomp _ _ 14 out out ADP RP _ 13 prt _ _ 15 to to PART TO _ 16 aux _ _ 16 be be AUX VB VerbForm=Inf 13 xcomp _ _ 17 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 18 1 1 NUM CD NumType=Card 20 nummod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 cochain cochain NOUN NN Number=Sing 16 attr _ _ 21 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 acl _ _ 22 in in ADP IN _ 21 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 24 suitable suitable ADJ JJ Degree=Pos 25 amod _ _ 25 way way NOUN NN Number=Sing 22 pobj _ _ 26 with with ADP IN _ 25 prep _ _ 27 this this DET DT Number=Sing|PronType=Dem 30 det _ _ 28 1 1 NUM CD NumType=Card 30 nummod _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 cocycle cocycle NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 31 ; ; PUNCT : _ 37 punct _ _ 32 the the DET DT Definite=Def|PronType=Art 33 det _ _ 33 curvature curvature NOUN NN Number=Sing 37 nsubj _ _ 34 of of ADP IN _ 33 prep _ _ 35 a a DET DT Definite=Ind|PronType=Art 36 det _ _ 36 connection connection NOUN NN Number=Sing 34 pobj _ _ 37 turns turn VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 38 out out ADP RP _ 37 prt _ _ 39 to to PART TO _ 40 aux _ _ 40 be be AUX VB VerbForm=Inf 37 xcomp _ _ 41 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 44 poss _ _ 42 2 2 NUM CD NumType=Card 44 nummod _ _ 43 - - PUNCT HYPH PunctType=Dash 44 punct _ _ 44 coboundary coboundary NOUN NN Number=Sing 40 attr _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 37 punct _ SpaceAfter=No # sent_id = 5 # text = We show the existence of nonflat connections, and relate flat connections to homomorphisms of the fundamental group of the poset into $ G $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 existence existence NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 nonflat nonflat NOUN NN Number=Sing 7 compound _ _ 7 connections connection NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 2 punct _ _ 9 and and CCONJ CC ConjType=Cmp 2 cc _ _ 10 relate relate VERB VB VerbForm=Inf 2 conj _ _ 11 flat flat ADJ JJ Degree=Pos 12 amod _ _ 12 connections connection NOUN NNS Number=Plur 10 dobj _ _ 13 to to ADP IN _ 12 prep _ _ 14 homomorphisms homomorphism NOUN NNS Number=Plur 13 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 fundamental fundamental ADJ JJ Degree=Pos 18 amod _ _ 18 group group NOUN NN Number=Sing 15 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 poset poset NOUN NN Number=Sing 19 pobj _ _ 22 into into ADP IN _ 10 prep _ _ 23 $ G $ $ g $ SYM $ _ 22 pobj _ _ 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = We discuss holonomy and prove an analogue of the Ambrose - Singer theorem. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 discuss discuss VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 holonomy holonomy NOUN NN Number=Sing 2 dobj _ _ 4 and and CCONJ CC ConjType=Cmp 2 cc _ _ 5 prove prove VERB VB VerbForm=Inf 2 conj _ _ 6 an an DET DT Definite=Ind|PronType=Art 7 det _ _ 7 analogue analogue NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 12 det _ _ 10 Ambrose Ambrose PROPN NNP Number=Sing 12 compound _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 Singer Singer PROPN NNP Number=Sing 8 pobj _ _ 13 theorem theorem VERB VBD Tense=Past|VerbForm=Fin 5 oprd _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 236 # sent_id = 1 # text = Given a groupoid $ G $ one has, in addition to the equivalence of categories $ E $ from $ G $ to its skeleton, a fibration $ F $ from $ G $ to its set of connected components (seen as a discrete category). 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 groupoid groupoid NOUN NN Number=Sing 1 pobj _ _ 4 $ G $ $ g $ SYM $ _ 5 nmod _ _ 5 one one NOUN NN Number=Sing 3 appos _ _ 6 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 1 auxpass _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 6 punct _ _ 8 in in ADP IN _ 1 prep _ _ 9 addition addition NOUN NN Number=Sing 8 pobj _ _ 10 to to ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 equivalence equivalence NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 categories category NOUN NNS Number=Plur 13 pobj _ _ 15 $ E $ $ e $ SYM $ _ 12 appos _ _ 16 from from ADP IN _ 12 prep _ _ 17 $ G $ $ g $ SYM $ _ 16 pobj _ _ 18 to to ADP IN _ 16 prep _ _ 19 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 20 poss _ _ 20 skeleton skeleton NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 23 fibration fibration NOUN NN Number=Sing 20 appos _ _ 24 $ F $ $ f $ SYM $ _ 20 appos _ _ 25 from from ADP IN _ 16 prep _ _ 26 $ G $ $ g $ SYM $ _ 25 pobj _ _ 27 to to ADP IN _ 25 prep _ _ 28 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 29 poss _ _ 29 set set NOUN NN Number=Sing 27 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 connected connected ADJ JJ Degree=Pos 32 amod _ _ 32 components component NOUN NNS Number=Plur 30 pobj _ _ 33 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 32 punct _ SpaceAfter=No 34 seen see VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 acl _ _ 35 as as ADP IN _ 34 prep _ _ 36 a a DET DT Definite=Ind|PronType=Art 38 det _ _ 37 discrete discrete ADJ JJ Degree=Pos 38 amod _ _ 38 category category NOUN NN Number=Sing 35 pobj _ SpaceAfter=No 39 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 1 punct _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = From the observation that $ E $ and $ F $ differ unless $ G[x, x]=id_x $ for every object $ x $ of $ G $ , we prove there is a fibered equivalence from $ C[Sigma^{ - 1}] $ to $ C/Sigma $ when $ Sigma $ is a Yoneda - system of a loop - free category $ C $ . 1 From from ADP IN _ 31 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 observation observation NOUN NN Number=Sing 1 pobj _ _ 4 that that SCONJ IN _ 8 mark _ _ 5 $ E $ $ e $ SYM $ _ 4 nmod _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 $ F $ $ f $ SYM $ _ 8 nsubj _ _ 8 differ differ VERB VB VerbForm=Inf 3 relcl _ _ 9 unless unless SCONJ IN _ 19 mark _ _ 10 $ G[x, x]=id_x $ $ g[x, x]=id_x $ SYM $ _ 9 nmod _ _ 11 for for ADP IN _ 19 prep _ _ 12 every every DET DT _ 13 det _ _ 13 object object NOUN NN Number=Sing 11 pobj _ _ 14 $ x $ $ x $ SYM $ _ 13 prep _ _ 15 of of ADP IN _ 14 prep _ _ 16 $ G $ $ g $ SYM $ _ 15 pobj _ _ 17 , , PUNCT , PunctType=Comm 19 punct _ _ 18 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 19 nsubj _ _ 19 prove prove VERB VBP Tense=Pres|VerbForm=Fin 8 advcl _ _ 20 there there PRON EX _ 21 expl _ _ 21 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 ccomp _ _ 22 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 23 fibered fibere VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 24 equivalence equivalence NOUN NN Number=Sing 21 attr _ _ 25 from from ADP IN _ 24 prep _ _ 26 $ C[Sigma^{ - 1}] $ $ c[sigma^{ - 1}] $ SYM $ _ 25 pobj _ _ 27 to to PART TO _ 25 prep _ _ 28 $ C/Sigma $ $ c/sigma $ SYM $ _ 27 pobj _ _ 29 when when SCONJ WRB _ 30 advmod _ _ 30 $ Sigma $ $ sigma $ SYM $ _ 31 nsubj _ _ 31 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 32 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 33 Yoneda Yoneda PROPN NNP Number=Sing 35 compound _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 system system NOUN NN Number=Sing 31 attr _ _ 36 of of ADP IN _ 35 prep _ _ 37 a a DET DT Definite=Ind|PronType=Art 41 det _ _ 38 loop loop NOUN NN Number=Sing 40 npadvmod _ _ 39 - - PUNCT HYPH PunctType=Dash 40 punct _ _ 40 free free ADJ JJ Degree=Pos 41 amod _ _ 41 category category NOUN NN Number=Sing 36 pobj _ _ 42 $ C $ $ c $ SYM $ _ 41 appos _ _ 43 . . PUNCT . PunctType=Peri 31 punct _ SpaceAfter=No # sent_id = 3 # text = In fact, all the equivalences from $ C[Sigma^{ - 1}] $ to $ C/Sigma $ are fibered. 1 In in ADP IN _ 12 prep _ _ 2 fact fact NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 12 punct _ _ 4 all all DET PDT _ 6 predet _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 equivalences equivalence NOUN NNS Number=Plur 12 nsubjpass _ _ 7 from from ADP IN _ 6 prep _ _ 8 $ C[Sigma^{ - 1}] $ $ c[sigma^{ - 1}] $ SYM $ _ 7 pobj _ _ 9 to to PART TO _ 7 prep _ _ 10 $ C/Sigma $ $ c/sigma $ SYM $ _ 6 nmod _ _ 11 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 12 fibered fibere VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 4 # text = Furthermore, since the quotient $ C/Sigma $ shrinks as $ Sigma $ grows, we define the component category of a loop - free category as $ C/{overline{Sigma}} $ where $ overline{Sigma} $ is the greatest Yoneda - system of $ C $ . 1 Furthermore furthermore ADV RB _ 7 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 7 punct _ _ 3 since since SCONJ IN _ 7 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 quotient quotient NOUN NN Number=Sing 7 nsubj _ _ 6 $ C/Sigma $ $ c/sigma $ SYM $ _ 7 nmod _ _ 7 shrinks shrink VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 advcl _ _ 8 as as SCONJ IN _ 10 mark _ _ 9 $ Sigma $ $ sigma $ SYM $ _ 10 nsubj _ _ 10 grows grow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 advcl _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 13 punct _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 component component NOUN NN Number=Sing 16 compound _ _ 16 category category NOUN NN Number=Sing 13 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 19 loop loop NOUN NN Number=Sing 21 npadvmod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 free free ADJ JJ Degree=Pos 22 amod _ _ 22 category category NOUN NN Number=Sing 17 pobj _ _ 23 as as ADP IN _ 13 prep _ _ 24 $ C/{overline{Sigma}} $ $ c/{overline{sigma}} $ SYM $ _ 23 pobj _ _ 25 where where SCONJ WRB _ 27 advmod _ _ 26 $ overline{Sigma} $ $ overline{sigma} $ SYM $ _ 27 nsubj _ _ 27 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 relcl _ _ 28 the the DET DT Definite=Def|PronType=Art 32 det _ _ 29 greatest great ADJ JJS Degree=Sup 32 amod _ _ 30 Yoneda Yoneda PROPN NNP Number=Sing 32 compound _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 system system NOUN NN Number=Sing 27 attr _ _ 33 of of ADP IN _ 32 prep _ _ 34 $ C $ $ c $ SYM $ _ 33 pobj _ _ 35 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # doc_id = 237 # sent_id = 1 # text = Directed Algebraic Topology is a recent field, deeply linked with ordinary and higher dimensional category theory. 1 Directed Directed PROPN NNP Number=Sing 3 compound _ _ 2 Algebraic Algebraic PROPN NNP Number=Sing 3 compound _ _ 3 Topology Topology PROPN NNP Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 recent recent ADJ JJ Degree=Pos 7 amod _ _ 7 field field NOUN NN Number=Sing 4 attr _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 4 punct _ _ 9 deeply deeply ADV RB _ 10 advmod _ _ 10 linked link VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 advcl _ _ 11 with with ADP IN _ 10 prep _ _ 12 ordinary ordinary ADJ JJ Degree=Pos 17 amod _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 higher high ADJ JJR Degree=Cmp 12 conj _ _ 15 dimensional dimensional ADJ JJ Degree=Pos 17 amod _ _ 16 category category NOUN NN Number=Sing 17 compound _ _ 17 theory theory NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = A `directed space', for example, an ordered topological space, has directed homotopies (which are generally non reversible) and a fundamental category (replacing the fundamental groupoid of the classical case). 1 A a DET DT Definite=Ind|PronType=Art 4 det _ _ 2 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 4 punct _ SpaceAfter=No 3 directed direct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 amod _ _ 4 space space NOUN NN Number=Sing 16 nsubj _ SpaceAfter=No 5 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 4 punct _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 4 punct _ _ 7 for for ADP IN _ 4 prep _ _ 8 example example NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 4 punct _ _ 10 an an DET DT Definite=Ind|PronType=Art 13 det _ _ 11 ordered ordered ADJ JJ Degree=Pos 13 amod _ _ 12 topological topological ADJ JJ Degree=Pos 13 amod _ _ 13 space space NOUN NN Number=Sing 4 appos _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 4 punct _ _ 15 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 aux _ _ 16 directed direct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 17 homotopies homotopie NOUN NNS Number=Plur 16 dobj _ _ 18 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 17 punct _ SpaceAfter=No 19 which which PRON WDT _ 20 nsubj _ _ 20 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 17 relcl _ _ 21 generally generally ADV RB _ 20 advmod _ _ 22 non non ADJ JJ Degree=Pos 23 advmod _ _ 23 reversible reversible ADJ JJ Degree=Pos 20 acomp _ SpaceAfter=No 24 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 20 punct _ _ 25 and and CCONJ CC ConjType=Cmp 17 cc _ _ 26 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 27 fundamental fundamental ADJ JJ Degree=Pos 28 amod _ _ 28 category category NOUN NN Number=Sing 17 conj _ _ 29 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 28 punct _ SpaceAfter=No 30 replacing replace VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 28 acl _ _ 31 the the DET DT Definite=Def|PronType=Art 33 det _ _ 32 fundamental fundamental ADJ JJ Degree=Pos 33 amod _ _ 33 groupoid groupoid NOUN NN Number=Sing 30 dobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 the the DET DT Definite=Def|PronType=Art 37 det _ _ 36 classical classical ADJ JJ Degree=Pos 37 amod _ _ 37 case case NOUN NN Number=Sing 34 pobj _ SpaceAfter=No 38 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 28 punct _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 3 # text = Finding a simple—possibly finite—model of the latter is a non - trivial problem, whose solution gives relevant information on the given `space'; a problem which is of interest for applications as well as in general Category Theory. 1 Finding find VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 csubj _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 simple simple ADJ JJ Degree=Pos 6 amod _ SpaceAfter=No 4 — — PUNCT : _ 6 punct _ SpaceAfter=No 5 possibly possibly ADV RB _ 6 advmod _ _ 6 finite finite ADJ JJ Degree=Pos 8 nmod _ SpaceAfter=No 7 — — PUNCT : _ 8 punct _ SpaceAfter=No 8 model model NOUN NN Number=Sing 1 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 latter latter ADJ JJ Degree=Pos 9 pobj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 14 non non ADJ JJ Degree=Pos 17 amod _ _ 15 - - ADJ JJ Degree=Pos 17 punct _ _ 16 trivial trivial ADJ JJ Degree=Pos 17 amod _ _ 17 problem problem NOUN NN Number=Sing 12 attr _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 whose whose DET WP$ Poss=Yes 20 poss _ _ 20 solution solution NOUN NN Number=Sing 21 nsubj _ _ 21 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 relcl _ _ 22 relevant relevant ADJ JJ Degree=Pos 23 amod _ _ 23 information information NOUN NN Number=Sing 21 dobj _ _ 24 on on ADP IN _ 21 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 28 det _ _ 26 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 amod _ _ 27 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 28 punct _ SpaceAfter=No 28 space space NOUN NN Number=Sing 24 pobj _ SpaceAfter=No 29 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 24 pobj _ SpaceAfter=No 30 ; ; PUNCT : _ 17 punct _ _ 31 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 32 problem problem NOUN NN Number=Sing 17 appos _ _ 33 which which PRON WDT _ 34 nsubj _ _ 34 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 32 relcl _ _ 35 of of ADP IN _ 34 prep _ _ 36 interest interest NOUN NN Number=Sing 35 pobj _ _ 37 for for ADP IN _ 36 prep _ _ 38 applications application NOUN NNS Number=Plur 37 pobj _ _ 39 as as ADV RB _ 41 advmod _ _ 40 well well ADV RB Degree=Pos 41 advmod _ _ 41 as as ADP IN _ 37 cc _ _ 42 in in ADP IN _ 36 prep _ _ 43 general general ADJ JJ Degree=Pos 45 amod _ _ 44 Category Category PROPN NNP Number=Sing 45 compound _ _ 45 Theory Theory PROPN NNP Number=Sing 42 pobj _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 4 # text = Here we continue the work ``The shape of a category up to directed homotopy", with a deeper analysis of `surjective models', motivated by studying the singularities of 3 - dimensional ordered spaces. 1 Here here ADV RB PronType=Dem 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 continue continue VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 work work NOUN NN Number=Sing 3 dobj _ _ 6 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 3 punct _ SpaceAfter=No 7 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 3 punct _ SpaceAfter=No 8 The the DET DT Definite=Def|PronType=Art 9 det _ _ 9 shape shape NOUN NN Number=Sing 3 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 category category NOUN NN Number=Sing 10 pobj _ _ 13 up up ADP RP _ 9 prep _ _ 14 to to ADP IN _ 13 prep _ _ 15 directed direct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 16 homotopy homotopy NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 17 " " PUNCT '' PunctSide=Fin|PunctType=Quot 9 punct _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 9 punct _ _ 19 with with ADP IN _ 9 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 deeper deep ADJ JJR Degree=Cmp 22 amod _ _ 22 analysis analysis NOUN NN Number=Sing 19 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 26 punct _ SpaceAfter=No 25 surjective surjective ADJ JJ Degree=Pos 26 amod _ _ 26 models model NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 27 ' ' PART POS _ 26 punct _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 26 punct _ _ 29 motivated motivate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 acl _ _ 30 by by ADP IN _ 29 prep _ _ 31 studying study VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 30 pcomp _ _ 32 the the DET DT Definite=Def|PronType=Art 33 det _ _ 33 singularities singularity NOUN NNS Number=Plur 31 dobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 3 3 NUM CD NumType=Card 37 advmod _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 dimensional dimensional ADJ JJ Degree=Pos 39 amod _ _ 38 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 39 amod _ _ 39 spaces space NOUN NNS Number=Plur 34 pobj _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 238 # sent_id = 1 # text = Given an additive equational category with a closed symmetric monoidal structure and a potential dualizing object, we find sufficient conditions that the category of topological objects over that category has a good notion of full subcategories of strong and weakly topologized objects and show that each is equivalent to the chu category of the original category with respect to the dualizing object. 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 3 additive additive ADJ JJ Degree=Pos 5 amod _ _ 4 equational equational ADJ JJ Degree=Pos 5 amod _ _ 5 category category NOUN NN Number=Sing 1 pobj _ _ 6 with with ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 8 closed closed ADJ JJ Degree=Pos 11 amod _ _ 9 symmetric symmetric ADJ JJ Degree=Pos 11 amod _ _ 10 monoidal monoidal ADJ JJ Degree=Pos 11 amod _ _ 11 structure structure NOUN NN Number=Sing 6 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 14 potential potential ADJ JJ Degree=Pos 16 amod _ _ 15 dualizing dualizing NOUN NN Number=Sing 16 amod _ _ 16 object object NOUN NN Number=Sing 11 conj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 19 punct _ _ 18 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 19 nsubj _ _ 19 find find VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 20 sufficient sufficient ADJ JJ Degree=Pos 21 amod _ _ 21 conditions condition NOUN NNS Number=Plur 19 dobj _ _ 22 that that SCONJ IN _ 31 mark _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 category category NOUN NN Number=Sing 31 nsubj _ _ 25 of of ADP IN _ 24 prep _ _ 26 topological topological ADJ JJ Degree=Pos 27 amod _ _ 27 objects object NOUN NNS Number=Plur 25 pobj _ _ 28 over over ADP IN _ 24 prep _ _ 29 that that DET DT Number=Sing|PronType=Dem 30 det _ _ 30 category category NOUN NN Number=Sing 28 pobj _ _ 31 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 21 acl _ _ 32 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 33 good good ADJ JJ Degree=Pos 34 amod _ _ 34 notion notion NOUN NN Number=Sing 31 dobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 full full ADJ JJ Degree=Pos 37 amod _ _ 37 subcategories subcategorie NOUN NNS Number=Plur 35 pobj _ _ 38 of of ADP IN _ 37 prep _ _ 39 strong strong ADJ JJ Degree=Pos 43 amod _ _ 40 and and CCONJ CC ConjType=Cmp 39 cc _ _ 41 weakly weakly ADJ JJ Degree=Pos 39 conj _ _ 42 topologized topologize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 39 conj _ _ 43 objects object NOUN NNS Number=Plur 38 pobj _ _ 44 and and CCONJ CC ConjType=Cmp 31 cc _ _ 45 show show VERB VBP Tense=Pres|VerbForm=Fin 31 conj _ _ 46 that that SCONJ IN _ 48 mark _ _ 47 each each PRON DT _ 48 nsubj _ _ 48 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 45 ccomp _ _ 49 equivalent equivalent ADJ JJ Degree=Pos 48 acomp _ _ 50 to to ADP IN _ 49 prep _ _ 51 the the DET DT Definite=Def|PronType=Art 53 det _ _ 52 chu chu PROPN NNP Number=Sing 53 compound _ _ 53 category category NOUN NN Number=Sing 50 pobj _ _ 54 of of ADP IN _ 53 prep _ _ 55 the the DET DT Definite=Def|PronType=Art 57 det _ _ 56 original original ADJ JJ Degree=Pos 57 amod _ _ 57 category category NOUN NN Number=Sing 54 pobj _ _ 58 with with ADP IN _ 49 prep _ _ 59 respect respect NOUN NN Number=Sing 58 pobj _ _ 60 to to ADP IN _ 59 prep _ _ 61 the the DET DT Definite=Def|PronType=Art 63 det _ _ 62 dualizing dualize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 63 amod _ _ 63 object object NOUN NN Number=Sing 60 pobj _ SpaceAfter=No 64 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # doc_id = 239 # sent_id = 1 # text = Motivated by a desire to gain a better understanding of the ``dimension - by - dimension'' decompositions of certain prominent monads in higher category theory, we investigate descent theory for endofunctors and monads. 1 Motivated motivate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 31 advcl _ _ 2 by by ADP IN _ 1 agent _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 desire desire NOUN NN Number=Sing 2 pobj _ _ 5 to to PART TO _ 6 aux _ _ 6 gain gain VERB VB VerbForm=Inf 4 acl _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 better well ADJ JJR Degree=Cmp 9 amod _ _ 9 understanding understanding NOUN NN Number=Sing 6 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 20 det _ _ 12 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 20 punct _ SpaceAfter=No 13 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 20 punct _ SpaceAfter=No 14 dimension dimension NOUN NN Number=Sing 20 nmod _ _ 15 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 16 by by ADP IN _ 14 prep _ _ 17 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 18 dimension dimension NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 19 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 20 punct _ _ 20 decompositions decomposition NOUN NNS Number=Plur 10 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 certain certain ADJ JJ Degree=Pos 24 amod _ _ 23 prominent prominent ADJ JJ Degree=Pos 24 amod _ _ 24 monads monad NOUN NNS Number=Plur 21 pobj _ _ 25 in in ADP IN _ 24 prep _ _ 26 higher high ADJ JJR Degree=Cmp 28 amod _ _ 27 category category NOUN NN Number=Sing 28 compound _ _ 28 theory theory NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 31 punct _ _ 30 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 31 nsubj _ _ 31 investigate investigate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 32 descent descent NOUN NN Number=Sing 33 compound _ _ 33 theory theory NOUN NN Number=Sing 31 dobj _ _ 34 for for ADP IN _ 33 prep _ _ 35 endofunctors endofunctor NOUN NNS Number=Plur 34 pobj _ _ 36 and and CCONJ CC ConjType=Cmp 35 cc _ _ 37 monads monad NOUN NNS Number=Plur 35 conj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 31 punct _ SpaceAfter=No # sent_id = 2 # text = After setting up a basic framework of indexed monoidal categories, we describe a suitable subcategory of $ Cat $ over which we can view the assignment $ C | - > Mnd(C) $ as an indexed category; on this base category, there is a natural topology. 1 After after ADP IN _ 13 prep _ _ 2 setting set VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 1 pcomp _ _ 3 up up ADP RP _ 2 prt _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 basic basic ADJ JJ Degree=Pos 6 amod _ _ 6 framework framework NOUN NN Number=Sing 2 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 indexed index VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 9 monoidal monoidal ADJ JJ Degree=Pos 10 amod _ _ 10 categories category NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 13 punct _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 describe describe VERB VBP Tense=Pres|VerbForm=Fin 38 ccomp _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 suitable suitable ADJ JJ Degree=Pos 16 amod _ _ 16 subcategory subcategory NOUN NN Number=Sing 13 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 $ Cat $ $ cat $ SYM $ _ 17 pobj _ _ 19 over over ADP IN _ 23 prep _ _ 20 which which PRON WDT _ 19 pobj _ _ 21 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 23 nsubj _ _ 22 can can AUX MD VerbForm=Fin 23 aux _ _ 23 view view VERB VB VerbForm=Inf 16 relcl _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 assignment assignment NOUN NN Number=Sing 23 dobj _ _ 26 $ C | - > Mnd(C) $ $ c | - > mnd(c) $ SYM $ _ 23 dep _ _ 27 as as ADP IN _ 23 prep _ _ 28 an an DET DT Definite=Ind|PronType=Art 30 det _ _ 29 indexed indexed ADJ JJ Degree=Pos 30 amod _ _ 30 category category NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 31 ; ; PUNCT : _ 38 punct _ _ 32 on on ADP IN _ 38 prep _ _ 33 this this DET DT Number=Sing|PronType=Dem 35 det _ _ 34 base base NOUN NN Number=Sing 35 compound _ _ 35 category category NOUN NN Number=Sing 32 pobj _ SpaceAfter=No 36 , , PUNCT , PunctType=Comm 38 punct _ _ 37 there there PRON EX _ 38 expl _ _ 38 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 39 a a DET DT Definite=Ind|PronType=Art 41 det _ _ 40 natural natural ADJ JJ Degree=Pos 41 amod _ _ 41 topology topology NOUN NN Number=Sing 38 attr _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 38 punct _ SpaceAfter=No # sent_id = 3 # text = Then we single out a class of monads which are well - behaved with respect to reindexing. 1 Then then ADV RB PronType=Dem 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 single single VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 out out ADP RP _ 3 prt _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 class class NOUN NN Number=Sing 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 monads monad NOUN NNS Number=Plur 7 pobj _ _ 9 which which PRON WDT _ 10 nsubj _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 relcl _ _ 11 well well ADV RB Degree=Pos 13 advmod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 behaved behave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 acomp _ _ 14 with with ADP IN _ 13 prep _ _ 15 respect respect NOUN NN Number=Sing 14 pobj _ _ 16 to to ADP IN _ 15 prep _ _ 17 reindexing reindexe VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 pcomp _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = The main result is now, that such monads form a stack. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 result result NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 now now ADV RB _ 4 advmod _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 4 punct _ _ 7 that that SCONJ IN _ 10 mark _ _ 8 such such ADJ JJ Degree=Pos 9 amod _ _ 9 monads monad NOUN NNS Number=Plur 10 nsubj _ _ 10 form form VERB VBP Tense=Pres|VerbForm=Fin 4 ccomp _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 stack stack NOUN NN Number=Sing 10 dobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = Using this, we can shed some light on the free strict $ omega $ - category monad on globular sets and the free operad - with - contraction monad on the category of collections. 1 Using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 advcl _ _ 2 this this PRON DT Number=Sing|PronType=Dem 1 dobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 6 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 5 can can AUX MD VerbForm=Fin 6 aux _ _ 6 shed shed VERB VB VerbForm=Inf 0 ROOT _ _ 7 some some DET DT _ 8 det _ _ 8 light light NOUN NN Number=Sing 6 dobj _ _ 9 on on ADP IN _ 6 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 16 det _ _ 11 free free ADJ JJ Degree=Pos 16 amod _ _ 12 strict strict ADJ JJ Degree=Pos 16 amod _ _ 13 $ omega $ $ omega $ SYM $ _ 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 category category NOUN NN Number=Sing 16 compound _ _ 16 monad monad NOUN NNS Number=Plur 9 pobj _ _ 17 on on ADP IN _ 16 prep _ _ 18 globular globular ADJ JJ Degree=Pos 19 amod _ _ 19 sets set NOUN NNS Number=Plur 17 pobj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 the the DET DT Definite=Def|PronType=Art 28 det _ _ 22 free free ADJ JJ Degree=Pos 28 amod _ _ 23 operad operad NOUN NN Number=Sing 28 nmod _ _ 24 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 25 with with ADP IN _ 23 prep _ _ 26 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 27 contraction contraction NOUN NN Number=Sing 25 pobj _ _ 28 monad monad NOUN NNS Number=Plur 19 conj _ _ 29 on on ADP IN _ 28 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 category category NOUN NN Number=Sing 29 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 collections collection NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 240 # sent_id = 1 # text = In this paper equivalence of the concepts of ana - bicategory and the 2D - multitopic category is proved. 1 In in ADP IN _ 19 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 3 paper paper NOUN NN Number=Sing 4 compound _ _ 4 equivalence equivalence NOUN NN Number=Sing 1 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 concepts concept NOUN NNS Number=Plur 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 ana ana NOUN NN Number=Sing 11 compound _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 bicategory bicategory PROPN NNP Number=Sing 8 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 7 cc _ _ 13 the the DET DT Definite=Def|PronType=Art 17 det _ _ 14 2D 2D PROPN NNP Number=Sing 16 compound _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 multitopic multitopic NOUN NN Number=Sing 17 compound _ _ 17 category category NOUN NN Number=Sing 19 nsubjpass _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 auxpass _ _ 19 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 2 # text = The equivalence is FOLDS equivalence of the FOLDS - Specifications of the two concepts. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 equivalence equivalence NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 FOLDS FOLDS PROPN NNP Number=Sing 5 compound _ _ 5 equivalence equivalence NOUN NN Number=Sing 3 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 10 det _ _ 8 FOLDS FOLDS PROPN NNP Number=Sing 10 compound _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 Specifications specification NOUN NNS Number=Plur 6 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 two two NUM CD NumType=Card 14 nummod _ _ 14 concepts concept NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = Two constructions for transforming one form of category to another are given and it is shown that we get a structure equivalent to the original one when we compose the two constructions. 1 Two two NUM CD NumType=Card 2 nummod _ _ 2 constructions construction NOUN NNS Number=Plur 12 nsubjpass _ _ 3 for for ADP IN _ 2 prep _ _ 4 transforming transform VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 pcomp _ _ 5 one one NUM CD NumType=Card 6 nummod _ _ 6 form form NOUN NN Number=Sing 4 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 category category NOUN NN Number=Sing 7 pobj _ _ 9 to to ADP IN _ 4 prep _ _ 10 another another PRON DT _ 9 pobj _ _ 11 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 12 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 16 nsubjpass _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 auxpass _ _ 16 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 conj _ _ 17 that that SCONJ IN _ 19 mark _ _ 18 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 19 nsubj _ _ 19 get get VERB VBP Tense=Pres|VerbForm=Fin 16 ccomp _ _ 20 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 21 structure structure NOUN NN Number=Sing 19 dobj _ _ 22 equivalent equivalent ADJ JJ Degree=Pos 21 amod _ _ 23 to to ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 26 det _ _ 25 original original ADJ JJ Degree=Pos 26 amod _ _ 26 one one NUM CD NumType=Card 23 pobj _ _ 27 when when SCONJ WRB _ 29 advmod _ _ 28 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 29 nsubj _ _ 29 compose compose VERB VBP Tense=Pres|VerbForm=Fin 19 advcl _ _ 30 the the DET DT Definite=Def|PronType=Art 32 det _ _ 31 two two NUM CD NumType=Card 32 nummod _ _ 32 constructions construction NOUN NNS Number=Plur 29 dobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # doc_id = 241 # sent_id = 1 # text = The well - known notion of crossed module of groups is raised in this paper to the categorical level supported by the theory of categorical groups. 1 The the DET DT Definite=Def|PronType=Art 5 det _ _ 2 well well ADV RB Degree=Pos 4 advmod _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 amod _ _ 5 notion notion NOUN NN Number=Sing 12 nsubjpass _ _ 6 of of ADP IN _ 5 prep _ _ 7 crossed crossed ADJ JJ Degree=Pos 8 amod _ _ 8 module module NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 groups group NOUN NNS Number=Plur 9 pobj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 12 raised raise VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 13 in in ADP IN _ 12 prep _ _ 14 this this DET DT Number=Sing|PronType=Dem 15 det _ _ 15 paper paper NOUN NN Number=Sing 13 pobj _ _ 16 to to ADP IN _ 12 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 categorical categorical ADJ JJ Degree=Pos 19 amod _ _ 19 level level NOUN NN Number=Sing 16 pobj _ _ 20 supported support VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 acl _ _ 21 by by ADP IN _ 20 agent _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 theory theory NOUN NN Number=Sing 21 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 categorical categorical ADJ JJ Degree=Pos 26 amod _ _ 26 groups group NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 2 # text = We construct the cokernel of a categorical crossed module and we establish the universal property of this categorical group. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 cokernel cokernel NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 7 categorical categorical ADJ JJ Degree=Pos 9 amod _ _ 8 crossed crossed ADJ JJ Degree=Pos 9 amod _ _ 9 module module NOUN NN Number=Sing 5 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 2 cc _ _ 11 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 12 nsubj _ _ 12 establish establish VERB VBP Tense=Pres|VerbForm=Fin 2 conj _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 universal universal ADJ JJ Degree=Pos 15 amod _ _ 15 property property NOUN NN Number=Sing 12 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 this this DET DT Number=Sing|PronType=Dem 19 det _ _ 18 categorical categorical ADJ JJ Degree=Pos 19 amod _ _ 19 group group NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 3 # text = We also prove a suitable 2 - dimensional version of the kernel - cokernel lemma for a diagram of categorical crossed modules. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 5 suitable suitable ADJ JJ Degree=Pos 9 amod _ _ 6 2 2 NUM CD NumType=Card 8 nummod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 dimensional dimensional ADJ JJ Degree=Pos 9 amod _ _ 9 version version NOUN NN Number=Sing 3 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 15 det _ _ 12 kernel kernel NOUN NN Number=Sing 14 compound _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 cokernel cokernel NOUN NN Number=Sing 15 compound _ _ 15 lemma lemma NOUN NN Number=Sing 10 pobj _ _ 16 for for ADP IN _ 9 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 diagram diagram NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 categorical categorical ADJ JJ Degree=Pos 22 amod _ _ 21 crossed crossed ADJ JJ Degree=Pos 22 amod _ _ 22 modules module NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = We then study derivations with coefficients in categorical crossed modules and show the existence of a categorical crossed module given by inner derivations. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 derivations derivation NOUN NNS Number=Plur 3 dobj _ _ 5 with with ADP IN _ 3 prep _ _ 6 coefficients coefficient NOUN NNS Number=Plur 5 pobj _ _ 7 in in ADP IN _ 6 prep _ _ 8 categorical categorical ADJ JJ Degree=Pos 10 amod _ _ 9 crossed crossed ADJ JJ Degree=Pos 10 amod _ _ 10 modules module NOUN NNS Number=Plur 7 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 3 cc _ _ 12 show show VERB VB VerbForm=Inf 3 conj _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 existence existence NOUN NN Number=Sing 12 dobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 17 categorical categorical ADJ JJ Degree=Pos 19 amod _ _ 18 crossed crossed ADJ JJ Degree=Pos 19 amod _ _ 19 module module NOUN NN Number=Sing 15 pobj _ _ 20 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 acl _ _ 21 by by ADP IN _ 20 agent _ _ 22 inner inner ADJ JJ Degree=Pos 23 amod _ _ 23 derivations derivation NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = This allows us to define the low - dimensional cohomology categorical groups and, finally, these invariants are connected by a six - term 2 - exact sequence obtained by using the kernel - cokernel lemma. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 4 to to PART TO _ 5 aux _ _ 5 define define VERB VB VerbForm=Inf 2 ccomp _ _ 6 the the DET DT Definite=Def|PronType=Art 12 det _ _ 7 low low ADV RB _ 9 advmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 dimensional dimensional ADJ JJ Degree=Pos 12 amod _ _ 10 cohomology cohomology NOUN NN Number=Sing 12 nmod _ _ 11 categorical categorical ADJ JJ Degree=Pos 12 amod _ _ 12 groups group NOUN NNS Number=Plur 5 dobj _ _ 13 and and CCONJ CC ConjType=Cmp 5 cc _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 20 punct _ _ 15 finally finally ADV RB _ 20 advmod _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 20 punct _ _ 17 these these DET DT Number=Plur|PronType=Dem 18 det _ _ 18 invariants invariant NOUN NNS Number=Plur 20 nsubjpass _ _ 19 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 20 auxpass _ _ 20 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 conj _ _ 21 by by ADP IN _ 20 agent _ _ 22 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 23 six six NUM CD NumType=Card 25 nummod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 term term NOUN NN Number=Sing 29 nmod _ _ 26 2 2 NUM CD NumType=Card 28 nummod _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 exact exact ADJ JJ Degree=Pos 29 amod _ _ 29 sequence sequence NOUN NN Number=Sing 21 pobj _ _ 30 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 acl _ _ 31 by by ADP IN _ 30 agent _ _ 32 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 31 pcomp _ _ 33 the the DET DT Definite=Def|PronType=Art 37 det _ _ 34 kernel kernel NOUN NN Number=Sing 36 compound _ _ 35 - - PUNCT HYPH PunctType=Dash 36 punct _ _ 36 cokernel cokernel NOUN NN Number=Sing 37 compound _ _ 37 lemma lemma NOUN NN Number=Sing 32 dobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 242 # sent_id = 1 # text = Given a topological space $ X $ , $ K(X) $ denotes the upper semi - lattice of its (Hausdorff) compactifications. 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 topological topological ADJ JJ Degree=Pos 4 amod _ _ 4 space space NOUN NN Number=Sing 1 pobj _ _ 5 $ X $ $ x $ SYM $ _ 4 appos _ _ 6 , , PUNCT , PunctType=Comm 8 punct _ _ 7 $ K(X) $ $ k(x) $ SYM $ _ 8 nsubj _ _ 8 denotes denote VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 the the DET DT Definite=Def|PronType=Art 13 det _ _ 10 upper upper ADJ JJ Degree=Pos 13 amod _ _ 11 semi semi ADJ JJ Degree=Pos 13 amod _ _ 12 - - NOUN NNS Number=Plur 13 punct _ _ 13 lattice lattice NOUN NN Number=Sing 8 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 19 poss _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 19 punct _ SpaceAfter=No 17 Hausdorff Hausdorff PROPN NNP Number=Sing 19 nmod _ SpaceAfter=No 18 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 19 punct _ _ 19 compactifications compactification NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 2 # text = Recent studies have asked when, for $ alpha X in K(X) $ , the restriction homomorphism $ rho : C(alpha X) to C(X) $ is an epimorphism in the category of commutative rings. 1 Recent recent ADJ JJ Degree=Pos 2 amod _ _ 2 studies study NOUN NNS Number=Plur 4 nsubj _ _ 3 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 aux _ _ 4 asked ask VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 when when SCONJ WRB _ 14 advmod _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 14 punct _ _ 7 for for ADP IN _ 14 prep _ _ 8 $ alpha X in K(X) $ $ alpha x in k(x) $ SYM $ _ 7 pobj _ _ 9 , , PUNCT , PunctType=Comm 14 punct _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 restriction restriction NOUN NN Number=Sing 12 compound _ _ 12 homomorphism homomorphism NOUN NN Number=Sing 9 nmod _ _ 13 $ rho : C(alpha X) to C(X) $ $ rho : c(alpha x) to c(x) $ SYM $ _ 14 nsubj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 15 an an DET DT Definite=Ind|PronType=Art 16 det _ _ 16 epimorphism epimorphism NOUN NN Number=Sing 14 attr _ _ 17 in in ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 category category NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 commutative commutative ADJ JJ Degree=Pos 22 amod _ _ 22 rings ring NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = This article continues this study by examining the sub - semilattice, $ K_{epi}(X) $ , of those compactifications where $ rho $ is an epimorphism along with two of its subsets, and its complement $ K_{nepi}(X) $ . 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 article article NOUN NN Number=Sing 3 nsubj _ _ 3 continues continue VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 study study NOUN NN Number=Sing 3 dobj _ _ 6 by by ADP IN _ 3 prep _ _ 7 examining examine VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 pcomp _ _ 8 the the DET DT Definite=Def|PronType=Art 11 det _ _ 9 sub sub NOUN NN Number=Sing 11 compound _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 semilattice semilattice PROPN NNP Number=Sing 7 dobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 $ K_{epi}(X) $ $ k_{epi}(x) $ SYM $ _ 11 appos _ _ 14 , , PUNCT , PunctType=Comm 11 punct _ _ 15 of of ADP IN _ 11 prep _ _ 16 those those DET DT Number=Plur|PronType=Dem 17 det _ _ 17 compactifications compactification NOUN NNS Number=Plur 15 pobj _ _ 18 where where SCONJ WRB _ 20 advmod _ _ 19 $ rho $ $ rho $ SYM $ _ 20 nsubj _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 relcl _ _ 21 an an DET DT Definite=Ind|PronType=Art 22 det _ _ 22 epimorphism epimorphism NOUN NN Number=Sing 20 attr _ _ 23 along along ADP IN _ 22 prep _ _ 24 with with ADP IN _ 23 prep _ _ 25 two two NUM CD NumType=Card 24 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 28 poss _ _ 28 subsets subset NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 3 punct _ _ 30 and and CCONJ CC ConjType=Cmp 3 cc _ _ 31 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 33 poss _ _ 32 complement complement NOUN NN Number=Sing 33 amod _ _ 33 $ K_{nepi}(X) $ $ k_{nepi}(x) $ SYM $ _ 3 conj _ _ 34 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = The role of $ K_z(X)subseteq K(X) $ of those $ alpha X $ where $ X $ is $ z $ - embedded in $ alpha X $ , is also examined. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 role role NOUN NN Number=Sing 19 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 $ K_z(X)subseteq K(X) $ $ k_z(x)subseteq k(x) $ SYM $ _ 3 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 those those DET DT Number=Plur|PronType=Dem 7 det _ _ 7 $ alpha X $ $ alpha x $ SYM $ _ 5 pobj _ _ 8 where where SCONJ WRB _ 10 advmod _ _ 9 $ X $ $ x $ SYM $ _ 10 nsubj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 relcl _ _ 11 $ z $ $ z $ SYM $ _ 13 dep _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 embedded embed VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 acomp _ _ 14 in in ADP IN _ 13 prep _ _ 15 $ alpha X $ $ alpha x $ SYM $ _ 14 pobj _ _ 16 , , PUNCT , PunctType=Comm 2 punct _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 auxpass _ _ 18 also also ADV RB _ 19 advmod _ _ 19 examined examine VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 5 # text = The cases where $ X $ is a $ P $ - space and, more particularly, where $ X $ is discrete, receive special attention. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 cases case NOUN NNS Number=Plur 0 ROOT _ _ 3 where where SCONJ WRB _ 5 advmod _ _ 4 $ X $ $ x $ SYM $ _ 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 relcl _ _ 6 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 7 $ P $ $ p $ SYM $ _ 9 nmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 space space NOUN NN Number=Sing 5 attr _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 5 punct _ _ 12 more more ADV RBR Degree=Cmp 13 advmod _ _ 13 particularly particularly ADV RB _ 5 advmod _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 13 punct _ _ 15 where where SCONJ WRB _ 17 advmod _ _ 16 $ X $ $ x $ SYM $ _ 17 nsubj _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 ccomp _ _ 18 discrete discrete ADJ JJ Degree=Pos 17 acomp _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 17 punct _ _ 20 receive receive VERB VBP Tense=Pres|VerbForm=Fin 17 conj _ _ 21 special special ADJ JJ Degree=Pos 22 amod _ _ 22 attention attention NOUN NN Number=Sing 20 dobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 243 # sent_id = 1 # text = This paper studies numerals, natural numbers objects and, more generally, free actions, in a topos. 1 This this DET DT Number=Sing|PronType=Dem 3 det _ _ 2 paper paper NOUN NN Number=Sing 3 compound _ _ 3 studies study NOUN NNS Number=Plur 4 nsubj _ _ 4 numerals numeral NOUN NNS Number=Plur 0 ROOT _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 4 punct _ _ 6 natural natural ADJ JJ Degree=Pos 7 amod _ _ 7 numbers number NOUN NNS Number=Plur 8 compound _ _ 8 objects object NOUN NNS Number=Plur 4 conj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 8 punct _ _ 11 more more ADV RBR Degree=Cmp 12 advmod _ _ 12 generally generally ADV RB _ 15 advmod _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 15 punct _ _ 14 free free ADJ JJ Degree=Pos 15 amod _ _ 15 actions action NOUN NNS Number=Plur 8 conj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 in in ADP IN _ 15 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 19 topos topos NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = A pre - numeral is a poset with a constant, 0, and a unary operation, $ s $ , such that: $ xleq y $ implies $ sx leq sy xleq sx $ . 1 A a DET DT Definite=Ind|PronType=Art 4 det _ _ 2 pre pre ADJ JJ Degree=Pos 4 amod _ _ 3 - - ADJ JJ Degree=Pos 4 punct _ _ 4 numeral numeral ADJ JJ Degree=Pos 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 poset poset NOUN NN Number=Sing 5 attr _ _ 8 with with ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 10 constant constant ADJ JJ Degree=Pos 12 amod _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 12 punct _ _ 12 0 0 NUM CD NumType=Card 8 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 5 punct _ _ 14 and and CCONJ CC ConjType=Cmp 5 cc _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 unary unary ADJ JJ Degree=Pos 17 amod _ _ 17 operation operation NOUN NN Number=Sing 5 conj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 $ s $ $ s $ SYM $ _ 17 appos _ _ 20 , , PUNCT , PunctType=Comm 17 punct _ _ 21 such such ADJ JJ Degree=Pos 22 amod _ _ 22 that that SCONJ IN _ 25 mark _ SpaceAfter=No 23 : : PUNCT : _ 25 punct _ _ 24 $ xleq y $ $ xleq y $ SYM $ _ 25 nsubj _ _ 25 implies imply VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 relcl _ _ 26 $ sx leq sy xleq sx $ $ sx leq sy xleq sx $ SYM $ _ 25 advmod _ _ 27 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = A numeral is a minimal pre - numeral. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 numeral numeral ADJ JJ Degree=Pos 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 5 minimal minimal ADJ JJ Degree=Pos 8 amod _ _ 6 pre pre ADJ JJ Degree=Pos 8 amod _ _ 7 - - ADJ JJ Degree=Pos 8 punct _ _ 8 numeral numeral ADJ JJ Degree=Pos 3 acomp _ SpaceAfter=No 9 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 244 # sent_id = 1 # text = A representation theory for (strict) categorical groups is constructed. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 representation representation NOUN NN Number=Sing 3 compound _ _ 3 theory theory NOUN NN Number=Sing 11 nsubjpass _ _ 4 for for ADP IN _ 3 prep _ _ 5 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 9 punct _ SpaceAfter=No 6 strict strict ADJ JJ Degree=Pos 9 amod _ SpaceAfter=No 7 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 9 punct _ _ 8 categorical categorical ADJ JJ Degree=Pos 9 amod _ _ 9 groups group NOUN NNS Number=Plur 4 pobj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 11 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 2 # text = Each categorical group determines a monoidal bicategory of representations. 1 Each each DET DT _ 3 det _ _ 2 categorical categorical ADJ JJ Degree=Pos 3 amod _ _ 3 group group NOUN NN Number=Sing 4 nsubj _ _ 4 determines determine VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 monoidal monoidal ADJ JJ Degree=Pos 7 amod _ _ 7 bicategory bicategory NOUN NN Number=Sing 4 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 representations representation NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = Typically, these bicategories contain representations which are indecomposable but not irreducible. 1 Typically typically ADV RB _ 5 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 5 punct _ _ 3 these these DET DT Number=Plur|PronType=Dem 4 det _ _ 4 bicategories bicategorie NOUN NNS Number=Plur 5 nsubj _ _ 5 contain contain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 representations representation NOUN NNS Number=Plur 5 dobj _ _ 7 which which PRON WDT _ 8 nsubj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 relcl _ _ 9 indecomposable indecomposable ADJ JJ Degree=Pos 8 acomp _ _ 10 but but CCONJ CC ConjType=Cmp 9 cc _ _ 11 not not PART RB Polarity=Neg 12 neg _ _ 12 irreducible irreducible ADJ JJ Degree=Pos 9 conj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = A simple example is computed in explicit detail. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 simple simple ADJ JJ Degree=Pos 3 amod _ _ 3 example example NOUN NN Number=Sing 5 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 computed compute VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 in in ADP IN _ 5 prep _ _ 7 explicit explicit ADJ JJ Degree=Pos 8 amod _ _ 8 detail detail NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 9 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 245 # sent_id = 1 # text = Two constructions of paths in double categories are studied, providing algebraic versions of the homotopy groupoid of a space. 1 Two two NUM CD NumType=Card 2 nummod _ _ 2 constructions construction NOUN NNS Number=Plur 9 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 paths path NOUN NNS Number=Plur 3 pobj _ _ 5 in in ADP IN _ 4 prep _ _ 6 double double ADJ JJ Degree=Pos 7 amod _ _ 7 categories category NOUN NNS Number=Plur 5 pobj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 studied study VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 providing provide VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 advcl _ _ 12 algebraic algebraic ADJ JJ Degree=Pos 13 amod _ _ 13 versions version NOUN NNS Number=Plur 11 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 homotopy homotopy NOUN NN Number=Sing 17 compound _ _ 17 groupoid groupoid NOUN NN Number=Sing 14 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 space space NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 2 # text = Universal properties of these constructions are presented. 1 Universal universal ADJ JJ Degree=Pos 2 amod _ _ 2 properties property NOUN NNS Number=Plur 7 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 these these DET DT Number=Plur|PronType=Dem 5 det _ _ 5 constructions construction NOUN NNS Number=Plur 3 pobj _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 7 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 8 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = The first is seen as the codomain of the universal oplax morphism of double categories and the second, which is a quotient of the first, gives the universal normal oplax morphism. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 first first ADJ JJ Degree=Pos 4 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 seen see VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 ccomp _ _ 5 as as ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 codomain codomain NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 12 det _ _ 10 universal universal ADJ JJ Degree=Pos 11 amod _ _ 11 oplax oplax PROPN NNP Number=Sing 12 compound _ _ 12 morphism morphism NOUN NN Number=Sing 8 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 double double ADJ JJ Degree=Pos 15 amod _ _ 15 categories category NOUN NNS Number=Plur 13 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 7 cc _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 second second NOUN NN Number=Sing 7 conj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 which which PRON WDT _ 21 nsubj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 relcl _ _ 22 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 23 quotient quotient NOUN NN Number=Sing 21 attr _ _ 24 of of ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 first first ADJ JJ Degree=Pos 24 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 28 punct _ _ 28 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 29 the the DET DT Definite=Def|PronType=Art 33 det _ _ 30 universal universal ADJ JJ Degree=Pos 33 amod _ _ 31 normal normal ADJ JJ Degree=Pos 33 amod _ _ 32 oplax oplax NOUN NN Number=Sing 33 compound _ _ 33 morphism morphism NOUN NN Number=Sing 28 dobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 28 punct _ SpaceAfter=No # sent_id = 4 # text = Normality forces an equivalence relation on cells, a special case of which was seen before in the free adjoint construction. 1 Normality normality ADJ JJ Degree=Pos 2 amod _ _ 2 forces force NOUN NNS Number=Plur 15 dep _ _ 3 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 4 equivalence equivalence NOUN NN Number=Sing 5 compound _ _ 5 relation relation NOUN NN Number=Sing 2 appos _ _ 6 on on ADP IN _ 5 prep _ _ 7 cells cell NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 15 punct _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 special special ADJ JJ Degree=Pos 11 amod _ _ 11 case case NOUN NN Number=Sing 15 nsubjpass _ _ 12 of of ADP IN _ 11 prep _ _ 13 which which PRON WDT _ 12 pobj _ _ 14 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 15 auxpass _ _ 15 seen see VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 16 before before ADV RB _ 15 advmod _ _ 17 in in ADP IN _ 15 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 21 det _ _ 19 free free ADJ JJ Degree=Pos 20 amod _ _ 20 adjoint adjoint NOUN NN Number=Sing 21 compound _ _ 21 construction construction NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 5 # text = These constructions are the object part of 2 - comonads which are shown to be oplax idempotent. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 constructions construction NOUN NNS Number=Plur 3 nsubj _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 object object NOUN NN Number=Sing 6 compound _ _ 6 part part NOUN NN Number=Sing 3 attr _ _ 7 of of ADP IN _ 6 prep _ _ 8 2 2 NUM CD NumType=Card 10 nummod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 comonads comonad NOUN NNS Number=Plur 7 pobj _ _ 11 which which PRON WDT _ 13 nsubjpass _ _ 12 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 relcl _ _ 14 to to PART TO _ 15 aux _ _ 15 be be AUX VB VerbForm=Inf 13 xcomp _ _ 16 oplax oplax PROPN NNP Number=Sing 15 attr _ _ 17 idempotent idempotent ADJ JJ Degree=Pos 15 acomp _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = The coalgebras for these comonads turn out to be Leinster's $ fc $ - multicategories, with representable identities in the second case. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 coalgebras coalgebra NOUN NNS Number=Plur 6 nsubj _ _ 3 for for ADP IN _ 2 prep _ _ 4 these these DET DT Number=Plur|PronType=Dem 5 det _ _ 5 comonads comonad NOUN NNS Number=Plur 3 pobj _ _ 6 turn turn VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 out out ADP RP _ 6 prt _ _ 8 to to PART TO _ 9 aux _ _ 9 be be AUX VB VerbForm=Inf 6 xcomp _ _ 10 Leinster Leinster PROPN NNP Number=Sing 14 poss _ SpaceAfter=No 11 's 's PART POS _ 10 case _ _ 12 $ fc $ $ fc $ SYM $ _ 14 compound _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 multicategories multicategorie NOUN NNS Number=Plur 9 attr _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 9 punct _ _ 16 with with ADP IN _ 6 prep _ _ 17 representable representable ADJ JJ Degree=Pos 18 amod _ _ 18 identities identity NOUN NNS Number=Plur 16 pobj _ _ 19 in in ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 second second ADJ JJ Degree=Pos 22 amod _ _ 22 case case NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 246 # sent_id = 1 # text = A flow on a compact Hausdorff space $ X $ is given by a map $ t : X - - > X $ . 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 flow flow NOUN NN Number=Sing 10 nsubjpass _ _ 3 on on ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 5 compact compact ADJ JJ Degree=Pos 7 amod _ _ 6 Hausdorff Hausdorff PROPN NNP Number=Sing 7 compound _ _ 7 space space NOUN NN Number=Sing 3 pobj _ _ 8 $ X $ $ x $ SYM $ _ 2 appos _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 10 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 11 by by ADP IN _ 10 agent _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 map map NOUN NN Number=Sing 11 pobj _ _ 14 $ t : X - - > X $ $ t : x - - > x $ SYM $ _ 13 appos _ _ 15 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = The general goal of this paper is to find the "cyclic parts" of such a flow. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 general general ADJ JJ Degree=Pos 3 amod _ _ 3 goal goal NOUN NN Number=Sing 7 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 6 paper paper NOUN NN Number=Sing 4 pobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 to to PART TO _ 9 aux _ _ 9 find find VERB VB VerbForm=Inf 7 xcomp _ _ 10 the the DET DT Definite=Def|PronType=Art 13 det _ _ 11 " " PUNCT `` PunctSide=Ini|PunctType=Quot 13 punct _ SpaceAfter=No 12 cyclic cyclic ADJ JJ Degree=Pos 13 amod _ _ 13 parts part NOUN NNS Number=Plur 9 dobj _ SpaceAfter=No 14 " " PUNCT '' PunctSide=Fin|PunctType=Quot 13 punct _ _ 15 of of ADP IN _ 13 prep _ _ 16 such such DET PDT _ 18 predet _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 flow flow NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = To do this, we approximate $ (X, t) $ by a flow on a Stone space (that is, a totally disconnected, compact Hausdorff space). 1 To to PART TO _ 2 aux _ _ 2 do do VERB VB VerbForm=Inf 6 advcl _ _ 3 this this PRON DT Number=Sing|PronType=Dem 2 dobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 approximate approximate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 $ (X, t) $ $ (x, t) $ SYM $ _ 6 dobj _ _ 8 by by ADP IN _ 7 agent _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 flow flow NOUN NN Number=Sing 8 pobj _ _ 11 on on ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 Stone Stone PROPN NNP Number=Sing 14 compound _ _ 14 space space NOUN NN Number=Sing 11 pobj _ _ 15 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 14 punct _ SpaceAfter=No 16 that that ADV RB _ 17 advmod _ _ 17 is is ADV RB _ 25 advmod _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 25 punct _ _ 19 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 20 totally totally ADV RB _ 21 advmod _ _ 21 disconnected disconnected ADJ JJ Degree=Pos 25 amod _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 25 punct _ _ 23 compact compact ADJ JJ Degree=Pos 25 amod _ _ 24 Hausdorff Hausdorff PROPN NNP Number=Sing 25 compound _ _ 25 space space NOUN NN Number=Sing 14 appos _ SpaceAfter=No 26 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 6 punct _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = Such a flow can be examined by analyzing the resulting flow on the Boolean algebra of clopen subsets, using the spectrum defined in our previous paper, The cyclic spectrum of a Boolean flow. 1 Such such DET PDT _ 3 predet _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 flow flow NOUN NN Number=Sing 6 nsubjpass _ _ 4 can can AUX MD VerbForm=Fin 6 aux _ _ 5 be be AUX VB VerbForm=Inf 6 auxpass _ _ 6 examined examine VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 31 ccomp _ _ 7 by by ADP IN _ 6 prep _ _ 8 analyzing analyze VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 pcomp _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 resulting result VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 11 amod _ _ 11 flow flow NOUN NN Number=Sing 8 dobj _ _ 12 on on ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 Boolean boolean ADJ JJ Degree=Pos 15 amod _ _ 15 algebra algebra NOUN NN Number=Sing 12 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 clopen clopen ADJ JJ Degree=Pos 18 amod _ _ 18 subsets subset NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 8 punct _ _ 20 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 conj _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 spectrum spectrum NOUN NN Number=Sing 20 dobj _ _ 23 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 acl _ _ 24 in in ADP IN _ 23 prep _ _ 25 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 27 poss _ _ 26 previous previous ADJ JJ Degree=Pos 27 amod _ _ 27 paper paper NOUN NN Number=Sing 24 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 31 punct _ _ 29 The the DET DT Definite=Def|PronType=Art 31 det _ _ 30 cyclic cyclic ADJ JJ Degree=Pos 31 amod _ _ 31 spectrum spectrum NOUN NN Number=Sing 0 ROOT _ _ 32 of of ADP IN _ 31 prep _ _ 33 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 34 Boolean boolean ADJ JJ Degree=Pos 35 amod _ _ 35 flow flow NOUN NN Number=Sing 32 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 31 punct _ SpaceAfter=No # sent_id = 5 # text = In this paper, we describe the cyclic spectrum in terms that do not rely on topos theory. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 cyclic cyclic NOUN NN Number=Sing 9 compound _ _ 9 spectrum spectrum NOUN NN Number=Sing 6 dobj _ _ 10 in in ADP IN _ 6 prep _ _ 11 terms term NOUN NNS Number=Plur 10 pobj _ _ 12 that that PRON WDT PronType=Rel 15 nsubj _ _ 13 do do AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 aux _ _ 14 not not PART RB Polarity=Neg 15 neg _ _ 15 rely rely VERB VB VerbForm=Inf 11 relcl _ _ 16 on on ADP IN _ 15 prep _ _ 17 topos topos NOUN NN Number=Sing 18 compound _ _ 18 theory theory NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 6 # text = We then compute the cyclic spectrum of any finitely generated Boolean flow. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 compute compute VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 cyclic cyclic ADJ JJ Degree=Pos 6 compound _ _ 6 spectrum spectrum NOUN NN Number=Sing 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 any any DET DT _ 12 det _ _ 9 finitely finitely ADV RB _ 10 advmod _ _ 10 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 11 Boolean boolean ADJ JJ Degree=Pos 12 amod _ _ 12 flow flow NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 7 # text = We define when a sheaf of Boolean flows can be regarded as cyclic and find necessary conditions for representing a Boolean flow using the global sections of such a sheaf. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 when when SCONJ WRB _ 11 advmod _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 sheaf sheaf NOUN NN Number=Sing 11 nsubjpass _ _ 6 of of ADP IN _ 5 prep _ _ 7 Boolean boolean ADJ JJ Degree=Pos 8 amod _ _ 8 flows flow NOUN NNS Number=Plur 6 pobj _ _ 9 can can AUX MD VerbForm=Fin 11 aux _ _ 10 be be AUX VB VerbForm=Inf 11 auxpass _ _ 11 regarded regard VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 advcl _ _ 12 as as ADP IN _ 11 prep _ _ 13 cyclic cyclic ADJ JJ Degree=Pos 12 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 11 cc _ _ 15 find find VERB VB VerbForm=Inf 11 conj _ _ 16 necessary necessary ADJ JJ Degree=Pos 17 amod _ _ 17 conditions condition NOUN NNS Number=Plur 15 dobj _ _ 18 for for ADP IN _ 17 prep _ _ 19 representing represent VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 18 pcomp _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 Boolean boolean ADJ JJ Degree=Pos 22 amod _ _ 22 flow flow NOUN NN Number=Sing 19 dobj _ _ 23 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 acl _ _ 24 the the DET DT Definite=Def|PronType=Art 26 det _ _ 25 global global ADJ JJ Degree=Pos 26 amod _ _ 26 sections section NOUN NNS Number=Plur 23 dobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 such such DET PDT _ 30 predet _ _ 29 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 30 sheaf sheaf NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 8 # text = In the final section, we define and explore a related spectrum based on minimal subflows of Stone spaces. 1 In in ADP IN _ 7 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 final final ADJ JJ Degree=Pos 4 amod _ _ 4 section section NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 explore explore VERB VB VerbForm=Inf 7 conj _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 related related ADJ JJ Degree=Pos 12 amod _ _ 12 spectrum spectrum NOUN NN Number=Sing 9 dobj _ _ 13 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 acl _ _ 14 on on ADP IN _ 13 prep _ _ 15 minimal minimal ADJ JJ Degree=Pos 16 amod _ _ 16 subflows subflow NOUN NNS Number=Plur 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 Stone Stone PROPN NNP Number=Sing 19 compound _ _ 19 spaces space NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # doc_id = 247 # sent_id = 1 # text = The correlators of two - dimensional rational conformal field theories that are obtained in the TFT construction of Fuchs, Runkel and Schweigert are shown to be invariant under the action of the relative modular group and to obey bulk and boundary factorisation constraints. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 correlators correlator NOUN NNS Number=Plur 25 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 two two NUM CD NumType=Card 6 advmod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 dimensional dimensional ADJ JJ Degree=Pos 10 amod _ _ 7 rational rational ADJ JJ Degree=Pos 10 amod _ _ 8 conformal conformal ADJ JJ Degree=Pos 9 amod _ _ 9 field field NOUN NN Number=Sing 10 compound _ _ 10 theories theory NOUN NNS Number=Plur 3 pobj _ _ 11 that that PRON WDT PronType=Rel 13 nsubjpass _ _ 12 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 relcl _ _ 14 in in ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 TFT TFT PROPN NNP Number=Sing 17 compound _ _ 17 construction construction NOUN NN Number=Sing 14 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 Fuchs Fuchs PROPN NNP Number=Sing 18 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 19 punct _ _ 21 Runkel Runkel PROPN NNP Number=Sing 19 conj _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 Schweigert Schweigert PROPN NNP Number=Sing 21 conj _ _ 24 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 25 auxpass _ _ 25 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 26 to to PART TO _ 27 aux _ _ 27 be be AUX VB VerbForm=Inf 25 xcomp _ _ 28 invariant invariant ADJ JJ Degree=Pos 27 acomp _ _ 29 under under ADP IN _ 27 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 action action NOUN NN Number=Sing 29 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 the the DET DT Definite=Def|PronType=Art 36 det _ _ 34 relative relative ADJ JJ Degree=Pos 36 amod _ _ 35 modular modular ADJ JJ Degree=Pos 36 amod _ _ 36 group group NOUN NN Number=Sing 32 pobj _ _ 37 and and CCONJ CC ConjType=Cmp 27 cc _ _ 38 to to PART TO _ 39 aux _ _ 39 obey obey VERB VB VerbForm=Inf 27 conj _ _ 40 bulk bulk ADJ JJ Degree=Pos 44 amod _ _ 41 and and CCONJ CC ConjType=Cmp 40 cc _ _ 42 boundary boundary ADJ JJ Degree=Pos 40 conj _ _ 43 factorisation factorisation NOUN NN Number=Sing 40 conj _ _ 44 constraints constraint NOUN NNS Number=Plur 39 dobj _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 25 punct _ SpaceAfter=No # sent_id = 2 # text = We present results both for conformal field theories defined on oriented surfaces and for theories defined on unoriented surfaces. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 results result NOUN NNS Number=Plur 2 dobj _ _ 4 both both CCONJ CC ConjType=Cmp 5 preconj _ _ 5 for for ADP IN _ 3 prep _ _ 6 conformal conformal ADJ JJ Degree=Pos 8 amod _ _ 7 field field NOUN NN Number=Sing 8 compound _ _ 8 theories theory NOUN NNS Number=Plur 5 pobj _ _ 9 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 acl _ _ 10 on on ADP IN _ 9 prep _ _ 11 oriented orient VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 12 surfaces surface NOUN NNS Number=Plur 10 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 9 cc _ _ 14 for for ADP IN _ 9 conj _ _ 15 theories theory NOUN NNS Number=Plur 14 pobj _ _ 16 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 acl _ _ 17 on on ADP IN _ 16 prep _ _ 18 unoriented unoriented ADJ JJ Degree=Pos 19 amod _ _ 19 surfaces surface NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = In the latter case, in particular the so - called cross cap constraint is included. 1 In in ADP IN _ 16 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 latter latter ADJ JJ Degree=Pos 4 amod _ _ 4 case case NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 16 punct _ _ 6 in in ADP IN _ 16 prep _ _ 7 particular particular ADJ JJ Degree=Pos 6 amod _ _ 8 the the DET DT Definite=Def|PronType=Art 14 det _ _ 9 so so ADV RB _ 11 advmod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 12 cross cross PROPN NNP Number=Sing 13 compound _ _ 13 cap cap NOUN NN Number=Sing 14 compound _ _ 14 constraint constraint NOUN NN Number=Sing 16 nsubjpass _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 auxpass _ _ 16 included include VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # doc_id = 248 # sent_id = 1 # text = The construction of a free restriction category can be broken into two steps: the construction of a free stable semilattice fibration followed by the construction of a free restriction category for this fibration. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 construction construction NOUN NN Number=Sing 10 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 5 free free ADJ JJ Degree=Pos 6 amod _ _ 6 restriction restriction NOUN NN Number=Sing 7 compound _ _ 7 category category NOUN NN Number=Sing 3 pobj _ _ 8 can can AUX MD VerbForm=Fin 10 aux _ _ 9 be be AUX VB VerbForm=Inf 10 auxpass _ _ 10 broken break VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 11 into into ADP IN _ 10 prep _ _ 12 two two NUM CD NumType=Card 13 nummod _ _ 13 steps step NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 14 : : PUNCT : _ 13 punct _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 construction construction NOUN NN Number=Sing 13 appos _ _ 17 of of ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 19 free free ADJ JJ Degree=Pos 22 amod _ _ 20 stable stable ADJ JJ Degree=Pos 22 amod _ _ 21 semilattice semilattice NOUN NN Number=Sing 22 compound _ _ 22 fibration fibration NOUN NN Number=Sing 17 pobj _ _ 23 followed follow VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 acl _ _ 24 by by ADP IN _ 23 agent _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 construction construction NOUN NN Number=Sing 24 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 29 free free ADJ JJ Degree=Pos 30 amod _ _ 30 restriction restriction NOUN NN Number=Sing 31 compound _ _ 31 category category NOUN NN Number=Sing 27 pobj _ _ 32 for for ADP IN _ 31 prep _ _ 33 this this DET DT Number=Sing|PronType=Dem 34 det _ _ 34 fibration fibration NOUN NN Number=Sing 32 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = Restriction categories produced from such fibrations are `unitary', in a sense which generalizes that from the theory of inverse semigroups. 1 Restriction restriction NOUN NN Number=Sing 2 compound _ _ 2 categories category NOUN NNS Number=Plur 7 nsubj _ _ 3 produced produce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 acl _ _ 4 from from ADP IN _ 3 prep _ _ 5 such such ADJ JJ Degree=Pos 6 amod _ _ 6 fibrations fibration NOUN NNS Number=Plur 4 pobj _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 7 punct _ SpaceAfter=No 9 unitary unitary ADJ JJ Degree=Pos 7 acomp _ SpaceAfter=No 10 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 7 punct _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 7 punct _ _ 12 in in ADP IN _ 7 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 sense sense NOUN NN Number=Sing 12 pobj _ _ 15 which which PRON WDT _ 16 nsubj _ _ 16 generalizes generalize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 relcl _ _ 17 that that SCONJ IN _ 16 dobj _ _ 18 from from ADP IN _ 16 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 theory theory NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 inverse inverse ADJ JJ Degree=Pos 23 amod _ _ 23 semigroups semigroup NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = Characterization theorems for unitary restriction categories are derived. 1 Characterization characterization NOUN NN Number=Sing 2 compound _ _ 2 theorems theorem NOUN NNS Number=Plur 8 nsubjpass _ _ 3 for for ADP IN _ 2 prep _ _ 4 unitary unitary ADJ JJ Degree=Pos 6 amod _ _ 5 restriction restriction NOUN NN Number=Sing 6 compound _ _ 6 categories category NOUN NNS Number=Plur 3 pobj _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 derived derive VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 9 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 4 # text = The paper ends with an explicit description of the free restriction category on a directed graph. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 ends end VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 with with ADP IN _ 3 prep _ _ 5 an an DET DT Definite=Ind|PronType=Art 7 det _ _ 6 explicit explicit ADJ JJ Degree=Pos 7 amod _ _ 7 description description NOUN NN Number=Sing 4 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 12 det _ _ 10 free free ADJ JJ Degree=Pos 11 amod _ _ 11 restriction restriction NOUN NN Number=Sing 12 compound _ _ 12 category category NOUN NN Number=Sing 8 pobj _ _ 13 on on ADP IN _ 7 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 directed direct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 16 graph graph NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 249 # sent_id = 1 # text = A quantaloid is a sup - lattice - enriched category; our subject is that of categories, functors and distributors enriched in a base quantaloid $ mathcal{Q} $ . 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 quantaloid quantaloid NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 ccomp _ _ 4 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 5 sup sup ADJ JJ Degree=Pos 7 amod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 lattice lattice NOUN NN Number=Sing 9 npadvmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 10 category category NOUN NN Number=Sing 3 attr _ SpaceAfter=No 11 ; ; PUNCT : _ 14 punct _ _ 12 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 13 poss _ _ 13 subject subject NOUN NN Number=Sing 14 nsubj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 that that PRON DT Number=Sing|PronType=Dem 14 nsubj _ _ 16 of of ADP IN _ 15 prep _ _ 17 categories category NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 functors functor NOUN NNS Number=Plur 17 conj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 distributors distributor NOUN NNS Number=Plur 19 conj _ _ 22 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 acl _ _ 23 in in ADP IN _ 22 prep _ _ 24 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 25 base base NOUN NN Number=Sing 26 compound _ _ 26 quantaloid quantaloid NOUN NN Number=Sing 23 pobj _ _ 27 $ mathcal{Q} $ $ mathcal{q} $ SYM $ _ 17 appos _ _ 28 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 2 # text = We show how cocomplete $ mathcal{Q} $ - categories are precisely those which are tensored and conically cocomplete, or alternatively, those which are tensored, cotensored and `order - cocomplete'. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 how how SCONJ WRB _ 4 advmod _ _ 4 cocomplete cocomplete ADJ JJ Degree=Pos 7 amod _ _ 5 $ mathcal{Q} $ $ mathcal{q} $ SYM $ _ 7 compound _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 categories category NOUN NNS Number=Plur 8 nsubj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 9 precisely precisely ADV RB _ 10 advmod _ _ 10 those those PRON DT Number=Plur|PronType=Dem 8 attr _ _ 11 which which PRON WDT _ 12 nsubj _ _ 12 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 10 relcl _ _ 13 tensored tensored ADJ JJ Degree=Pos 12 acomp _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 conically conically ADV RB _ 16 advmod _ _ 16 cocomplete cocomplete ADJ JJ Degree=Pos 13 conj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 13 punct _ _ 18 or or CCONJ CC ConjType=Cmp 13 cc _ _ 19 alternatively alternatively ADV RB _ 13 conj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 10 punct _ _ 21 those those PRON DT Number=Plur|PronType=Dem 10 conj _ _ 22 which which PRON WDT _ 23 nsubj _ _ 23 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 21 relcl _ _ 24 tensored tensored ADJ JJ Degree=Pos 23 acomp _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 cotensored cotensore VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 conj _ _ 27 and and CCONJ CC ConjType=Cmp 26 cc _ _ 28 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 26 punct _ SpaceAfter=No 29 order order NOUN NN Number=Sing 31 npadvmod _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 cocomplete cocomplete NOUN NN Number=Sing 26 conj _ SpaceAfter=No 32 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 21 punct _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = In fact, tensors and cotensors in a $ mathcal{Q} $ - category determine, and are determined by, certain adjunctions in the category of $ mathcal{Q} $ - categories; some of these adjunctions can be reduced to adjuctions in the category of ordered sets. 1 In in ADP IN _ 16 prep _ _ 2 fact fact NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 16 punct _ _ 4 tensors tensor NOUN NNS Number=Plur 16 nsubjpass _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 cotensors cotensor NOUN NNS Number=Plur 4 conj _ _ 7 in in ADP IN _ 4 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 9 $ mathcal{Q} $ $ mathcal{q} $ SYM $ _ 11 nummod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 category category NOUN NN Number=Sing 12 compound _ _ 12 determine determine NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 4 punct _ _ 14 and and CCONJ CC ConjType=Cmp 4 cc _ _ 15 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 16 auxpass _ _ 16 determined determine VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 35 advcl _ _ 17 by by ADP IN _ 16 agent _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 35 punct _ _ 19 certain certain ADJ JJ Degree=Pos 20 amod _ _ 20 adjunctions adjunction NOUN NNS Number=Plur 35 nsubjpass _ _ 21 in in ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 category category NOUN NN Number=Sing 21 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 $ mathcal{Q} $ $ mathcal{q} $ SYM $ _ 27 nmod _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 categories category NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 28 ; ; PUNCT : _ 35 punct _ _ 29 some some PRON DT _ 35 nsubjpass _ _ 30 of of ADP IN _ 29 prep _ _ 31 these these DET DT Number=Plur|PronType=Dem 32 det _ _ 32 adjunctions adjunction NOUN NNS Number=Plur 30 pobj _ _ 33 can can AUX MD VerbForm=Fin 35 aux _ _ 34 be be AUX VB VerbForm=Inf 35 auxpass _ _ 35 reduced reduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 36 to to ADP IN _ 35 prep _ _ 37 adjuctions adjuction NOUN NNS Number=Plur 36 pobj _ _ 38 in in ADP IN _ 37 prep _ _ 39 the the DET DT Definite=Def|PronType=Art 40 det _ _ 40 category category NOUN NN Number=Sing 38 pobj _ _ 41 of of ADP IN _ 40 prep _ _ 42 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 43 amod _ _ 43 sets set NOUN NNS Number=Plur 41 pobj _ SpaceAfter=No 44 . . PUNCT . PunctType=Peri 35 punct _ SpaceAfter=No # sent_id = 4 # text = Bearing this in mind, we explain how tensored $ mathcal{Q} $ - categories are equivalent to order - valued closed pseudofunctors on $ mathcal{Q}^{op} $ ; this result is then finetuned to obtain in particular that cocomplete $ mathcal{Q} $ - categories are equivalent to sup - lattice - valued homomorphisms on $ mathcal{Q}^{op} $ (a.k.a. $ mathcal{Q} $ - modules). 1 Bearing bear VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 advcl _ _ 2 this this PRON DT Number=Sing|PronType=Dem 1 dobj _ _ 3 in in ADP IN _ 1 prep _ _ 4 mind mind NOUN NN Number=Sing 3 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 explain explain VERB VBP Tense=Pres|VerbForm=Fin 28 ccomp _ _ 8 how how SCONJ WRB _ 9 advmod _ _ 9 tensored tensore VERB VBD Tense=Past|VerbForm=Fin 13 acomp _ _ 10 $ mathcal{Q} $ $ mathcal{q} $ SYM $ _ 12 compound _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 categories category NOUN NNS Number=Plur 13 nsubj _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 ccomp _ _ 14 equivalent equivalent ADJ JJ Degree=Pos 13 acomp _ _ 15 to to PART TO _ 18 aux _ _ 16 order order NOUN NN Number=Sing 18 npadvmod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 xcomp _ _ 19 closed closed ADJ JJ Degree=Pos 20 amod _ _ 20 pseudofunctors pseudofunctor NOUN NNS Number=Plur 18 dobj _ _ 21 on on ADP IN _ 20 prep _ _ 22 $ mathcal{Q}^{op} $ $ mathcal{q}^{op} $ SYM $ _ 21 pobj _ _ 23 ; ; PUNCT : _ 28 punct _ _ 24 this this DET DT Number=Sing|PronType=Dem 25 det _ _ 25 result result NOUN NN Number=Sing 28 nsubjpass _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 28 auxpass _ _ 27 then then ADV RB PronType=Dem 28 advmod _ _ 28 finetuned finetune VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 29 to to PART TO _ 30 aux _ _ 30 obtain obtain VERB VB VerbForm=Inf 28 xcomp _ _ 31 in in ADP IN _ 30 prep _ _ 32 particular particular ADJ JJ Degree=Pos 31 amod _ _ 33 that that SCONJ IN _ 38 mark _ _ 34 cocomplete cocomplete ADJ JJ Degree=Pos 37 amod _ _ 35 $ mathcal{Q} $ $ mathcal{q} $ SYM $ _ 37 compound _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 categories category NOUN NNS Number=Plur 38 nsubj _ _ 38 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 30 ccomp _ _ 39 equivalent equivalent ADJ JJ Degree=Pos 38 acomp _ _ 40 to to ADP IN _ 39 prep _ _ 41 sup sup ADJ JJ Degree=Pos 43 amod _ _ 42 - - PUNCT HYPH PunctType=Dash 43 punct _ _ 43 lattice lattice NOUN NN Number=Sing 45 npadvmod _ _ 44 - - PUNCT HYPH PunctType=Dash 45 punct _ _ 45 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 46 amod _ _ 46 homomorphisms homomorphism NOUN NNS Number=Plur 40 pobj _ _ 47 on on ADP IN _ 46 prep _ _ 48 $ mathcal{Q}^{op} $ $ mathcal{q}^{op} $ SYM $ _ 47 pobj _ _ 49 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 54 punct _ SpaceAfter=No 50 a.k.a a.k.a ADJ JJ Degree=Pos 54 amod _ SpaceAfter=No 51 . . PUNCT . PunctType=Peri 54 punct _ _ 52 $ mathcal{Q} $ $ mathcal{q} $ SYM $ _ 54 compound _ _ 53 - - PUNCT HYPH PunctType=Dash 54 punct _ _ 54 modules module NOUN NNS Number=Plur 48 appos _ SpaceAfter=No 55 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 48 punct _ SpaceAfter=No 56 . . PUNCT . PunctType=Peri 28 punct _ SpaceAfter=No # doc_id = 250 # sent_id = 1 # text = We say that a class $ mathbb{D} $ of categories is the Bourn localization of a class $ mathbb{C} $ of categories, and we write $ mathbb{D} = mathrm{Loc}mathbb{C} $ , if $ mathbb{D} $ is the class of all (finitely complete) categories $ mathcal{D} $ such that for each object $ A $ in $ mathcal{D} $ , $ mathrm{Pt}(mathcal{D}downarrow A) in mathbb{C} $ , where $ mathrm{Pt}(mathcal{D}downarrow A) $ denotes the category of all pointed objects in the comma - category $ (mathcal{D}downarrow A) $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 say say VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 9 mark _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 class class NOUN NN Number=Sing 6 nmod _ _ 6 $ mathbb{D} $ $ mathbb{d} $ SYM $ _ 9 nsubj _ _ 7 of of ADP IN _ 6 prep _ _ 8 categories category NOUN NNS Number=Plur 7 pobj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 Bourn Bourn PROPN NNP Number=Sing 12 compound _ _ 12 localization localization NOUN NN Number=Sing 9 attr _ _ 13 of of ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 class class NOUN NN Number=Sing 16 compound _ _ 16 $ mathbb{C} $ $ mathbb{c} $ SYM $ _ 13 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 categories category NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 9 punct _ _ 20 and and CCONJ CC ConjType=Cmp 9 cc _ _ 21 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 22 nsubj _ _ 22 write write VERB VBP Tense=Pres|VerbForm=Fin 9 conj _ _ 23 $ mathbb{D} = mathrm{Loc}mathbb{C} $ $ mathbb{d} = mathrm{loc}mathbb{c} $ SYM $ _ 22 dobj _ _ 24 , , PUNCT , PunctType=Comm 22 punct _ _ 25 if if SCONJ IN _ 27 mark _ _ 26 $ mathbb{D} $ $ mathbb{d} $ SYM $ _ 27 nsubj _ _ 27 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 advcl _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 class class NOUN NN Number=Sing 27 attr _ _ 30 of of ADP IN _ 29 prep _ _ 31 all all DET DT _ 36 det _ _ 32 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 36 punct _ SpaceAfter=No 33 finitely finitely ADV RB _ 34 advmod _ _ 34 complete complete ADJ JJ Degree=Pos 36 amod _ SpaceAfter=No 35 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 36 punct _ _ 36 categories category NOUN NNS Number=Plur 30 pobj _ _ 37 $ mathcal{D} $ $ mathcal{d} $ SYM $ _ 39 predet _ _ 38 such such ADJ JJ Degree=Pos 39 amod _ _ 39 that that SCONJ IN _ 47 nsubj _ _ 40 for for ADP IN _ 47 prep _ _ 41 each each DET DT _ 42 det _ _ 42 object object NOUN NN Number=Sing 40 pobj _ _ 43 $ A $ $ a $ SYM $ _ 47 nmod _ _ 44 in in ADP IN _ 43 prep _ _ 45 $ mathcal{D} $ $ mathcal{d} $ SYM $ _ 44 pobj _ _ 46 , , PUNCT , PunctType=Comm 44 punct _ _ 47 $ mathrm{Pt}(mathcal{D}downarrow A) in mathbb{C} $ $ mathrm{pt}(mathcal{d}downarrow a) in mathbb{c} $ SYM $ _ 27 dep _ _ 48 , , PUNCT , PunctType=Comm 47 punct _ _ 49 where where SCONJ WRB _ 51 advmod _ _ 50 $ mathrm{Pt}(mathcal{D}downarrow A) $ $ mathrm{pt}(mathcal{d}downarrow a) $ SYM $ _ 51 nsubj _ _ 51 denotes denote VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 47 relcl _ _ 52 the the DET DT Definite=Def|PronType=Art 53 det _ _ 53 category category NOUN NN Number=Sing 51 dobj _ _ 54 of of ADP IN _ 53 prep _ _ 55 all all DET DT _ 57 det _ _ 56 pointed point VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 57 amod _ _ 57 objects object NOUN NNS Number=Plur 54 pobj _ _ 58 in in ADP IN _ 51 prep _ _ 59 the the DET DT Definite=Def|PronType=Art 63 det _ _ 60 comma comma NOUN NN Number=Sing 62 compound _ _ 61 - - PUNCT HYPH PunctType=Dash 62 punct _ _ 62 category category NOUN NN Number=Sing 63 compound _ _ 63 $ (mathcal{D}downarrow A) $ $ (mathcal{d}downarrow a) $ NUM CD NumType=Card 58 pobj _ _ 64 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = As Bourn showed, if we take $ mathbb{D} $ to be the class of Maltsev categories in the sense of Carboni, Lambek, and Pedicchio, and $ mathbb{C} $ to be the class of unital categories in the sense of Bourn, which generalize pointed Jónsson - Tarski varieties, then $ mathbb{D} = mathrm{Loc}(mathbb{C}) $ . 1 As as SCONJ IN _ 3 mark _ _ 2 Bourn Bourn PROPN NNP Number=Sing 3 nsubj _ _ 3 showed show VERB VBD Tense=Past|VerbForm=Fin 51 advcl _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 3 punct _ _ 5 if if SCONJ IN _ 7 mark _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 take take VERB VBP Tense=Pres|VerbForm=Fin 51 advcl _ _ 8 $ mathbb{D} $ $ mathbb{d} $ SYM $ _ 7 dobj _ _ 9 to to PART TO _ 10 aux _ _ 10 be be AUX VB VerbForm=Inf 7 advcl _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 class class NOUN NN Number=Sing 10 attr _ _ 13 of of ADP IN _ 12 prep _ _ 14 Maltsev Maltsev PROPN NNP Number=Sing 15 amod _ _ 15 categories category NOUN NNS Number=Plur 13 pobj _ _ 16 in in ADP IN _ 12 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 sense sense NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 Carboni Carboni PROPN NNP Number=Sing 19 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 Lambek Lambek PROPN NNP Number=Sing 20 conj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 and and CCONJ CC ConjType=Cmp 22 cc _ _ 25 Pedicchio Pedicchio PROPN NNP Number=Sing 22 conj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 25 punct _ _ 27 and and CCONJ CC ConjType=Cmp 7 cc _ _ 28 $ mathbb{C} $ $ mathbb{c} $ SYM $ _ 7 dep _ _ 29 to to PART TO _ 30 aux _ _ 30 be be AUX VB VerbForm=Inf 7 advcl _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 class class NOUN NN Number=Sing 30 attr _ _ 33 of of ADP IN _ 32 prep _ _ 34 unital unital ADJ JJ Degree=Pos 35 amod _ _ 35 categories category NOUN NNS Number=Plur 33 pobj _ _ 36 in in ADP IN _ 32 prep _ _ 37 the the DET DT Definite=Def|PronType=Art 38 det _ _ 38 sense sense NOUN NN Number=Sing 36 pobj _ _ 39 of of ADP IN _ 38 prep _ _ 40 Bourn Bourn PROPN NNP Number=Sing 39 pobj _ SpaceAfter=No 41 , , PUNCT , PunctType=Comm 40 punct _ _ 42 which which PRON WDT _ 43 nsubj _ _ 43 generalize generalize VERB VBP Tense=Pres|VerbForm=Fin 40 relcl _ _ 44 pointed point VERB VBD Tense=Past|VerbForm=Fin 48 amod _ _ 45 Jónsson Jónsson PROPN NNP Number=Sing 47 compound _ _ 46 - - PUNCT HYPH PunctType=Dash 47 punct _ _ 47 Tarski Tarski PROPN NNP Number=Sing 48 compound _ _ 48 varieties variety NOUN NNS Number=Plur 43 dobj _ SpaceAfter=No 49 , , PUNCT , PunctType=Comm 40 punct _ _ 50 then then ADV RB PronType=Dem 51 advmod _ _ 51 $ mathbb{D} = mathrm{Loc}(mathbb{C}) $ $ mathbb{d} = mathrm{loc}(mathbb{c}) $ SYM $ _ 0 ROOT _ _ 52 . . PUNCT . PunctType=Peri 51 punct _ SpaceAfter=No # sent_id = 3 # text = A similar result was obtained by the author: if $ mathbb{D} $ is as above and $ mathbb{C} $ is the class of subtractive categories, which generalize pointed subtractive varieties in the sense of Ursini, then $ mathbb{D} = mathrm{Loc}(mathbb{C}) $ . 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 similar similar ADJ JJ Degree=Pos 3 amod _ _ 3 result result NOUN NN Number=Sing 5 nsubjpass _ _ 4 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 5 auxpass _ _ 5 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 ccomp _ _ 6 by by ADP IN _ 5 agent _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 author author NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 9 : : PUNCT : _ 5 punct _ _ 10 if if SCONJ IN _ 12 mark _ _ 11 $ mathbb{D} $ $ mathbb{d} $ SYM $ _ 12 nsubj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 advcl _ _ 13 as as ADV RB _ 14 advmod _ _ 14 above above ADJ JJ Degree=Pos 12 advmod _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 $ mathbb{C} $ $ mathbb{c} $ SYM $ _ 17 nsubj _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 class class NOUN NN Number=Sing 17 attr _ _ 20 of of ADP IN _ 19 prep _ _ 21 subtractive subtractive ADJ JJ Degree=Pos 22 amod _ _ 22 categories category NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 which which PRON WDT _ 25 nsubj _ _ 25 generalize generalize VERB VBP Tense=Pres|VerbForm=Fin 22 relcl _ _ 26 pointed point VERB VBD Tense=Past|VerbForm=Fin 28 amod _ _ 27 subtractive subtractive ADJ JJ Degree=Pos 28 amod _ _ 28 varieties variety NOUN NNS Number=Plur 25 dobj _ _ 29 in in ADP IN _ 25 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 sense sense NOUN NN Number=Sing 29 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 Ursini Ursini PROPN NNP Number=Sing 32 pobj _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 33 punct _ _ 35 then then ADV RB PronType=Dem 33 advmod _ _ 36 $ mathbb{D} = mathrm{Loc}(mathbb{C}) $ $ mathbb{d} = mathrm{loc}(mathbb{c}) $ SYM $ _ 17 dep _ _ 37 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 4 # text = In the present paper we extend these results to abstract classes of categories obtained from classes of varieties. 1 In in ADP IN _ 6 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 present present ADJ JJ Degree=Pos 4 amod _ _ 4 paper paper NOUN NN Number=Sing 1 pobj _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 extend extend VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 these these DET DT Number=Plur|PronType=Dem 8 det _ _ 8 results result NOUN NNS Number=Plur 6 dobj _ _ 9 to to ADP IN _ 6 prep _ _ 10 abstract abstract ADJ JJ Degree=Pos 11 amod _ _ 11 classes class NOUN NNS Number=Plur 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 categories category NOUN NNS Number=Plur 12 pobj _ _ 14 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 acl _ _ 15 from from ADP IN _ 14 prep _ _ 16 classes class NOUN NNS Number=Plur 15 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 varieties variety NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 5 # text = We also show that the Bourn localization of the union of the classes of unital and subtractive categories is still the class of Maltsev categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 19 mark _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 Bourn Bourn PROPN NNP Number=Sing 7 compound _ _ 7 localization localization NOUN NN Number=Sing 19 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 union union NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 classes class NOUN NNS Number=Plur 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 unital unital ADJ JJ Degree=Pos 18 amod _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 subtractive subtractive ADJ JJ Degree=Pos 15 conj _ _ 18 categories category NOUN NNS Number=Plur 14 pobj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 20 still still ADV RB _ 19 advmod _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 class class NOUN NN Number=Sing 19 attr _ _ 23 of of ADP IN _ 22 prep _ _ 24 Maltsev Maltsev PROPN NNP Number=Sing 25 amod _ _ 25 categories category NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 251 # sent_id = 1 # text = Let $ L $ be an arbitrary orthomodular lattice. 1 Let let VERB VB VerbForm=Inf 0 ROOT _ _ 2 $ L $ $ l $ SYM $ _ 3 nsubj _ _ 3 be be AUX VB VerbForm=Inf 1 ccomp _ _ 4 an an DET DT Definite=Ind|PronType=Art 7 det _ _ 5 arbitrary arbitrary ADJ JJ Degree=Pos 7 amod _ _ 6 orthomodular orthomodular NOUN NN Number=Sing 7 compound _ _ 7 lattice lattice NOUN NN Number=Sing 3 attr _ SpaceAfter=No 8 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = There is a one to one correspondence between orthomodular sublattices of L satisfying an extra condition and quantic quantifiers. 1 There there PRON EX _ 2 expl _ _ 2 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 4 one one NUM CD NumType=Card 6 quantmod _ _ 5 to to ADP IN _ 6 quantmod _ _ 6 one one NUM CD NumType=Card 7 nummod _ _ 7 correspondence correspondence NOUN NN Number=Sing 2 attr _ _ 8 between between ADP IN _ 7 prep _ _ 9 orthomodular orthomodular ADJ JJ Degree=Pos 10 amod _ _ 10 sublattices sublattice NOUN NNS Number=Plur 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 L L PROPN NNP Number=Sing 11 pobj _ _ 13 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 acl _ _ 14 an an DET DT Definite=Ind|PronType=Art 16 det _ _ 15 extra extra ADJ JJ Degree=Pos 16 amod _ _ 16 condition condition NOUN NN Number=Sing 13 dobj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 quantic quantic ADJ JJ Degree=Pos 19 amod _ _ 19 quantifiers quantifier NOUN NNS Number=Plur 16 conj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = The category of orthomodular lattices is equivalent to the category of posets having two families of endofunctors satisfying six conditions. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 category category NOUN NN Number=Sing 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 orthomodular orthomodular ADJ JJ Degree=Pos 5 amod _ _ 5 lattices lattice NOUN NNS Number=Plur 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 equivalent equivalent ADJ JJ Degree=Pos 6 acomp _ _ 8 to to ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 category category NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 posets poset NOUN NNS Number=Plur 11 pobj _ _ 13 having have VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 acl _ _ 14 two two NUM CD NumType=Card 15 nummod _ _ 15 families family NOUN NNS Number=Plur 13 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 endofunctors endofunctor NOUN NNS Number=Plur 16 pobj _ _ 18 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 17 acl _ _ 19 six six NUM CD NumType=Card 20 nummod _ _ 20 conditions condition NOUN NNS Number=Plur 18 dobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 252 # sent_id = 1 # text = We study closedness properties of internal relations in finitely complete categories, which leads to developing a unified approach to: Maltsev categories, in the sense of Carboni, Lambek and Pedicchio, that generalize Maltsev varieties of universal algebras; unital categories, in the sense of Bourn, that generalize pointed Jónsson - Tarski varieties; and subtractive categories, introduced by the author, that generalize pointed subtractive varieties in the sense of Ursini. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 54 ccomp _ _ 3 closedness closedness NOUN NN Number=Sing 4 amod _ _ 4 properties property NOUN NNS Number=Plur 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 internal internal ADJ JJ Degree=Pos 7 amod _ _ 7 relations relation NOUN NNS Number=Plur 5 pobj _ _ 8 in in ADP IN _ 2 prep _ _ 9 finitely finitely ADV RB _ 10 advmod _ _ 10 complete complete ADJ JJ Degree=Pos 11 amod _ _ 11 categories category NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 which which PRON WDT _ 14 nsubj _ _ 14 leads lead VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 relcl _ _ 15 to to ADP IN _ 14 prep _ _ 16 developing develop VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 pcomp _ _ 17 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 18 unified unified ADJ JJ Degree=Pos 19 amod _ _ 19 approach approach NOUN NN Number=Sing 16 dobj _ _ 20 to to ADP IN _ 19 prep _ SpaceAfter=No 21 : : PUNCT : _ 20 punct _ _ 22 Maltsev maltsev ADJ JJ Degree=Pos 23 amod _ _ 23 categories category NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 54 punct _ _ 25 in in ADP IN _ 54 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 sense sense NOUN NN Number=Sing 25 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 Carboni Carboni PROPN NNP Number=Sing 28 pobj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 29 punct _ _ 31 Lambek Lambek PROPN NNP Number=Sing 29 conj _ _ 32 and and CCONJ CC ConjType=Cmp 31 cc _ _ 33 Pedicchio Pedicchio PROPN NNP Number=Sing 31 conj _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 29 punct _ _ 35 that that PRON WDT PronType=Rel 36 nsubj _ _ 36 generalize generalize VERB VBP Tense=Pres|VerbForm=Fin 27 relcl _ _ 37 Maltsev Maltsev PROPN NNP Number=Sing 38 compound _ _ 38 varieties variety NOUN NNS Number=Plur 36 dobj _ _ 39 of of ADP IN _ 38 prep _ _ 40 universal universal ADJ JJ Degree=Pos 41 amod _ _ 41 algebras algebra NOUN NNS Number=Plur 39 pobj _ SpaceAfter=No 42 ; ; PUNCT : _ 54 punct _ _ 43 unital unital ADJ JJ Degree=Pos 44 amod _ _ 44 categories category NOUN NNS Number=Plur 54 nsubj _ SpaceAfter=No 45 , , PUNCT , PunctType=Comm 54 punct _ _ 46 in in ADP IN _ 54 prep _ _ 47 the the DET DT Definite=Def|PronType=Art 48 det _ _ 48 sense sense NOUN NN Number=Sing 46 pobj _ _ 49 of of ADP IN _ 48 prep _ _ 50 Bourn Bourn PROPN NNP Number=Sing 49 pobj _ SpaceAfter=No 51 , , PUNCT , PunctType=Comm 54 punct _ _ 52 that that PRON WDT PronType=Rel 54 nsubj _ _ 53 generalize generalize NOUN NN Number=Sing 52 nmod _ _ 54 pointed point VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 55 Jónsson Jónsson PROPN NNP Number=Sing 57 compound _ _ 56 - - PUNCT HYPH PunctType=Dash 57 punct _ _ 57 Tarski Tarski PROPN NNP Number=Sing 58 compound _ _ 58 varieties variety NOUN NNS Number=Plur 54 dobj _ SpaceAfter=No 59 ; ; PUNCT : _ 58 punct _ _ 60 and and CCONJ CC ConjType=Cmp 58 cc _ _ 61 subtractive subtractive ADJ JJ Degree=Pos 62 amod _ _ 62 categories category NOUN NNS Number=Plur 71 nsubj _ SpaceAfter=No 63 , , PUNCT , PunctType=Comm 62 punct _ _ 64 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 62 acl _ _ 65 by by ADP IN _ 64 agent _ _ 66 the the DET DT Definite=Def|PronType=Art 67 det _ _ 67 author author NOUN NN Number=Sing 65 pobj _ SpaceAfter=No 68 , , PUNCT , PunctType=Comm 62 punct _ _ 69 that that PRON WDT PronType=Rel 70 nsubj _ _ 70 generalize generalize NOUN NN Number=Sing 62 relcl _ _ 71 pointed point VERB VBD Tense=Past|VerbForm=Fin 58 conj _ _ 72 subtractive subtractive ADJ JJ Degree=Pos 73 amod _ _ 73 varieties variety NOUN NNS Number=Plur 71 dobj _ _ 74 in in ADP IN _ 71 prep _ _ 75 the the DET DT Definite=Def|PronType=Art 76 det _ _ 76 sense sense NOUN NN Number=Sing 74 pobj _ _ 77 of of ADP IN _ 76 prep _ _ 78 Ursini Ursini PROPN NNP Number=Sing 77 pobj _ SpaceAfter=No 79 . . PUNCT . PunctType=Peri 54 punct _ SpaceAfter=No # doc_id = 253 # sent_id = 1 # text = We consider exponentiable objects in lax slices of $ Top $ with respect to the specialization order (and its opposite) on a base space $ B $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 exponentiable exponentiable ADJ JJ Degree=Pos 4 amod _ _ 4 objects object NOUN NNS Number=Plur 2 dobj _ _ 5 in in ADP IN _ 4 prep _ _ 6 lax lax ADJ JJ Degree=Pos 7 amod _ _ 7 slices slice NOUN NNS Number=Plur 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 $ Top $ $ top $ SYM $ _ 8 pobj _ _ 10 with with ADP IN _ 2 prep _ _ 11 respect respect NOUN NN Number=Sing 10 pobj _ _ 12 to to ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 specialization specialization NOUN NN Number=Sing 15 compound _ _ 15 order order NOUN NN Number=Sing 12 pobj _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 15 punct _ SpaceAfter=No 17 and and CCONJ CC ConjType=Cmp 15 cc _ _ 18 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 19 poss _ _ 19 opposite opposite NOUN NN Number=Sing 15 conj _ SpaceAfter=No 20 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 19 punct _ _ 21 on on ADP IN _ 19 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 23 base base NOUN NN Number=Sing 24 compound _ _ 24 space space NOUN NN Number=Sing 21 pobj _ _ 25 $ B $ $ b $ SYM $ _ 19 appos _ _ 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 0 ROOT _ _ 2 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # doc_id = 254 # sent_id = 1 # text = For a differential graded $ k $ - quiver $ Q $ we define the free $ A_infty $ - category $ FQ $ generated by $ Q $ . 1 For for ADP IN _ 10 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 differential differential NOUN NN Number=Sing 1 pobj _ _ 4 graded grade VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 acl _ _ 5 $ k $ $ k $ SYM $ _ 7 compound _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 quiver quiver NOUN NN Number=Sing 4 dobj _ _ 8 $ Q $ $ q $ SYM $ _ 4 dep _ _ 9 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 10 nsubj _ _ 10 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 the the DET DT Definite=Def|PronType=Art 15 det _ _ 12 free free ADJ JJ Degree=Pos 15 amod _ _ 13 $ A_infty $ $ a_infty $ SYM $ _ 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 category category NOUN NN Number=Sing 10 dobj _ _ 16 $ FQ $ $ fq $ SYM $ _ 15 appos _ _ 17 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 acl _ _ 18 by by ADP IN _ 17 prep _ _ 19 $ Q $ $ q $ SYM $ _ 18 pobj _ _ 20 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = The main result is that the restriction $ A_infty $ - functor $ A_infty(FQ, A) to A_1(Q, A) $ is an equivalence, where objects of the last $ A_ $ - category are morphisms of differential graded $ k $ - quivers $ Q to A $ . 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 result result NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 12 mark _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 restriction restriction NOUN NN Number=Sing 12 nsubj _ _ 8 $ A_infty $ $ a_infty $ SYM $ _ 10 det _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 functor functor NOUN NN Number=Sing 11 compound _ _ 11 $ A_infty(FQ, A) to A_1(Q, A) $ $ a_infty(fq, a) to a_1(q, a) $ SYM $ _ 7 appos _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 13 an an DET DT Definite=Ind|PronType=Art 14 det _ _ 14 equivalence equivalence NOUN NN Number=Sing 12 attr _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 where where SCONJ WRB _ 24 advmod _ _ 17 objects object NOUN NNS Number=Plur 24 nsubj _ _ 18 of of ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 23 det _ _ 20 last last ADJ JJ Degree=Pos 23 amod _ _ 21 $ A_ $ $ a_ $ SYM $ _ 23 nummod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 category category NOUN NN Number=Sing 18 pobj _ _ 24 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 28 auxpass _ _ 25 morphisms morphism NOUN NNS Number=Plur 24 attr _ _ 26 of of ADP IN _ 25 prep _ _ 27 differential differential NOUN NN Number=Sing 26 pobj _ _ 28 graded grade VERB VBD Tense=Past|VerbForm=Fin 14 relcl _ _ 29 $ k $ $ k $ SYM $ _ 31 nummod _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 quivers quiver NOUN NNS Number=Plur 32 compound _ _ 32 $ Q to A $ $ q to a $ SYM $ _ 28 dobj _ _ 33 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 255 # sent_id = 1 # text = It is shown that the cubical nerve of a strict omega - category is a sequence of sets with cubical face operations and distinguished subclasses of thin elements satisfying certain thin filler conditions. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 that that SCONJ IN _ 14 mark _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 cubical cubical ADJ JJ Degree=Pos 7 amod _ _ 7 nerve nerve NOUN NN Number=Sing 14 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 10 strict strict ADJ JJ Degree=Pos 13 amod _ _ 11 omega omega NOUN NN Number=Sing 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 category category NOUN NN Number=Sing 8 pobj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 sequence sequence NOUN NN Number=Sing 14 attr _ _ 17 of of ADP IN _ 16 prep _ _ 18 sets set NOUN NNS Number=Plur 17 pobj _ _ 19 with with ADP IN _ 18 prep _ _ 20 cubical cubical ADJ JJ Degree=Pos 21 amod _ _ 21 face face NOUN NN Number=Sing 22 compound _ _ 22 operations operation NOUN NNS Number=Plur 19 pobj _ _ 23 and and CCONJ CC ConjType=Cmp 22 cc _ _ 24 distinguished distinguished ADJ JJ Degree=Pos 25 amod _ _ 25 subclasses subclass NOUN NNS Number=Plur 22 conj _ _ 26 of of ADP IN _ 25 prep _ _ 27 thin thin ADJ JJ Degree=Pos 28 amod _ _ 28 elements element NOUN NNS Number=Plur 26 pobj _ _ 29 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 28 acl _ _ 30 certain certain ADJ JJ Degree=Pos 33 amod _ _ 31 thin thin ADJ JJ Degree=Pos 33 amod _ _ 32 filler filler NOUN NN Number=Sing 33 compound _ _ 33 conditions condition NOUN NNS Number=Plur 29 dobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = It is also shown that a sequence of this type is the cubical nerve of a strict omega - category unique up to isomorphism; the cubical nerve functor is therefore an equivalence of categories. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 4 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 3 also also ADV RB _ 4 advmod _ _ 4 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 30 ccomp _ _ 5 that that SCONJ IN _ 11 mark _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 sequence sequence NOUN NN Number=Sing 11 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 this this DET DT Number=Sing|PronType=Dem 10 det _ _ 10 type type NOUN NN Number=Sing 8 pobj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 cubical cubical ADJ JJ Degree=Pos 14 amod _ _ 14 nerve nerve NOUN NN Number=Sing 11 attr _ _ 15 of of ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 17 strict strict ADJ JJ Degree=Pos 20 amod _ _ 18 omega omega NOUN NN Number=Sing 20 compound _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 category category NOUN NN Number=Sing 15 pobj _ _ 21 unique unique ADJ JJ Degree=Pos 14 acl _ _ 22 up up ADP IN _ 21 prep _ _ 23 to to ADP IN _ 22 prep _ _ 24 isomorphism isomorphism NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 25 ; ; PUNCT : _ 30 punct _ _ 26 the the DET DT Definite=Def|PronType=Art 29 det _ _ 27 cubical cubical ADJ JJ Degree=Pos 29 amod _ _ 28 nerve nerve NOUN NN Number=Sing 29 compound _ _ 29 functor functor NOUN NN Number=Sing 30 nsubj _ _ 30 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 31 therefore therefore ADV RB _ 30 advmod _ _ 32 an an DET DT Definite=Ind|PronType=Art 33 det _ _ 33 equivalence equivalence NOUN NN Number=Sing 30 attr _ _ 34 of of ADP IN _ 33 prep _ _ 35 categories category NOUN NNS Number=Plur 34 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 30 punct _ SpaceAfter=No # sent_id = 3 # text = The sequences of sets involved are the analogues of cubical $ T $ - complexes appropriate for strict omega - categories. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 sequences sequence NOUN NNS Number=Plur 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 sets set NOUN NNS Number=Plur 3 pobj _ _ 5 involved involve VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 acl _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 analogues analogue NOUN NNS Number=Plur 6 attr _ _ 9 of of ADP IN _ 8 prep _ _ 10 cubical cubical ADJ JJ Degree=Pos 13 amod _ _ 11 $ T $ $ t $ SYM $ _ 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 complexes complex NOUN NNS Number=Plur 9 pobj _ _ 14 appropriate appropriate ADJ JJ Degree=Pos 13 amod _ _ 15 for for ADP IN _ 14 prep _ _ 16 strict strict ADJ JJ Degree=Pos 19 amod _ _ 17 omega omega NOUN NN Number=Sing 19 compound _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 categories category NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = Degeneracies are not required in the definition of these sequences, but can in fact be constructed as thin fillers. 1 Degeneracies degeneracy NOUN NNS Number=Plur 4 nsubjpass _ _ 2 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 3 not not PART RB Polarity=Neg 4 neg _ _ 4 required require VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 in in ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 definition definition NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 these these DET DT Number=Plur|PronType=Dem 10 det _ _ 10 sequences sequence NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 4 punct _ _ 12 but but CCONJ CC ConjType=Cmp 4 cc _ _ 13 can can AUX MD VerbForm=Fin 17 aux _ _ 14 in in ADP IN _ 17 prep _ _ 15 fact fact NOUN NN Number=Sing 14 pobj _ _ 16 be be AUX VB VerbForm=Inf 17 auxpass _ _ 17 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 conj _ _ 18 as as ADP IN _ 17 prep _ _ 19 thin thin ADJ JJ Degree=Pos 20 amod _ _ 20 fillers filler NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 5 # text = The proof of the thin filler conditions uses chain complexes and chain homotopies. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 proof proof NOUN NN Number=Sing 8 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 thin thin ADJ JJ Degree=Pos 7 amod _ _ 6 filler filler NOUN NN Number=Sing 7 compound _ _ 7 conditions condition NOUN NNS Number=Plur 3 pobj _ _ 8 uses use VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 chain chain NOUN NN Number=Sing 10 compound _ _ 10 complexes complex NOUN NNS Number=Plur 8 dobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 chain chain NOUN NN Number=Sing 13 compound _ _ 13 homotopies homotopie NOUN NNS Number=Plur 10 conj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # doc_id = 256 # sent_id = 1 # text = We show, for an arbitrary adjunction $ F dashv U : cal B to cal A $ with $ cal B $ Cauchy complete, that the functor $ F $ is comonadic if and only if the monad $ T $ on $ cal A $ induced by the adjunction is of effective descent type, meaning that the free $ T $ - algebra functor $ F^{T}: cal A to cal A^{T} $ is comonadic. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 2 punct _ _ 4 for for ADP IN _ 2 prep _ _ 5 an an DET DT Definite=Ind|PronType=Art 7 det _ _ 6 arbitrary arbitrary ADJ JJ Degree=Pos 7 amod _ _ 7 adjunction adjunction NOUN NN Number=Sing 4 pobj _ _ 8 $ F dashv U : cal B to cal A $ $ f dashv u : cal b to cal a $ SYM $ _ 7 nmod _ _ 9 with with ADP IN _ 7 prep _ _ 10 $ cal B $ $ cal b $ SYM $ _ 11 nmod _ _ 11 Cauchy cauchy NOUN NN Number=Sing 9 pobj _ _ 12 complete complete ADJ JJ Degree=Pos 7 amod _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 2 punct _ _ 14 that that SCONJ IN _ 18 mark _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 functor functor NOUN NN Number=Sing 18 nsubj _ _ 17 $ F $ $ f $ SYM $ _ 16 appos _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 19 comonadic comonadic ADJ JJ Degree=Pos 18 acomp _ _ 20 if if SCONJ IN _ 33 mark _ _ 21 and and CCONJ CC ConjType=Cmp 33 cc _ _ 22 only only ADV RB _ 33 advmod _ _ 23 if if SCONJ IN _ 33 mark _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 monad monad NOUN NNS Number=Plur 33 nsubj _ _ 26 $ T $ $ t $ SYM $ _ 25 appos _ _ 27 on on ADP IN _ 25 prep _ _ 28 $ cal A $ $ cal a $ SYM $ _ 27 pobj _ _ 29 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 25 acl _ _ 30 by by ADP IN _ 29 agent _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 adjunction adjunction NOUN NN Number=Sing 30 pobj _ _ 33 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 advcl _ _ 34 of of ADP IN _ 33 prep _ _ 35 effective effective ADJ JJ Degree=Pos 37 amod _ _ 36 descent descent NOUN NN Number=Sing 37 compound _ _ 37 type type NOUN NN Number=Sing 34 pobj _ SpaceAfter=No 38 , , PUNCT , PunctType=Comm 33 punct _ _ 39 meaning mean VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 33 advcl _ _ 40 that that SCONJ IN _ 48 mark _ _ 41 the the DET DT Definite=Def|PronType=Art 46 det _ _ 42 free free ADJ JJ Degree=Pos 46 amod _ _ 43 $ T $ $ t $ SYM $ _ 45 nummod _ _ 44 - - PUNCT HYPH PunctType=Dash 45 punct _ _ 45 algebra algebra NOUN NN Number=Sing 46 compound _ _ 46 functor functor NOUN NN Number=Sing 48 nsubj _ _ 47 $ F^{T}: cal A to cal A^{T} $ $ f^{t}: cal a to cal a^{t} $ SYM $ _ 48 nsubj _ _ 48 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 39 ccomp _ _ 49 comonadic comonadic ADJ JJ Degree=Pos 48 acomp _ SpaceAfter=No 50 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = This result is applied to several situations: In Section 4 to give a sufficient condition for an exponential functor on a cartesian closed category to be monadic, in Sections 5 and 6 to settle the question of the comonadicity of those functors whose domain is Set, or Set $ _{star} $ , or the category of modules over a semisimple ring, in Section 7 to study the effectiveness of (co)monads on module categories. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 result result NOUN NN Number=Sing 4 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 applied apply VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 to to ADP IN _ 4 prep _ _ 6 several several ADJ JJ Degree=Pos 7 amod _ _ 7 situations situation NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 8 : : PUNCT : _ 4 punct _ _ 9 In in ADP IN _ 4 prep _ _ 10 Section section NOUN NN Number=Sing 9 pobj _ _ 11 4 4 NUM CD NumType=Card 10 nummod _ _ 12 to to PART TO _ 13 aux _ _ 13 give give VERB VB VerbForm=Inf 10 relcl _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 sufficient sufficient ADJ JJ Degree=Pos 16 amod _ _ 16 condition condition NOUN NN Number=Sing 13 dobj _ _ 17 for for ADP IN _ 16 prep _ _ 18 an an DET DT Definite=Ind|PronType=Art 20 det _ _ 19 exponential exponential ADJ JJ Degree=Pos 20 amod _ _ 20 functor functor NOUN NN Number=Sing 17 pobj _ _ 21 on on ADP IN _ 20 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 23 cartesian cartesian ADJ JJ Degree=Pos 24 advmod _ _ 24 closed closed ADJ JJ Degree=Pos 25 amod _ _ 25 category category NOUN NN Number=Sing 21 pobj _ _ 26 to to PART TO _ 27 aux _ _ 27 be be AUX VB VerbForm=Inf 16 acl _ _ 28 monadic monadic ADJ JJ Degree=Pos 27 acomp _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 13 punct _ _ 30 in in ADP IN _ 13 prep _ _ 31 Sections Sections PROPN NNP Number=Sing 30 pobj _ _ 32 5 5 NUM CD NumType=Card 31 nummod _ _ 33 and and CCONJ CC ConjType=Cmp 31 cc _ _ 34 6 6 NUM CD NumType=Card 31 conj _ _ 35 to to PART TO _ 36 aux _ _ 36 settle settle VERB VB VerbForm=Inf 13 advcl _ _ 37 the the DET DT Definite=Def|PronType=Art 38 det _ _ 38 question question NOUN NN Number=Sing 36 dobj _ _ 39 of of ADP IN _ 38 prep _ _ 40 the the DET DT Definite=Def|PronType=Art 41 det _ _ 41 comonadicity comonadicity NOUN NN Number=Sing 39 pobj _ _ 42 of of ADP IN _ 41 prep _ _ 43 those those DET DT Number=Plur|PronType=Dem 44 det _ _ 44 functors functor NOUN NNS Number=Plur 42 pobj _ _ 45 whose whose DET WP$ Poss=Yes 46 poss _ _ 46 domain domain NOUN NN Number=Sing 47 nsubj _ _ 47 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 44 relcl _ _ 48 Set set NOUN NN Number=Sing 47 attr _ SpaceAfter=No 49 , , PUNCT , PunctType=Comm 48 punct _ _ 50 or or CCONJ CC ConjType=Cmp 48 cc _ _ 51 Set set VERB VB VerbForm=Inf 48 conj _ _ 52 $ _{star} $ $ _{star} $ SYM $ _ 51 dobj _ _ 53 , , PUNCT , PunctType=Comm 52 punct _ _ 54 or or CCONJ CC ConjType=Cmp 52 cc _ _ 55 the the DET DT Definite=Def|PronType=Art 56 det _ _ 56 category category NOUN NN Number=Sing 52 conj _ _ 57 of of ADP IN _ 56 prep _ _ 58 modules module NOUN NNS Number=Plur 57 pobj _ _ 59 over over ADP IN _ 58 prep _ _ 60 a a DET DT Definite=Ind|PronType=Art 62 det _ _ 61 semisimple semisimple ADJ JJ Degree=Pos 62 amod _ _ 62 ring ring NOUN NN Number=Sing 59 pobj _ SpaceAfter=No 63 , , PUNCT , PunctType=Comm 51 punct _ _ 64 in in ADP IN _ 51 prep _ _ 65 Section section NOUN NN Number=Sing 64 pobj _ _ 66 7 7 NUM CD NumType=Card 65 nummod _ _ 67 to to PART TO _ 68 aux _ _ 68 study study VERB VB VerbForm=Inf 51 advcl _ _ 69 the the DET DT Definite=Def|PronType=Art 70 det _ _ 70 effectiveness effectiveness NOUN NN Number=Sing 68 dobj _ _ 71 of of ADP IN _ 70 prep _ _ 72 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 71 punct _ SpaceAfter=No 73 co)monads co)monad NOUN NNS Number=Plur 71 pobj _ _ 74 on on ADP IN _ 73 prep _ _ 75 module module NOUN NN Number=Sing 76 compound _ _ 76 categories category NOUN NNS Number=Plur 74 pobj _ SpaceAfter=No 77 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = Our final application is a descent theorem for noncommutative rings from which we deduce an important result of Joyal and Tierney and of Olivier, asserting that the effective descent morphisms in the opposite of the category of commutative unital rings are precisely the pure monomorphisms. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 3 poss _ _ 2 final final ADJ JJ Degree=Pos 3 amod _ _ 3 application application NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 descent descent NOUN NN Number=Sing 7 compound _ _ 7 theorem theorem ADJ JJ Degree=Pos 4 attr _ _ 8 for for ADP IN _ 7 prep _ _ 9 noncommutative noncommutative ADJ JJ Degree=Pos 10 amod _ _ 10 rings ring NOUN NNS Number=Plur 8 pobj _ _ 11 from from ADP IN _ 14 prep _ _ 12 which which PRON WDT _ 11 pobj _ _ 13 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 14 nsubj _ _ 14 deduce deduce VERB VBP Tense=Pres|VerbForm=Fin 10 relcl _ _ 15 an an DET DT Definite=Ind|PronType=Art 17 det _ _ 16 important important ADJ JJ Degree=Pos 17 amod _ _ 17 result result NOUN NN Number=Sing 14 dobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 Joyal Joyal PROPN NNP Number=Sing 18 pobj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 Tierney Tierney PROPN NNP Number=Sing 19 conj _ _ 22 and and CCONJ CC ConjType=Cmp 19 cc _ _ 23 of of ADP IN _ 19 conj _ _ 24 Olivier Olivier PROPN NNP Number=Sing 23 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 14 punct _ _ 26 asserting assert VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 advcl _ _ 27 that that SCONJ IN _ 42 mark _ _ 28 the the DET DT Definite=Def|PronType=Art 31 det _ _ 29 effective effective ADJ JJ Degree=Pos 31 amod _ _ 30 descent descent NOUN NN Number=Sing 31 compound _ _ 31 morphisms morphism NOUN NNS Number=Plur 42 nsubj _ _ 32 in in ADP IN _ 31 prep _ _ 33 the the DET DT Definite=Def|PronType=Art 34 det _ _ 34 opposite opposite NOUN NN Number=Sing 32 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 37 det _ _ 37 category category NOUN NN Number=Sing 35 pobj _ _ 38 of of ADP IN _ 37 prep _ _ 39 commutative commutative ADJ JJ Degree=Pos 41 amod _ _ 40 unital unital PROPN NNP Number=Sing 41 compound _ _ 41 rings ring NOUN NNS Number=Plur 38 pobj _ _ 42 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 26 ccomp _ _ 43 precisely precisely ADV RB _ 42 advmod _ _ 44 the the DET DT Definite=Def|PronType=Art 46 det _ _ 45 pure pure ADJ JJ Degree=Pos 46 amod _ _ 46 monomorphisms monomorphism NOUN NNS Number=Plur 42 attr _ SpaceAfter=No 47 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 257 # sent_id = 1 # text = We give a Dialectica - style interpretation of first - order classical affine logic. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 4 Dialectica Dialectica PROPN NNP Number=Sing 6 compound _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 style style NOUN NN Number=Sing 7 compound _ _ 7 interpretation interpretation NOUN NN Number=Sing 2 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 first first ADJ JJ Degree=Pos 11 amod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 order order NOUN NN Number=Sing 14 nmod _ _ 12 classical classical ADJ JJ Degree=Pos 14 amod _ _ 13 affine affine NOUN NN Number=Sing 14 compound _ _ 14 logic logic NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = By moving to a contraction - free logic, the translation (also known as $ D $ - translation) of a first - order formula into a higher - type $ existsforall $ - formula can be made symmetric with respect to duality, including exponentials. 1 By by ADP IN _ 36 prep _ _ 2 moving move VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 1 pcomp _ _ 3 to to ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 5 contraction contraction NOUN NN Number=Sing 7 npadvmod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 free free ADJ JJ Degree=Pos 8 amod _ _ 8 logic logic NOUN NN Number=Sing 3 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 36 punct _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 translation translation NOUN NN Number=Sing 36 nsubjpass _ _ 12 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 14 punct _ SpaceAfter=No 13 also also ADV RB _ 14 advmod _ _ 14 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 acl _ _ 15 as as ADP IN _ 14 prep _ _ 16 $ D $ $ d $ SYM $ _ 18 compound _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 translation translation NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 19 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 14 punct _ _ 20 of of ADP IN _ 14 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 22 first first ADJ JJ Degree=Pos 24 amod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 order order NOUN NN Number=Sing 25 compound _ _ 25 formula formula NOUN NN Number=Sing 20 pobj _ _ 26 into into ADP IN _ 25 prep _ _ 27 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 28 higher high ADJ JJR Degree=Cmp 30 amod _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 type type NOUN NN Number=Sing 33 nmod _ _ 31 $ existsforall $ $ existsforall $ SYM $ _ 33 nummod _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 formula formula NOUN NN Number=Sing 26 pobj _ _ 34 can can AUX MD VerbForm=Fin 36 aux _ _ 35 be be AUX VB VerbForm=Inf 36 auxpass _ _ 36 made make VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 37 symmetric symmetric ADJ JJ Degree=Pos 36 oprd _ _ 38 with with ADP IN _ 37 prep _ _ 39 respect respect NOUN NN Number=Sing 38 pobj _ _ 40 to to ADP IN _ 39 prep _ _ 41 duality duality NOUN NN Number=Sing 40 pobj _ SpaceAfter=No 42 , , PUNCT , PunctType=Comm 41 punct _ _ 43 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 41 prep _ _ 44 exponentials exponential NOUN NNS Number=Plur 43 pobj _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 36 punct _ SpaceAfter=No # sent_id = 3 # text = It turned out that the propositional part of our $ D $ - translation uses the same construction as de Paiva's dialectica category $ GC $ and we show how our $ D $ - translation extends $ GC $ to the first - order setting in terms of an indexed category. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 turned turn VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 3 out out ADP RP _ 2 prt _ _ 4 that that SCONJ IN _ 13 mark _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 propositional propositional ADJ JJ Degree=Pos 7 amod _ _ 7 part part NOUN NN Number=Sing 13 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 12 poss _ _ 10 $ D $ $ d $ SYM $ _ 12 nummod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 translation translation NOUN NN Number=Sing 8 pobj _ _ 13 uses use VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 same same ADJ JJ Degree=Pos 16 amod _ _ 16 construction construction NOUN NN Number=Sing 13 dobj _ _ 17 as as ADP IN _ 16 prep _ _ 18 de de PROPN NNP Number=Sing 19 compound _ _ 19 Paiva Paiva PROPN NNP Number=Sing 22 poss _ SpaceAfter=No 20 's 's PART POS _ 19 case _ _ 21 dialectica dialectica NOUN NN Number=Sing 22 compound _ _ 22 category category NOUN NN Number=Sing 17 pobj _ _ 23 $ GC $ $ gc $ SYM $ _ 13 dep _ _ 24 and and CCONJ CC ConjType=Cmp 13 cc _ _ 25 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 26 nsubj _ _ 26 show show VERB VBP Tense=Pres|VerbForm=Fin 13 conj _ _ 27 how how SCONJ WRB _ 32 advmod _ _ 28 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 31 poss _ _ 29 $ D $ $ d $ SYM $ _ 31 compound _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 translation translation NOUN NN Number=Sing 32 nsubj _ _ 32 extends extend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 26 ccomp _ _ 33 $ GC $ $ gc $ SYM $ _ 32 dep _ _ 34 to to ADP IN _ 32 prep _ _ 35 the the DET DT Definite=Def|PronType=Art 39 det _ _ 36 first first ADJ JJ Degree=Pos 38 amod _ _ 37 - - PUNCT HYPH PunctType=Dash 38 punct _ _ 38 order order NOUN NN Number=Sing 39 compound _ _ 39 setting setting NOUN NN Number=Sing 34 pobj _ _ 40 in in ADP IN _ 39 prep _ _ 41 terms term NOUN NNS Number=Plur 40 pobj _ _ 42 of of ADP IN _ 41 prep _ _ 43 an an DET DT Definite=Ind|PronType=Art 45 det _ _ 44 indexed indexed ADJ JJ Degree=Pos 45 amod _ _ 45 category category NOUN NN Number=Sing 42 pobj _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = Furthermore the combination of Girard's $ ?clik $ - translation and our $ D $ - translation results in the essentially equivalent $ existsforall $ - formulas as the double - negation translation and Godel's original $ D $ - translation. 1 Furthermore furthermore ADV RB _ 3 advmod _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 combination combination NOUN NN Number=Sing 0 ROOT _ _ 4 of of ADP IN _ 3 prep _ _ 5 Girard Girard PROPN NNP Number=Sing 9 poss _ SpaceAfter=No 6 's 's PART POS _ 5 case _ _ 7 $ ?clik $ $ ?clik $ NOUN NN Number=Sing 9 compound _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 translation translation NOUN NN Number=Sing 4 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 15 poss _ _ 12 $ D $ $ d $ SYM $ _ 14 nummod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 translation translation NOUN NN Number=Sing 15 compound _ _ 15 results result NOUN NNS Number=Plur 9 conj _ _ 16 in in ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 22 det _ _ 18 essentially essentially ADV RB _ 19 advmod _ _ 19 equivalent equivalent ADJ JJ Degree=Pos 22 amod _ _ 20 $ existsforall $ $ existsforall $ SYM $ _ 22 compound _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 formulas formula NOUN NNS Number=Plur 16 pobj _ _ 23 as as ADP IN _ 3 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 28 det _ _ 25 double double ADJ JJ Degree=Pos 27 amod _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 negation negation NOUN NN Number=Sing 28 compound _ _ 28 translation translation NOUN NN Number=Sing 23 pobj _ _ 29 and and CCONJ CC ConjType=Cmp 28 cc _ _ 30 Godel Godel PROPN NNP Number=Sing 35 poss _ SpaceAfter=No 31 's 's PART POS _ 30 case _ _ 32 original original ADJ JJ Degree=Pos 35 amod _ _ 33 $ D $ $ d $ SYM $ _ 35 compound _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 translation translation NOUN NN Number=Sing 28 conj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 258 # sent_id = 1 # text = This note investigates two generic constructions used to produce categorical models of linear logic, the Chu construction and the Dialectica construction, in parallel. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 note note NOUN NN Number=Sing 3 nsubj _ _ 3 investigates investigate VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 two two NUM CD NumType=Card 6 nummod _ _ 5 generic generic ADJ JJ Degree=Pos 6 amod _ _ 6 constructions construction NOUN NNS Number=Plur 3 dobj _ _ 7 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 acl _ _ 8 to to PART TO _ 9 aux _ _ 9 produce produce VERB VB VerbForm=Inf 7 xcomp _ _ 10 categorical categorical ADJ JJ Degree=Pos 11 amod _ _ 11 models model NOUN NNS Number=Plur 9 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 linear linear ADJ JJ Degree=Pos 14 amod _ _ 14 logic logic NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 6 punct _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 Chu Chu PROPN NNP Number=Sing 18 compound _ _ 18 construction construction NOUN NN Number=Sing 6 conj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 Dialectica Dialectica PROPN NNP Number=Sing 22 compound _ _ 22 construction construction NOUN NN Number=Sing 18 conj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 3 punct _ _ 24 in in ADP IN _ 3 prep _ _ 25 parallel parallel NOUN NN Number=Sing 24 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = The constructions have the same objects, but are rather different in other ways. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 constructions construction NOUN NNS Number=Plur 3 nsubj _ _ 3 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 same same ADJ JJ Degree=Pos 6 amod _ _ 6 objects object NOUN NNS Number=Plur 3 dobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 3 punct _ _ 8 but but CCONJ CC ConjType=Cmp 3 cc _ _ 9 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 conj _ _ 10 rather rather ADV RB _ 11 advmod _ _ 11 different different ADJ JJ Degree=Pos 9 acomp _ _ 12 in in ADP IN _ 11 prep _ _ 13 other other ADJ JJ Degree=Pos 14 amod _ _ 14 ways way NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = We discuss similarities and differences and prove that the Dialectica construction can be done over a symmetric monoidal closed basis. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 discuss discuss VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 similarities similarity NOUN NNS Number=Plur 2 dobj _ _ 4 and and CCONJ CC ConjType=Cmp 3 cc _ _ 5 differences difference NOUN NNS Number=Plur 3 conj _ _ 6 and and CCONJ CC ConjType=Cmp 2 cc _ _ 7 prove prove VERB VB VerbForm=Inf 2 conj _ _ 8 that that SCONJ IN _ 14 mark _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 Dialectica Dialectica PROPN NNP Number=Sing 11 compound _ _ 11 construction construction NOUN NN Number=Sing 14 nsubjpass _ _ 12 can can AUX MD VerbForm=Fin 14 aux _ _ 13 be be AUX VB VerbForm=Inf 14 auxpass _ _ 14 done do VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 ccomp _ _ 15 over over ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 symmetric symmetric ADJ JJ Degree=Pos 18 amod _ _ 18 monoidal monoidal NOUN NN Number=Sing 15 pobj _ _ 19 closed close VERB VBD Tense=Past|VerbForm=Fin 20 amod _ _ 20 basis basis NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We also point out interesting open problems concerning the Dialectica construction. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 point point VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 out out ADP RP _ 3 prt _ _ 5 interesting interesting ADJ JJ Degree=Pos 7 amod _ _ 6 open open ADJ JJ Degree=Pos 7 amod _ _ 7 problems problem NOUN NNS Number=Plur 3 dobj _ _ 8 concerning concern VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 acl _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 Dialectica Dialectica PROPN NNP Number=Sing 11 compound _ _ 11 construction construction NOUN NN Number=Sing 8 dobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 259 # sent_id = 1 # text = The cyclic Chu - construction for closed bicategories with pullbacks, which generalizes the original Chu - construction for symmetric monoidal closed categories, turns out to have a non - cyclic counterpart. 1 The the DET DT Definite=Def|PronType=Art 5 det _ _ 2 cyclic cyclic ADJ JJ Degree=Pos 5 amod _ _ 3 Chu Chu PROPN NNP Number=Sing 5 compound _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 construction construction NOUN NN Number=Sing 25 nsubj _ _ 6 for for ADP IN _ 5 prep _ _ 7 closed closed ADJ JJ Degree=Pos 8 amod _ _ 8 bicategories bicategorie NOUN NNS Number=Plur 6 pobj _ _ 9 with with ADP IN _ 8 prep _ _ 10 pullbacks pullback NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 which which PRON WDT _ 13 nsubj _ _ 13 generalizes generalize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 relcl _ _ 14 the the DET DT Definite=Def|PronType=Art 18 det _ _ 15 original original ADJ JJ Degree=Pos 18 amod _ _ 16 Chu Chu PROPN NNP Number=Sing 18 compound _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 construction construction NOUN NN Number=Sing 13 dobj _ _ 19 for for ADP IN _ 18 prep _ _ 20 symmetric symmetric ADJ JJ Degree=Pos 23 amod _ _ 21 monoidal monoidal NOUN NN Number=Sing 23 amod _ _ 22 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 amod _ _ 23 categories category NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 25 punct _ _ 25 turns turn VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 26 out out ADP RP _ 25 prt _ _ 27 to to PART TO _ 28 aux _ _ 28 have have VERB VB VerbForm=Inf 25 xcomp _ _ 29 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 30 non non ADJ JJ Degree=Pos 32 amod _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 cyclic cyclic ADJ JJ Degree=Pos 33 amod _ _ 33 counterpart counterpart NOUN NN Number=Sing 28 dobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 25 punct _ SpaceAfter=No # sent_id = 2 # text = Both use so - called Chu - spans as new 1 - cells between 1 - cells of the underlying bicategory, which form the new objects. 1 Both both PRON DT _ 2 nsubj _ _ 2 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 so so ADV RB _ 5 advmod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 6 Chu Chu PROPN NNP Number=Sing 8 compound _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 spans span NOUN NNS Number=Plur 2 dobj _ _ 9 as as ADP IN _ 2 prep _ _ 10 new new ADJ JJ Degree=Pos 13 amod _ _ 11 1 1 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 cells cell NOUN NNS Number=Plur 9 pobj _ _ 14 between between ADP IN _ 13 prep _ _ 15 1 1 NUM CD NumType=Card 17 nummod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 cells cell NOUN NNS Number=Plur 14 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 underlying underlying ADJ JJ Degree=Pos 21 amod _ _ 21 bicategory bicategory NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 which which PRON WDT _ 24 nsubj _ _ 24 form form VERB VBP Tense=Pres|VerbForm=Fin 21 relcl _ _ 25 the the DET DT Definite=Def|PronType=Art 27 det _ _ 26 new new ADJ JJ Degree=Pos 27 amod _ _ 27 objects object NOUN NNS Number=Plur 24 dobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Chu - spans may be seen as a natural generalization of 2 - cell - spans in the base bicategory that no longer are confined to a single hom - category. 1 Chu Chu PROPN NNP Number=Sing 3 compound _ _ 2 - - PUNCT HYPH PunctType=Dash 3 punct _ _ 3 spans span NOUN NNS Number=Plur 6 nsubjpass _ _ 4 may may AUX MD VerbForm=Fin 6 aux _ _ 5 be be AUX VB VerbForm=Inf 6 auxpass _ _ 6 seen see VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 as as ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 natural natural ADJ JJ Degree=Pos 10 amod _ _ 10 generalization generalization NOUN NN Number=Sing 7 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 2 2 NUM CD NumType=Card 14 nummod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 cell cell NOUN NN Number=Sing 16 compound _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 spans span NOUN NNS Number=Plur 11 pobj _ _ 17 in in ADP IN _ 10 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 base base ADJ JJ Degree=Pos 20 compound _ _ 20 bicategory bicategory NOUN NN Number=Sing 17 pobj _ _ 21 that that PRON WDT PronType=Rel 25 nsubjpass _ _ 22 no no ADV RB _ 23 neg _ _ 23 longer long ADV RBR Degree=Cmp 25 advmod _ _ 24 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 25 auxpass _ _ 25 confined confine VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 ccomp _ _ 26 to to ADP IN _ 25 prep _ _ 27 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 28 single single ADJ JJ Degree=Pos 31 amod _ _ 29 hom hom NOUN NN Number=Sing 31 amod _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 category category NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = This view helps to clarify the composition of Chu - spans. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 view view NOUN NN Number=Sing 3 nsubj _ _ 3 helps help VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 to to PART TO _ 5 aux _ _ 5 clarify clarify VERB VB VerbForm=Inf 3 xcomp _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 composition composition NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 Chu Chu PROPN NNP Number=Sing 11 compound _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 spans span NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = We consider various approaches of linking the underlying bicategory with the newly constructed ones, for example by means of two - dimensional generalizations of bifibrations. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 various various ADJ JJ Degree=Pos 4 amod _ _ 4 approaches approach NOUN NNS Number=Plur 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 linking link VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 pcomp _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 underlying underlying ADJ JJ Degree=Pos 9 amod _ _ 9 bicategory bicategory NOUN NN Number=Sing 6 dobj _ _ 10 with with ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 14 det _ _ 12 newly newly ADV RB _ 13 advmod _ _ 13 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 14 ones one NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 2 punct _ _ 16 for for ADP IN _ 2 prep _ _ 17 example example NOUN NN Number=Sing 16 pobj _ _ 18 by by ADP IN _ 17 prep _ _ 19 means mean NOUN NNS Number=Plur 18 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 two two NUM CD NumType=Card 23 advmod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 dimensional dimensional ADJ JJ Degree=Pos 24 amod _ _ 24 generalizations generalization NOUN NNS Number=Plur 20 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 bifibrations bifibration NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = In the quest for a better connection, we investigate, whether Chu - spans form a double category. 1 In in ADP IN _ 10 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 quest quest NOUN NN Number=Sing 1 pobj _ _ 4 for for ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 better well ADJ JJR Degree=Cmp 7 amod _ _ 7 connection connection NOUN NN Number=Sing 4 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 10 punct _ _ 9 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 10 nsubj _ _ 10 investigate investigate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 whether whether SCONJ IN _ 16 mark _ _ 13 Chu Chu PROPN NNP Number=Sing 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 spans span NOUN NNS Number=Plur 16 nsubj _ _ 16 form form VERB VBP Tense=Pres|VerbForm=Fin 10 ccomp _ _ 17 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 18 double double ADJ JJ Degree=Pos 19 amod _ _ 19 category category NOUN NN Number=Sing 16 dobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 7 # text = While this turns out not to be the case, we are led to considering a generalization of the construction to paths of 1 - cells in the base, leading to two hierarchies of closed bicategories, one for linear paths and one for loops. 1 While while SCONJ IN _ 3 mark _ _ 2 this this PRON DT Number=Sing|PronType=Dem 3 nsubj _ _ 3 turns turn VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 advcl _ _ 4 out out ADP RP _ 3 prt _ _ 5 not not PART RB Polarity=Neg 7 neg _ _ 6 to to PART TO _ 7 aux _ _ 7 be be AUX VB VerbForm=Inf 3 xcomp _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 case case NOUN NN Number=Sing 7 attr _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 13 punct _ _ 11 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubjpass _ _ 12 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 led lead VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 14 to to ADP IN _ 13 prep _ _ 15 considering consider VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 pcomp _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 generalization generalization NOUN NN Number=Sing 15 dobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 construction construction NOUN NN Number=Sing 18 pobj _ _ 21 to to ADP IN _ 15 prep _ _ 22 paths path NOUN NNS Number=Plur 21 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 1 1 NUM CD NumType=Card 26 nummod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 cells cell NOUN NNS Number=Plur 23 pobj _ _ 27 in in ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 base base NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 13 punct _ _ 31 leading lead VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 advcl _ _ 32 to to ADP IN _ 31 prep _ _ 33 two two NUM CD NumType=Card 34 nummod _ _ 34 hierarchies hierarchy NOUN NNS Number=Plur 32 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 closed closed ADJ JJ Degree=Pos 37 amod _ _ 37 bicategories bicategorie NOUN NNS Number=Plur 35 pobj _ SpaceAfter=No 38 , , PUNCT , PunctType=Comm 34 punct _ _ 39 one one NUM CD NumType=Card 34 appos _ _ 40 for for ADP IN _ 39 prep _ _ 41 linear linear ADJ JJ Degree=Pos 42 amod _ _ 42 paths path NOUN NNS Number=Plur 40 pobj _ _ 43 and and CCONJ CC ConjType=Cmp 39 cc _ _ 44 one one NUM CD NumType=Card 39 conj _ _ 45 for for ADP IN _ 44 prep _ _ 46 loops loop NOUN NNS Number=Plur 45 pobj _ SpaceAfter=No 47 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 8 # text = The possibility of moving beyond paths, respectively, loops of the same length is indicated. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 possibility possibility NOUN NN Number=Sing 16 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 moving move VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 pcomp _ _ 5 beyond beyond ADP IN _ 4 prep _ _ 6 paths path NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 2 punct _ _ 8 respectively respectively ADV RB _ 10 advmod _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 10 punct _ _ 10 loops loop NOUN NNS Number=Plur 16 nsubjpass _ _ 11 of of ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 same same ADJ JJ Degree=Pos 14 amod _ _ 14 length length NOUN NN Number=Sing 11 pobj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 auxpass _ _ 16 indicated indicate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 9 # text = Finally, Chu - spans in rel are identified as bipartite state transition systems. 1 Finally finally ADV RB _ 9 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 9 punct _ _ 3 Chu Chu PROPN NNP Number=Sing 5 compound _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 spans spans PROPN NNPS Number=Plur 9 nsubjpass _ _ 6 in in ADP IN _ 5 prep _ _ 7 rel rel NOUN NN Number=Sing 6 pobj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 identified identify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 as as ADP IN _ 9 prep _ _ 11 bipartite bipartite ADJ JJ Degree=Pos 14 amod _ _ 12 state state NOUN NN Number=Sing 14 compound _ _ 13 transition transition NOUN NN Number=Sing 14 compound _ _ 14 systems system NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 10 # text = Even though their composition may fail here due to the lack of pullbacks in $ rel $ , basic game - theoretic constructions can be performed on cyclic Chu - spans. 1 Even even ADV RB _ 6 advmod _ _ 2 though though SCONJ IN _ 6 mark _ _ 3 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 4 poss _ _ 4 composition composition NOUN NN Number=Sing 6 nsubj _ _ 5 may may AUX MD VerbForm=Fin 6 aux _ _ 6 fail fail VERB VB VerbForm=Inf 24 advcl _ _ 7 here here ADV RB PronType=Dem 6 advmod _ _ 8 due due ADP IN _ 6 prep _ _ 9 to to ADP IN _ 8 pcomp _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 lack lack NOUN NN Number=Sing 8 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 pullbacks pullback NOUN NNS Number=Plur 12 pobj _ _ 14 in in ADP IN _ 13 prep _ _ 15 $ rel $ $ rel $ SYM $ _ 14 pobj _ _ 16 , , PUNCT , PunctType=Comm 24 punct _ _ 17 basic basic ADJ JJ Degree=Pos 21 amod _ _ 18 game game NOUN NN Number=Sing 20 npadvmod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 theoretic theoretic ADJ JJ Degree=Pos 21 amod _ _ 21 constructions construction NOUN NNS Number=Plur 24 nsubjpass _ _ 22 can can AUX MD VerbForm=Fin 24 aux _ _ 23 be be AUX VB VerbForm=Inf 24 auxpass _ _ 24 performed perform VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 25 on on ADP IN _ 24 prep _ _ 26 cyclic cyclic ADJ JJ Degree=Pos 29 compound _ _ 27 Chu Chu PROPN NNP Number=Sing 29 compound _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 spans span NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 24 punct _ SpaceAfter=No # sent_id = 11 # text = These are available in all symmetric monoidal closed categories with finite products. 1 These these PRON DT Number=Plur|PronType=Dem 2 nsubj _ _ 2 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 available available ADJ JJ Degree=Pos 2 acomp _ _ 4 in in ADP IN _ 3 prep _ _ 5 all all DET DT _ 7 det _ _ 6 symmetric symmetric ADJ JJ Degree=Pos 7 amod _ _ 7 monoidal monoidal NOUN NN Number=Sing 4 pobj _ _ 8 closed close VERB VBD Tense=Past|VerbForm=Fin 2 conj _ _ 9 categories category NOUN NNS Number=Plur 8 dobj _ _ 10 with with ADP IN _ 9 prep _ _ 11 finite finite ADJ JJ Degree=Pos 12 amod _ _ 12 products product NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 12 # text = If pullbacks exist as well, the bicategory of cyclic Chu - spans inherits a monoidal structure that on objects coincides with the categorical product. 1 If if SCONJ IN _ 3 mark _ _ 2 pullbacks pullback NOUN NNS Number=Plur 3 nsubj _ _ 3 exist exist VERB VBP Tense=Pres|VerbForm=Fin 14 advcl _ _ 4 as as ADV RB _ 5 advmod _ _ 5 well well ADV RB Degree=Pos 3 advmod _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 14 punct _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 bicategory bicategory NOUN NN Number=Sing 14 nsubj _ _ 9 of of ADP IN _ 8 prep _ _ 10 cyclic cyclic ADJ JJ Degree=Pos 13 amod _ _ 11 Chu Chu PROPN NNP Number=Sing 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 spans spans PROPN NNP Number=Sing 9 pobj _ _ 14 inherits inherit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 monoidal monoidal ADJ JJ Degree=Pos 17 amod _ _ 17 structure structure NOUN NN Number=Sing 14 dobj _ _ 18 that that PRON WDT PronType=Rel 19 nsubj _ _ 19 on on ADP IN _ 14 ccomp _ _ 20 objects object NOUN NNS Number=Plur 19 pobj _ _ 21 coincides coincide NOUN NNS Number=Plur 19 pobj _ _ 22 with with ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 categorical categorical ADJ JJ Degree=Pos 25 amod _ _ 25 product product NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # doc_id = 260 # sent_id = 1 # text = This paper serves to bring three independent but important areas of computer science to a common meeting point: Formal Concept Analysis, Chu Spaces, and Domain Theory. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 serves serve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 to to PART TO _ 5 aux _ _ 5 bring bring VERB VB VerbForm=Inf 3 xcomp _ _ 6 three three NUM CD NumType=Card 10 nummod _ _ 7 independent independent ADJ JJ Degree=Pos 10 amod _ _ 8 but but CCONJ CC ConjType=Cmp 7 cc _ _ 9 important important ADJ JJ Degree=Pos 7 conj _ _ 10 areas area NOUN NNS Number=Plur 5 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 computer computer NOUN NN Number=Sing 13 compound _ _ 13 science science NOUN NN Number=Sing 11 pobj _ _ 14 to to ADP IN _ 5 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 16 common common ADJ JJ Degree=Pos 18 amod _ _ 17 meeting meeting NOUN NN Number=Sing 18 compound _ _ 18 point point NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 19 : : PUNCT : _ 22 punct _ _ 20 Formal Formal PROPN NNP Number=Sing 22 compound _ _ 21 Concept Concept PROPN NNP Number=Sing 22 compound _ _ 22 Analysis Analysis PROPN NNP Number=Sing 3 dep _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 Chu Chu PROPN NNP Number=Sing 25 compound _ _ 25 Spaces Spaces PROPN NNPS Number=Plur 22 conj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 25 punct _ _ 27 and and CCONJ CC ConjType=Cmp 25 cc _ _ 28 Domain Domain PROPN NNP Number=Sing 29 compound _ _ 29 Theory Theory PROPN NNP Number=Sing 25 conj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 22 punct _ SpaceAfter=No # sent_id = 2 # text = Each area is given a perspective or reformulation that is conducive to the flow of ideas and to the exploration of cross - disciplinary connections. 1 Each each DET DT _ 2 det _ _ 2 area area NOUN NN Number=Sing 4 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 perspective perspective NOUN NN Number=Sing 4 dobj _ _ 7 or or CCONJ CC ConjType=Cmp 6 cc _ _ 8 reformulation reformulation NOUN NN Number=Sing 6 conj _ _ 9 that that PRON WDT PronType=Rel 10 nsubj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 relcl _ _ 11 conducive conducive ADJ JJ Degree=Pos 10 acomp _ _ 12 to to ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 flow flow NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 ideas idea NOUN NNS Number=Plur 15 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 12 cc _ _ 18 to to ADP IN _ 12 conj _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 exploration exploration NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 cross cross ADJ JJ Degree=Pos 25 amod _ _ 23 - - ADJ JJ Degree=Pos 25 amod _ _ 24 disciplinary disciplinary ADJ JJ Degree=Pos 25 amod _ _ 25 connections connection NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = Among other results, we show that the notion of state in Scott's information system corresponds precisely to that of formal concepts in Formal Concept Analysis with respect to all finite Chu spaces, and the entailment relation corresponds to ``association rules". 1 Among among ADP IN _ 6 prep _ _ 2 other other ADJ JJ Degree=Pos 3 amod _ _ 3 results result NOUN NNS Number=Plur 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 that that SCONJ IN _ 17 mark _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 notion notion NOUN NN Number=Sing 17 nsubj _ _ 10 of of ADP IN _ 9 prep _ _ 11 state state NOUN NN Number=Sing 10 pobj _ _ 12 in in ADP IN _ 9 prep _ _ 13 Scott Scott PROPN NNP Number=Sing 16 poss _ SpaceAfter=No 14 's 's PART POS _ 13 case _ _ 15 information information NOUN NN Number=Sing 16 compound _ _ 16 system system NOUN NN Number=Sing 12 pobj _ _ 17 corresponds correspond VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 18 precisely precisely ADV RB _ 19 advmod _ _ 19 to to ADP IN _ 17 prep _ _ 20 that that PRON DT Number=Sing|PronType=Dem 19 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 formal formal ADJ JJ Degree=Pos 23 amod _ _ 23 concepts concept NOUN NNS Number=Plur 21 pobj _ _ 24 in in ADP IN _ 23 prep _ _ 25 Formal Formal PROPN NNP Number=Sing 27 compound _ _ 26 Concept Concept PROPN NNP Number=Sing 27 compound _ _ 27 Analysis Analysis PROPN NNP Number=Sing 24 pobj _ _ 28 with with ADP IN _ 23 prep _ _ 29 respect respect NOUN NN Number=Sing 28 pobj _ _ 30 to to ADP IN _ 29 prep _ _ 31 all all DET DT _ 34 det _ _ 32 finite finite PROPN NNP Number=Sing 34 compound _ _ 33 Chu Chu PROPN NNP Number=Sing 34 compound _ _ 34 spaces space NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 35 , , PUNCT , PunctType=Comm 17 punct _ _ 36 and and CCONJ CC ConjType=Cmp 17 cc _ _ 37 the the DET DT Definite=Def|PronType=Art 40 det _ _ 38 entailment entailment ADJ JJ Degree=Pos 39 amod _ _ 39 relation relation NOUN NN Number=Sing 40 compound _ _ 40 corresponds correspond NOUN NNS Number=Plur 17 conj _ _ 41 to to ADP IN _ 40 prep _ _ 42 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 41 punct _ SpaceAfter=No 43 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 41 punct _ SpaceAfter=No 44 association association NOUN NN Number=Sing 45 compound _ _ 45 rules rule NOUN NNS Number=Plur 41 pobj _ SpaceAfter=No 46 " " PUNCT '' PunctSide=Fin|PunctType=Quot 40 punct _ SpaceAfter=No 47 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = We introduce, moreover, the notion of approximable concept and show that approximable concepts represent algebraic lattices which are identical to Scott domains except the inclusion of a top element. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 2 punct _ _ 4 moreover moreover ADV RB _ 2 advmod _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 notion notion NOUN NN Number=Sing 2 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 approximable approximable NOUN NN Number=Sing 10 compound _ _ 10 concept concept NOUN NN Number=Sing 8 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 7 cc _ _ 12 show show VERB VB VerbForm=Inf 7 conj _ _ 13 that that SCONJ IN _ 16 mark _ _ 14 approximable approximable NOUN NN Number=Sing 15 compound _ _ 15 concepts concept NOUN NNS Number=Plur 16 nsubj _ _ 16 represent represent VERB VBP Tense=Pres|VerbForm=Fin 12 ccomp _ _ 17 algebraic algebraic ADJ JJ Degree=Pos 18 amod _ _ 18 lattices lattice NOUN NNS Number=Plur 16 dobj _ _ 19 which which PRON WDT _ 20 nsubj _ _ 20 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 18 relcl _ _ 21 identical identical ADJ JJ Degree=Pos 20 acomp _ _ 22 to to ADP IN _ 21 prep _ _ 23 Scott Scott PROPN NNP Number=Sing 24 compound _ _ 24 domains domain NOUN NNS Number=Plur 22 pobj _ _ 25 except except SCONJ IN _ 20 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 inclusion inclusion NOUN NN Number=Sing 25 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 30 top top ADJ JJ Degree=Pos 31 amod _ _ 31 element element NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = This notion serves as a stepping stone in recent work in which a new notion of morphism on formal contexts results in a category equivalent to (i) the category of complete algebraic lattices and Scott continuous functions, and (ii) a category of information systems and approximable mappings. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 notion notion NOUN NN Number=Sing 3 nsubj _ _ 3 serves serve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 as as ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 stepping stepping ADJ JJ Degree=Pos 7 amod _ _ 7 stone stone NOUN NN Number=Sing 4 pobj _ _ 8 in in ADP IN _ 7 prep _ _ 9 recent recent ADJ JJ Degree=Pos 10 amod _ _ 10 work work NOUN NN Number=Sing 8 pobj _ _ 11 in in ADP IN _ 15 prep _ _ 12 which which PRON WDT _ 11 pobj _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 new new ADJ JJ Degree=Pos 15 amod _ _ 15 notion notion NOUN NN Number=Sing 10 relcl _ _ 16 of of ADP IN _ 15 prep _ _ 17 morphism morphism NOUN NN Number=Sing 16 pobj _ _ 18 on on ADP IN _ 17 prep _ _ 19 formal formal ADJ JJ Degree=Pos 20 amod _ _ 20 contexts context NOUN NNS Number=Plur 18 pobj _ _ 21 results result NOUN NNS Number=Plur 18 pobj _ _ 22 in in ADP IN _ 21 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 24 category category NOUN NN Number=Sing 22 pobj _ _ 25 equivalent equivalent ADJ JJ Degree=Pos 24 amod _ _ 26 to to ADP IN _ 25 prep _ _ 27 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 26 punct _ SpaceAfter=No 28 i i NOUN NN Case=Acc|Number=Sing|Person=1|PronType=Prs 26 pobj _ SpaceAfter=No 29 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 28 punct _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 category category NOUN NN Number=Sing 15 appos _ _ 32 of of ADP IN _ 31 prep _ _ 33 complete complete ADJ JJ Degree=Pos 35 amod _ _ 34 algebraic algebraic ADJ JJ Degree=Pos 35 amod _ _ 35 lattices lattice NOUN NNS Number=Plur 32 pobj _ _ 36 and and CCONJ CC ConjType=Cmp 35 cc _ _ 37 Scott Scott PROPN NNP Number=Sing 39 nmod _ _ 38 continuous continuous ADJ JJ Degree=Pos 39 amod _ _ 39 functions function NOUN NNS Number=Plur 35 conj _ SpaceAfter=No 40 , , PUNCT , PunctType=Comm 39 punct _ _ 41 and and CCONJ CC ConjType=Cmp 39 cc _ _ 42 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 43 punct _ SpaceAfter=No 43 ii ii PROPN NNP Number=Sing 39 conj _ SpaceAfter=No 44 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 39 punct _ _ 45 a a DET DT Definite=Ind|PronType=Art 46 det _ _ 46 category category NOUN NN Number=Sing 39 appos _ _ 47 of of ADP IN _ 46 prep _ _ 48 information information NOUN NN Number=Sing 49 compound _ _ 49 systems system NOUN NNS Number=Plur 47 pobj _ _ 50 and and CCONJ CC ConjType=Cmp 49 cc _ _ 51 approximable approximable NOUN NN Number=Sing 52 compound _ _ 52 mappings mapping NOUN NNS Number=Plur 49 conj _ SpaceAfter=No 53 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 261 # sent_id = 1 # text = This paper describes a natural deduction formulation for Full Intuitionistic Linear Logic, an intriguing variation of multiplicative linear logic, due to Hyland and de Paiva. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 describes describe VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 5 natural natural ADJ JJ Degree=Pos 6 amod _ _ 6 deduction deduction NOUN NN Number=Sing 7 compound _ _ 7 formulation formulation NOUN NN Number=Sing 3 dobj _ _ 8 for for ADP IN _ 7 prep _ _ 9 Full Full PROPN NNP Number=Sing 12 compound _ _ 10 Intuitionistic Intuitionistic PROPN NNP Number=Sing 12 compound _ _ 11 Linear Linear PROPN NNP Number=Sing 12 compound _ _ 12 Logic Logic PROPN NNP Number=Sing 8 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 an an DET DT Definite=Ind|PronType=Art 16 det _ _ 15 intriguing intriguing ADJ JJ Degree=Pos 16 amod _ _ 16 variation variation NOUN NN Number=Sing 12 appos _ _ 17 of of ADP IN _ 16 prep _ _ 18 multiplicative multiplicative ADJ JJ Degree=Pos 20 amod _ _ 19 linear linear ADJ JJ Degree=Pos 20 compound _ _ 20 logic logic NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 12 punct _ _ 22 due due ADP IN _ 3 prep _ _ 23 to to ADP IN _ 22 pcomp _ _ 24 Hyland Hyland PROPN NNP Number=Sing 22 pobj _ _ 25 and and CCONJ CC ConjType=Cmp 24 cc _ _ 26 de de PROPN NNP Number=Sing 27 compound _ _ 27 Paiva Paiva PROPN NNP Number=Sing 24 conj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = Full Intuitionistic Linear Logic resembles intuitionistic logic, in that all its connectives are independent, but resembles classical logic in that its sequent - calculus formulation has intrinsic multiple conclusions. 1 Full full ADJ JJ Degree=Pos 4 amod _ _ 2 Intuitionistic Intuitionistic PROPN NNP Number=Sing 4 compound _ _ 3 Linear Linear PROPN NNP Number=Sing 4 compound _ _ 4 Logic Logic PROPN NNP Number=Sing 5 nsubj _ _ 5 resembles resemble VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 intuitionistic intuitionistic ADJ JJ Degree=Pos 7 amod _ _ 7 logic logic NOUN NN Number=Sing 5 dobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 5 punct _ _ 9 in in SCONJ IN _ 14 mark _ _ 10 that that SCONJ IN _ 14 mark _ _ 11 all all DET PDT _ 13 predet _ _ 12 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 13 poss _ _ 13 connectives connective NOUN NNS Number=Plur 14 nsubj _ _ 14 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 advcl _ _ 15 independent independent ADJ JJ Degree=Pos 14 acomp _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 14 punct _ _ 17 but but CCONJ CC ConjType=Cmp 14 cc _ _ 18 resembles resemble VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 conj _ _ 19 classical classical ADJ JJ Degree=Pos 20 amod _ _ 20 logic logic NOUN NN Number=Sing 18 dobj _ _ 21 in in ADP IN _ 18 prep _ _ 22 that that SCONJ IN _ 28 mark _ _ 23 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 27 poss _ _ 24 sequent sequent ADJ JJ Degree=Pos 26 amod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 calculus calculus NOUN NN Number=Sing 27 compound _ _ 27 formulation formulation NOUN NN Number=Sing 28 nsubj _ _ 28 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 ccomp _ _ 29 intrinsic intrinsic ADJ JJ Degree=Pos 31 amod _ _ 30 multiple multiple ADJ JJ Degree=Pos 31 amod _ _ 31 conclusions conclusion NOUN NNS Number=Plur 28 dobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = From the intrinsic multiple conclusions comes the inspiration to modify Parigot's natural deduction systems for classical logic, to produce a natural deduction formulation and a term assignment system for FILL. 1 From from ADP IN _ 6 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 5 det _ _ 3 intrinsic intrinsic ADJ JJ Degree=Pos 5 amod _ _ 4 multiple multiple ADJ JJ Degree=Pos 5 amod _ _ 5 conclusions conclusion NOUN NNS Number=Plur 1 pobj _ _ 6 comes come VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 inspiration inspiration NOUN NN Number=Sing 6 nsubj _ _ 9 to to PART TO _ 10 aux _ _ 10 modify modify VERB VB VerbForm=Inf 8 acl _ _ 11 Parigot Parigot PROPN NNP Number=Sing 15 poss _ SpaceAfter=No 12 's 's PART POS _ 11 case _ _ 13 natural natural ADJ JJ Degree=Pos 14 amod _ _ 14 deduction deduction NOUN NN Number=Sing 15 compound _ _ 15 systems system NOUN NNS Number=Plur 10 dobj _ _ 16 for for ADP IN _ 15 prep _ _ 17 classical classical ADJ JJ Degree=Pos 18 amod _ _ 18 logic logic NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 6 punct _ _ 20 to to PART TO _ 21 aux _ _ 21 produce produce VERB VB VerbForm=Inf 6 advcl _ _ 22 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 23 natural natural ADJ JJ Degree=Pos 24 amod _ _ 24 deduction deduction NOUN NN Number=Sing 25 compound _ _ 25 formulation formulation NOUN NN Number=Sing 21 dobj _ _ 26 and and CCONJ CC ConjType=Cmp 25 cc _ _ 27 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 28 term term NOUN NN Number=Sing 30 compound _ _ 29 assignment assignment NOUN NN Number=Sing 30 compound _ _ 30 system system NOUN NN Number=Sing 25 conj _ _ 31 for for ADP IN _ 30 prep _ _ 32 FILL FILL PROPN NNP Number=Sing 31 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 262 # sent_id = 1 # text = We show that any free $ * $ - autonomous category is equivalent (in a strict sense) to a free $ * $ - autonomous category in which the double - involution $ ( - )^{ } $ is the identity functor and the canonical isomorphism $ Asimeq A^{ } $ is an identity arrow for all $ A $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 10 mark _ _ 4 any any DET DT _ 9 det _ _ 5 free free ADJ JJ Degree=Pos 9 amod _ _ 6 $ * $ $ * $ SYM $ _ 8 advmod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 autonomous autonomous ADJ JJ Degree=Pos 9 amod _ _ 9 category category NOUN NN Number=Sing 10 nsubj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 11 equivalent equivalent ADJ JJ Degree=Pos 10 acomp _ _ 12 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 11 punct _ SpaceAfter=No 13 in in ADP IN _ 11 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 strict strict ADJ JJ Degree=Pos 16 amod _ _ 16 sense sense NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 17 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 13 punct _ _ 18 to to ADP IN _ 11 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 20 free free ADJ JJ Degree=Pos 24 amod _ _ 21 $ * $ $ * $ SYM $ _ 23 advmod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 autonomous autonomous ADJ JJ Degree=Pos 24 amod _ _ 24 category category NOUN NN Number=Sing 18 pobj _ _ 25 in in ADP IN _ 32 prep _ _ 26 which which PRON WDT _ 25 pobj _ _ 27 the the DET DT Definite=Def|PronType=Art 31 det _ _ 28 double double ADJ JJ Degree=Pos 30 amod _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 involution involution NOUN NN Number=Sing 31 compound _ _ 31 $ ( - )^{ } $ $ ( - )^{ } $ SYM $ _ 32 nsubj _ _ 32 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 relcl _ _ 33 the the DET DT Definite=Def|PronType=Art 35 det _ _ 34 identity identity NOUN NN Number=Sing 35 compound _ _ 35 functor functor NOUN NN Number=Sing 32 attr _ _ 36 and and CCONJ CC ConjType=Cmp 35 cc _ _ 37 the the DET DT Definite=Def|PronType=Art 39 det _ _ 38 canonical canonical ADJ JJ Degree=Pos 39 amod _ _ 39 isomorphism isomorphism NOUN NN Number=Sing 35 conj _ _ 40 $ Asimeq A^{ } $ $ asimeq a^{ } $ SYM $ _ 41 nsubj _ _ 41 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 42 an an DET DT Definite=Ind|PronType=Art 44 det _ _ 43 identity identity NOUN NN Number=Sing 44 compound _ _ 44 arrow arrow NOUN NN Number=Sing 41 attr _ _ 45 for for ADP IN _ 44 prep _ _ 46 all all DET DT _ 47 det _ _ 47 $ A $ $ a $ SYM $ _ 45 pobj _ _ 48 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 263 # sent_id = 1 # text = This paper describes the historical background and motivation involved in the discovery (or invention) of Chu categories. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 describes describe VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 historical historical ADJ JJ Degree=Pos 6 amod _ _ 6 background background NOUN NN Number=Sing 3 dobj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 motivation motivation NOUN NN Number=Sing 6 conj _ _ 9 involved involve VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 acl _ _ 10 in in ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 discovery discovery NOUN NN Number=Sing 10 pobj _ _ 13 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 12 punct _ SpaceAfter=No 14 or or CCONJ CC ConjType=Cmp 12 cc _ _ 15 invention invention NOUN NN Number=Sing 12 conj _ SpaceAfter=No 16 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 15 punct _ _ 17 of of ADP IN _ 15 prep _ _ 18 Chu Chu PROPN NNP Number=Sing 19 compound _ _ 19 categories category NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 264 # sent_id = 1 # text = We define and study familial 2 - functors primarily with a view to the development of the 2 - categorical approach to operads of Weber. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 study study VERB VB VerbForm=Inf 2 conj _ _ 5 familial familial ADJ JJ Degree=Pos 8 amod _ _ 6 2 2 NUM CD NumType=Card 8 nummod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 functors functor NOUN NNS Number=Plur 4 dobj _ _ 9 primarily primarily ADV RB _ 10 advmod _ _ 10 with with ADP IN _ 4 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 view view NOUN NN Number=Sing 10 pobj _ _ 13 to to ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 development development NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 21 det _ _ 18 2 2 NUM CD NumType=Card 20 nummod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 categorical categorical ADJ JJ Degree=Pos 21 amod _ _ 21 approach approach NOUN NN Number=Sing 16 pobj _ _ 22 to to ADP IN _ 21 prep _ _ 23 operads operad NOUN NNS Number=Plur 22 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 Weber Weber PROPN NNP Number=Sing 24 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Also included in this paper is a result in which the well - known characterisation of a category as a simplicial set via the Segal condition, is generalised to a result about nice monads on cocomplete categories. 1 Also also ADV RB _ 2 advmod _ _ 2 included include VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 advcl _ _ 3 in in ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 paper paper NOUN NN Number=Sing 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 auxpass _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 result result NOUN NN Number=Sing 6 attr _ _ 9 in in ADP IN _ 15 prep _ _ 10 which which PRON WDT _ 9 pobj _ _ 11 the the DET DT Definite=Def|PronType=Art 15 det _ _ 12 well well ADV RB Degree=Pos 14 advmod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 amod _ _ 15 characterisation characterisation NOUN NN Number=Sing 8 relcl _ _ 16 of of ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 category category NOUN NN Number=Sing 16 pobj _ _ 19 as as ADP IN _ 18 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 21 simplicial simplicial NOUN NN Number=Sing 19 pobj _ _ 22 set set VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 acl _ _ 23 via via ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 26 det _ _ 25 Segal Segal PROPN NNP Number=Sing 26 compound _ _ 26 condition condition NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 29 punct _ _ 28 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 29 auxpass _ _ 29 generalised generalise VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 30 to to ADP IN _ 29 prep _ _ 31 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 32 result result NOUN NN Number=Sing 30 pobj _ _ 33 about about ADP IN _ 32 prep _ _ 34 nice nice ADJ JJ Degree=Pos 35 amod _ _ 35 monads monad NOUN NNS Number=Plur 33 pobj _ _ 36 on on ADP IN _ 35 prep _ _ 37 cocomplete cocomplete ADJ JJ Degree=Pos 38 amod _ _ 38 categories category NOUN NNS Number=Plur 36 pobj _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 29 punct _ SpaceAfter=No # sent_id = 3 # text = Instances of this general result can be found in Leinster, Berger and Moerdijk - Weiss. 1 Instances instance NOUN NNS Number=Plur 8 nsubjpass _ _ 2 of of ADP IN _ 1 prep _ _ 3 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 4 general general ADJ JJ Degree=Pos 5 amod _ _ 5 result result NOUN NN Number=Sing 2 pobj _ _ 6 can can AUX MD VerbForm=Fin 8 aux _ _ 7 be be AUX VB VerbForm=Inf 8 auxpass _ _ 8 found find VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 in in ADP IN _ 8 prep _ _ 10 Leinster Leinster PROPN NNP Number=Sing 9 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 Berger Berger PROPN NNP Number=Sing 10 conj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 Moerdijk Moerdijk PROPN NNP Number=Sing 16 compound _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 Weiss Weiss PROPN NNP Number=Sing 12 conj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 4 # text = Aspects of this general theory are then used to show that the composite 2 - monads of Weber that describe symmetric and braided analogues of the $ omega $ - operads of Batanin, are cartesian 2 - monads and their underlying endo - 2 - functor is familial. 1 Aspects aspect NOUN NNS Number=Plur 8 nsubjpass _ _ 2 of of ADP IN _ 1 prep _ _ 3 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 4 general general ADJ JJ Degree=Pos 5 amod _ _ 5 theory theory NOUN NN Number=Sing 2 pobj _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 7 then then ADV RB PronType=Dem 8 advmod _ _ 8 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 to to PART TO _ 10 aux _ _ 10 show show VERB VB VerbForm=Inf 8 xcomp _ _ 11 that that SCONJ IN _ 33 mark _ _ 12 the the DET DT Definite=Def|PronType=Art 16 det _ _ 13 composite composite ADJ JJ Degree=Pos 16 amod _ _ 14 2 2 NUM CD NumType=Card 16 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 monads monad NOUN NNS Number=Plur 33 nsubj _ _ 17 of of ADP IN _ 16 prep _ _ 18 Weber Weber PROPN NNP Number=Sing 17 pobj _ _ 19 that that PRON WDT PronType=Rel 20 nsubj _ _ 20 describe describe VERB VBP Tense=Pres|VerbForm=Fin 16 relcl _ _ 21 symmetric symmetric ADJ JJ Degree=Pos 24 amod _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 braided braid VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 conj _ _ 24 analogues analogue NOUN NNS Number=Plur 20 dobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 29 det _ _ 27 $ omega $ $ omega $ SYM $ _ 29 compound _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 operads operad NOUN NNS Number=Plur 25 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 Batanin Batanin PROPN NNP Number=Sing 30 pobj _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 16 punct _ _ 33 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 10 ccomp _ _ 34 cartesian cartesian ADJ JJ Degree=Pos 37 amod _ _ 35 2 2 NUM CD NumType=Card 37 nummod _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 monads monad NOUN NNS Number=Plur 46 nsubj _ _ 38 and and CCONJ CC ConjType=Cmp 37 cc _ _ 39 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 45 poss _ _ 40 underlying underlie VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 45 amod _ _ 41 endo endo X FW Foreign=Yes 45 compound _ _ 42 - - PUNCT HYPH PunctType=Dash 43 punct _ _ 43 2 2 NUM CD NumType=Card 45 nummod _ _ 44 - - PUNCT HYPH PunctType=Dash 45 punct _ _ 45 functor functor NOUN NN Number=Sing 46 nsubj _ _ 46 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 conj _ _ 47 familial familial ADJ JJ Degree=Pos 46 acomp _ SpaceAfter=No 48 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 5 # text = Intricately linked to the notion of familial 2 - functor is the theory of fibrations in a finitely complete 2 - category, and those aspects of that theory that we require, that weren't discussed in Weber's work, are reviewed here. 1 Intricately intricately ADV RB _ 2 advmod _ _ 2 linked link VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 3 to to ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 notion notion NOUN NN Number=Sing 3 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 familial familial ADJ JJ Degree=Pos 10 amod _ _ 8 2 2 NUM CD NumType=Card 10 nummod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 functor functor NOUN NN Number=Sing 6 pobj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 auxpass _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 theory theory NOUN NN Number=Sing 11 attr _ _ 14 of of ADP IN _ 13 prep _ _ 15 fibrations fibration NOUN NNS Number=Plur 14 pobj _ _ 16 in in ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 18 finitely finitely ADV RB _ 19 advmod _ _ 19 complete complete ADJ JJ Degree=Pos 22 amod _ _ 20 2 2 NUM CD NumType=Card 22 nummod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 category category NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 11 punct _ _ 24 and and CCONJ CC ConjType=Cmp 11 cc _ _ 25 those those DET DT Number=Plur|PronType=Dem 26 det _ _ 26 aspects aspect NOUN NNS Number=Plur 44 nsubjpass _ _ 27 of of ADP IN _ 26 prep _ _ 28 that that DET DT Number=Sing|PronType=Dem 29 det _ _ 29 theory theory NOUN NN Number=Sing 27 pobj _ _ 30 that that SCONJ IN _ 32 dobj _ _ 31 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 32 nsubj _ _ 32 require require VERB VBP Tense=Pres|VerbForm=Fin 26 relcl _ SpaceAfter=No 33 , , PUNCT , PunctType=Comm 26 punct _ _ 34 that that PRON WDT PronType=Rel 37 nsubjpass _ _ 35 were be AUX VBD Mood=Ind|Tense=Past|VerbForm=Fin 37 auxpass _ SpaceAfter=No 36 n't not PART RB Polarity=Neg 37 neg _ _ 37 discussed discuss VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 relcl _ _ 38 in in ADP IN _ 37 prep _ _ 39 Weber Weber PROPN NNP Number=Sing 41 poss _ SpaceAfter=No 40 's 's PART POS _ 39 case _ _ 41 work work NOUN NN Number=Sing 38 pobj _ SpaceAfter=No 42 , , PUNCT , PunctType=Comm 44 punct _ _ 43 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 44 auxpass _ _ 44 reviewed review VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 conj _ _ 45 here here ADV RB PronType=Dem 44 advmod _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 265 # sent_id = 1 # text = We classify the "quotients" of a tannakian category in which the objects of a tannakian subcategory become trivial, and we examine the properties of such quotient categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 classify classify VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 " " PUNCT `` PunctSide=Ini|PunctType=Quot 5 punct _ SpaceAfter=No 5 quotients quotient NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 6 " " PUNCT '' PunctSide=Fin|PunctType=Quot 5 punct _ _ 7 of of ADP IN _ 5 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 tannakian tannakian ADJ JJ Degree=Pos 10 amod _ _ 10 category category NOUN NN Number=Sing 7 pobj _ _ 11 in in ADP IN _ 19 prep _ _ 12 which which PRON WDT _ 11 pobj _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 objects object NOUN NNS Number=Plur 19 nsubj _ _ 15 of of ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 tannakian tannakian ADJ JJ Degree=Pos 18 amod _ _ 18 subcategory subcategory NOUN NN Number=Sing 15 pobj _ _ 19 become become VERB VBP Tense=Pres|VerbForm=Fin 10 relcl _ _ 20 trivial trivial ADJ JJ Degree=Pos 19 acomp _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 2 punct _ _ 22 and and CCONJ CC ConjType=Cmp 2 cc _ _ 23 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 24 nsubj _ _ 24 examine examine VERB VBP Tense=Pres|VerbForm=Fin 2 conj _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 properties property NOUN NNS Number=Plur 24 dobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 such such ADJ JJ Degree=Pos 30 amod _ _ 29 quotient quotient ADJ JJ Degree=Pos 30 amod _ _ 30 categories category NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 24 punct _ SpaceAfter=No # doc_id = 266 # sent_id = 1 # text = We prove that the monoidal 2 - category of cospans of ordinals and surjections is the universal monoidal category with an object $ X $ with a semigroup and a cosemigroup structures, where the two structures satisfy a certain 2 - dimensional separable algebra condition. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 15 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 8 det _ _ 5 monoidal monoidal ADJ JJ Degree=Pos 8 amod _ _ 6 2 2 NUM CD NumType=Card 8 nummod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 category category NOUN NN Number=Sing 15 nsubj _ _ 9 of of ADP IN _ 8 prep _ _ 10 cospans cospan NOUN NNS Number=Plur 9 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 ordinals ordinal NOUN NNS Number=Plur 11 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 surjections surjection NOUN NNS Number=Plur 12 conj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 16 the the DET DT Definite=Def|PronType=Art 19 det _ _ 17 universal universal ADJ JJ Degree=Pos 19 amod _ _ 18 monoidal monoidal ADJ JJ Degree=Pos 19 amod _ _ 19 category category NOUN NN Number=Sing 15 attr _ _ 20 with with ADP IN _ 19 prep _ _ 21 an an DET DT Definite=Ind|PronType=Art 22 det _ _ 22 object object NOUN NN Number=Sing 20 pobj _ _ 23 $ X $ $ x $ SYM $ _ 22 appos _ _ 24 with with ADP IN _ 22 prep _ _ 25 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 26 semigroup semigroup NOUN NN Number=Sing 24 pobj _ _ 27 and and CCONJ CC ConjType=Cmp 26 cc _ _ 28 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 29 cosemigroup cosemigroup ADJ JJ Degree=Pos 30 amod _ _ 30 structures structure NOUN NNS Number=Plur 26 conj _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 30 punct _ _ 32 where where SCONJ WRB _ 36 advmod _ _ 33 the the DET DT Definite=Def|PronType=Art 35 det _ _ 34 two two NUM CD NumType=Card 35 nummod _ _ 35 structures structure NOUN NNS Number=Plur 36 nsubj _ _ 36 satisfy satisfy VERB VBP Tense=Pres|VerbForm=Fin 30 relcl _ _ 37 a a DET DT Definite=Ind|PronType=Art 44 det _ _ 38 certain certain ADJ JJ Degree=Pos 44 amod _ _ 39 2 2 NUM CD NumType=Card 41 advmod _ _ 40 - - PUNCT HYPH PunctType=Dash 41 punct _ _ 41 dimensional dimensional ADJ JJ Degree=Pos 44 amod _ _ 42 separable separable ADJ JJ Degree=Pos 44 amod _ _ 43 algebra algebra NOUN NN Number=Sing 44 compound _ _ 44 condition condition NOUN NN Number=Sing 36 dobj _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 267 # sent_id = 1 # text = Topological cospans and their concatenation, by pushout, appear in the theories of tangles, ribbons, cobordisms, et cetera. 1 Topological topological ADJ JJ Degree=Pos 2 amod _ _ 2 cospans cospan NOUN NNS Number=Plur 10 nsubj _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 5 poss _ _ 5 concatenation concatenation NOUN NN Number=Sing 2 conj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 10 punct _ _ 7 by by ADP IN _ 10 prep _ _ 8 pushout pushout NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 10 punct _ _ 10 appear appear VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 in in ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 theories theory NOUN NNS Number=Plur 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 tangles tangle NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 ribbons ribbon NOUN NNS Number=Plur 15 conj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 cobordisms cobordism NOUN NNS Number=Plur 17 conj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 19 punct _ _ 21 et et NOUN NN Number=Sing 22 compound _ _ 22 cetera cetera NOUN NN Number=Sing 19 conj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = Various algebraic invariants have been introduced for their study, which it would be interesting to link with the standard tools of Algebraic Topology, (co)homotopy and (co)homology functors. 1 Various various ADJ JJ Degree=Pos 3 amod _ _ 2 algebraic algebraic ADJ JJ Degree=Pos 3 amod _ _ 3 invariants invariant NOUN NNS Number=Plur 6 nsubjpass _ _ 4 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 aux _ _ 5 been be AUX VBN Tense=Past|VerbForm=Part 6 auxpass _ _ 6 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 for for ADP IN _ 6 prep _ _ 8 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 9 poss _ _ 9 study study NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 which which PRON WDT _ 17 dobj _ _ 12 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 14 nsubj _ _ 13 would would AUX MD VerbForm=Fin 14 aux _ _ 14 be be AUX VB VerbForm=Inf 9 relcl _ _ 15 interesting interesting ADJ JJ Degree=Pos 14 acomp _ _ 16 to to PART TO _ 17 aux _ _ 17 link link VERB VB VerbForm=Inf 14 xcomp _ _ 18 with with ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 standard standard ADJ JJ Degree=Pos 21 amod _ _ 21 tools tool NOUN NNS Number=Plur 18 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 Algebraic Algebraic PROPN NNP Number=Sing 24 compound _ _ 24 Topology Topology PROPN NNP Number=Sing 22 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 9 punct _ _ 26 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 9 punct _ SpaceAfter=No 27 co)homotopy co)homotopy NOUN NN Number=Sing 9 appos _ _ 28 and and CCONJ CC ConjType=Cmp 27 cc _ _ 29 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 27 punct _ SpaceAfter=No 30 co)homology co)homology NOUN NN Number=Sing 31 compound _ _ 31 functors functor NOUN NNS Number=Plur 27 conj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = Here we introduce collarable (and collared) cospans between topological spaces. 1 Here here ADV RB PronType=Dem 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 collarable collarable ADJ JJ Degree=Pos 9 amod _ _ 5 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 4 punct _ SpaceAfter=No 6 and and CCONJ CC ConjType=Cmp 4 cc _ _ 7 collared collared ADJ JJ Degree=Pos 4 conj _ SpaceAfter=No 8 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 7 punct _ _ 9 cospans cospan NOUN NNS Number=Plur 3 dobj _ _ 10 between between ADP IN _ 9 prep _ _ 11 topological topological ADJ JJ Degree=Pos 12 amod _ _ 12 spaces space NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = They generalise the cospans which appear in the previous theories, as a consequence of a classical theorem on manifolds with boundary. 1 They they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 2 nsubj _ _ 2 generalise generalise VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 cospans cospan NOUN NNS Number=Plur 2 dobj _ _ 5 which which PRON WDT _ 6 nsubj _ _ 6 appear appear VERB VBP Tense=Pres|VerbForm=Fin 4 relcl _ _ 7 in in ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 previous previous ADJ JJ Degree=Pos 10 amod _ _ 10 theories theory NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 2 punct _ _ 12 as as ADP IN _ 2 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 consequence consequence NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 classical classical ADJ JJ Degree=Pos 18 amod _ _ 18 theorem theorem NOUN NN Number=Sing 15 pobj _ _ 19 on on ADP IN _ 18 prep _ _ 20 manifolds manifold NOUN NNS Number=Plur 19 pobj _ _ 21 with with ADP IN _ 18 prep _ _ 22 boundary boundary NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = Their interest lies in the fact that their concatenation is realised by means of homotopy pushouts. 1 Their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 2 poss _ _ 2 interest interest NOUN NN Number=Sing 3 nsubj _ _ 3 lies lie VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 in in ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 fact fact NOUN NN Number=Sing 4 pobj _ _ 7 that that SCONJ IN _ 11 mark _ _ 8 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 9 poss _ _ 9 concatenation concatenation NOUN NN Number=Sing 11 nsubjpass _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 11 realised realise VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 acl _ _ 12 by by ADP IN _ 11 agent _ _ 13 means mean NOUN NNS Number=Plur 12 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 homotopy homotopy NOUN NN Number=Sing 16 compound _ _ 16 pushouts pushout NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = Therefore, cohomotopy functors induce `functors' from collarable cospans to spans of sets, providing—by linearisation—topological quantum field theories on manifolds and their cobordisms. 1 Therefore therefore ADV RB _ 5 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 5 punct _ _ 3 cohomotopy cohomotopy NOUN NN Number=Sing 4 compound _ _ 4 functors functor NOUN NNS Number=Plur 5 nsubj _ _ 5 induce induce VERB VB VerbForm=Inf 0 ROOT _ _ 6 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 7 punct _ SpaceAfter=No 7 functors functor NOUN NNS Number=Plur 5 dobj _ SpaceAfter=No 8 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 7 case _ _ 9 from from ADP IN _ 7 prep _ _ 10 collarable collarable ADJ JJ Degree=Pos 11 amod _ _ 11 cospans cospan NOUN NNS Number=Plur 9 pobj _ _ 12 to to ADP IN _ 5 dative _ _ 13 spans span NOUN NNS Number=Plur 12 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 sets set NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 5 punct _ _ 17 providing provide VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 advcl _ SpaceAfter=No 18 — — PUNCT : _ 17 punct _ SpaceAfter=No 19 by by ADP IN _ 17 prep _ _ 20 linearisation linearisation NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 21 — — PUNCT : _ 20 punct _ SpaceAfter=No 22 topological topological ADJ JJ Degree=Pos 25 amod _ _ 23 quantum quantum NOUN NN Number=Sing 24 compound _ _ 24 field field NOUN NN Number=Sing 25 compound _ _ 25 theories theory NOUN NNS Number=Plur 17 dobj _ _ 26 on on ADP IN _ 25 prep _ _ 27 manifolds manifold NOUN NNS Number=Plur 26 pobj _ _ 28 and and CCONJ CC ConjType=Cmp 27 cc _ _ 29 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 30 poss _ _ 30 cobordisms cobordism NOUN NNS Number=Plur 27 conj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 7 # text = Similarly, (co)homology and homotopy functors take collarable cospans to relations of abelian groups or (co)spans of groups, yielding other `algebraic' invariants. 1 Similarly similarly ADV RB _ 8 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 8 punct _ _ 3 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 8 punct _ SpaceAfter=No 4 co)homology co)homology NOUN NN Number=Sing 7 nmod _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 homotopy homotopy NOUN NN Number=Sing 4 conj _ _ 7 functors functor NOUN NNS Number=Plur 8 nsubj _ _ 8 take take VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 collarable collarable ADJ JJ Degree=Pos 10 amod _ _ 10 cospans cospan NOUN NNS Number=Plur 8 dobj _ _ 11 to to ADP IN _ 8 prep _ _ 12 relations relation NOUN NNS Number=Plur 11 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 abelian abelian ADJ JJ Degree=Pos 15 compound _ _ 15 groups group NOUN NNS Number=Plur 13 pobj _ _ 16 or or CCONJ CC ConjType=Cmp 8 cc _ _ 17 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 18 punct _ SpaceAfter=No 18 co)spans co)span NOUN NNS Number=Plur 8 conj _ _ 19 of of ADP IN _ 18 prep _ _ 20 groups group NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 8 punct _ _ 22 yielding yield VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 advcl _ _ 23 other other ADJ JJ Degree=Pos 27 amod _ _ 24 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 27 punct _ SpaceAfter=No 25 algebraic algebraic ADJ JJ Degree=Pos 27 amod _ SpaceAfter=No 26 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 27 punct _ _ 27 invariants invariant NOUN NNS Number=Plur 22 dobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 8 # text = This is the second paper in a series devoted to the study of cospans in Algebraic Topology. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 second second ADJ JJ Degree=Pos 5 amod _ _ 5 paper paper NOUN NN Number=Sing 2 attr _ _ 6 in in ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 series series NOUN NN Number=Sing 6 pobj _ _ 9 devoted devote VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 acl _ _ 10 to to ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 study study NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 cospans cospan NOUN NNS Number=Plur 13 pobj _ _ 15 in in ADP IN _ 12 prep _ _ 16 Algebraic Algebraic PROPN NNP Number=Sing 17 compound _ _ 17 Topology Topology PROPN NNP Number=Sing 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 9 # text = It is practically independent from the first, which deals with higher cubical cospans in abstract categories. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 practically practically ADV RB _ 4 advmod _ _ 4 independent independent ADJ JJ Degree=Pos 2 acomp _ _ 5 from from ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 first first ADJ JJ Degree=Pos 5 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 which which PRON WDT _ 10 nsubj _ _ 10 deals deal VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 relcl _ _ 11 with with ADP IN _ 10 prep _ _ 12 higher high ADJ JJR Degree=Cmp 14 amod _ _ 13 cubical cubical ADJ JJ Degree=Pos 14 amod _ _ 14 cospans cospan NOUN NNS Number=Plur 11 pobj _ _ 15 in in ADP IN _ 10 prep _ _ 16 abstract abstract ADJ JJ Degree=Pos 17 amod _ _ 17 categories category NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 10 # text = The third article will proceed from both, studying cubical topological cospans and their collared version. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 third third ADJ JJ Degree=Pos 3 amod _ _ 3 article article NOUN NN Number=Sing 5 nsubj _ _ 4 will will AUX MD VerbForm=Fin 5 aux _ _ 5 proceed proceed VERB VB VerbForm=Inf 0 ROOT _ _ 6 from from ADP IN _ 5 prep _ _ 7 both both PRON DT _ 6 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 5 punct _ _ 9 studying study VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 advcl _ _ 10 cubical cubical ADJ JJ Degree=Pos 12 amod _ _ 11 topological topological ADJ JJ Degree=Pos 12 amod _ _ 12 cospans cospan NOUN NNS Number=Plur 9 dobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 16 poss _ _ 15 collared collared ADJ JJ Degree=Pos 16 amod _ _ 16 version version NOUN NN Number=Sing 12 conj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 268 # sent_id = 1 # text = Following the analogy between algebras (monoids) and monoidal categories the construction of nucleus for non - associative algebras is simulated on the categorical level. 1 Following follow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 analogy analogy NOUN NN Number=Sing 1 pobj _ _ 4 between between ADP IN _ 3 prep _ _ 5 algebras algebra NOUN NNS Number=Plur 4 pobj _ _ 6 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 5 punct _ SpaceAfter=No 7 monoids monoid NOUN NNS Number=Plur 5 appos _ SpaceAfter=No 8 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 5 punct _ _ 9 and and CCONJ CC ConjType=Cmp 5 cc _ _ 10 monoidal monoidal ADJ JJ Degree=Pos 11 amod _ _ 11 categories category NOUN NNS Number=Plur 5 conj _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 construction construction NOUN NN Number=Sing 22 nsubjpass _ _ 14 of of ADP IN _ 13 prep _ _ 15 nucleus nucleus NOUN NN Number=Sing 14 pobj _ _ 16 for for ADP IN _ 13 prep _ _ 17 non non ADJ JJ Degree=Pos 19 amod _ _ 18 - - ADJ JJ Degree=Pos 19 punct _ _ 19 associative associative ADJ JJ Degree=Pos 20 amod _ _ 20 algebras algebra NOUN NNS Number=Plur 16 pobj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 auxpass _ _ 22 simulated simulate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 23 on on ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 26 det _ _ 25 categorical categorical ADJ JJ Degree=Pos 26 amod _ _ 26 level level NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 22 punct _ SpaceAfter=No # sent_id = 2 # text = Nuclei of categories of modules are considered as an example. 1 Nuclei Nuclei PROPN NNP Number=Sing 7 nsubjpass _ _ 2 of of ADP IN _ 1 prep _ _ 3 categories category NOUN NNS Number=Plur 2 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 modules module NOUN NNS Number=Plur 4 pobj _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 7 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 as as ADP IN _ 7 prep _ _ 9 an an DET DT Definite=Ind|PronType=Art 10 det _ _ 10 example example NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # doc_id = 269 # sent_id = 1 # text = We define the notion of an additive model category and prove that any stable, additive, combinatorial model category $ cal M $ has a model enrichment over $ Sp^Sigma(sAb) $ (symmetric spectra based on simplicial abelian groups). 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 notion notion NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 7 additive additive ADJ JJ Degree=Pos 9 amod _ _ 8 model model NOUN NN Number=Sing 9 compound _ _ 9 category category NOUN NN Number=Sing 5 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 2 cc _ _ 11 prove prove VERB VB VerbForm=Inf 2 conj _ _ 12 that that SCONJ IN _ 22 mark _ _ 13 any any DET DT _ 20 det _ _ 14 stable stable ADJ JJ Degree=Pos 20 amod _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 20 punct _ _ 16 additive additive ADJ JJ Degree=Pos 20 amod _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 20 punct _ _ 18 combinatorial combinatorial ADJ JJ Degree=Pos 19 amod _ _ 19 model model NOUN NN Number=Sing 20 compound _ _ 20 category category NOUN NN Number=Sing 22 nsubj _ _ 21 $ cal M $ $ cal m $ SYM $ _ 20 appos _ _ 22 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 ccomp _ _ 23 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 24 model model NOUN NN Number=Sing 25 compound _ _ 25 enrichment enrichment NOUN NN Number=Sing 22 dobj _ _ 26 over over ADP IN _ 25 prep _ _ 27 $ Sp^Sigma(sAb) $ $ sp^sigma(sab) $ SYM $ _ 26 pobj _ _ 28 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 30 punct _ SpaceAfter=No 29 symmetric symmetric ADJ JJ Degree=Pos 30 amod _ _ 30 spectra spectra NOUN NN Number=Sing 27 appos _ _ 31 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 30 acl _ _ 32 on on ADP IN _ 31 prep _ _ 33 simplicial simplicial ADJ JJ Degree=Pos 35 amod _ _ 34 abelian abelian ADJ JJ Degree=Pos 35 compound _ _ 35 groups group NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 36 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 30 punct _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = So to any object $ X $ in $ cal M $ one can attach an endomorphism ring object, denoted $ hEnd_ad(X) $ , in the category $ Sp^Sigma(sAb) $ . 1 So so ADV RB _ 10 advmod _ _ 2 to to ADP IN _ 10 prep _ _ 3 any any DET DT _ 4 det _ _ 4 object object NOUN NN Number=Sing 2 pobj _ _ 5 $ X $ $ x $ SYM $ _ 4 appos _ _ 6 in in ADP IN _ 4 prep _ _ 7 $ cal M $ $ cal m $ SYM $ _ 8 nmod _ _ 8 one one PRON PRP PronType=Prs 6 pobj _ _ 9 can can AUX MD VerbForm=Fin 10 aux _ _ 10 attach attach VERB VB VerbForm=Inf 0 ROOT _ _ 11 an an DET DT Definite=Ind|PronType=Art 14 det _ _ 12 endomorphism endomorphism NOUN NN Number=Sing 14 compound _ _ 13 ring ring NOUN NN Number=Sing 14 compound _ _ 14 object object NOUN NN Number=Sing 10 dobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 10 punct _ _ 16 denoted denote VERB VBD Tense=Past|VerbForm=Fin 10 conj _ _ 17 $ hEnd_ad(X) $ $ hend_ad(x) $ SYM $ _ 16 dobj _ _ 18 , , PUNCT , PunctType=Comm 16 punct _ _ 19 in in ADP IN _ 16 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 category category NOUN NN Number=Sing 19 pobj _ _ 22 $ Sp^Sigma(sAb) $ $ sp^sigma(sab) $ SYM $ _ 16 conj _ _ 23 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 3 # text = We establish some useful properties of these endomorphism rings. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 establish establish VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 some some DET DT _ 5 det _ _ 4 useful useful ADJ JJ Degree=Pos 5 amod _ _ 5 properties property NOUN NNS Number=Plur 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 these these DET DT Number=Plur|PronType=Dem 9 det _ _ 8 endomorphism endomorphism NOUN NN Number=Sing 9 compound _ _ 9 rings ring NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We also develop a new notion in enriched category theory which we call `adjoint modules'. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 develop develop VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 new new ADJ JJ Degree=Pos 6 amod _ _ 6 notion notion NOUN NN Number=Sing 3 dobj _ _ 7 in in ADP IN _ 6 prep _ _ 8 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 9 category category NOUN NN Number=Sing 10 compound _ _ 10 theory theory NOUN NN Number=Sing 7 pobj _ _ 11 which which PRON WDT _ 13 dobj _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 call call VERB VBP Tense=Pres|VerbForm=Fin 6 relcl _ _ 14 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 16 punct _ SpaceAfter=No 15 adjoint adjoint NOUN NN Number=Sing 16 compound _ _ 16 modules module NOUN NNS Number=Plur 13 oprd _ SpaceAfter=No 17 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 3 punct _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = This is used to compare enrichments over one symmetric monoidal model category with enrichments over a Quillen equivalent one. 1 This this PRON DT Number=Sing|PronType=Dem 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 to to PART TO _ 5 aux _ _ 5 compare compare VERB VB VerbForm=Inf 3 xcomp _ _ 6 enrichments enrichment NOUN NNS Number=Plur 5 dobj _ _ 7 over over ADP IN _ 5 prep _ _ 8 one one NUM CD NumType=Card 12 nummod _ _ 9 symmetric symmetric ADJ JJ Degree=Pos 12 amod _ _ 10 monoidal monoidal ADJ JJ Degree=Pos 11 amod _ _ 11 model model NOUN NN Number=Sing 12 compound _ _ 12 category category NOUN NN Number=Sing 7 pobj _ _ 13 with with ADP IN _ 5 prep _ _ 14 enrichments enrichment NOUN NNS Number=Plur 13 pobj _ _ 15 over over ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 17 Quillen quillen ADJ JJ Degree=Pos 19 amod _ _ 18 equivalent equivalent ADJ JJ Degree=Pos 19 amod _ _ 19 one one NUM CD NumType=Card 15 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = In particular, it is used here to compare enrichments over $ Sp^Sigma(sAb) $ and chain complexes. 1 In in ADP IN _ 6 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 6 punct _ _ 4 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 6 nsubjpass _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 6 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 here here ADV RB PronType=Dem 6 advmod _ _ 8 to to PART TO _ 9 aux _ _ 9 compare compare VERB VB VerbForm=Inf 6 xcomp _ _ 10 enrichments enrichment NOUN NNS Number=Plur 9 dobj _ _ 11 over over ADP IN _ 9 prep _ _ 12 $ Sp^Sigma(sAb) $ $ sp^sigma(sab) $ SYM $ _ 11 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 chain chain NOUN NN Number=Sing 15 compound _ _ 15 complexes complex NOUN NNS Number=Plur 12 conj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 270 # sent_id = 1 # text = Given an arbitrary locally finitely presentable category $ K $ and finitary monads $ T $ and $ S $ on $ K $ , we characterize monad morphisms $ alpha: Sto T $ with the property that the induced functor $ alpha_*: K^T to K^ S $ between the categories of Eilenberg - Moore algebras is fully faithful. 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 7 det _ _ 3 arbitrary arbitrary ADJ JJ Degree=Pos 7 amod _ _ 4 locally locally ADV RB _ 5 advmod _ _ 5 finitely finitely ADV RB _ 6 advmod _ _ 6 presentable presentable ADJ JJ Degree=Pos 7 amod _ _ 7 category category NOUN NN Number=Sing 1 pobj _ _ 8 $ K $ $ k $ SYM $ _ 7 appos _ _ 9 and and CCONJ CC ConjType=Cmp 7 cc _ _ 10 finitary finitary ADJ JJ Degree=Pos 11 amod _ _ 11 monads monad NOUN NNS Number=Plur 7 conj _ _ 12 $ T $ $ t $ SYM $ _ 11 dobj _ _ 13 and and CCONJ CC ConjType=Cmp 11 cc _ _ 14 $ S $ $ s $ SYM $ _ 1 dep _ _ 15 on on ADP IN _ 1 prep _ _ 16 $ K $ $ k $ SYM $ _ 15 pobj _ _ 17 , , PUNCT , PunctType=Comm 19 punct _ _ 18 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 19 nsubj _ _ 19 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 20 monad monad VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 dobj _ _ 21 morphisms morphism NOUN NNS Number=Plur 20 dobj _ _ 22 $ alpha: Sto T $ $ alpha: sto t $ SYM $ _ 20 dep _ _ 23 with with ADP IN _ 20 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 property property NOUN NN Number=Sing 23 pobj _ _ 26 that that PRON WDT PronType=Rel 39 nsubj _ _ 27 the the DET DT Definite=Def|PronType=Art 29 det _ _ 28 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 amod _ _ 29 functor functor NOUN NN Number=Sing 39 nsubj _ _ 30 $ alpha_*: K^T to K^ S $ $ alpha_*: k^t to k^ s $ SYM $ _ 29 dep _ _ 31 between between ADP IN _ 29 prep _ _ 32 the the DET DT Definite=Def|PronType=Art 33 det _ _ 33 categories category NOUN NNS Number=Plur 31 pobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 Eilenberg Eilenberg PROPN NNP Number=Sing 37 compound _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 Moore Moore PROPN NNP Number=Sing 38 compound _ _ 38 algebras algebra NOUN NNS Number=Plur 34 pobj _ _ 39 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 25 relcl _ _ 40 fully fully ADV RB _ 41 advmod _ _ 41 faithful faithful ADJ JJ Degree=Pos 39 acomp _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 2 # text = We call such monad morphisms dense and give a characterization of them in the spirit of Beth's definability theorem: $ alpha $ is a dense monad morphism if and only if every $ T $ - operation is explicitly defined using $ S $ - operations. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 call call VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 such such ADJ JJ Degree=Pos 4 amod _ _ 4 monad monad NOUN NNS Number=Plur 2 dobj _ _ 5 morphisms morphism NOUN NNS Number=Plur 6 nsubj _ _ 6 dense dense ADJ JJ Degree=Pos 2 oprd _ _ 7 and and CCONJ CC ConjType=Cmp 2 cc _ _ 8 give give VERB VB VerbForm=Inf 2 conj _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 characterization characterization NOUN NN Number=Sing 8 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 11 pobj _ _ 13 in in ADP IN _ 8 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 spirit spirit NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 Beth Beth PROPN NNP Number=Sing 19 poss _ SpaceAfter=No 18 's 's PART POS _ 17 case _ _ 19 definability definability NOUN NN Number=Sing 16 pobj _ _ 20 theorem theorem ADJ JJ Degree=Pos 2 conj _ SpaceAfter=No 21 : : PUNCT : _ 20 punct _ _ 22 $ alpha $ $ alpha $ SYM $ _ 23 nsubj _ _ 23 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 24 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 25 dense dense ADJ JJ Degree=Pos 27 amod _ _ 26 monad monad NOUN NNS Number=Plur 27 compound _ _ 27 morphism morphism NOUN NN Number=Sing 23 attr _ _ 28 if if SCONJ IN _ 2 prep _ _ 29 and and CCONJ CC ConjType=Cmp 28 cc _ _ 30 only only ADV RB _ 38 advmod _ _ 31 if if SCONJ IN _ 38 mark _ _ 32 every every DET DT _ 35 det _ _ 33 $ T $ $ t $ SYM $ _ 35 compound _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 operation operation NOUN NN Number=Sing 38 nsubjpass _ _ 36 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 38 auxpass _ _ 37 explicitly explicitly ADV RB _ 38 advmod _ _ 38 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 advcl _ _ 39 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 38 xcomp _ _ 40 $ S $ $ s $ SYM $ _ 42 compound _ _ 41 - - PUNCT HYPH PunctType=Dash 42 punct _ _ 42 operations operation NOUN NNS Number=Plur 39 dobj _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We also give a characterization in terms of epimorphic property of $ alpha $ and clarify the connection between various notions of epimorphisms between monads. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 characterization characterization NOUN NN Number=Sing 3 dobj _ _ 6 in in ADP IN _ 5 prep _ _ 7 terms term NOUN NNS Number=Plur 6 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 epimorphic epimorphic ADJ JJ Degree=Pos 10 amod _ _ 10 property property NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 $ alpha $ $ alpha $ SYM $ _ 11 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 3 cc _ _ 14 clarify clarify VERB VB VerbForm=Inf 3 conj _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 connection connection NOUN NN Number=Sing 14 dobj _ _ 17 between between ADP IN _ 16 prep _ _ 18 various various ADJ JJ Degree=Pos 19 amod _ _ 19 notions notion NOUN NNS Number=Plur 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 epimorphisms epimorphism NOUN NNS Number=Plur 20 pobj _ _ 22 between between ADP IN _ 21 prep _ _ 23 monads monad NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 271 # sent_id = 1 # text = Loday introduced the concept of coherent unit actions on a regular operad and showed that such actions give Hopf algebra structures on the free algebras. 1 Loday Loday PROPN NNP Number=Sing 2 nsubj _ _ 2 introduced introduce VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 concept concept NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 coherent coherent ADJ JJ Degree=Pos 8 amod _ _ 7 unit unit NOUN NN Number=Sing 8 compound _ _ 8 actions action NOUN NNS Number=Plur 5 pobj _ _ 9 on on ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 regular regular ADJ JJ Degree=Pos 12 amod _ _ 12 operad operad NOUN NN Number=Sing 9 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 2 cc _ _ 14 showed show VERB VBD Tense=Past|VerbForm=Fin 2 conj _ _ 15 that that SCONJ IN _ 18 mark _ _ 16 such such ADJ JJ Degree=Pos 17 amod _ _ 17 actions action NOUN NNS Number=Plur 18 nsubj _ _ 18 give give VERB VBP Tense=Pres|VerbForm=Fin 14 ccomp _ _ 19 Hopf Hopf PROPN NNP Number=Sing 21 compound _ _ 20 algebra algebra NOUN NN Number=Sing 21 compound _ _ 21 structures structure NOUN NNS Number=Plur 18 dobj _ _ 22 on on ADP IN _ 18 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 free free ADJ JJ Degree=Pos 25 amod _ _ 25 algebras algebra NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Hopf algebras obtained this way include the Hopf algebras of shuffles, quasi - shuffles and planar rooted trees. 1 Hopf hopf NOUN NN Number=Sing 2 compound _ _ 2 algebras algebra NOUN NNS Number=Plur 3 nsubj _ _ 3 obtained obtain VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 way way NOUN NN Number=Sing 3 npadvmod _ _ 6 include include VERB VBP Tense=Pres|VerbForm=Fin 3 dep _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 Hopf Hopf PROPN NNP Number=Sing 9 compound _ _ 9 algebras algebra NOUN NNS Number=Plur 6 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 shuffles shuffle NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 quasi quasi ADJ JJ Degree=Pos 9 conj _ _ 14 - - NOUN NNS Number=Plur 9 punct _ _ 15 shuffles shuffle NOUN NNS Number=Plur 9 conj _ _ 16 and and CCONJ CC ConjType=Cmp 6 cc _ _ 17 planar planar VERB VB VerbForm=Inf 6 conj _ _ 18 rooted rooted ADJ JJ Degree=Pos 19 amod _ _ 19 trees tree NOUN NNS Number=Plur 17 dobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = We characterize coherent unit actions on binary quadratic regular operads in terms of linear equations of the generators of the operads. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 coherent coherent ADJ JJ Degree=Pos 5 amod _ _ 4 unit unit NOUN NN Number=Sing 5 compound _ _ 5 actions action NOUN NNS Number=Plur 2 dobj _ _ 6 on on ADP IN _ 5 prep _ _ 7 binary binary ADJ JJ Degree=Pos 10 amod _ _ 8 quadratic quadratic ADJ JJ Degree=Pos 10 amod _ _ 9 regular regular ADJ JJ Degree=Pos 10 amod _ _ 10 operads operad NOUN NNS Number=Plur 6 pobj _ _ 11 in in ADP IN _ 5 prep _ _ 12 terms term NOUN NNS Number=Plur 11 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 linear linear ADJ JJ Degree=Pos 15 amod _ _ 15 equations equation NOUN NNS Number=Plur 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 generators generator NOUN NNS Number=Plur 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 operads operad NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We then use these equations to classify operads with coherent unit actions. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 these these DET DT Number=Plur|PronType=Dem 5 det _ _ 5 equations equation NOUN NNS Number=Plur 3 dobj _ _ 6 to to PART TO _ 7 aux _ _ 7 classify classify VERB VB VerbForm=Inf 3 xcomp _ _ 8 operads operad NOUN NNS Number=Plur 7 dobj _ _ 9 with with ADP IN _ 8 prep _ _ 10 coherent coherent ADJ JJ Degree=Pos 12 amod _ _ 11 unit unit NOUN NN Number=Sing 12 compound _ _ 12 actions action NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = We further show that coherent unit actions are preserved under taking products and thus yield Hopf algebras on the free object of the product operads when the factor operads have coherent unit actions. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 further far ADV RB _ 3 advmod _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 9 mark _ _ 5 coherent coherent ADJ JJ Degree=Pos 7 amod _ _ 6 unit unit NOUN NN Number=Sing 7 compound _ _ 7 actions action NOUN NNS Number=Plur 9 nsubjpass _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 preserved preserve VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 ccomp _ _ 10 under under ADP IN _ 9 prep _ _ 11 taking take VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 pcomp _ _ 12 products product NOUN NNS Number=Plur 11 dobj _ _ 13 and and CCONJ CC ConjType=Cmp 11 cc _ _ 14 thus thus ADV RB _ 15 advmod _ _ 15 yield yield VERB VB VerbForm=Inf 11 conj _ _ 16 Hopf hopf NOUN NN Number=Sing 17 compound _ _ 17 algebras algebra NOUN NNS Number=Plur 15 dobj _ _ 18 on on ADP IN _ 15 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 free free ADJ JJ Degree=Pos 21 amod _ _ 21 object object NOUN NN Number=Sing 18 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 product product NOUN NN Number=Sing 25 compound _ _ 25 operads operad NOUN NNS Number=Plur 22 pobj _ _ 26 when when SCONJ WRB _ 30 advmod _ _ 27 the the DET DT Definite=Def|PronType=Art 29 det _ _ 28 factor factor NOUN NN Number=Sing 29 compound _ _ 29 operads operad NOUN NNS Number=Plur 30 nsubj _ _ 30 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 advcl _ _ 31 coherent coherent ADJ JJ Degree=Pos 33 amod _ _ 32 unit unit NOUN NN Number=Sing 33 compound _ _ 33 actions action NOUN NNS Number=Plur 30 dobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = On the other hand, coherent unit actions are never preserved under taking the dual in the operadic sense except for the operad of associative algebras. 1 On on ADP IN _ 11 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 other other ADJ JJ Degree=Pos 4 amod _ _ 4 hand hand NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 11 punct _ _ 6 coherent coherent ADJ JJ Degree=Pos 7 amod _ _ 7 unit unit NOUN NN Number=Sing 8 compound _ _ 8 actions action NOUN NNS Number=Plur 11 nsubjpass _ _ 9 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 10 never never ADV RB _ 11 neg _ _ 11 preserved preserve VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 12 under under ADP IN _ 11 prep _ _ 13 taking take VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 pcomp _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 dual dual ADJ JJ Degree=Pos 13 dobj _ _ 16 in in ADP IN _ 13 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 operadic operadic ADJ JJ Degree=Pos 19 amod _ _ 19 sense sense NOUN NN Number=Sing 16 pobj _ _ 20 except except SCONJ IN _ 13 prep _ _ 21 for for ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 operad operad NOUN NN Number=Sing 21 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 associative associative ADJ JJ Degree=Pos 26 amod _ _ 26 algebras algebra NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # doc_id = 272 # sent_id = 1 # text = We define a notion of weak cubical category, abstracted from the structure of $ n $ - cubical cospans $ x : wedge^n to X $ in a category $ X $ where $ wedge $ is the `formal cospan' category. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 notion notion NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 weak weak ADJ JJ Degree=Pos 8 amod _ _ 7 cubical cubical ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 4 punct _ _ 10 abstracted abstract VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 acl _ _ 11 from from ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 structure structure NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 $ n $ $ n $ SYM $ _ 17 advmod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 cubical cubical ADJ JJ Degree=Pos 18 amod _ _ 18 cospans cospan NOUN NNS Number=Plur 14 pobj _ _ 19 $ x : wedge^n to X $ $ x : wedge^n to x $ SYM $ _ 18 appos _ _ 20 in in ADP IN _ 10 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 category category NOUN NN Number=Sing 20 pobj _ _ 23 $ X $ $ x $ SYM $ _ 22 nummod _ _ 24 where where SCONJ WRB _ 26 advmod _ _ 25 $ wedge $ $ wedge $ SYM $ _ 26 nsubj _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 relcl _ _ 27 the the DET DT Definite=Def|PronType=Art 30 det _ _ 28 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 30 punct _ SpaceAfter=No 29 formal formal ADJ JJ Degree=Pos 30 amod _ _ 30 cospan cospan NOUN NN Number=Sing 32 poss _ SpaceAfter=No 31 ' ' PART POS _ 30 case _ _ 32 category category NOUN NN Number=Sing 26 attr _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = These diagrams form a cubical set with compositions $ x +_i y $ in all directions, which are computed using pushouts and behave `categorically' in a weak sense, up to suitable comparisons. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 diagrams diagram NOUN NNS Number=Plur 3 nsubj _ _ 3 form form VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 cubical cubical ADJ JJ Degree=Pos 6 amod _ _ 6 set set NOUN NN Number=Sing 3 dobj _ _ 7 with with ADP IN _ 3 prep _ _ 8 compositions composition NOUN NNS Number=Plur 7 pobj _ _ 9 $ x +_i y $ $ x +_i y $ SYM $ _ 3 dep _ _ 10 in in ADP IN _ 3 prep _ _ 11 all all DET DT _ 12 det _ _ 12 directions direction NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 which which PRON WDT _ 16 nsubjpass _ _ 15 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 16 auxpass _ _ 16 computed compute VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 relcl _ _ 17 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 xcomp _ _ 18 pushouts pushout NOUN NNS Number=Plur 17 dobj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 behave behave VERB VB VerbForm=Inf 18 conj _ _ 21 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 22 punct _ SpaceAfter=No 22 categorically categorically ADV RB _ 16 advmod _ SpaceAfter=No 23 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 16 punct _ _ 24 in in ADP IN _ 16 prep _ _ 25 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 26 weak weak ADJ JJ Degree=Pos 27 amod _ _ 27 sense sense NOUN NN Number=Sing 24 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 16 punct _ _ 29 up up ADP IN _ 3 prep _ _ 30 to to ADP IN _ 29 prep _ _ 31 suitable suitable ADJ JJ Degree=Pos 32 amod _ _ 32 comparisons comparison NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = Actually, we work with a `symmetric cubical structure', which includes the transposition symmetries, because this allows for a strong simplification of the coherence conditions. 1 Actually actually ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 work work VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 with with ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 7 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 10 punct _ SpaceAfter=No 8 symmetric symmetric ADJ JJ Degree=Pos 10 amod _ _ 9 cubical cubical ADJ JJ Degree=Pos 10 amod _ _ 10 structure structure NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 11 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 10 punct _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 10 punct _ _ 13 which which PRON WDT _ 14 nsubj _ _ 14 includes include VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 relcl _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 transposition transposition NOUN NN Number=Sing 17 compound _ _ 17 symmetries symmetry NOUN NNS Number=Plur 14 dobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 4 punct _ _ 19 because because SCONJ IN _ 21 mark _ _ 20 this this PRON DT Number=Sing|PronType=Dem 21 nsubj _ _ 21 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 advcl _ _ 22 for for ADP IN _ 21 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 24 strong strong ADJ JJ Degree=Pos 25 amod _ _ 25 simplification simplification NOUN NN Number=Sing 22 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 29 det _ _ 28 coherence coherence NOUN NN Number=Sing 29 compound _ _ 29 conditions condition NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = These notions will be used in subsequent papers to study topological cospans and their use in Algebraic Topology, from tangles to cobordisms of manifolds. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 notions notion NOUN NNS Number=Plur 5 nsubjpass _ _ 3 will will AUX MD VerbForm=Fin 5 aux _ _ 4 be be AUX VB VerbForm=Inf 5 auxpass _ _ 5 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 in in ADP IN _ 5 prep _ _ 7 subsequent subsequent ADJ JJ Degree=Pos 8 amod _ _ 8 papers paper NOUN NNS Number=Plur 6 pobj _ _ 9 to to PART TO _ 10 aux _ _ 10 study study VERB VB VerbForm=Inf 5 xcomp _ _ 11 topological topological ADJ JJ Degree=Pos 12 amod _ _ 12 cospans cospan NOUN NNS Number=Plur 10 dobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 15 poss _ _ 15 use use NOUN NN Number=Sing 12 conj _ _ 16 in in ADP IN _ 10 prep _ _ 17 Algebraic Algebraic PROPN NNP Number=Sing 18 compound _ _ 18 Topology Topology PROPN NNP Number=Sing 16 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 10 punct _ _ 20 from from ADP IN _ 10 prep _ _ 21 tangles tangle NOUN NNS Number=Plur 20 pobj _ _ 22 to to ADP IN _ 20 prep _ _ 23 cobordisms cobordism NOUN NNS Number=Plur 22 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 manifolds manifold NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 5 # text = We also introduce the more general notion of a multiple category, where—to start with—arrows belong to different sorts, varying in a countable family, and symmetries must be dropped. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 more more ADV RBR Degree=Cmp 6 advmod _ _ 6 general general ADJ JJ Degree=Pos 7 amod _ _ 7 notion notion NOUN NN Number=Sing 3 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 multiple multiple ADJ JJ Degree=Pos 11 amod _ _ 11 category category NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 where where SCONJ WRB _ 20 advmod _ SpaceAfter=No 14 — — PUNCT : _ 13 punct _ SpaceAfter=No 15 to to PART TO _ 16 aux _ _ 16 start start VERB VB VerbForm=Inf 13 nmod _ _ 17 with with ADP IN _ 16 prep _ SpaceAfter=No 18 — — PUNCT : _ 20 punct _ SpaceAfter=No 19 arrows arrow NOUN NNS Number=Plur 20 nsubj _ _ 20 belong belong VERB VBP Tense=Pres|VerbForm=Fin 11 relcl _ _ 21 to to ADP IN _ 20 prep _ _ 22 different different ADJ JJ Degree=Pos 23 amod _ _ 23 sorts sort NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 20 punct _ _ 25 varying vary VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 20 advcl _ _ 26 in in ADP IN _ 25 prep _ _ 27 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 28 countable countable ADJ JJ Degree=Pos 29 amod _ _ 29 family family NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 3 punct _ _ 31 and and CCONJ CC ConjType=Cmp 3 cc _ _ 32 symmetries symmetry NOUN NNS Number=Plur 35 nsubjpass _ _ 33 must must AUX MD VerbForm=Fin 35 aux _ _ 34 be be AUX VB VerbForm=Inf 35 auxpass _ _ 35 dropped drop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 conj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 35 punct _ SpaceAfter=No # sent_id = 6 # text = The present examples seem to show that the symmetric cubical case is better suited for topological applications. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 present present ADJ JJ Degree=Pos 3 amod _ _ 3 examples example NOUN NNS Number=Plur 4 nsubj _ _ 4 seem seem VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 to to PART TO _ 6 aux _ _ 6 show show VERB VB VerbForm=Inf 4 xcomp _ _ 7 that that SCONJ IN _ 14 mark _ _ 8 the the DET DT Definite=Def|PronType=Art 11 det _ _ 9 symmetric symmetric ADJ JJ Degree=Pos 11 amod _ _ 10 cubical cubical ADJ JJ Degree=Pos 11 amod _ _ 11 case case NOUN NN Number=Sing 14 nsubjpass _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 13 better well ADV RBR Degree=Cmp 14 advmod _ _ 14 suited suit VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 ccomp _ _ 15 for for ADP IN _ 14 prep _ _ 16 topological topological ADJ JJ Degree=Pos 17 amod _ _ 17 applications application NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 273 # sent_id = 1 # text = We discuss an approach to constructing a weak $ n $ - category of cobordisms. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 discuss discuss VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 4 det _ _ 4 approach approach NOUN NN Number=Sing 2 dobj _ _ 5 to to ADP IN _ 4 prep _ _ 6 constructing construct VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 pcomp _ _ 7 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 8 weak weak ADJ JJ Degree=Pos 11 amod _ _ 9 $ n $ $ n $ SYM $ _ 11 nummod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 category category NOUN NN Number=Sing 6 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 cobordisms cobordism NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = First we present a generalisation of Trimble's definition of $ n $ - category which seems most appropriate for this construction; in this definition composition is parametrised by a contractible operad. 1 First first ADV RB _ 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 present present VERB VBP Tense=Pres|VerbForm=Fin 27 ccomp _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 generalisation generalisation NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 Trimble Trimble PROPN NNP Number=Sing 9 poss _ SpaceAfter=No 8 's 's PART POS _ 7 case _ _ 9 definition definition NOUN NN Number=Sing 6 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 $ n $ $ n $ SYM $ _ 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 category category NOUN NN Number=Sing 10 pobj _ _ 14 which which PRON WDT _ 15 nsubj _ _ 15 seems seem VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 relcl _ _ 16 most most ADV RBS Degree=Sup 17 advmod _ _ 17 appropriate appropriate ADJ JJ Degree=Pos 15 oprd _ _ 18 for for ADP IN _ 17 prep _ _ 19 this this DET DT Number=Sing|PronType=Dem 20 det _ _ 20 construction construction NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 21 ; ; PUNCT : _ 27 punct _ _ 22 in in ADP IN _ 27 prep _ _ 23 this this DET DT Number=Sing|PronType=Dem 25 det _ _ 24 definition definition NOUN NN Number=Sing 25 compound _ _ 25 composition composition NOUN NN Number=Sing 27 nsubjpass _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 27 auxpass _ _ 27 parametrised parametrise VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 28 by by ADP IN _ 27 agent _ _ 29 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 30 contractible contractible ADJ JJ Degree=Pos 31 amod _ _ 31 operad operad NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 27 punct _ SpaceAfter=No # sent_id = 3 # text = Then we show how to use this definition to define the $ n $ - category $ nCob $ , whose $ k $ - cells are k - cobordisms, possibly with corners. 1 Then then ADV RB PronType=Dem 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 how how SCONJ WRB _ 6 advmod _ _ 5 to to PART TO _ 6 aux _ _ 6 use use VERB VB VerbForm=Inf 3 xcomp _ _ 7 this this DET DT Number=Sing|PronType=Dem 8 det _ _ 8 definition definition NOUN NN Number=Sing 6 dobj _ _ 9 to to PART TO _ 10 aux _ _ 10 define define VERB VB VerbForm=Inf 6 xcomp _ _ 11 the the DET DT Definite=Def|PronType=Art 14 det _ _ 12 $ n $ $ n $ SYM $ _ 14 nummod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 category category NOUN NN Number=Sing 10 dobj _ _ 15 $ nCob $ $ ncob $ SYM $ _ 14 appos _ _ 16 , , PUNCT , PunctType=Comm 21 punct _ _ 17 whose whose DET WP$ Poss=Yes 20 poss _ _ 18 $ k $ $ k $ SYM $ _ 20 compound _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 cells cell NOUN NNS Number=Plur 21 nsubj _ _ 21 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 22 k k NOUN NN Number=Sing 24 compound _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 cobordisms cobordisms NOUN NN Number=Sing 21 attr _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 possibly possibly ADV RB _ 27 advmod _ _ 27 with with ADP IN _ 21 prep _ _ 28 corners corner NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = We follow Baez and Langford in using ``manifolds embedded in cubes'' rather than general manifolds. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 follow follow VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 Baez Baez PROPN NNP Number=Sing 2 dobj _ _ 4 and and CCONJ CC ConjType=Cmp 3 cc _ _ 5 Langford Langford PROPN NNP Number=Sing 3 conj _ _ 6 in in ADP IN _ 2 prep _ _ 7 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 pcomp _ _ 8 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 7 punct _ SpaceAfter=No 9 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 7 punct _ SpaceAfter=No 10 manifolds manifold NOUN NNS Number=Plur 7 dobj _ _ 11 embedded embed VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 acl _ _ 12 in in ADP IN _ 11 prep _ _ 13 cubes cube NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 14 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 10 punct _ _ 15 rather rather ADV RB _ 16 advmod _ _ 16 than than ADP IN _ 10 cc _ _ 17 general general ADJ JJ Degree=Pos 18 amod _ _ 18 manifolds manifold NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = We make the construction for 1 - manifolds embedded in 2 - and 3 - cubes. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 make make VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 construction construction NOUN NN Number=Sing 2 dobj _ _ 5 for for ADP IN _ 2 prep _ _ 6 1 1 NUM CD NumType=Card 8 nummod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 manifolds manifold NOUN NNS Number=Plur 5 pobj _ _ 9 embedded embed VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 acl _ _ 10 in in ADP IN _ 9 prep _ _ 11 2 2 NUM CD NumType=Card 16 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 13 and and CCONJ CC ConjType=Cmp 11 cc _ _ 14 3 3 NUM CD NumType=Card 16 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 cubes cube NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = For general dimensions $ k $ and $ n $ we indicate what the construction should be. 1 For for ADP IN _ 8 prep _ _ 2 general general ADJ JJ Degree=Pos 3 amod _ _ 3 dimensions dimension NOUN NNS Number=Plur 1 pobj _ _ 4 $ k $ $ k $ SYM $ _ 1 pobj _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 $ n $ $ n $ SYM $ _ 4 conj _ _ 7 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 8 nsubj _ _ 8 indicate indicate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 what what PRON WP _ 13 attr _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 construction construction NOUN NN Number=Sing 13 nsubj _ _ 12 should should AUX MD VerbForm=Fin 13 aux _ _ 13 be be AUX VB VerbForm=Inf 8 ccomp _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # doc_id = 274 # sent_id = 1 # text = Usually bundle gerbes are considered as objects of a 2 - groupoid, whose 1 - morphisms, called stable isomorphisms, are all invertible. 1 Usually usually ADV RB _ 2 advmod _ _ 2 bundle bundle VERB VB VerbForm=Inf 5 advcl _ _ 3 gerbes gerbe NOUN NNS Number=Plur 5 nsubjpass _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 as as SCONJ IN _ 23 mark _ _ 7 objects object NOUN NNS Number=Plur 23 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 10 2 2 NUM CD NumType=Card 12 nummod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 groupoid groupoid NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 whose whose DET WP$ Poss=Yes 17 poss _ _ 15 1 1 NUM CD NumType=Card 17 nummod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 morphisms morphism NOUN NNS Number=Plur 12 appos _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 12 punct _ _ 19 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 acl _ _ 20 stable stable ADJ JJ Degree=Pos 21 amod _ _ 21 isomorphisms isomorphism NOUN NNS Number=Plur 19 oprd _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 12 punct _ _ 23 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 advcl _ _ 24 all all ADV RB _ 23 advmod _ _ 25 invertible invertible ADJ JJ Degree=Pos 23 acomp _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = I introduce new 1 - morphisms which include stable isomorphisms, trivializations and bundle gerbe modules. 1 I I PRON PRP Case=Nom|Number=Sing|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 new new ADJ JJ Degree=Pos 6 amod _ _ 4 1 1 NUM CD NumType=Card 6 nummod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 morphisms morphism NOUN NNS Number=Plur 2 dobj _ _ 7 which which PRON WDT _ 8 nsubj _ _ 8 include include VERB VBP Tense=Pres|VerbForm=Fin 6 relcl _ _ 9 stable stable ADJ JJ Degree=Pos 10 amod _ _ 10 isomorphisms isomorphism NOUN NNS Number=Plur 8 dobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 trivializations trivialization NOUN NNS Number=Plur 10 conj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 bundle bundle NOUN NN Number=Sing 16 compound _ _ 15 gerbe gerbe PROPN NNP Number=Sing 16 compound _ _ 16 modules module NOUN NNS Number=Plur 12 conj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = They fit into the structure of a 2 - category of bundle gerbes, and lead to natural definitions of surface holonomy for closed surfaces, surfaces with boundary, and unoriented closed surfaces. 1 They they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 2 nsubj _ _ 2 fit fit VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 into into ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 structure structure NOUN NN Number=Sing 3 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 8 2 2 NUM CD NumType=Card 10 nummod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 category category NOUN NN Number=Sing 6 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 bundle bundle NOUN NN Number=Sing 13 compound _ _ 13 gerbes gerbes PROPN NNP Number=Sing 11 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 2 punct _ _ 15 and and CCONJ CC ConjType=Cmp 2 cc _ _ 16 lead lead VERB VB VerbForm=Inf 2 conj _ _ 17 to to ADP IN _ 16 prep _ _ 18 natural natural ADJ JJ Degree=Pos 19 amod _ _ 19 definitions definition NOUN NNS Number=Plur 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 surface surface NOUN NN Number=Sing 22 compound _ _ 22 holonomy holonomy NOUN NN Number=Sing 20 pobj _ _ 23 for for ADP IN _ 19 prep _ _ 24 closed closed ADJ JJ Degree=Pos 25 amod _ _ 25 surfaces surface NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 16 punct _ _ 27 surfaces surface NOUN NNS Number=Plur 16 conj _ _ 28 with with ADP IN _ 27 prep _ _ 29 boundary boundary NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 27 punct _ _ 31 and and CCONJ CC ConjType=Cmp 27 cc _ _ 32 unoriented unoriente VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 34 amod _ _ 33 closed closed ADJ JJ Degree=Pos 34 amod _ _ 34 surfaces surface NOUN NNS Number=Plur 27 conj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 275 # sent_id = 1 # text = We have shown that complete spreads (with a locally connected domain) over a bounded topos $ E $ (relative to $ S $ ) are `comprehensive' in the sense that they are precisely the second factor of a factorization associated with an instance of the comprehension scheme involving $ S $ - valued distributions on $ E $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 aux _ _ 3 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 that that DET DT Number=Sing|PronType=Dem 6 det _ _ 5 complete complete ADJ JJ Degree=Pos 6 amod _ _ 6 spreads spread NOUN NNS Number=Plur 3 dobj _ _ 7 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 6 punct _ SpaceAfter=No 8 with with ADP IN _ 6 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 10 locally locally ADV RB _ 11 advmod _ _ 11 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 12 domain domain NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 13 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 6 punct _ _ 14 over over ADP IN _ 3 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 bounded bound VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 17 topos topos NOUN NN Number=Sing 14 pobj _ _ 18 $ E $ $ e $ SYM $ _ 17 appos _ _ 19 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 20 punct _ SpaceAfter=No 20 relative relative ADJ JJ Degree=Pos 3 dep _ _ 21 to to ADP IN _ 20 prep _ _ 22 $ S $ $ s $ SYM $ _ 21 pobj _ _ 23 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 3 punct _ _ 24 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 conj _ _ 25 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 24 punct _ SpaceAfter=No 26 comprehensive comprehensive ADJ JJ Degree=Pos 24 acomp _ SpaceAfter=No 27 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 24 punct _ _ 28 in in ADP IN _ 24 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 sense sense NOUN NN Number=Sing 28 pobj _ _ 31 that that SCONJ IN _ 33 mark _ _ 32 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 33 nsubj _ _ 33 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 30 acl _ _ 34 precisely precisely ADV RB _ 33 advmod _ _ 35 the the DET DT Definite=Def|PronType=Art 37 det _ _ 36 second second ADJ JJ Degree=Pos 37 amod _ _ 37 factor factor NOUN NN Number=Sing 33 attr _ _ 38 of of ADP IN _ 37 prep _ _ 39 a a DET DT Definite=Ind|PronType=Art 40 det _ _ 40 factorization factorization NOUN NN Number=Sing 38 pobj _ _ 41 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 40 acl _ _ 42 with with ADP IN _ 41 prep _ _ 43 an an DET DT Definite=Ind|PronType=Art 44 det _ _ 44 instance instance NOUN NN Number=Sing 42 pobj _ _ 45 of of ADP IN _ 44 prep _ _ 46 the the DET DT Definite=Def|PronType=Art 48 det _ _ 47 comprehension comprehension NOUN NN Number=Sing 48 compound _ _ 48 scheme scheme NOUN NN Number=Sing 45 pobj _ _ 49 involving involve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 48 acl _ _ 50 $ S $ $ s $ SYM $ _ 52 advmod _ _ 51 - - PUNCT HYPH PunctType=Dash 52 punct _ _ 52 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 53 amod _ _ 53 distributions distribution NOUN NNS Number=Plur 49 dobj _ _ 54 on on ADP IN _ 53 prep _ _ 55 $ E $ $ e $ SYM $ _ 54 pobj _ _ 56 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = Lawvere has asked whether the `Michael coverings' (or complete spreads with a definable dominance domain) are comprehensive in a similar fashion. 1 Lawvere Lawvere PROPN NNP Number=Sing 3 nsubj _ _ 2 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 aux _ _ 3 asked ask VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 whether whether SCONJ IN _ 20 mark _ _ 5 the the DET DT Definite=Def|PronType=Art 8 det _ _ 6 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 8 punct _ SpaceAfter=No 7 Michael Michael PROPN NNP Number=Sing 8 compound _ _ 8 coverings covering NOUN NNS Number=Plur 20 nsubj _ SpaceAfter=No 9 ' ' PART POS _ 8 case _ _ 10 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 8 punct _ SpaceAfter=No 11 or or CCONJ CC ConjType=Cmp 8 cc _ _ 12 complete complete ADJ JJ Degree=Pos 13 amod _ _ 13 spreads spread NOUN NNS Number=Plur 8 conj _ _ 14 with with ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 16 definable definable ADJ JJ Degree=Pos 18 amod _ _ 17 dominance dominance NOUN NN Number=Sing 18 compound _ _ 18 domain domain NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 19 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 8 punct _ _ 20 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 21 comprehensive comprehensive ADJ JJ Degree=Pos 20 acomp _ _ 22 in in ADP IN _ 20 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 24 similar similar ADJ JJ Degree=Pos 25 amod _ _ 25 fashion fashion NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = We give here a positive answer to this question. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 here here ADV RB PronType=Dem 2 advmod _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 positive positive ADJ JJ Degree=Pos 6 amod _ _ 6 answer answer NOUN NN Number=Sing 2 dobj _ _ 7 to to ADP IN _ 6 prep _ _ 8 this this DET DT Number=Sing|PronType=Dem 9 det _ _ 9 question question NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = In order to deal effectively with the comprehension scheme in this context, we introduce a notion of an `extensive topos doctrine, ' where the extensive quantities (or distributions) have values in a suitable subcategory of what we call `locally discrete' locales. 1 In in ADP IN _ 15 prep _ _ 2 order order NOUN NN Number=Sing 1 pobj _ _ 3 to to PART TO _ 4 aux _ _ 4 deal deal VERB VB VerbForm=Inf 2 acl _ _ 5 effectively effectively ADV RB _ 4 advmod _ _ 6 with with ADP IN _ 4 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 comprehension comprehension NOUN NN Number=Sing 9 compound _ _ 9 scheme scheme NOUN NN Number=Sing 6 pobj _ _ 10 in in ADP IN _ 9 prep _ _ 11 this this DET DT Number=Sing|PronType=Dem 12 det _ _ 12 context context NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 15 punct _ _ 14 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 15 nsubj _ _ 15 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 notion notion NOUN NN Number=Sing 15 dobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 an an DET DT Definite=Ind|PronType=Art 23 det _ _ 20 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 23 punct _ SpaceAfter=No 21 extensive extensive ADJ JJ Degree=Pos 23 amod _ _ 22 topos topos NOUN NN Number=Sing 23 compound _ _ 23 doctrine doctrine NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 23 punct _ _ 25 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 23 punct _ _ 26 where where SCONJ WRB _ 34 advmod _ _ 27 the the DET DT Definite=Def|PronType=Art 29 det _ _ 28 extensive extensive ADJ JJ Degree=Pos 29 amod _ _ 29 quantities quantity NOUN NNS Number=Plur 34 nsubj _ _ 30 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 29 punct _ SpaceAfter=No 31 or or CCONJ CC ConjType=Cmp 29 cc _ _ 32 distributions distribution NOUN NNS Number=Plur 29 conj _ SpaceAfter=No 33 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 29 punct _ _ 34 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 23 relcl _ _ 35 values value NOUN NNS Number=Plur 34 dobj _ _ 36 in in ADP IN _ 35 prep _ _ 37 a a DET DT Definite=Ind|PronType=Art 39 det _ _ 38 suitable suitable ADJ JJ Degree=Pos 39 amod _ _ 39 subcategory subcategory NOUN NN Number=Sing 36 pobj _ _ 40 of of ADP IN _ 39 prep _ _ 41 what what PRON WP _ 43 dobj _ _ 42 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 43 nsubj _ _ 43 call call VERB VBP Tense=Pres|VerbForm=Fin 40 pcomp _ _ 44 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 46 punct _ SpaceAfter=No 45 locally locally ADV RB _ 46 advmod _ _ 46 discrete discrete ADJ JJ Degree=Pos 48 amod _ SpaceAfter=No 47 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 48 punct _ _ 48 locales locale NOUN NNS Number=Plur 43 oprd _ SpaceAfter=No 49 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 5 # text = In the process we define what we mean by a quasi locally connected topos, a notion that we feel may be of interest in its own right. 1 In in ADP IN _ 5 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 process process NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 what what PRON WP _ 8 dobj _ _ 7 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 8 nsubj _ _ 8 mean mean VERB VBP Tense=Pres|VerbForm=Fin 5 ccomp _ _ 9 by by ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 quasi quasi NOUN NN Number=Sing 14 nmod _ _ 12 locally locally ADV RB _ 13 advmod _ _ 13 connected connected ADJ JJ Degree=Pos 14 amod _ _ 14 topos topos NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 5 punct _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 notion notion NOUN NN Number=Sing 5 npadvmod _ _ 18 that that SCONJ IN _ 20 mark _ _ 19 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 20 nsubj _ _ 20 feel feel VERB VBP Tense=Pres|VerbForm=Fin 17 acl _ _ 21 may may AUX MD VerbForm=Fin 22 aux _ _ 22 be be AUX VB VerbForm=Inf 20 ccomp _ _ 23 of of ADP IN _ 22 prep _ _ 24 interest interest NOUN NN Number=Sing 23 pobj _ _ 25 in in ADP IN _ 24 prep _ _ 26 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 28 poss _ _ 27 own own ADJ JJ Degree=Pos 28 amod _ _ 28 right right NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 276 # sent_id = 1 # text = The core of a category (first defined in ``Core algebra revisited'') has the structure of an abstract core algebra (first defined in the same place). 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 core core NOUN NN Number=Sing 17 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 3 pobj _ _ 6 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 2 punct _ SpaceAfter=No 7 first first ADV RB _ 8 advmod _ _ 8 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 acl _ _ 9 in in ADP IN _ 8 prep _ _ 10 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 9 punct _ SpaceAfter=No 11 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 9 punct _ SpaceAfter=No 12 Core Core PROPN NNP Number=Sing 13 compound _ _ 13 algebra algebra NOUN NN Number=Sing 9 pobj _ _ 14 revisited revisit VERB VBD Tense=Past|VerbForm=Fin 13 acl _ SpaceAfter=No 15 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 13 punct _ SpaceAfter=No 16 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 2 punct _ _ 17 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 structure structure NOUN NN Number=Sing 17 dobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 an an DET DT Definite=Ind|PronType=Art 24 det _ _ 22 abstract abstract ADJ JJ Degree=Pos 24 amod _ _ 23 core core NOUN NN Number=Sing 24 compound _ _ 24 algebra algebra PROPN NNP Number=Sing 20 pobj _ _ 25 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 24 punct _ SpaceAfter=No 26 first first ADV RB _ 27 advmod _ _ 27 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 acl _ _ 28 in in ADP IN _ 27 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 31 det _ _ 30 same same ADJ JJ Degree=Pos 31 amod _ _ 31 place place NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 32 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 24 punct _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 2 # text = A question was left open: is there more structure yet to be defined? 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 question question NOUN NN Number=Sing 4 nsubjpass _ _ 3 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 4 auxpass _ _ 4 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 ccomp _ _ 5 open open ADJ JJ Degree=Pos 4 oprd _ SpaceAfter=No 6 : : PUNCT : _ 7 punct _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 there there PRON EX _ 7 expl _ _ 9 more more ADJ JJR Degree=Cmp 10 amod _ _ 10 structure structure NOUN NN Number=Sing 7 attr _ _ 11 yet yet ADV RB _ 7 advmod _ _ 12 to to PART TO _ 14 aux _ _ 13 be be AUX VB VerbForm=Inf 14 auxpass _ _ 14 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 xcomp _ SpaceAfter=No 15 ? ? PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = The answer is no: it is shown that any operation on an object arising from the fact that the object is the core of its category can be defined using only the constant and two binary operations that appear in the definition of abstract core algebra. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 answer answer NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 ccomp _ _ 4 no no NOUN NN Number=Sing 3 attr _ SpaceAfter=No 5 : : PUNCT : _ 8 punct _ _ 6 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 8 nsubjpass _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 that that SCONJ IN _ 30 mark _ _ 10 any any DET DT _ 11 det _ _ 11 operation operation NOUN NN Number=Sing 30 nsubjpass _ _ 12 on on ADP IN _ 11 prep _ _ 13 an an DET DT Definite=Ind|PronType=Art 14 det _ _ 14 object object NOUN NN Number=Sing 12 pobj _ _ 15 arising arise VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 acl _ _ 16 from from ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 fact fact NOUN NN Number=Sing 16 pobj _ _ 19 that that SCONJ IN _ 22 mark _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 object object NOUN NN Number=Sing 22 nsubj _ _ 22 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 acl _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 core core NOUN NN Number=Sing 30 nsubjpass _ _ 25 of of ADP IN _ 24 prep _ _ 26 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 27 poss _ _ 27 category category NOUN NN Number=Sing 25 pobj _ _ 28 can can AUX MD VerbForm=Fin 30 aux _ _ 29 be be AUX VB VerbForm=Inf 30 auxpass _ _ 30 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 ccomp _ _ 31 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 30 xcomp _ _ 32 only only ADV RB _ 38 advmod _ _ 33 the the DET DT Definite=Def|PronType=Art 38 det _ _ 34 constant constant ADJ JJ Degree=Pos 38 amod _ _ 35 and and CCONJ CC ConjType=Cmp 34 cc _ _ 36 two two NUM CD NumType=Card 38 nummod _ _ 37 binary binary ADJ JJ Degree=Pos 38 amod _ _ 38 operations operation NOUN NNS Number=Plur 31 dobj _ _ 39 that that PRON WDT PronType=Rel 40 nsubj _ _ 40 appear appear VERB VBP Tense=Pres|VerbForm=Fin 38 relcl _ _ 41 in in ADP IN _ 40 prep _ _ 42 the the DET DT Definite=Def|PronType=Art 43 det _ _ 43 definition definition NOUN NN Number=Sing 41 pobj _ _ 44 of of ADP IN _ 43 prep _ _ 45 abstract abstract ADJ JJ Degree=Pos 47 amod _ _ 46 core core NOUN NN Number=Sing 47 compound _ _ 47 algebra algebra PROPN NNP Number=Sing 44 pobj _ SpaceAfter=No 48 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 4 # text = In the process a number of facts about abstract core algebras must be developed. 1 In in ADP IN _ 14 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 process process NOUN NN Number=Sing 1 pobj _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 number number NOUN NN Number=Sing 14 nsubjpass _ _ 6 of of ADP IN _ 5 prep _ _ 7 facts fact NOUN NNS Number=Plur 6 pobj _ _ 8 about about ADP IN _ 7 prep _ _ 9 abstract abstract ADJ JJ Degree=Pos 11 amod _ _ 10 core core NOUN NN Number=Sing 11 compound _ _ 11 algebras algebra NOUN NNS Number=Plur 8 pobj _ _ 12 must must AUX MD VerbForm=Fin 14 aux _ _ 13 be be AUX VB VerbForm=Inf 14 auxpass _ _ 14 developed develop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # doc_id = 277 # sent_id = 1 # text = New techniques for constructing a distributive law of a monad over another are studied using submonads, quotient monads, product monads, recursively - defined distributive laws, and linear equations. 1 New new ADJ JJ Degree=Pos 2 amod _ _ 2 techniques technique NOUN NNS Number=Plur 14 nsubjpass _ _ 3 for for ADP IN _ 2 prep _ _ 4 constructing construct VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 pcomp _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 distributive distributive ADJ JJ Degree=Pos 7 amod _ _ 7 law law NOUN NN Number=Sing 4 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 monad monad NOUN NNS Number=Plur 8 pobj _ _ 11 over over ADP IN _ 10 prep _ _ 12 another another PRON DT _ 11 pobj _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 studied study VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 15 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 xcomp _ _ 16 submonads submonad NOUN NNS Number=Plur 15 dobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 quotient quotient NOUN NN Number=Sing 19 compound _ _ 19 monads monad NOUN NNS Number=Plur 16 conj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 19 punct _ _ 21 product product NOUN NN Number=Sing 22 compound _ _ 22 monads monad NOUN NNS Number=Plur 19 conj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 recursively recursively ADV RB _ 26 advmod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 amod _ _ 27 distributive distributive ADJ JJ Degree=Pos 28 amod _ _ 28 laws law NOUN NNS Number=Plur 22 conj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 28 punct _ _ 30 and and CCONJ CC ConjType=Cmp 28 cc _ _ 31 linear linear ADJ JJ Degree=Pos 32 amod _ _ 32 equations equation NOUN NNS Number=Plur 28 conj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 2 # text = Sequel papers will consider distributive laws in closed categories and will construct monad approximations for compositions which fail to be a monad. 1 Sequel sequel NOUN NN Number=Sing 2 compound _ _ 2 papers paper NOUN NNS Number=Plur 4 nsubj _ _ 3 will will AUX MD VerbForm=Fin 4 aux _ _ 4 consider consider VERB VB VerbForm=Inf 0 ROOT _ _ 5 distributive distributive ADJ JJ Degree=Pos 6 amod _ _ 6 laws law NOUN NNS Number=Plur 4 dobj _ _ 7 in in ADP IN _ 6 prep _ _ 8 closed closed ADJ JJ Degree=Pos 9 amod _ _ 9 categories category NOUN NNS Number=Plur 7 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 4 cc _ _ 11 will will AUX MD VerbForm=Fin 12 aux _ _ 12 construct construct VERB VB VerbForm=Inf 4 conj _ _ 13 monad monad NOUN NNS Number=Plur 14 compound _ _ 14 approximations approximation NOUN NNS Number=Plur 12 dobj _ _ 15 for for ADP IN _ 12 prep _ _ 16 compositions composition NOUN NNS Number=Plur 15 pobj _ _ 17 which which PRON WDT _ 18 nsubj _ _ 18 fail fail VERB VBP Tense=Pres|VerbForm=Fin 16 relcl _ _ 19 to to PART TO _ 20 aux _ _ 20 be be AUX VB VerbForm=Inf 18 xcomp _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 monad monad NOUN NNS Number=Plur 20 attr _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 278 # sent_id = 1 # text = In this paper we give a characterization of constructively completely distributive lattices in presheaves on $ C $ , for $ C $ a small category with pullbacks. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 characterization characterization NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 constructively constructively ADV RB _ 11 advmod _ _ 10 completely completely ADV RB _ 11 advmod _ _ 11 distributive distributive ADJ JJ Degree=Pos 12 amod _ _ 12 lattices lattice NOUN NNS Number=Plur 8 pobj _ _ 13 in in ADP IN _ 5 prep _ _ 14 presheaves presheave NOUN NNS Number=Plur 13 pobj _ _ 15 on on ADP IN _ 14 prep _ _ 16 $ C $ $ c $ SYM $ _ 15 pobj _ _ 17 , , PUNCT , PunctType=Comm 5 punct _ _ 18 for for ADP IN _ 5 prep _ _ 19 $ C $ $ c $ SYM $ _ 22 poss _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 small small ADJ JJ Degree=Pos 22 amod _ _ 22 category category NOUN NN Number=Sing 18 pobj _ _ 23 with with ADP IN _ 22 prep _ _ 24 pullbacks pullback NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 279 # sent_id = 1 # text = Francisco Marmolejo pointed out a mistake in the statement of a propositoin in our paper. 1 Francisco Francisco PROPN NNP Number=Sing 2 compound _ _ 2 Marmolejo Marmolejo PROPN NNP Number=Sing 3 nsubj _ _ 3 pointed point VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 4 out out ADP RP _ 3 prt _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 mistake mistake NOUN NN Number=Sing 3 dobj _ _ 7 in in ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 statement statement NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 propositoin propositoin NOUN NN Number=Sing 10 pobj _ _ 13 in in ADP IN _ 12 prep _ _ 14 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 15 poss _ _ 15 paper paper NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = The mistaken version is used later in that paper. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 mistaken mistaken ADJ JJ Degree=Pos 3 amod _ _ 3 version version NOUN NN Number=Sing 5 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 later later ADV RB _ 5 advmod _ _ 7 in in ADP IN _ 5 prep _ _ 8 that that DET DT Number=Sing|PronType=Dem 9 det _ _ 9 paper paper NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = Our purpose here is to correct the error by providing an explicit description of the finite coproduct completion of the dual of the category of connected $ G $ - sets. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 purpose purpose NOUN NN Number=Sing 4 nsubj _ _ 3 here here ADV RB PronType=Dem 2 advmod _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 to to PART TO _ 6 aux _ _ 6 correct correct VERB VB VerbForm=Inf 4 xcomp _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 error error NOUN NN Number=Sing 6 dobj _ _ 9 by by ADP IN _ 6 prep _ _ 10 providing provide VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 pcomp _ _ 11 an an DET DT Definite=Ind|PronType=Art 13 det _ _ 12 explicit explicit ADJ JJ Degree=Pos 13 amod _ _ 13 description description NOUN NN Number=Sing 10 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 18 det _ _ 16 finite finite ADJ JJ Degree=Pos 17 amod _ _ 17 coproduct coproduct NOUN NN Number=Sing 18 compound _ _ 18 completion completion NOUN NN Number=Sing 14 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 dual dual ADJ JJ Degree=Pos 19 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 category category NOUN NN Number=Sing 22 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 amod _ _ 27 $ G $ $ g $ SYM $ _ 29 compound _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 sets set NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = The description uses the distinguished morphisms of a factorization system on the category of $ G $ - sets. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 description description NOUN NN Number=Sing 3 nsubj _ _ 3 uses use VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 distinguished distinguished ADJ JJ Degree=Pos 6 amod _ _ 6 morphisms morphism NOUN NNS Number=Plur 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 factorization factorization NOUN NN Number=Sing 10 compound _ _ 10 system system NOUN NN Number=Sing 7 pobj _ _ 11 on on ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 category category NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 $ G $ $ g $ SYM $ _ 17 compound _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 sets set NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 280 # sent_id = 1 # text = We give an interpretation of Yetter's Invariant of manifolds $ M $ in terms of the homotopy type of the function space $ TOP(M, B(cal G)) $ , where $ cal G $ is a crossed module and $ B(cal G) $ is its classifying space. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 4 det _ _ 4 interpretation interpretation NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 Yetter Yetter PROPN NNP Number=Sing 8 poss _ SpaceAfter=No 7 's 's PART POS _ 6 case _ _ 8 Invariant Invariant PROPN NNP Number=Sing 5 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 manifolds manifold NOUN NNS Number=Plur 9 pobj _ _ 11 $ M $ $ m $ SYM $ _ 2 dep _ _ 12 in in ADP IN _ 2 prep _ _ 13 terms term NOUN NNS Number=Plur 12 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 homotopy homotopy NOUN NN Number=Sing 17 compound _ _ 17 type type NOUN NN Number=Sing 14 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 function function NOUN NN Number=Sing 21 compound _ _ 21 space space NOUN NN Number=Sing 18 pobj _ _ 22 $ TOP(M, B(cal G)) $ $ top(m, b(cal g)) $ SYM $ _ 26 nsubj _ _ 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 where where SCONJ WRB _ 25 advmod _ _ 25 $ cal G $ $ cal g $ SYM $ _ 22 relcl _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 conj _ _ 27 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 28 crossed crossed ADJ JJ Degree=Pos 29 amod _ _ 29 module module NOUN NN Number=Sing 26 attr _ _ 30 and and CCONJ CC ConjType=Cmp 29 cc _ _ 31 $ B(cal G) $ $ b(cal g) $ SYM $ _ 32 nsubj _ _ 32 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 26 conj _ _ 33 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 35 poss _ _ 34 classifying classify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 35 amod _ _ 35 space space NOUN NN Number=Sing 32 attr _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = From this formulation, there follows that Yetter's invariant depends only on the homotopy type of $ M $ , and the weak homotopy type of the crossed module $ cal G $ . 1 From from ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 formulation formulation NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 there there PRON EX _ 6 expl _ _ 6 follows follow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 that that SCONJ IN _ 11 mark _ _ 8 Yetter Yetter PROPN NNP Number=Sing 10 poss _ SpaceAfter=No 9 's 's PART POS _ 8 case _ _ 10 invariant invariant NOUN NN Number=Sing 11 nsubj _ _ 11 depends depend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 12 only only ADV RB _ 13 advmod _ _ 13 on on ADP IN _ 11 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 homotopy homotopy NOUN NN Number=Sing 16 compound _ _ 16 type type NOUN NN Number=Sing 13 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 $ M $ $ m $ SYM $ _ 17 pobj _ _ 19 , , PUNCT , PunctType=Comm 11 punct _ _ 20 and and CCONJ CC ConjType=Cmp 11 cc _ _ 21 the the DET DT Definite=Def|PronType=Art 24 det _ _ 22 weak weak ADJ JJ Degree=Pos 24 amod _ _ 23 homotopy homotopy NOUN NN Number=Sing 24 compound _ _ 24 type type NOUN NN Number=Sing 11 conj _ _ 25 of of ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 28 det _ _ 27 crossed cross VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 amod _ _ 28 module module NOUN NN Number=Sing 25 pobj _ _ 29 $ cal G $ $ cal g $ SYM $ _ 24 appos _ _ 30 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = We use this interpretation to define a twisting of Yetter's Invariant by cohomology classes of crossed modules, defined as cohomology classes of their classifying spaces, in the form of a state sum invariant. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 4 interpretation interpretation NOUN NN Number=Sing 2 dobj _ _ 5 to to PART TO _ 6 aux _ _ 6 define define VERB VB VerbForm=Inf 2 xcomp _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 twisting twisting NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 Yetter Yetter PROPN NNP Number=Sing 12 poss _ SpaceAfter=No 11 's 's PART POS _ 10 case _ _ 12 Invariant Invariant PROPN NNP Number=Sing 9 pobj _ _ 13 by by ADP IN _ 8 prep _ _ 14 cohomology cohomology NOUN NN Number=Sing 15 compound _ _ 15 classes class NOUN NNS Number=Plur 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 crossed crossed ADJ JJ Degree=Pos 18 amod _ _ 18 modules module NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 15 punct _ _ 20 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 acl _ _ 21 as as ADP IN _ 20 prep _ _ 22 cohomology cohomology NOUN NN Number=Sing 23 compound _ _ 23 classes class NOUN NNS Number=Plur 21 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 27 poss _ _ 26 classifying classify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 27 amod _ _ 27 spaces space NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 6 punct _ _ 29 in in ADP IN _ 6 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 form form NOUN NN Number=Sing 29 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 a a DET DT Definite=Ind|PronType=Art 36 det _ _ 34 state state NOUN NN Number=Sing 35 compound _ _ 35 sum sum NOUN NN Number=Sing 36 compound _ _ 36 invariant invariant ADJ JJ Degree=Pos 32 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = In particular, we obtain an extension of the Dijkgraaf - Witten Invariant of manifolds to categorical groups. 1 In in ADP IN _ 5 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 an an DET DT Definite=Ind|PronType=Art 7 det _ _ 7 extension extension NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 13 det _ _ 10 Dijkgraaf Dijkgraaf PROPN NNP Number=Sing 12 compound _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 Witten Witten PROPN NNP Number=Sing 13 compound _ _ 13 Invariant Invariant PROPN NNP Number=Sing 8 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 manifolds manifold NOUN NNS Number=Plur 14 pobj _ _ 16 to to ADP IN _ 7 prep _ _ 17 categorical categorical ADJ JJ Degree=Pos 18 amod _ _ 18 groups group NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 5 # text = The straightforward extension to crossed complexes is also considered. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 straightforward straightforward ADJ JJ Degree=Pos 3 amod _ _ 3 extension extension NOUN NN Number=Sing 9 nsubjpass _ _ 4 to to ADP IN _ 3 prep _ _ 5 crossed crossed ADJ JJ Degree=Pos 6 amod _ _ 6 complexes complex NOUN NNS Number=Plur 4 pobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 8 also also ADV RB _ 9 advmod _ _ 9 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 281 # sent_id = 1 # text = Bicat is the tricategory of bicategories, homomorphisms, pseudonatural transformations, and modifications. $ Gray $ is the subtricategory of 2 - categories, 2 - functors, pseudonatural transformations, and modifications. 1 Bicat Bicat PROPN NNP Number=Sing 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 tricategory tricategory NOUN NN Number=Sing 2 attr _ _ 5 of of ADP IN _ 4 prep _ _ 6 bicategories bicategorie NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 6 punct _ _ 8 homomorphisms homomorphism NOUN NNS Number=Plur 6 conj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 8 punct _ _ 10 pseudonatural pseudonatural ADJ JJ Degree=Pos 11 amod _ _ 11 transformations transformation NOUN NNS Number=Plur 8 conj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 and and CCONJ CC ConjType=Cmp 11 cc _ _ 14 modifications modification NOUN NNS Number=Plur 11 conj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 2 punct _ _ 16 $ Gray $ $ gray $ SYM $ _ 17 nsubj _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 conj _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 subtricategory subtricategory NOUN NN Number=Sing 17 attr _ _ 20 of of ADP IN _ 19 prep _ _ 21 2 2 NUM CD NumType=Card 23 nummod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 categories category NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 27 punct _ _ 25 2 2 NUM CD NumType=Card 27 nummod _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 functors functor NOUN NNS Number=Plur 17 attr _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 27 punct _ _ 29 pseudonatural pseudonatural ADJ JJ Degree=Pos 30 amod _ _ 30 transformations transformation NOUN NNS Number=Plur 27 conj _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 30 punct _ _ 32 and and CCONJ CC ConjType=Cmp 30 cc _ _ 33 modifications modification NOUN NNS Number=Plur 30 conj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We show that these two tricategories are not triequivalent. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 7 mark _ _ 4 these these DET DT Number=Plur|PronType=Dem 6 det _ _ 5 two two NUM CD NumType=Card 6 nummod _ _ 6 tricategories tricategorie NOUN NNS Number=Plur 7 nsubj _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 8 not not PART RB Polarity=Neg 7 neg _ _ 9 triequivalent triequivalent ADJ JJ Degree=Pos 7 acomp _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 282 # sent_id = 1 # text = The notion of cartesian bicategory, introduced by Carboni and Walters for locally ordered bicategories, is extended to general bicategories. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 notion notion NOUN NN Number=Sing 18 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 cartesian cartesian ADJ JJ Degree=Pos 5 amod _ _ 5 bicategory bicategory NOUN NN Number=Sing 3 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 acl _ _ 8 by by ADP IN _ 7 agent _ _ 9 Carboni Carboni PROPN NNP Number=Sing 8 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 Walters Walters PROPN NNP Number=Sing 9 conj _ _ 12 for for ADP IN _ 7 prep _ _ 13 locally locally ADV RB _ 14 advmod _ _ 14 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 amod _ _ 15 bicategories bicategorie NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 2 punct _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 auxpass _ _ 18 extended extend VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 19 to to ADP IN _ 18 prep _ _ 20 general general ADJ JJ Degree=Pos 21 amod _ _ 21 bicategories bicategorie NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # sent_id = 2 # text = It is shown that a cartesian bicategory is a symmetric monoidal bicategory. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 that that SCONJ IN _ 8 mark _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 cartesian cartesian ADJ JJ Degree=Pos 7 amod _ _ 7 bicategory bicategory NOUN NN Number=Sing 8 nsubj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 9 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 10 symmetric symmetric ADJ JJ Degree=Pos 12 amod _ _ 11 monoidal monoidal ADJ JJ Degree=Pos 12 amod _ _ 12 bicategory bicategory NOUN NN Number=Sing 8 attr _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 283 # sent_id = 1 # text = Iterative algebras, defined by the property that every guarded system of recursive equations has a unique solution, are proved to have a much stronger property: every system of recursive equations has a unique strict solution. 1 Iterative iterative ADJ JJ Degree=Pos 2 amod _ _ 2 algebras algebra NOUN NNS Number=Plur 21 nsubjpass _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 2 punct _ _ 4 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 acl _ _ 5 by by ADP IN _ 4 agent _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 property property NOUN NN Number=Sing 5 pobj _ _ 8 that that PRON WDT PronType=Rel 15 nsubj _ _ 9 every every DET DT _ 11 det _ _ 10 guarded guard VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 amod _ _ 11 system system NOUN NN Number=Sing 15 nsubj _ _ 12 of of ADP IN _ 11 prep _ _ 13 recursive recursive ADJ JJ Degree=Pos 14 amod _ _ 14 equations equation NOUN NNS Number=Plur 12 pobj _ _ 15 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 relcl _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 unique unique ADJ JJ Degree=Pos 18 amod _ _ 18 solution solution NOUN NN Number=Sing 15 dobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 2 punct _ _ 20 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 21 auxpass _ _ 21 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 34 ccomp _ _ 22 to to PART TO _ 23 aux _ _ 23 have have VERB VB VerbForm=Inf 21 xcomp _ _ 24 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 25 much much ADV RB _ 26 advmod _ _ 26 stronger strong ADJ JJR Degree=Cmp 27 amod _ _ 27 property property NOUN NN Number=Sing 23 dobj _ SpaceAfter=No 28 : : PUNCT : _ 34 punct _ _ 29 every every DET DT _ 30 det _ _ 30 system system NOUN NN Number=Sing 34 nsubj _ _ 31 of of ADP IN _ 30 prep _ _ 32 recursive recursive ADJ JJ Degree=Pos 33 amod _ _ 33 equations equation NOUN NNS Number=Plur 31 pobj _ _ 34 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 35 a a DET DT Definite=Ind|PronType=Art 38 det _ _ 36 unique unique ADJ JJ Degree=Pos 38 amod _ _ 37 strict strict ADJ JJ Degree=Pos 38 amod _ _ 38 solution solution NOUN NN Number=Sing 34 dobj _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 34 punct _ SpaceAfter=No # sent_id = 2 # text = Those systems that have a unique solution in every iterative algebra are characterized. 1 Those those DET DT Number=Plur|PronType=Dem 2 det _ _ 2 systems system NOUN NNS Number=Plur 13 nsubjpass _ _ 3 that that PRON WDT PronType=Rel 4 nsubj _ _ 4 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 relcl _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 unique unique ADJ JJ Degree=Pos 7 amod _ _ 7 solution solution NOUN NN Number=Sing 4 dobj _ _ 8 in in ADP IN _ 7 prep _ _ 9 every every DET DT _ 11 det _ _ 10 iterative iterative ADJ JJ Degree=Pos 11 amod _ _ 11 algebra algebra NOUN NNS Number=Plur 8 pobj _ _ 12 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 characterized characterize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # doc_id = 284 # sent_id = 1 # text = It is the aim of this paper to compute the category of Eilenberg - Moore algebras for the monad arising from the dual unit - ball functor on the category of (semi)normed spaces. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 aim aim NOUN NN Number=Sing 2 attr _ _ 5 of of ADP IN _ 4 prep _ _ 6 this this DET DT Number=Sing|PronType=Dem 7 det _ _ 7 paper paper NOUN NN Number=Sing 5 pobj _ _ 8 to to PART TO _ 9 aux _ _ 9 compute compute VERB VB VerbForm=Inf 2 xcomp _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 category category NOUN NN Number=Sing 9 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 Eilenberg Eilenberg PROPN NNP Number=Sing 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 Moore Moore PROPN NNP Number=Sing 16 compound _ _ 16 algebras algebra VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 pobj _ _ 17 for for ADP IN _ 9 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 monad monad NOUN NNS Number=Plur 17 pobj _ _ 20 arising arise VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 19 acl _ _ 21 from from ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 27 det _ _ 23 dual dual ADJ JJ Degree=Pos 24 amod _ _ 24 unit unit NOUN NN Number=Sing 26 compound _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 ball ball NOUN NN Number=Sing 27 compound _ _ 27 functor functor NOUN NN Number=Sing 21 pobj _ _ 28 on on ADP IN _ 20 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 category category NOUN NN Number=Sing 28 pobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 33 punct _ SpaceAfter=No 33 semi)normed semi)normed PROPN NNP Number=Sing 31 pobj _ _ 34 spaces space NOUN NNS Number=Plur 31 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We show that this gives rise to a stronger algebraic structure than the totally convex one obtained from the closed unit ball functor on the category of Banach spaces. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 5 mark _ _ 4 this this PRON DT Number=Sing|PronType=Dem 5 nsubj _ _ 5 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 6 rise rise VERB VB VerbForm=Inf 5 dobj _ _ 7 to to ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 9 stronger strong ADJ JJR Degree=Cmp 11 amod _ _ 10 algebraic algebraic ADJ JJ Degree=Pos 11 amod _ _ 11 structure structure NOUN NN Number=Sing 7 pobj _ _ 12 than than ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 16 det _ _ 14 totally totally ADV RB _ 15 advmod _ _ 15 convex convex ADJ JJ Degree=Pos 16 amod _ _ 16 one one NUM CD NumType=Card 12 pobj _ _ 17 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 acl _ _ 18 from from ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 23 det _ _ 20 closed closed ADJ JJ Degree=Pos 21 amod _ _ 21 unit unit NOUN NN Number=Sing 23 compound _ _ 22 ball ball NOUN NN Number=Sing 23 compound _ _ 23 functor functor NOUN NN Number=Sing 18 pobj _ _ 24 on on ADP IN _ 17 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 category category NOUN NN Number=Sing 24 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 Banach Banach PROPN NNP Number=Sing 29 compound _ _ 29 spaces space NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 285 # sent_id = 1 # text = Motivated by an analysis of Abramsky - Jagadeesan games, the paper considers a categorical semantics for a polarized notion of two - player games, a semantics which has close connections with the logic of (finite cartesian) sums and products, as well as with the multiplicative structure of linear logic. 1 Motivated motivate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 advcl _ _ 2 by by ADP IN _ 1 agent _ _ 3 an an DET DT Definite=Ind|PronType=Art 4 det _ _ 4 analysis analysis NOUN NN Number=Sing 2 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 Abramsky Abramsky PROPN NNP Number=Sing 8 compound _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 Jagadeesan Jagadeesan PROPN NNP Number=Sing 9 compound _ _ 9 games games PROPN NNPS Number=Plur 5 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 13 punct _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 paper paper NOUN NN Number=Sing 13 nsubj _ _ 13 considers consider VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 categorical categorical ADJ JJ Degree=Pos 16 amod _ _ 16 semantics semantic NOUN NNS Number=Plur 13 dobj _ _ 17 for for ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 polarized polarized ADJ JJ Degree=Pos 20 amod _ _ 20 notion notion NOUN NN Number=Sing 17 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 two two NUM CD NumType=Card 24 nummod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 player player NOUN NN Number=Sing 25 compound _ _ 25 games game NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 25 punct _ _ 27 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 28 semantics semantic NOUN NNS Number=Plur 25 appos _ _ 29 which which PRON WDT _ 30 nsubj _ _ 30 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 28 relcl _ _ 31 close close ADJ JJ Degree=Pos 32 amod _ _ 32 connections connection NOUN NNS Number=Plur 30 dobj _ _ 33 with with ADP IN _ 32 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 35 det _ _ 35 logic logic NOUN NN Number=Sing 33 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 36 punct _ SpaceAfter=No 38 finite finite PROPN NNP Number=Sing 39 nmod _ _ 39 cartesian cartesian PROPN NNP Number=Sing 41 nmod _ SpaceAfter=No 40 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 39 punct _ _ 41 sums sum NOUN NNS Number=Plur 36 pobj _ _ 42 and and CCONJ CC ConjType=Cmp 41 cc _ _ 43 products product NOUN NNS Number=Plur 41 conj _ SpaceAfter=No 44 , , PUNCT , PunctType=Comm 41 punct _ _ 45 as as ADV RB _ 47 advmod _ _ 46 well well ADV RB Degree=Pos 47 advmod _ _ 47 as as ADP IN _ 36 cc _ _ 48 with with ADP IN _ 35 prep _ _ 49 the the DET DT Definite=Def|PronType=Art 51 det _ _ 50 multiplicative multiplicative ADJ JJ Degree=Pos 51 amod _ _ 51 structure structure NOUN NN Number=Sing 48 pobj _ _ 52 of of ADP IN _ 51 prep _ _ 53 linear linear ADJ JJ Degree=Pos 54 amod _ _ 54 logic logic NOUN NN Number=Sing 52 pobj _ SpaceAfter=No 55 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 2 # text = In each case, the structure is polarized, in the sense that it will be modelled by two categories, one for each of two polarities, with a module structure connecting them. 1 In in ADP IN _ 8 prep _ _ 2 each each DET DT _ 3 det _ _ 3 case case NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 8 punct _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 structure structure NOUN NN Number=Sing 8 nsubjpass _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 polarized polarize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 8 punct _ _ 10 in in ADP IN _ 8 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 sense sense NOUN NN Number=Sing 10 pobj _ _ 13 that that SCONJ IN _ 17 mark _ _ 14 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 17 nsubjpass _ _ 15 will will AUX MD VerbForm=Fin 17 aux _ _ 16 be be AUX VB VerbForm=Inf 17 auxpass _ _ 17 modelled model VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 acl _ _ 18 by by ADP IN _ 17 agent _ _ 19 two two NUM CD NumType=Card 20 nummod _ _ 20 categories category NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 one one NUM CD NumType=Card 20 appos _ _ 23 for for ADP IN _ 22 prep _ _ 24 each each PRON DT _ 23 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 two two NUM CD NumType=Card 27 nummod _ _ 27 polarities polarity NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 20 punct _ _ 29 with with ADP IN _ 20 prep _ _ 30 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 31 module module NOUN NN Number=Sing 32 compound _ _ 32 structure structure NOUN NN Number=Sing 29 pobj _ _ 33 connecting connect VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 32 acl _ _ 34 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 33 dobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 3 # text = These are studied in considerable detail, and a comparison is made with a different notion of polarization due to Olivier Laurent: there is an adjoint connection between the two notions. 1 These these PRON DT Number=Plur|PronType=Dem 3 nsubjpass _ _ 2 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 studied study VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 in in ADP IN _ 3 prep _ _ 5 considerable considerable ADJ JJ Degree=Pos 6 amod _ _ 6 detail detail NOUN NN Number=Sing 4 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 3 punct _ _ 8 and and CCONJ CC ConjType=Cmp 3 cc _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 comparison comparison NOUN NN Number=Sing 12 nsubjpass _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 12 made make VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 25 ccomp _ _ 13 with with ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 different different ADJ JJ Degree=Pos 16 amod _ _ 16 notion notion NOUN NN Number=Sing 13 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 polarization polarization NOUN NN Number=Sing 17 pobj _ _ 19 due due ADP IN _ 12 prep _ _ 20 to to ADP IN _ 19 pcomp _ _ 21 Olivier Olivier PROPN NNP Number=Sing 22 compound _ _ 22 Laurent Laurent PROPN NNP Number=Sing 19 pobj _ SpaceAfter=No 23 : : PUNCT : _ 25 punct _ _ 24 there there PRON EX _ 25 expl _ _ 25 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 conj _ _ 26 an an DET DT Definite=Ind|PronType=Art 28 det _ _ 27 adjoint adjoint NOUN NN Number=Sing 28 compound _ _ 28 connection connection NOUN NN Number=Sing 25 attr _ _ 29 between between ADP IN _ 28 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 32 det _ _ 31 two two NUM CD NumType=Card 32 nummod _ _ 32 notions notion NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 25 punct _ SpaceAfter=No # doc_id = 286 # sent_id = 1 # text = It is well known that the internal suplattices in the topos of sheaves on a locale are precisely the modules on that locale. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 well well ADV RB Degree=Pos 4 advmod _ _ 4 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 acomp _ _ 5 that that SCONJ IN _ 17 mark _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 internal internal ADJ JJ Degree=Pos 8 amod _ _ 8 suplattices suplattice NOUN NNS Number=Plur 17 nsubj _ _ 9 in in ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 topos topos NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 sheaves sheaf NOUN NNS Number=Plur 12 pobj _ _ 14 on on ADP IN _ 8 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 locale locale NOUN NN Number=Sing 14 pobj _ _ 17 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 18 precisely precisely ADV RB _ 20 advmod _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 modules module NOUN NNS Number=Plur 17 attr _ _ 21 on on ADP IN _ 20 prep _ _ 22 that that DET DT Number=Sing|PronType=Dem 23 det _ _ 23 locale locale NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Using enriched category theory and a lemma on $ KZ $ doctrines we prove (the generalization of) this fact in the case of ordered sheaves on a small quantaloid. 1 Using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 advcl _ _ 2 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 amod _ _ 3 category category NOUN NN Number=Sing 4 compound _ _ 4 theory theory NOUN NN Number=Sing 1 dobj _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 lemma lemma NOUN NN Number=Sing 4 conj _ _ 8 on on ADP IN _ 7 prep _ _ 9 $ KZ $ $ kz $ SYM $ _ 10 nmod _ _ 10 doctrines doctrine NOUN NNS Number=Plur 8 pobj _ _ 11 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 12 nsubj _ _ 12 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 12 punct _ SpaceAfter=No 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 generalization generalization NOUN NN Number=Sing 12 dobj _ _ 16 of of ADP IN _ 15 prep _ SpaceAfter=No 17 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 15 punct _ _ 18 this this DET DT Number=Sing|PronType=Dem 19 det _ _ 19 fact fact NOUN NN Number=Sing 12 npadvmod _ _ 20 in in ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 case case NOUN NN Number=Sing 20 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 25 amod _ _ 25 sheaves sheaf NOUN NNS Number=Plur 23 pobj _ _ 26 on on ADP IN _ 25 prep _ _ 27 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 28 small small ADJ JJ Degree=Pos 29 amod _ _ 29 quantaloid quantaloid NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 3 # text = Comparing module - equivalence with sheaf - equivalence for quantaloids and using the notion of centre of a quantaloid, we refine a result of Borceux and Vitale. 1 Comparing compare VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 advcl _ _ 2 module module NOUN NN Number=Sing 4 compound _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 equivalence equivalence NOUN NN Number=Sing 1 dobj _ _ 5 with with ADP IN _ 4 prep _ _ 6 sheaf sheaf NOUN NN Number=Sing 8 compound _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 equivalence equivalence NOUN NN Number=Sing 5 pobj _ _ 9 for for ADP IN _ 1 prep _ _ 10 quantaloids quantaloid NOUN NNS Number=Plur 9 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 1 cc _ _ 12 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 1 conj _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 notion notion NOUN NN Number=Sing 12 dobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 centre centre NOUN NN Number=Sing 15 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 19 quantaloid quantaloid NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 22 punct _ _ 21 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 22 nsubj _ _ 22 refine refine VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 23 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 24 result result NOUN NN Number=Sing 22 dobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 Borceux Borceux PROPN NNP Number=Sing 25 pobj _ _ 27 and and CCONJ CC ConjType=Cmp 26 cc _ _ 28 Vitale Vitale PROPN NNP Number=Sing 26 conj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 22 punct _ SpaceAfter=No # doc_id = 287 # sent_id = 1 # text = We illustrate the formula $ (downarrow p)x = Gamma_clik(x/p) $ , which gives the reflection $ downarrow p $ of a category $ p : P to X $ over $ X $ in discrete fibrations. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 illustrate illustrate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 formula formula NOUN NN Number=Sing 5 compound _ _ 5 $ (downarrow p)x = Gamma_clik(x/p) $ $ (downarrow p)x = Gamma_clik(x/p) $ PUNCT . PunctType=Peri 2 dobj _ _ 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 which which PRON WDT _ 8 nsubj _ _ 8 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 relcl _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 reflection reflection NOUN NN Number=Sing 8 dative _ _ 11 $ downarrow p $ $ downarrow p $ SYM $ _ 8 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 category category NOUN NN Number=Sing 12 pobj _ _ 15 $ p : P to X $ $ p : p to x $ SYM $ _ 14 nmod _ _ 16 over over ADP IN _ 14 prep _ _ 17 $ X $ $ x $ SYM $ _ 16 pobj _ _ 18 in in ADP IN _ 8 prep _ _ 19 discrete discrete ADJ JJ Degree=Pos 20 amod _ _ 20 fibrations fibration NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = One of its proofs is based on a ``complement operator" which takes a discrete fibration $ A $ to the functor $ neg A $ , right adjoint to $ Gamma_clik(Atimes - ):Cat/X to Set $ and valued in discrete opfibrations. 1 One one NUM CD NumType=Card 6 nsubjpass _ _ 2 of of ADP IN _ 1 prep _ _ 3 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 4 poss _ _ 4 proofs proof NOUN NNS Number=Plur 2 pobj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 6 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 on on ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 9 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 12 punct _ SpaceAfter=No 10 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 12 punct _ SpaceAfter=No 11 complement complement NOUN NN Number=Sing 12 compound _ _ 12 operator operator NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 13 " " PUNCT '' PunctSide=Fin|PunctType=Quot 12 punct _ _ 14 which which PRON WDT _ 15 nsubj _ _ 15 takes take VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 relcl _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 discrete discrete ADJ JJ Degree=Pos 18 amod _ _ 18 fibration fibration NOUN NN Number=Sing 15 dobj _ _ 19 $ A $ $ a $ SYM $ _ 15 dobj _ _ 20 to to ADP IN _ 15 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 functor functor NOUN NN Number=Sing 20 pobj _ _ 23 $ neg A $ $ neg a $ SYM $ _ 15 dobj _ _ 24 , , PUNCT , PunctType=Comm 26 punct _ _ 25 right right ADJ JJ Degree=Pos 26 amod _ _ 26 adjoint adjoint NOUN NN Number=Sing 15 dobj _ _ 27 to to ADP IN _ 15 prep _ _ 28 $ Gamma_clik(Atimes - ):Cat/X to Set $ $ gamma_clik(atimes - ):cat/x to set $ SYM $ _ 27 pobj _ _ 29 and and CCONJ CC ConjType=Cmp 15 cc _ _ 30 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 conj _ _ 31 in in ADP IN _ 30 prep _ _ 32 discrete discrete ADJ JJ Degree=Pos 33 amod _ _ 33 opfibrations opfibration NOUN NNS Number=Plur 31 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = Some consequences and applications are presented. 1 Some some DET DT _ 2 det _ _ 2 consequences consequence NOUN NNS Number=Plur 6 nsubjpass _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 applications application NOUN NNS Number=Plur 2 conj _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 6 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 7 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 288 # sent_id = 1 # text = The nature of the spatial background for classical analysis and for modern theories of continuum physics requires more than the partial invariants of locales and cohomology rings for its description. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 nature nature NOUN NN Number=Sing 17 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 spatial spatial ADJ JJ Degree=Pos 6 amod _ _ 6 background background NOUN NN Number=Sing 3 pobj _ _ 7 for for ADP IN _ 2 prep _ _ 8 classical classical ADJ JJ Degree=Pos 9 amod _ _ 9 analysis analysis NOUN NN Number=Sing 7 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 7 cc _ _ 11 for for ADP IN _ 7 conj _ _ 12 modern modern ADJ JJ Degree=Pos 13 amod _ _ 13 theories theory NOUN NNS Number=Plur 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 continuum continuum ADJ JJ Degree=Pos 16 amod _ _ 16 physics physics NOUN NN Number=Sing 14 pobj _ _ 17 requires require VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 18 more more ADJ JJR Degree=Cmp 17 dobj _ _ 19 than than ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 partial partial ADJ JJ Degree=Pos 22 amod _ _ 22 invariants invariant NOUN NNS Number=Plur 19 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 locales locale NOUN NNS Number=Plur 23 pobj _ _ 25 and and CCONJ CC ConjType=Cmp 24 cc _ _ 26 cohomology cohomology NOUN NN Number=Sing 27 compound _ _ 27 rings ring NOUN NNS Number=Plur 24 conj _ _ 28 for for ADP IN _ 22 prep _ _ 29 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 30 poss _ _ 30 description description NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 2 # text = As Maxwell emphasized, this description has various levels of precision depending on the needs of investigation. 1 As as SCONJ IN _ 3 mark _ _ 2 Maxwell Maxwell PROPN NNP Number=Sing 3 nsubj _ _ 3 emphasized emphasize VERB VBD Tense=Past|VerbForm=Fin 7 advcl _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 7 punct _ _ 5 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 6 description description NOUN NN Number=Sing 7 nsubj _ _ 7 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 various various ADJ JJ Degree=Pos 9 amod _ _ 9 levels level NOUN NNS Number=Plur 7 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 precision precision NOUN NN Number=Sing 10 pobj _ _ 12 depending depend VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 prep _ _ 13 on on ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 needs need NOUN NNS Number=Plur 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 investigation investigation NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = These levels correspond to different categories of space, all of which have intuitively the feature of cohesion. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 levels level NOUN NNS Number=Plur 3 nsubj _ _ 3 correspond correspond VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 to to ADP IN _ 3 prep _ _ 5 different different ADJ JJ Degree=Pos 6 amod _ _ 6 categories category NOUN NNS Number=Plur 4 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 space space NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 6 punct _ _ 10 all all PRON DT _ 13 nsubj _ _ 11 of of ADP IN _ 10 prep _ _ 12 which which PRON WDT _ 11 pobj _ _ 13 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 advcl _ _ 14 intuitively intuitively ADV RB _ 13 advmod _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 feature feature NOUN NN Number=Sing 13 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 cohesion cohesion NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = Our aim here is to continue the axiomatic study of such categories, which involves the following aspects: (i) Categories of space as cohesive background, (ii) Cohesion versus non - cohesion; quality types, (iii) Extensive quality; intensive quality in its rarefied and condensed aspects; the canonical qualities form and substance, (iv) Non - cohesion within cohesion via constancy on infinitesimals, (v) The example of reflexive graphs and their atomic numbers, (vi) Sufficient cohesion and the Grothendieck condition VII. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 aim aim NOUN NN Number=Sing 4 nsubj _ _ 3 here here ADV RB PronType=Dem 2 advmod _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 to to PART TO _ 6 aux _ _ 6 continue continue VERB VB VerbForm=Inf 4 xcomp _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 axiomatic axiomatic ADJ JJ Degree=Pos 9 amod _ _ 9 study study NOUN NN Number=Sing 6 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 such such ADJ JJ Degree=Pos 12 amod _ _ 12 categories category NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 which which PRON WDT _ 15 nsubj _ _ 15 involves involve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 relcl _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 following follow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 18 amod _ _ 18 aspects aspect NOUN NNS Number=Plur 15 dobj _ SpaceAfter=No 19 : : PUNCT : _ 18 punct _ _ 20 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 23 punct _ SpaceAfter=No 21 i i NOUN NN Number=Sing 23 nmod _ SpaceAfter=No 22 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 23 punct _ _ 23 Categories category NOUN NNS Number=Plur 18 appos _ _ 24 of of ADP IN _ 23 prep _ _ 25 space space NOUN NN Number=Sing 24 pobj _ _ 26 as as ADP IN _ 23 prep _ _ 27 cohesive cohesive NOUN NN Number=Sing 28 compound _ _ 28 background background NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 23 punct _ _ 30 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 33 punct _ SpaceAfter=No 31 ii ii NOUN NN Number=Sing 33 nmod _ SpaceAfter=No 32 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 33 punct _ _ 33 Cohesion cohesion NOUN NN Number=Sing 23 appos _ _ 34 versus versus ADP IN _ 33 prep _ _ 35 non non ADJ JJ Degree=Pos 37 compound _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 cohesion cohesion NOUN NN Number=Sing 34 pobj _ SpaceAfter=No 38 ; ; PUNCT : _ 23 punct _ _ 39 quality quality NOUN NN Number=Sing 40 compound _ _ 40 types type NOUN NNS Number=Plur 23 conj _ SpaceAfter=No 41 , , PUNCT , PunctType=Comm 40 punct _ _ 42 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 40 punct _ SpaceAfter=No 43 iii iii NOUN NN Number=Sing 46 nmod _ SpaceAfter=No 44 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 46 punct _ _ 45 Extensive extensive ADJ JJ Degree=Pos 46 amod _ _ 46 quality quality NOUN NN Number=Sing 40 appos _ SpaceAfter=No 47 ; ; PUNCT : _ 40 punct _ _ 48 intensive intensive ADJ JJ Degree=Pos 49 amod _ _ 49 quality quality NOUN NN Number=Sing 23 conj _ _ 50 in in ADP IN _ 49 prep _ _ 51 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 55 poss _ _ 52 rarefied rarefied ADJ JJ Degree=Pos 55 amod _ _ 53 and and CCONJ CC ConjType=Cmp 52 cc _ _ 54 condensed condensed ADJ JJ Degree=Pos 52 conj _ _ 55 aspects aspect NOUN NNS Number=Plur 50 pobj _ SpaceAfter=No 56 ; ; PUNCT : _ 6 punct _ _ 57 the the DET DT Definite=Def|PronType=Art 60 det _ _ 58 canonical canonical ADJ JJ Degree=Pos 59 amod _ _ 59 qualities quality NOUN NNS Number=Plur 60 compound _ _ 60 form form NOUN NN Number=Sing 4 dep _ _ 61 and and CCONJ CC ConjType=Cmp 60 cc _ _ 62 substance substance NOUN NN Number=Sing 60 conj _ SpaceAfter=No 63 , , PUNCT , PunctType=Comm 60 punct _ _ 64 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 60 punct _ SpaceAfter=No 65 iv iv VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 60 intj _ SpaceAfter=No 66 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 65 punct _ _ 67 Non non ADJ JJ Degree=Pos 69 compound _ _ 68 - - PUNCT HYPH PunctType=Dash 69 punct _ _ 69 cohesion cohesion NOUN NN Number=Sing 60 conj _ _ 70 within within ADP IN _ 60 prep _ _ 71 cohesion cohesion NOUN NN Number=Sing 70 pobj _ _ 72 via via ADP IN _ 71 prep _ _ 73 constancy constancy NOUN NN Number=Sing 72 pobj _ _ 74 on on ADP IN _ 73 prep _ _ 75 infinitesimals infinitesimal NOUN NNS Number=Plur 74 pobj _ SpaceAfter=No 76 , , PUNCT , PunctType=Comm 60 punct _ _ 77 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 78 punct _ SpaceAfter=No 78 v v X LS NumType=Ord 81 meta _ SpaceAfter=No 79 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 78 punct _ _ 80 The the DET DT Definite=Def|PronType=Art 81 det _ _ 81 example example NOUN NN Number=Sing 60 conj _ _ 82 of of ADP IN _ 81 prep _ _ 83 reflexive reflexive ADJ JJ Degree=Pos 84 amod _ _ 84 graphs graph NOUN NNS Number=Plur 82 pobj _ _ 85 and and CCONJ CC ConjType=Cmp 84 cc _ _ 86 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 88 poss _ _ 87 atomic atomic ADJ JJ Degree=Pos 88 amod _ _ 88 numbers number NOUN NNS Number=Plur 84 conj _ SpaceAfter=No 89 , , PUNCT , PunctType=Comm 81 punct _ _ 90 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 94 punct _ SpaceAfter=No 91 vi vi NOUN NN Number=Sing 94 nmod _ SpaceAfter=No 92 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 94 punct _ _ 93 Sufficient sufficient ADJ JJ Degree=Pos 94 amod _ _ 94 cohesion cohesion NOUN NN Number=Sing 81 conj _ _ 95 and and CCONJ CC ConjType=Cmp 94 cc _ _ 96 the the DET DT Definite=Def|PronType=Art 99 det _ _ 97 Grothendieck Grothendieck PROPN NNP Number=Sing 99 compound _ _ 98 condition condition NOUN NN Number=Sing 99 compound _ _ 99 VII VII PROPN NNP Number=Sing 94 conj _ SpaceAfter=No 100 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = Weak generation of a subtopos by a quotient topos I look forward to further work on each of these aspects, as well as development of categories of dynamical laws, constitutive relations, and other mathematical structures that naturally live in cohesive categories. 1 Weak weak ADJ JJ Degree=Pos 2 amod _ _ 2 generation generation NOUN NN Number=Sing 11 dep _ _ 3 of of ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 subtopos subtopos NOUN NN Number=Sing 3 pobj _ _ 6 by by ADP IN _ 2 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 quotient quotient ADJ JJ Degree=Pos 9 amod _ _ 9 topos topos NOUN NN Number=Sing 6 pobj _ _ 10 I I PRON PRP Case=Nom|Number=Sing|Person=1|PronType=Prs 11 nsubj _ _ 11 look look VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 forward forward ADV RB _ 11 advmod _ _ 13 to to AUX IN _ 15 aux _ _ 14 further far ADV RB _ 15 advmod _ _ 15 work work VERB VB VerbForm=Inf 11 advcl _ _ 16 on on ADP IN _ 15 prep _ _ 17 each each PRON DT _ 16 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 these these DET DT Number=Plur|PronType=Dem 20 det _ _ 20 aspects aspect NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 17 punct _ _ 22 as as ADV RB _ 24 advmod _ _ 23 well well ADV RB Degree=Pos 24 advmod _ _ 24 as as ADP IN _ 17 cc _ _ 25 development development NOUN NN Number=Sing 17 conj _ _ 26 of of ADP IN _ 25 prep _ _ 27 categories category NOUN NNS Number=Plur 26 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 dynamical dynamical ADJ JJ Degree=Pos 30 amod _ _ 30 laws law NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 25 punct _ _ 32 constitutive constitutive ADJ JJ Degree=Pos 33 amod _ _ 33 relations relation NOUN NNS Number=Plur 25 conj _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 33 punct _ _ 35 and and CCONJ CC ConjType=Cmp 33 cc _ _ 36 other other ADJ JJ Degree=Pos 38 amod _ _ 37 mathematical mathematical ADJ JJ Degree=Pos 38 amod _ _ 38 structures structure NOUN NNS Number=Plur 33 conj _ _ 39 that that PRON WDT PronType=Rel 41 nsubj _ _ 40 naturally naturally ADV RB _ 41 advmod _ _ 41 live live VERB VBP Tense=Pres|VerbForm=Fin 38 relcl _ _ 42 in in ADP IN _ 41 prep _ _ 43 cohesive cohesive ADJ JJ Degree=Pos 44 amod _ _ 44 categories category NOUN NNS Number=Plur 42 pobj _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # doc_id = 289 # sent_id = 1 # text = In some bicategories, the 1 - cells are `morphisms' between the 0 - cells, such as functors between categories, but in others they are `objects' over the 0 - cells, such as bimodules, spans, distributors, or parametrized spectra. 1 In in ADP IN _ 9 prep _ _ 2 some some DET DT _ 3 det _ _ 3 bicategories bicategorie NOUN NNS Number=Plur 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 9 punct _ _ 5 the the DET DT Definite=Def|PronType=Art 8 det _ _ 6 1 1 NUM CD NumType=Card 8 nummod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 cells cell NOUN NNS Number=Plur 9 nsubj _ _ 9 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 9 punct _ SpaceAfter=No 11 morphisms morphism NOUN NNS Number=Plur 9 attr _ SpaceAfter=No 12 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 11 punct _ _ 13 between between ADP IN _ 11 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 17 det _ _ 15 0 0 NUM CD NumType=Card 17 nummod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 cells cell NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 such such ADJ JJ Degree=Pos 20 amod _ _ 20 as as ADP IN _ 17 prep _ _ 21 functors functor NOUN NNS Number=Plur 20 pobj _ _ 22 between between ADP IN _ 21 prep _ _ 23 categories category NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 9 punct _ _ 25 but but CCONJ CC ConjType=Cmp 9 cc _ _ 26 in in ADP IN _ 29 prep _ _ 27 others other NOUN NNS Number=Plur 26 pobj _ _ 28 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 29 nsubj _ _ 29 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 conj _ _ 30 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 31 punct _ SpaceAfter=No 31 objects object NOUN NNS Number=Plur 29 attr _ SpaceAfter=No 32 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 31 punct _ _ 33 over over ADP IN _ 31 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 37 det _ _ 35 0 0 NUM CD NumType=Card 37 nummod _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 cells cell NOUN NNS Number=Plur 33 pobj _ SpaceAfter=No 38 , , PUNCT , PunctType=Comm 37 punct _ _ 39 such such ADJ JJ Degree=Pos 40 amod _ _ 40 as as ADP IN _ 37 prep _ _ 41 bimodules bimodule NOUN NNS Number=Plur 40 pobj _ SpaceAfter=No 42 , , PUNCT , PunctType=Comm 41 punct _ _ 43 spans span NOUN NNS Number=Plur 41 conj _ SpaceAfter=No 44 , , PUNCT , PunctType=Comm 43 punct _ _ 45 distributors distributor NOUN NNS Number=Plur 43 conj _ SpaceAfter=No 46 , , PUNCT , PunctType=Comm 45 punct _ _ 47 or or CCONJ CC ConjType=Cmp 45 cc _ _ 48 parametrized parametrized ADJ JJ Degree=Pos 49 amod _ _ 49 spectra spectra NOUN NN Number=Sing 45 conj _ SpaceAfter=No 50 . . PUNCT . PunctType=Peri 29 punct _ SpaceAfter=No # sent_id = 2 # text = Many bicategorical notions do not work well in these cases, because the `morphisms between 0 - cells', such as ring homomorphisms, are missing. 1 Many many ADJ JJ Degree=Pos 3 amod _ _ 2 bicategorical bicategorical ADJ JJ Degree=Pos 3 amod _ _ 3 notions notion NOUN NNS Number=Plur 6 nsubj _ _ 4 do do AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 aux _ _ 5 not not PART RB Polarity=Neg 6 neg _ _ 6 work work VERB VB VerbForm=Inf 0 ROOT _ _ 7 well well ADV RB Degree=Pos 6 advmod _ _ 8 in in ADP IN _ 6 prep _ _ 9 these these DET DT Number=Plur|PronType=Dem 10 det _ _ 10 cases case NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 6 punct _ _ 12 because because SCONJ IN _ 27 mark _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 15 punct _ SpaceAfter=No 15 morphisms morphism NOUN NNS Number=Plur 27 nsubj _ _ 16 between between ADP IN _ 15 prep _ _ 17 0 0 NUM CD NumType=Card 19 nummod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 cells cell NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 20 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 15 punct _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 15 punct _ _ 22 such such ADJ JJ Degree=Pos 23 amod _ _ 23 as as ADP IN _ 15 prep _ _ 24 ring ring NOUN NN Number=Sing 25 compound _ _ 25 homomorphisms homomorphism NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 15 punct _ _ 27 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 advcl _ _ 28 missing miss VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 27 acomp _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = We can include them by using a pseudo double category, but usually these morphisms also induce base change functors acting on the 1 - cells. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 can can AUX MD VerbForm=Fin 3 aux _ _ 3 include include VERB VB VerbForm=Inf 0 ROOT _ _ 4 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 3 dobj _ _ 5 by by ADP IN _ 3 prep _ _ 6 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 pcomp _ _ 7 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 8 pseudo pseudo NOUN NN Number=Sing 10 nmod _ _ 9 double double ADJ JJ Degree=Pos 10 amod _ _ 10 category category NOUN NN Number=Sing 6 dobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 3 punct _ _ 12 but but CCONJ CC ConjType=Cmp 3 cc _ _ 13 usually usually ADV RB _ 17 advmod _ _ 14 these these DET DT Number=Plur|PronType=Dem 15 det _ _ 15 morphisms morphism NOUN NNS Number=Plur 17 nsubj _ _ 16 also also ADV RB _ 17 advmod _ _ 17 induce induce VERB VBP Tense=Pres|VerbForm=Fin 3 conj _ _ 18 base base NOUN NN Number=Sing 19 compound _ _ 19 change change NOUN NN Number=Sing 20 compound _ _ 20 functors functor NOUN NNS Number=Plur 17 dobj _ _ 21 acting act VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 20 acl _ _ 22 on on ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 26 det _ _ 24 1 1 NUM CD NumType=Card 26 nummod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 cells cell NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 4 # text = We avoid complicated coherence problems by describing base change `nonalgebraically', using categorical fibrations. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 avoid avoid VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 complicated complicated ADJ JJ Degree=Pos 5 amod _ _ 4 coherence coherence NOUN NN Number=Sing 5 compound _ _ 5 problems problem NOUN NNS Number=Plur 2 dobj _ _ 6 by by ADP IN _ 2 prep _ _ 7 describing describe VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 pcomp _ _ 8 base base NOUN NN Number=Sing 9 compound _ _ 9 change change NOUN NN Number=Sing 7 dobj _ _ 10 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 7 punct _ SpaceAfter=No 11 nonalgebraically nonalgebraically ADV RB _ 7 advmod _ SpaceAfter=No 12 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 2 punct _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 2 punct _ _ 14 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 15 categorical categorical ADJ JJ Degree=Pos 16 amod _ _ 16 fibrations fibration NOUN NNS Number=Plur 14 dobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = The resulting `framed bicategories' assemble into 2 - categories, with attendant notions of equivalence, adjunction, and so on which are more appropriate for our examples than are the usual bicategorical ones. 1 The the DET DT Definite=Def|PronType=Art 5 det _ _ 2 resulting result VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 amod _ _ 3 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 5 punct _ SpaceAfter=No 4 framed framed ADJ JJ Degree=Pos 5 amod _ _ 5 bicategories bicategorie NOUN NNS Number=Plur 7 poss _ SpaceAfter=No 6 ' ' PART POS _ 5 case _ _ 7 assemble assemble NOUN NN Number=Sing 0 ROOT _ _ 8 into into ADP IN _ 7 prep _ _ 9 2 2 NUM CD NumType=Card 11 nummod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 categories category NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 with with ADP IN _ 7 prep _ _ 14 attendant attendant ADJ JJ Degree=Pos 15 amod _ _ 15 notions notion NOUN NNS Number=Plur 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 equivalence equivalence NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 adjunction adjunction NOUN NN Number=Sing 17 conj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 19 punct _ _ 21 and and CCONJ CC ConjType=Cmp 19 cc _ _ 22 so so ADV RB _ 25 advmod _ _ 23 on on ADP IN _ 25 prep _ _ 24 which which PRON WDT _ 23 pobj _ _ 25 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 conj _ _ 26 more more ADV RBR Degree=Cmp 27 advmod _ _ 27 appropriate appropriate ADJ JJ Degree=Pos 25 acomp _ _ 28 for for ADP IN _ 27 prep _ _ 29 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 30 poss _ _ 30 examples example NOUN NNS Number=Plur 28 pobj _ _ 31 than than SCONJ IN _ 32 mark _ _ 32 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 27 advcl _ _ 33 the the DET DT Definite=Def|PronType=Art 36 det _ _ 34 usual usual ADJ JJ Degree=Pos 36 amod _ _ 35 bicategorical bicategorical ADJ JJ Degree=Pos 36 amod _ _ 36 ones one NOUN NNS Number=Plur 32 attr _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 6 # text = We then describe two ways to construct framed bicategories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 two two NUM CD NumType=Card 5 nummod _ _ 5 ways way NOUN NNS Number=Plur 3 dobj _ _ 6 to to PART TO _ 7 aux _ _ 7 construct construct VERB VB VerbForm=Inf 5 relcl _ _ 8 framed framed ADJ JJ Degree=Pos 9 amod _ _ 9 bicategories bicategorie NOUN NNS Number=Plur 7 dobj _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 7 # text = One is an analogue of rings and bimodules which starts from one framed bicategory and builds another. 1 One one NUM CD NumType=Card 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 4 det _ _ 4 analogue analogue NOUN NN Number=Sing 2 attr _ _ 5 of of ADP IN _ 4 prep _ _ 6 rings ring NOUN NNS Number=Plur 5 pobj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 bimodules bimodule NOUN NNS Number=Plur 6 conj _ _ 9 which which PRON WDT _ 10 nsubj _ _ 10 starts start VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 relcl _ _ 11 from from ADP IN _ 10 prep _ _ 12 one one NUM CD NumType=Card 14 nummod _ _ 13 framed framed ADJ JJ Degree=Pos 14 amod _ _ 14 bicategory bicategory NOUN NN Number=Sing 11 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 10 cc _ _ 16 builds build VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 conj _ _ 17 another another PRON DT _ 16 dobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 8 # text = The other starts from a `monoidal fibration', meaning a parametrized family of monoidal categories, and produces an analogue of the framed bicategory of spans. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 other other ADJ JJ Degree=Pos 3 nsubj _ _ 3 starts start VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 from from ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 6 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 8 punct _ SpaceAfter=No 7 monoidal monoidal ADJ JJ Degree=Pos 8 amod _ _ 8 fibration fibration NOUN NN Number=Sing 4 pobj _ SpaceAfter=No 9 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 3 punct _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 3 punct _ _ 11 meaning mean VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 advcl _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 parametrized parametrized ADJ JJ Degree=Pos 14 amod _ _ 14 family family NOUN NN Number=Sing 11 dobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 monoidal monoidal ADJ JJ Degree=Pos 17 amod _ _ 17 categories category NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 11 punct _ _ 19 and and CCONJ CC ConjType=Cmp 11 cc _ _ 20 produces produce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 conj _ _ 21 an an DET DT Definite=Ind|PronType=Art 22 det _ _ 22 analogue analogue NOUN NN Number=Sing 20 dobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 26 det _ _ 25 framed framed ADJ JJ Degree=Pos 26 amod _ _ 26 bicategory bicategory NOUN NN Number=Sing 23 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 spans span NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 9 # text = Combining the two, we obtain a construction which includes both enriched and internal categories as special cases. 1 Combining combine VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 advcl _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 two two NUM CD NumType=Card 1 dobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 construction construction NOUN NN Number=Sing 6 dobj _ _ 9 which which PRON WDT _ 10 nsubj _ _ 10 includes include VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 relcl _ _ 11 both both CCONJ CC ConjType=Cmp 12 preconj _ _ 12 enriched enriched ADJ JJ Degree=Pos 15 amod _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 internal internal ADJ JJ Degree=Pos 12 conj _ _ 15 categories category NOUN NNS Number=Plur 10 dobj _ _ 16 as as ADP IN _ 10 prep _ _ 17 special special ADJ JJ Degree=Pos 18 amod _ _ 18 cases case NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 290 # sent_id = 1 # text = Recently, symmetric categorical groups are used for the study of the Brauer groups of symmetric monoidal categories. 1 Recently recently ADV RB _ 7 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 7 punct _ _ 3 symmetric symmetric ADJ JJ Degree=Pos 5 amod _ _ 4 categorical categorical ADJ JJ Degree=Pos 5 amod _ _ 5 groups group NOUN NNS Number=Plur 7 nsubjpass _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 7 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 for for ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 study study NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 Brauer Brauer PROPN NNP Number=Sing 14 compound _ _ 14 groups group NOUN NNS Number=Plur 11 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 symmetric symmetric ADJ JJ Degree=Pos 18 amod _ _ 17 monoidal monoidal ADJ JJ Degree=Pos 18 amod _ _ 18 categories category NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 2 # text = As a part of these efforts, some algebraic structures of the 2 - category of symmetric categorical groups $ SCG $ are being investigated. 1 As as ADP IN _ 23 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 part part NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 these these DET DT Number=Plur|PronType=Dem 6 det _ _ 6 efforts effort NOUN NNS Number=Plur 4 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 23 punct _ _ 8 some some DET DT _ 10 det _ _ 9 algebraic algebraic ADJ JJ Degree=Pos 10 amod _ _ 10 structures structure NOUN NNS Number=Plur 23 nsubjpass _ _ 11 of of ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 15 det _ _ 13 2 2 NUM CD NumType=Card 15 nummod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 category category NOUN NN Number=Sing 11 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 symmetric symmetric ADJ JJ Degree=Pos 19 amod _ _ 18 categorical categorical ADJ JJ Degree=Pos 19 amod _ _ 19 groups group NOUN NNS Number=Plur 16 pobj _ _ 20 $ SCG $ $ scg $ SYM $ _ 10 appos _ _ 21 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 23 aux _ _ 22 being be AUX VBG VerbForm=Ger 23 auxpass _ _ 23 investigated investigate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 23 punct _ SpaceAfter=No # sent_id = 3 # text = In this paper, we consider a 2 - categorical analogue of an abelian category, in such a way that it contains $ SCG $ as an example. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 8 2 2 NUM CD NumType=Card 10 nummod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 categorical categorical ADJ JJ Degree=Pos 11 amod _ _ 11 analogue analogue NOUN NN Number=Sing 6 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 an an DET DT Definite=Ind|PronType=Art 15 det _ _ 14 abelian abelian ADJ JJ Degree=Pos 15 compound _ _ 15 category category NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 6 punct _ _ 17 in in ADP IN _ 6 prep _ _ 18 such such DET PDT _ 20 predet _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 way way NOUN NN Number=Sing 17 pobj _ _ 21 that that PRON WDT PronType=Rel 23 advmod _ _ 22 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 23 nsubj _ _ 23 contains contain VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 relcl _ _ 24 $ SCG $ $ scg $ SYM $ _ 23 dobj _ _ 25 as as ADP IN _ 23 prep _ _ 26 an an DET DT Definite=Ind|PronType=Art 27 det _ _ 27 example example NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = As a main theorem, we construct a long cohomology 2 - exact sequence from any extension of complexes in such a 2 - category. 1 As as ADP IN _ 7 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 main main ADJ JJ Degree=Pos 4 amod _ _ 4 theorem theorem NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 9 long long ADJ JJ Degree=Pos 10 amod _ _ 10 cohomology cohomology NOUN NN Number=Sing 14 nmod _ _ 11 2 2 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 exact exact ADJ JJ Degree=Pos 14 amod _ _ 14 sequence sequence NOUN NN Number=Sing 7 dobj _ _ 15 from from ADP IN _ 14 prep _ _ 16 any any DET DT _ 17 det _ _ 17 extension extension NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 complexes complex NOUN NNS Number=Plur 18 pobj _ _ 20 in in ADP IN _ 17 prep _ _ 21 such such DET PDT _ 25 predet _ _ 22 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 23 2 2 NUM CD NumType=Card 25 nummod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 category category NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 5 # text = Our axiomatic and self - dual definition will enable us to simplify the proofs, by analogy with abelian categories. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 7 poss _ _ 2 axiomatic axiomatic ADJ JJ Degree=Pos 7 amod _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 self self NOUN NN Number=Sing 6 npadvmod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 dual dual ADJ JJ Degree=Pos 2 conj _ _ 7 definition definition NOUN NN Number=Sing 9 nsubj _ _ 8 will will AUX MD VerbForm=Fin 9 aux _ _ 9 enable enable VERB VB VerbForm=Inf 0 ROOT _ _ 10 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 9 dobj _ _ 11 to to PART TO _ 12 aux _ _ 12 simplify simplify VERB VB VerbForm=Inf 9 xcomp _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 proofs proof NOUN NNS Number=Plur 12 dobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 12 punct _ _ 16 by by ADP IN _ 12 prep _ _ 17 analogy analogy NOUN NN Number=Sing 16 pobj _ _ 18 with with ADP IN _ 17 prep _ _ 19 abelian abelian ADJ JJ Degree=Pos 20 amod _ _ 20 categories category NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 291 # sent_id = 1 # text = We prove a general theorem relating pseudo - exponentiable objects of a bicategory $ K $ to those of the Kleisli bicategory of a pseudo - monad on $ K $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 general general ADJ JJ Degree=Pos 5 amod _ _ 5 theorem theorem ADJ JJ Degree=Pos 2 dobj _ _ 6 relating relate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 acl _ _ 7 pseudo pseudo NOUN NN Number=Sing 9 npadvmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 exponentiable exponentiable ADJ JJ Degree=Pos 10 amod _ _ 10 objects object NOUN NNS Number=Plur 6 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 bicategory bicategory NOUN NN Number=Sing 11 pobj _ _ 14 $ K $ $ k $ SYM $ _ 5 dep _ _ 15 to to ADP IN _ 2 prep _ _ 16 those those PRON DT Number=Plur|PronType=Dem 15 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 Kleisli Kleisli PROPN NNP Number=Sing 20 compound _ _ 20 bicategory bicategory NOUN NN Number=Sing 17 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 23 pseudo pseudo NOUN NN Number=Sing 25 compound _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 monad monad NOUN NNS Number=Plur 21 pobj _ _ 26 on on ADP IN _ 25 prep _ _ 27 $ K $ $ k $ SYM $ _ 26 pobj _ _ 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = This theorem is applied to obtain pseudo - exponentiable objects of the homotopy slices $ Top//B $ of the category of topological spaces and the pseudo - slices $ Cat//B $ of the category of small categories. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 theorem theorem NOUN NN Number=Sing 4 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 applied apply VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 to to PART TO _ 6 aux _ _ 6 obtain obtain VERB VB VerbForm=Inf 4 xcomp _ _ 7 pseudo pseudo NOUN NN Number=Sing 9 npadvmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 exponentiable exponentiable ADJ JJ Degree=Pos 10 amod _ _ 10 objects object NOUN NNS Number=Plur 6 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 homotopy homotopy NOUN NN Number=Sing 11 pobj _ _ 14 slices slice VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 conj _ _ 15 $ Top//B $ $ top//b $ SYM $ _ 14 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 category category NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 topological topological ADJ JJ Degree=Pos 21 amod _ _ 21 spaces space NOUN NNS Number=Plur 19 pobj _ _ 22 and and CCONJ CC ConjType=Cmp 14 cc _ _ 23 the the DET DT Definite=Def|PronType=Art 26 det _ _ 24 pseudo pseudo NOUN NN Number=Sing 26 compound _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 slices slice VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 conj _ _ 27 $ Cat//B $ $ cat//b $ SYM $ _ 26 appos _ _ 28 of of ADP IN _ 27 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 category category NOUN NN Number=Sing 28 pobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 small small ADJ JJ Degree=Pos 33 amod _ _ 33 categories category NOUN NNS Number=Plur 31 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 292 # sent_id = 1 # text = We prove that, given any small category $ A= $ , the derivator $ HOT_A $ , corresponding to the homotopy theory of presheaves of homotopy types on $ A $ , is characterized by a natural universal property. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 29 mark _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 29 punct _ _ 5 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 prep _ _ 6 any any DET DT _ 8 det _ _ 7 small small ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 5 pobj _ _ 9 $ A= $ $ a= $ SYM $ _ 5 pcomp _ _ 10 , , PUNCT , PunctType=Comm 29 punct _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 derivator derivator NOUN NN Number=Sing 29 nsubjpass _ _ 13 $ HOT_A $ $ hot_a $ SYM $ _ 12 appos _ _ 14 , , PUNCT , PunctType=Comm 12 punct _ _ 15 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 amod _ _ 16 to to ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 homotopy homotopy NOUN NN Number=Sing 19 compound _ _ 19 theory theory NOUN NN Number=Sing 16 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 presheaves presheave NOUN NNS Number=Plur 20 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 homotopy homotopy NOUN NN Number=Sing 24 compound _ _ 24 types type NOUN NNS Number=Plur 22 pobj _ _ 25 on on ADP IN _ 21 prep _ _ 26 $ A $ $ a $ SYM $ _ 25 pobj _ _ 27 , , PUNCT , PunctType=Comm 29 punct _ _ 28 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 29 auxpass _ _ 29 characterized characterize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 30 by by ADP IN _ 29 agent _ _ 31 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 32 natural natural ADJ JJ Degree=Pos 34 amod _ _ 33 universal universal ADJ JJ Degree=Pos 34 amod _ _ 34 property property NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = In particular, the theory of Kan extensions extends to the setting of Grothendieck derivators. 1 In in ADP IN _ 9 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 9 punct _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 theory theory NOUN NN Number=Sing 9 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 Kan Kan PROPN NNP Number=Sing 8 compound _ _ 8 extensions extension NOUN NNS Number=Plur 6 pobj _ _ 9 extends extend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 to to ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 setting setting NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 Grothendieck Grothendieck PROPN NNP Number=Sing 15 compound _ _ 15 derivators derivator NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 293 # sent_id = 1 # text = We develop in some generality the dualities that often arise when one object lies in two different categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 develop develop VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 in in ADP IN _ 2 prep _ _ 4 some some DET DT _ 5 det _ _ 5 generality generality NOUN NN Number=Sing 3 pobj _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 dualities duality NOUN NNS Number=Plur 2 dobj _ _ 8 that that PRON WDT PronType=Rel 10 nsubj _ _ 9 often often ADV RB _ 10 advmod _ _ 10 arise arise VERB VBP Tense=Pres|VerbForm=Fin 7 relcl _ _ 11 when when SCONJ WRB _ 14 advmod _ _ 12 one one NUM CD NumType=Card 13 nummod _ _ 13 object object NOUN NN Number=Sing 14 nsubj _ _ 14 lies lie VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 advcl _ _ 15 in in ADP IN _ 14 prep _ _ 16 two two NUM CD NumType=Card 18 nummod _ _ 17 different different ADJ JJ Degree=Pos 18 amod _ _ 18 categories category NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = In our examples, one category is equational and the other consists of the topological objects in a (generally different) equational category. 1 In in ADP IN _ 7 prep _ _ 2 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 3 poss _ _ 3 examples example NOUN NNS Number=Plur 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 7 punct _ _ 5 one one NUM CD NumType=Card 6 nummod _ _ 6 category category NOUN NN Number=Sing 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 equational equational ADJ JJ Degree=Pos 7 acomp _ _ 9 and and CCONJ CC ConjType=Cmp 7 cc _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 other other ADJ JJ Degree=Pos 12 nsubj _ _ 12 consists consist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 conj _ _ 13 of of ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 topological topological ADJ JJ Degree=Pos 16 amod _ _ 16 objects object NOUN NNS Number=Plur 13 pobj _ _ 17 in in ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 19 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 24 punct _ SpaceAfter=No 20 generally generally ADV RB _ 21 advmod _ _ 21 different different ADJ JJ Degree=Pos 24 amod _ SpaceAfter=No 22 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 24 punct _ _ 23 equational equational ADJ JJ Degree=Pos 24 amod _ _ 24 category category NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # doc_id = 294 # sent_id = 1 # text = The role of the Frobenius operations in analyzing finite spaces, as well as the extended algebraic geometry over rigs, depend partly on varieties (Birkhoffian inclusions of algebraic categories) that have coreflections as well as reflections and whose dual category of affine spaces is extensive. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 role role NOUN NN Number=Sing 22 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 Frobenius Frobenius PROPN NNP Number=Sing 6 compound _ _ 6 operations operation NOUN NNS Number=Plur 3 pobj _ _ 7 in in ADP IN _ 2 prep _ _ 8 analyzing analyze VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 pcomp _ _ 9 finite finite ADJ JJ Degree=Pos 10 compound _ _ 10 spaces space NOUN NNS Number=Plur 8 dobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 as as ADV RB _ 14 advmod _ _ 13 well well ADV RB Degree=Pos 14 advmod _ _ 14 as as ADP IN _ 10 cc _ _ 15 the the DET DT Definite=Def|PronType=Art 18 det _ _ 16 extended extended ADJ JJ Degree=Pos 18 amod _ _ 17 algebraic algebraic ADJ JJ Degree=Pos 18 amod _ _ 18 geometry geometry NOUN NN Number=Sing 10 conj _ _ 19 over over ADP IN _ 18 prep _ _ 20 rigs rig NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 2 punct _ _ 22 depend depend VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 23 partly partly ADV RB _ 22 advmod _ _ 24 on on ADP IN _ 22 prep _ _ 25 varieties variety NOUN NNS Number=Plur 24 pobj _ _ 26 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 25 punct _ SpaceAfter=No 27 Birkhoffian birkhoffian ADJ JJ Degree=Pos 28 amod _ _ 28 inclusions inclusion NOUN NNS Number=Plur 25 appos _ _ 29 of of ADP IN _ 28 prep _ _ 30 algebraic algebraic ADJ JJ Degree=Pos 31 amod _ _ 31 categories category NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 32 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 31 punct _ _ 33 that that PRON WDT PronType=Rel 34 nsubj _ _ 34 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 28 relcl _ _ 35 coreflections coreflection NOUN NNS Number=Plur 34 dobj _ _ 36 as as ADV RB _ 38 advmod _ _ 37 well well ADV RB Degree=Pos 38 advmod _ _ 38 as as ADP IN _ 35 cc _ _ 39 reflections reflection NOUN NNS Number=Plur 35 conj _ _ 40 and and CCONJ CC ConjType=Cmp 39 cc _ _ 41 whose whose DET WP$ Poss=Yes 43 poss _ _ 42 dual dual ADJ JJ Degree=Pos 43 amod _ _ 43 category category NOUN NN Number=Sing 47 nsubj _ _ 44 of of ADP IN _ 43 prep _ _ 45 affine affine NOUN NN Number=Sing 46 compound _ _ 46 spaces space NOUN NNS Number=Plur 44 pobj _ _ 47 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 conj _ _ 48 extensive extensive ADJ JJ Degree=Pos 47 acomp _ SpaceAfter=No 49 . . PUNCT . PunctType=Peri 22 punct _ SpaceAfter=No # sent_id = 2 # text = Even within the category of those rigs where 1 + 1 = 1, not only distributive lattices but also the function algebras of tropical geometry (where $ x + 1 = 1 $ ) and the dimension rigs of separable prextensive categories (where $ x + x^2 = x^2 $ ) enjoy those features. 1 Even even ADV RB _ 2 advmod _ _ 2 within within ADP IN _ 43 prep _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 category category NOUN NN Number=Sing 2 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 those those DET DT Number=Plur|PronType=Dem 7 det _ _ 7 rigs rig NOUN NNS Number=Plur 5 pobj _ _ 8 where where SCONJ WRB _ 18 advmod _ _ 9 1 1 NUM CD NumType=Card 11 compound _ _ 10 + + NUM CD NumType=Card 9 punct _ _ 11 1 1 NUM CD NumType=Card 18 nummod _ _ 12 = = SYM SYM _ 11 punct _ _ 13 1 1 NUM CD NumType=Card 12 nummod _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 12 punct _ _ 15 not not PART RB Polarity=Neg 18 preconj _ _ 16 only only ADV RB _ 15 advmod _ _ 17 distributive distributive ADJ JJ Degree=Pos 18 amod _ _ 18 lattices lattice NOUN NNS Number=Plur 2 pcomp _ _ 19 but but CCONJ CC ConjType=Cmp 18 cc _ _ 20 also also ADV RB _ 19 advmod _ _ 21 the the DET DT Definite=Def|PronType=Art 23 det _ _ 22 function function NOUN NN Number=Sing 23 compound _ _ 23 algebras algebra NOUN NNS Number=Plur 18 conj _ _ 24 of of ADP IN _ 23 prep _ _ 25 tropical tropical ADJ JJ Degree=Pos 26 amod _ _ 26 geometry geometry NOUN NN Number=Sing 24 pobj _ _ 27 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 26 punct _ SpaceAfter=No 28 where where SCONJ WRB _ 29 advmod _ _ 29 $ x + 1 = 1 $ $ x + 1 = 1 $ SYM $ _ 23 relcl _ _ 30 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 23 punct _ _ 31 and and CCONJ CC ConjType=Cmp 23 cc _ _ 32 the the DET DT Definite=Def|PronType=Art 34 det _ _ 33 dimension dimension NOUN NN Number=Sing 34 compound _ _ 34 rigs rig NOUN NNS Number=Plur 23 conj _ _ 35 of of ADP IN _ 34 prep _ _ 36 separable separable ADJ JJ Degree=Pos 38 amod _ _ 37 prextensive prextensive ADJ JJ Degree=Pos 38 amod _ _ 38 categories category NOUN NNS Number=Plur 35 pobj _ _ 39 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 38 punct _ SpaceAfter=No 40 where where SCONJ WRB _ 41 advmod _ _ 41 $ x + x^2 = x^2 $ $ x + x^2 = x^2 $ SYM $ _ 34 relcl _ _ 42 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 34 punct _ _ 43 enjoy enjoy VERB VB VerbForm=Inf 0 ROOT _ _ 44 those those DET DT Number=Plur|PronType=Dem 45 det _ _ 45 features feature NOUN NNS Number=Plur 43 dobj _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 43 punct _ SpaceAfter=No # doc_id = 295 # sent_id = 1 # text = Assuming that $ B $ is a full $ A_infty $ - subcategory of a unital $ A_infty $ - category $ cc $ we construct the quotient unital $ A_infty $ - category $ cd= $ ` $ cc/cb $ '. 1 Assuming assume VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 18 advcl _ _ 2 that that SCONJ IN _ 4 mark _ _ 3 $ B $ $ b $ SYM $ _ 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 1 ccomp _ _ 5 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 6 full full ADJ JJ Degree=Pos 9 amod _ _ 7 $ A_infty $ $ a_infty $ SYM $ _ 9 compound _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 subcategory subcategory NOUN NN Number=Sing 4 attr _ _ 10 of of ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 12 unital unital ADJ JJ Degree=Pos 15 amod _ _ 13 $ A_infty $ $ a_infty $ SYM $ _ 15 nummod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 category category NOUN NN Number=Sing 10 pobj _ _ 16 $ cc $ $ cc $ SYM $ _ 4 dep _ _ 17 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 18 nsubj _ _ 18 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 quotient quotient NOUN NN Number=Sing 18 dobj _ _ 21 unital unital PROPN NNP Number=Sing 18 dobj _ _ 22 $ A_infty $ $ a_infty $ SYM $ _ 24 nummod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 category category NOUN NN Number=Sing 21 npadvmod _ _ 25 $ cd= $ $ cd= $ SYM $ _ 24 nummod _ _ 26 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 24 punct _ _ 27 $ cc/cb $ $ cc/cb $ SYM $ _ 24 appos _ _ 28 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 18 punct _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # sent_id = 2 # text = It represents the $ A_infty^u $ - 2 - functor $ A mapsto A_infty^u(C, A)_{mod B} $ , which associates with a given unital $ A_infty $ - category $ A $ the $ A_infty $ - category of unital $ A_infty $ - functors $ C to A $ , whose restriction to $ B $ is contractible. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 represents represent VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 8 det _ _ 4 $ A_infty^u $ $ a_infty^u $ SYM $ _ 6 quantmod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 2 2 NUM CD NumType=Card 8 nummod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 functor functor NOUN NN Number=Sing 9 compound _ _ 9 $ A mapsto A_infty^u(C, A)_{mod B} $ $ a mapsto a_infty^u(c, a)_{mod b} $ SYM $ _ 2 dobj _ _ 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 which which PRON WDT _ 12 nsubj _ _ 12 associates associate VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 relcl _ _ 13 with with ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 16 unital unital NOUN NN Number=Sing 13 pobj _ _ 17 $ A_infty $ $ a_infty $ SYM $ _ 19 nummod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 category category NOUN NN Number=Sing 13 pobj _ _ 20 $ A $ $ a $ SYM $ _ 19 nmod _ _ 21 the the DET DT Definite=Def|PronType=Art 24 det _ _ 22 $ A_infty $ $ a_infty $ SYM $ _ 24 compound _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 category category NOUN NN Number=Sing 12 dobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 unital unital PROPN NNP Number=Sing 30 compound _ _ 27 $ A_infty $ $ a_infty $ SYM $ _ 29 compound _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 functors functor NOUN NNS Number=Plur 30 compound _ _ 30 $ C to A $ $ c to a $ SYM $ _ 25 pobj _ _ 31 , , PUNCT , PunctType=Comm 30 punct _ _ 32 whose whose DET WP$ Poss=Yes 33 poss _ _ 33 restriction restriction NOUN NN Number=Sing 36 nsubj _ _ 34 to to ADP IN _ 33 prep _ _ 35 $ B $ $ b $ SYM $ _ 34 pobj _ _ 36 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 relcl _ _ 37 contractible contractible ADJ JJ Degree=Pos 36 acomp _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Namely, there is a unital $ A_infty $ - functor $ e: C to D $ such that the composition $ B hookrightarrow C to^e D $ is contractible, and for an arbitrary unital $ A_infty $ - category $ A $ the restriction $ A_infty $ - functor $ (eboxtimes 1)M : A_infty^u(D, A)to A_infty^u(C, A)_{mod B} $ is an equivalence. 1 Namely namely ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 there there PRON EX _ 4 expl _ _ 4 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 6 unital unital ADJ JJ Degree=Pos 11 amod _ _ 7 $ A_infty $ $ a_infty $ SYM $ _ 9 compound _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 functor functor NOUN NN Number=Sing 11 nmod _ _ 10 $ e: C to D $ $ e: c to d $ SYM $ _ 11 det _ _ 11 such such ADJ JJ Degree=Pos 4 attr _ _ 12 that that SCONJ IN _ 16 mark _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 composition composition NOUN NN Number=Sing 16 nsubj _ _ 15 $ B hookrightarrow C to^e D $ $ b hookrightarrow c to^e d $ SYM $ _ 14 appos _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 17 contractible contractible ADJ JJ Degree=Pos 16 acomp _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 16 punct _ _ 19 and and CCONJ CC ConjType=Cmp 16 cc _ _ 20 for for ADP IN _ 33 prep _ _ 21 an an DET DT Definite=Ind|PronType=Art 23 det _ _ 22 arbitrary arbitrary ADJ JJ Degree=Pos 23 amod _ _ 23 unital unital PROPN NNP Number=Sing 20 pobj _ _ 24 $ A_infty $ $ a_infty $ SYM $ _ 26 nummod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 category category NOUN NN Number=Sing 23 nmod _ _ 27 $ A $ $ a $ SYM $ _ 26 nummod _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 restriction restriction NOUN NN Number=Sing 23 appos _ _ 30 $ A_infty $ $ a_infty $ SYM $ _ 32 compound _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 functor functor NOUN NN Number=Sing 33 nmod _ _ 33 $ (eboxtimes 1)M : A_infty^u(D, A)to A_infty^u(C, A)_{mod B} $ $ (eboxtimes 1)M : A_infty^u(D, A)to A_infty^u(C, A)_{mod B} $ PROPN NNP Number=Sing 34 nsubj _ _ 34 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 conj _ _ 35 an an DET DT Definite=Ind|PronType=Art 36 det _ _ 36 equivalence equivalence NOUN NN Number=Sing 34 attr _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = Let $ C_k $ be the differential graded category of differential graded $ k $ - modules. 1 Let let VERB VB VerbForm=Inf 0 ROOT _ _ 2 $ C_k $ $ c_k $ SYM $ _ 3 nsubj _ _ 3 be be AUX VB VerbForm=Inf 1 ccomp _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 differential differential ADJ JJ Degree=Pos 6 advmod _ _ 6 graded grade VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 amod _ _ 7 category category NOUN NN Number=Sing 3 attr _ _ 8 of of ADP IN _ 7 prep _ _ 9 differential differential NOUN NN Number=Sing 8 pobj _ _ 10 graded grade VERB VBD Tense=Past|VerbForm=Fin 1 ccomp _ _ 11 $ k $ $ k $ SYM $ _ 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 modules module NOUN NNS Number=Plur 10 dobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 5 # text = We prove that the Yoneda $ A_infty $ - functor $ Y: A to A_infty^u(A^{op}, C_k) $ is a full embedding for an arbitrary unital $ A_infty $ - category $ A $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 10 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 9 det _ _ 5 Yoneda Yoneda PROPN NNP Number=Sing 9 nmod _ _ 6 $ A_infty $ $ a_infty $ SYM $ _ 8 compound _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 functor functor NOUN NN Number=Sing 5 nummod _ _ 9 $ Y: A to A_infty^u(A^{op}, C_k) $ $ y: a to a_infty^u(a^{op}, c_k) $ SYM $ _ 10 nsubj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 full full ADJ JJ Degree=Pos 13 amod _ _ 13 embedding embedding NOUN NN Number=Sing 10 attr _ _ 14 for for ADP IN _ 13 prep _ _ 15 an an DET DT Definite=Ind|PronType=Art 17 det _ _ 16 arbitrary arbitrary ADJ JJ Degree=Pos 17 amod _ _ 17 unital unital PROPN NNP Number=Sing 14 pobj _ _ 18 $ A_infty $ $ a_infty $ SYM $ _ 20 nummod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 category category NOUN NN Number=Sing 17 nmod _ _ 21 $ A $ $ a $ SYM $ _ 17 nummod _ _ 22 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = In particular, such $ A $ is $ A_infty $ - equivalent to a differential graded category with the same set of objects. 1 In in ADP IN _ 6 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 6 punct _ _ 4 such such ADJ JJ Degree=Pos 5 amod _ _ 5 $ A $ $ a $ SYM $ _ 6 nsubj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 $ A_infty $ $ a_infty $ SYM $ _ 9 advmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 equivalent equivalent ADJ JJ Degree=Pos 6 acomp _ _ 10 to to ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 12 differential differential ADJ JJ Degree=Pos 13 advmod _ _ 13 graded grade VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 14 category category NOUN NN Number=Sing 10 pobj _ _ 15 with with ADP IN _ 6 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 same same ADJ JJ Degree=Pos 18 amod _ _ 18 set set NOUN NN Number=Sing 15 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 objects object NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 296 # sent_id = 1 # text = If $ C $ and $ D $ are varieties of algebras in the sense of general algebra, then by a representable functor $ C - - > D $ we understand a functor which, when composed with the forgetful functor $ D - - > Set $ , gives a representable functor in the classical sense; Freyd showed that these functors are determined by $ D $ - coalgebra objects of $ C $ . 1 If if SCONJ IN _ 5 mark _ _ 2 $ C $ $ c $ SYM $ _ 5 nsubj _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 $ D $ $ d $ SYM $ _ 2 conj _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 23 advcl _ _ 6 varieties variety NOUN NNS Number=Plur 5 attr _ _ 7 of of ADP IN _ 6 prep _ _ 8 algebras algebra NOUN NNS Number=Plur 7 pobj _ _ 9 in in ADP IN _ 6 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 sense sense NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 general general ADJ JJ Degree=Pos 14 amod _ _ 14 algebra algebra PROPN NNP Number=Sing 12 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 5 punct _ _ 16 then then ADV RB PronType=Dem 17 advmod _ _ 17 by by ADP IN _ 23 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 representable representable ADJ JJ Degree=Pos 20 amod _ _ 20 functor functor NOUN NN Number=Sing 17 pobj _ _ 21 $ C - - > D $ $ c - - > d $ SYM $ _ 20 dep _ _ 22 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 23 nsubj _ _ 23 understand understand VERB VBP Tense=Pres|VerbForm=Fin 46 ccomp _ _ 24 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 25 functor functor NOUN NN Number=Sing 23 dobj _ _ 26 which which PRON WDT _ 36 nsubj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 36 punct _ _ 28 when when SCONJ WRB _ 29 advmod _ _ 29 composed compose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 36 advcl _ _ 30 with with ADP IN _ 29 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 33 det _ _ 32 forgetful forgetful ADJ JJ Degree=Pos 33 amod _ _ 33 functor functor NOUN NN Number=Sing 30 pobj _ _ 34 $ D - - > Set $ $ d - - > set $ SYM $ _ 33 appos _ _ 35 , , PUNCT , PunctType=Comm 36 punct _ _ 36 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 25 relcl _ _ 37 a a DET DT Definite=Ind|PronType=Art 39 det _ _ 38 representable representable ADJ JJ Degree=Pos 39 amod _ _ 39 functor functor NOUN NN Number=Sing 36 dobj _ _ 40 in in ADP IN _ 36 prep _ _ 41 the the DET DT Definite=Def|PronType=Art 43 det _ _ 42 classical classical ADJ JJ Degree=Pos 43 amod _ _ 43 sense sense NOUN NN Number=Sing 40 pobj _ SpaceAfter=No 44 ; ; PUNCT : _ 46 punct _ _ 45 Freyd Freyd PROPN NNP Number=Sing 46 nsubj _ _ 46 showed show VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 47 that that SCONJ IN _ 51 mark _ _ 48 these these DET DT Number=Plur|PronType=Dem 49 det _ _ 49 functors functor NOUN NNS Number=Plur 51 nsubjpass _ _ 50 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 51 auxpass _ _ 51 determined determine VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 46 ccomp _ _ 52 by by ADP IN _ 51 agent _ _ 53 $ D $ $ d $ SYM $ _ 55 amod _ _ 54 - - PUNCT HYPH PunctType=Dash 55 punct _ _ 55 coalgebra coalgebra NOUN NNS Number=Plur 56 compound _ _ 56 objects object NOUN NNS Number=Plur 52 pobj _ _ 57 of of ADP IN _ 56 prep _ _ 58 $ C $ $ c $ SYM $ _ 57 pobj _ _ 59 . . PUNCT . PunctType=Peri 46 punct _ SpaceAfter=No # sent_id = 2 # text = Let $ Rep(C, D) $ denote the category of all such functors, a full subcategory of $ Cat(C, D) $ , opposite to the category of $ D $ - coalgebras in $ C $ . 1 Let let VERB VB VerbForm=Inf 0 ROOT _ _ 2 $ Rep(C, D) $ $ rep(c, d) $ SYM $ _ 3 nsubj _ _ 3 denote denote VERB VBD Tense=Past|VerbForm=Fin 1 ccomp _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 all all DET DT _ 9 det _ _ 8 such such ADJ JJ Degree=Pos 9 amod _ _ 9 functors functor NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 full full ADJ JJ Degree=Pos 13 amod _ _ 13 subcategory subcategory NOUN NN Number=Sing 9 appos _ _ 14 of of ADP IN _ 13 prep _ _ 15 $ Cat(C, D) $ $ cat(c, d) $ SYM $ _ 14 pobj _ _ 16 , , PUNCT , PunctType=Comm 9 punct _ _ 17 opposite opposite ADJ JJ Degree=Pos 3 advmod _ _ 18 to to ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 category category NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 $ D $ $ d $ SYM $ _ 24 compound _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 coalgebras coalgebra NOUN NNS Number=Plur 21 pobj _ _ 25 in in ADP IN _ 20 prep _ _ 26 $ C $ $ c $ SYM $ _ 25 pobj _ _ 27 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 3 # text = It is proved that $ Rep(C, D) $ has small colimits, and in certain situations, explicit constructions for the representing coalgebras are obtained. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 that that SCONJ IN _ 6 mark _ _ 5 $ Rep(C, D) $ $ rep(c, d) $ SYM $ _ 6 nsubj _ _ 6 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 7 small small ADJ JJ Degree=Pos 8 amod _ _ 8 colimits colimit NOUN NNS Number=Plur 6 dobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 6 punct _ _ 10 and and CCONJ CC ConjType=Cmp 6 cc _ _ 11 in in ADP IN _ 22 prep _ _ 12 certain certain ADJ JJ Degree=Pos 13 amod _ _ 13 situations situation NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 22 punct _ _ 15 explicit explicit ADJ JJ Degree=Pos 16 amod _ _ 16 constructions construction NOUN NNS Number=Plur 22 nsubjpass _ _ 17 for for ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 representing represent VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 20 amod _ _ 20 coalgebras coalgebra NOUN NNS Number=Plur 17 pobj _ _ 21 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 22 auxpass _ _ 22 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 conj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = In particular, $ Rep(C, D) $ always has an initial object. 1 In in ADP IN _ 6 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 6 punct _ _ 4 $ Rep(C, D) $ $ rep(c, d) $ SYM $ _ 6 nsubj _ _ 5 always always ADV RB _ 6 advmod _ _ 6 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 8 initial initial ADJ JJ Degree=Pos 9 amod _ _ 9 object object NOUN NN Number=Sing 6 dobj _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 5 # text = This is shown to be ``trivial'' unless $ C $ and $ D $ either both have no zeroary operations, or both have more than one derived zeroary operation. 1 This this PRON DT Number=Sing|PronType=Dem 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 to to PART TO _ 5 aux _ _ 5 be be AUX VB VerbForm=Inf 3 xcomp _ _ 6 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 8 punct _ SpaceAfter=No 7 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 8 punct _ SpaceAfter=No 8 trivial trivial ADJ JJ Degree=Pos 5 acomp _ SpaceAfter=No 9 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 8 punct _ _ 10 unless unless SCONJ IN _ 16 mark _ _ 11 $ C $ $ c $ SYM $ _ 16 nsubj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 $ D $ $ d $ SYM $ _ 11 conj _ _ 14 either either CCONJ CC ConjType=Cmp 15 preconj _ _ 15 both both PRON DT _ 11 dep _ _ 16 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 advcl _ _ 17 no no DET DT _ 19 det _ _ 18 zeroary zeroary ADJ JJ Degree=Pos 19 amod _ _ 19 operations operation NOUN NNS Number=Plur 16 dobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 16 punct _ _ 21 or or CCONJ CC ConjType=Cmp 16 cc _ _ 22 both both PRON DT _ 23 nsubj _ _ 23 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 16 conj _ _ 24 more more ADJ JJR Degree=Cmp 26 amod _ _ 25 than than ADP IN _ 26 quantmod _ _ 26 one one NUM CD NumType=Card 29 nummod _ _ 27 derived derive VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 amod _ _ 28 zeroary zeroary ADJ JJ Degree=Pos 29 amod _ _ 29 operation operation NOUN NN Number=Sing 23 dobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = In those two cases, the functors in question may have surprisingly opulent structures. 1 In in ADP IN _ 11 prep _ _ 2 those those DET DT Number=Plur|PronType=Dem 4 det _ _ 3 two two NUM CD NumType=Card 4 nummod _ _ 4 cases case NOUN NNS Number=Plur 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 11 punct _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 functors functor NOUN NNS Number=Plur 11 nsubj _ _ 8 in in ADP IN _ 7 prep _ _ 9 question question NOUN NN Number=Sing 8 pobj _ _ 10 may may AUX MD VerbForm=Fin 11 aux _ _ 11 have have VERB VB VerbForm=Inf 0 ROOT _ _ 12 surprisingly surprisingly ADV RB _ 13 advmod _ _ 13 opulent opulent ADJ JJ Degree=Pos 14 amod _ _ 14 structures structure NOUN NNS Number=Plur 11 dobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 7 # text = It is also shown that every set - valued representable functor on $ C $ admits a universal morphism to a $ D $ - valued representable functor. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 4 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 3 also also ADV RB _ 4 advmod _ _ 4 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 that that SCONJ IN _ 14 mark _ _ 6 every every DET DT _ 11 det _ _ 7 set set NOUN NN Number=Sing 9 npadvmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 amod _ _ 10 representable representable ADJ JJ Degree=Pos 11 compound _ _ 11 functor functor NOUN NN Number=Sing 14 nsubj _ _ 12 on on ADP IN _ 11 prep _ _ 13 $ C $ $ c $ SYM $ _ 14 nsubj _ _ 14 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 universal universal ADJ JJ Degree=Pos 17 amod _ _ 17 morphism morphism NOUN NN Number=Sing 14 dobj _ _ 18 to to ADP IN _ 14 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 20 $ D $ $ d $ SYM $ _ 22 advmod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 23 representable representable ADJ JJ Degree=Pos 24 compound _ _ 24 functor functor NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 8 # text = Several examples are worked out in detail, and areas for further investigation are noted. 1 Several several ADJ JJ Degree=Pos 2 amod _ _ 2 examples example NOUN NNS Number=Plur 4 nsubjpass _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 worked work VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 out out ADP RP _ 4 prt _ _ 6 in in ADP IN _ 4 prep _ _ 7 detail detail NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 4 punct _ _ 9 and and CCONJ CC ConjType=Cmp 4 cc _ _ 10 areas area NOUN NNS Number=Plur 15 nsubjpass _ _ 11 for for ADP IN _ 10 prep _ _ 12 further further ADJ JJ Degree=Pos 13 amod _ _ 13 investigation investigation NOUN NN Number=Sing 11 pobj _ _ 14 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 auxpass _ _ 15 noted note VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 conj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # doc_id = 297 # sent_id = 1 # text = We construct a star - autonomous structure on the functor category $ K^J $ , where $ J $ is small, $ K $ is small - complete, and both are star - autonomous. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 4 star star NOUN NN Number=Sing 6 npadvmod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 autonomous autonomous ADJ JJ Degree=Pos 7 amod _ _ 7 structure structure NOUN NN Number=Sing 20 nsubj _ _ 8 on on ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 functor functor NOUN NN Number=Sing 11 compound _ _ 11 category category NOUN NN Number=Sing 8 pobj _ _ 12 $ K^J $ $ k^j $ SYM $ _ 8 pobj _ _ 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 where where SCONJ WRB _ 16 advmod _ _ 15 $ J $ $ j $ SYM $ _ 16 nsubj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 relcl _ _ 17 small small ADJ JJ Degree=Pos 16 acomp _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 16 punct _ _ 19 $ K $ $ k $ SYM $ _ 16 dep _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 21 small small ADJ JJ Degree=Pos 23 amod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 complete complete ADJ JJ Degree=Pos 20 acomp _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 20 punct _ _ 25 and and CCONJ CC ConjType=Cmp 20 cc _ _ 26 both both PRON DT _ 27 nsubj _ _ 27 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 20 conj _ _ 28 star star NOUN NN Number=Sing 30 compound _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 autonomous autonomous PROPN NNP Number=Sing 27 acomp _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = A weaker result, that $ K^J $ admits a linear distributive structure, is also shown under weaker hypotheses. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 weaker weak ADJ JJR Degree=Cmp 3 amod _ _ 3 result result NOUN NN Number=Sing 7 nsubj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 7 punct _ _ 5 that that SCONJ IN _ 7 mark _ _ 6 $ K^J $ $ k^j $ SYM $ _ 7 nsubj _ _ 7 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 ccomp _ _ 8 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 9 linear linear ADJ JJ Degree=Pos 11 amod _ _ 10 distributive distributive ADJ JJ Degree=Pos 11 amod _ _ 11 structure structure NOUN NN Number=Sing 7 dobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 15 punct _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 auxpass _ _ 14 also also ADV RB _ 15 advmod _ _ 15 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 16 under under ADP IN _ 15 prep _ _ 17 weaker weak ADJ JJR Degree=Cmp 18 amod _ _ 18 hypotheses hypothesis NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 3 # text = The latter leads to a deeper understanding of the notion of linear functor. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 latter latter ADJ JJ Degree=Pos 3 nsubj _ _ 3 leads lead VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 to to ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 deeper deep ADJ JJR Degree=Cmp 7 amod _ _ 7 understanding understanding NOUN NN Number=Sing 4 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 notion notion NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 linear linear PROPN NNP Number=Sing 13 compound _ _ 13 functor functor NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 298 # sent_id = 1 # text = Some aspects of basic category theory are developed in a finitely complete category $ cal C $ , endowed with two factorization systems which determine the same discrete objects and are linked by a simple reciprocal stability law. 1 Some some DET DT _ 2 det _ _ 2 aspects aspect NOUN NNS Number=Plur 8 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 basic basic ADJ JJ Degree=Pos 6 amod _ _ 5 category category NOUN NN Number=Sing 6 compound _ _ 6 theory theory NOUN NN Number=Sing 3 pobj _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 developed develop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 in in ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 11 finitely finitely ADV RB _ 12 advmod _ _ 12 complete complete ADJ JJ Degree=Pos 13 amod _ _ 13 category category NOUN NN Number=Sing 9 pobj _ _ 14 $ cal C $ $ cal c $ SYM $ _ 13 nummod _ _ 15 , , PUNCT , PunctType=Comm 8 punct _ _ 16 endowed endow VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 advcl _ _ 17 with with ADP IN _ 16 prep _ _ 18 two two NUM CD NumType=Card 20 nummod _ _ 19 factorization factorization NOUN NN Number=Sing 20 compound _ _ 20 systems system NOUN NNS Number=Plur 17 pobj _ _ 21 which which PRON WDT _ 22 nsubj _ _ 22 determine determine VERB VBP Tense=Pres|VerbForm=Fin 20 relcl _ _ 23 the the DET DT Definite=Def|PronType=Art 26 det _ _ 24 same same ADJ JJ Degree=Pos 26 amod _ _ 25 discrete discrete ADJ JJ Degree=Pos 26 amod _ _ 26 objects object NOUN NNS Number=Plur 22 dobj _ _ 27 and and CCONJ CC ConjType=Cmp 22 cc _ _ 28 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 29 auxpass _ _ 29 linked link VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 conj _ _ 30 by by ADP IN _ 29 agent _ _ 31 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 32 simple simple ADJ JJ Degree=Pos 35 amod _ _ 33 reciprocal reciprocal ADJ JJ Degree=Pos 34 amod _ _ 34 stability stability NOUN NN Number=Sing 35 compound _ _ 35 law law NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 2 # text = Resting on this axiomatization of final and initial functors and discrete (op)fibrations, concepts such as components, slices and coslices, colimits and limits, left and right adjunctible maps, dense maps and arrow intervals, can be naturally defined in $ cal C $ , and several classical properties concerning them can be effectively proved. 1 Resting rest VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 43 advcl _ _ 2 on on ADP IN _ 1 prep _ _ 3 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 4 axiomatization axiomatization NOUN NN Number=Sing 2 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 final final ADJ JJ Degree=Pos 9 amod _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 initial initial ADJ JJ Degree=Pos 6 conj _ _ 9 functors functor NOUN NNS Number=Plur 5 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 discrete discrete ADJ JJ Degree=Pos 9 conj _ _ 12 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 13 punct _ SpaceAfter=No 13 op)fibrations op)fibration NOUN NNS Number=Plur 9 conj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 13 punct _ _ 15 concepts concept NOUN NNS Number=Plur 1 dobj _ _ 16 such such ADJ JJ Degree=Pos 17 amod _ _ 17 as as ADP IN _ 15 prep _ _ 18 components component NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 slices slice NOUN NNS Number=Plur 18 conj _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 coslices coslice NOUN NNS Number=Plur 20 conj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 colimits colimit NOUN NNS Number=Plur 22 conj _ _ 25 and and CCONJ CC ConjType=Cmp 24 cc _ _ 26 limits limit NOUN NNS Number=Plur 24 conj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 18 punct _ _ 28 left left ADJ JJ Degree=Pos 32 amod _ _ 29 and and CCONJ CC ConjType=Cmp 28 cc _ _ 30 right right ADJ JJ Degree=Pos 28 conj _ _ 31 adjunctible adjunctible ADJ JJ Degree=Pos 32 amod _ _ 32 maps map NOUN NNS Number=Plur 18 conj _ SpaceAfter=No 33 , , PUNCT , PunctType=Comm 32 punct _ _ 34 dense dense ADJ JJ Degree=Pos 35 amod _ _ 35 maps map NOUN NNS Number=Plur 32 conj _ _ 36 and and CCONJ CC ConjType=Cmp 35 cc _ _ 37 arrow arrow NOUN NN Number=Sing 38 compound _ _ 38 intervals interval NOUN NNS Number=Plur 35 conj _ SpaceAfter=No 39 , , PUNCT , PunctType=Comm 43 punct _ _ 40 can can AUX MD VerbForm=Fin 43 aux _ _ 41 be be AUX VB VerbForm=Inf 43 auxpass _ _ 42 naturally naturally ADV RB _ 43 advmod _ _ 43 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 44 in in ADP IN _ 43 prep _ _ 45 $ cal C $ $ cal c $ SYM $ _ 44 pobj _ _ 46 , , PUNCT , PunctType=Comm 43 punct _ _ 47 and and CCONJ CC ConjType=Cmp 43 cc _ _ 48 several several ADJ JJ Degree=Pos 50 amod _ _ 49 classical classical ADJ JJ Degree=Pos 50 amod _ _ 50 properties property NOUN NNS Number=Plur 56 nsubjpass _ _ 51 concerning concern VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 50 acl _ _ 52 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 51 dobj _ _ 53 can can AUX MD VerbForm=Fin 56 aux _ _ 54 be be AUX VB VerbForm=Inf 56 auxpass _ _ 55 effectively effectively ADV RB _ 56 advmod _ _ 56 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 43 conj _ SpaceAfter=No 57 . . PUNCT . PunctType=Peri 56 punct _ SpaceAfter=No # sent_id = 3 # text = For any object $ X $ of $ cal C $ , by restricting $ cal C/X $ to the slices or to the coslices of $ X $ , two dual ``underlying categories" are obtained. 1 For for ADP IN _ 29 prep _ _ 2 any any DET DT _ 3 det _ _ 3 object object NOUN NN Number=Sing 1 pobj _ _ 4 $ X $ $ x $ SYM $ _ 3 prep _ _ 5 of of ADP IN _ 4 prep _ _ 6 $ cal C $ $ cal c $ SYM $ _ 5 pobj _ _ 7 , , PUNCT , PunctType=Comm 29 punct _ _ 8 by by ADP IN _ 29 prep _ _ 9 restricting restrict VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 pcomp _ _ 10 $ cal C/X $ $ cal c/x $ SYM $ _ 9 dobj _ _ 11 to to ADP IN _ 9 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 slices slice NOUN NNS Number=Plur 11 pobj _ _ 14 or or CCONJ CC ConjType=Cmp 11 cc _ _ 15 to to ADP IN _ 11 conj _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 coslices coslice NOUN NNS Number=Plur 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 $ X $ $ x $ SYM $ _ 18 pobj _ _ 20 , , PUNCT , PunctType=Comm 29 punct _ _ 21 two two NUM CD NumType=Card 26 nummod _ _ 22 dual dual ADJ JJ Degree=Pos 26 amod _ _ 23 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 26 punct _ SpaceAfter=No 24 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 26 punct _ SpaceAfter=No 25 underlying underlying ADJ JJ Degree=Pos 26 amod _ _ 26 categories category NOUN NNS Number=Plur 29 nsubjpass _ SpaceAfter=No 27 " " PUNCT '' PunctSide=Fin|PunctType=Quot 26 punct _ _ 28 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 29 auxpass _ _ 29 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 29 punct _ SpaceAfter=No # sent_id = 4 # text = These can be enriched over internal sets (discrete objects) of $ cal C $ : internal hom - sets are given by the components of the pullback of the corresponding slice and coslice of $ X $ . 1 These these PRON DT Number=Plur|PronType=Dem 4 nsubjpass _ _ 2 can can AUX MD VerbForm=Fin 4 aux _ _ 3 be be AUX VB VerbForm=Inf 4 auxpass _ _ 4 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 over over ADP IN _ 4 prep _ _ 6 internal internal ADJ JJ Degree=Pos 7 amod _ _ 7 sets set NOUN NNS Number=Plur 5 pobj _ _ 8 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 7 punct _ SpaceAfter=No 9 discrete discrete ADJ JJ Degree=Pos 10 amod _ _ 10 objects object NOUN NNS Number=Plur 7 appos _ SpaceAfter=No 11 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 10 punct _ _ 12 of of ADP IN _ 10 prep _ _ 13 $ cal C $ $ cal c $ SYM $ _ 12 pobj _ _ 14 : : PUNCT : _ 7 punct _ _ 15 internal internal ADJ JJ Degree=Pos 18 amod _ _ 16 hom hom NOUN NN Number=Sing 18 compound _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 sets set NOUN NNS Number=Plur 20 nsubjpass _ _ 19 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 20 auxpass _ _ 20 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 conj _ _ 21 by by ADP IN _ 20 agent _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 components component NOUN NNS Number=Plur 21 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 pullback pullback NOUN NN Number=Sing 24 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 30 det _ _ 29 corresponding corresponding ADJ JJ Degree=Pos 30 amod _ _ 30 slice slice NOUN NN Number=Sing 27 pobj _ _ 31 and and CCONJ CC ConjType=Cmp 30 cc _ _ 32 coslice coslice NOUN NN Number=Sing 30 conj _ _ 33 of of ADP IN _ 30 prep _ _ 34 $ X $ $ x $ SYM $ _ 33 pobj _ _ 35 . . PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # sent_id = 5 # text = The construction extends to give functors $ cal C to Cat $ , which preserve (or reverse) slices and adjunctible maps and which can be enriched over internal sets too. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 construction construction NOUN NN Number=Sing 3 nsubj _ _ 3 extends extend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 to to PART TO _ 5 aux _ _ 5 give give VERB VB VerbForm=Inf 3 xcomp _ _ 6 functors functor NOUN NNS Number=Plur 5 dative _ _ 7 $ cal C to Cat $ $ cal c to cat $ SYM $ _ 5 dobj _ _ 8 , , PUNCT , PunctType=Comm 5 punct _ _ 9 which which PRON WDT _ 10 nsubj _ _ 10 preserve preserve VERB VBP Tense=Pres|VerbForm=Fin 7 relcl _ _ 11 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 10 punct _ SpaceAfter=No 12 or or CCONJ CC ConjType=Cmp 10 cc _ _ 13 reverse reverse VERB VB VerbForm=Inf 15 amod _ SpaceAfter=No 14 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 15 punct _ _ 15 slices slice NOUN NNS Number=Plur 10 conj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 adjunctible adjunctible ADJ JJ Degree=Pos 18 amod _ _ 18 maps map NOUN NNS Number=Plur 15 conj _ _ 19 and and CCONJ CC ConjType=Cmp 10 cc _ _ 20 which which PRON WDT _ 23 nsubjpass _ _ 21 can can AUX MD VerbForm=Fin 23 aux _ _ 22 be be AUX VB VerbForm=Inf 23 auxpass _ _ 23 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 conj _ _ 24 over over ADP IN _ 23 prep _ _ 25 internal internal ADJ JJ Degree=Pos 26 amod _ _ 26 sets set NOUN NNS Number=Plur 24 pobj _ _ 27 too too ADV RB _ 23 advmod _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 299 # sent_id = 1 # text = An effort to initiate the subject of the title: the basic tool is the study of the abstract closed interval equipped with certain equational structures. 1 An an DET DT Definite=Ind|PronType=Art 2 det _ _ 2 effort effort NOUN NN Number=Sing 14 dep _ _ 3 to to PART TO _ 4 aux _ _ 4 initiate initiate VERB VB VerbForm=Inf 2 acl _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 subject subject NOUN NN Number=Sing 4 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 title title NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 10 : : PUNCT : _ 14 punct _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 basic basic ADJ JJ Degree=Pos 13 amod _ _ 13 tool tool NOUN NN Number=Sing 14 nsubj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 study study NOUN NN Number=Sing 14 attr _ _ 17 of of ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 21 det _ _ 19 abstract abstract ADJ JJ Degree=Pos 20 advmod _ _ 20 closed closed ADJ JJ Degree=Pos 21 amod _ _ 21 interval interval NOUN NN Number=Sing 17 pobj _ _ 22 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 acl _ _ 23 with with ADP IN _ 22 prep _ _ 24 certain certain ADJ JJ Degree=Pos 26 amod _ _ 25 equational equational ADJ JJ Degree=Pos 26 amod _ _ 26 structures structure NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # doc_id = 300 # sent_id = 1 # text = This paper presents a sound and complete category - theoretic notion of models for Linear Abadi and Plotkin Logic, a logic suitable for reasoning about parametricity in combination with recursion. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 presents present VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 sound sound NOUN NN Number=Sing 11 amod _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 complete complete ADJ JJ Degree=Pos 5 conj _ _ 8 category category NOUN NN Number=Sing 10 npadvmod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 theoretic theoretic NOUN NN Number=Sing 11 amod _ _ 11 notion notion NOUN NN Number=Sing 3 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 models model NOUN NNS Number=Plur 12 pobj _ _ 14 for for ADP IN _ 13 prep _ _ 15 Linear Linear PROPN NNP Number=Sing 16 compound _ _ 16 Abadi Abadi PROPN NNP Number=Sing 14 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 Plotkin Plotkin PROPN NNP Number=Sing 19 compound _ _ 19 Logic Logic PROPN NNP Number=Sing 16 conj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 16 punct _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 logic logic NOUN NN Number=Sing 11 appos _ _ 23 suitable suitable ADJ JJ Degree=Pos 22 amod _ _ 24 for for ADP IN _ 23 prep _ _ 25 reasoning reason VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 24 pobj _ _ 26 about about ADP IN _ 25 prep _ _ 27 parametricity parametricity NOUN NN Number=Sing 26 pobj _ _ 28 in in ADP IN _ 27 prep _ _ 29 combination combination NOUN NN Number=Sing 28 pobj _ _ 30 with with ADP IN _ 29 prep _ _ 31 recursion recursion NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = A subclass of these called parametric LAPL structures can be seen as an axiomatization of domain theoretic models of parametric polymorphism, and we show how to solve general (nested) recursive domain equations in these. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 subclass subclass NOUN NN Number=Sing 11 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 these these DET DT Number=Plur|PronType=Dem 8 det _ _ 5 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 6 parametric parametric ADJ JJ Degree=Pos 8 amod _ _ 7 LAPL lapl ADJ JJ Degree=Pos 8 amod _ _ 8 structures structure NOUN NNS Number=Plur 3 pobj _ _ 9 can can AUX MD VerbForm=Fin 11 aux _ _ 10 be be AUX VB VerbForm=Inf 11 auxpass _ _ 11 seen see VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 12 as as ADP IN _ 11 prep _ _ 13 an an DET DT Definite=Ind|PronType=Art 14 det _ _ 14 axiomatization axiomatization NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 domain domain NOUN NN Number=Sing 18 nmod _ _ 17 theoretic theoretic ADJ JJ Degree=Pos 18 amod _ _ 18 models model NOUN NNS Number=Plur 15 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 parametric parametric ADJ JJ Degree=Pos 21 amod _ _ 21 polymorphism polymorphism NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 11 punct _ _ 23 and and CCONJ CC ConjType=Cmp 11 cc _ _ 24 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 25 nsubj _ _ 25 show show VERB VBP Tense=Pres|VerbForm=Fin 11 conj _ _ 26 how how SCONJ WRB _ 28 advmod _ _ 27 to to PART TO _ 28 aux _ _ 28 solve solve VERB VB VerbForm=Inf 25 xcomp _ _ 29 general general ADJ JJ Degree=Pos 35 amod _ _ 30 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 35 punct _ SpaceAfter=No 31 nested nested ADJ JJ Degree=Pos 35 amod _ SpaceAfter=No 32 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 35 punct _ _ 33 recursive recursive ADJ JJ Degree=Pos 35 amod _ _ 34 domain domain NOUN NN Number=Sing 35 compound _ _ 35 equations equation NOUN NNS Number=Plur 28 dobj _ _ 36 in in ADP IN _ 35 prep _ _ 37 these these PRON DT Number=Plur|PronType=Dem 36 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 25 punct _ SpaceAfter=No # sent_id = 3 # text = Parametric LAPL structures constitute a general notion of model of parametricity in a setting with recursion. 1 Parametric parametric ADJ JJ Degree=Pos 3 amod _ _ 2 LAPL LAPL PROPN NNP Number=Sing 3 compound _ _ 3 structures structure NOUN NNS Number=Plur 4 nsubj _ _ 4 constitute constitute VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 general general ADJ JJ Degree=Pos 7 amod _ _ 7 notion notion NOUN NN Number=Sing 4 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 model model NOUN NN Number=Sing 8 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 parametricity parametricity NOUN NN Number=Sing 10 pobj _ _ 12 in in ADP IN _ 4 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 setting setting NOUN NN Number=Sing 12 pobj _ _ 15 with with ADP IN _ 14 prep _ _ 16 recursion recursion NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = In future papers we will demonstrate this by showing how many different models of parametricity and recursion give rise to parametric LAPL structures, including Simpson and Rosolini's set theoretic models, a syntactic model based on Lily and a model based on admissible pers over a reflexive domain. 1 In in ADP IN _ 6 prep _ _ 2 future future ADJ JJ Degree=Pos 3 amod _ _ 3 papers paper NOUN NNS Number=Plur 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 5 will will AUX MD VerbForm=Fin 6 aux _ _ 6 demonstrate demonstrate VERB VB VerbForm=Inf 0 ROOT _ _ 7 this this PRON DT Number=Sing|PronType=Dem 6 dobj _ _ 8 by by ADP IN _ 6 prep _ _ 9 showing show VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 pcomp _ _ 10 how how SCONJ WRB _ 11 advmod _ _ 11 many many ADJ JJ Degree=Pos 13 amod _ _ 12 different different ADJ JJ Degree=Pos 13 amod _ _ 13 models model NOUN NNS Number=Plur 18 nsubj _ _ 14 of of ADP IN _ 13 prep _ _ 15 parametricity parametricity NOUN NN Number=Sing 14 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 recursion recursion NOUN NN Number=Sing 15 conj _ _ 18 give give VERB VBP Tense=Pres|VerbForm=Fin 9 ccomp _ _ 19 rise rise NOUN NN Number=Sing 18 dobj _ _ 20 to to ADP IN _ 18 prep _ _ 21 parametric parametric ADJ JJ Degree=Pos 23 amod _ _ 22 LAPL LAPL PROPN NNP Number=Sing 23 amod _ _ 23 structures structure NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 23 punct _ _ 25 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 23 prep _ _ 26 Simpson Simpson PROPN NNP Number=Sing 32 poss _ _ 27 and and CCONJ CC ConjType=Cmp 26 cc _ _ 28 Rosolini Rosolini PROPN NNP Number=Sing 26 conj _ SpaceAfter=No 29 's 's PART POS _ 28 case _ _ 30 set set ADJ JJ Degree=Pos 32 amod _ _ 31 theoretic theoretic ADJ JJ Degree=Pos 32 amod _ _ 32 models model NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 33 , , PUNCT , PunctType=Comm 32 punct _ _ 34 a a DET DT Definite=Ind|PronType=Art 36 det _ _ 35 syntactic syntactic ADJ JJ Degree=Pos 36 amod _ _ 36 model model NOUN NN Number=Sing 32 appos _ _ 37 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 36 acl _ _ 38 on on ADP IN _ 37 prep _ _ 39 Lily Lily PROPN NNP Number=Sing 38 pobj _ _ 40 and and CCONJ CC ConjType=Cmp 39 cc _ _ 41 a a DET DT Definite=Ind|PronType=Art 42 det _ _ 42 model model NOUN NN Number=Sing 39 conj _ _ 43 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 42 acl _ _ 44 on on ADP IN _ 43 prep _ _ 45 admissible admissible ADJ JJ Degree=Pos 46 amod _ _ 46 pers per NOUN NNS Number=Plur 44 pobj _ _ 47 over over ADP IN _ 43 prep _ _ 48 a a DET DT Definite=Ind|PronType=Art 50 det _ _ 49 reflexive reflexive ADJ JJ Degree=Pos 50 amod _ _ 50 domain domain NOUN NN Number=Sing 47 pobj _ SpaceAfter=No 51 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 301 # sent_id = 1 # text = The author introduced and employed certain `fundamental pushout toposes' in the construction of the coverings fundamental groupoid of a locally connected topos. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 author author NOUN NN Number=Sing 3 nsubj _ _ 3 introduced introduce VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 4 and and CCONJ CC ConjType=Cmp 3 cc _ _ 5 employed employ VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 conj _ _ 6 certain certain ADJ JJ Degree=Pos 10 amod _ _ 7 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 10 punct _ SpaceAfter=No 8 fundamental fundamental ADJ JJ Degree=Pos 10 amod _ _ 9 pushout pushout NOUN NN Number=Sing 10 compound _ _ 10 toposes topos NOUN NNS Number=Plur 19 nmod _ SpaceAfter=No 11 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 10 case _ _ 12 in in ADP IN _ 10 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 construction construction NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 coverings covering NOUN NNS Number=Plur 15 pobj _ _ 18 fundamental fundamental ADJ JJ Degree=Pos 19 amod _ _ 19 groupoid groupoid NOUN NN Number=Sing 5 dobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 22 locally locally ADV RB _ 23 advmod _ _ 23 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 24 topos topos NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = Our main purpose in this paper is to generalize this construction without the local connectedness assumption. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 3 poss _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 purpose purpose NOUN NN Number=Sing 7 nsubj _ _ 4 in in ADP IN _ 3 prep _ _ 5 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 6 paper paper NOUN NN Number=Sing 4 pobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 to to PART TO _ 9 aux _ _ 9 generalize generalize VERB VB VerbForm=Inf 7 xcomp _ _ 10 this this DET DT Number=Sing|PronType=Dem 11 det _ _ 11 construction construction NOUN NN Number=Sing 9 dobj _ _ 12 without without ADP IN _ 9 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 16 det _ _ 14 local local ADJ JJ Degree=Pos 16 amod _ _ 15 connectedness connectedness NOUN NN Number=Sing 16 compound _ _ 16 assumption assumption NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = We replace connected components by constructively complemented, or definable, monomorphisms. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 replace replace VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 connected connected ADJ JJ Degree=Pos 4 amod _ _ 4 components component NOUN NNS Number=Plur 2 dobj _ _ 5 by by ADP IN _ 4 prep _ _ 6 constructively constructively ADV RB _ 7 advmod _ _ 7 complemented complement VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 or or CCONJ CC ConjType=Cmp 7 cc _ _ 10 definable definable ADJ JJ Degree=Pos 7 conj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 12 punct _ _ 12 monomorphisms monomorphism NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = Unlike the locally connected case, where the fundamental groupoid is localic prodiscrete and its classifying topos is a Galois topos, in the general case our version of the fundamental groupoid is a locally discrete progroupoid and there is no intrinsic Galois theory in the sense of Janelidze. 1 Unlike unlike ADP IN _ 18 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 5 det _ _ 3 locally locally ADV RB _ 4 advmod _ _ 4 connected connected ADJ JJ Degree=Pos 5 amod _ _ 5 case case NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 where where SCONJ WRB _ 11 advmod _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 fundamental fundamental ADJ JJ Degree=Pos 10 amod _ _ 10 groupoid groupoid NOUN NN Number=Sing 11 nsubj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 relcl _ _ 12 localic localic ADJ JJ Degree=Pos 13 amod _ _ 13 prodiscrete prodiscrete NOUN NN Number=Sing 11 attr _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 17 poss _ _ 16 classifying classify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 17 amod _ _ 17 topos topos NOUN NN Number=Sing 13 conj _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 33 advcl _ _ 19 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 20 Galois Galois PROPN NNP Number=Sing 21 compound _ _ 21 topos topos NOUN NN Number=Sing 18 attr _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 33 punct _ _ 23 in in ADP IN _ 33 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 26 det _ _ 25 general general ADJ JJ Degree=Pos 26 amod _ _ 26 case case NOUN NN Number=Sing 23 pobj _ _ 27 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 28 poss _ _ 28 version version NOUN NN Number=Sing 33 nsubj _ _ 29 of of ADP IN _ 28 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 32 det _ _ 31 fundamental fundamental ADJ JJ Degree=Pos 32 amod _ _ 32 groupoid groupoid NOUN NN Number=Sing 29 pobj _ _ 33 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 34 a a DET DT Definite=Ind|PronType=Art 37 det _ _ 35 locally locally ADV RB _ 36 advmod _ _ 36 discrete discrete ADJ JJ Degree=Pos 37 amod _ _ 37 progroupoid progroupoid NOUN NN Number=Sing 33 attr _ _ 38 and and CCONJ CC ConjType=Cmp 33 cc _ _ 39 there there PRON EX _ 40 expl _ _ 40 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 33 conj _ _ 41 no no DET DT _ 44 det _ _ 42 intrinsic intrinsic ADJ JJ Degree=Pos 44 amod _ _ 43 Galois Galois PROPN NNP Number=Sing 44 compound _ _ 44 theory theory NOUN NN Number=Sing 40 attr _ _ 45 in in ADP IN _ 44 prep _ _ 46 the the DET DT Definite=Def|PronType=Art 47 det _ _ 47 sense sense NOUN NN Number=Sing 45 pobj _ _ 48 of of ADP IN _ 47 prep _ _ 49 Janelidze Janelidze PROPN NNP Number=Sing 48 pobj _ SpaceAfter=No 50 . . PUNCT . PunctType=Peri 40 punct _ SpaceAfter=No # sent_id = 5 # text = We also discuss covering projections, locally trivial, and branched coverings without local connectedness by analogy with, but also necessarily departing from, the locally connected case. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 discuss discuss VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 covering cover VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 amod _ _ 5 projections projection NOUN NNS Number=Plur 3 dobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 locally locally ADV RB _ 8 advmod _ _ 8 trivial trivial ADJ JJ Degree=Pos 5 conj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 8 punct _ _ 10 and and CCONJ CC ConjType=Cmp 8 cc _ _ 11 branched branched ADJ JJ Degree=Pos 12 amod _ _ 12 coverings covering NOUN NNS Number=Plur 8 conj _ _ 13 without without ADP IN _ 12 prep _ _ 14 local local ADJ JJ Degree=Pos 15 amod _ _ 15 connectedness connectedness NOUN NN Number=Sing 13 pobj _ _ 16 by by ADP IN _ 15 prep _ _ 17 analogy analogy NOUN NN Number=Sing 16 pobj _ _ 18 with with ADP IN _ 12 prep _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 3 punct _ _ 20 but but CCONJ CC ConjType=Cmp 3 cc _ _ 21 also also ADV RB _ 20 advmod _ _ 22 necessarily necessarily ADV RB _ 23 advmod _ _ 23 departing depart VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 conj _ _ 24 from from ADP IN _ 23 prep _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 29 punct _ _ 26 the the DET DT Definite=Def|PronType=Art 29 det _ _ 27 locally locally ADV RB _ 28 advmod _ _ 28 connected connected ADJ JJ Degree=Pos 29 amod _ _ 29 case case NOUN NN Number=Sing 24 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = Throughout, we work abstractly in a setting given axiomatically by a category $ V $ of locally discrete locales that has as examples the categories D of discrete locales, and $ Z $ of zero - dimensional locales. 1 Throughout throughout ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 work work VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 abstractly abstractly ADV RB _ 4 advmod _ _ 6 in in ADP IN _ 4 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 setting setting NOUN NN Number=Sing 6 pobj _ _ 9 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 acl _ _ 10 axiomatically axiomatically ADV RB _ 9 advmod _ _ 11 by by ADP IN _ 9 agent _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 category category NOUN NN Number=Sing 11 pobj _ _ 14 $ V $ $ v $ SYM $ _ 13 nmod _ _ 15 of of ADP IN _ 14 prep _ _ 16 locally locally ADV RB _ 17 advmod _ _ 17 discrete discrete ADJ JJ Degree=Pos 18 amod _ _ 18 locales locale NOUN NNS Number=Plur 15 pobj _ _ 19 that that PRON WDT PronType=Rel 20 nsubj _ _ 20 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 relcl _ _ 21 as as ADP IN _ 4 prep _ _ 22 examples example NOUN NNS Number=Plur 21 pobj _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 categories category NOUN NNS Number=Plur 4 dobj _ _ 25 D D PROPN NNP Number=Sing 24 appos _ _ 26 of of ADP IN _ 25 prep _ _ 27 discrete discrete ADJ JJ Degree=Pos 28 amod _ _ 28 locales locale NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 24 punct _ _ 30 and and CCONJ CC ConjType=Cmp 24 cc _ _ 31 $ Z $ $ z $ SYM $ _ 24 conj _ _ 32 of of ADP IN _ 31 prep _ _ 33 zero zero NUM CD NumType=Card 35 npadvmod _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 dimensional dimensional ADJ JJ Degree=Pos 36 amod _ _ 36 locales locale NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 7 # text = In this fashion we are led to give unified and often simpler proofs of old theorems in the locally connected case, as well as new ones without that assumption. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 fashion fashion NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubjpass _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 6 led lead VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 to to PART TO _ 8 aux _ _ 8 give give VERB VB VerbForm=Inf 6 xcomp _ _ 9 unified unified ADJ JJ Degree=Pos 13 amod _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 often often ADV RB _ 12 advmod _ _ 12 simpler simple ADJ JJR Degree=Cmp 9 conj _ _ 13 proofs proof NOUN NNS Number=Plur 8 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 old old ADJ JJ Degree=Pos 16 amod _ _ 16 theorems theorem NOUN NNS Number=Plur 14 pobj _ _ 17 in in ADP IN _ 8 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 21 det _ _ 19 locally locally ADV RB _ 20 advmod _ _ 20 connected connected ADJ JJ Degree=Pos 21 amod _ _ 21 case case NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 8 punct _ _ 23 as as ADV RB _ 25 advmod _ _ 24 well well ADV RB Degree=Pos 25 advmod _ _ 25 as as ADP IN _ 8 cc _ _ 26 new new ADJ JJ Degree=Pos 27 amod _ _ 27 ones one NOUN NNS Number=Plur 8 dobj _ _ 28 without without ADP IN _ 8 prep _ _ 29 that that DET DT Number=Sing|PronType=Dem 30 det _ _ 30 assumption assumption NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 302 # sent_id = 1 # text = This paper deals with Kan extensions in a weak double category. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 deals deal VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 with with ADP IN _ 3 prep _ _ 5 Kan Kan PROPN NNP Number=Sing 6 compound _ _ 6 extensions extension NOUN NNS Number=Plur 4 pobj _ _ 7 in in ADP IN _ 3 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 9 weak weak ADJ JJ Degree=Pos 11 amod _ _ 10 double double ADJ JJ Degree=Pos 11 amod _ _ 11 category category NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = Absolute Kan extensions are closely related to the orthogonal adjunctions introduced in a previous paper. 1 Absolute Absolute PROPN NNP Number=Sing 2 compound _ _ 2 Kan Kan PROPN NNP Number=Sing 3 compound _ _ 3 extensions extension NOUN NNS Number=Plur 6 nsubjpass _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 5 closely closely ADV RB _ 6 advmod _ _ 6 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 to to ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 orthogonal orthogonal ADJ JJ Degree=Pos 10 amod _ _ 10 adjunctions adjunction NOUN NNS Number=Plur 7 pobj _ _ 11 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 acl _ _ 12 in in ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 previous previous ADJ JJ Degree=Pos 15 amod _ _ 15 paper paper NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = The pointwise case is treated by introducing internal comma objects, which can be defined in an arbitrary double category. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 pointwise pointwise ADJ JJ Degree=Pos 3 amod _ _ 3 case case NOUN NN Number=Sing 5 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 treated treat VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 by by ADP IN _ 5 agent _ _ 7 introducing introduce VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 pcomp _ _ 8 internal internal ADJ JJ Degree=Pos 10 amod _ _ 9 comma comma ADJ JJ Degree=Pos 10 amod _ _ 10 objects object NOUN NNS Number=Plur 7 dobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 which which PRON WDT _ 15 nsubjpass _ _ 13 can can AUX MD VerbForm=Fin 15 aux _ _ 14 be be AUX VB VerbForm=Inf 15 auxpass _ _ 15 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 relcl _ _ 16 in in ADP IN _ 15 prep _ _ 17 an an DET DT Definite=Ind|PronType=Art 20 det _ _ 18 arbitrary arbitrary ADJ JJ Degree=Pos 20 amod _ _ 19 double double ADJ JJ Degree=Pos 20 amod _ _ 20 category category NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 303 # sent_id = 1 # text = In this paper we show that eight coherence conditions suffice for the definition of a pseudodistributive law between pseudomonads. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 that that SCONJ IN _ 10 mark _ _ 7 eight eight NUM CD NumType=Card 9 nummod _ _ 8 coherence coherence NOUN NN Number=Sing 9 compound _ _ 9 conditions condition NOUN NNS Number=Plur 10 nsubj _ _ 10 suffice suffice VERB VBP Tense=Pres|VerbForm=Fin 5 ccomp _ _ 11 for for ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 definition definition NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 pseudodistributive pseudodistributive ADJ JJ Degree=Pos 17 amod _ _ 17 law law NOUN NN Number=Sing 14 pobj _ _ 18 between between ADP IN _ 17 prep _ _ 19 pseudomonads pseudomonad NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 304 # sent_id = 1 # text = We show that, in any Maltsev (and a fortiori protomodular) category $ E $ , not only the fibre $ Grd_X E $ of internal groupoids above the object $ X $ is a naturally Maltsev category, but moreover it shares with the category $ Ab $ of abelian groups the property following which the domain of any split epimorphism is isomorphic with the direct sum of its codomain with its kernel. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 29 mark _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 29 punct _ _ 5 in in ADP IN _ 15 prep _ _ 6 any any DET DT _ 7 det _ _ 7 Maltsev Maltsev PROPN NNP Number=Sing 5 pobj _ _ 8 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 7 punct _ SpaceAfter=No 9 and and CCONJ CC ConjType=Cmp 7 cc _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 fortiori fortiori NOUN NN Number=Sing 12 compound _ _ 12 protomodular protomodular ADJ JJ Degree=Pos 7 conj _ SpaceAfter=No 13 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 14 punct _ _ 14 category category NOUN NN Number=Sing 5 pobj _ _ 15 $ E $ $ e $ SYM $ _ 4 nmod _ _ 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 not not PART RB Polarity=Neg 20 preconj _ _ 18 only only ADV RB _ 17 advmod _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 fibre fibre NOUN NN Number=Sing 29 nsubj _ _ 21 $ Grd_X E $ $ grd_x e $ SYM $ _ 20 appos _ _ 22 of of ADP IN _ 21 prep _ _ 23 internal internal ADJ JJ Degree=Pos 24 amod _ _ 24 groupoids groupoid NOUN NNS Number=Plur 22 pobj _ _ 25 above above ADP IN _ 20 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 object object NOUN NN Number=Sing 25 pobj _ _ 28 $ X $ $ x $ SYM $ _ 20 appos _ _ 29 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 30 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 31 naturally naturally ADV RB _ 32 advmod _ _ 32 Maltsev Maltsev PROPN NNP Number=Sing 33 amod _ _ 33 category category NOUN NN Number=Sing 29 attr _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 2 punct _ _ 35 but but CCONJ CC ConjType=Cmp 2 cc _ _ 36 moreover moreover ADV RB _ 38 advmod _ _ 37 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 38 nsubj _ _ 38 shares share VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 conj _ _ 39 with with ADP IN _ 38 prep _ _ 40 the the DET DT Definite=Def|PronType=Art 41 det _ _ 41 category category NOUN NN Number=Sing 39 pobj _ _ 42 $ Ab $ $ ab $ SYM $ _ 41 appos _ _ 43 of of ADP IN _ 42 prep _ _ 44 abelian abelian ADJ JJ Degree=Pos 45 compound _ _ 45 groups group NOUN NNS Number=Plur 43 pobj _ _ 46 the the DET DT Definite=Def|PronType=Art 47 det _ _ 47 property property NOUN NN Number=Sing 41 appos _ _ 48 following follow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 56 dep _ _ 49 which which PRON WDT _ 48 pobj _ _ 50 the the DET DT Definite=Def|PronType=Art 51 det _ _ 51 domain domain NOUN NN Number=Sing 56 nsubj _ _ 52 of of ADP IN _ 51 prep _ _ 53 any any DET DT _ 54 det _ _ 54 split split NOUN NN Number=Sing 52 pobj _ _ 55 epimorphism epimorphism NOUN NN Number=Sing 56 nsubj _ _ 56 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 47 relcl _ _ 57 isomorphic isomorphic ADJ JJ Degree=Pos 56 acomp _ _ 58 with with ADP IN _ 57 prep _ _ 59 the the DET DT Definite=Def|PronType=Art 61 det _ _ 60 direct direct ADJ JJ Degree=Pos 61 amod _ _ 61 sum sum NOUN NN Number=Sing 58 pobj _ _ 62 of of ADP IN _ 61 prep _ _ 63 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 64 poss _ _ 64 codomain codomain NOUN NN Number=Sing 62 pobj _ _ 65 with with ADP IN _ 64 prep _ _ 66 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 67 poss _ _ 67 kernel kernel NOUN NN Number=Sing 65 pobj _ SpaceAfter=No 68 . . PUNCT . PunctType=Peri 38 punct _ SpaceAfter=No # sent_id = 2 # text = This allows us to point at a new class of ``non - pointed additive'' categories which is necessarily protomodular. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 4 to to PART TO _ 5 aux _ _ 5 point point VERB VB VerbForm=Inf 2 ccomp _ _ 6 at at ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 new new ADJ JJ Degree=Pos 9 amod _ _ 9 class class NOUN NN Number=Sing 6 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 15 punct _ SpaceAfter=No 12 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 15 punct _ SpaceAfter=No 13 non non ADV RB _ 15 advmod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 pointed pointed ADJ JJ Degree=Pos 18 amod _ _ 16 additive additive NOUN NN Number=Sing 18 amod _ SpaceAfter=No 17 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 18 punct _ _ 18 categories category NOUN NNS Number=Plur 10 pobj _ _ 19 which which PRON WDT _ 20 nsubj _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 relcl _ _ 21 necessarily necessarily ADV RB _ 20 advmod _ _ 22 protomodular protomodular ADJ JJ Degree=Pos 20 acomp _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Actually this even gives rise to a larger classification table of non - pointed additive categories which gradually take place between the class of naturally Maltsev categories and the one of essentially affine categories. 1 Actually actually ADV RB _ 4 advmod _ _ 2 this this PRON DT Number=Sing|PronType=Dem 4 nsubj _ _ 3 even even ADV RB _ 4 advmod _ _ 4 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 rise rise NOUN NN Number=Sing 4 dobj _ _ 6 to to ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 8 larger large ADJ JJR Degree=Cmp 10 amod _ _ 9 classification classification NOUN NN Number=Sing 10 compound _ _ 10 table table NOUN NN Number=Sing 6 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 non non PROPN NNP Number=Sing 14 npadvmod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 pointed point VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 15 additive additive ADJ JJ Degree=Pos 16 amod _ _ 16 categories category NOUN NNS Number=Plur 11 pobj _ _ 17 which which PRON WDT _ 19 nsubj _ _ 18 gradually gradually ADV RB _ 19 advmod _ _ 19 take take VERB VBP Tense=Pres|VerbForm=Fin 16 relcl _ _ 20 place place NOUN NN Number=Sing 19 dobj _ _ 21 between between ADP IN _ 19 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 class class NOUN NN Number=Sing 21 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 naturally naturally ADV RB _ 26 advmod _ _ 26 Maltsev maltsev ADJ JJ Degree=Pos 27 amod _ _ 27 categories category NOUN NNS Number=Plur 24 pobj _ _ 28 and and CCONJ CC ConjType=Cmp 27 cc _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 one one NUM CD NumType=Card 27 conj _ _ 31 of of ADP IN _ 30 prep _ _ 32 essentially essentially ADV RB _ 33 advmod _ _ 33 affine affine ADJ JJ Degree=Pos 34 amod _ _ 34 categories category NOUN NNS Number=Plur 31 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = As an application, when furthermore the ground category $ E $ is efficiently regular, we get a new way to produce Baer sums in the fibres $ Grd_X E $ and, more generally, in the fibres $ n - Grd_X E $ . 1 As as ADP IN _ 16 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 application application NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 16 punct _ _ 5 when when SCONJ WRB _ 11 advmod _ _ 6 furthermore furthermore ADV RB _ 11 advmod _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 ground ground NOUN NN Number=Sing 9 compound _ _ 9 category category NOUN NN Number=Sing 11 nsubj _ _ 10 $ E $ $ e $ SYM $ _ 9 appos _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 advcl _ _ 12 efficiently efficiently ADV RB _ 13 advmod _ _ 13 regular regular ADJ JJ Degree=Pos 11 acomp _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 16 punct _ _ 15 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 16 nsubj _ _ 16 get get VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 17 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 18 new new ADJ JJ Degree=Pos 19 amod _ _ 19 way way NOUN NN Number=Sing 16 dobj _ _ 20 to to PART TO _ 21 aux _ _ 21 produce produce VERB VB VerbForm=Inf 19 relcl _ _ 22 Baer Baer PROPN NNP Number=Sing 23 compound _ _ 23 sums sum NOUN NNS Number=Plur 21 dobj _ _ 24 in in ADP IN _ 21 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 fibres fibre NOUN NNS Number=Plur 24 pobj _ _ 27 $ Grd_X E $ $ grd_x e $ SYM $ _ 16 dep _ _ 28 and and CCONJ CC ConjType=Cmp 16 cc _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 16 punct _ _ 30 more more ADV RBR Degree=Cmp 31 advmod _ _ 31 generally generally ADV RB _ 16 advmod _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 16 punct _ _ 33 in in ADP IN _ 36 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 35 det _ _ 35 fibres fibre NOUN NNS Number=Plur 33 pobj _ _ 36 $ n - Grd_X E $ $ n - grd_x e $ SYM $ _ 16 dep _ _ 37 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # doc_id = 305 # sent_id = 1 # text = Maps (left adjoint arrows) between Frobenius objects in a cartesian bicategory $ B $ are precisely comonoid homomorphisms and, for $ A $ Frobenius and any $ T $ in $ B $ , $ map(B)(T, A) $ is a groupoid. 1 Maps map NOUN NNS Number=Plur 3 nsubj _ _ 2 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 3 punct _ SpaceAfter=No 3 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 adjoint adjoint NOUN NN Number=Sing 5 compound _ _ 5 arrows arrow NOUN NNS Number=Plur 3 dobj _ SpaceAfter=No 6 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 3 punct _ _ 7 between between ADP IN _ 3 prep _ _ 8 Frobenius Frobenius PROPN NNP Number=Sing 9 compound _ _ 9 objects object VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 pobj _ _ 10 in in ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 cartesian cartesian ADJ JJ Degree=Pos 13 amod _ _ 13 bicategory bicategory NOUN NN Number=Sing 10 pobj _ _ 14 $ B $ $ b $ SYM $ _ 13 appos _ _ 15 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 conj _ _ 16 precisely precisely ADV RB _ 15 advmod _ _ 17 comonoid comonoid NOUN NN Number=Sing 18 compound _ _ 18 homomorphisms homomorphism NOUN NNS Number=Plur 15 attr _ _ 19 and and CCONJ CC ConjType=Cmp 15 cc _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 15 punct _ _ 21 for for ADP IN _ 31 prep _ _ 22 $ A $ $ a $ SYM $ _ 23 nmod _ _ 23 Frobenius Frobenius PROPN NNP Number=Sing 21 pobj _ _ 24 and and CCONJ CC ConjType=Cmp 23 cc _ _ 25 any any DET DT _ 26 det _ _ 26 $ T $ $ t $ SYM $ _ 30 nmod _ _ 27 in in ADP IN _ 26 prep _ _ 28 $ B $ $ b $ SYM $ _ 27 pobj _ _ 29 , , PUNCT , PunctType=Comm 28 punct _ _ 30 $ map(B)(T, A) $ $ map(b)(t, a) $ SYM $ _ 31 nsubj _ _ 31 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 conj _ _ 32 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 33 groupoid groupoid NOUN NN Number=Sing 31 attr _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 306 # sent_id = 1 # text = Using the reflection of the category $ C $ of compact 0 - dimensional topological spaces into the category of Stone spaces we introduce a concept of a fibration in $ C $ . 1 Using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 advcl _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 reflection reflection NOUN NN Number=Sing 1 dobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 category category NOUN NN Number=Sing 4 pobj _ _ 7 $ C $ $ c $ SYM $ _ 6 appos _ _ 8 of of ADP IN _ 7 prep _ _ 9 compact compact ADJ JJ Degree=Pos 12 amod _ _ 10 0 0 NUM CD NumType=Card 9 dep _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 dimensional dimensional ADJ JJ Degree=Pos 14 amod _ _ 13 topological topological ADJ JJ Degree=Pos 14 amod _ _ 14 spaces space NOUN NNS Number=Plur 8 pobj _ _ 15 into into ADP IN _ 1 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 category category NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 Stone Stone PROPN NNP Number=Sing 20 compound _ _ 20 spaces space NOUN NNS Number=Plur 18 pobj _ _ 21 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 22 nsubj _ _ 22 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 23 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 24 concept concept NOUN NN Number=Sing 22 dobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 27 fibration fibration NOUN NN Number=Sing 25 pobj _ _ 28 in in ADP IN _ 27 prep _ _ 29 $ C $ $ c $ SYM $ _ 28 pobj _ _ 30 . . PUNCT . PunctType=Peri 22 punct _ SpaceAfter=No # sent_id = 2 # text = We show that: (i) effective descent morphisms in $ C $ are the same as the surjective fibrations; (ii) effective descent morphisms in $ C $ with respect to the fibrations are all surjections. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 13 mark _ SpaceAfter=No 4 : : PUNCT : _ 13 punct _ _ 5 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 10 punct _ SpaceAfter=No 6 i i NOUN NN Number=Sing 10 nmod _ SpaceAfter=No 7 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 10 punct _ _ 8 effective effective ADJ JJ Degree=Pos 10 amod _ _ 9 descent descent NOUN NN Number=Sing 10 compound _ _ 10 morphisms morphism NOUN NNS Number=Plur 13 nsubj _ _ 11 in in ADP IN _ 10 prep _ _ 12 $ C $ $ c $ SYM $ _ 11 pobj _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 same same ADJ JJ Degree=Pos 13 attr _ _ 16 as as ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 surjective surjective ADJ JJ Degree=Pos 19 amod _ _ 19 fibrations fibration NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 20 ; ; PUNCT : _ 13 punct _ _ 21 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 26 punct _ SpaceAfter=No 22 ii ii PROPN NNP Number=Sing 26 dep _ SpaceAfter=No 23 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 26 punct _ _ 24 effective effective ADJ JJ Degree=Pos 26 amod _ _ 25 descent descent NOUN NN Number=Sing 26 compound _ _ 26 morphisms morphism NOUN NNS Number=Plur 34 nsubj _ _ 27 in in ADP IN _ 26 prep _ _ 28 $ C $ $ c $ SYM $ _ 27 pobj _ _ 29 with with ADP IN _ 26 prep _ _ 30 respect respect NOUN NN Number=Sing 29 pobj _ _ 31 to to ADP IN _ 30 prep _ _ 32 the the DET DT Definite=Def|PronType=Art 33 det _ _ 33 fibrations fibration NOUN NNS Number=Plur 31 pobj _ _ 34 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 conj _ _ 35 all all PRON DT _ 34 advmod _ _ 36 surjections surjection NOUN NNS Number=Plur 34 attr _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 307 # sent_id = 1 # text = Two propositions in the author's article are not correct. 1 Two two NUM CD NumType=Card 2 nummod _ _ 2 propositions proposition NOUN NNS Number=Plur 8 nsubj _ _ 3 in in ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 author author NOUN NN Number=Sing 7 poss _ SpaceAfter=No 6 's 's PART POS _ 5 case _ _ 7 article article NOUN NN Number=Sing 3 pobj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 not not PART RB Polarity=Neg 8 neg _ _ 10 correct correct ADJ JJ Degree=Pos 8 acomp _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 2 # text = We show that their use can be avoided and all remaining results remain correct. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 8 mark _ _ 4 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 5 poss _ _ 5 use use NOUN NN Number=Sing 8 nsubjpass _ _ 6 can can AUX MD VerbForm=Fin 8 aux _ _ 7 be be AUX VB VerbForm=Inf 8 auxpass _ _ 8 avoided avoid VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 all all DET DT _ 12 det _ _ 11 remaining remain VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 amod _ _ 12 results result NOUN NNS Number=Plur 13 nsubj _ _ 13 remain remain VERB VBP Tense=Pres|VerbForm=Fin 8 conj _ _ 14 correct correct ADJ JJ Degree=Pos 13 acomp _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = See note on page 24. 1 See see VERB VB VerbForm=Inf 0 ROOT _ _ 2 note note NOUN NN Number=Sing 1 dobj _ _ 3 on on ADP IN _ 1 prep _ _ 4 page page NOUN NN Number=Sing 3 pobj _ _ 5 24 24 NUM CD NumType=Card 4 nummod _ SpaceAfter=No 6 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # doc_id = 308 # sent_id = 1 # text = Let $ X $ and $ A $ be sets and $ alpha:Xto A $ a map between them. 1 Let let VERB VB VerbForm=Inf 0 ROOT _ _ 2 $ X $ $ x $ SYM $ _ 5 nsubj _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 $ A $ $ a $ SYM $ _ 2 conj _ _ 5 be be AUX VB VerbForm=Inf 1 ccomp _ _ 6 sets set NOUN NNS Number=Plur 5 attr _ _ 7 and and CCONJ CC ConjType=Cmp 5 cc _ _ 8 $ alpha:Xto A $ $ alpha:xto a $ SYM $ _ 5 nmod _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 map map NOUN NN Number=Sing 5 attr _ _ 11 between between ADP IN _ 10 prep _ _ 12 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 11 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = We call a map $ mu:Xtimes Xtimes Xto A $ an approximate Maltsev operation with approximation $ alpha $ , if it satisfies $ mu(x, y, y) = alpha(x) = mu(y, y, x) $ for all $ x, yin X $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 call call VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 map map NOUN NN Number=Sing 2 dobj _ _ 5 $ mu:Xtimes Xtimes Xto A $ $ mu:xtimes xtimes xto a $ SYM $ _ 9 nummod _ _ 6 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 7 approximate approximate ADJ JJ Degree=Pos 9 amod _ _ 8 Maltsev Maltsev PROPN NNP Number=Sing 9 compound _ _ 9 operation operation NOUN NN Number=Sing 2 dobj _ _ 10 with with ADP IN _ 2 prep _ _ 11 approximation approximation NOUN NN Number=Sing 10 pobj _ _ 12 $ alpha $ $ alpha $ SYM $ _ 2 oprd _ _ 13 , , PUNCT , PunctType=Comm 2 punct _ _ 14 if if SCONJ IN _ 16 mark _ _ 15 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 16 nsubj _ _ 16 satisfies satisfy VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 advcl _ _ 17 $ mu(x, y, y) = alpha(x) = mu(y, y, x) $ $ mu(x, y, y) = alpha(x) = mu(y, y, x) $ SYM $ _ 16 dobj _ _ 18 for for ADP IN _ 17 prep _ _ 19 all all DET DT _ 20 det _ _ 20 $ x, yin X $ $ x, yin x $ SYM $ _ 18 pobj _ _ 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Note that if $ A = X $ and the approximation $ alpha $ is an identity map, then $ mu $ becomes an ordinary Maltsev operation. 1 Note note VERB VB VerbForm=Inf 16 advcl _ _ 2 that that SCONJ IN _ 9 mark _ _ 3 if if SCONJ IN _ 4 mark _ _ 4 $ A = X $ $ a = x $ SYM $ _ 9 nsubj _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 approximation approximation NOUN NN Number=Sing 4 conj _ _ 8 $ alpha $ $ alpha $ SYM $ _ 4 dobj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 1 ccomp _ _ 10 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 11 identity identity NOUN NN Number=Sing 12 compound _ _ 12 map map NOUN NN Number=Sing 9 attr _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 16 punct _ _ 14 then then ADV RB PronType=Dem 16 advmod _ _ 15 $ mu $ $ mu $ SYM $ _ 16 nsubj _ _ 16 becomes become VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 17 an an DET DT Definite=Ind|PronType=Art 20 det _ _ 18 ordinary ordinary ADJ JJ Degree=Pos 20 amod _ _ 19 Maltsev Maltsev PROPN NNP Number=Sing 20 compound _ _ 20 operation operation NOUN NN Number=Sing 16 attr _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 4 # text = We prove the following two characterization theorems: a category $ mathbb{X} $ is a Maltsev category if and only if in the functor category $ mathbf{Set}^{mathbb{X}^mathrm{op}timesmathbb{X}} $ there exists an internal approximate Maltsev operation $ mathrm{hom}_{mathbb{X}}times mathrm{hom}_{mathbb{X}}times mathrm{hom}_{mathbb{X}}rightarrow A $ whose approximation $ alpha $ satisfies a suitable condition; a regular category $ mathbb{X} $ with finite coproducts is a Maltsev category, if and only if in the functor category $ mathbb{X}^mathbb{X} $ there exists an internal approximate Maltsev co - operation $ Arightarrow 1_mathbb{X}+1_mathbb{X}+1_mathbb{X} $ whose approximation $ alpha $ is a natural transformation with every component a regular epimorphism in $ mathbb{X} $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 48 ccomp _ _ 3 the the DET DT Definite=Def|PronType=Art 7 det _ _ 4 following follow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 amod _ _ 5 two two NUM CD NumType=Card 6 nummod _ _ 6 characterization characterization NOUN NN Number=Sing 7 compound _ _ 7 theorems theorem NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 8 : : PUNCT : _ 7 punct _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 category category NOUN NN Number=Sing 12 nsubj _ _ 11 $ mathbb{X} $ $ mathbb{x} $ SYM $ _ 10 appos _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 Maltsev Maltsev PROPN NNP Number=Sing 15 compound _ _ 15 category category NOUN NN Number=Sing 12 attr _ _ 16 if if SCONJ IN _ 26 mark _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 only only ADV RB _ 20 advmod _ _ 19 if if SCONJ IN _ 20 mark _ _ 20 in in ADP IN _ 26 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 23 det _ _ 22 functor functor NOUN NN Number=Sing 23 compound _ _ 23 category category NOUN NN Number=Sing 20 pobj _ _ 24 $ mathbf{Set}^{mathbb{X}^mathrm{op}timesmathbb{X}} $ $ mathbf{set}^{mathbb{x}^mathrm{op}timesmathbb{x}} $ SYM $ _ 20 dep _ _ 25 there there PRON EX _ 26 expl _ _ 26 exists exist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 advcl _ _ 27 an an DET DT Definite=Ind|PronType=Art 31 det _ _ 28 internal internal ADJ JJ Degree=Pos 31 amod _ _ 29 approximate approximate ADJ JJ Degree=Pos 30 amod _ _ 30 Maltsev Maltsev PROPN NNP Number=Sing 31 compound _ _ 31 operation operation NOUN NN Number=Sing 26 dobj _ _ 32 $ mathrm{hom}_{mathbb{X}}times mathrm{hom}_{mathbb{X}}times mathrm{hom}_{mathbb{X}}rightarrow A $ $ mathrm{hom}_{mathbb{x}}times mathrm{hom}_{mathbb{x}}times mathrm{hom}_{mathbb{x}}rightarrow a $ SYM $ _ 31 prep _ _ 33 whose whose DET WP$ Poss=Yes 34 poss _ _ 34 approximation approximation NOUN NN Number=Sing 36 nsubj _ _ 35 $ alpha $ $ alpha $ SYM $ _ 36 nummod _ _ 36 satisfies satisfie NOUN NNS Number=Plur 32 relcl _ _ 37 a a DET DT Definite=Ind|PronType=Art 39 det _ _ 38 suitable suitable ADJ JJ Degree=Pos 39 amod _ _ 39 condition condition NOUN NN Number=Sing 26 dobj _ SpaceAfter=No 40 ; ; PUNCT : _ 48 punct _ _ 41 a a DET DT Definite=Ind|PronType=Art 43 det _ _ 42 regular regular ADJ JJ Degree=Pos 43 amod _ _ 43 category category NOUN NN Number=Sing 48 nsubj _ _ 44 $ mathbb{X} $ $ mathbb{x} $ SYM $ _ 43 appos _ _ 45 with with ADP IN _ 43 prep _ _ 46 finite finite ADJ JJ Degree=Pos 47 amod _ _ 47 coproducts coproduct NOUN NNS Number=Plur 45 pobj _ _ 48 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 75 ccomp _ _ 49 a a DET DT Definite=Ind|PronType=Art 51 det _ _ 50 Maltsev Maltsev PROPN NNP Number=Sing 51 compound _ _ 51 category category NOUN NN Number=Sing 48 attr _ SpaceAfter=No 52 , , PUNCT , PunctType=Comm 48 punct _ _ 53 if if SCONJ IN _ 63 mark _ _ 54 and and CCONJ CC ConjType=Cmp 53 cc _ _ 55 only only ADV RB _ 63 advmod _ _ 56 if if SCONJ IN _ 63 mark _ _ 57 in in ADP IN _ 56 prep _ _ 58 the the DET DT Definite=Def|PronType=Art 60 det _ _ 59 functor functor NOUN NN Number=Sing 60 compound _ _ 60 category category NOUN NN Number=Sing 57 pobj _ _ 61 $ mathbb{X}^mathbb{X} $ $ mathbb{x}^mathbb{x} $ SYM $ _ 56 nmod _ _ 62 there there PRON EX _ 63 expl _ _ 63 exists exist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 75 advcl _ _ 64 an an DET DT Definite=Ind|PronType=Art 68 det _ _ 65 internal internal ADJ JJ Degree=Pos 68 amod _ _ 66 approximate approximate ADJ JJ Degree=Pos 68 amod _ _ 67 Maltsev Maltsev PROPN NNP Number=Sing 68 compound _ _ 68 co co NOUN NN Number=Sing 63 dobj _ _ 69 - - NOUN NN Number=Sing 63 dobj _ _ 70 operation operation NOUN NN Number=Sing 63 dobj _ _ 71 $ Arightarrow 1_mathbb{X}+1_mathbb{X}+1_mathbb{X} $ $ arightarrow 1_mathbb{x}+1_mathbb{x}+1_mathbb{x} $ SYM $ _ 75 nsubj _ _ 72 whose whose DET WP$ Poss=Yes 73 poss _ _ 73 approximation approximation NOUN NN Number=Sing 74 nsubj _ _ 74 $ alpha $ $ alpha $ SYM $ _ 75 nsubj _ _ 75 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 76 a a DET DT Definite=Ind|PronType=Art 78 det _ _ 77 natural natural ADJ JJ Degree=Pos 78 amod _ _ 78 transformation transformation NOUN NN Number=Sing 75 attr _ _ 79 with with ADP IN _ 78 prep _ _ 80 every every DET DT _ 81 det _ _ 81 component component NOUN NN Number=Sing 79 pobj _ _ 82 a a DET DT Definite=Ind|PronType=Art 84 det _ _ 83 regular regular ADJ JJ Degree=Pos 84 amod _ _ 84 epimorphism epimorphism NOUN NN Number=Sing 81 appos _ _ 85 in in ADP IN _ 81 prep _ _ 86 $ mathbb{X} $ $ mathbb{x} $ SYM $ _ 85 pobj _ _ 87 . . PUNCT . PunctType=Peri 75 punct _ SpaceAfter=No # sent_id = 5 # text = Note that in both of these characterization theorems, if require further the approximation $ alpha $ to be an identity morphism, then the conditions there involving $ alpha $ become equivalent to $ mathbb{X} $ being a naturally Maltsev category. 1 Note note VERB VB VerbForm=Inf 28 advcl _ _ 2 that that SCONJ IN _ 11 mark _ _ 3 in in ADP IN _ 11 prep _ _ 4 both both PRON DT _ 3 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 these these DET DT Number=Plur|PronType=Dem 7 det _ _ 7 characterization characterization NOUN NN Number=Sing 8 compound _ _ 8 theorems theorem NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 11 punct _ _ 10 if if SCONJ IN _ 11 mark _ _ 11 require require VERB VB VerbForm=Inf 1 ccomp _ _ 12 further far ADV RB _ 11 advmod _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 approximation approximation NOUN NN Number=Sing 11 dobj _ _ 15 $ alpha $ $ alpha $ SYM $ _ 14 appos _ _ 16 to to PART TO _ 17 aux _ _ 17 be be AUX VB VerbForm=Inf 11 xcomp _ _ 18 an an DET DT Definite=Ind|PronType=Art 20 det _ _ 19 identity identity NOUN NN Number=Sing 20 compound _ _ 20 morphism morphism NOUN NN Number=Sing 17 attr _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 28 punct _ _ 22 then then ADV RB PronType=Dem 28 advmod _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 conditions condition NOUN NNS Number=Plur 28 nsubj _ _ 25 there there ADV RB PronType=Dem 24 advmod _ _ 26 involving involve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 24 acl _ _ 27 $ alpha $ $ alpha $ SYM $ _ 26 dobj _ _ 28 become become VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 29 equivalent equivalent ADJ JJ Degree=Pos 28 acomp _ _ 30 to to ADP IN _ 29 prep _ _ 31 $ mathbb{X} $ $ mathbb{x} $ SYM $ _ 30 pobj _ _ 32 being be AUX VBG VerbForm=Ger 28 advcl _ _ 33 a a DET DT Definite=Ind|PronType=Art 36 det _ _ 34 naturally naturally ADV RB _ 35 advmod _ _ 35 Maltsev Maltsev PROPN NNP Number=Sing 36 amod _ _ 36 category category NOUN NN Number=Sing 32 attr _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 28 punct _ SpaceAfter=No # doc_id = 309 # sent_id = 1 # text = We show how to formulate the notion of locally cartesian closed category without chosen pullbacks, by the use of Makkai's theory of anafunctors. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 how how SCONJ WRB _ 5 advmod _ _ 4 to to PART TO _ 5 aux _ _ 5 formulate formulate VERB VB VerbForm=Inf 2 xcomp _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 notion notion NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 locally locally ADV RB _ 10 advmod _ _ 10 cartesian cartesian ADJ JJ Degree=Pos 12 amod _ _ 11 closed closed ADJ JJ Degree=Pos 12 amod _ _ 12 category category NOUN NN Number=Sing 8 pobj _ _ 13 without without ADP IN _ 5 prep _ _ 14 chosen choose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 amod _ _ 15 pullbacks pullback NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 2 punct _ _ 17 by by ADP IN _ 2 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 use use NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 Makkai Makkai PROPN NNP Number=Sing 23 poss _ SpaceAfter=No 22 's 's PART POS _ 21 case _ _ 23 theory theory NOUN NN Number=Sing 20 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 anafunctors anafunctor NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 310 # sent_id = 1 # text = Notions and techniques of enriched category theory can be used to study topological structures, like metric spaces, topological spaces and approach spaces, in the context of topological theories. 1 Notions notion NOUN NNS Number=Plur 10 nsubjpass _ _ 2 and and CCONJ CC ConjType=Cmp 1 cc _ _ 3 techniques technique NOUN NNS Number=Plur 1 conj _ _ 4 of of ADP IN _ 3 prep _ _ 5 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 amod _ _ 6 category category NOUN NN Number=Sing 7 compound _ _ 7 theory theory NOUN NN Number=Sing 4 pobj _ _ 8 can can AUX MD VerbForm=Fin 10 aux _ _ 9 be be AUX VB VerbForm=Inf 10 auxpass _ _ 10 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 11 to to PART TO _ 12 aux _ _ 12 study study VERB VB VerbForm=Inf 10 xcomp _ _ 13 topological topological ADJ JJ Degree=Pos 14 amod _ _ 14 structures structure NOUN NNS Number=Plur 12 dobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 like like ADP IN _ 12 prep _ _ 17 metric metric ADJ JJ Degree=Pos 18 amod _ _ 18 spaces space NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 topological topological ADJ JJ Degree=Pos 21 amod _ _ 21 spaces space NOUN NNS Number=Plur 18 conj _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 approach approach NOUN NN Number=Sing 24 compound _ _ 24 spaces space NOUN NNS Number=Plur 21 conj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 12 punct _ _ 26 in in ADP IN _ 12 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 context context NOUN NN Number=Sing 26 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 topological topological ADJ JJ Degree=Pos 31 amod _ _ 31 theories theory NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = Recently, the construction of a Yoneda embedding allowed to identify injectivity of spaces as cocompleteness and to show monadicity of the category of injective spaces and left adjoints over $ SET $ . 1 Recently recently ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 construction construction NOUN NN Number=Sing 0 ROOT _ _ 5 of of ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 Yoneda Yoneda PROPN NNP Number=Sing 8 compound _ _ 8 embedding embedding NOUN NN Number=Sing 5 pobj _ _ 9 allowed allow VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 acl _ _ 10 to to PART TO _ 11 aux _ _ 11 identify identify VERB VB VerbForm=Inf 9 xcomp _ _ 12 injectivity injectivity NOUN NN Number=Sing 11 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 spaces space NOUN NNS Number=Plur 13 pobj _ _ 15 as as ADP IN _ 11 prep _ _ 16 cocompleteness cocompleteness NOUN NN Number=Sing 15 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 11 cc _ _ 18 to to PART TO _ 19 aux _ _ 19 show show VERB VB VerbForm=Inf 11 conj _ _ 20 monadicity monadicity NOUN NN Number=Sing 19 dobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 category category NOUN NN Number=Sing 21 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 injective injective ADJ JJ Degree=Pos 26 amod _ _ 26 spaces space NOUN NNS Number=Plur 24 pobj _ _ 27 and and CCONJ CC ConjType=Cmp 19 cc _ _ 28 left leave VERB VBD Tense=Past|VerbForm=Fin 19 conj _ _ 29 adjoints adjoint NOUN NNS Number=Plur 28 dobj _ _ 30 over over ADP IN _ 29 prep _ _ 31 $ SET $ $ set $ SYM $ _ 30 pobj _ _ 32 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = In this paper we generalise these results, studying cocompleteness with respect to a given class of distributors. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 generalise generalise VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 these these DET DT Number=Plur|PronType=Dem 7 det _ _ 7 results result NOUN NNS Number=Plur 5 dobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 5 punct _ _ 9 studying study VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 advcl _ _ 10 cocompleteness cocompleteness NOUN NN Number=Sing 9 dobj _ _ 11 with with ADP IN _ 9 prep _ _ 12 respect respect NOUN NN Number=Sing 11 pobj _ _ 13 to to ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 16 class class NOUN NN Number=Sing 13 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 distributors distributor NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = We show in particular that the description of several semantic domains presented in another paper can be translated into the $ V $ - enriched setting. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 in in ADP IN _ 2 prep _ _ 4 particular particular ADJ JJ Degree=Pos 3 amod _ _ 5 that that SCONJ IN _ 18 mark _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 description description NOUN NN Number=Sing 18 nsubjpass _ _ 8 of of ADP IN _ 7 prep _ _ 9 several several ADJ JJ Degree=Pos 11 amod _ _ 10 semantic semantic ADJ JJ Degree=Pos 11 amod _ _ 11 domains domain NOUN NNS Number=Plur 8 pobj _ _ 12 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 acl _ _ 13 in in ADP IN _ 12 prep _ _ 14 another another DET DT _ 15 det _ _ 15 paper paper NOUN NN Number=Sing 13 pobj _ _ 16 can can AUX MD VerbForm=Fin 18 aux _ _ 17 be be AUX VB VerbForm=Inf 18 auxpass _ _ 18 translated translate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 19 into into ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 24 det _ _ 21 $ V $ $ v $ SYM $ _ 23 advmod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 24 setting setting NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 311 # sent_id = 1 # text = For accessible set - valued functors it is well known that weak preservation of limits is equivalent to representability, and weak preservation of connected limits to familial representability. 1 For for ADP IN _ 10 prep _ _ 2 accessible accessible ADJ JJ Degree=Pos 6 amod _ _ 3 set set NOUN NN Number=Sing 5 npadvmod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 amod _ _ 6 functors functor NOUN NNS Number=Plur 1 pobj _ _ 7 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 8 nsubj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 9 well well ADV RB Degree=Pos 10 advmod _ _ 10 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 11 that that SCONJ IN _ 16 mark _ _ 12 weak weak ADJ JJ Degree=Pos 13 amod _ _ 13 preservation preservation NOUN NN Number=Sing 16 nsubj _ _ 14 of of ADP IN _ 13 prep _ _ 15 limits limit NOUN NNS Number=Plur 14 pobj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 ccomp _ _ 17 equivalent equivalent ADJ JJ Degree=Pos 16 acomp _ _ 18 to to PART TO _ 19 aux _ _ 19 representability representability VERB VB VerbForm=Inf 17 xcomp _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 16 punct _ _ 21 and and CCONJ CC ConjType=Cmp 16 cc _ _ 22 weak weak ADJ JJ Degree=Pos 23 amod _ _ 23 preservation preservation NOUN NN Number=Sing 16 conj _ _ 24 of of ADP IN _ 23 prep _ _ 25 connected connected ADJ JJ Degree=Pos 26 amod _ _ 26 limits limit NOUN NNS Number=Plur 24 pobj _ _ 27 to to ADP IN _ 23 prep _ _ 28 familial familial ADJ JJ Degree=Pos 29 amod _ _ 29 representability representability NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = In contrast, preservation of weak wide pullbacks is equivalent to being a coproduct of quotients of $ hom $ - functors modulo groups of automorphisms. 1 In in ADP IN _ 9 prep _ _ 2 contrast contrast NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 9 punct _ _ 4 preservation preservation NOUN NN Number=Sing 9 nsubj _ _ 5 of of ADP IN _ 4 prep _ _ 6 weak weak ADJ JJ Degree=Pos 8 amod _ _ 7 wide wide ADJ JJ Degree=Pos 8 amod _ _ 8 pullbacks pullback NOUN NNS Number=Plur 5 pobj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 equivalent equivalent ADJ JJ Degree=Pos 9 acomp _ _ 11 to to ADP IN _ 10 prep _ _ 12 being be AUX VBG VerbForm=Ger 11 pcomp _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 coproduct coproduct NOUN NN Number=Sing 12 attr _ _ 15 of of ADP IN _ 14 prep _ _ 16 quotients quotient NOUN NNS Number=Plur 15 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 $ hom $ $ hom $ SYM $ _ 20 nummod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 functors functor NOUN NNS Number=Plur 22 compound _ _ 21 modulo modulo NOUN NN Number=Sing 22 compound _ _ 22 groups group NOUN NNS Number=Plur 17 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 automorphisms automorphism NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 3 # text = For finitary functors this was proved by Joyal who called these functors analytic. 1 For for ADP IN _ 6 prep _ _ 2 finitary finitary ADJ JJ Degree=Pos 3 amod _ _ 3 functors functor NOUN NNS Number=Plur 1 pobj _ _ 4 this this PRON DT Number=Sing|PronType=Dem 6 nsubjpass _ _ 5 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 6 auxpass _ _ 6 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 by by ADP IN _ 6 agent _ _ 8 Joyal Joyal PROPN NNP Number=Sing 7 pobj _ _ 9 who who PRON WP _ 10 nsubj _ _ 10 called call VERB VBD Tense=Past|VerbForm=Fin 4 relcl _ _ 11 these these DET DT Number=Plur|PronType=Dem 12 det _ _ 12 functors functor NOUN NNS Number=Plur 10 dobj _ _ 13 analytic analytic ADJ JJ Degree=Pos 10 oprd _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = We introduce a generalization of Joyal's concept from endofunctors of $ Set $ to endofunctors of a symmetric monoidal category. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 generalization generalization NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 Joyal Joyal PROPN NNP Number=Sing 8 poss _ SpaceAfter=No 7 's 's PART POS _ 6 case _ _ 8 concept concept NOUN NN Number=Sing 5 pobj _ _ 9 from from ADP IN _ 8 prep _ _ 10 endofunctors endofunctor NOUN NNS Number=Plur 9 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 $ Set $ $ set $ SYM $ _ 11 pobj _ _ 13 to to ADP IN _ 2 prep _ _ 14 endofunctors endofunctor NOUN NNS Number=Plur 13 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 17 symmetric symmetric ADJ JJ Degree=Pos 19 amod _ _ 18 monoidal monoidal ADJ JJ Degree=Pos 19 amod _ _ 19 category category NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 312 # sent_id = 1 # text = We present sufficient conditions under which effective descent morphisms in a quasivariety of universal algebras are the same as regular epimorphisms and examples for which they are the same as regular epimorphisms satisfying projectivity. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 sufficient sufficient ADJ JJ Degree=Pos 4 amod _ _ 4 conditions condition NOUN NNS Number=Plur 2 dobj _ _ 5 under under ADP IN _ 9 prep _ _ 6 which which PRON WDT _ 5 pobj _ _ 7 effective effective ADJ JJ Degree=Pos 9 amod _ _ 8 descent descent NOUN NN Number=Sing 9 compound _ _ 9 morphisms morphism NOUN NNS Number=Plur 4 relcl _ _ 10 in in ADP IN _ 2 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 quasivariety quasivariety NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 universal universal ADJ JJ Degree=Pos 15 amod _ _ 15 algebras algebra NOUN NNS Number=Plur 13 pobj _ _ 16 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 conj _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 same same ADJ JJ Degree=Pos 16 attr _ _ 19 as as ADP IN _ 18 prep _ _ 20 regular regular ADJ JJ Degree=Pos 21 amod _ _ 21 epimorphisms epimorphism NOUN NNS Number=Plur 19 pobj _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 examples example NOUN NNS Number=Plur 21 conj _ _ 24 for for ADP IN _ 27 prep _ _ 25 which which PRON WDT _ 24 pobj _ _ 26 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 27 nsubj _ _ 27 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 21 relcl _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 same same ADJ JJ Degree=Pos 27 attr _ _ 30 as as ADP IN _ 29 prep _ _ 31 regular regular ADJ JJ Degree=Pos 32 amod _ _ 32 epimorphisms epimorphism NOUN NNS Number=Plur 33 nsubj _ _ 33 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 30 pcomp _ _ 34 projectivity projectivity NOUN NN Number=Sing 33 dobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 313 # sent_id = 1 # text = Recent investigations of lax algebras—in generalization of Barr's relational algebras—make an essential use of lax extensions of monad functors on $ Set $ to the category $ Rel(V) $ of sets and $ V $ - relations (where $ V $ is a unital quantale). 1 Recent recent ADJ JJ Degree=Pos 2 amod _ _ 2 investigations investigation NOUN NNS Number=Plur 15 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 lax lax PROPN NNP Number=Sing 5 amod _ _ 5 algebras algebra NOUN NNS Number=Plur 3 pobj _ SpaceAfter=No 6 — — PUNCT : _ 2 punct _ SpaceAfter=No 7 in in ADP IN _ 2 prep _ _ 8 generalization generalization NOUN NN Number=Sing 7 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 Barr Barr PROPN NNP Number=Sing 13 poss _ SpaceAfter=No 11 's 's PART POS _ 10 case _ _ 12 relational relational ADJ JJ Degree=Pos 13 amod _ _ 13 algebras algebra NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 14 — — PUNCT : _ 2 punct _ SpaceAfter=No 15 make make VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 16 an an DET DT Definite=Ind|PronType=Art 18 det _ _ 17 essential essential ADJ JJ Degree=Pos 18 amod _ _ 18 use use NOUN NN Number=Sing 15 dobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 lax lax ADJ JJ Degree=Pos 21 amod _ _ 21 extensions extension NOUN NNS Number=Plur 19 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 monad monad NOUN NNS Number=Plur 24 compound _ _ 24 functors functor NOUN NNS Number=Plur 22 pobj _ _ 25 on on ADP IN _ 24 prep _ _ 26 $ Set $ $ set $ SYM $ _ 25 pobj _ _ 27 to to ADP IN _ 15 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 category category NOUN NN Number=Sing 27 pobj _ _ 30 $ Rel(V) $ $ rel(v) $ SYM $ _ 29 appos _ _ 31 of of ADP IN _ 30 prep _ _ 32 sets set NOUN NNS Number=Plur 31 pobj _ _ 33 and and CCONJ CC ConjType=Cmp 30 cc _ _ 34 $ V $ $ v $ SYM $ _ 36 compound _ _ 35 - - PUNCT HYPH PunctType=Dash 36 punct _ _ 36 relations relation NOUN NNS Number=Plur 30 conj _ _ 37 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 40 punct _ SpaceAfter=No 38 where where SCONJ WRB _ 39 advmod _ _ 39 $ V $ $ v $ SYM $ _ 40 nsubj _ _ 40 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 ccomp _ _ 41 a a DET DT Definite=Ind|PronType=Art 43 det _ _ 42 unital unital ADJ JJ Degree=Pos 43 amod _ _ 43 quantale quantale NOUN NN Number=Sing 40 attr _ SpaceAfter=No 44 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 40 punct _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 2 # text = For a given monad there may be many such lax extensions, and different constructions appear in the literature. 1 For for ADP IN _ 7 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 amod _ _ 4 monad monad NOUN NNS Number=Plur 1 pobj _ _ 5 there there PRON EX _ 7 expl _ _ 6 may may AUX MD VerbForm=Fin 7 aux _ _ 7 be be AUX VB VerbForm=Inf 0 ROOT _ _ 8 many many ADJ JJ Degree=Pos 11 amod _ _ 9 such such ADJ JJ Degree=Pos 11 amod _ _ 10 lax lax ADJ JJ Degree=Pos 11 amod _ _ 11 extensions extension NOUN NNS Number=Plur 7 attr _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 7 punct _ _ 13 and and CCONJ CC ConjType=Cmp 7 cc _ _ 14 different different ADJ JJ Degree=Pos 15 amod _ _ 15 constructions construction NOUN NNS Number=Plur 16 nsubj _ _ 16 appear appear VERB VBP Tense=Pres|VerbForm=Fin 7 conj _ _ 17 in in ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 literature literature NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 3 # text = The aim of this article is to shed a unifying light on these lax extensions, and present a symptomatic situation in which distinct monads yield isomorphic categories of lax algebras. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 aim aim NOUN NN Number=Sing 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 article article NOUN NN Number=Sing 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 to to PART TO _ 8 aux _ _ 8 shed shed VERB VB VerbForm=Inf 6 xcomp _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 unifying unifying ADJ JJ Degree=Pos 11 amod _ _ 11 light light NOUN NN Number=Sing 8 dobj _ _ 12 on on ADP IN _ 8 prep _ _ 13 these these DET DT Number=Plur|PronType=Dem 15 det _ _ 14 lax lax ADJ JJ Degree=Pos 15 amod _ _ 15 extensions extension NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 8 punct _ _ 17 and and CCONJ CC ConjType=Cmp 8 cc _ _ 18 present present VERB VB VerbForm=Inf 8 conj _ _ 19 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 20 symptomatic symptomatic ADJ JJ Degree=Pos 21 amod _ _ 21 situation situation NOUN NN Number=Sing 18 dobj _ _ 22 in in ADP IN _ 26 prep _ _ 23 which which PRON WDT _ 22 pobj _ _ 24 distinct distinct ADJ JJ Degree=Pos 25 amod _ _ 25 monads monad NOUN NNS Number=Plur 26 nsubj _ _ 26 yield yield VERB VBP Tense=Pres|VerbForm=Fin 21 relcl _ _ 27 isomorphic isomorphic ADJ JJ Degree=Pos 28 amod _ _ 28 categories category NOUN NNS Number=Plur 26 dobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 lax lax ADJ JJ Degree=Pos 31 amod _ _ 31 algebras algebra NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 314 # sent_id = 1 # text = We propose a convenient category for directed homotopy consisting of "directed'' topological spaces generated by "directed'' cubes. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 propose propose VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 convenient convenient ADJ JJ Degree=Pos 5 amod _ _ 5 category category NOUN NN Number=Sing 2 dobj _ _ 6 for for ADP IN _ 5 prep _ _ 7 directed direct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 8 homotopy homotopy NOUN NN Number=Sing 6 pobj _ _ 9 consisting consist VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 acl _ _ 10 of of ADP IN _ 9 prep _ _ 11 " " PUNCT `` PunctSide=Ini|PunctType=Quot 15 punct _ SpaceAfter=No 12 directed direct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 amod _ SpaceAfter=No 13 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 15 punct _ _ 14 topological topological ADJ JJ Degree=Pos 15 amod _ _ 15 spaces space NOUN NNS Number=Plur 10 pobj _ _ 16 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 acl _ _ 17 by by ADP IN _ 16 agent _ _ 18 " " PUNCT `` PunctSide=Ini|PunctType=Quot 21 punct _ SpaceAfter=No 19 directed direct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 amod _ SpaceAfter=No 20 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 21 punct _ _ 21 cubes cube NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Its main advantage is that, like the category of topological spaces generated by simplices suggested by Smith, it is locally presentable. 1 Its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 3 poss _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 advantage advantage NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 21 mark _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 21 punct _ _ 7 like like ADP IN _ 21 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 category category NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 topological topological ADJ JJ Degree=Pos 12 amod _ _ 12 spaces space NOUN NNS Number=Plur 10 pobj _ _ 13 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 acl _ _ 14 by by ADP IN _ 13 agent _ _ 15 simplices simplice NOUN NNS Number=Plur 14 pobj _ _ 16 suggested suggest VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 acl _ _ 17 by by ADP IN _ 16 agent _ _ 18 Smith Smith PROPN NNP Number=Sing 17 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 21 punct _ _ 20 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 21 nsubj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 22 locally locally ADV RB _ 23 advmod _ _ 23 presentable presentable ADJ JJ Degree=Pos 21 acomp _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 315 # sent_id = 1 # text = We introduce a notion of weakly Maltsev category, and show that: (i) every internal reflexive graph in a weakly Maltsev category admits at most one multiplicative graph structure in the sense of Janelidze, and such a structure always makes it an internal category; (ii) (unlike the special case of Maltsev categories) there are weakly Maltsev categories in which not every internal category is an internal groupoid. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 notion notion NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 weakly weakly ADJ JJ Degree=Pos 8 amod _ _ 7 Maltsev Maltsev PROPN NNP Number=Sing 8 compound _ _ 8 category category NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 2 punct _ _ 10 and and CCONJ CC ConjType=Cmp 2 cc _ _ 11 show show VERB VB VerbForm=Inf 2 conj _ _ 12 that that SCONJ IN _ 26 mark _ SpaceAfter=No 13 : : PUNCT : _ 26 punct _ _ 14 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 15 punct _ SpaceAfter=No 15 i i NOUN NN Number=Sing 26 dep _ SpaceAfter=No 16 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 15 punct _ _ 17 every every DET DT _ 20 det _ _ 18 internal internal ADJ JJ Degree=Pos 20 amod _ _ 19 reflexive reflexive ADJ JJ Degree=Pos 20 amod _ _ 20 graph graph NOUN NN Number=Sing 26 nsubj _ _ 21 in in ADP IN _ 20 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 23 weakly weakly ADJ JJ Degree=Pos 25 amod _ _ 24 Maltsev Maltsev PROPN NNP Number=Sing 25 compound _ _ 25 category category NOUN NN Number=Sing 21 pobj _ _ 26 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 ccomp _ _ 27 at at ADP IN _ 26 prep _ _ 28 most most ADV RBS Degree=Sup 29 advmod _ _ 29 one one NUM CD NumType=Card 32 nummod _ _ 30 multiplicative multiplicative ADJ JJ Degree=Pos 32 amod _ _ 31 graph graph NOUN NN Number=Sing 32 compound _ _ 32 structure structure NOUN NN Number=Sing 27 pobj _ _ 33 in in ADP IN _ 26 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 35 det _ _ 35 sense sense NOUN NN Number=Sing 33 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 Janelidze Janelidze PROPN NNP Number=Sing 36 pobj _ SpaceAfter=No 38 , , PUNCT , PunctType=Comm 26 punct _ _ 39 and and CCONJ CC ConjType=Cmp 26 cc _ _ 40 such such DET PDT _ 42 predet _ _ 41 a a DET DT Definite=Ind|PronType=Art 42 det _ _ 42 structure structure NOUN NN Number=Sing 44 nsubj _ _ 43 always always ADV RB _ 44 advmod _ _ 44 makes make VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 26 conj _ _ 45 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 48 nsubj _ _ 46 an an DET DT Definite=Ind|PronType=Art 48 det _ _ 47 internal internal ADJ JJ Degree=Pos 48 amod _ _ 48 category category NOUN NN Number=Sing 44 ccomp _ SpaceAfter=No 49 ; ; PUNCT : _ 26 punct _ _ 50 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 51 punct _ SpaceAfter=No 51 ii ii PROPN NNP Number=Sing 20 appos _ SpaceAfter=No 52 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 51 punct _ _ 53 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 63 punct _ SpaceAfter=No 54 unlike unlike ADP IN _ 63 prep _ _ 55 the the DET DT Definite=Def|PronType=Art 57 det _ _ 56 special special ADJ JJ Degree=Pos 57 amod _ _ 57 case case NOUN NN Number=Sing 54 pobj _ _ 58 of of ADP IN _ 57 prep _ _ 59 Maltsev Maltsev PROPN NNP Number=Sing 60 amod _ _ 60 categories category NOUN NNS Number=Plur 58 pobj _ SpaceAfter=No 61 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 63 punct _ _ 62 there there PRON EX _ 63 expl _ _ 63 are be VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 11 ccomp _ _ 64 weakly weakly ADJ JJ Degree=Pos 66 amod _ _ 65 Maltsev maltsev ADJ JJ Degree=Pos 66 amod _ _ 66 categories category NOUN NNS Number=Plur 63 attr _ _ 67 in in ADP IN _ 73 prep _ _ 68 which which PRON WDT _ 67 pobj _ _ 69 not not PART RB Polarity=Neg 70 neg _ _ 70 every every DET DT _ 72 det _ _ 71 internal internal ADJ JJ Degree=Pos 72 amod _ _ 72 category category NOUN NN Number=Sing 73 nsubj _ _ 73 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 66 relcl _ _ 74 an an DET DT Definite=Ind|PronType=Art 76 det _ _ 75 internal internal ADJ JJ Degree=Pos 76 amod _ _ 76 groupoid groupoid NOUN NN Number=Sing 73 attr _ SpaceAfter=No 77 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We also give a simplified characterization of internal groupoids among internal categories in this context. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 simplified simplified ADJ JJ Degree=Pos 6 amod _ _ 6 characterization characterization NOUN NN Number=Sing 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 internal internal ADJ JJ Degree=Pos 9 amod _ _ 9 groupoids groupoid NOUN NNS Number=Plur 7 pobj _ _ 10 among among ADP IN _ 6 prep _ _ 11 internal internal ADJ JJ Degree=Pos 12 amod _ _ 12 categories category NOUN NNS Number=Plur 10 pobj _ _ 13 in in ADP IN _ 6 prep _ _ 14 this this DET DT Number=Sing|PronType=Dem 15 det _ _ 15 context context NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 316 # sent_id = 1 # text = The theory of completion of $ T_0 $ objects in categories of affine objects over a given complete category developed by the second author is extended to the case of $ T_0 $ objects in categories of 2affine objects. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 theory theory NOUN NN Number=Sing 24 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 completion completion NOUN NN Number=Sing 3 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 $ T_0 $ $ t_0 $ SYM $ _ 7 nummod _ _ 7 objects object NOUN NNS Number=Plur 5 pobj _ _ 8 in in ADP IN _ 7 prep _ _ 9 categories category NOUN NNS Number=Plur 8 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 affine affine NOUN NN Number=Sing 12 compound _ _ 12 objects object VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 pobj _ _ 13 over over ADP IN _ 2 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 15 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 16 complete complete ADJ JJ Degree=Pos 17 amod _ _ 17 category category NOUN NN Number=Sing 13 pobj _ _ 18 developed develop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 acl _ _ 19 by by ADP IN _ 18 agent _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 second second ADJ JJ Degree=Pos 22 amod _ _ 22 author author NOUN NN Number=Sing 19 pobj _ _ 23 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 auxpass _ _ 24 extended extend VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 25 to to ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 case case NOUN NN Number=Sing 25 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 $ T_0 $ $ t_0 $ SYM $ _ 30 nummod _ _ 30 objects object NOUN NNS Number=Plur 28 pobj _ _ 31 in in ADP IN _ 30 prep _ _ 32 categories category NOUN NNS Number=Plur 31 pobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 2affine 2affine NUM CD NumType=Card 35 nummod _ _ 35 objects object NOUN NNS Number=Plur 33 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 24 punct _ SpaceAfter=No # sent_id = 2 # text = In the paper the case of the category $ Set $ and target object the two - point set is studied in detail and an internal characterization of 2affine sets is provided. 1 In in ADP IN _ 12 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 case case NOUN NN Number=Sing 12 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 category category NOUN NN Number=Sing 6 pobj _ _ 9 $ Set $ $ set $ SYM $ _ 8 nummod _ _ 10 and and CCONJ CC ConjType=Cmp 5 cc _ _ 11 target target VERB VB VerbForm=Inf 12 nsubj _ _ 12 object object VERB VB VerbForm=Inf 0 ROOT _ _ 13 the the DET DT Definite=Def|PronType=Art 17 det _ _ 14 two two NUM CD NumType=Card 16 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 point point NOUN NN Number=Sing 17 compound _ _ 17 set set NOUN NN Number=Sing 19 nsubjpass _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 auxpass _ _ 19 studied study VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 ccomp _ _ 20 in in ADP IN _ 19 prep _ _ 21 detail detail NOUN NN Number=Sing 20 pobj _ _ 22 and and CCONJ CC ConjType=Cmp 19 cc _ _ 23 an an DET DT Definite=Ind|PronType=Art 25 det _ _ 24 internal internal ADJ JJ Degree=Pos 25 amod _ _ 25 characterization characterization NOUN NN Number=Sing 30 nsubjpass _ _ 26 of of ADP IN _ 25 prep _ _ 27 2affine 2affine NUM CD NumType=Card 28 nummod _ _ 28 sets set NOUN NNS Number=Plur 26 pobj _ _ 29 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 auxpass _ _ 30 provided provide VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 conj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # doc_id = 317 # sent_id = 1 # text = In a recent paper, Daisuke Tambara defined two - sided actions on an endomodule (that is, endodistributor) of a monoidal $ V $ - category $ A $ . 1 In in ADP IN _ 8 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 recent recent ADJ JJ Degree=Pos 4 amod _ _ 4 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 8 punct _ _ 6 Daisuke Daisuke PROPN NNP Number=Sing 7 compound _ _ 7 Tambara Tambara PROPN NNP Number=Sing 8 nsubj _ _ 8 defined define VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 9 two two NUM CD NumType=Card 12 nummod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 sided sided ADJ JJ Degree=Pos 12 amod _ _ 12 actions action NOUN NNS Number=Plur 8 dobj _ _ 13 on on ADP IN _ 12 prep _ _ 14 an an DET DT Definite=Ind|PronType=Art 15 det _ _ 15 endomodule endomodule NOUN NN Number=Sing 13 pobj _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 20 punct _ SpaceAfter=No 17 that that ADV RB _ 18 nsubj _ _ 18 is is ADV RB _ 20 advmod _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 20 punct _ _ 20 endodistributor endodistributor NOUN NN Number=Sing 15 appos _ SpaceAfter=No 21 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 20 punct _ _ 22 of of ADP IN _ 20 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 24 monoidal monoidal ADJ JJ Degree=Pos 27 amod _ _ 25 $ V $ $ v $ SYM $ _ 27 nummod _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 category category NOUN NN Number=Sing 28 compound _ _ 28 $ A $ $ a $ SYM $ _ 22 pobj _ _ 29 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 2 # text = When $ A $ is autonomous (that is, rigid, or compact), he showed that the $ V $ - category (that we call $ Tamb(A) $ ) of so - equipped endomodules (that we call Tambara modules) is equivalent to the monoidal centre $ Z[A, V] $ of the convolution monoidal $ V $ - category $ [A, V] $ . 1 When when SCONJ WRB _ 3 advmod _ _ 2 $ A $ $ a $ SYM $ _ 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 advcl _ _ 4 autonomous autonomous ADJ JJ Degree=Pos 3 acomp _ _ 5 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 7 punct _ SpaceAfter=No 6 that that ADV RB _ 7 nsubj _ _ 7 is is ADV RB _ 4 parataxis _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 rigid rigid ADJ JJ Degree=Pos 7 acomp _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 or or CCONJ CC ConjType=Cmp 9 cc _ _ 12 compact compact ADJ JJ Degree=Pos 9 conj _ SpaceAfter=No 13 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 3 punct _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 16 punct _ _ 15 he he PRON PRP Case=Nom|Gender=Masc|Number=Sing|Person=3|PronType=Prs 16 nsubj _ _ 16 showed show VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 17 that that SCONJ IN _ 40 mark _ _ 18 the the DET DT Definite=Def|PronType=Art 21 det _ _ 19 $ V $ $ v $ SYM $ _ 21 nmod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 category category NOUN NN Number=Sing 40 nsubj _ _ 22 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 25 punct _ SpaceAfter=No 23 that that SCONJ IN _ 25 mark _ _ 24 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 25 nsubj _ _ 25 call call VERB VBP Tense=Pres|VerbForm=Fin 21 parataxis _ _ 26 $ Tamb(A) $ $ tamb(a) $ SYM $ _ 25 oprd _ _ 27 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 26 punct _ _ 28 of of ADP IN _ 26 prep _ _ 29 so so ADV RB _ 31 advmod _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 amod _ _ 32 endomodules endomodule NOUN NNS Number=Plur 28 pobj _ _ 33 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 36 punct _ SpaceAfter=No 34 that that SCONJ IN _ 36 mark _ _ 35 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 36 nsubj _ _ 36 call call VERB VBP Tense=Pres|VerbForm=Fin 21 parataxis _ _ 37 Tambara Tambara PROPN NNP Number=Sing 38 compound _ _ 38 modules module NOUN NNS Number=Plur 36 dobj _ SpaceAfter=No 39 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 21 punct _ _ 40 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 ccomp _ _ 41 equivalent equivalent ADJ JJ Degree=Pos 40 acomp _ _ 42 to to ADP IN _ 41 prep _ _ 43 the the DET DT Definite=Def|PronType=Art 45 det _ _ 44 monoidal monoidal ADJ JJ Degree=Pos 45 amod _ _ 45 centre centre NOUN NN Number=Sing 42 pobj _ _ 46 $ Z[A, V] $ $ z[a, v] $ SYM $ _ 45 appos _ _ 47 of of ADP IN _ 46 prep _ _ 48 the the DET DT Definite=Def|PronType=Art 49 det _ _ 49 convolution convolution NOUN NN Number=Sing 47 pobj _ _ 50 monoidal monoidal NOUN NN Number=Sing 40 acomp _ _ 51 $ V $ $ v $ SYM $ _ 53 nummod _ _ 52 - - PUNCT HYPH PunctType=Dash 53 punct _ _ 53 category category NOUN NN Number=Sing 50 npadvmod _ _ 54 $ [A, V] $ $ [a, v] $ SYM $ _ 40 npadvmod _ _ 55 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 3 # text = Our paper extends these ideas somewhat. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 extends extend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 these these DET DT Number=Plur|PronType=Dem 5 det _ _ 5 ideas idea NOUN NNS Number=Plur 3 dobj _ _ 6 somewhat somewhat ADV RB _ 3 advmod _ SpaceAfter=No 7 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = For general $ A $ , we construct a promonoidal $ V $ - category $ DA $ (which we suggest should be called the double of $ A $ ) with an equivalence of $ [DA, V] $ with $ Tamb(A) $ . 1 For for ADP IN _ 6 prep _ _ 2 general general ADJ JJ Degree=Pos 3 amod _ _ 3 $ A $ $ a $ SYM $ _ 1 pobj _ _ 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 8 promonoidal promonoidal ADJ JJ Degree=Pos 12 amod _ _ 9 $ V $ $ v $ SYM $ _ 11 nummod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 category category NOUN NN Number=Sing 12 compound _ _ 12 $ DA $ $ da $ SYM $ _ 6 dobj _ _ 13 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 12 punct _ SpaceAfter=No 14 which which PRON WDT _ 19 nsubj _ _ 15 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 16 nsubj _ _ 16 suggest suggest VERB VBP Tense=Pres|VerbForm=Fin 12 relcl _ _ 17 should should AUX MD VerbForm=Fin 19 aux _ _ 18 be be AUX VB VerbForm=Inf 19 auxpass _ _ 19 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 ccomp _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 double double ADJ JJ Degree=Pos 19 oprd _ _ 22 of of ADP IN _ 21 prep _ _ 23 $ A $ $ a $ SYM $ _ 22 pobj _ _ 24 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 19 punct _ _ 25 with with ADP IN _ 19 prep _ _ 26 an an DET DT Definite=Ind|PronType=Art 27 det _ _ 27 equivalence equivalence NOUN NN Number=Sing 25 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 $ [DA, V] $ $ [da, v] $ SYM $ _ 28 pobj _ _ 30 with with ADP IN _ 27 prep _ _ 31 $ Tamb(A) $ $ tamb(a) $ SYM $ _ 30 pobj _ _ 32 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 5 # text = When $ A $ is closed, we define strong (respectively, left strong) 1 When when SCONJ WRB _ 3 advmod _ _ 2 $ A $ $ a $ SYM $ _ 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 advcl _ _ 4 closed closed ADJ JJ Degree=Pos 3 acomp _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 strong strong ADJ JJ Degree=Pos 7 advmod _ _ 9 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 12 punct _ SpaceAfter=No 10 respectively respectively ADV RB _ 12 advmod _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 12 punct _ _ 12 left leave VERB VBD Tense=Past|VerbForm=Fin 7 ccomp _ _ 13 strong strong ADJ JJ Degree=Pos 12 oprd _ SpaceAfter=No 14 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 12 punct _ SpaceAfter=No # sent_id = 6 # text = Tambara modules and show that these constitute a $ V $ - category $ Tamb_s(A) $ (respectively, $ Tamb_{ls}(A) $ ) which is equivalent to the centre (respectively, lax centre) of $ [A, V] $ . 1 Tambara Tambara PROPN NNP Number=Sing 2 compound _ _ 2 modules module NOUN NNS Number=Plur 0 ROOT _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 show show VERB VBP Tense=Pres|VerbForm=Fin 2 conj _ _ 5 that that SCONJ IN _ 7 mark _ _ 6 these these PRON DT Number=Plur|PronType=Dem 7 nsubj _ _ 7 constitute constitute VERB VBP Tense=Pres|VerbForm=Fin 4 ccomp _ _ 8 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 9 $ V $ $ v $ SYM $ _ 11 nmod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 category category NOUN NN Number=Sing 8 nmod _ _ 12 $ Tamb_s(A) $ $ tamb_s(a) $ SYM $ _ 7 dobj _ _ 13 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 12 punct _ SpaceAfter=No 14 respectively respectively ADV RB _ 12 advmod _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 $ Tamb_{ls}(A) $ $ tamb_{ls}(a) $ SYM $ _ 12 appos _ _ 17 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 12 punct _ _ 18 which which PRON WDT _ 19 nsubj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 relcl _ _ 20 equivalent equivalent ADJ JJ Degree=Pos 19 acomp _ _ 21 to to ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 centre centre NOUN NN Number=Sing 21 pobj _ _ 24 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 23 punct _ SpaceAfter=No 25 respectively respectively ADV RB _ 28 advmod _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 28 punct _ _ 27 lax lax ADJ JJ Degree=Pos 28 amod _ _ 28 centre centre NOUN NN Number=Sing 23 appos _ SpaceAfter=No 29 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 23 punct _ _ 30 of of ADP IN _ 23 prep _ _ 31 $ [A, V] $ $ [a, v] $ SYM $ _ 30 pobj _ _ 32 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 7 # text = We construct localizations $ D_sA $ and $ D_{ls}A $ of $ DA $ such that there are equivalences of $ Tamb_s(A) $ with $ [D_sA, V] $ and of $ Tamb_{ls}(A) $ with $ [D_{ls}A, V] $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 localizations localization NOUN NNS Number=Plur 2 dobj _ _ 4 $ D_sA $ $ d_sa $ SYM $ _ 2 npadvmod _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 $ D_{ls}A $ $ d_{ls}a $ SYM $ _ 9 nmod _ _ 7 of of ADP IN _ 6 prep _ _ 8 $ DA $ $ da $ SYM $ _ 7 pobj _ _ 9 such such ADJ JJ Degree=Pos 4 conj _ _ 10 that that SCONJ IN _ 12 mark _ _ 11 there there PRON EX _ 12 expl _ _ 12 are be VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 13 equivalences equivalence NOUN NNS Number=Plur 12 attr _ _ 14 of of ADP IN _ 13 prep _ _ 15 $ Tamb_s(A) $ $ tamb_s(a) $ SYM $ _ 14 pobj _ _ 16 with with ADP IN _ 13 prep _ _ 17 $ [D_sA, V] $ $ [d_sa, v] $ SYM $ _ 16 pobj _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 of of ADP IN _ 17 conj _ _ 20 $ Tamb_{ls}(A) $ $ tamb_{ls}(a) $ SYM $ _ 19 pobj _ _ 21 with with ADP IN _ 13 prep _ _ 22 $ [D_{ls}A, V] $ $ [d_{ls}a, v] $ SYM $ _ 21 pobj _ _ 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 8 # text = When $ A $ is autonomous, every Tambara module is strong; this implies an equivalence of $ Z[A, V] $ with $ [DA, V] $ . 1 When when SCONJ WRB _ 3 advmod _ _ 2 $ A $ $ a $ SYM $ _ 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 advcl _ _ 4 autonomous autonomous ADJ JJ Degree=Pos 3 acomp _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 9 punct _ _ 6 every every DET DT _ 8 det _ _ 7 Tambara Tambara PROPN NNP Number=Sing 8 compound _ _ 8 module module NOUN NN Number=Sing 9 nsubj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 ccomp _ _ 10 strong strong ADJ JJ Degree=Pos 9 acomp _ SpaceAfter=No 11 ; ; PUNCT : _ 13 punct _ _ 12 this this PRON DT Number=Sing|PronType=Dem 13 nsubj _ _ 13 implies imply VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 an an DET DT Definite=Ind|PronType=Art 15 det _ _ 15 equivalence equivalence NOUN NN Number=Sing 13 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 $ Z[A, V] $ $ z[a, v] $ SYM $ _ 16 pobj _ _ 18 with with ADP IN _ 15 prep _ _ 19 $ [DA, V] $ $ [da, v] $ SYM $ _ 18 pobj _ _ 20 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # doc_id = 318 # sent_id = 1 # text = We prove that every small strongly connected category $ k $ has a full embedding preserving all limits existing in $ k $ into a category of unary universal algebras. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 10 mark _ _ 4 every every DET DT _ 8 det _ _ 5 small small ADJ JJ Degree=Pos 8 amod _ _ 6 strongly strongly ADV RB _ 7 advmod _ _ 7 connected connected ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 10 nsubj _ _ 9 $ k $ $ k $ SYM $ _ 8 appos _ _ 10 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 full full ADJ JJ Degree=Pos 13 amod _ _ 13 embedding embedding NOUN NN Number=Sing 10 dobj _ _ 14 preserving preserve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 acl _ _ 15 all all DET DT _ 16 det _ _ 16 limits limit NOUN NNS Number=Plur 14 dobj _ _ 17 existing exist VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 acl _ _ 18 in in ADP IN _ 17 prep _ _ 19 $ k $ $ k $ SYM $ _ 18 pobj _ _ 20 into into ADP IN _ 17 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 category category NOUN NN Number=Sing 20 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 unary unary ADJ JJ Degree=Pos 26 amod _ _ 25 universal universal ADJ JJ Degree=Pos 26 amod _ _ 26 algebras algebras PROPN NNP Number=Sing 23 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The number of unary operations can be restricted to $ |mor k| $ in case when $ k $ has a terminal object and only preservation of limits over finitely many objects is desired. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 number number NOUN NN Number=Sing 8 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 unary unary ADJ JJ Degree=Pos 5 amod _ _ 5 operations operation NOUN NNS Number=Plur 3 pobj _ _ 6 can can AUX MD VerbForm=Fin 8 aux _ _ 7 be be AUX VB VerbForm=Inf 8 auxpass _ _ 8 restricted restrict VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 to to ADP IN _ 8 prep _ _ 10 $ |mor k| $ $ |mor k| $ SYM $ _ 9 pobj _ _ 11 in in ADP IN _ 8 prep _ _ 12 case case NOUN NN Number=Sing 11 pobj _ _ 13 when when SCONJ WRB _ 15 advmod _ _ 14 $ k $ $ k $ SYM $ _ 15 nsubj _ _ 15 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 advcl _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 terminal terminal ADJ JJ Degree=Pos 18 amod _ _ 18 object object NOUN NN Number=Sing 15 dobj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 only only ADV RB _ 21 advmod _ _ 21 preservation preservation NOUN NN Number=Sing 29 nsubjpass _ _ 22 of of ADP IN _ 21 prep _ _ 23 limits limit NOUN NNS Number=Plur 22 pobj _ _ 24 over over ADP IN _ 23 prep _ _ 25 finitely finitely ADV RB _ 26 advmod _ _ 26 many many ADJ JJ Degree=Pos 27 amod _ _ 27 objects object NOUN NNS Number=Plur 24 pobj _ _ 28 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 29 auxpass _ _ 29 desired desire VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 conj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 3 # text = And all limits existing in such a category k are preserved by a full embedding of $ k $ into the category of all algebraic systems with $ |mor k| $ unary operation and one unary relation. 1 And and CCONJ CC ConjType=Cmp 11 cc _ _ 2 all all DET DT _ 3 det _ _ 3 limits limit NOUN NNS Number=Plur 11 nsubjpass _ _ 4 existing exist VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 acl _ _ 5 in in ADP IN _ 4 prep _ _ 6 such such DET PDT _ 8 predet _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 category category NOUN NN Number=Sing 5 pobj _ _ 9 k k NOUN NN Number=Sing 3 punct _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 11 preserved preserve VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 12 by by ADP IN _ 11 agent _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 full full ADJ JJ Degree=Pos 15 amod _ _ 15 embedding embedding NOUN NN Number=Sing 12 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 $ k $ $ k $ SYM $ _ 16 pobj _ _ 18 into into ADP IN _ 15 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 category category NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 all all DET DT _ 24 det _ _ 23 algebraic algebraic ADJ JJ Degree=Pos 24 amod _ _ 24 systems system NOUN NNS Number=Plur 21 pobj _ _ 25 with with ADP IN _ 24 prep _ _ 26 $ |mor k| $ $ |mor k| $ SYM $ _ 27 nmod _ _ 27 unary unary ADJ JJ Degree=Pos 28 amod _ _ 28 operation operation NOUN NN Number=Sing 25 pobj _ _ 29 and and CCONJ CC ConjType=Cmp 28 cc _ _ 30 one one NUM CD NumType=Card 32 nummod _ _ 31 unary unary ADJ JJ Degree=Pos 32 amod _ _ 32 relation relation NOUN NN Number=Sing 28 conj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # doc_id = 319 # sent_id = 1 # text = A protolocalisation of a regular category is a full reflective regular subcategory, whose reflection preserves pullbacks of regular epimorphisms along arbitrary morphisms. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 protolocalisation protolocalisation NOUN NN Number=Sing 7 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 regular regular ADJ JJ Degree=Pos 6 amod _ _ 6 category category NOUN NN Number=Sing 3 pobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 9 full full ADJ JJ Degree=Pos 12 amod _ _ 10 reflective reflective ADJ JJ Degree=Pos 12 amod _ _ 11 regular regular ADJ JJ Degree=Pos 12 amod _ _ 12 subcategory subcategory NOUN NN Number=Sing 7 attr _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 whose whose DET WP$ Poss=Yes 15 poss _ _ 15 reflection reflection NOUN NN Number=Sing 16 nsubj _ _ 16 preserves preserve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 relcl _ _ 17 pullbacks pullback NOUN NNS Number=Plur 16 dobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 regular regular ADJ JJ Degree=Pos 20 amod _ _ 20 epimorphisms epimorphism NOUN NNS Number=Plur 18 pobj _ _ 21 along along ADP IN _ 20 prep _ _ 22 arbitrary arbitrary ADJ JJ Degree=Pos 23 amod _ _ 23 morphisms morphism NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 2 # text = We devote special attention to the epireflective protolocalisations of an exact Maltsev category; we characterise them in terms of a corresponding closure operator on equivalence relations. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 devote devote VERB VBP Tense=Pres|VerbForm=Fin 16 ccomp _ _ 3 special special ADJ JJ Degree=Pos 4 amod _ _ 4 attention attention NOUN NN Number=Sing 2 dobj _ _ 5 to to ADP IN _ 2 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 epireflective epireflective ADJ JJ Degree=Pos 8 amod _ _ 8 protolocalisations protolocalisation NOUN NNS Number=Plur 5 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 an an DET DT Definite=Ind|PronType=Art 13 det _ _ 11 exact exact ADJ JJ Degree=Pos 13 amod _ _ 12 Maltsev Maltsev PROPN NNP Number=Sing 13 compound _ _ 13 category category NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 14 ; ; PUNCT : _ 16 punct _ _ 15 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 16 nsubj _ _ 16 characterise characterise VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 17 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 16 dobj _ _ 18 in in ADP IN _ 16 prep _ _ 19 terms term NOUN NNS Number=Plur 18 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 22 corresponding corresponding ADJ JJ Degree=Pos 24 amod _ _ 23 closure closure NOUN NN Number=Sing 24 compound _ _ 24 operator operator NOUN NN Number=Sing 20 pobj _ _ 25 on on ADP IN _ 24 prep _ _ 26 equivalence equivalence NOUN NN Number=Sing 27 compound _ _ 27 relations relation NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 3 # text = We give some examples in algebra and in topos theory. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 some some DET DT _ 4 det _ _ 4 examples example NOUN NNS Number=Plur 2 dobj _ _ 5 in in ADP IN _ 2 prep _ _ 6 algebra algebra NOUN NN Number=Sing 5 pobj _ _ 7 and and CCONJ CC ConjType=Cmp 5 cc _ _ 8 in in ADP IN _ 5 conj _ _ 9 topos topos NOUN NN Number=Sing 10 compound _ _ 10 theory theory NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 320 # sent_id = 1 # text = This paper revisits the authors' notion of a differential category from a different perspective. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 revisits revisit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 authors author NOUN NNS Number=Plur 7 poss _ SpaceAfter=No 6 ' ' PART POS _ 5 case _ _ 7 notion notion NOUN NN Number=Sing 3 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 differential differential ADJ JJ Degree=Pos 11 amod _ _ 11 category category NOUN NN Number=Sing 8 pobj _ _ 12 from from ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 different different ADJ JJ Degree=Pos 15 amod _ _ 15 perspective perspective NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = A differential category is an additive symmetric monoidal category with a comonad (a "coalgebra modality") and a differential combinator. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 differential differential ADJ JJ Degree=Pos 3 amod _ _ 3 category category NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 6 additive additive ADJ JJ Degree=Pos 9 amod _ _ 7 symmetric symmetric ADJ JJ Degree=Pos 9 amod _ _ 8 monoidal monoidal ADJ JJ Degree=Pos 9 amod _ _ 9 category category NOUN NN Number=Sing 4 attr _ _ 10 with with ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 comonad comonad NOUN NNS Number=Plur 10 pobj _ _ 13 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 17 punct _ SpaceAfter=No 14 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 15 " " PUNCT `` PunctSide=Ini|PunctType=Quot 17 punct _ SpaceAfter=No 16 coalgebra coalgebra NOUN NNS Number=Plur 17 compound _ _ 17 modality modality NOUN NN Number=Sing 12 appos _ SpaceAfter=No 18 " " PUNCT '' PunctSide=Fin|PunctType=Quot 17 punct _ SpaceAfter=No 19 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 17 punct _ _ 20 and and CCONJ CC ConjType=Cmp 12 cc _ _ 21 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 22 differential differential ADJ JJ Degree=Pos 23 amod _ _ 23 combinator combinator NOUN NN Number=Sing 12 conj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = The morphisms of a differential category should be thought of as the linear maps; the differentiable or smooth maps would then be morphisms of the coKleisli category. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 morphisms morphism NOUN NNS Number=Plur 9 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 differential differential ADJ JJ Degree=Pos 6 amod _ _ 6 category category NOUN NN Number=Sing 3 pobj _ _ 7 should should AUX MD VerbForm=Fin 9 aux _ _ 8 be be AUX VB VerbForm=Inf 9 auxpass _ _ 9 thought think VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 ccomp _ _ 10 of of ADP IN _ 9 prep _ _ 11 as as ADP IN _ 9 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 linear linear PROPN NNP Number=Sing 14 compound _ _ 14 maps map NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 15 ; ; PUNCT : _ 23 punct _ _ 16 the the DET DT Definite=Def|PronType=Art 20 det _ _ 17 differentiable differentiable ADJ JJ Degree=Pos 20 amod _ _ 18 or or CCONJ CC ConjType=Cmp 17 cc _ _ 19 smooth smooth ADJ JJ Degree=Pos 17 conj _ _ 20 maps map NOUN NNS Number=Plur 23 nsubj _ _ 21 would would AUX MD VerbForm=Fin 23 aux _ _ 22 then then ADV RB PronType=Dem 23 advmod _ _ 23 be be AUX VB VerbForm=Inf 0 ROOT _ _ 24 morphisms morphism NOUN NNS Number=Plur 23 attr _ _ 25 of of ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 28 det _ _ 27 coKleisli cokleisli ADJ JJ Degree=Pos 28 amod _ _ 28 category category NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 23 punct _ SpaceAfter=No # sent_id = 4 # text = The purpose of the present paper is to directly axiomatize differentiable maps and thus to move the emphasis from the linear notion to structures resembling the coKleisli category. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 purpose purpose NOUN NN Number=Sing 7 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 present present ADJ JJ Degree=Pos 6 amod _ _ 6 paper paper NOUN NN Number=Sing 3 pobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 to to PART TO _ 10 aux _ _ 9 directly directly ADV RB _ 10 advmod _ _ 10 axiomatize axiomatize VERB VB VerbForm=Inf 7 xcomp _ _ 11 differentiable differentiable ADJ JJ Degree=Pos 12 amod _ _ 12 maps map NOUN NNS Number=Plur 10 dobj _ _ 13 and and CCONJ CC ConjType=Cmp 10 cc _ _ 14 thus thus ADV RB _ 16 advmod _ _ 15 to to PART TO _ 16 aux _ _ 16 move move VERB VB VerbForm=Inf 10 conj _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 emphasis emphasis NOUN NN Number=Sing 16 dobj _ _ 19 from from ADP IN _ 16 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 linear linear ADJ JJ Degree=Pos 22 compound _ _ 22 notion notion NOUN NN Number=Sing 19 pobj _ _ 23 to to ADP IN _ 16 prep _ _ 24 structures structure NOUN NNS Number=Plur 23 pobj _ _ 25 resembling resemble VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 24 acl _ _ 26 the the DET DT Definite=Def|PronType=Art 28 det _ _ 27 coKleisli cokleisli ADJ JJ Degree=Pos 28 amod _ _ 28 category category NOUN NN Number=Sing 25 dobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 5 # text = The result is a setting with a more evident and intuitive relationship to the familiar notion of calculus on smooth maps. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 result result NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 setting setting NOUN NN Number=Sing 3 attr _ _ 6 with with ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 8 more more ADV RBR Degree=Cmp 9 advmod _ _ 9 evident evident ADJ JJ Degree=Pos 12 amod _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 intuitive intuitive ADJ JJ Degree=Pos 9 conj _ _ 12 relationship relationship NOUN NN Number=Sing 6 pobj _ _ 13 to to ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 familiar familiar ADJ JJ Degree=Pos 16 amod _ _ 16 notion notion NOUN NN Number=Sing 13 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 calculus calculus NOUN NN Number=Sing 17 pobj _ _ 19 on on ADP IN _ 18 prep _ _ 20 smooth smooth ADJ JJ Degree=Pos 21 amod _ _ 21 maps map NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = Indeed a primary example is the category whose objects are Euclidean spaces and whose morphisms are smooth maps. 1 Indeed indeed ADV RB _ 5 advmod _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 primary primary ADJ JJ Degree=Pos 4 amod _ _ 4 example example NOUN NN Number=Sing 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 category category NOUN NN Number=Sing 5 attr _ _ 8 whose whose DET WP$ Poss=Yes 9 poss _ _ 9 objects object NOUN NNS Number=Plur 10 nsubj _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 relcl _ _ 11 Euclidean euclidean ADJ JJ Degree=Pos 12 amod _ _ 12 spaces space NOUN NNS Number=Plur 10 attr _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 whose whose DET WP$ Poss=Yes 15 poss _ _ 15 morphisms morphism NOUN NNS Number=Plur 16 nsubj _ _ 16 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 10 conj _ _ 17 smooth smooth ADJ JJ Degree=Pos 18 amod _ _ 18 maps map NOUN NNS Number=Plur 16 attr _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 7 # text = A Cartesian differential category is a Cartesian left additive category which possesses a Cartesian differential operator. 1 A a DET DT Definite=Ind|PronType=Art 4 det _ _ 2 Cartesian cartesian ADJ JJ Degree=Pos 4 amod _ _ 3 differential differential ADJ JJ Degree=Pos 4 amod _ _ 4 category category NOUN NN Number=Sing 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 Cartesian Cartesian PROPN NNP Number=Sing 8 nsubj _ _ 8 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 ccomp _ _ 9 additive additive ADJ JJ Degree=Pos 10 amod _ _ 10 category category NOUN NN Number=Sing 8 dobj _ _ 11 which which PRON WDT _ 12 nsubj _ _ 12 possesses possess VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 relcl _ _ 13 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 14 Cartesian cartesian ADJ JJ Degree=Pos 16 amod _ _ 15 differential differential ADJ JJ Degree=Pos 16 amod _ _ 16 operator operator NOUN NN Number=Sing 12 dobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 8 # text = The differential operator itself must satisfy a number of equations, which guarantee, in particular, that the differential of any map is `"linear" in a suitable sense. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 differential differential ADJ JJ Degree=Pos 3 amod _ _ 3 operator operator NOUN NN Number=Sing 6 nsubj _ _ 4 itself itself PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs|Reflex=Yes 3 appos _ _ 5 must must AUX MD VerbForm=Fin 6 aux _ _ 6 satisfy satisfy VERB VB VerbForm=Inf 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 number number NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 equations equation NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 which which PRON WDT _ 13 nsubj _ _ 13 guarantee guarantee VERB VBP Tense=Pres|VerbForm=Fin 10 relcl _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 13 punct _ _ 15 in in ADP IN _ 13 prep _ _ 16 particular particular ADJ JJ Degree=Pos 15 amod _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 6 punct _ _ 18 that that SCONJ IN _ 24 mark _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 differential differential NOUN NN Number=Sing 24 nsubj _ _ 21 of of ADP IN _ 20 prep _ _ 22 any any DET DT _ 23 det _ _ 23 map map NOUN NN Number=Sing 21 pobj _ _ 24 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 advcl _ _ 25 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 27 punct _ SpaceAfter=No 26 " " PUNCT `` PunctSide=Ini|PunctType=Quot 27 punct _ SpaceAfter=No 27 linear linear NOUN NN Number=Sing 24 attr _ SpaceAfter=No 28 " " PUNCT '' PunctSide=Fin|PunctType=Quot 27 punct _ _ 29 in in ADP IN _ 27 prep _ _ 30 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 31 suitable suitable ADJ JJ Degree=Pos 32 amod _ _ 32 sense sense NOUN NN Number=Sing 29 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 9 # text = We present an analysis of the basic properties of Cartesian differential categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 4 det _ _ 4 analysis analysis NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 basic basic ADJ JJ Degree=Pos 8 amod _ _ 8 properties property NOUN NNS Number=Plur 5 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 Cartesian cartesian ADJ JJ Degree=Pos 12 amod _ _ 11 differential differential ADJ JJ Degree=Pos 12 amod _ _ 12 categories category NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 10 # text = We show that under modest and natural assumptions, the coKleisli category of a differential category is Cartesian differential. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 17 mark _ _ 4 under under ADP IN _ 17 prep _ _ 5 modest modest ADJ JJ Degree=Pos 8 amod _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 natural natural ADJ JJ Degree=Pos 5 conj _ _ 8 assumptions assumption NOUN NNS Number=Plur 4 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 17 punct _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 coKleisli cokleisli ADJ JJ Degree=Pos 12 amod _ _ 12 category category NOUN NN Number=Sing 17 nsubj _ _ 13 of of ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 differential differential ADJ JJ Degree=Pos 16 amod _ _ 16 category category NOUN NN Number=Sing 13 pobj _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 18 Cartesian cartesian ADJ JJ Degree=Pos 19 amod _ _ 19 differential differential NOUN NN Number=Sing 17 attr _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 11 # text = Finally we present a (sound and complete) term calculus for these categories which allows their structure to be analysed using essentially the same language one might use for traditional multi - variable calculus. 1 Finally finally ADV RB _ 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 5 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 6 punct _ SpaceAfter=No 6 sound sound NOUN NN Number=Sing 11 amod _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 complete complete ADJ JJ Degree=Pos 6 conj _ SpaceAfter=No 9 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 11 punct _ _ 10 term term NOUN NN Number=Sing 11 compound _ _ 11 calculus calculus NOUN NN Number=Sing 3 dobj _ _ 12 for for ADP IN _ 11 prep _ _ 13 these these DET DT Number=Plur|PronType=Dem 14 det _ _ 14 categories category NOUN NNS Number=Plur 12 pobj _ _ 15 which which PRON WDT _ 16 nsubj _ _ 16 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 relcl _ _ 17 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 18 poss _ _ 18 structure structure NOUN NN Number=Sing 21 nsubjpass _ _ 19 to to PART TO _ 21 aux _ _ 20 be be AUX VB VerbForm=Inf 21 auxpass _ _ 21 analysed analyse VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 ccomp _ _ 22 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 21 xcomp _ _ 23 essentially essentially ADV RB _ 22 advmod _ _ 24 the the DET DT Definite=Def|PronType=Art 26 det _ _ 25 same same ADJ JJ Degree=Pos 26 amod _ _ 26 language language NOUN NN Number=Sing 22 dobj _ _ 27 one one PRON PRP PronType=Prs 29 nsubj _ _ 28 might might AUX MD VerbForm=Fin 29 aux _ _ 29 use use VERB VB VerbForm=Inf 26 relcl _ _ 30 for for ADP IN _ 29 prep _ _ 31 traditional traditional ADJ JJ Degree=Pos 35 amod _ _ 32 multi multi ADJ JJ Degree=Pos 34 amod _ _ 33 - - PUNCT HYPH PunctType=Dash 34 punct _ _ 34 variable variable ADJ JJ Degree=Pos 35 amod _ _ 35 calculus calculus NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 321 # sent_id = 1 # text = Let $ M = (M, m, u) $ be a monad and let $ (MX, m) $ be the free $ M $ - algebra on the object $ X $ . 1 Let let VERB VB VerbForm=Inf 0 ROOT _ _ 2 $ M = (M, m, u) $ $ m = (m, m, u) $ SYM $ _ 3 nsubj _ _ 3 be be AUX VB VerbForm=Inf 1 ccomp _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 monad monad NOUN NNS Number=Plur 3 attr _ _ 6 and and CCONJ CC ConjType=Cmp 3 cc _ _ 7 let let VERB VB VerbForm=Inf 3 conj _ _ 8 $ (MX, m) $ $ (mx, m) $ SYM $ _ 9 nsubj _ _ 9 be be AUX VB VerbForm=Inf 7 ccomp _ _ 10 the the DET DT Definite=Def|PronType=Art 14 det _ _ 11 free free ADJ JJ Degree=Pos 14 amod _ _ 12 $ M $ $ m $ SYM $ _ 14 compound _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 algebra algebra NOUN NN Number=Sing 9 attr _ _ 15 on on ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 object object NOUN NN Number=Sing 15 pobj _ _ 18 $ X $ $ x $ SYM $ _ 14 appos _ _ 19 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = Consider an $ M $ - algebra $ (A, a) $ , a retraction $ r : (MX, m) - - > (A, a) $ and a section $ t : (A, a) - - > (MX, m) $ of $ r $ . 1 Consider consider VERB VB VerbForm=Inf 0 ROOT _ _ 2 an an DET DT Definite=Ind|PronType=Art 6 det _ _ 3 $ M $ $ m $ SYM $ _ 5 nmod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 algebra algebra NOUN NN Number=Sing 6 compound _ _ 6 $ (A, a) $ $ (a, a) $ NOUN NN Number=Sing 1 dobj _ _ 7 , , PUNCT , PunctType=Comm 6 punct _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 retraction retraction NOUN NN Number=Sing 6 appos _ _ 10 $ r : (MX, m) - - > (A, a) $ $ r : (mx, m) - - > (a, a) $ SYM $ _ 9 appos _ _ 11 and and CCONJ CC ConjType=Cmp 9 cc _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 section section NOUN NN Number=Sing 9 conj _ _ 14 $ t : (A, a) - - > (MX, m) $ $ t : (a, a) - - > (mx, m) $ SYM $ _ 13 appos _ _ 15 of of ADP IN _ 14 prep _ _ 16 $ r $ $ r $ SYM $ _ 15 pobj _ _ 17 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 3 # text = The retract $ (A, a) $ is not free in general. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 retract retract NOUN NN Number=Sing 4 nsubj _ _ 3 $ (A, a) $ $ (a, a) $ NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 not not PART RB Polarity=Neg 4 neg _ _ 6 free free ADJ JJ Degree=Pos 4 acomp _ _ 7 in in ADP IN _ 6 prep _ _ 8 general general ADJ JJ Degree=Pos 7 amod _ SpaceAfter=No 9 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = We observe that for many monads with a `combinatorial flavor' such a retract is not only a free algebra $ (MA_0, m) $ , but it is also the case that the object $ A_0 $ of generators is determined in a canonical way by the section $ t $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 observe observe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 16 mark _ _ 4 for for ADP IN _ 16 prep _ _ 5 many many ADJ JJ Degree=Pos 6 amod _ _ 6 monads monad NOUN NNS Number=Plur 4 pobj _ _ 7 with with ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 9 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 11 punct _ SpaceAfter=No 10 combinatorial combinatorial ADJ JJ Degree=Pos 11 amod _ _ 11 flavor flavor NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 12 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 11 punct _ _ 13 such such DET PDT _ 15 predet _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 retract retract NOUN NN Number=Sing 11 appos _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 17 not not PART RB Polarity=Neg 16 neg _ _ 18 only only ADV RB _ 17 advmod _ _ 19 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 20 free free ADJ JJ Degree=Pos 21 amod _ _ 21 algebra algebra NOUN NN Number=Sing 22 compound _ _ 22 $ (MA_0, m) $ $ (MA_0, m) $ PROPN NNP Number=Sing 16 attr _ _ 23 , , PUNCT , PunctType=Comm 16 punct _ _ 24 but but CCONJ CC ConjType=Cmp 16 cc _ _ 25 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 26 nsubj _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 conj _ _ 27 also also ADV RB _ 26 advmod _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 case case NOUN NN Number=Sing 26 attr _ _ 30 that that SCONJ IN _ 37 mark _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 object object NOUN NN Number=Sing 37 nsubjpass _ _ 33 $ A_0 $ $ a_0 $ PRON PRP$ Poss=Yes|PronType=Prs 32 appos _ _ 34 of of ADP IN _ 33 prep _ _ 35 generators generator NOUN NNS Number=Plur 34 pobj _ _ 36 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 37 auxpass _ _ 37 determined determine VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 acl _ _ 38 in in ADP IN _ 37 prep _ _ 39 a a DET DT Definite=Ind|PronType=Art 41 det _ _ 40 canonical canonical ADJ JJ Degree=Pos 41 amod _ _ 41 way way NOUN NN Number=Sing 38 pobj _ _ 42 by by ADP IN _ 37 agent _ _ 43 the the DET DT Definite=Def|PronType=Art 44 det _ _ 44 section section NOUN NN Number=Sing 42 pobj _ _ 45 $ t $ $ t $ SYM $ _ 44 appos _ _ 46 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = We give a precise form of this property, prove a characterization, and discuss examples from combinatorics, universal algebra, convexity and topos theory. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 precise precise ADJ JJ Degree=Pos 5 amod _ _ 5 form form NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 this this DET DT Number=Sing|PronType=Dem 8 det _ _ 8 property property NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 2 punct _ _ 10 prove prove VERB VB VerbForm=Inf 2 conj _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 characterization characterization NOUN NN Number=Sing 10 dobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 10 punct _ _ 14 and and CCONJ CC ConjType=Cmp 10 cc _ _ 15 discuss discuss VERB VB VerbForm=Inf 10 conj _ _ 16 examples example NOUN NNS Number=Plur 15 dobj _ _ 17 from from ADP IN _ 15 prep _ _ 18 combinatorics combinatoric NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 universal universal ADJ JJ Degree=Pos 21 amod _ _ 21 algebra algebra PROPN NNP Number=Sing 18 conj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 convexity convexity NOUN NN Number=Sing 21 conj _ _ 24 and and CCONJ CC ConjType=Cmp 23 cc _ _ 25 topos topos NOUN NN Number=Sing 26 compound _ _ 26 theory theory NOUN NN Number=Sing 23 conj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 322 # sent_id = 1 # text = Globular complexes were introduced by Goubault and the author to model higher dimensional automata. 1 Globular globular ADJ JJ Degree=Pos 2 amod _ _ 2 complexes complex NOUN NNS Number=Plur 4 nsubjpass _ _ 3 were be AUX VBD Mood=Ind|Tense=Past|VerbForm=Fin 4 auxpass _ _ 4 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 by by ADP IN _ 4 agent _ _ 6 Goubault Goubault PROPN NNP Number=Sing 5 pobj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 author author NOUN NN Number=Sing 6 conj _ _ 10 to to PART TO _ 11 aux _ _ 11 model model NOUN NN Number=Sing 4 advcl _ _ 12 higher high ADJ JJR Degree=Cmp 14 amod _ _ 13 dimensional dimensional ADJ JJ Degree=Pos 14 amod _ _ 14 automata automata NOUN NN Number=Sing 11 dobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = Globular complexes are topological spaces equipped with a globular decomposition which is the directed analogue of the cellular decomposition of a CW - complex. 1 Globular globular ADJ JJ Degree=Pos 2 amod _ _ 2 complexes complex NOUN NNS Number=Plur 3 nsubj _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 topological topological ADJ JJ Degree=Pos 5 amod _ _ 5 spaces space NOUN NNS Number=Plur 3 attr _ _ 6 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 acl _ _ 7 with with ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 globular globular ADJ JJ Degree=Pos 10 amod _ _ 10 decomposition decomposition NOUN NN Number=Sing 7 pobj _ _ 11 which which PRON WDT _ 12 nsubj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 relcl _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 directed direct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 amod _ _ 15 analogue analogue NOUN NN Number=Sing 12 attr _ _ 16 of of ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 cellular cellular ADJ JJ Degree=Pos 19 amod _ _ 19 decomposition decomposition NOUN NN Number=Sing 16 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 22 CW cw NOUN NN Number=Sing 24 compound _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 complex complex NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = We prove that there exists a combinatorial model category such that the cellular objects are exactly the globular complexes and such that the homotopy category is equivalent to the homotopy category of flows. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 5 mark _ _ 4 there there PRON EX _ 5 expl _ _ 5 exists exist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 6 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 7 combinatorial combinatorial ADJ JJ Degree=Pos 8 amod _ _ 8 model model NOUN NN Number=Sing 9 compound _ _ 9 category category NOUN NN Number=Sing 5 dobj _ _ 10 such such ADJ JJ Degree=Pos 15 mark _ _ 11 that that SCONJ IN _ 15 mark _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 cellular cellular ADJ JJ Degree=Pos 14 amod _ _ 14 objects object NOUN NNS Number=Plur 15 nsubj _ _ 15 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 advcl _ _ 16 exactly exactly ADV RB _ 19 advmod _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 globular globular ADJ JJ Degree=Pos 19 amod _ _ 19 complexes complex NOUN NNS Number=Plur 15 attr _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 such such ADJ JJ Degree=Pos 19 conj _ _ 22 that that SCONJ IN _ 26 mark _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 homotopy homotopy NOUN NN Number=Sing 25 compound _ _ 25 category category NOUN NN Number=Sing 26 nsubj _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 27 equivalent equivalent ADJ JJ Degree=Pos 26 acomp _ _ 28 to to ADP IN _ 27 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 31 det _ _ 30 homotopy homotopy NOUN NN Number=Sing 31 compound _ _ 31 category category NOUN NN Number=Sing 28 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 flows flow NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = The underlying category of this model category is a variant of Grandis' notion of $ d $ - space over a topological space colimit generated by simplices. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 underlying underlie VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 amod _ _ 3 category category NOUN NN Number=Sing 8 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 this this DET DT Number=Sing|PronType=Dem 7 det _ _ 6 model model NOUN NN Number=Sing 7 compound _ _ 7 category category NOUN NN Number=Sing 4 pobj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 variant variant NOUN NN Number=Sing 8 attr _ _ 11 of of ADP IN _ 10 prep _ _ 12 Grandis Grandis PROPN NNP Number=Sing 14 poss _ SpaceAfter=No 13 ' ' PART POS _ 12 case _ _ 14 notion notion NOUN NN Number=Sing 11 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 $ d $ $ d $ SYM $ _ 18 compound _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 space space NOUN NN Number=Sing 15 pobj _ _ 19 over over ADP IN _ 10 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 21 topological topological ADJ JJ Degree=Pos 23 amod _ _ 22 space space NOUN NN Number=Sing 23 compound _ _ 23 colimit colimit NOUN NN Number=Sing 19 pobj _ _ 24 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 acl _ _ 25 by by ADP IN _ 24 agent _ _ 26 simplices simplice NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 5 # text = This result enables us to understand the relationship between the framework of flows and other works in directed algebraic topology using $ d $ - spaces. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 result result NOUN NN Number=Sing 3 nsubj _ _ 3 enables enable VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 5 to to PART TO _ 6 aux _ _ 6 understand understand VERB VB VerbForm=Inf 3 ccomp _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 relationship relationship NOUN NN Number=Sing 6 dobj _ _ 9 between between ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 framework framework NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 flows flow NOUN NNS Number=Plur 12 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 other other ADJ JJ Degree=Pos 16 amod _ _ 16 works work NOUN NNS Number=Plur 13 conj _ _ 17 in in ADP IN _ 11 prep _ _ 18 directed direct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 amod _ _ 19 algebraic algebraic ADJ JJ Degree=Pos 20 amod _ _ 20 topology topology NOUN NN Number=Sing 17 pobj _ _ 21 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 acl _ _ 22 $ d $ $ d $ SYM $ _ 24 compound _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 spaces space NOUN NNS Number=Plur 21 dobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = It also enables us to prove that the underlying homotopy type functor of flows can be interpreted up to equivalences of categories as the total left derived functor of a left Quillen adjoint. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 enables enable VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 3 dobj _ _ 5 to to PART TO _ 6 aux _ _ 6 prove prove VERB VB VerbForm=Inf 3 xcomp _ _ 7 that that SCONJ IN _ 17 mark _ _ 8 the the DET DT Definite=Def|PronType=Art 12 det _ _ 9 underlying underlie VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 amod _ _ 10 homotopy homotopy NOUN NN Number=Sing 11 compound _ _ 11 type type NOUN NN Number=Sing 12 compound _ _ 12 functor functor NOUN NN Number=Sing 17 nsubjpass _ _ 13 of of ADP IN _ 12 prep _ _ 14 flows flow NOUN NNS Number=Plur 13 pobj _ _ 15 can can AUX MD VerbForm=Fin 17 aux _ _ 16 be be AUX VB VerbForm=Inf 17 auxpass _ _ 17 interpreted interpret VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 ccomp _ _ 18 up up ADP RP _ 17 prt _ _ 19 to to ADP IN _ 17 prep _ _ 20 equivalences equivalence NOUN NNS Number=Plur 19 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 categories category NOUN NNS Number=Plur 21 pobj _ _ 23 as as SCONJ IN _ 27 mark _ _ 24 the the DET DT Definite=Def|PronType=Art 26 det _ _ 25 total total ADJ JJ Degree=Pos 26 amod _ _ 26 left left ADV RB _ 27 nsubj _ _ 27 derived derive VERB VBD Tense=Past|VerbForm=Fin 17 advcl _ _ 28 functor functor NOUN NN Number=Sing 27 dobj _ _ 29 of of ADP IN _ 27 prep _ _ 30 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 31 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 33 amod _ _ 32 Quillen quillen ADJ JJ Degree=Pos 33 amod _ _ 33 adjoint adjoint NOUN NN Number=Sing 29 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 323 # sent_id = 1 # text = This article contains a review of categorifications of semisimple representations of various rings via abelian categories and exact endofunctors on them. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 article article NOUN NN Number=Sing 3 nsubj _ _ 3 contains contain VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 review review NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 categorifications categorification NOUN NNS Number=Plur 6 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 semisimple semisimple ADJ JJ Degree=Pos 10 amod _ _ 10 representations representation NOUN NNS Number=Plur 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 various various ADJ JJ Degree=Pos 13 amod _ _ 13 rings ring NOUN NNS Number=Plur 11 pobj _ _ 14 via via ADP IN _ 13 prep _ _ 15 abelian abelian ADJ JJ Degree=Pos 16 amod _ _ 16 categories category NOUN NNS Number=Plur 14 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 exact exact ADJ JJ Degree=Pos 19 amod _ _ 19 endofunctors endofunctor NOUN NNS Number=Plur 16 conj _ _ 20 on on ADP IN _ 19 prep _ _ 21 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 20 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = A simple definition of an abelian categorification is presented and illustrated with several examples, including categorifications of various representations of the symmetric group and its Hecke algebra via highest weight categories of modules over the Lie algebra $ sl_n $ . 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 simple simple ADJ JJ Degree=Pos 3 amod _ _ 3 definition definition NOUN NN Number=Sing 9 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 an an DET DT Definite=Ind|PronType=Art 7 det _ _ 6 abelian abelian PROPN NNP Number=Sing 7 compound _ _ 7 categorification categorification NOUN NN Number=Sing 4 pobj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 illustrated illustrate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 conj _ _ 12 with with ADP IN _ 11 prep _ _ 13 several several ADJ JJ Degree=Pos 14 amod _ _ 14 examples example NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 prep _ _ 17 categorifications categorification NOUN NNS Number=Plur 16 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 various various ADJ JJ Degree=Pos 20 amod _ _ 20 representations representation NOUN NNS Number=Plur 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 symmetric symmetric ADJ JJ Degree=Pos 24 amod _ _ 24 group group NOUN NN Number=Sing 21 pobj _ _ 25 and and CCONJ CC ConjType=Cmp 24 cc _ _ 26 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 28 poss _ _ 27 Hecke Hecke PROPN NNP Number=Sing 28 compound _ _ 28 algebra algebra NOUN NN Number=Sing 24 conj _ _ 29 via via ADP IN _ 20 prep _ _ 30 highest high ADJ JJS Degree=Sup 32 amod _ _ 31 weight weight NOUN NN Number=Sing 32 compound _ _ 32 categories category NOUN NNS Number=Plur 29 pobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 modules module NOUN NNS Number=Plur 33 pobj _ _ 35 over over ADP IN _ 34 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 37 det _ _ 37 Lie Lie PROPN NNP Number=Sing 38 compound _ _ 38 algebra algebra PROPN NNP Number=Sing 35 pobj _ _ 39 $ sl_n $ $ sl_n $ SYM $ _ 14 appos _ _ 40 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 3 # text = The review is intended to give non - experts in representation theory who are familiar with the topological aspects of categorification (lifting quantum link invariants to homology theories) an idea for the sort of categories that appear when link homology is extended to tangles. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 review review NOUN NN Number=Sing 4 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 intended intend VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 to to PART TO _ 6 aux _ _ 6 give give VERB VB VerbForm=Inf 4 xcomp _ _ 7 non non ADJ JJ Degree=Pos 9 compound _ _ 8 - - NOUN NNS Number=Plur 9 punct _ _ 9 experts expert NOUN NNS Number=Plur 6 dobj _ _ 10 in in ADP IN _ 6 prep _ _ 11 representation representation NOUN NN Number=Sing 12 compound _ _ 12 theory theory NOUN NN Number=Sing 10 pobj _ _ 13 who who PRON WP _ 14 nsubj _ _ 14 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 12 relcl _ _ 15 familiar familiar ADJ JJ Degree=Pos 14 acomp _ _ 16 with with ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 topological topological ADJ JJ Degree=Pos 19 amod _ _ 19 aspects aspect NOUN NNS Number=Plur 16 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 categorification categorification NOUN NN Number=Sing 20 pobj _ _ 22 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 14 punct _ SpaceAfter=No 23 lifting lift VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 advcl _ _ 24 quantum quantum NOUN NN Number=Sing 25 compound _ _ 25 link link NOUN NN Number=Sing 26 compound _ _ 26 invariants invariant NOUN NNS Number=Plur 23 dobj _ _ 27 to to ADP IN _ 23 prep _ _ 28 homology homology NOUN NN Number=Sing 29 compound _ _ 29 theories theory NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 30 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 4 punct _ _ 31 an an DET DT Definite=Ind|PronType=Art 32 det _ _ 32 idea idea NOUN NN Number=Sing 4 dobj _ _ 33 for for ADP IN _ 32 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 35 det _ _ 35 sort sort NOUN NN Number=Sing 33 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 categories category NOUN NNS Number=Plur 36 pobj _ _ 38 that that PRON WDT PronType=Rel 39 nsubj _ _ 39 appear appear VERB VBP Tense=Pres|VerbForm=Fin 35 relcl _ _ 40 when when SCONJ WRB _ 44 advmod _ _ 41 link link PROPN NNP Number=Sing 42 compound _ _ 42 homology homology NOUN NN Number=Sing 44 nsubjpass _ _ 43 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 44 auxpass _ _ 44 extended extend VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 39 advcl _ _ 45 to to ADP IN _ 44 prep _ _ 46 tangles tangle NOUN NNS Number=Plur 45 pobj _ SpaceAfter=No 47 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 324 # sent_id = 1 # text = We study convergent (terminating and confluent) presentations of $ n $ - categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 convergent convergent NOUN NN Number=Sing 2 dobj _ _ 4 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 3 punct _ SpaceAfter=No 5 terminating terminate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 conj _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 confluent confluent ADJ JJ Degree=Pos 5 conj _ SpaceAfter=No 8 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 3 punct _ _ 9 presentations presentation NOUN NNS Number=Plur 2 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 $ n $ $ n $ SYM $ _ 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 categories category NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Using the notion of polygraph (or computad), we introduce the homotopical property of finite derivation type for $ n $ - categories, generalising the one introduced by Squier for word rewriting systems. 1 Using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 advcl _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 notion notion NOUN NN Number=Sing 1 dobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 polygraph polygraph NOUN NN Number=Sing 4 pobj _ _ 6 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 5 punct _ SpaceAfter=No 7 or or CCONJ CC ConjType=Cmp 5 cc _ _ 8 computad computad NOUN NN Number=Sing 5 conj _ SpaceAfter=No 9 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 5 punct _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 12 punct _ _ 11 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 12 nsubj _ _ 12 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 homotopical homotopical ADJ JJ Degree=Pos 15 amod _ _ 15 property property NOUN NN Number=Sing 12 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 finite finite ADJ JJ Degree=Pos 19 amod _ _ 18 derivation derivation NOUN NN Number=Sing 19 compound _ _ 19 type type NOUN NN Number=Sing 16 pobj _ _ 20 for for ADP IN _ 15 prep _ _ 21 $ n $ $ n $ SYM $ _ 23 nummod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 categories category NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 12 punct _ _ 25 generalising generalise VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 advcl _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 one one NOUN NN Number=Sing 25 dobj _ _ 28 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 acl _ _ 29 by by ADP IN _ 28 agent _ _ 30 Squier Squier PROPN NNP Number=Sing 29 pobj _ _ 31 for for ADP IN _ 28 prep _ _ 32 word word NOUN NN Number=Sing 31 pobj _ _ 33 rewriting rewrite VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 32 acl _ _ 34 systems system NOUN NNS Number=Plur 33 dobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 3 # text = We characterise this property by using the notion of critical branching. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 characterise characterise VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 4 property property NOUN NN Number=Sing 2 dobj _ _ 5 by by ADP IN _ 2 prep _ _ 6 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 pcomp _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 notion notion NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 critical critical ADJ JJ Degree=Pos 11 amod _ _ 11 branching branching NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = In particular, we define sufficient conditions for an $ n $ - category to have finite derivation type. 1 In in ADP IN _ 5 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 sufficient sufficient ADJ JJ Degree=Pos 7 amod _ _ 7 conditions condition NOUN NNS Number=Plur 5 dobj _ _ 8 for for ADP IN _ 7 prep _ _ 9 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 10 $ n $ $ n $ SYM $ _ 12 quantmod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 category category NOUN NN Number=Sing 8 pobj _ _ 13 to to PART TO _ 14 aux _ _ 14 have have AUX VB VerbForm=Inf 12 acl _ _ 15 finite finite ADJ JJ Degree=Pos 17 compound _ _ 16 derivation derivation NOUN NN Number=Sing 17 compound _ _ 17 type type NOUN NN Number=Sing 14 dobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 5 # text = Through examples, we present several techniques based on derivations of 2 - categories to study convergent presentations by 3 - polygraphs. 1 Through through ADP IN _ 5 prep _ _ 2 examples example NOUN NNS Number=Plur 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 several several ADJ JJ Degree=Pos 7 amod _ _ 7 techniques technique NOUN NNS Number=Plur 5 dobj _ _ 8 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 acl _ _ 9 on on ADP IN _ 8 prep _ _ 10 derivations derivation NOUN NNS Number=Plur 9 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 2 2 NUM CD NumType=Card 14 nummod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 categories category NOUN NNS Number=Plur 11 pobj _ _ 15 to to PART TO _ 16 aux _ _ 16 study study VERB VB VerbForm=Inf 7 relcl _ _ 17 convergent convergent NOUN NN Number=Sing 18 compound _ _ 18 presentations presentation NOUN NNS Number=Plur 16 dobj _ _ 19 by by ADP IN _ 16 prep _ _ 20 3 3 NUM CD NumType=Card 22 nummod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 polygraphs polygraph NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 325 # sent_id = 1 # text = This paper introduces the notions of vector field and flow on a general differentiable stack. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 introduces introduce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 notions notion NOUN NNS Number=Plur 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 vector vector NOUN NN Number=Sing 8 compound _ _ 8 field field NOUN NN Number=Sing 6 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 3 cc _ _ 10 flow flow VERB VB VerbForm=Inf 3 conj _ _ 11 on on ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 13 general general ADJ JJ Degree=Pos 15 amod _ _ 14 differentiable differentiable ADJ JJ Degree=Pos 15 amod _ _ 15 stack stack NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = Our main theorem states that the flow of a vector field on a compact proper differentiable stack exists and is unique up to a uniquely determined 2 - cell. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 4 poss _ _ 2 main main ADJ JJ Degree=Pos 4 amod _ _ 3 theorem theorem ADJ JJ Degree=Pos 4 amod _ _ 4 states state NOUN NNS Number=Plur 0 ROOT _ _ 5 that that SCONJ IN _ 20 mark _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 flow flow NOUN NN Number=Sing 20 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 vector vector NOUN NN Number=Sing 11 compound _ _ 11 field field NOUN NN Number=Sing 8 pobj _ _ 12 on on ADP IN _ 7 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 14 compact compact ADJ JJ Degree=Pos 18 amod _ _ 15 proper proper ADJ JJ Degree=Pos 18 amod _ _ 16 differentiable differentiable ADJ JJ Degree=Pos 17 amod _ _ 17 stack stack NOUN NN Number=Sing 18 compound _ _ 18 exists exist NOUN NNS Number=Plur 12 pobj _ _ 19 and and CCONJ CC ConjType=Cmp 7 cc _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 acl _ _ 21 unique unique ADJ JJ Degree=Pos 20 acomp _ _ 22 up up ADP IN _ 21 prep _ _ 23 to to ADP IN _ 22 prep _ _ 24 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 25 uniquely uniquely ADV RB _ 26 advmod _ _ 26 determined determined ADJ JJ Degree=Pos 29 amod _ _ 27 2 2 NUM CD NumType=Card 29 nummod _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 cell cell NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = This extends the usual result on the existence and uniqueness of flows on a manifold as well as the author's existing results for orbifolds. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 extends extend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 usual usual ADJ JJ Degree=Pos 5 amod _ _ 5 result result NOUN NN Number=Sing 2 dobj _ _ 6 on on ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 existence existence NOUN NN Number=Sing 6 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 uniqueness uniqueness NOUN NN Number=Sing 8 conj _ _ 11 of of ADP IN _ 8 prep _ _ 12 flows flow NOUN NNS Number=Plur 11 pobj _ _ 13 on on ADP IN _ 2 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 manifold manifold ADJ JJ Degree=Pos 13 pobj _ _ 16 as as ADV RB _ 18 advmod _ _ 17 well well ADV RB Degree=Pos 18 advmod _ _ 18 as as ADP IN _ 2 cc _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 author author NOUN NN Number=Sing 23 poss _ SpaceAfter=No 21 's 's PART POS _ 20 case _ _ 22 existing exist VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 23 amod _ _ 23 results result NOUN NNS Number=Plur 2 dobj _ _ 24 for for ADP IN _ 23 prep _ _ 25 orbifolds orbifold NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = It sets the scene for a discussion of Morse Theory on a general proper stack and also paves the way for the categorification of other key aspects of differential geometry such as the tangent bundle and the Lie algebra of vector fields. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 sets set VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 scene scene NOUN NN Number=Sing 2 dobj _ _ 5 for for ADP IN _ 2 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 discussion discussion NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 Morse Morse PROPN NNP Number=Sing 10 compound _ _ 10 Theory Theory PROPN NNP Number=Sing 8 pobj _ _ 11 on on ADP IN _ 7 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 13 general general ADJ JJ Degree=Pos 15 amod _ _ 14 proper proper ADJ JJ Degree=Pos 15 amod _ _ 15 stack stack NOUN NN Number=Sing 11 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 2 cc _ _ 17 also also ADV RB _ 18 advmod _ _ 18 paves pave VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 conj _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 way way NOUN NN Number=Sing 18 dobj _ _ 21 for for ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 categorification categorification NOUN NN Number=Sing 21 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 other other ADJ JJ Degree=Pos 27 amod _ _ 26 key key ADJ JJ Degree=Pos 27 amod _ _ 27 aspects aspect NOUN NNS Number=Plur 24 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 differential differential ADJ JJ Degree=Pos 30 amod _ _ 30 geometry geometry NOUN NN Number=Sing 28 pobj _ _ 31 such such ADJ JJ Degree=Pos 32 amod _ _ 32 as as ADP IN _ 30 prep _ _ 33 the the DET DT Definite=Def|PronType=Art 35 det _ _ 34 tangent tangent NOUN NN Number=Sing 35 compound _ _ 35 bundle bundle NOUN NN Number=Sing 32 pobj _ _ 36 and and CCONJ CC ConjType=Cmp 35 cc _ _ 37 the the DET DT Definite=Def|PronType=Art 39 det _ _ 38 Lie lie NOUN NN Number=Sing 39 compound _ _ 39 algebra algebra NOUN NN Number=Sing 35 conj _ _ 40 of of ADP IN _ 39 prep _ _ 41 vector vector NOUN NN Number=Sing 42 compound _ _ 42 fields field NOUN NNS Number=Plur 40 pobj _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 326 # sent_id = 1 # text = With the representable $ T $ - categories, we form a connection between two concepts, both owed to Burroni: on the one hand, the one of $ T $ - category, and, on the other hand, the one of $ T $ - lax algebra. 1 With with ADP IN _ 9 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 6 det _ _ 3 representable representable ADJ JJ Degree=Pos 6 amod _ _ 4 $ T $ $ t $ SYM $ _ 6 nummod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 categories category NOUN NNS Number=Plur 1 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 9 punct _ _ 8 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 9 nsubj _ _ 9 form form VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 connection connection NOUN NN Number=Sing 9 dobj _ _ 12 between between ADP IN _ 11 prep _ _ 13 two two NUM CD NumType=Card 14 nummod _ _ 14 concepts concept NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 both both PRON DT _ 14 appos _ _ 17 owed owe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 acl _ _ 18 to to ADP IN _ 17 dative _ _ 19 Burroni Burroni PROPN NNP Number=Sing 18 pobj _ SpaceAfter=No 20 : : PUNCT : _ 9 punct _ _ 21 on on ADP IN _ 9 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 one one NUM CD NumType=Card 24 nummod _ _ 24 hand hand NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 21 punct _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 one one NUM CD NumType=Card 21 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 $ T $ $ t $ SYM $ _ 31 nmod _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 category category NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 27 punct _ _ 33 and and CCONJ CC ConjType=Cmp 27 cc _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 41 punct _ _ 35 on on ADP IN _ 41 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 38 det _ _ 37 other other ADJ JJ Degree=Pos 38 amod _ _ 38 hand hand NOUN NN Number=Sing 35 pobj _ SpaceAfter=No 39 , , PUNCT , PunctType=Comm 41 punct _ _ 40 the the DET DT Definite=Def|PronType=Art 41 det _ _ 41 one one NUM CD NumType=Card 21 pobj _ _ 42 of of ADP IN _ 41 prep _ _ 43 $ T $ $ t $ SYM $ _ 45 quantmod _ _ 44 - - PUNCT HYPH PunctType=Dash 45 punct _ _ 45 lax lax VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 46 amod _ _ 46 algebra algebra NOUN NN Number=Sing 42 pobj _ SpaceAfter=No 47 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 2 # text = Both of them generalise the concept of algebra on a monad $ T $ . 1 Both both PRON DT _ 4 nsubj _ _ 2 of of ADP IN _ 1 prep _ _ 3 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 2 pobj _ _ 4 generalise generalise VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 concept concept NOUN NN Number=Sing 4 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 algebra algebra NOUN NN Number=Sing 7 pobj _ _ 9 on on ADP IN _ 4 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 monad monad NOUN NNS Number=Plur 9 pobj _ _ 12 $ T $ $ t $ SYM $ _ 11 appos _ _ 13 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 327 # sent_id = 1 # text = Let $ G $ be a non - finite profinite group and let $ G - Sets_{df} $ be the canonical site of finite discrete $ G $ - sets. 1 Let let VERB VB VerbForm=Inf 0 ROOT _ _ 2 $ G $ $ g $ SYM $ _ 1 dobj _ _ 3 be be AUX VB VerbForm=Inf 1 ccomp _ _ 4 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 5 non non ADJ JJ Degree=Pos 9 amod _ _ 6 - - ADJ JJ Degree=Pos 9 punct _ _ 7 finite finite ADJ JJ Degree=Pos 9 amod _ _ 8 profinite profinite NOUN NN Number=Sing 9 compound _ _ 9 group group NOUN NN Number=Sing 3 attr _ _ 10 and and CCONJ CC ConjType=Cmp 3 cc _ _ 11 let let VERB VB VerbForm=Inf 3 conj _ _ 12 $ G - Sets_{df} $ $ g - sets_{df} $ SYM $ _ 13 nsubj _ _ 13 be be AUX VB VerbForm=Inf 11 ccomp _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 canonical canonical ADJ JJ Degree=Pos 16 amod _ _ 16 site site NOUN NN Number=Sing 13 attr _ _ 17 of of ADP IN _ 16 prep _ _ 18 finite finite PROPN NNP Number=Sing 19 compound _ _ 19 discrete discrete NOUN NN Number=Sing 17 pobj _ _ 20 $ G $ $ g $ SYM $ _ 22 compound _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 sets set NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = Then the category $ R^+_G $ , defined by Devinatz and Hopkins, is the category obtained by considering $ G - Sets_{df} $ together with the profinite $ G $ - space $ G $ itself, with morphisms being continuous $ G $ - equivariant maps. 1 Then then ADV RB PronType=Dem 12 advmod _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 category category NOUN NN Number=Sing 12 nsubj _ _ 4 $ R^+_G $ $ r^+_g $ SYM $ _ 3 nummod _ _ 5 , , PUNCT , PunctType=Comm 3 punct _ _ 6 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 acl _ _ 7 by by ADP IN _ 6 agent _ _ 8 Devinatz Devinatz PROPN NNP Number=Sing 7 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 Hopkins Hopkins PROPN NNP Number=Sing 8 conj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 3 punct _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 category category NOUN NN Number=Sing 12 attr _ _ 15 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 acl _ _ 16 by by ADP IN _ 15 prep _ _ 17 considering consider VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 pcomp _ _ 18 $ G - Sets_{df} $ $ g - sets_{df} $ SYM $ _ 17 dobj _ _ 19 together together ADV RB _ 20 advmod _ _ 20 with with ADP IN _ 17 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 profinite profinite NOUN NN Number=Sing 20 pobj _ _ 23 $ G $ $ g $ SYM $ _ 25 compound _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 space space NOUN NN Number=Sing 20 pobj _ _ 26 $ G $ $ g $ SYM $ _ 27 nmod _ _ 27 itself itself PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs|Reflex=Yes 25 appos _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 14 punct _ _ 29 with with ADP IN _ 14 prep _ _ 30 morphisms morphism NOUN NNS Number=Plur 31 nsubj _ _ 31 being be AUX VBG VerbForm=Ger 29 pcomp _ _ 32 continuous continuous ADJ JJ Degree=Pos 36 amod _ _ 33 $ G $ $ g $ SYM $ _ 35 advmod _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 equivariant equivariant ADJ JJ Degree=Pos 36 amod _ _ 36 maps map NOUN NNS Number=Plur 31 attr _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 3 # text = We show that $ R^+_G $ is a site when equipped with the pretopology of epimorphic covers. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 5 mark _ _ 4 $ R^+_G $ $ r^+_g $ SYM $ _ 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 site site NOUN NN Number=Sing 5 attr _ _ 8 when when SCONJ WRB _ 9 advmod _ _ 9 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 advcl _ _ 10 with with ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 pretopology pretopology NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 epimorphic epimorphic ADJ JJ Degree=Pos 15 amod _ _ 15 covers cover NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We point out that presheaves of spectra on $ R^+_G $ are an efficient way of organizing the data that is obtained by taking the homotopy fixed points of a continuous $ G $ - spectrum with respect to the open subgroups of $ G $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 point point VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 out out ADP RP _ 2 prt _ _ 4 that that SCONJ IN _ 10 mark _ _ 5 presheaves presheave NOUN NNS Number=Plur 10 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 spectra spectra PROPN NNP Number=Sing 6 pobj _ _ 8 on on ADP IN _ 5 prep _ _ 9 $ R^+_G $ $ r^+_g $ SYM $ _ 8 pobj _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 11 an an DET DT Definite=Ind|PronType=Art 13 det _ _ 12 efficient efficient ADJ JJ Degree=Pos 13 amod _ _ 13 way way NOUN NN Number=Sing 10 attr _ _ 14 of of ADP IN _ 13 prep _ _ 15 organizing organize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 pcomp _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 data datum NOUN NNS Number=Plur 15 dobj _ _ 18 that that PRON WDT PronType=Rel 20 nsubjpass _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 auxpass _ _ 20 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 relcl _ _ 21 by by ADP IN _ 20 agent _ _ 22 taking take VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 21 pcomp _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 homotopy homotopy NOUN NN Number=Sing 22 dobj _ _ 25 fixed fix VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 amod _ _ 26 points point NOUN NNS Number=Plur 22 dobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 29 continuous continuous ADJ JJ Degree=Pos 32 amod _ _ 30 $ G $ $ g $ SYM $ _ 32 dep _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 spectrum spectrum NOUN NN Number=Sing 27 pobj _ _ 33 with with ADP IN _ 32 prep _ _ 34 respect respect NOUN NN Number=Sing 33 pobj _ _ 35 to to ADP IN _ 34 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 38 det _ _ 37 open open ADJ JJ Degree=Pos 38 amod _ _ 38 subgroups subgroup NOUN NNS Number=Plur 35 pobj _ _ 39 of of ADP IN _ 38 prep _ _ 40 $ G $ $ g $ SYM $ _ 39 pobj _ _ 41 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = Additionally, utilizing the result that $ R^+_G $ is a site, we describe various model category structures on the category of presheaves of spectra on $ R^+_G $ and make some observations about them. 1 Additionally additionally ADV RB _ 13 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 13 punct _ _ 3 utilizing utilize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 advcl _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 result result NOUN NN Number=Sing 3 dobj _ _ 6 that that SCONJ IN _ 8 mark _ _ 7 $ R^+_G $ $ r^+_g $ SYM $ _ 8 nsubj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 acl _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 site site NOUN NN Number=Sing 8 attr _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 13 punct _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 various various ADJ JJ Degree=Pos 17 amod _ _ 15 model model NOUN NN Number=Sing 17 compound _ _ 16 category category NOUN NN Number=Sing 17 compound _ _ 17 structures structure NOUN NNS Number=Plur 13 dobj _ _ 18 on on ADP IN _ 13 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 category category NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 presheaves presheave NOUN NNS Number=Plur 21 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 spectra spectra PROPN NNP Number=Sing 23 pobj _ _ 25 on on ADP IN _ 13 prep _ _ 26 $ R^+_G $ $ r^+_g $ SYM $ _ 25 pobj _ _ 27 and and CCONJ CC ConjType=Cmp 13 cc _ _ 28 make make VERB VB VerbForm=Inf 13 conj _ _ 29 some some DET DT _ 30 det _ _ 30 observations observation NOUN NNS Number=Plur 28 dobj _ _ 31 about about ADP IN _ 30 prep _ _ 32 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 31 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # doc_id = 328 # sent_id = 1 # text = The purpose of this paper is to extend the results of another from the case of abelian groups (or $ Z $ - modules) to that of modules over a large class of not necessarily commutative rings. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 purpose purpose NOUN NN Number=Sing 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 paper paper NOUN NN Number=Sing 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 to to PART TO _ 8 aux _ _ 8 extend extend VERB VB VerbForm=Inf 6 xcomp _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 results result NOUN NNS Number=Plur 8 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 another another PRON DT _ 11 pobj _ _ 13 from from ADP IN _ 8 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 case case NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 abelian abelian ADJ JJ Degree=Pos 18 compound _ _ 18 groups group NOUN NNS Number=Plur 16 pobj _ _ 19 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 18 punct _ SpaceAfter=No 20 or or CCONJ CC ConjType=Cmp 18 cc _ _ 21 $ Z $ $ z $ SYM $ _ 23 compound _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 modules module NOUN NNS Number=Plur 18 conj _ SpaceAfter=No 24 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 18 punct _ _ 25 to to ADP IN _ 8 prep _ _ 26 that that PRON DT Number=Sing|PronType=Dem 25 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 modules module NOUN NNS Number=Plur 27 pobj _ _ 29 over over ADP IN _ 28 prep _ _ 30 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 31 large large ADJ JJ Degree=Pos 32 amod _ _ 32 class class NOUN NN Number=Sing 29 pobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 not not PART RB Polarity=Neg 33 neg _ _ 35 necessarily necessarily ADV RB _ 36 advmod _ _ 36 commutative commutative ADJ JJ Degree=Pos 37 amod _ _ 37 rings ring NOUN NNS Number=Plur 8 dobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 329 # sent_id = 1 # text = This paper continues the work of our previous papers. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 continues continue VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 work work NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 9 poss _ _ 8 previous previous ADJ JJ Degree=Pos 9 amod _ _ 9 papers paper NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = We define eventually cyclic Boolean flows and the eventually cyclic spectrum of a Boolean flow. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 eventually eventually ADV RB _ 4 advmod _ _ 4 cyclic cyclic ADJ JJ Degree=Pos 6 amod _ _ 5 Boolean boolean ADJ JJ Degree=Pos 6 amod _ _ 6 flows flow NOUN NNS Number=Plur 2 dobj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 the the DET DT Definite=Def|PronType=Art 11 det _ _ 9 eventually eventually ADV RB _ 10 advmod _ _ 10 cyclic cyclic ADJ JJ Degree=Pos 11 amod _ _ 11 spectrum spectrum NOUN NN Number=Sing 6 conj _ _ 12 of of ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 Boolean boolean ADJ JJ Degree=Pos 15 amod _ _ 15 flow flow NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We show that this spectrum, as well as the spectra defined in our earlier papers, extend to parametrized flows on Stone spaces and on compact Hausdorff space when symbolic dynamics is used. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 18 mark _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 spectrum spectrum NOUN NN Number=Sing 18 nsubj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 as as ADV RB _ 9 advmod _ _ 8 well well ADV RB Degree=Pos 9 advmod _ _ 9 as as ADP IN _ 5 cc _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 spectra spectra NOUN NN Number=Sing 5 conj _ _ 12 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 acl _ _ 13 in in ADP IN _ 12 prep _ _ 14 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 16 poss _ _ 15 earlier early ADJ JJR Degree=Cmp 16 amod _ _ 16 papers paper NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 18 punct _ _ 18 extend extend VERB VB VerbForm=Inf 2 ccomp _ _ 19 to to ADP IN _ 18 prep _ _ 20 parametrized parametrized ADJ JJ Degree=Pos 21 amod _ _ 21 flows flow NOUN NNS Number=Plur 19 pobj _ _ 22 on on ADP IN _ 21 prep _ _ 23 Stone Stone PROPN NNP Number=Sing 24 compound _ _ 24 spaces space NOUN NNS Number=Plur 22 pobj _ _ 25 and and CCONJ CC ConjType=Cmp 19 cc _ _ 26 on on ADP IN _ 19 conj _ _ 27 compact compact ADJ JJ Degree=Pos 29 amod _ _ 28 Hausdorff Hausdorff PROPN NNP Number=Sing 29 compound _ _ 29 space space NOUN NN Number=Sing 26 pobj _ _ 30 when when SCONJ WRB _ 34 advmod _ _ 31 symbolic symbolic ADJ JJ Degree=Pos 32 amod _ _ 32 dynamics dynamic NOUN NNS Number=Plur 34 nsubjpass _ _ 33 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 34 auxpass _ _ 34 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 advcl _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = An example shows that the cyclic spectrum for a parameterized flow is sometimes over a non - spatial locale. 1 An an DET DT Definite=Ind|PronType=Art 2 det _ _ 2 example example NOUN NN Number=Sing 3 nsubj _ _ 3 shows show VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 7 mark _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 cyclic cyclic NOUN NN Number=Sing 7 nsubj _ _ 7 spectrum spectrum NOUN NN Number=Sing 3 ccomp _ _ 8 for for ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 parameterized parameterized ADJ JJ Degree=Pos 11 amod _ _ 11 flow flow NOUN NN Number=Sing 8 pobj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 13 sometimes sometimes ADV RB _ 12 advmod _ _ 14 over over ADP IN _ 12 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 16 non non ADJ JJ Degree=Pos 19 amod _ _ 17 - - ADJ JJ Degree=Pos 19 amod _ _ 18 spatial spatial ADJ JJ Degree=Pos 19 amod _ _ 19 locale locale NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 330 # sent_id = 1 # text = We axiomatically define (pre - )Hilbert categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 axiomatically axiomatically ADV RB _ 3 advmod _ _ 3 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 9 punct _ SpaceAfter=No 5 pre pre X FW Foreign=Yes 9 nmod _ _ 6 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 7 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 9 punct _ SpaceAfter=No 8 Hilbert Hilbert PROPN NNP Number=Sing 9 amod _ _ 9 categories category NOUN NNS Number=Plur 3 dobj _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = The axioms resemble those for monoidal Abelian categories with the addition of an involutive functor. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 axioms axiom NOUN NNS Number=Plur 3 nsubj _ _ 3 resemble resemble VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 those those PRON DT Number=Plur|PronType=Dem 3 dobj _ _ 5 for for ADP IN _ 4 prep _ _ 6 monoidal monoidal ADJ JJ Degree=Pos 8 amod _ _ 7 Abelian abelian ADJ JJ Degree=Pos 8 amod _ _ 8 categories category NOUN NNS Number=Plur 5 pobj _ _ 9 with with ADP IN _ 3 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 addition addition NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 an an DET DT Definite=Ind|PronType=Art 15 det _ _ 14 involutive involutive ADJ JJ Degree=Pos 15 amod _ _ 15 functor functor NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = We then prove embedding theorems: any locally small pre - Hilbert category whose monoidal unit is a simple generator embeds (weakly) monoidally into the category of pre - Hilbert spaces and adjointable maps, preserving adjoint morphisms and all finite (co)limits. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 embedding embed VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 xcomp _ _ 5 theorems theorem NOUN NNS Number=Plur 4 dobj _ SpaceAfter=No 6 : : PUNCT : _ 3 punct _ _ 7 any any DET DT _ 13 det _ _ 8 locally locally ADV RB _ 9 advmod _ _ 9 small small ADJ JJ Degree=Pos 13 amod _ _ 10 pre pre ADJ AFX Hyph=Yes 13 amod _ _ 11 - - ADJ JJ Degree=Pos 13 amod _ _ 12 Hilbert hilbert ADJ JJ Degree=Pos 13 amod _ _ 13 category category NOUN NN Number=Sing 3 dobj _ _ 14 whose whose DET WP$ Poss=Yes 16 poss _ _ 15 monoidal monoidal ADJ JJ Degree=Pos 16 amod _ _ 16 unit unit NOUN NN Number=Sing 17 nsubj _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 relcl _ _ 18 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 19 simple simple ADJ JJ Degree=Pos 20 amod _ _ 20 generator generator NOUN NN Number=Sing 21 compound _ _ 21 embeds embed NOUN NNS Number=Plur 17 attr _ _ 22 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 21 punct _ SpaceAfter=No 23 weakly weakly ADJ JJ Degree=Pos 21 advmod _ SpaceAfter=No 24 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 21 punct _ _ 25 monoidally monoidally ADV RB _ 21 advmod _ _ 26 into into ADP IN _ 21 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 category category NOUN NN Number=Sing 26 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 pre pre ADJ JJ Degree=Pos 33 amod _ _ 31 - - ADJ JJ Degree=Pos 33 amod _ _ 32 Hilbert hilbert ADJ JJ Degree=Pos 33 amod _ _ 33 spaces space NOUN NNS Number=Plur 29 pobj _ _ 34 and and CCONJ CC ConjType=Cmp 33 cc _ _ 35 adjointable adjointable ADJ JJ Degree=Pos 36 amod _ _ 36 maps map NOUN NNS Number=Plur 33 conj _ SpaceAfter=No 37 , , PUNCT , PunctType=Comm 21 punct _ _ 38 preserving preserve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 17 advcl _ _ 39 adjoint adjoint NOUN NN Number=Sing 40 compound _ _ 40 morphisms morphism NOUN NNS Number=Plur 38 dobj _ _ 41 and and CCONJ CC ConjType=Cmp 40 cc _ _ 42 all all DET DT _ 43 det _ _ 43 finite finite PROPN NNP Number=Sing 40 conj _ _ 44 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 45 punct _ SpaceAfter=No 45 co)limits co)limit NOUN NNS Number=Plur 43 appos _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = An intermediate result that is important in its own right is that the scalars in such a category necessarily form an involutive field. 1 An an DET DT Definite=Ind|PronType=Art 3 det _ _ 2 intermediate intermediate ADJ JJ Degree=Pos 3 amod _ _ 3 result result NOUN NN Number=Sing 11 nsubj _ _ 4 that that PRON WDT PronType=Rel 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 relcl _ _ 6 important important ADJ JJ Degree=Pos 5 acomp _ _ 7 in in ADP IN _ 5 prep _ _ 8 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 10 poss _ _ 9 own own ADJ JJ Degree=Pos 10 amod _ _ 10 right right NOUN NN Number=Sing 7 pobj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 that that SCONJ IN _ 20 mark _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 scalars scalar NOUN NNS Number=Plur 20 nsubj _ _ 15 in in ADP IN _ 14 prep _ _ 16 such such DET PDT _ 18 predet _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 category category NOUN NN Number=Sing 15 pobj _ _ 19 necessarily necessarily ADV RB _ 20 advmod _ _ 20 form form VERB VBP Tense=Pres|VerbForm=Fin 11 ccomp _ _ 21 an an DET DT Definite=Ind|PronType=Art 23 det _ _ 22 involutive involutive ADJ JJ Degree=Pos 23 amod _ _ 23 field field NOUN NN Number=Sing 20 dobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 5 # text = In case of a Hilbert category, the embedding extends to the category of Hilbert spaces and continuous linear maps. 1 In in ADP IN _ 10 prep _ _ 2 case case NOUN NN Number=Sing 1 pobj _ _ 3 of of ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 Hilbert Hilbert PROPN NNP Number=Sing 6 compound _ _ 6 category category NOUN NN Number=Sing 3 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 10 punct _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 embedding embed VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 amod _ _ 10 extends extend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 to to ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 category category NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 Hilbert Hilbert PROPN NNP Number=Sing 16 compound _ _ 16 spaces space NOUN NNS Number=Plur 14 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 continuous continuous ADJ JJ Degree=Pos 20 amod _ _ 19 linear linear ADJ JJ Degree=Pos 20 compound _ _ 20 maps map NOUN NNS Number=Plur 16 conj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 6 # text = The axioms for (pre - )Hilbert categories are weaker than the axioms found in other approaches to axiomatizing 2 - Hilbert spaces. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 axioms axiom NOUN NNS Number=Plur 10 nsubj _ _ 3 for for ADP IN _ 2 prep _ _ 4 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 3 punct _ SpaceAfter=No 5 pre pre X FW Foreign=Yes 3 intj _ _ 6 - - PUNCT HYPH PunctType=Dash 3 punct _ _ 7 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 3 punct _ SpaceAfter=No 8 Hilbert Hilbert PROPN NNP Number=Sing 9 amod _ _ 9 categories category NOUN NNS Number=Plur 3 pobj _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 weaker weak ADJ JJR Degree=Cmp 10 acomp _ _ 12 than than ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 axioms axiom NOUN NNS Number=Plur 12 pobj _ _ 15 found find VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 acl _ _ 16 in in ADP IN _ 15 prep _ _ 17 other other ADJ JJ Degree=Pos 18 amod _ _ 18 approaches approach NOUN NNS Number=Plur 16 pobj _ _ 19 to to ADP IN _ 18 prep _ _ 20 axiomatizing axiomatize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 19 pcomp _ _ 21 2 2 NUM CD NumType=Card 23 compound _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 Hilbert Hilbert PROPN NNP Number=Sing 24 compound _ _ 24 spaces space NOUN NNS Number=Plur 20 dobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 7 # text = Neither enrichment nor a complex base field is presupposed. 1 Neither neither PRON DT _ 2 preconj _ _ 2 enrichment enrichment NOUN NN Number=Sing 9 nsubjpass _ _ 3 nor nor CCONJ CC ConjType=Cmp 2 cc _ _ 4 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 5 complex complex ADJ JJ Degree=Pos 7 amod _ _ 6 base base NOUN NN Number=Sing 7 compound _ _ 7 field field NOUN NN Number=Sing 2 conj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 presupposed presuppose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 8 # text = A comparison to other approaches will be made in the introduction. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 comparison comparison NOUN NN Number=Sing 8 nsubjpass _ _ 3 to to ADP IN _ 2 prep _ _ 4 other other ADJ JJ Degree=Pos 5 amod _ _ 5 approaches approach NOUN NNS Number=Plur 3 pobj _ _ 6 will will AUX MD VerbForm=Fin 8 aux _ _ 7 be be AUX VB VerbForm=Inf 8 auxpass _ _ 8 made make VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 in in ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 introduction introduction NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # doc_id = 331 # sent_id = 1 # text = Distributive laws between monads (triples) were defined by Jon Beck in the 1960s. 1 Distributive distributive ADJ JJ Degree=Pos 9 advcl _ _ 2 laws law NOUN NNS Number=Plur 1 dobj _ _ 3 between between ADP IN _ 2 prep _ _ 4 monads monad NOUN NNS Number=Plur 3 pobj _ _ 5 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 4 punct _ SpaceAfter=No 6 triples triple NOUN NNS Number=Plur 4 appos _ SpaceAfter=No 7 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 4 punct _ _ 8 were be AUX VBD Mood=Ind|Tense=Past|VerbForm=Fin 9 auxpass _ _ 9 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 by by ADP IN _ 9 agent _ _ 11 Jon Jon PROPN NNP Number=Sing 12 compound _ _ 12 Beck Beck PROPN NNP Number=Sing 10 pobj _ _ 13 in in ADP IN _ 9 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 1960s 1960 NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 2 # text = They were generalized to monads in 2 - categories and noticed to be monads in a 2 - category of monads. 1 They they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 3 nsubjpass _ _ 2 were be AUX VBD Mood=Ind|Tense=Past|VerbForm=Fin 3 auxpass _ _ 3 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 to to ADP IN _ 3 prep _ _ 5 monads monad NOUN NNS Number=Plur 4 pobj _ _ 6 in in ADP IN _ 5 prep _ _ 7 2 2 NUM CD NumType=Card 9 nummod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 categories category NOUN NNS Number=Plur 6 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 3 cc _ _ 11 noticed notice VERB VBD Tense=Past|VerbForm=Fin 3 conj _ _ 12 to to PART TO _ 13 aux _ _ 13 be be AUX VB VerbForm=Inf 11 xcomp _ _ 14 monads monad NOUN NNS Number=Plur 13 attr _ _ 15 in in ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 17 2 2 NUM CD NumType=Card 19 nummod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 category category NOUN NN Number=Sing 15 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 monads monad NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = Mixed distributive laws are comonads in the 2 - category of monads; if the comonad has a right adjoint monad, the mate of a mixed distributive law is an ordinary distributive law. 1 Mixed mixed ADJ JJ Degree=Pos 3 amod _ _ 2 distributive distributive ADJ JJ Degree=Pos 3 amod _ _ 3 laws law NOUN NNS Number=Plur 4 nsubj _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 30 ccomp _ _ 5 comonads comonad NOUN NNS Number=Plur 4 attr _ _ 6 in in ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 10 det _ _ 8 2 2 NUM CD NumType=Card 10 nummod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 category category NOUN NN Number=Sing 6 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 monads monad NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 13 ; ; PUNCT : _ 30 punct _ _ 14 if if SCONJ IN _ 17 mark _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 comonad comonad NOUN NNS Number=Plur 17 nsubj _ _ 17 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 advcl _ _ 18 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 19 right right ADJ JJ Degree=Pos 21 amod _ _ 20 adjoint adjoint NOUN NN Number=Sing 21 compound _ _ 21 monad monad NOUN NNS Number=Plur 17 dobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 30 punct _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 mate mate NOUN NN Number=Sing 30 nsubj _ _ 25 of of ADP IN _ 24 prep _ _ 26 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 27 mixed mixed ADJ JJ Degree=Pos 28 amod _ _ 28 distributive distributive ADJ JJ Degree=Pos 29 amod _ _ 29 law law NOUN NN Number=Sing 25 pobj _ _ 30 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 31 an an DET DT Definite=Ind|PronType=Art 34 det _ _ 32 ordinary ordinary ADJ JJ Degree=Pos 34 amod _ _ 33 distributive distributive ADJ JJ Degree=Pos 34 amod _ _ 34 law law NOUN NN Number=Sing 30 attr _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 30 punct _ SpaceAfter=No # sent_id = 4 # text = Particular cases are the entwining operators between algebras and coalgebras. 1 Particular particular ADJ JJ Degree=Pos 2 amod _ _ 2 cases case NOUN NNS Number=Plur 3 nsubj _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 entwining entwine VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 amod _ _ 6 operators operator NOUN NNS Number=Plur 3 attr _ _ 7 between between ADP IN _ 6 prep _ _ 8 algebras algebra NOUN NNS Number=Plur 7 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 coalgebras coalgebras PROPN NNP Number=Sing 8 conj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = Motivated by work on weak entwining operators, we define and study a weak notion of distributive law for monads. 1 Motivated motivate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 advcl _ _ 2 by by ADP IN _ 1 agent _ _ 3 work work NOUN NN Number=Sing 2 pobj _ _ 4 on on ADP IN _ 3 prep _ _ 5 weak weak ADJ JJ Degree=Pos 7 amod _ _ 6 entwining entwining NOUN NN Number=Sing 7 amod _ _ 7 operators operator NOUN NNS Number=Plur 4 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 10 punct _ _ 9 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 10 nsubj _ _ 10 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 study study VERB VB VerbForm=Inf 10 conj _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 weak weak ADJ JJ Degree=Pos 15 amod _ _ 15 notion notion NOUN NN Number=Sing 12 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 distributive distributive ADJ JJ Degree=Pos 18 amod _ _ 18 law law NOUN NN Number=Sing 16 pobj _ _ 19 for for ADP IN _ 18 prep _ _ 20 monads monad NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 6 # text = In particular, each weak distributive law determines a wreath product monad (in the terminology of Lack and Street); this gives an advantage over the mixed case. 1 In in ADP IN _ 8 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 8 punct _ _ 4 each each DET DT _ 7 det _ _ 5 weak weak ADJ JJ Degree=Pos 7 amod _ _ 6 distributive distributive ADJ JJ Degree=Pos 7 amod _ _ 7 law law NOUN NN Number=Sing 8 nsubj _ _ 8 determines determine VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 ccomp _ _ 9 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 10 wreath wreath NOUN NN Number=Sing 11 compound _ _ 11 product product NOUN NN Number=Sing 12 compound _ _ 12 monad monad NOUN NNS Number=Plur 8 dobj _ _ 13 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 12 punct _ SpaceAfter=No 14 in in ADP IN _ 12 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 terminology terminology NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 Lack Lack PROPN NNP Number=Sing 17 pobj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 Street Street PROPN NNP Number=Sing 18 conj _ SpaceAfter=No 21 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 12 punct _ SpaceAfter=No 22 ; ; PUNCT : _ 24 punct _ _ 23 this this PRON DT Number=Sing|PronType=Dem 24 nsubj _ _ 24 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 25 an an DET DT Definite=Ind|PronType=Art 26 det _ _ 26 advantage advantage NOUN NN Number=Sing 24 dobj _ _ 27 over over ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 30 det _ _ 29 mixed mixed ADJ JJ Degree=Pos 30 amod _ _ 30 case case NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 24 punct _ SpaceAfter=No # doc_id = 332 # sent_id = 1 # text = We introduce the notion of elementary Seely category as a notion of categorical model of Elementary Linear Logic inspired from Seely's definition of models of Linear Logic. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 notion notion NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 elementary elementary ADJ JJ Degree=Pos 8 amod _ _ 7 Seely Seely PROPN NNP Number=Sing 8 compound _ _ 8 category category NOUN NN Number=Sing 5 pobj _ _ 9 as as ADP IN _ 2 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 notion notion NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 categorical categorical ADJ JJ Degree=Pos 14 amod _ _ 14 model model NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 Elementary Elementary PROPN NNP Number=Sing 18 compound _ _ 17 Linear Linear PROPN NNP Number=Sing 18 compound _ _ 18 Logic Logic PROPN NNP Number=Sing 15 pobj _ _ 19 inspired inspire VERB VBD Tense=Past|VerbForm=Fin 11 acl _ _ 20 from from ADP IN _ 19 prep _ _ 21 Seely Seely PROPN NNP Number=Sing 23 poss _ SpaceAfter=No 22 's 's PART POS _ 21 case _ _ 23 definition definition NOUN NN Number=Sing 20 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 models model NOUN NNS Number=Plur 24 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 Linear Linear PROPN NNP Number=Sing 28 compound _ _ 28 Logic Logic PROPN NNP Number=Sing 26 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = In order to deal with additive connectives in Elementary Linear Logic, we use the approach of Danos and Joinet. 1 In in ADP IN _ 14 prep _ _ 2 order order NOUN NN Number=Sing 1 pobj _ _ 3 to to PART TO _ 4 aux _ _ 4 deal deal VERB VB VerbForm=Inf 2 acl _ _ 5 with with ADP IN _ 4 prep _ _ 6 additive additive ADJ JJ Degree=Pos 7 amod _ _ 7 connectives connective NOUN NNS Number=Plur 5 pobj _ _ 8 in in ADP IN _ 7 prep _ _ 9 Elementary Elementary PROPN NNP Number=Sing 11 compound _ _ 10 Linear Linear PROPN NNP Number=Sing 11 compound _ _ 11 Logic Logic PROPN NNP Number=Sing 8 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 14 punct _ _ 13 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 14 nsubj _ _ 14 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 approach approach NOUN NN Number=Sing 14 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 Danos Danos PROPN NNP Number=Sing 17 pobj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 Joinet Joinet PROPN NNP Number=Sing 18 conj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 3 # text = From the categorical point of view, this requires us to go outside the usual interpretation of connectives by functors. 1 From from ADP IN _ 9 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 categorical categorical ADJ JJ Degree=Pos 4 amod _ _ 4 point point NOUN NN Number=Sing 1 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 view view NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 9 punct _ _ 8 this this PRON DT Number=Sing|PronType=Dem 9 nsubj _ _ 9 requires require VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 9 dobj _ _ 11 to to PART TO _ 12 aux _ _ 12 go go VERB VB VerbForm=Inf 9 xcomp _ _ 13 outside outside ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 usual usual ADJ JJ Degree=Pos 16 amod _ _ 16 interpretation interpretation NOUN NN Number=Sing 13 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 connectives connective NOUN NNS Number=Plur 17 pobj _ _ 19 by by ADP IN _ 12 prep _ _ 20 functors functor NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 4 # text = The $ clik $ connective is decomposed into a pre - connective $ sharp $ which is interpreted by a whole family of functors (generated by $ id $ , $ tens $ and $ with $ ). 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 $ clik $ $ clik $ SYM $ _ 3 nmod _ _ 3 connective connective ADJ JJ Degree=Pos 5 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 decomposed decompose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 into into ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 8 pre pre ADJ JJ Degree=Pos 11 amod _ _ 9 - - ADJ JJ Degree=Pos 11 punct _ _ 10 connective connective ADJ JJ Degree=Pos 11 amod _ _ 11 $ sharp $ $ sharp $ SYM $ _ 6 pobj _ _ 12 which which PRON WDT _ 14 nsubjpass _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 interpreted interpret VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 relcl _ _ 15 by by ADP IN _ 14 agent _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 whole whole ADJ JJ Degree=Pos 18 amod _ _ 18 family family NOUN NN Number=Sing 15 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 functors functor NOUN NNS Number=Plur 19 pobj _ _ 21 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 22 punct _ SpaceAfter=No 22 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 advcl _ _ 23 by by ADP IN _ 22 prep _ _ 24 $ id $ $ id $ SYM $ _ 23 pobj _ _ 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 $ tens $ $ tens $ SYM $ _ 22 dobj _ _ 27 and and CCONJ CC ConjType=Cmp 26 cc _ _ 28 $ with $ $ with $ SYM $ _ 26 conj _ _ 29 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 22 punct _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 5 # text = As an application, we prove the stratified coherent model and the obsessional coherent model to be elementary Seely categories and thus models of Elementary Linear Logic. 1 As as ADP IN _ 6 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 application application NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 10 det _ _ 8 stratified stratified ADJ JJ Degree=Pos 10 amod _ _ 9 coherent coherent ADJ JJ Degree=Pos 10 amod _ _ 10 model model NOUN NN Number=Sing 6 dobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 the the DET DT Definite=Def|PronType=Art 15 det _ _ 13 obsessional obsessional ADJ JJ Degree=Pos 15 amod _ _ 14 coherent coherent ADJ JJ Degree=Pos 15 amod _ _ 15 model model NOUN NN Number=Sing 10 conj _ _ 16 to to PART TO _ 17 aux _ _ 17 be be AUX VB VerbForm=Inf 6 xcomp _ _ 18 elementary elementary ADJ JJ Degree=Pos 20 amod _ _ 19 Seely Seely PROPN NNP Number=Sing 20 amod _ _ 20 categories category NOUN NNS Number=Plur 17 attr _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 thus thus ADV RB _ 23 advmod _ _ 23 models model NOUN NNS Number=Plur 20 conj _ _ 24 of of ADP IN _ 23 prep _ _ 25 Elementary Elementary PROPN NNP Number=Sing 27 compound _ _ 26 Linear Linear PROPN NNP Number=Sing 27 compound _ _ 27 Logic Logic PROPN NNP Number=Sing 24 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 333 # sent_id = 1 # text = In this paper, we consider an enriched orthogonality for classes of spaces, with respect to groupoids, simplicial sets and spaces themselves. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 8 enriched enriched ADJ JJ Degree=Pos 9 amod _ _ 9 orthogonality orthogonality NOUN NN Number=Sing 6 dobj _ _ 10 for for ADP IN _ 9 prep _ _ 11 classes class NOUN NNS Number=Plur 10 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 spaces space NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 9 punct _ _ 15 with with ADP IN _ 6 prep _ _ 16 respect respect NOUN NN Number=Sing 15 pobj _ _ 17 to to ADP IN _ 16 prep _ _ 18 groupoids groupoid NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 simplicial simplicial ADJ JJ Degree=Pos 21 amod _ _ 21 sets set NOUN NNS Number=Plur 18 conj _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 spaces space VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 21 conj _ _ 24 themselves themselves PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs|Reflex=Yes 23 dobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = This point of view allows one to characterize homotopy equivalences, shape and strong shape equivalences. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 point point NOUN NN Number=Sing 5 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 view view NOUN NN Number=Sing 3 pobj _ _ 5 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 one one PRON PRP PronType=Prs 8 nsubj _ _ 7 to to PART TO _ 8 aux _ _ 8 characterize characterize VERB VB VerbForm=Inf 5 ccomp _ _ 9 homotopy homotopy NOUN NN Number=Sing 10 compound _ _ 10 equivalences equivalence NOUN NNS Number=Plur 8 dobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 shape shape NOUN NN Number=Sing 10 conj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 strong strong ADJ JJ Degree=Pos 16 amod _ _ 15 shape shape NOUN NN Number=Sing 16 compound _ _ 16 equivalences equivalence NOUN NNS Number=Plur 12 conj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = We show that there exists a class of spaces, properly containing ANR - spaces, for which shape and strong shape equivalences coincide. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 5 mark _ _ 4 there there PRON EX _ 5 expl _ _ 5 exists exist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 class class NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 spaces space NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 5 punct _ _ 11 properly properly ADV RB _ 12 advmod _ _ 12 containing contain VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 advcl _ _ 13 ANR ANR PROPN NNP Number=Sing 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 spaces space NOUN NNS Number=Plur 12 dobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 for for ADP IN _ 24 prep _ _ 18 which which PRON WDT _ 17 pobj _ _ 19 shape shape NOUN NN Number=Sing 17 pobj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 strong strong ADJ JJ Degree=Pos 23 amod _ _ 22 shape shape NOUN NN Number=Sing 23 compound _ _ 23 equivalences equivalence NOUN NNS Number=Plur 19 conj _ _ 24 coincide coincide NOUN NN Number=Sing 15 relcl _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = For such a class of spaces homotopy orthogonality implies enriched orthogonality. 1 For for ADP IN _ 9 prep _ _ 2 such such DET PDT _ 4 predet _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 class class NOUN NN Number=Sing 8 nmod _ _ 5 of of ADP IN _ 4 prep _ _ 6 spaces space NOUN NNS Number=Plur 5 pobj _ _ 7 homotopy homotopy PROPN NNP Number=Sing 8 compound _ _ 8 orthogonality orthogonality NOUN NN Number=Sing 9 nsubj _ _ 9 implies imply VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 enriched enriched ADJ JJ Degree=Pos 11 amod _ _ 11 orthogonality orthogonality NOUN NN Number=Sing 9 dobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 334 # sent_id = 1 # text = Higher Homotopy van Kampen Theorems allow some colimit calculations of certain homotopical invariants of glued spaces. 1 Higher high ADJ JJR Degree=Cmp 3 compound _ _ 2 Homotopy Homotopy PROPN NNP Number=Sing 3 compound _ _ 3 van van PROPN NNP Number=Sing 5 compound _ _ 4 Kampen Kampen PROPN NNP Number=Sing 5 compound _ _ 5 Theorems Theorems PROPN NNP Number=Sing 6 nsubj _ _ 6 allow allow VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 some some DET DT _ 9 det _ _ 8 colimit colimit NOUN NN Number=Sing 9 compound _ _ 9 calculations calculation NOUN NNS Number=Plur 6 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 certain certain ADJ JJ Degree=Pos 13 amod _ _ 12 homotopical homotopical ADJ JJ Degree=Pos 13 amod _ _ 13 invariants invariant NOUN NNS Number=Plur 10 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 glued glued ADJ JJ Degree=Pos 16 amod _ _ 16 spaces space NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = One corollary is to describe homotopical excision in critical dimensions in terms of induced modules and crossed modules over groupoids. 1 One one NUM CD NumType=Card 2 nummod _ _ 2 corollary corollary NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 to to PART TO _ 5 aux _ _ 5 describe describe VERB VB VerbForm=Inf 3 xcomp _ _ 6 homotopical homotopical ADJ JJ Degree=Pos 7 amod _ _ 7 excision excision NOUN NN Number=Sing 5 dobj _ _ 8 in in ADP IN _ 5 prep _ _ 9 critical critical ADJ JJ Degree=Pos 10 amod _ _ 10 dimensions dimension NOUN NNS Number=Plur 8 pobj _ _ 11 in in ADP IN _ 5 prep _ _ 12 terms term NOUN NNS Number=Plur 11 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 induced induced ADJ JJ Degree=Pos 15 amod _ _ 15 modules module NOUN NNS Number=Plur 13 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 5 cc _ _ 17 crossed cross VERB VBD Tense=Past|VerbForm=Fin 5 conj _ _ 18 modules module NOUN NNS Number=Plur 17 dobj _ _ 19 over over ADP IN _ 18 prep _ _ 20 groupoids groupoid NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = This paper shows how fibred and cofibred categories give an overall context for discussing and computing such constructions, allowing one result to cover many cases. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 shows show VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 how how SCONJ WRB _ 5 advmod _ _ 5 fibred fibre VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 cofibred cofibre VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 conj _ _ 8 categories category NOUN NNS Number=Plur 9 nsubj _ _ 9 give give VERB VBP Tense=Pres|VerbForm=Fin 3 ccomp _ _ 10 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 11 overall overall ADJ JJ Degree=Pos 12 amod _ _ 12 context context NOUN NN Number=Sing 9 dobj _ _ 13 for for ADP IN _ 12 prep _ _ 14 discussing discuss VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 pcomp _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 computing compute VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 conj _ _ 17 such such ADJ JJ Degree=Pos 18 amod _ _ 18 constructions construction NOUN NNS Number=Plur 16 dobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 9 punct _ _ 20 allowing allow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 advcl _ _ 21 one one NUM CD NumType=Card 22 nummod _ _ 22 result result NOUN NN Number=Sing 20 dobj _ _ 23 to to PART TO _ 24 aux _ _ 24 cover cover VERB VB VerbForm=Inf 20 advcl _ _ 25 many many ADJ JJ Degree=Pos 26 amod _ _ 26 cases case NOUN NNS Number=Plur 24 dobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = A useful general result is that the inclusion of a fibre of a fibred category preserves connected colimits. 1 A a DET DT Definite=Ind|PronType=Art 4 det _ _ 2 useful useful ADJ JJ Degree=Pos 4 amod _ _ 3 general general ADJ JJ Degree=Pos 4 amod _ _ 4 result result NOUN NN Number=Sing 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 that that SCONJ IN _ 16 mark _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 inclusion inclusion NOUN NN Number=Sing 16 nsubj _ _ 9 of of ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 fibre fibre NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 fibred fibred ADJ JJ Degree=Pos 15 amod _ _ 15 category category NOUN NN Number=Sing 12 pobj _ _ 16 preserves preserve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 ccomp _ _ 17 connected connected ADJ JJ Degree=Pos 18 amod _ _ 18 colimits colimit NOUN NNS Number=Plur 16 dobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 5 # text = The main homotopical applications are to pairs of spaces with several base points; we also describe briefly applications to triads. 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 main main ADJ JJ Degree=Pos 4 amod _ _ 3 homotopical homotopical ADJ JJ Degree=Pos 4 amod _ _ 4 applications application NOUN NNS Number=Plur 5 nsubj _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 17 ccomp _ _ 6 to to ADP IN _ 5 prep _ _ 7 pairs pair NOUN NNS Number=Plur 6 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 spaces space NOUN NNS Number=Plur 8 pobj _ _ 10 with with ADP IN _ 9 prep _ _ 11 several several ADJ JJ Degree=Pos 13 amod _ _ 12 base base NOUN NN Number=Sing 13 compound _ _ 13 points point NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 14 ; ; PUNCT : _ 17 punct _ _ 15 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 17 nsubj _ _ 16 also also ADV RB _ 17 advmod _ _ 17 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 18 briefly briefly NOUN NN Number=Sing 19 compound _ _ 19 applications application NOUN NNS Number=Plur 17 dobj _ _ 20 to to ADP IN _ 19 prep _ _ 21 triads triad NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # doc_id = 335 # sent_id = 1 # text = The state space of a machine admits the structure of time. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 state state NOUN NN Number=Sing 3 compound _ _ 3 space space NOUN NN Number=Sing 7 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 machine machine NOUN NN Number=Sing 4 pobj _ _ 7 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 structure structure NOUN NN Number=Sing 7 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 time time NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 2 # text = For example, the geometric realization of a precubical set, a generalization of an unlabeled asynchronous transition system, admits a ``local preorder'' encoding control flow. 1 For for ADP IN _ 21 prep _ _ 2 example example NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 21 punct _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 geometric geometric ADJ JJ Degree=Pos 6 amod _ _ 6 realization realization NOUN NN Number=Sing 21 nsubj _ _ 7 of of ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 precubical precubical ADJ JJ Degree=Pos 10 amod _ _ 10 set set NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 generalization generalization NOUN NN Number=Sing 10 appos _ _ 14 of of ADP IN _ 13 prep _ _ 15 an an DET DT Definite=Ind|PronType=Art 19 det _ _ 16 unlabeled unlabeled ADJ JJ Degree=Pos 19 amod _ _ 17 asynchronous asynchronous ADJ JJ Degree=Pos 19 amod _ _ 18 transition transition NOUN NN Number=Sing 19 compound _ _ 19 system system NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 6 punct _ _ 21 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 22 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 23 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 26 punct _ SpaceAfter=No 24 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 26 punct _ SpaceAfter=No 25 local local ADJ JJ Degree=Pos 26 amod _ _ 26 preorder preorder NOUN NN Number=Sing 21 dobj _ SpaceAfter=No 27 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 26 punct _ _ 28 encoding encode VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 26 acl _ _ 29 control control NOUN NN Number=Sing 30 compound _ _ 30 flow flow NOUN NN Number=Sing 28 dobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 21 punct _ SpaceAfter=No # sent_id = 3 # text = In the case where time does not loop, the ``locally preordered'' state space splits into causally distinct components. 1 In in ADP IN _ 18 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 case case NOUN NN Number=Sing 1 pobj _ _ 4 where where SCONJ WRB _ 8 advmod _ _ 5 time time NOUN NN Number=Sing 8 nsubj _ _ 6 does do AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 aux _ _ 7 not not PART RB Polarity=Neg 8 neg _ _ 8 loop loop VERB VB VerbForm=Inf 3 relcl _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 18 punct _ _ 10 the the DET DT Definite=Def|PronType=Art 18 det _ _ 11 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 18 punct _ SpaceAfter=No 12 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 18 punct _ SpaceAfter=No 13 locally locally ADV RB _ 14 advmod _ _ 14 preordered preordere VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 amod _ SpaceAfter=No 15 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 18 punct _ _ 16 state state NOUN NN Number=Sing 17 compound _ _ 17 space space NOUN NN Number=Sing 18 compound _ _ 18 splits split NOUN NNS Number=Plur 0 ROOT _ _ 19 into into ADP IN _ 18 prep _ _ 20 causally causally ADV RB _ 21 advmod _ _ 21 distinct distinct ADJ JJ Degree=Pos 22 amod _ _ 22 components component NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # sent_id = 4 # text = The set of such components often gives a computable invariant of machine behavior. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 set set NOUN NN Number=Sing 7 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 such such ADJ JJ Degree=Pos 5 amod _ _ 5 components component NOUN NNS Number=Plur 3 pobj _ _ 6 often often ADV RB _ 7 advmod _ _ 7 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 computable computable ADJ JJ Degree=Pos 10 amod _ _ 10 invariant invariant NOUN NN Number=Sing 7 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 machine machine NOUN NN Number=Sing 13 compound _ _ 13 behavior behavior NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 5 # text = In the general case, no such meaningful partition could exist. 1 In in ADP IN _ 11 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 general general ADJ JJ Degree=Pos 4 amod _ _ 4 case case NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 11 punct _ _ 6 no no DET DT _ 9 det _ _ 7 such such ADJ JJ Degree=Pos 9 amod _ _ 8 meaningful meaningful ADJ JJ Degree=Pos 9 amod _ _ 9 partition partition NOUN NN Number=Sing 11 nsubj _ _ 10 could could AUX MD VerbForm=Fin 11 aux _ _ 11 exist exist VERB VB VerbForm=Inf 0 ROOT _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 6 # text = However, as we show in this note, the locally preordered geometric realization of a precubical set admits a ``locally monotone'' covering from a state space in which time does not loop. 1 However however ADV RB _ 19 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 19 punct _ _ 3 as as SCONJ IN _ 5 mark _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 show show VERB VBP Tense=Pres|VerbForm=Fin 19 advcl _ _ 6 in in ADP IN _ 5 prep _ _ 7 this this DET DT Number=Sing|PronType=Dem 8 det _ _ 8 note note NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 19 punct _ _ 10 the the DET DT Definite=Def|PronType=Art 14 det _ _ 11 locally locally ADV RB _ 12 advmod _ _ 12 preordered preordere VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 13 geometric geometric ADJ JJ Degree=Pos 14 amod _ _ 14 realization realization NOUN NN Number=Sing 19 nsubj _ _ 15 of of ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 precubical precubical ADJ JJ Degree=Pos 18 amod _ _ 18 set set NOUN NN Number=Sing 15 pobj _ _ 19 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 20 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 21 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 24 punct _ SpaceAfter=No 22 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 24 punct _ SpaceAfter=No 23 locally locally ADV RB _ 24 advmod _ _ 24 monotone monotone ADJ JJ Degree=Pos 19 dobj _ SpaceAfter=No 25 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 24 punct _ _ 26 covering cover VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 24 acl _ _ 27 from from ADP IN _ 26 prep _ _ 28 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 29 state state NOUN NN Number=Sing 30 compound _ _ 30 space space NOUN NN Number=Sing 27 pobj _ _ 31 in in ADP IN _ 36 prep _ _ 32 which which DET WDT _ 33 det _ _ 33 time time NOUN NN Number=Sing 36 nsubj _ _ 34 does do AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 36 aux _ _ 35 not not PART RB Polarity=Neg 36 neg _ _ 36 loop loop VERB VB VerbForm=Inf 30 relcl _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 7 # text = Thus we hope to extend geometric techniques in static program analysis to looping processes. 1 Thus thus ADV RB _ 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 hope hope VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 to to PART TO _ 5 aux _ _ 5 extend extend VERB VB VerbForm=Inf 3 xcomp _ _ 6 geometric geometric ADJ JJ Degree=Pos 7 amod _ _ 7 techniques technique NOUN NNS Number=Plur 5 dobj _ _ 8 in in ADP IN _ 7 prep _ _ 9 static static ADJ JJ Degree=Pos 10 amod _ _ 10 program program NOUN NN Number=Sing 11 compound _ _ 11 analysis analysis NOUN NN Number=Sing 8 pobj _ _ 12 to to ADP IN _ 5 prep _ _ 13 looping loop VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 amod _ _ 14 processes process NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 336 # sent_id = 1 # text = Prior work towards the subject of higher - dimensional categories gives rise to several examples of a category over $ Cat $ to which the slice - category construction can be lifted universally. 1 Prior prior ADJ JJ Degree=Pos 2 amod _ _ 2 work work NOUN NN Number=Sing 11 nsubj _ _ 3 towards towards ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 subject subject NOUN NN Number=Sing 3 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 higher high ADJ JJR Degree=Cmp 9 advmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 dimensional dimensional ADJ JJ Degree=Pos 10 amod _ _ 10 categories category NOUN NNS Number=Plur 6 pobj _ _ 11 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 rise rise VERB VB VerbForm=Inf 11 dobj _ _ 13 to to ADP IN _ 12 prep _ _ 14 several several ADJ JJ Degree=Pos 15 amod _ _ 15 examples example NOUN NNS Number=Plur 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 category category NOUN NN Number=Sing 16 pobj _ _ 19 over over ADP IN _ 12 prep _ _ 20 $ Cat $ $ cat $ SYM $ _ 19 pobj _ _ 21 to to PART TO _ 30 prep _ _ 22 which which PRON WDT _ 21 pobj _ _ 23 the the DET DT Definite=Def|PronType=Art 27 det _ _ 24 slice slice NOUN NN Number=Sing 26 compound _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 category category NOUN NN Number=Sing 27 compound _ _ 27 construction construction NOUN NN Number=Sing 30 nsubjpass _ _ 28 can can AUX MD VerbForm=Fin 30 aux _ _ 29 be be AUX VB VerbForm=Inf 30 auxpass _ _ 30 lifted lift VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 relcl _ _ 31 universally universally ADV RB _ 30 advmod _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 2 # text = The present paper starts by supplying this last clause with a precise meaning. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 present present ADJ JJ Degree=Pos 3 amod _ _ 3 paper paper NOUN NN Number=Sing 4 nsubj _ _ 4 starts start VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 by by ADP IN _ 4 prep _ _ 6 supplying supply VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 pcomp _ _ 7 this this DET DT Number=Sing|PronType=Dem 9 det _ _ 8 last last ADJ JJ Degree=Pos 9 amod _ _ 9 clause clause NOUN NN Number=Sing 6 dobj _ _ 10 with with ADP IN _ 6 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 precise precise ADJ JJ Degree=Pos 13 amod _ _ 13 meaning meaning NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = It goes on to establish for any such category a certain embedding in a presheaf category, to describe the image, and hence to derive conditions collectively sufficient for that functor to be an equivalence. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 goes go VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 on on ADP RP _ 2 prt _ _ 4 to to PART TO _ 5 aux _ _ 5 establish establish VERB VB VerbForm=Inf 2 xcomp _ _ 6 for for ADP IN _ 5 prep _ _ 7 any any DET DT _ 9 det _ _ 8 such such ADJ JJ Degree=Pos 9 amod _ _ 9 category category NOUN NN Number=Sing 12 nsubj _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 certain certain ADJ JJ Degree=Pos 12 amod _ _ 12 embedding embed VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 pcomp _ _ 13 in in ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 presheaf presheaf ADJ JJ Degree=Pos 16 amod _ _ 16 category category NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 12 punct _ _ 18 to to PART TO _ 19 aux _ _ 19 describe describe VERB VB VerbForm=Inf 2 advcl _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 image image NOUN NN Number=Sing 19 dobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 19 punct _ _ 23 and and CCONJ CC ConjType=Cmp 19 cc _ _ 24 hence hence ADV RB _ 26 advmod _ _ 25 to to PART TO _ 26 aux _ _ 26 derive derive VERB VB VerbForm=Inf 19 conj _ _ 27 conditions condition NOUN NNS Number=Plur 26 dobj _ _ 28 collectively collectively ADV RB _ 29 advmod _ _ 29 sufficient sufficient ADJ JJ Degree=Pos 27 amod _ _ 30 for for SCONJ IN _ 34 mark _ _ 31 that that DET DT Number=Sing|PronType=Dem 32 det _ _ 32 functor functor NOUN NN Number=Sing 34 nsubj _ _ 33 to to PART TO _ 34 aux _ _ 34 be be AUX VB VerbForm=Inf 26 advcl _ _ 35 an an DET DT Definite=Ind|PronType=Art 36 det _ _ 36 equivalence equivalence NOUN NN Number=Sing 34 attr _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = These conditions are met in the foremost of the examples: the category of dendrotopic sets. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 conditions condition NOUN NNS Number=Plur 4 nsubjpass _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 met meet VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 in in ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 foremost foremost NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 examples example NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 11 : : PUNCT : _ 4 punct _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 category category NOUN NN Number=Sing 2 appos _ _ 14 of of ADP IN _ 13 prep _ _ 15 dendrotopic dendrotopic ADJ JJ Degree=Pos 16 amod _ _ 16 sets set NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 337 # sent_id = 1 # text = We continue our examination of absolute CR - epic spaces, or spaces with the property that any embedding induces an epimorphism, in the category of commutative rings, between their rings of continuous functions. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 continue continue VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 4 poss _ _ 4 examination examination NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 absolute absolute ADJ JJ Degree=Pos 10 amod _ _ 7 CR cr NOUN NN Number=Sing 9 npadvmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 epic epic ADJ JJ Degree=Pos 10 amod _ _ 10 spaces space NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 4 punct _ _ 12 or or CCONJ CC ConjType=Cmp 4 cc _ _ 13 spaces space NOUN NNS Number=Plur 4 conj _ _ 14 with with ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 property property NOUN NN Number=Sing 14 pobj _ _ 17 that that PRON WDT PronType=Rel 20 nsubj _ _ 18 any any DET DT _ 20 det _ _ 19 embedding embed VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 20 amod _ _ 20 induces induce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 relcl _ _ 21 an an DET DT Definite=Ind|PronType=Art 22 det _ _ 22 epimorphism epimorphism NOUN NN Number=Sing 20 dobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 20 punct _ _ 24 in in ADP IN _ 20 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 category category NOUN NN Number=Sing 24 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 commutative commutative ADJ JJ Degree=Pos 29 amod _ _ 29 rings ring NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 24 punct _ _ 31 between between ADP IN _ 20 prep _ _ 32 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 33 poss _ _ 33 rings ring NOUN NNS Number=Plur 31 pobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 continuous continuous ADJ JJ Degree=Pos 36 amod _ _ 36 functions function NOUN NNS Number=Plur 34 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We examine more closely the deleted plank construction, which generalizes the Dieudonne construction, and yields absolute CR - epic spaces which are not Lindelof. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 examine examine VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 more more ADV RBR Degree=Cmp 4 advmod _ _ 4 closely closely ADV RB _ 2 advmod _ _ 5 the the DET DT Definite=Def|PronType=Art 8 det _ _ 6 deleted delete VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 7 plank plank NOUN NN Number=Sing 8 compound _ _ 8 construction construction NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 8 punct _ _ 10 which which PRON WDT _ 11 nsubj _ _ 11 generalizes generalize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 relcl _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 Dieudonne Dieudonne PROPN NNP Number=Sing 14 compound _ _ 14 construction construction NOUN NN Number=Sing 11 dobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 2 punct _ _ 16 and and CCONJ CC ConjType=Cmp 2 cc _ _ 17 yields yield VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 conj _ _ 18 absolute absolute ADJ JJ Degree=Pos 22 amod _ _ 19 CR cr ADJ JJ Degree=Pos 21 npadvmod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 epic epic ADJ JJ Degree=Pos 22 amod _ _ 22 spaces space NOUN NNS Number=Plur 17 dobj _ _ 23 which which PRON WDT _ 24 nsubj _ _ 24 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 22 relcl _ _ 25 not not PART RB Polarity=Neg 24 neg _ _ 26 Lindelof Lindelof PROPN NNP Number=Sing 24 attr _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = For the Lindelof case, an earlier paper has shown the usefulness of the countable neighbourhood property, CNP, and the Alster condition (where CNP means that the space is a P - space in any compactification and the Alster condition says that any cover of the space by $ G_delta $ sets has a countable subcover, provided each compact subset can be covered by a finite subset.) 1 For for ADP IN _ 10 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 Lindelof Lindelof PROPN NNP Number=Sing 4 compound _ _ 4 case case NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 10 punct _ _ 6 an an DET DT Definite=Ind|PronType=Art 8 det _ _ 7 earlier early ADJ JJR Degree=Cmp 8 amod _ _ 8 paper paper NOUN NN Number=Sing 10 nsubj _ _ 9 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 aux _ _ 10 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 usefulness usefulness NOUN NN Number=Sing 10 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 17 det _ _ 15 countable countable ADJ JJ Degree=Pos 17 amod _ _ 16 neighbourhood neighbourhood NOUN NN Number=Sing 17 compound _ _ 17 property property NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 CNP CNP PROPN NNP Number=Sing 17 conj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 19 punct _ _ 21 and and CCONJ CC ConjType=Cmp 19 cc _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 Alster Alster PROPN NNP Number=Sing 24 compound _ _ 24 condition condition NOUN NN Number=Sing 19 conj _ _ 25 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 24 punct _ SpaceAfter=No 26 where where SCONJ WRB _ 28 advmod _ _ 27 CNP CNP PROPN NNP Number=Sing 28 nsubj _ _ 28 means mean VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 relcl _ _ 29 that that SCONJ IN _ 32 mark _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 space space NOUN NN Number=Sing 32 nsubj _ _ 32 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 28 ccomp _ _ 33 a a DET DT Definite=Ind|PronType=Art 36 det _ _ 34 P p NOUN NN Number=Sing 36 compound _ _ 35 - - PUNCT HYPH PunctType=Dash 36 punct _ _ 36 space space NOUN NN Number=Sing 32 attr _ _ 37 in in ADP IN _ 36 prep _ _ 38 any any DET DT _ 39 det _ _ 39 compactification compactification NOUN NN Number=Sing 37 pobj _ _ 40 and and CCONJ CC ConjType=Cmp 32 cc _ _ 41 the the DET DT Definite=Def|PronType=Art 43 det _ _ 42 Alster Alster PROPN NNP Number=Sing 43 compound _ _ 43 condition condition NOUN NN Number=Sing 44 nsubj _ _ 44 says say VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 ccomp _ _ 45 that that SCONJ IN _ 54 mark _ _ 46 any any DET DT _ 47 det _ _ 47 cover cover NOUN NN Number=Sing 54 nsubj _ _ 48 of of ADP IN _ 47 prep _ _ 49 the the DET DT Definite=Def|PronType=Art 50 det _ _ 50 space space NOUN NN Number=Sing 48 pobj _ _ 51 by by ADP IN _ 47 prep _ _ 52 $ G_delta $ $ g_delta $ SYM $ _ 53 poss _ _ 53 sets set NOUN NNS Number=Plur 51 pobj _ _ 54 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 44 ccomp _ _ 55 a a DET DT Definite=Ind|PronType=Art 57 det _ _ 56 countable countable ADJ JJ Degree=Pos 57 amod _ _ 57 subcover subcover NOUN NN Number=Sing 54 dobj _ SpaceAfter=No 58 , , PUNCT , PunctType=Comm 54 punct _ _ 59 provided provide VERB VBD Tense=Past|VerbForm=Fin 44 prep _ _ 60 each each DET DT _ 62 det _ _ 61 compact compact ADJ JJ Degree=Pos 62 amod _ _ 62 subset subset NOUN NN Number=Sing 65 nsubjpass _ _ 63 can can AUX MD VerbForm=Fin 65 aux _ _ 64 be be AUX VB VerbForm=Inf 65 auxpass _ _ 65 covered cover VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 59 ccomp _ _ 66 by by ADP IN _ 65 agent _ _ 67 a a DET DT Definite=Ind|PronType=Art 69 det _ _ 68 finite finite ADJ JJ Degree=Pos 69 amod _ _ 69 subset subset NOUN NN Number=Sing 66 pobj _ SpaceAfter=No 70 . . PUNCT . PunctType=Peri 44 punct _ SpaceAfter=No 71 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 44 punct _ SpaceAfter=No # sent_id = 4 # text = In this paper, we find further properties of Lindelof CNP spaces and of Alster spaces, including constructions that preserve these properties and conditions equivalent to these properties. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 find find VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 further further ADJ JJ Degree=Pos 8 amod _ _ 8 properties property NOUN NNS Number=Plur 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 Lindelof Lindelof PROPN NNP Number=Sing 11 compound _ _ 11 CNP CNP PROPN NNP Number=Sing 12 compound _ _ 12 spaces space NOUN NNS Number=Plur 9 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 9 cc _ _ 14 of of ADP IN _ 9 conj _ _ 15 Alster Alster PROPN NNP Number=Sing 16 compound _ _ 16 spaces space NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 prep _ _ 19 constructions construction NOUN NNS Number=Plur 18 pobj _ _ 20 that that PRON WDT PronType=Rel 21 nsubj _ _ 21 preserve preserve VERB VBP Tense=Pres|VerbForm=Fin 19 relcl _ _ 22 these these DET DT Number=Plur|PronType=Dem 23 det _ _ 23 properties property NOUN NNS Number=Plur 21 dobj _ _ 24 and and CCONJ CC ConjType=Cmp 23 cc _ _ 25 conditions condition NOUN NNS Number=Plur 23 conj _ _ 26 equivalent equivalent ADJ JJ Degree=Pos 23 amod _ _ 27 to to ADP IN _ 26 prep _ _ 28 these these DET DT Number=Plur|PronType=Dem 29 det _ _ 29 properties property NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 5 # text = We explore the outgrowths of such spaces and find several examples that answer open questions in our previous work. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 explore explore VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 outgrowths outgrowth NOUN NNS Number=Plur 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 such such ADJ JJ Degree=Pos 7 amod _ _ 7 spaces space NOUN NNS Number=Plur 5 pobj _ _ 8 and and CCONJ CC ConjType=Cmp 2 cc _ _ 9 find find VERB VB VerbForm=Inf 2 conj _ _ 10 several several ADJ JJ Degree=Pos 11 amod _ _ 11 examples example NOUN NNS Number=Plur 9 dobj _ _ 12 that that PRON WDT PronType=Rel 13 nsubj _ _ 13 answer answer VERB VBP Tense=Pres|VerbForm=Fin 11 relcl _ _ 14 open open ADJ JJ Degree=Pos 15 amod _ _ 15 questions question NOUN NNS Number=Plur 13 dobj _ _ 16 in in ADP IN _ 13 prep _ _ 17 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 19 poss _ _ 18 previous previous ADJ JJ Degree=Pos 19 amod _ _ 19 work work NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 338 # sent_id = 1 # text = In a triangulated closed symmetric monoidal category, there are natural dualities induced by the internal Hom. 1 In in ADP IN _ 10 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 3 triangulated triangulate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 amod _ _ 4 closed closed ADJ JJ Degree=Pos 7 amod _ _ 5 symmetric symmetric ADJ JJ Degree=Pos 7 amod _ _ 6 monoidal monoidal ADJ JJ Degree=Pos 7 amod _ _ 7 category category NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 10 punct _ _ 9 there there PRON EX _ 10 expl _ _ 10 are be VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 natural natural ADJ JJ Degree=Pos 12 amod _ _ 12 dualities duality NOUN NNS Number=Plur 10 attr _ _ 13 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 acl _ _ 14 by by ADP IN _ 13 agent _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 internal internal ADJ JJ Degree=Pos 17 amod _ _ 17 Hom Hom PROPN NNP Number=Sing 14 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = Given a monoidal exact functor $ f^* $ between two such categories and adjoint couples $ (f^*, f_*) $ , $ (f_*, f^clik) $ , we establish the commutative diagrams necessary for $ f^* $ and $ f_* $ to respect certain dualities, for a projection formula to hold between them (as duality preserving exact functors) and for classical base change and composition formulas to hold when such duality preserving functors are composed. 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 3 monoidal monoidal ADJ JJ Degree=Pos 5 amod _ _ 4 exact exact NOUN NN Number=Sing 5 amod _ _ 5 functor functor NOUN NN Number=Sing 1 pobj _ _ 6 $ f^* $ $ f^* $ SYM $ _ 16 nmod _ _ 7 between between ADP IN _ 6 prep _ _ 8 two two NUM CD NumType=Card 10 nummod _ _ 9 such such ADJ JJ Degree=Pos 10 amod _ _ 10 categories category NOUN NNS Number=Plur 7 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 adjoint adjoint NOUN NN Number=Sing 13 compound _ _ 13 couples couple NOUN NNS Number=Plur 10 conj _ _ 14 $ (f^*, f_*) $ $ (f^*, f_*) $ SYM $ _ 16 nmod _ _ 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 $ (f_*, f^clik) $ $ (f_*, f^clik) $ SYM $ _ 5 relcl _ _ 17 , , PUNCT , PunctType=Comm 19 punct _ _ 18 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 19 nsubj _ _ 19 establish establish VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 commutative commutative ADJ JJ Degree=Pos 22 amod _ _ 22 diagrams diagram NOUN NNS Number=Plur 19 dobj _ _ 23 necessary necessary ADJ JJ Degree=Pos 19 advcl _ _ 24 for for ADP IN _ 23 prep _ _ 25 $ f^* $ $ f^* $ SYM $ _ 24 pobj _ _ 26 and and CCONJ CC ConjType=Cmp 25 cc _ _ 27 $ f_* $ $ f_* $ SYM $ _ 25 conj _ _ 28 to to PART TO _ 29 aux _ _ 29 respect respect VERB VB VerbForm=Inf 19 xcomp _ _ 30 certain certain ADJ JJ Degree=Pos 31 amod _ _ 31 dualities duality NOUN NNS Number=Plur 29 dobj _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 29 punct _ _ 33 for for ADP IN _ 29 prep _ _ 34 a a DET DT Definite=Ind|PronType=Art 36 det _ _ 35 projection projection NOUN NN Number=Sing 36 compound _ _ 36 formula formula NOUN NN Number=Sing 33 pobj _ _ 37 to to PART TO _ 38 aux _ _ 38 hold hold VERB VB VerbForm=Inf 36 relcl _ _ 39 between between ADP IN _ 38 prep _ _ 40 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 39 pobj _ _ 41 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 33 punct _ SpaceAfter=No 42 as as ADP IN _ 29 prep _ _ 43 duality duality NOUN NN Number=Sing 44 nsubj _ _ 44 preserving preserve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 42 pcomp _ _ 45 exact exact ADJ JJ Degree=Pos 46 amod _ _ 46 functors functor NOUN NNS Number=Plur 44 dobj _ SpaceAfter=No 47 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 44 punct _ _ 48 and and CCONJ CC ConjType=Cmp 29 cc _ _ 49 for for ADP IN _ 19 prep _ _ 50 classical classical ADJ JJ Degree=Pos 52 amod _ _ 51 base base NOUN NN Number=Sing 52 compound _ _ 52 change change NOUN NN Number=Sing 49 pobj _ _ 53 and and CCONJ CC ConjType=Cmp 52 cc _ _ 54 composition composition NOUN NN Number=Sing 55 compound _ _ 55 formulas formula NOUN NNS Number=Plur 52 conj _ _ 56 to to PART TO _ 57 aux _ _ 57 hold hold VERB VB VerbForm=Inf 52 relcl _ _ 58 when when SCONJ WRB _ 64 advmod _ _ 59 such such ADJ JJ Degree=Pos 62 amod _ _ 60 duality duality NOUN NN Number=Sing 61 compound _ _ 61 preserving preserve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 62 amod _ _ 62 functors functor NOUN NNS Number=Plur 64 nsubjpass _ _ 63 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 64 auxpass _ _ 64 composed compose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 57 advcl _ SpaceAfter=No 65 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 3 # text = This framework allows us to define push - forwards for Witt groups, for example. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 framework framework NOUN NN Number=Sing 3 nsubj _ _ 3 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 5 to to PART TO _ 6 aux _ _ 6 define define VERB VB VerbForm=Inf 3 ccomp _ _ 7 push push NOUN NN Number=Sing 9 compound _ _ 8 - - PUNCT : _ 9 punct _ _ 9 forwards forward NOUN NNS Number=Plur 6 dobj _ _ 10 for for ADP IN _ 6 prep _ _ 11 Witt Witt PROPN NNP Number=Sing 12 compound _ _ 12 groups group NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 6 punct _ _ 14 for for ADP IN _ 6 prep _ _ 15 example example NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 339 # sent_id = 1 # text = We show that the (co)endomorphism algebra of a sufficiently separable ``fibre'' functor into $ Vect_k $ , for $ k $ a field of characteristic 0, has the structure of what we call a ``unital'' von Neumann core in $ Vect_k $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 28 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 7 punct _ SpaceAfter=No 6 co)endomorphism co)endomorphism NOUN NN Number=Sing 7 compound _ _ 7 algebra algebra NOUN NN Number=Sing 28 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 10 sufficiently sufficiently ADV RB _ 11 advmod _ _ 11 separable separable ADJ JJ Degree=Pos 16 amod _ _ 12 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 16 punct _ SpaceAfter=No 13 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 16 punct _ SpaceAfter=No 14 fibre fibre PROPN NNP Number=Sing 16 nmod _ SpaceAfter=No 15 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 16 punct _ _ 16 functor functor NOUN NN Number=Sing 8 pobj _ _ 17 into into ADP IN _ 7 prep _ _ 18 $ Vect_k $ $ vect_k $ SYM $ _ 17 pobj _ _ 19 , , PUNCT , PunctType=Comm 7 punct _ _ 20 for for ADP IN _ 7 prep _ _ 21 $ k $ $ k $ SYM $ _ 23 quantmod _ _ 22 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 23 field field NOUN NN Number=Sing 20 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 characteristic characteristic ADJ JJ Degree=Pos 24 pobj _ _ 26 0 0 NUM CD NumType=Card 24 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 7 punct _ _ 28 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 structure structure NOUN NN Number=Sing 28 dobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 what what PRON WP _ 34 dobj _ _ 33 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 34 nsubj _ _ 34 call call VERB VBP Tense=Pres|VerbForm=Fin 31 pcomp _ _ 35 a a DET DT Definite=Ind|PronType=Art 42 det _ _ 36 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 42 punct _ SpaceAfter=No 37 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 42 punct _ SpaceAfter=No 38 unital unital PROPN NNP Number=Sing 42 nmod _ SpaceAfter=No 39 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 42 punct _ _ 40 von von PROPN NNP Number=Sing 41 compound _ _ 41 Neumann Neumann PROPN NNP Number=Sing 42 compound _ _ 42 core core NOUN NN Number=Sing 34 oprd _ _ 43 in in ADP IN _ 42 prep _ _ 44 $ Vect_k $ $ vect_k $ SYM $ _ 43 pobj _ _ 45 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = For $ Vect_k $ , this particular notion of algebra is weaker than that of a Hopf algebra, although the corresponding concept in $ Set $ is again that of a group. 1 For for ADP IN _ 9 prep _ _ 2 $ Vect_k $ $ vect_k $ SYM $ _ 1 pobj _ _ 3 , , PUNCT , PunctType=Comm 9 punct _ _ 4 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 5 particular particular ADJ JJ Degree=Pos 6 amod _ _ 6 notion notion NOUN NN Number=Sing 9 nsubj _ _ 7 of of ADP IN _ 6 prep _ _ 8 algebra algebra PROPN NNP Number=Sing 7 pobj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 weaker weak ADJ JJR Degree=Cmp 9 acomp _ _ 11 than than ADP IN _ 10 prep _ _ 12 that that PRON DT Number=Sing|PronType=Dem 11 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 Hopf Hopf PROPN NNP Number=Sing 16 compound _ _ 16 algebra algebra NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 9 punct _ _ 18 although although SCONJ IN _ 24 mark _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 21 amod _ _ 21 concept concept NOUN NN Number=Sing 24 nsubj _ _ 22 in in ADP IN _ 21 prep _ _ 23 $ Set $ $ set $ SYM $ _ 22 pobj _ _ 24 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 advcl _ _ 25 again again ADV RB _ 24 advmod _ _ 26 that that PRON DT Number=Sing|PronType=Dem 24 attr _ _ 27 of of ADP IN _ 26 prep _ _ 28 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 29 group group NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 340 # sent_id = 1 # text = We adapt the work of Power to describe general, not - necessarily composable, not - necessarily commutative 2 - categorical pasting diagrams and their composable and commutative parts. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 adapt adapt VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 work work NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 Power Power PROPN NNP Number=Sing 5 pobj _ _ 7 to to PART TO _ 8 aux _ _ 8 describe describe VERB VB VerbForm=Inf 2 xcomp _ _ 9 general general ADJ JJ Degree=Pos 8 dobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 not not PART RB Polarity=Neg 13 neg _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 necessarily necessarily ADV RB _ 14 advmod _ _ 14 composable composable ADJ JJ Degree=Pos 19 amod _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 19 punct _ _ 16 not not PART RB Polarity=Neg 19 neg _ _ 17 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 18 necessarily necessarily ADV RB _ 19 advmod _ _ 19 commutative commutative ADJ JJ Degree=Pos 2 conj _ _ 20 2 2 NUM CD NumType=Card 22 nummod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 categorical categorical ADJ JJ Degree=Pos 24 amod _ _ 23 pasting pasting NOUN NN Number=Sing 24 compound _ _ 24 diagrams diagram NOUN NNS Number=Plur 19 dobj _ _ 25 and and CCONJ CC ConjType=Cmp 24 cc _ _ 26 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 30 poss _ _ 27 composable composable ADJ JJ Degree=Pos 30 amod _ _ 28 and and CCONJ CC ConjType=Cmp 27 cc _ _ 29 commutative commutative ADJ JJ Degree=Pos 27 conj _ _ 30 parts part NOUN NNS Number=Plur 24 conj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We provide a deformation theory for pasting diagrams valued in the 2 - category of $ k $ - linear categories, paralleling that provided for diagrams of algebras by Gerstenhaber and Schack, proving the standard results. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 deformation deformation NOUN NN Number=Sing 5 compound _ _ 5 theory theory NOUN NN Number=Sing 2 dobj _ _ 6 for for ADP IN _ 5 prep _ _ 7 pasting paste VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 compound _ _ 8 diagrams diagram NOUN NNS Number=Plur 6 pobj _ _ 9 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 acl _ _ 10 in in ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 14 det _ _ 12 2 2 NUM CD NumType=Card 14 nummod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 category category NOUN NN Number=Sing 10 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 $ k $ $ k $ SYM $ _ 18 quantmod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 linear linear ADJ JJ Degree=Pos 19 amod _ _ 19 categories category NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 2 punct _ _ 21 paralleling parallel VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 22 that that SCONJ IN _ 23 nsubj _ _ 23 provided provide VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 ccomp _ _ 24 for for ADP IN _ 23 prep _ _ 25 diagrams diagram NOUN NNS Number=Plur 24 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 algebras algebra NOUN NNS Number=Plur 26 pobj _ _ 28 by by ADP IN _ 25 prep _ _ 29 Gerstenhaber Gerstenhaber PROPN NNP Number=Sing 28 pobj _ _ 30 and and CCONJ CC ConjType=Cmp 29 cc _ _ 31 Schack Schack PROPN NNP Number=Sing 29 conj _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 21 punct _ _ 33 proving prove VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 34 the the DET DT Definite=Def|PronType=Art 36 det _ _ 35 standard standard ADJ JJ Degree=Pos 36 amod _ _ 36 results result NOUN NNS Number=Plur 33 dobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Along the way, the construction gives rise to a bicategorical analog of the homotopy $ G $ - algebras of Gerstenhaber and Voronov. 1 Along along ADP IN _ 7 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 way way NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 7 punct _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 construction construction NOUN NN Number=Sing 7 nsubj _ _ 7 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 rise rise VERB VB VerbForm=Inf 7 dobj _ _ 9 to to ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 bicategorical bicategorical ADJ JJ Degree=Pos 12 amod _ _ 12 analog analog NOUN NN Number=Sing 9 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 homotopy homotopy NOUN NN Number=Sing 13 pobj _ _ 16 $ G $ $ g $ SYM $ _ 18 compound _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 algebras algebra NOUN NNS Number=Plur 7 dobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 Gerstenhaber Gerstenhaber PROPN NNP Number=Sing 19 pobj _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 Voronov Voronov PROPN NNP Number=Sing 20 conj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # doc_id = 341 # sent_id = 1 # text = Sifted colimits, important for algebraic theories, are "almost" just the combination of filtered colimits and reflexive coequalizers. 1 Sifted sifted ADJ JJ Degree=Pos 2 amod _ _ 2 colimits colimit NOUN NNS Number=Plur 9 nsubj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 2 punct _ _ 4 important important ADJ JJ Degree=Pos 2 amod _ _ 5 for for ADP IN _ 4 prep _ _ 6 algebraic algebraic ADJ JJ Degree=Pos 7 amod _ _ 7 theories theory NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 2 punct _ _ 9 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 " " PUNCT `` PunctSide=Ini|PunctType=Quot 9 punct _ SpaceAfter=No 11 almost almost ADV RB _ 15 advmod _ SpaceAfter=No 12 " " PUNCT '' PunctSide=Fin|PunctType=Quot 15 punct _ _ 13 just just ADV RB _ 15 advmod _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 combination combination NOUN NN Number=Sing 9 attr _ _ 16 of of ADP IN _ 15 prep _ _ 17 filtered filter VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 amod _ _ 18 colimits colimit NOUN NNS Number=Plur 16 pobj _ _ 19 and and CCONJ CC ConjType=Cmp 15 cc _ _ 20 reflexive reflexive VERB VB VerbForm=Inf 15 conj _ _ 21 coequalizers coequalizer NOUN NNS Number=Plur 20 dobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 2 # text = For example, given a finitely cocomplete category $ cal A $ , then a functor with domain $ cal A $ preserves sifted colimits if and only if it preserves filtered colimits and reflexive coequalizers. 1 For for ADP IN _ 17 prep _ _ 2 example example NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 17 punct _ _ 4 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 6 finitely finitely ADV RB _ 7 advmod _ _ 7 cocomplete cocomplete ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 4 pobj _ _ 9 $ cal A $ $ cal a $ SYM $ _ 8 appos _ _ 10 , , PUNCT , PunctType=Comm 8 punct _ _ 11 then then ADV RB PronType=Dem 13 advmod _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 functor functor NOUN NN Number=Sing 8 appos _ _ 14 with with ADP IN _ 13 prep _ _ 15 domain domain NOUN NN Number=Sing 14 pobj _ _ 16 $ cal A $ $ cal a $ SYM $ _ 4 pcomp _ _ 17 preserves preserve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 18 sifted sift VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 amod _ _ 19 colimits colimit NOUN NNS Number=Plur 17 dobj _ _ 20 if if SCONJ IN _ 17 dep _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 only only ADV RB _ 25 advmod _ _ 23 if if SCONJ IN _ 25 mark _ _ 24 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 25 nsubj _ _ 25 preserves preserves AUX VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 26 aux _ _ 26 filtered filter VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 conj _ _ 27 colimits colimit NOUN NNS Number=Plur 26 dobj _ _ 28 and and CCONJ CC ConjType=Cmp 26 cc _ _ 29 reflexive reflexive VERB VB VerbForm=Inf 26 conj _ _ 30 coequalizers coequalizer NOUN NNS Number=Plur 29 dobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 26 punct _ SpaceAfter=No # sent_id = 3 # text = But for general categories $ cal A $ that statement is not true: we provide a counter - example. 1 But but CCONJ CC ConjType=Cmp 8 cc _ _ 2 for for ADP IN _ 8 prep _ _ 3 general general ADJ JJ Degree=Pos 4 amod _ _ 4 categories category NOUN NNS Number=Plur 2 pobj _ _ 5 $ cal A $ $ cal a $ SYM $ _ 2 pobj _ _ 6 that that DET DT Number=Sing|PronType=Dem 7 det _ _ 7 statement statement NOUN NN Number=Sing 8 nsubj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 ccomp _ _ 9 not not PART RB Polarity=Neg 8 neg _ _ 10 true true ADJ JJ Degree=Pos 8 acomp _ SpaceAfter=No 11 : : PUNCT : _ 13 punct _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 counter counter NOUN NN Number=Sing 17 compound _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 example example NOUN NN Number=Sing 13 dobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # doc_id = 342 # sent_id = 1 # text = The notion of a subtractive category recently introduced by the author, is a pointed categorical counterpart of the notion of a subtractive variety of universal algebras in the sense of Ursini (recall that a variety is subtractive if its theory contains a constant 0 and a binary term $ s $ satisfying $ s(x, x)=0 $ and $ s(x, 0)=x $ ). 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 notion notion NOUN NN Number=Sing 13 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 subtractive subtractive ADJ JJ Degree=Pos 6 amod _ _ 6 category category NOUN NN Number=Sing 3 pobj _ _ 7 recently recently ADV RB _ 8 advmod _ _ 8 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 acl _ _ 9 by by ADP IN _ 8 agent _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 author author NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 2 punct _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 15 pointed pointed ADJ JJ Degree=Pos 17 amod _ _ 16 categorical categorical ADJ JJ Degree=Pos 17 amod _ _ 17 counterpart counterpart NOUN NN Number=Sing 13 attr _ _ 18 of of ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 notion notion NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 23 subtractive subtractive ADJ JJ Degree=Pos 24 amod _ _ 24 variety variety NOUN NN Number=Sing 21 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 universal universal ADJ JJ Degree=Pos 27 amod _ _ 27 algebras algebra NOUN NNS Number=Plur 25 pobj _ _ 28 in in ADP IN _ 13 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 sense sense NOUN NN Number=Sing 28 pobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 Ursini Ursini PROPN NNP Number=Sing 31 pobj _ _ 33 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 34 punct _ SpaceAfter=No 34 recall recall NOUN NN Number=Sing 13 dep _ _ 35 that that SCONJ IN _ 38 mark _ _ 36 a a DET DT Definite=Ind|PronType=Art 37 det _ _ 37 variety variety NOUN NN Number=Sing 38 nsubj _ _ 38 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 34 ccomp _ _ 39 subtractive subtractive ADJ JJ Degree=Pos 38 acomp _ _ 40 if if SCONJ IN _ 43 mark _ _ 41 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 42 poss _ _ 42 theory theory NOUN NN Number=Sing 43 nsubj _ _ 43 contains contain VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 38 advcl _ _ 44 a a DET DT Definite=Ind|PronType=Art 46 det _ _ 45 constant constant ADJ JJ Degree=Pos 46 amod _ _ 46 0 0 NUM CD NumType=Card 43 dobj _ _ 47 and and CCONJ CC ConjType=Cmp 46 cc _ _ 48 a a DET DT Definite=Ind|PronType=Art 50 det _ _ 49 binary binary ADJ JJ Degree=Pos 50 amod _ _ 50 term term NOUN NN Number=Sing 46 conj _ _ 51 $ s $ $ s $ SYM $ _ 50 appos _ _ 52 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 43 advcl _ _ 53 $ s(x, x)=0 $ $ s(x, x)=0 $ SYM $ _ 52 dobj _ _ 54 and and CCONJ CC ConjType=Cmp 53 cc _ _ 55 $ s(x, 0)=x $ $ s(x, 0)=x $ SYM $ _ 52 npadvmod _ _ 56 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 52 punct _ SpaceAfter=No 57 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 2 # text = Let us call a pointed regular category $ mathbb{C} $ normal if every regular epimorphism in $ mathbb{C} $ is a normal epimorphism. 1 Let let VERB VB VerbForm=Inf 0 ROOT _ _ 2 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 call call VERB VB VerbForm=Inf 1 ccomp _ _ 4 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 5 pointed point VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 amod _ _ 6 regular regular ADJ JJ Degree=Pos 7 amod _ _ 7 category category NOUN NN Number=Sing 3 dobj _ _ 1 $ mathbb{C} $ $ mathbb{c} $ SYM $ _ 9 dep _ _ 2 normal normal ADJ JJ Degree=Pos 1 amod _ _ 3 if if SCONJ IN _ 6 mark _ _ 4 every every DET DT _ 6 det _ _ 5 regular regular ADJ JJ Degree=Pos 6 amod _ _ 6 epimorphism epimorphism NOUN NN Number=Sing 9 nsubj _ _ 7 in in ADP IN _ 6 prep _ _ 8 $ mathbb{C} $ $ mathbb{c} $ SYM $ _ 7 pobj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 normal normal ADJ JJ Degree=Pos 12 amod _ _ 12 epimorphism epimorphism NOUN NN Number=Sing 9 attr _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 3 # text = It is well known that any homological category in the sense of Borceux and Bourn is both normal and subtractive. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 well well ADV RB Degree=Pos 4 advmod _ _ 4 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 acomp _ _ 5 that that SCONJ IN _ 16 mark _ _ 6 any any DET DT _ 8 det _ _ 7 homological homological ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 16 nsubj _ _ 9 in in ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 sense sense NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 Borceux Borceux PROPN NNP Number=Sing 12 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 Bourn Bourn PROPN NNP Number=Sing 13 conj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 17 both both PRON DT _ 18 preconj _ _ 18 normal normal ADJ JJ Degree=Pos 16 acomp _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 subtractive subtractive ADJ JJ Degree=Pos 18 conj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We prove that in any subtractive normal category, the upper and lower $ 3times 3 $ lemmas hold true, which generalizes a similar result for homological categories due to Bourn (note that the middle $ 3times 3 $ lemma holds true if and only if the category is homological). 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 16 mark _ _ 4 in in ADP IN _ 16 prep _ _ 5 any any DET DT _ 8 det _ _ 6 subtractive subtractive ADJ JJ Degree=Pos 8 amod _ _ 7 normal normal ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 4 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 16 punct _ _ 10 the the DET DT Definite=Def|PronType=Art 15 det _ _ 11 upper upper ADJ JJ Degree=Pos 15 amod _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 lower low ADJ JJR Degree=Cmp 11 conj _ _ 14 $ 3times 3 $ $ 3times 3 $ SYM $ _ 15 neg _ _ 15 lemmas lemmas X FW Foreign=Yes 16 nsubj _ _ 16 hold hold VERB VBP Tense=Pres|VerbForm=Fin 2 ccomp _ _ 17 true true ADJ JJ Degree=Pos 16 prt _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 16 punct _ _ 19 which which PRON WDT _ 20 nsubj _ _ 20 generalizes generalize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 advcl _ _ 21 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 22 similar similar ADJ JJ Degree=Pos 23 amod _ _ 23 result result NOUN NN Number=Sing 20 dobj _ _ 24 for for ADP IN _ 23 prep _ _ 25 homological homological ADJ JJ Degree=Pos 26 amod _ _ 26 categories category NOUN NNS Number=Plur 24 pobj _ _ 27 due due ADJ JJ Degree=Pos 26 amod _ _ 28 to to ADP IN _ 27 prep _ _ 29 Bourn Bourn PROPN NNP Number=Sing 27 pobj _ _ 30 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 31 punct _ SpaceAfter=No 31 note note VERB VBP Tense=Pres|VerbForm=Fin 20 parataxis _ _ 32 that that SCONJ IN _ 37 mark _ _ 33 the the DET DT Definite=Def|PronType=Art 36 det _ _ 34 middle middle ADJ JJ Degree=Pos 36 amod _ _ 35 $ 3times 3 $ $ 3times 3 $ SYM $ _ 36 nummod _ _ 36 lemma lemma NOUN NN Number=Sing 37 nsubj _ _ 37 holds hold VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 31 ccomp _ _ 38 true true ADJ JJ Degree=Pos 37 oprd _ _ 39 if if SCONJ IN _ 45 mark _ _ 40 and and CCONJ CC ConjType=Cmp 45 cc _ _ 41 only only ADV RB _ 45 advmod _ _ 42 if if SCONJ IN _ 45 mark _ _ 43 the the DET DT Definite=Def|PronType=Art 44 det _ _ 44 category category NOUN NN Number=Sing 45 nsubj _ _ 45 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 37 advcl _ _ 46 homological homological ADJ JJ Degree=Pos 45 acomp _ SpaceAfter=No 47 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 31 punct _ SpaceAfter=No 48 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = The technique of proof is new: the pointed subobject functor $ mathcal{S}=mathrm{Sub}( - ):mathbb{C}rightarrowmathbf{Set}_* $ turns out to have suitable preservation/reflection properties which allow us to reduce the proofs of these two diagram lemmas to the standard diagram - chasing arguments in $ mathbf{Set}_* $ (alternatively, we could use the more advanced embedding theorem for regular categories due to M.~Barr). 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 technique technique NOUN NN Number=Sing 5 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 proof proof NOUN NN Number=Sing 3 pobj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 ccomp _ _ 6 new new ADJ JJ Degree=Pos 5 acomp _ SpaceAfter=No 7 : : PUNCT : _ 5 punct _ _ 8 the the DET DT Definite=Def|PronType=Art 11 det _ _ 9 pointed pointed ADJ JJ Degree=Pos 10 amod _ _ 10 subobject subobject NOUN NN Number=Sing 11 compound _ _ 11 functor functor PROPN NNP Number=Sing 13 nsubj _ _ 12 $ mathcal{S}=mathrm{Sub}( - ):mathbb{C}rightarrowmathbf{Set}_* $ $ mathcal{s}=mathrm{sub}( - ):mathbb{c}rightarrowmathbf{set}_* $ SYM $ _ 13 nsubj _ _ 13 turns turn VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 48 ccomp _ _ 14 out out ADP RP _ 13 prt _ _ 15 to to PART TO _ 16 aux _ _ 16 have have VERB VB VerbForm=Inf 13 xcomp _ _ 17 suitable suitable ADJ JJ Degree=Pos 21 amod _ _ 18 preservation preservation NOUN NN Number=Sing 20 nmod _ SpaceAfter=No 19 / / SYM SYM _ 20 punct _ SpaceAfter=No 20 reflection reflection NOUN NN Number=Sing 21 compound _ _ 21 properties property NOUN NNS Number=Plur 16 dobj _ _ 22 which which PRON WDT _ 23 nsubj _ _ 23 allow allow VERB VBP Tense=Pres|VerbForm=Fin 21 relcl _ _ 24 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 26 nsubj _ _ 25 to to PART TO _ 26 aux _ _ 26 reduce reduce VERB VB VerbForm=Inf 23 ccomp _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 proofs proof NOUN NNS Number=Plur 26 dobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 these these DET DT Number=Plur|PronType=Dem 33 det _ _ 31 two two NUM CD NumType=Card 32 nummod _ _ 32 diagram diagram NOUN NN Number=Sing 33 compound _ _ 33 lemmas lemma NOUN NNS Number=Plur 29 pobj _ _ 34 to to ADP IN _ 28 prep _ _ 35 the the DET DT Definite=Def|PronType=Art 40 det _ _ 36 standard standard ADJ JJ Degree=Pos 40 amod _ _ 37 diagram diagram NOUN NN Number=Sing 39 npadvmod _ _ 38 - - PUNCT HYPH PunctType=Dash 39 punct _ _ 39 chasing chase VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 40 amod _ _ 40 arguments argument NOUN NNS Number=Plur 34 pobj _ _ 41 in in ADP IN _ 40 prep _ _ 42 $ mathbf{Set}_* $ $ mathbf{set}_* $ SYM $ _ 41 pobj _ _ 43 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 48 punct _ SpaceAfter=No 44 alternatively alternatively ADV RB _ 48 advmod _ SpaceAfter=No 45 , , PUNCT , PunctType=Comm 48 punct _ _ 46 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 48 nsubj _ _ 47 could could AUX MD VerbForm=Fin 48 aux _ _ 48 use use VERB VB VerbForm=Inf 0 ROOT _ _ 49 the the PRON DT Definite=Def|PronType=Art 51 advmod _ _ 50 more more ADV RBR Degree=Cmp 51 advmod _ _ 51 advanced advanced ADJ JJ Degree=Pos 52 amod _ _ 52 embedding embed VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 53 amod _ _ 53 theorem theorem NOUN NN Number=Sing 48 dobj _ _ 54 for for ADP IN _ 53 prep _ _ 55 regular regular ADJ JJ Degree=Pos 56 amod _ _ 56 categories category NOUN NNS Number=Plur 54 pobj _ _ 57 due due ADJ JJ Degree=Pos 48 prep _ _ 58 to to ADP IN _ 57 pcomp _ _ 59 M.~Barr M.~Barr PROPN NNP Number=Sing 57 pobj _ SpaceAfter=No 60 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 48 punct _ SpaceAfter=No 61 . . PUNCT . PunctType=Peri 48 punct _ SpaceAfter=No # sent_id = 6 # text = The key property of $ mathcal{S} $ , which allows to obtain these diagram lemmas, is the preservation of subtractive spans. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 key key ADJ JJ Degree=Pos 3 amod _ _ 3 property property NOUN NN Number=Sing 15 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 $ mathcal{S} $ $ mathcal{s} $ SYM $ _ 4 pobj _ _ 6 , , PUNCT , PunctType=Comm 3 punct _ _ 7 which which PRON WDT _ 8 nsubj _ _ 8 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 relcl _ _ 9 to to PART TO _ 10 aux _ _ 10 obtain obtain VERB VB VerbForm=Inf 8 xcomp _ _ 11 these these DET DT Number=Plur|PronType=Dem 13 det _ _ 12 diagram diagram NOUN NN Number=Sing 13 compound _ _ 13 lemmas lemma NOUN NNS Number=Plur 10 dobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 15 punct _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 preservation preservation NOUN NN Number=Sing 15 attr _ _ 18 of of ADP IN _ 17 prep _ _ 19 subtractive subtractive ADJ JJ Degree=Pos 20 amod _ _ 20 spans span NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 7 # text = Subtractivity of a span provides a weaker version of the rule of subtraction—one of the elementary rules for chasing diagrams in abelian categories, in the sense of Mac Lane. 1 Subtractivity subtractivity NOUN NN Number=Sing 5 nsubj _ _ 2 of of ADP IN _ 1 prep _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 span span NOUN NN Number=Sing 2 pobj _ _ 5 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 weaker weak ADJ JJR Degree=Cmp 8 amod _ _ 8 version version NOUN NN Number=Sing 5 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 rule rule NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 subtraction subtraction NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 14 — — PUNCT : _ 8 punct _ SpaceAfter=No 15 one one NUM CD NumType=Card 8 appos _ _ 16 of of ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 elementary elementary ADJ JJ Degree=Pos 19 amod _ _ 19 rules rule NOUN NNS Number=Plur 16 pobj _ _ 20 for for ADP IN _ 19 prep _ _ 21 chasing chase VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 20 pcomp _ _ 22 diagrams diagram NOUN NNS Number=Plur 21 dobj _ _ 23 in in ADP IN _ 22 prep _ _ 24 abelian abelian ADJ JJ Degree=Pos 25 amod _ _ 25 categories category NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 5 punct _ _ 27 in in ADP IN _ 5 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 sense sense NOUN NN Number=Sing 27 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 Mac Mac PROPN NNP Number=Sing 32 compound _ _ 32 Lane Lane PROPN NNP Number=Sing 30 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 8 # text = A pointed regular category is subtractive if and only if every span in it is subtractive, and moreover, the functor $ mathcal{S} $ not only preserves but also reflects subtractive spans. 1 A a DET DT Definite=Ind|PronType=Art 4 det _ _ 2 pointed pointed ADJ JJ Degree=Pos 4 amod _ _ 3 regular regular ADJ JJ Degree=Pos 4 amod _ _ 4 category category NOUN NN Number=Sing 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 subtractive subtractive ADJ JJ Degree=Pos 5 acomp _ _ 7 if if SCONJ IN _ 6 prep _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 only only ADV RB _ 15 advmod _ _ 10 if if SCONJ IN _ 15 mark _ _ 11 every every DET DT _ 12 det _ _ 12 span span NOUN NN Number=Sing 15 nsubj _ _ 13 in in ADP IN _ 12 prep _ _ 14 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 13 pobj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 advcl _ _ 16 subtractive subtractive ADJ JJ Degree=Pos 15 acomp _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 5 punct _ _ 18 and and CCONJ CC ConjType=Cmp 5 cc _ _ 19 moreover moreover ADV RB _ 26 advmod _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 26 punct _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 functor functor NOUN NN Number=Sing 26 nsubj _ _ 23 $ mathcal{S} $ $ mathcal{s} $ SYM $ _ 26 quantmod _ _ 24 not not PART RB Polarity=Neg 26 preconj _ _ 25 only only ADV RB _ 24 advmod _ _ 26 preserves preserve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 conj _ _ 27 but but CCONJ CC ConjType=Cmp 26 cc _ _ 28 also also ADV RB _ 29 advmod _ _ 29 reflects reflect VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 26 conj _ _ 30 subtractive subtractive ADJ JJ Degree=Pos 31 amod _ _ 31 spans span NOUN NNS Number=Plur 29 dobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 26 punct _ SpaceAfter=No # sent_id = 9 # text = Thus, subtractivity seems to be exactly what we need in order to prove the upper/lower $ 3times 3 $ lemmas in a normal category. 1 Thus thus ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 subtractivity subtractivity NOUN NN Number=Sing 4 nsubj _ _ 4 seems seem VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 to to PART TO _ 6 aux _ _ 6 be be AUX VB VerbForm=Inf 4 xcomp _ _ 7 exactly exactly ADV RB _ 8 advmod _ _ 8 what what PRON WP _ 10 dobj _ _ 9 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 10 nsubj _ _ 10 need need VERB VBP Tense=Pres|VerbForm=Fin 6 ccomp _ _ 11 in in ADP IN _ 10 prep _ _ 12 order order NOUN NN Number=Sing 11 pobj _ _ 13 to to PART TO _ 14 aux _ _ 14 prove prove VERB VB VerbForm=Inf 12 acl _ _ 15 the the DET DT Definite=Def|PronType=Art 18 det _ _ 16 upper upper ADJ JJ Degree=Pos 18 advmod _ SpaceAfter=No 17 / / SYM SYM _ 18 punct _ SpaceAfter=No 18 lower low ADJ JJR Degree=Cmp 20 amod _ _ 19 $ 3times 3 $ $ 3times 3 $ SYM $ _ 20 nummod _ _ 20 lemmas lemma NOUN NNS Number=Plur 14 dobj _ _ 21 in in ADP IN _ 14 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 23 normal normal ADJ JJ Degree=Pos 24 amod _ _ 24 category category NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 10 # text = Indeed, we show that a normal category is subtractive if and only if these $ 3times 3 $ lemmas hold true in it. 1 Indeed indeed ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 9 mark _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 normal normal ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 9 nsubj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 10 subtractive subtractive ADJ JJ Degree=Pos 9 acomp _ _ 11 if if SCONJ IN _ 9 prep _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 only only ADV RB _ 18 advmod _ _ 14 if if SCONJ IN _ 18 mark _ _ 15 these these DET DT Number=Plur|PronType=Dem 17 det _ _ 16 $ 3times 3 $ $ 3times 3 $ SYM $ _ 17 nummod _ _ 17 lemmas lemmas X FW Foreign=Yes 18 nsubj _ _ 18 hold hold VERB VBP Tense=Pres|VerbForm=Fin 9 advcl _ _ 19 true true ADJ JJ Degree=Pos 18 oprd _ _ 20 in in ADP IN _ 18 prep _ _ 21 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 20 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 11 # text = Moreover, we show that for any pointed regular category $ mathbb{C} $ (not necessarily a normal one), we have: $ mathbb{C} $ is subtractive if and only if the lower $ 3times 3 $ lemma holds true in $ mathbb{C} $ . 1 Moreover moreover ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 21 mark _ _ 6 for for ADP IN _ 21 prep _ _ 7 any any DET DT _ 10 det _ _ 8 pointed point VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 9 regular regular ADJ JJ Degree=Pos 10 amod _ _ 10 category category NOUN NN Number=Sing 11 nmod _ _ 11 $ mathbb{C} $ $ mathbb{c} $ SYM $ _ 6 pobj _ _ 12 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 11 punct _ SpaceAfter=No 13 not not PART RB Polarity=Neg 14 neg _ _ 14 necessarily necessarily ADV RB _ 17 advmod _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 normal normal ADJ JJ Degree=Pos 17 amod _ _ 17 one one NUM CD NumType=Card 11 appos _ SpaceAfter=No 18 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 11 punct _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 21 punct _ _ 20 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 21 nsubj _ _ 21 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 ccomp _ SpaceAfter=No 22 : : PUNCT : _ 21 punct _ _ 23 $ mathbb{C} $ $ mathbb{c} $ SYM $ _ 24 nsubj _ _ 24 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 25 subtractive subtractive ADJ JJ Degree=Pos 24 acomp _ _ 26 if if SCONJ IN _ 24 dep _ _ 27 and and CCONJ CC ConjType=Cmp 26 cc _ _ 28 only only ADV RB _ 34 advmod _ _ 29 if if SCONJ IN _ 34 mark _ _ 30 the the DET DT Definite=Def|PronType=Art 33 det _ _ 31 lower low ADJ JJR Degree=Cmp 32 amod _ _ 32 $ 3times 3 $ $ 3times 3 $ SYM $ _ 33 nummod _ _ 33 lemma lemma NOUN NN Number=Sing 34 nsubj _ _ 34 holds hold VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 advcl _ _ 35 true true ADJ JJ Degree=Pos 34 oprd _ _ 36 in in ADP IN _ 34 prep _ _ 37 $ mathbb{C} $ $ mathbb{c} $ SYM $ _ 36 pobj _ _ 38 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 343 # sent_id = 1 # text = The metric jets, introduced here, generalize the jets (at order one) of Charles Ehresmann. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 metric metric ADJ JJ Degree=Pos 3 amod _ _ 3 jets jet NOUN NNS Number=Plur 8 nsubj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 3 punct _ _ 5 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 acl _ _ 6 here here ADV RB PronType=Dem 5 advmod _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 8 punct _ _ 8 generalize generalize VERB VB VerbForm=Inf 0 ROOT _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 jets jet NOUN NNS Number=Plur 8 dobj _ _ 11 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 8 punct _ SpaceAfter=No 12 at at ADP IN _ 8 prep _ _ 13 order order NOUN NN Number=Sing 12 pobj _ _ 14 one one NUM CD NumType=Card 13 nummod _ SpaceAfter=No 15 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 13 punct _ _ 16 of of ADP IN _ 13 prep _ _ 17 Charles Charles PROPN NNP Number=Sing 18 compound _ _ 18 Ehresmann Ehresmann PROPN NNP Number=Sing 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 2 # text = In short, for a ``good'' map $ f $ (said to be ``tangentiable'' at $ a $ ) between metric spaces, we define its metric jet tangent at a (composed of all the maps which are locally lipschitzian at $ a $ and tangent to $ f $ at $ a $ ) called the ``tangential'' of $ f $ at $ a $ , and denoted $ Tf_a $ . 1 In in ADP IN _ 13 prep _ _ 2 short short ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 13 punct _ _ 4 for for ADP IN _ 13 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 6 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 10 punct _ SpaceAfter=No 7 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 10 punct _ SpaceAfter=No 8 good good ADJ JJ Degree=Pos 10 amod _ SpaceAfter=No 9 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 10 punct _ _ 10 map map NOUN NN Number=Sing 4 pobj _ _ 11 $ f $ $ f $ SYM $ _ 10 nummod _ _ 12 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 13 punct _ SpaceAfter=No 13 said say VERB VBD Tense=Past|VerbForm=Fin 28 advcl _ _ 14 to to PART TO _ 15 aux _ _ 15 be be AUX VB VerbForm=Inf 13 xcomp _ _ 16 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 18 punct _ SpaceAfter=No 17 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 18 punct _ SpaceAfter=No 18 tangentiable tangentiable NOUN NN Number=Sing 15 attr _ SpaceAfter=No 19 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 18 punct _ _ 20 at at ADP IN _ 18 prep _ _ 21 $ a $ $ a $ SYM $ _ 20 pobj _ _ 22 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 18 punct _ _ 23 between between ADP IN _ 18 prep _ _ 24 metric metric ADJ JJ Degree=Pos 25 amod _ _ 25 spaces space NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 28 punct _ _ 27 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 28 nsubj _ _ 28 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 29 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 32 poss _ _ 30 metric metric ADJ JJ Degree=Pos 32 amod _ _ 31 jet jet NOUN NN Number=Sing 32 compound _ _ 32 tangent tangent NOUN NN Number=Sing 28 dobj _ _ 33 at at ADP IN _ 28 prep _ _ 34 a a DET DT Definite=Ind|PronType=Art 36 det _ _ 35 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 36 punct _ SpaceAfter=No 36 composed compose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 33 pobj _ _ 37 of of ADP IN _ 36 prep _ _ 38 all all DET PDT _ 40 predet _ _ 39 the the DET DT Definite=Def|PronType=Art 40 det _ _ 40 maps map NOUN NNS Number=Plur 37 pobj _ _ 41 which which PRON WDT _ 42 nsubj _ _ 42 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 40 relcl _ _ 43 locally locally ADV RB _ 44 advmod _ _ 44 lipschitzian lipschitzian ADJ JJ Degree=Pos 42 acomp _ _ 45 at at ADP IN _ 44 prep _ _ 46 $ a $ $ a $ SYM $ _ 45 pobj _ _ 47 and and CCONJ CC ConjType=Cmp 46 cc _ _ 48 tangent tangent NOUN NN Number=Sing 46 conj _ _ 49 to to ADP IN _ 42 prep _ _ 50 $ f $ $ f $ SYM $ _ 49 pobj _ _ 51 at at ADP IN _ 42 prep _ _ 52 $ a $ $ a $ SYM $ _ 51 pobj _ _ 53 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 36 punct _ _ 54 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 conj _ _ 55 the the DET DT Definite=Def|PronType=Art 58 det _ _ 56 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 58 punct _ SpaceAfter=No 57 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 58 punct _ SpaceAfter=No 58 tangential tangential NOUN NN Number=Sing 54 oprd _ SpaceAfter=No 59 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 58 punct _ _ 60 of of ADP IN _ 58 prep _ _ 61 $ f $ $ f $ SYM $ _ 60 pobj _ _ 62 at at ADP IN _ 54 prep _ _ 63 $ a $ $ a $ SYM $ _ 62 pobj _ _ 64 , , PUNCT , PunctType=Comm 54 punct _ _ 65 and and CCONJ CC ConjType=Cmp 54 cc _ _ 66 denoted denote VERB VBD Tense=Past|VerbForm=Fin 54 conj _ _ 67 $ Tf_a $ $ tf_a $ SYM $ _ 66 dobj _ _ 68 . . PUNCT . PunctType=Peri 28 punct _ SpaceAfter=No # sent_id = 3 # text = So, in this metric context, we define a ``new differentiability'' (called ``tangentiability'') which extends the classical differentiability (while preserving most of its properties) to new maps, traditionally pathologic. 1 So so ADV RB _ 9 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 9 punct _ _ 3 in in ADP IN _ 9 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 5 metric metric ADJ JJ Degree=Pos 6 amod _ _ 6 context context NOUN NN Number=Sing 3 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 9 punct _ _ 8 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 9 nsubj _ _ 9 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 11 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 14 punct _ SpaceAfter=No 12 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 14 punct _ SpaceAfter=No 13 new new ADJ JJ Degree=Pos 14 amod _ _ 14 differentiability differentiability NOUN NN Number=Sing 9 dobj _ SpaceAfter=No 15 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 14 punct _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 14 punct _ SpaceAfter=No 17 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 acl _ _ 18 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 17 punct _ SpaceAfter=No 19 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 17 punct _ SpaceAfter=No 20 tangentiability tangentiability NOUN NN Number=Sing 17 oprd _ SpaceAfter=No 21 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 20 punct _ SpaceAfter=No 22 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 14 punct _ _ 23 which which PRON WDT _ 24 nsubj _ _ 24 extends extend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 relcl _ _ 25 the the DET DT Definite=Def|PronType=Art 27 det _ _ 26 classical classical ADJ JJ Degree=Pos 27 amod _ _ 27 differentiability differentiability NOUN NN Number=Sing 24 dobj _ _ 28 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 24 punct _ SpaceAfter=No 29 while while SCONJ IN _ 30 mark _ _ 30 preserving preserve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 24 advcl _ _ 31 most most ADJ JJS Degree=Sup 30 dobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 34 poss _ _ 34 properties property NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 35 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 30 punct _ _ 36 to to ADP IN _ 30 prep _ _ 37 new new ADJ JJ Degree=Pos 38 amod _ _ 38 maps map NOUN NNS Number=Plur 36 pobj _ SpaceAfter=No 39 , , PUNCT , PunctType=Comm 38 punct _ _ 40 traditionally traditionally ADV RB _ 41 advmod _ _ 41 pathologic pathologic ADJ JJ Degree=Pos 38 appos _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 344 # sent_id = 1 # text = Protomodularity, in the pointed case, is equivalent to the Split Short Five Lemma. 1 Protomodularity protomodularity NOUN NN Number=Sing 8 nsubj _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 8 punct _ _ 3 in in ADP IN _ 8 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 pointed pointed ADJ JJ Degree=Pos 6 amod _ _ 6 case case NOUN NN Number=Sing 3 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 8 punct _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 equivalent equivalent ADJ JJ Degree=Pos 8 acomp _ _ 10 to to ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 15 det _ _ 12 Split Split PROPN NNP Number=Sing 15 compound _ _ 13 Short Short PROPN NNP Number=Sing 14 compound _ _ 14 Five Five PROPN NNP Number=Sing 15 compound _ _ 15 Lemma Lemma PROPN NNP Number=Sing 10 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 2 # text = It is also well known that this condition implies that every internal category is in fact an internal groupoid. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 also also ADV RB _ 2 advmod _ _ 4 well well ADV RB Degree=Pos 5 advmod _ _ 5 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 acomp _ _ 6 that that SCONJ IN _ 9 mark _ _ 7 this this DET DT Number=Sing|PronType=Dem 8 det _ _ 8 condition condition NOUN NN Number=Sing 9 nsubj _ _ 9 implies imply VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 ccomp _ _ 10 that that SCONJ IN _ 14 mark _ _ 11 every every DET DT _ 13 det _ _ 12 internal internal ADJ JJ Degree=Pos 13 amod _ _ 13 category category NOUN NN Number=Sing 14 nsubj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 ccomp _ _ 15 in in ADP IN _ 14 prep _ _ 16 fact fact NOUN NN Number=Sing 15 pobj _ _ 17 an an DET DT Definite=Ind|PronType=Art 19 det _ _ 18 internal internal ADJ JJ Degree=Pos 19 amod _ _ 19 groupoid groupoid NOUN NN Number=Sing 14 attr _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = In this work, this is condition (ii) and we introduce two other conditions denoted (i) and (iii). 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 work work NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 this this PRON DT Number=Sing|PronType=Dem 6 nsubj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 condition condition NOUN NN Number=Sing 6 attr _ _ 8 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 9 punct _ SpaceAfter=No 9 ii ii PROPN NNP Number=Sing 7 appos _ SpaceAfter=No 10 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 7 punct _ _ 11 and and CCONJ CC ConjType=Cmp 6 cc _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 6 conj _ _ 14 two two NUM CD NumType=Card 16 nummod _ _ 15 other other ADJ JJ Degree=Pos 16 amod _ _ 16 conditions condition NOUN NNS Number=Plur 13 dobj _ _ 17 denoted denote VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 acl _ _ 18 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 17 punct _ SpaceAfter=No 19 i i NOUN NN Number=Sing 17 npadvmod _ SpaceAfter=No 20 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 19 punct _ _ 21 and and CCONJ CC ConjType=Cmp 17 cc _ _ 22 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 23 punct _ SpaceAfter=No 23 iii iii PROPN NNP Number=Sing 17 conj _ SpaceAfter=No 24 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 17 punct _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 4 # text = Under condition (i), every multiplicative graph is an internal category. 1 Under under ADP IN _ 10 prep _ _ 2 condition condition NOUN NN Number=Sing 1 pobj _ _ 3 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 2 punct _ SpaceAfter=No 4 i i NOUN NN Number=Sing 2 appos _ SpaceAfter=No 5 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 2 punct _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 10 punct _ _ 7 every every DET DT _ 9 det _ _ 8 multiplicative multiplicative ADJ JJ Degree=Pos 9 amod _ _ 9 graph graph NOUN NN Number=Sing 10 nsubj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 an an DET DT Definite=Ind|PronType=Art 13 det _ _ 12 internal internal ADJ JJ Degree=Pos 13 amod _ _ 13 category category NOUN NN Number=Sing 10 attr _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 5 # text = Under condition (iii), every star - multiplicative graph can be extended (uniquely) to a multiplicative graph, a problem raised by Janelidze in the semiabelian context. 1 Under under ADP IN _ 14 prep _ _ 2 condition condition NOUN NN Number=Sing 1 pobj _ _ 3 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 2 punct _ SpaceAfter=No 4 iii iii PROPN NNP Number=Sing 2 appos _ SpaceAfter=No 5 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 2 punct _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 14 punct _ _ 7 every every DET DT _ 11 det _ _ 8 star star NOUN NN Number=Sing 10 npadvmod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 multiplicative multiplicative PROPN NNP Number=Sing 11 amod _ _ 11 graph graph NOUN NN Number=Sing 14 nsubjpass _ _ 12 can can AUX MD VerbForm=Fin 14 aux _ _ 13 be be AUX VB VerbForm=Inf 14 auxpass _ _ 14 extended extend VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 15 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 14 punct _ SpaceAfter=No 16 uniquely uniquely ADV RB _ 14 advmod _ SpaceAfter=No 17 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 14 punct _ _ 18 to to ADP IN _ 14 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 20 multiplicative multiplicative ADJ JJ Degree=Pos 21 amod _ _ 21 graph graph NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 14 punct _ _ 23 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 24 problem problem NOUN NN Number=Sing 11 appos _ _ 25 raised raise VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 acl _ _ 26 by by ADP IN _ 25 agent _ _ 27 Janelidze Janelidze PROPN NNP Number=Sing 26 pobj _ _ 28 in in ADP IN _ 25 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 31 det _ _ 30 semiabelian semiabelian ADJ JJ Degree=Pos 31 amod _ _ 31 context context NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 6 # text = When the three conditions hold, internal groupoids have a simple description, that, in the semiabelian context, correspond to the notion of internal crossed module, in the sense of Janelidze. 1 When when SCONJ WRB _ 5 advmod _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 three three NUM CD NumType=Card 4 nummod _ _ 4 conditions condition NOUN NNS Number=Plur 5 nsubj _ _ 5 hold hold VERB VBP Tense=Pres|VerbForm=Fin 9 advcl _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 9 punct _ _ 7 internal internal ADJ JJ Degree=Pos 8 amod _ _ 8 groupoids groupoid NOUN NNS Number=Plur 9 nsubj _ _ 9 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 simple simple ADJ JJ Degree=Pos 12 amod _ _ 12 description description NOUN NN Number=Sing 9 dobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 that that SCONJ IN _ 21 mark _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 21 punct _ _ 16 in in ADP IN _ 21 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 semiabelian semiabelian ADJ JJ Degree=Pos 19 amod _ _ 19 context context NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 21 punct _ _ 21 correspond correspond VERB VBP Tense=Pres|VerbForm=Fin 12 relcl _ _ 22 to to ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 notion notion NOUN NN Number=Sing 22 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 internal internal ADJ JJ Degree=Pos 28 amod _ _ 27 crossed crossed ADJ JJ Degree=Pos 28 amod _ _ 28 module module NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 21 punct _ _ 30 in in ADP IN _ 21 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 sense sense NOUN NN Number=Sing 30 pobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 Janelidze Janelidze PROPN NNP Number=Sing 33 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 345 # sent_id = 1 # text = We characterise the double central extensions in a semi - abelian category in terms of commutator conditions. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 characterise characterise VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 6 det _ _ 4 double double ADJ JJ Degree=Pos 6 amod _ _ 5 central central ADJ JJ Degree=Pos 6 amod _ _ 6 extensions extension NOUN NNS Number=Plur 2 dobj _ _ 7 in in ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 9 semi semi ADJ JJ Degree=Pos 12 amod _ _ 10 - - ADJ JJ Degree=Pos 12 amod _ _ 11 abelian abelian ADJ JJ Degree=Pos 12 amod _ _ 12 category category NOUN NN Number=Sing 7 pobj _ _ 13 in in ADP IN _ 6 prep _ _ 14 terms term NOUN NNS Number=Plur 13 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 commutator commutator NOUN NN Number=Sing 17 compound _ _ 17 conditions condition NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We prove that the third cohomology group $ H^3(Z, A) $ of an object $ Z $ with coefficients in an abelian object $ A $ classifies the double central extensions of $ Z $ by $ A $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 20 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 third third ADJ JJ Degree=Pos 6 compound _ _ 6 cohomology cohomology NOUN NN Number=Sing 7 compound _ _ 7 group group NOUN NN Number=Sing 20 nsubj _ _ 8 $ H^3(Z, A) $ $ h^3(z, a) $ SYM $ _ 7 appos _ _ 9 of of ADP IN _ 8 prep _ _ 10 an an DET DT Definite=Ind|PronType=Art 11 det _ _ 11 object object NOUN NN Number=Sing 9 pobj _ _ 12 $ Z $ $ z $ SYM $ _ 7 appos _ _ 13 with with ADP IN _ 7 prep _ _ 14 coefficients coefficient NOUN NNS Number=Plur 13 pobj _ _ 15 in in ADP IN _ 14 prep _ _ 16 an an DET DT Definite=Ind|PronType=Art 18 det _ _ 17 abelian abelian ADJ JJ Degree=Pos 18 compound _ _ 18 object object NOUN NN Number=Sing 15 pobj _ _ 19 $ A $ $ a $ SYM $ _ 20 nummod _ _ 20 classifies classifie NOUN NNS Number=Plur 2 ccomp _ _ 21 the the DET DT Definite=Def|PronType=Art 24 det _ _ 22 double double ADJ JJ Degree=Pos 24 amod _ _ 23 central central ADJ JJ Degree=Pos 24 amod _ _ 24 extensions extension NOUN NNS Number=Plur 20 dobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 $ Z $ $ z $ SYM $ _ 25 pobj _ _ 27 by by ADP IN _ 20 prep _ _ 28 $ A $ $ a $ SYM $ _ 27 pobj _ _ 29 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 346 # sent_id = 1 # text = We clarify the relationship between separable and covering morphisms in general categories by introducing and studying an intermediate class of morphisms that we call strongly separable. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 clarify clarify VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 relationship relationship NOUN NN Number=Sing 2 dobj _ _ 5 between between ADP IN _ 4 prep _ _ 6 separable separable ADJ JJ Degree=Pos 5 pobj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 covering cover VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 conj _ _ 9 morphisms morphism NOUN NNS Number=Plur 8 dobj _ _ 10 in in ADP IN _ 4 prep _ _ 11 general general ADJ JJ Degree=Pos 12 amod _ _ 12 categories category NOUN NNS Number=Plur 10 pobj _ _ 13 by by ADP IN _ 2 prep _ _ 14 introducing introduce VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 pcomp _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 studying study VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 conj _ _ 17 an an DET DT Definite=Ind|PronType=Art 19 det _ _ 18 intermediate intermediate ADJ JJ Degree=Pos 19 amod _ _ 19 class class NOUN NN Number=Sing 16 dobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 morphisms morphism NOUN NNS Number=Plur 20 pobj _ _ 22 that that PRON WDT PronType=Rel 24 dobj _ _ 23 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 24 nsubj _ _ 24 call call VERB VBP Tense=Pres|VerbForm=Fin 19 relcl _ _ 25 strongly strongly ADV RB _ 26 advmod _ _ 26 separable separable ADJ JJ Degree=Pos 24 oprd _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 347 # sent_id = 1 # text = The purpose of this paper is to prove a new, incomplete - relative, version of Non - abelian Snake Lemma, where "relative" refers to a distinguished class of normal epimorphisms in the ground category, and "incomplete" refers to omitting all completeness/cocompleteness assumptions not involving that class. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 purpose purpose NOUN NN Number=Sing 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 paper paper NOUN NN Number=Sing 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 to to PART TO _ 8 aux _ _ 8 prove prove VERB VB VerbForm=Inf 6 xcomp _ _ 9 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 10 new new ADJ JJ Degree=Pos 14 amod _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 14 punct _ _ 12 incomplete incomplete ADJ JJ Degree=Pos 14 amod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 relative relative ADJ JJ Degree=Pos 16 amod _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 16 punct _ _ 16 version version NOUN NN Number=Sing 8 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 Non Non PROPN NNP Number=Sing 20 compound _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 abelian abelian PROPN NNP Number=Sing 22 compound _ _ 21 Snake Snake PROPN NNP Number=Sing 22 compound _ _ 22 Lemma Lemma PROPN NNP Number=Sing 17 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 where where SCONJ WRB _ 28 advmod _ _ 25 " " PUNCT `` PunctSide=Ini|PunctType=Quot 28 punct _ SpaceAfter=No 26 relative relative ADJ JJ Degree=Pos 28 amod _ SpaceAfter=No 27 " " PUNCT '' PunctSide=Fin|PunctType=Quot 28 punct _ _ 28 refers refer VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 relcl _ _ 29 to to ADP IN _ 28 prep _ _ 30 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 31 distinguished distinguished ADJ JJ Degree=Pos 32 amod _ _ 32 class class NOUN NN Number=Sing 29 pobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 normal normal ADJ JJ Degree=Pos 35 amod _ _ 35 epimorphisms epimorphism NOUN NNS Number=Plur 33 pobj _ _ 36 in in ADP IN _ 32 prep _ _ 37 the the DET DT Definite=Def|PronType=Art 39 det _ _ 38 ground ground NOUN NN Number=Sing 39 compound _ _ 39 category category NOUN NN Number=Sing 36 pobj _ SpaceAfter=No 40 , , PUNCT , PunctType=Comm 28 punct _ _ 41 and and CCONJ CC ConjType=Cmp 28 cc _ _ 42 " " PUNCT `` PunctSide=Ini|PunctType=Quot 45 punct _ SpaceAfter=No 43 incomplete incomplete ADJ JJ Degree=Pos 45 amod _ SpaceAfter=No 44 " " PUNCT '' PunctSide=Fin|PunctType=Quot 45 punct _ _ 45 refers refer VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 28 conj _ _ 46 to to ADP IN _ 45 prep _ _ 47 omitting omit VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 46 pcomp _ _ 48 all all DET DT _ 52 det _ _ 49 completeness completeness NOUN NN Number=Sing 51 compound _ SpaceAfter=No 50 / / SYM SYM _ 51 punct _ SpaceAfter=No 51 cocompleteness cocompleteness NOUN NN Number=Sing 52 compound _ _ 52 assumptions assumption NOUN NNS Number=Plur 47 dobj _ _ 53 not not PART RB Polarity=Neg 54 neg _ _ 54 involving involve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 52 acl _ _ 55 that that DET DT Number=Sing|PronType=Dem 56 det _ _ 56 class class NOUN NN Number=Sing 54 dobj _ SpaceAfter=No 57 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 348 # sent_id = 1 # text = In this paper we show that in a homological category in the sense of Borceux and Bourn, the notion of an internal precrossed module corresponding to a star - multiplicative graph, in the sense of Janelidze, can be obtained by directly internalizing the usual axioms of a crossed module, via equivariance. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 that that SCONJ IN _ 42 mark _ _ 7 in in ADP IN _ 42 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 homological homological ADJ JJ Degree=Pos 10 amod _ _ 10 category category NOUN NN Number=Sing 7 pobj _ _ 11 in in ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 sense sense NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 Borceux Borceux PROPN NNP Number=Sing 14 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 Bourn Bourn PROPN NNP Number=Sing 15 conj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 42 punct _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 notion notion NOUN NN Number=Sing 42 nsubjpass _ _ 21 of of ADP IN _ 20 prep _ _ 22 an an DET DT Definite=Ind|PronType=Art 26 det _ _ 23 internal internal ADJ JJ Degree=Pos 26 amod _ _ 24 precrossed precrosse VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 amod _ _ 25 module module NOUN NN Number=Sing 26 compound _ _ 26 corresponding corresponding NOUN NN Number=Sing 21 pobj _ _ 27 to to ADP IN _ 26 prep _ _ 28 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 29 star star NOUN NN Number=Sing 31 compound _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 multiplicative multiplicative NOUN NN Number=Sing 32 amod _ _ 32 graph graph NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 33 , , PUNCT , PunctType=Comm 20 punct _ _ 34 in in ADP IN _ 42 prep _ _ 35 the the DET DT Definite=Def|PronType=Art 36 det _ _ 36 sense sense NOUN NN Number=Sing 34 pobj _ _ 37 of of ADP IN _ 36 prep _ _ 38 Janelidze Janelidze PROPN NNP Number=Sing 37 pobj _ SpaceAfter=No 39 , , PUNCT , PunctType=Comm 42 punct _ _ 40 can can AUX MD VerbForm=Fin 42 aux _ _ 41 be be AUX VB VerbForm=Inf 42 auxpass _ _ 42 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 ccomp _ _ 43 by by ADP IN _ 42 prep _ _ 44 directly directly ADV RB _ 45 advmod _ _ 45 internalizing internalize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 43 pcomp _ _ 46 the the DET DT Definite=Def|PronType=Art 48 det _ _ 47 usual usual ADJ JJ Degree=Pos 48 amod _ _ 48 axioms axiom NOUN NNS Number=Plur 45 dobj _ _ 49 of of ADP IN _ 48 prep _ _ 50 a a DET DT Definite=Ind|PronType=Art 52 det _ _ 51 crossed crossed ADJ JJ Degree=Pos 52 amod _ _ 52 module module NOUN NN Number=Sing 49 pobj _ SpaceAfter=No 53 , , PUNCT , PunctType=Comm 42 punct _ _ 54 via via ADP IN _ 42 prep _ _ 55 equivariance equivariance NOUN NN Number=Sing 54 pobj _ SpaceAfter=No 56 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = We then exhibit some sufficient conditions on a homological category under which this notion coincides with the notion of an internal crossed module due to Janelidze. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 exhibit exhibit VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 some some DET DT _ 6 det _ _ 5 sufficient sufficient ADJ JJ Degree=Pos 6 amod _ _ 6 conditions condition NOUN NNS Number=Plur 3 dobj _ _ 7 on on ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 homological homological ADJ JJ Degree=Pos 10 amod _ _ 10 category category NOUN NN Number=Sing 7 pobj _ _ 11 under under ADP IN _ 15 prep _ _ 12 which which PRON WDT _ 11 pobj _ _ 13 this this DET DT Number=Sing|PronType=Dem 14 det _ _ 14 notion notion NOUN NN Number=Sing 15 nsubj _ _ 15 coincides coincide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 relcl _ _ 16 with with ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 notion notion NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 an an DET DT Definite=Ind|PronType=Art 23 det _ _ 21 internal internal ADJ JJ Degree=Pos 23 amod _ _ 22 crossed crossed ADJ JJ Degree=Pos 23 amod _ _ 23 module module NOUN NN Number=Sing 19 pobj _ _ 24 due due ADP IN _ 23 prep _ _ 25 to to ADP IN _ 24 pcomp _ _ 26 Janelidze Janelidze PROPN NNP Number=Sing 24 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = We show that this is the case for any category of distributive $ Omega_2 $ - groups, in particular for the categories of groups with operations in the sense of Orzech. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 5 mark _ _ 4 this this PRON DT Number=Sing|PronType=Dem 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 case case NOUN NN Number=Sing 5 attr _ _ 8 for for ADP IN _ 7 prep _ _ 9 any any DET DT _ 10 det _ _ 10 category category NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 distributive distributive ADJ JJ Degree=Pos 15 amod _ _ 13 $ Omega_2 $ $ omega_2 $ SYM $ _ 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 groups group NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 7 punct _ _ 17 in in ADP IN _ 19 prep _ _ 18 particular particular ADJ JJ Degree=Pos 17 amod _ _ 19 for for ADP IN _ 5 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 categories category NOUN NNS Number=Plur 19 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 groups group NOUN NNS Number=Plur 22 pobj _ _ 24 with with ADP IN _ 23 prep _ _ 25 operations operation NOUN NNS Number=Plur 24 pobj _ _ 26 in in ADP IN _ 19 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 sense sense NOUN NN Number=Sing 26 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 Orzech Orzech PROPN NNP Number=Sing 29 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 349 # sent_id = 1 # text = We describe a simplified categorical approach to Galois descent theory. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 4 simplified simplified ADJ JJ Degree=Pos 6 amod _ _ 5 categorical categorical ADJ JJ Degree=Pos 6 amod _ _ 6 approach approach NOUN NN Number=Sing 2 dobj _ _ 7 to to ADP IN _ 6 prep _ _ 8 Galois Galois PROPN NNP Number=Sing 10 compound _ _ 9 descent descent NOUN NN Number=Sing 10 compound _ _ 10 theory theory NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = It is well known that Galois descent is a special case of Grothendieck descent, and that under mild additional conditions the category of Grothendieck descent data coincides with the Eilenberg - Moore category of algebras over a suitable monad. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 well well ADV RB Degree=Pos 4 advmod _ _ 4 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 acomp _ _ 5 that that SCONJ IN _ 8 mark _ _ 6 Galois Galois PROPN NNP Number=Sing 7 compound _ _ 7 descent descent NOUN NN Number=Sing 8 nsubj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 special special ADJ JJ Degree=Pos 11 amod _ _ 11 case case NOUN NN Number=Sing 8 attr _ _ 12 of of ADP IN _ 11 prep _ _ 13 Grothendieck Grothendieck PROPN NNP Number=Sing 14 compound _ _ 14 descent descent NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 8 punct _ _ 16 and and CCONJ CC ConjType=Cmp 8 cc _ _ 17 that that SCONJ IN _ 18 mark _ _ 18 under under ADP IN _ 8 conj _ _ 19 mild mild ADJ JJ Degree=Pos 21 amod _ _ 20 additional additional ADJ JJ Degree=Pos 21 amod _ _ 21 conditions condition NOUN NNS Number=Plur 18 pobj _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 category category NOUN NN Number=Sing 18 npadvmod _ _ 24 of of ADP IN _ 23 prep _ _ 25 Grothendieck Grothendieck PROPN NNP Number=Sing 27 compound _ _ 26 descent descent NOUN NN Number=Sing 27 compound _ _ 27 data data NOUN NN Number=Sing 28 compound _ _ 28 coincides coincide NOUN NNS Number=Plur 24 pobj _ _ 29 with with ADP IN _ 28 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 34 det _ _ 31 Eilenberg Eilenberg PROPN NNP Number=Sing 33 compound _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 Moore Moore PROPN NNP Number=Sing 34 compound _ _ 34 category category NOUN NN Number=Sing 29 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 algebras algebra NOUN NNS Number=Plur 35 pobj _ _ 37 over over ADP IN _ 23 prep _ _ 38 a a DET DT Definite=Ind|PronType=Art 40 det _ _ 39 suitable suitable ADJ JJ Degree=Pos 40 amod _ _ 40 monad monad NOUN NNS Number=Plur 37 pobj _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = This also suggests using monads directly, and our monadic approach to Galois descent makes no reference to Grothendieck descent theory at all. 1 This this PRON DT Number=Sing|PronType=Dem 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 suggests suggest VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 xcomp _ _ 5 monads monad NOUN NNS Number=Plur 4 dobj _ _ 6 directly directly ADV RB _ 4 advmod _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 3 punct _ _ 8 and and CCONJ CC ConjType=Cmp 3 cc _ _ 9 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 11 poss _ _ 10 monadic monadic ADJ JJ Degree=Pos 11 amod _ _ 11 approach approach NOUN NN Number=Sing 15 nsubj _ _ 12 to to ADP IN _ 11 prep _ _ 13 Galois Galois PROPN NNP Number=Sing 14 compound _ _ 14 descent descent NOUN NN Number=Sing 12 pobj _ _ 15 makes make VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 conj _ _ 16 no no DET DT _ 17 det _ _ 17 reference reference NOUN NN Number=Sing 15 dobj _ _ 18 to to ADP IN _ 17 prep _ _ 19 Grothendieck Grothendieck PROPN NNP Number=Sing 21 compound _ _ 20 descent descent NOUN NN Number=Sing 21 compound _ _ 21 theory theory NOUN NN Number=Sing 18 pobj _ _ 22 at at ADV RB _ 23 advmod _ _ 23 all all ADV RB _ 15 advmod _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = In order to make Galois descent constructions perfectly clear, we also describe their connections with some other related constructions of categorical algebra, and make various explicit calculations, especially with 1 - cocycles and 1 - dimensional non - abelian cohomology, usually omitted in the literature. 1 In in ADP IN _ 13 prep _ _ 2 order order NOUN NN Number=Sing 1 pobj _ _ 3 to to PART TO _ 4 aux _ _ 4 make make VERB VB VerbForm=Inf 2 acl _ _ 5 Galois Galois PROPN NNP Number=Sing 6 nsubj _ _ 6 descent descent NOUN NN Number=Sing 7 compound _ _ 7 constructions construction NOUN NNS Number=Plur 9 nsubj _ _ 8 perfectly perfectly ADV RB _ 9 advmod _ _ 9 clear clear ADJ JJ Degree=Pos 4 ccomp _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 13 punct _ _ 11 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 12 also also ADV RB _ 13 advmod _ _ 13 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 15 poss _ _ 15 connections connection NOUN NNS Number=Plur 13 dobj _ _ 16 with with ADP IN _ 15 prep _ _ 17 some some DET DT _ 20 det _ _ 18 other other ADJ JJ Degree=Pos 20 amod _ _ 19 related related ADJ JJ Degree=Pos 20 amod _ _ 20 constructions construction NOUN NNS Number=Plur 16 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 categorical categorical ADJ JJ Degree=Pos 23 amod _ _ 23 algebra algebra NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 13 punct _ _ 25 and and CCONJ CC ConjType=Cmp 13 cc _ _ 26 make make VERB VB VerbForm=Inf 13 conj _ _ 27 various various ADJ JJ Degree=Pos 29 amod _ _ 28 explicit explicit ADJ JJ Degree=Pos 29 amod _ _ 29 calculations calculation NOUN NNS Number=Plur 26 dobj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 26 punct _ _ 31 especially especially ADV RB _ 32 advmod _ _ 32 with with ADP IN _ 26 prep _ _ 33 1 1 NUM CD NumType=Card 35 nummod _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 cocycles cocycle NOUN NNS Number=Plur 32 pobj _ _ 36 and and CCONJ CC ConjType=Cmp 35 cc _ _ 37 1 1 NUM CD NumType=Card 39 npadvmod _ _ 38 - - PUNCT HYPH PunctType=Dash 39 punct _ _ 39 dimensional dimensional ADJ JJ Degree=Pos 43 amod _ _ 40 non non ADJ JJ Degree=Pos 42 amod _ _ 41 - - PUNCT HYPH PunctType=Dash 42 punct _ _ 42 abelian abelian PROPN NNP Number=Sing 43 compound _ _ 43 cohomology cohomology NOUN NN Number=Sing 35 conj _ SpaceAfter=No 44 , , PUNCT , PunctType=Comm 26 punct _ _ 45 usually usually ADV RB _ 46 advmod _ _ 46 omitted omit VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 advcl _ _ 47 in in ADP IN _ 46 prep _ _ 48 the the DET DT Definite=Def|PronType=Art 49 det _ _ 49 literature literature NOUN NN Number=Sing 47 pobj _ SpaceAfter=No 50 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # doc_id = 350 # sent_id = 1 # text = This is an expanded, revised and corrected version of the first author's 1981 preprint. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 4 expanded expand VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 amod _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 4 punct _ _ 6 revised revise VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 conj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 corrected correct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 conj _ _ 9 version version NOUN NN Number=Sing 2 attr _ _ 10 of of ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 first first ADJ JJ Degree=Pos 13 amod _ _ 13 author author NOUN NN Number=Sing 16 poss _ SpaceAfter=No 14 's 's PART POS _ 13 case _ _ 15 1981 1981 NUM CD NumType=Card 16 nummod _ _ 16 preprint preprint NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The discussion of one - dimensional cohomology $ H^{1} $ in a fairly general category $ E $ involves passing to the 2 - category $ Cat(E) $ of categories $ E $ . 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 discussion discussion NOUN NN Number=Sing 15 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 one one NUM CD NumType=Card 6 npadvmod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 dimensional dimensional ADJ JJ Degree=Pos 7 amod _ _ 7 cohomology cohomology NOUN NN Number=Sing 3 pobj _ _ 8 $ H^{1} $ $ h^{1} $ SYM $ _ 7 appos _ _ 9 in in ADP IN _ 2 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 11 fairly fairly ADV RB _ 12 advmod _ _ 12 general general ADJ JJ Degree=Pos 13 amod _ _ 13 category category NOUN NN Number=Sing 9 pobj _ _ 14 $ E $ $ e $ SYM $ _ 15 nsubj _ _ 15 involves involve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 16 passing pass VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 xcomp _ _ 17 to to ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 22 det _ _ 19 2 2 NUM CD NumType=Card 21 nummod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 category category NOUN NN Number=Sing 22 compound _ _ 22 $ Cat(E) $ $ cat(e) $ SYM $ _ 17 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 categories category NOUN NNS Number=Plur 23 pobj _ _ 25 $ E $ $ e $ SYM $ _ 22 appos _ _ 26 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 3 # text = In particular, the coefficient object is a category $ B $ in $ E $ and the torsors that $ H^{1} $ classifies are particular functors in $ E $ . 1 In in ADP IN _ 7 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 7 punct _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 coefficient coefficient ADJ JJ Degree=Pos 6 amod _ _ 6 object object NOUN NN Number=Sing 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 category category NOUN NN Number=Sing 10 nmod _ _ 10 $ B $ $ b $ SYM $ _ 7 attr _ _ 11 in in ADP IN _ 10 prep _ _ 12 $ E $ $ e $ SYM $ _ 11 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 10 cc _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 torsors torsor NOUN NNS Number=Plur 10 conj _ _ 16 that that PRON WDT PronType=Rel 22 pobj _ _ 17 $ H^{1} $ $ h^{1} $ SYM $ _ 18 poss _ _ 18 classifies classifie NOUN NNS Number=Plur 19 nsubj _ _ 19 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 relcl _ _ 20 particular particular ADJ JJ Degree=Pos 21 amod _ _ 21 functors functor NOUN NNS Number=Plur 19 attr _ _ 22 in in ADP IN _ 21 prep _ _ 23 $ E $ $ e $ SYM $ _ 22 pobj _ _ 24 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = We only impose conditions on $ E $ that are satisfied also by $ Cat(E) $ and argue that $ H^{1} $ for $ Cat(E) $ is a kind of $ H^{2} $ for $ E $ , and so on recursively. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 only only ADV RB _ 3 advmod _ _ 3 impose impose VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 conditions condition NOUN NNS Number=Plur 3 dobj _ _ 5 on on ADP IN _ 4 prep _ _ 6 $ E $ $ e $ SYM $ _ 5 pobj _ _ 7 that that PRON WDT PronType=Rel 8 nsubj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 relcl _ _ 9 satisfied satisfied ADJ JJ Degree=Pos 8 acomp _ _ 10 also also ADV RB _ 9 advmod _ _ 11 by by ADP IN _ 9 prep _ _ 12 $ Cat(E) $ $ cat(e) $ SYM $ _ 11 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 3 cc _ _ 14 argue argue VERB VBP Tense=Pres|VerbForm=Fin 3 conj _ _ 15 that that SCONJ IN _ 19 mark _ _ 16 $ H^{1} $ $ h^{1} $ SYM $ _ 19 nsubj _ _ 17 for for ADP IN _ 16 prep _ _ 18 $ Cat(E) $ $ cat(e) $ SYM $ _ 19 nsubj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 ccomp _ _ 20 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 21 kind kind NOUN NN Number=Sing 19 attr _ _ 22 of of ADP IN _ 21 prep _ _ 23 $ H^{2} $ $ h^{2} $ SYM $ _ 22 pobj _ _ 24 for for ADP IN _ 21 prep _ _ 25 $ E $ $ e $ SYM $ _ 24 pobj _ _ 26 , , PUNCT , PunctType=Comm 19 punct _ _ 27 and and CCONJ CC ConjType=Cmp 19 cc _ _ 28 so so ADV RB _ 29 advmod _ _ 29 on on ADP IN _ 30 advmod _ _ 30 recursively recursively ADV RB _ 19 advmod _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = For us, it is too much to ask $ E $ to be a topos (or even internally complete) since, even if $ E $ is, $ Cat(E) $ is not. 1 For for ADP IN _ 5 prep _ _ 2 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 29 ccomp _ _ 6 too too ADV RB _ 7 advmod _ _ 7 much much ADJ JJ Degree=Pos 5 acomp _ _ 8 to to PART TO _ 9 aux _ _ 9 ask ask VERB VB VerbForm=Inf 5 xcomp _ _ 10 $ E $ $ e $ SYM $ _ 9 dobj _ _ 11 to to PART TO _ 12 aux _ _ 12 be be AUX VB VerbForm=Inf 9 xcomp _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 topos topos NOUN NN Number=Sing 12 attr _ _ 15 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 14 punct _ SpaceAfter=No 16 or or CCONJ CC ConjType=Cmp 14 cc _ _ 17 even even ADV RB _ 19 advmod _ _ 18 internally internally ADV RB _ 19 advmod _ _ 19 complete complete ADJ JJ Degree=Pos 14 conj _ SpaceAfter=No 20 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 14 punct _ _ 21 since since SCONJ IN _ 5 prep _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 5 punct _ _ 23 even even ADV RB _ 26 advmod _ _ 24 if if SCONJ IN _ 26 mark _ _ 25 $ E $ $ e $ SYM $ _ 26 nsubj _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 29 advcl _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 26 punct _ _ 28 $ Cat(E) $ $ cat(e) $ SYM $ _ 29 nsubj _ _ 29 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 30 not not PART RB Polarity=Neg 29 neg _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 29 punct _ SpaceAfter=No # sent_id = 6 # text = With this motivation, we are led to examine morphisms in $ E $ which act as internal families and to internalize the comprehensive factorization of functors into a final functor followed by a discrete fibration. 1 With with ADP IN _ 7 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 motivation motivation NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 7 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubjpass _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 7 led lead VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 to to PART TO _ 9 aux _ _ 9 examine examine VERB VB VerbForm=Inf 7 xcomp _ _ 10 morphisms morphism NOUN NNS Number=Plur 9 dobj _ _ 11 in in ADP IN _ 9 prep _ _ 12 $ E $ $ e $ SYM $ _ 11 pobj _ _ 13 which which PRON WDT _ 14 nsubj _ _ 14 act act VERB VBP Tense=Pres|VerbForm=Fin 12 relcl _ _ 15 as as ADP IN _ 14 prep _ _ 16 internal internal ADJ JJ Degree=Pos 17 amod _ _ 17 families family NOUN NNS Number=Plur 15 pobj _ _ 18 and and CCONJ CC ConjType=Cmp 14 cc _ _ 19 to to PART TO _ 20 aux _ _ 20 internalize internalize VERB VB VerbForm=Inf 14 conj _ _ 21 the the DET DT Definite=Def|PronType=Art 23 det _ _ 22 comprehensive comprehensive ADJ JJ Degree=Pos 23 amod _ _ 23 factorization factorization NOUN NN Number=Sing 20 dobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 functors functor NOUN NNS Number=Plur 24 pobj _ _ 26 into into ADP IN _ 20 prep _ _ 27 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 28 final final ADJ JJ Degree=Pos 29 amod _ _ 29 functor functor NOUN NN Number=Sing 26 pobj _ _ 30 followed follow VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 acl _ _ 31 by by ADP IN _ 30 agent _ _ 32 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 33 discrete discrete ADJ JJ Degree=Pos 34 amod _ _ 34 fibration fibration NOUN NN Number=Sing 31 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 7 # text = We define $ B $ - torsors for a category $ B $ in $ E $ and prove clutching and classification theorems. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 $ B $ $ b $ SYM $ _ 5 compound _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 torsors torsor NOUN NNS Number=Plur 2 dobj _ _ 6 for for ADP IN _ 2 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 category category NOUN NN Number=Sing 9 nmod _ _ 9 $ B $ $ b $ SYM $ _ 6 pobj _ _ 10 in in ADP IN _ 9 prep _ _ 11 $ E $ $ e $ SYM $ _ 10 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 2 cc _ _ 13 prove prove VERB VB VerbForm=Inf 2 conj _ _ 14 clutching clutch VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 17 amod _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 classification classification NOUN NN Number=Sing 14 conj _ _ 17 theorems theorem NOUN NNS Number=Plur 13 dobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 8 # text = The former theorem clutches Cech cocycles to construct torsors while the latter constructs a coefficient category to classify structures locally isomorphic to members of a given internal family of structures. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 former former ADJ JJ Degree=Pos 3 amod _ _ 3 theorem theorem ADJ JJ Degree=Pos 4 nsubj _ _ 4 clutches clutch VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 Cech Cech PROPN NNP Number=Sing 6 compound _ _ 6 cocycles cocycle NOUN NNS Number=Plur 4 dobj _ _ 7 to to PART TO _ 8 aux _ _ 8 construct construct VERB VB VerbForm=Inf 4 xcomp _ _ 9 torsors torsor NOUN NNS Number=Plur 8 dobj _ _ 10 while while SCONJ IN _ 13 mark _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 latter latter ADJ JJ Degree=Pos 13 nsubj _ _ 13 constructs construct VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 advcl _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 coefficient coefficient ADJ JJ Degree=Pos 16 amod _ _ 16 category category NOUN NN Number=Sing 13 dobj _ _ 17 to to PART TO _ 18 aux _ _ 18 classify classify VERB VB VerbForm=Inf 16 acl _ _ 19 structures structure NOUN NNS Number=Plur 18 dobj _ _ 20 locally locally ADV RB _ 21 advmod _ _ 21 isomorphic isomorphic ADJ JJ Degree=Pos 18 acomp _ _ 22 to to ADP IN _ 18 prep _ _ 23 members member NOUN NNS Number=Plur 22 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 26 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 amod _ _ 27 internal internal ADJ JJ Degree=Pos 28 amod _ _ 28 family family NOUN NN Number=Sing 24 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 structures structure NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 9 # text = We conclude with applications to examples. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 conclude conclude VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 with with ADP IN _ 2 prep _ _ 4 applications application NOUN NNS Number=Plur 3 pobj _ _ 5 to to ADP IN _ 4 prep _ _ 6 examples example NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 7 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 351 # sent_id = 1 # text = Any semi - abelian category $ A $ appears, via the discrete functor, as a full replete reflective subcategory of the semi - abelian category of internal groupoids in $ A $ . 1 Any any DET DT _ 5 det _ _ 2 semi semi ADJ JJ Degree=Pos 5 amod _ _ 3 - - ADJ JJ Degree=Pos 5 amod _ _ 4 abelian abelian ADJ JJ Degree=Pos 5 amod _ _ 5 category category NOUN NN Number=Sing 7 nsubj _ _ 6 $ A $ $ a $ SYM $ _ 5 appos _ _ 7 appears appear VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 via via ADP IN _ 7 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 discrete discrete ADJ JJ Degree=Pos 12 amod _ _ 12 functor functor NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 7 punct _ _ 14 as as ADP IN _ 7 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 16 full full ADJ JJ Degree=Pos 19 amod _ _ 17 replete replete ADJ JJ Degree=Pos 19 amod _ _ 18 reflective reflective ADJ JJ Degree=Pos 19 amod _ _ 19 subcategory subcategory NOUN NN Number=Sing 14 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 25 det _ _ 22 semi semi ADJ JJ Degree=Pos 25 amod _ _ 23 - - ADJ JJ Degree=Pos 25 amod _ _ 24 abelian abelian ADJ JJ Degree=Pos 25 amod _ _ 25 category category NOUN NN Number=Sing 20 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 internal internal ADJ JJ Degree=Pos 28 amod _ _ 28 groupoids groupoid NOUN NNS Number=Plur 26 pobj _ _ 29 in in ADP IN _ 25 prep _ _ 30 $ A $ $ a $ SYM $ _ 29 pobj _ _ 31 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 2 # text = This allows one to study the homology of $ n $ - fold internal groupoids with coefficients in a semi - abelian category $ A $ , and to compute explicit higher Hopf formulae. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 one one PRON PRP PronType=Prs 5 nsubj _ _ 4 to to PART TO _ 5 aux _ _ 5 study study VERB VB VerbForm=Inf 2 ccomp _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 homology homology NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 $ n $ $ n $ SYM $ _ 10 nmod _ _ 10 - - ADJ JJ Degree=Pos 13 amod _ _ 11 fold fold ADJ JJ Degree=Pos 13 amod _ _ 12 internal internal ADJ JJ Degree=Pos 13 amod _ _ 13 groupoids groupoid NOUN NNS Number=Plur 8 pobj _ _ 14 with with ADP IN _ 5 prep _ _ 15 coefficients coefficient NOUN NNS Number=Plur 14 pobj _ _ 16 in in ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 18 semi semi ADJ JJ Degree=Pos 21 amod _ _ 19 - - ADJ JJ Degree=Pos 21 amod _ _ 20 abelian abelian ADJ JJ Degree=Pos 21 amod _ _ 21 category category NOUN NN Number=Sing 16 pobj _ _ 22 $ A $ $ a $ SYM $ _ 21 nummod _ _ 23 , , PUNCT , PunctType=Comm 5 punct _ _ 24 and and CCONJ CC ConjType=Cmp 5 cc _ _ 25 to to PART TO _ 26 aux _ _ 26 compute compute VERB VB VerbForm=Inf 5 conj _ _ 27 explicit explicit ADJ JJ Degree=Pos 30 amod _ _ 28 higher high ADJ JJR Degree=Cmp 30 amod _ _ 29 Hopf Hopf PROPN NNP Number=Sing 30 compound _ _ 30 formulae formulae NOUN NN Number=Sing 26 dobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = The crucial concept making such computations possible is the notion of protoadditive functor, which can be seen as a natural generalisation of the notion of additive functor. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 crucial crucial ADJ JJ Degree=Pos 3 amod _ _ 3 concept concept NOUN NN Number=Sing 8 nsubj _ _ 4 making make VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 acl _ _ 5 such such ADJ JJ Degree=Pos 6 amod _ _ 6 computations computation NOUN NNS Number=Plur 4 dobj _ _ 7 possible possible ADJ JJ Degree=Pos 6 amod _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 notion notion NOUN NN Number=Sing 8 attr _ _ 11 of of ADP IN _ 10 prep _ _ 12 protoadditive protoadditive NOUN NN Number=Sing 13 compound _ _ 13 functor functor NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 13 punct _ _ 15 which which PRON WDT _ 18 nsubjpass _ _ 16 can can AUX MD VerbForm=Fin 18 aux _ _ 17 be be AUX VB VerbForm=Inf 18 auxpass _ _ 18 seen see VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 relcl _ _ 19 as as ADP IN _ 18 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 natural natural ADJ JJ Degree=Pos 22 amod _ _ 22 generalisation generalisation NOUN NN Number=Sing 19 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 notion notion NOUN NN Number=Sing 23 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 additive additive ADJ JJ Degree=Pos 28 amod _ _ 28 functor functor NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # doc_id = 352 # sent_id = 1 # text = We present a general treatment of measures and integrals in certain (monoidal closed) categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 general general ADJ JJ Degree=Pos 5 amod _ _ 5 treatment treatment NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 measures measure NOUN NNS Number=Plur 6 pobj _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 integrals integral NOUN NNS Number=Plur 7 conj _ _ 10 in in ADP IN _ 7 prep _ _ 11 certain certain ADJ JJ Degree=Pos 16 amod _ _ 12 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 16 punct _ SpaceAfter=No 13 monoidal monoidal NOUN NN Number=Sing 16 amod _ _ 14 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 nmod _ SpaceAfter=No 15 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 16 punct _ _ 16 categories category NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Under appropriate conditions the integral can be defined by a universal property, and the universal measure is at the same time a universal multiplicative measure. 1 Under under ADP IN _ 8 prep _ _ 2 appropriate appropriate ADJ JJ Degree=Pos 3 amod _ _ 3 conditions condition NOUN NNS Number=Plur 1 pobj _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 integral integral NOUN NN Number=Sing 8 nsubjpass _ _ 6 can can AUX MD VerbForm=Fin 8 aux _ _ 7 be be AUX VB VerbForm=Inf 8 auxpass _ _ 8 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 by by ADP IN _ 8 agent _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 universal universal ADJ JJ Degree=Pos 12 amod _ _ 12 property property NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 8 punct _ _ 14 and and CCONJ CC ConjType=Cmp 8 cc _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 universal universal ADJ JJ Degree=Pos 17 amod _ _ 17 measure measure NOUN NN Number=Sing 18 nsubj _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 conj _ _ 19 at at ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 same same ADJ JJ Degree=Pos 22 amod _ _ 22 time time NOUN NN Number=Sing 19 pobj _ _ 23 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 24 universal universal ADJ JJ Degree=Pos 26 amod _ _ 25 multiplicative multiplicative ADJ JJ Degree=Pos 26 amod _ _ 26 measure measure NOUN NN Number=Sing 18 attr _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # sent_id = 3 # text = In the multiplicative case this assignment is right adjoint to the formation of the Boolean algebra of idempotents. 1 In in ADP IN _ 7 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 multiplicative multiplicative ADJ JJ Degree=Pos 4 amod _ _ 4 case case NOUN NN Number=Sing 1 pobj _ _ 5 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 6 assignment assignment NOUN NN Number=Sing 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 right right ADJ JJ Degree=Pos 9 amod _ _ 9 adjoint adjoint NOUN NN Number=Sing 7 attr _ _ 10 to to ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 formation formation NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 Boolean boolean ADJ JJ Degree=Pos 16 amod _ _ 16 algebra algebra NOUN NN Number=Sing 13 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 idempotents idempotent NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = Now coproduct preservation yields an approach to product measures. 1 Now now ADV RB _ 2 advmod _ _ 2 coproduct coproduct VERB VB VerbForm=Inf 0 ROOT _ _ 3 preservation preservation NOUN NN Number=Sing 4 compound _ _ 4 yields yield VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 dobj _ _ 5 an an DET DT Definite=Ind|PronType=Art 6 det _ _ 6 approach approach NOUN NN Number=Sing 4 dobj _ _ 7 to to ADP IN _ 6 prep _ _ 8 product product NOUN NN Number=Sing 9 compound _ _ 9 measures measure NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 353 # sent_id = 1 # text = The 2 - category of constructively completely distributive lattices is shown to be bidual to a 2 - category of generalized orders that admits a monadic schizophrenic object biadjunction over the 2 - category of ordered sets. 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 2 2 NUM CD NumType=Card 4 nummod _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 category category NOUN NN Number=Sing 11 nsubjpass _ _ 5 of of ADP IN _ 4 prep _ _ 6 constructively constructively ADV RB _ 8 advmod _ _ 7 completely completely ADV RB _ 8 advmod _ _ 8 distributive distributive ADJ JJ Degree=Pos 9 amod _ _ 9 lattices lattice NOUN NNS Number=Plur 5 pobj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 11 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 12 to to PART TO _ 13 aux _ _ 13 be be AUX VB VerbForm=Inf 11 xcomp _ _ 14 bidual bidual ADJ JJ Degree=Pos 13 acomp _ _ 15 to to ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 17 2 2 NUM CD NumType=Card 19 nummod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 category category NOUN NN Number=Sing 15 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 amod _ _ 22 orders order NOUN NNS Number=Plur 20 pobj _ _ 23 that that PRON WDT PronType=Rel 24 nsubj _ _ 24 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 relcl _ _ 25 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 26 monadic monadic ADJ JJ Degree=Pos 29 amod _ _ 27 schizophrenic schizophrenic ADJ JJ Degree=Pos 29 amod _ _ 28 object object NOUN NN Number=Sing 29 compound _ _ 29 biadjunction biadjunction NOUN NN Number=Sing 24 dobj _ _ 30 over over ADP IN _ 29 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 34 det _ _ 32 2 2 NUM CD NumType=Card 34 nummod _ _ 33 - - PUNCT HYPH PunctType=Dash 34 punct _ _ 34 category category NOUN NN Number=Sing 30 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 37 amod _ _ 37 sets set NOUN NNS Number=Plur 35 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # doc_id = 354 # sent_id = 1 # text = We show that categories weakly enriched over symmetric monoidal categories can be strictified to categories enriched in permutative categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 6 mark _ _ 4 categories category NOUN NNS Number=Plur 6 nsubj _ _ 5 weakly weakly ADV RB _ 6 advmod _ _ 6 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 7 over over ADP IN _ 6 prep _ _ 8 symmetric symmetric ADJ JJ Degree=Pos 10 amod _ _ 9 monoidal monoidal ADJ JJ Degree=Pos 10 amod _ _ 10 categories category NOUN NNS Number=Plur 7 pobj _ _ 11 can can AUX MD VerbForm=Fin 13 aux _ _ 12 be be AUX VB VerbForm=Inf 13 auxpass _ _ 13 strictified strictifie VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 14 to to ADP IN _ 13 prep _ _ 15 categories category NOUN NNS Number=Plur 14 pobj _ _ 16 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 acl _ _ 17 in in ADP IN _ 16 prep _ _ 18 permutative permutative ADJ JJ Degree=Pos 19 amod _ _ 19 categories category NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = This is a "many 0 - cells" version of the strictification of bimonoidal categories to strict ones. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 4 " " PUNCT `` PunctSide=Ini|PunctType=Quot 8 punct _ SpaceAfter=No 5 many many ADJ JJ Degree=Pos 8 amod _ _ 6 0 0 NUM CD NumType=Card 8 nummod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 cells cell NOUN NNS Number=Plur 10 nmod _ SpaceAfter=No 9 " " PUNCT '' PunctSide=Fin|PunctType=Quot 8 punct _ _ 10 version version NOUN NN Number=Sing 2 attr _ _ 11 of of ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 strictification strictification NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 bimonoidal bimonoidal NOUN NN Number=Sing 16 compound _ _ 16 categories category NOUN NNS Number=Plur 14 pobj _ _ 17 to to ADP IN _ 10 prep _ _ 18 strict strict ADJ JJ Degree=Pos 19 amod _ _ 19 ones one NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 355 # sent_id = 1 # text = We prove that every category of interest (in the sense of Orzech) is action accessible in the sense of Bourn and Janelidze. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 15 mark _ _ 4 every every DET DT _ 5 det _ _ 5 category category NOUN NN Number=Sing 15 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 interest interest NOUN NN Number=Sing 6 pobj _ _ 8 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 5 punct _ SpaceAfter=No 9 in in ADP IN _ 8 nmod _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 sense sense NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 Orzech Orzech PROPN NNP Number=Sing 12 pobj _ SpaceAfter=No 14 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 5 punct _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 16 action action NOUN NN Number=Sing 15 attr _ _ 17 accessible accessible ADJ JJ Degree=Pos 16 amod _ _ 18 in in ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 sense sense NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 Bourn Bourn PROPN NNP Number=Sing 21 pobj _ _ 23 and and CCONJ CC ConjType=Cmp 22 cc _ _ 24 Janelidze Janelidze PROPN NNP Number=Sing 22 conj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = This fact allows us to give an intrinsic description of centers and centralizers in this class of categories. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 fact fact NOUN NN Number=Sing 3 nsubj _ _ 3 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 5 to to PART TO _ 6 aux _ _ 6 give give VERB VB VerbForm=Inf 3 ccomp _ _ 7 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 8 intrinsic intrinsic ADJ JJ Degree=Pos 9 amod _ _ 9 description description NOUN NN Number=Sing 6 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 centers center NOUN NNS Number=Plur 10 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 centralizers centralizer NOUN NNS Number=Plur 11 conj _ _ 14 in in ADP IN _ 6 prep _ _ 15 this this DET DT Number=Sing|PronType=Dem 16 det _ _ 16 class class NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 categories category NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = We give also some new examples of categories of interest, mainly arising from Loday's papers. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 also also ADV RB _ 2 advmod _ _ 4 some some DET DT _ 6 det _ _ 5 new new ADJ JJ Degree=Pos 6 amod _ _ 6 examples example NOUN NNS Number=Plur 2 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 categories category NOUN NNS Number=Plur 7 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 interest interest NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 2 punct _ _ 12 mainly mainly ADV RB _ 13 advmod _ _ 13 arising arise VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 14 from from ADP IN _ 13 prep _ _ 15 Loday Loday PROPN NNP Number=Sing 17 poss _ SpaceAfter=No 16 's 's PART POS _ 15 case _ _ 17 papers paper NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 356 # sent_id = 1 # text = Notions of generalized multicategory have been defined in numerous contexts throughout the literature, and include such diverse examples as symmetric multicategories, globular operads, Lawvere theories, and topological spaces. 1 Notions notion NOUN NNS Number=Plur 7 nsubjpass _ _ 2 of of ADP IN _ 1 prep _ _ 3 generalized generalized ADJ JJ Degree=Pos 4 amod _ _ 4 multicategory multicategory NOUN NN Number=Sing 2 pobj _ _ 5 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 aux _ _ 6 been be AUX VBN Tense=Past|VerbForm=Part 7 auxpass _ _ 7 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 in in ADP IN _ 7 prep _ _ 9 numerous numerous ADJ JJ Degree=Pos 10 amod _ _ 10 contexts context NOUN NNS Number=Plur 8 pobj _ _ 11 throughout throughout ADP IN _ 7 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 literature literature NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 7 punct _ _ 15 and and CCONJ CC ConjType=Cmp 7 cc _ _ 16 include include VERB VBP Tense=Pres|VerbForm=Fin 7 conj _ _ 17 such such ADJ JJ Degree=Pos 19 amod _ _ 18 diverse diverse ADJ JJ Degree=Pos 19 amod _ _ 19 examples example NOUN NNS Number=Plur 16 dobj _ _ 20 as as ADP IN _ 19 prep _ _ 21 symmetric symmetric ADJ JJ Degree=Pos 22 amod _ _ 22 multicategories multicategorie NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 globular globular ADJ JJ Degree=Pos 25 amod _ _ 25 operads operad NOUN NNS Number=Plur 22 conj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 25 punct _ _ 27 Lawvere Lawvere PROPN NNP Number=Sing 28 compound _ _ 28 theories theory NOUN NNS Number=Plur 25 conj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 28 punct _ _ 30 and and CCONJ CC ConjType=Cmp 28 cc _ _ 31 topological topological ADJ JJ Degree=Pos 32 amod _ _ 32 spaces space NOUN NNS Number=Plur 28 conj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 2 # text = In each case, generalized multicategories are defined as the ``lax algebras'' or ``Kleisli monoids'' relative to a ``monad'' on a bicategory. 1 In in ADP IN _ 8 prep _ _ 2 each each DET DT _ 3 det _ _ 3 case case NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 8 punct _ _ 5 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 amod _ _ 6 multicategories multicategorie NOUN NNS Number=Plur 8 nsubjpass _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 as as ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 14 det _ _ 11 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 14 punct _ SpaceAfter=No 12 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 14 punct _ SpaceAfter=No 13 lax lax ADJ JJ Degree=Pos 14 amod _ _ 14 algebras algebra NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 15 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 14 punct _ _ 16 or or CCONJ CC ConjType=Cmp 8 cc _ _ 17 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 19 punct _ SpaceAfter=No 18 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 19 punct _ SpaceAfter=No 19 Kleisli Kleisli PROPN NNP Number=Sing 20 nmod _ _ 20 monoids monoid NOUN NNS Number=Plur 8 conj _ SpaceAfter=No 21 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 20 punct _ _ 22 relative relative ADJ JJ Degree=Pos 20 amod _ _ 23 to to ADP IN _ 22 prep _ _ 24 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 25 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 27 punct _ SpaceAfter=No 26 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 27 punct _ SpaceAfter=No 27 monad monad NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 28 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 27 punct _ _ 29 on on ADP IN _ 20 prep _ _ 30 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 31 bicategory bicategory NOUN NN Number=Sing 29 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 3 # text = However, the meanings of these words differ from author to author, as do the specific bicategories considered. 1 However however ADV RB _ 8 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 8 punct _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 meanings meaning NOUN NNS Number=Plur 8 nsubj _ _ 5 of of ADP IN _ 4 prep _ _ 6 these these DET DT Number=Plur|PronType=Dem 7 det _ _ 7 words word NOUN NNS Number=Plur 5 pobj _ _ 8 differ differ VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 from from ADP IN _ 8 prep _ _ 10 author author NOUN NN Number=Sing 9 pobj _ _ 11 to to ADP IN _ 9 prep _ _ 12 author author NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 8 punct _ _ 14 as as SCONJ IN _ 15 mark _ _ 15 do do VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 advcl _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 specific specific ADJ JJ Degree=Pos 18 amod _ _ 18 bicategories bicategorie NOUN NNS Number=Plur 15 nsubj _ _ 19 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 acl _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 4 # text = We propose a unified framework: by working with monads on double categories and related structures (rather than bicategories), one can define generalized multicategories in a way that unifies all previous examples, while at the same time simplifying and clarifying much of the theory. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 propose propose VERB VBP Tense=Pres|VerbForm=Fin 25 ccomp _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 unified unified ADJ JJ Degree=Pos 5 amod _ _ 5 framework framework NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 6 : : PUNCT : _ 2 punct _ _ 7 by by ADP IN _ 2 prep _ _ 8 working work VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 pcomp _ _ 9 with with ADP IN _ 8 prep _ _ 10 monads monad NOUN NNS Number=Plur 9 pobj _ _ 11 on on ADP IN _ 10 prep _ _ 12 double double ADJ JJ Degree=Pos 13 amod _ _ 13 categories category NOUN NNS Number=Plur 11 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 related related ADJ JJ Degree=Pos 16 amod _ _ 16 structures structure NOUN NNS Number=Plur 13 conj _ _ 17 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 13 punct _ SpaceAfter=No 18 rather rather ADV RB _ 19 advmod _ _ 19 than than ADP IN _ 13 prep _ _ 20 bicategories bicategorie NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 21 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 2 punct _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 25 punct _ _ 23 one one PRON PRP PronType=Prs 25 nsubj _ _ 24 can can AUX MD VerbForm=Fin 25 aux _ _ 25 define define VERB VB VerbForm=Inf 0 ROOT _ _ 26 generalized generalized ADJ JJ Degree=Pos 27 amod _ _ 27 multicategories multicategorie NOUN NNS Number=Plur 25 dobj _ _ 28 in in ADP IN _ 25 prep _ _ 29 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 30 way way NOUN NN Number=Sing 28 pobj _ _ 31 that that PRON WDT PronType=Rel 32 nsubj _ _ 32 unifies unify VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 relcl _ _ 33 all all DET DT _ 35 det _ _ 34 previous previous ADJ JJ Degree=Pos 35 amod _ _ 35 examples example NOUN NNS Number=Plur 32 dobj _ SpaceAfter=No 36 , , PUNCT , PunctType=Comm 25 punct _ _ 37 while while SCONJ IN _ 38 mark _ _ 38 at at ADP IN _ 25 prep _ _ 39 the the DET DT Definite=Def|PronType=Art 41 det _ _ 40 same same ADJ JJ Degree=Pos 41 amod _ _ 41 time time NOUN NN Number=Sing 38 pobj _ _ 42 simplifying simplify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 38 pcomp _ _ 43 and and CCONJ CC ConjType=Cmp 42 cc _ _ 44 clarifying clarify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 42 conj _ _ 45 much much ADJ JJ Degree=Pos 44 dobj _ _ 46 of of ADP IN _ 45 prep _ _ 47 the the DET DT Definite=Def|PronType=Art 48 det _ _ 48 theory theory NOUN NN Number=Sing 46 pobj _ SpaceAfter=No 49 . . PUNCT . PunctType=Peri 25 punct _ SpaceAfter=No # doc_id = 357 # sent_id = 1 # text = Groupoidification is a form of categorification in which vector spaces are replaced by groupoids and linear operators are replaced by spans of groupoids. 1 Groupoidification Groupoidification PROPN NNP Number=Sing 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 form form NOUN NN Number=Sing 19 nsubjpass _ _ 5 of of ADP IN _ 4 prep _ _ 6 categorification categorification NOUN NN Number=Sing 5 pobj _ _ 7 in in ADP IN _ 12 prep _ _ 8 which which PRON WDT _ 7 pobj _ _ 9 vector vector NOUN NN Number=Sing 10 compound _ _ 10 spaces space NOUN NNS Number=Plur 12 nsubjpass _ _ 11 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 12 replaced replace VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 relcl _ _ 13 by by ADP IN _ 12 agent _ _ 14 groupoids groupoid NOUN NNS Number=Plur 13 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 linear linear ADJ JJ Degree=Pos 17 amod _ _ 17 operators operator NOUN NNS Number=Plur 14 conj _ _ 18 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 19 auxpass _ _ 19 replaced replace VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 20 by by ADP IN _ 19 agent _ _ 21 spans span NOUN NNS Number=Plur 20 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 groupoids groupoid NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 2 # text = We introduce this idea with a detailed exposition of `degroupoidification': a systematic process that turns groupoids and spans into vector spaces and linear operators. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 4 idea idea NOUN NN Number=Sing 2 dobj _ _ 5 with with ADP IN _ 2 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 detailed detailed ADJ JJ Degree=Pos 8 amod _ _ 8 exposition exposition NOUN NN Number=Sing 5 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 9 punct _ SpaceAfter=No 11 degroupoidification degroupoidification NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 12 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 2 punct _ SpaceAfter=No 13 : : PUNCT : _ 2 punct _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 systematic systematic ADJ JJ Degree=Pos 16 amod _ _ 16 process process NOUN NN Number=Sing 2 dobj _ _ 17 that that PRON WDT PronType=Rel 18 nsubj _ _ 18 turns turn VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 relcl _ _ 19 groupoids groupoid NOUN NNS Number=Plur 18 dobj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 spans span NOUN NNS Number=Plur 19 conj _ _ 22 into into ADP IN _ 18 prep _ _ 23 vector vector NOUN NN Number=Sing 24 compound _ _ 24 spaces space NOUN NNS Number=Plur 22 pobj _ _ 25 and and CCONJ CC ConjType=Cmp 24 cc _ _ 26 linear linear ADJ JJ Degree=Pos 27 amod _ _ 27 operators operator NOUN NNS Number=Plur 24 conj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Then we present three applications of groupoidification. 1 Then then ADV RB PronType=Dem 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 three three NUM CD NumType=Card 5 nummod _ _ 5 applications application NOUN NNS Number=Plur 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 groupoidification groupoidification NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 8 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = The first is to Feynman diagrams. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 first first ADJ JJ Degree=Pos 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 to to ADP IN _ 3 prep _ _ 5 Feynman Feynman PROPN NNP Number=Sing 6 compound _ _ 6 diagrams diagram NOUN NNS Number=Plur 4 pobj _ SpaceAfter=No 7 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = The Hilbert space for the quantum harmonic oscillator arises naturally from degroupoidifying the groupoid of finite sets and bijections. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 Hilbert Hilbert PROPN NNP Number=Sing 3 compound _ _ 3 space space NOUN NN Number=Sing 9 nsubj _ _ 4 for for ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 8 det _ _ 6 quantum quantum PROPN NNP Number=Sing 8 amod _ _ 7 harmonic harmonic ADJ JJ Degree=Pos 8 amod _ _ 8 oscillator oscillator NOUN NN Number=Sing 4 pobj _ _ 9 arises arise VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 naturally naturally ADV RB _ 9 advmod _ _ 11 from from ADP IN _ 9 prep _ _ 12 degroupoidifying degroupoidifye VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 11 pcomp _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 groupoid groupoid NOUN NN Number=Sing 12 dobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 finite finite ADJ JJ Degree=Pos 17 compound _ _ 17 sets set NOUN NNS Number=Plur 15 pobj _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 bijections bijection NOUN NNS Number=Plur 17 conj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 6 # text = This allows for a purely combinatorial interpretation of creation and annihilation operators, their commutation relations, field operators, their normal - ordered powers, and finally Feynman diagrams. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 ccomp _ _ 3 for for ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 5 purely purely ADV RB _ 6 advmod _ _ 6 combinatorial combinatorial ADJ JJ Degree=Pos 7 amod _ _ 7 interpretation interpretation NOUN NN Number=Sing 3 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 creation creation NOUN NN Number=Sing 12 nmod _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 annihilation annihilation NOUN NN Number=Sing 9 conj _ _ 12 operators operator NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 16 punct _ _ 14 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 16 poss _ _ 15 commutation commutation NOUN NN Number=Sing 16 compound _ _ 16 relations relation NOUN NNS Number=Plur 0 ROOT _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 field field NOUN NN Number=Sing 19 compound _ _ 19 operators operator NOUN NNS Number=Plur 16 conj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 16 punct _ _ 21 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 25 poss _ _ 22 normal normal ADJ JJ Degree=Pos 24 advmod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 25 amod _ _ 25 powers power NOUN NNS Number=Plur 16 conj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 25 punct _ _ 27 and and CCONJ CC ConjType=Cmp 25 cc _ _ 28 finally finally ADV RB _ 30 advmod _ _ 29 Feynman Feynman PROPN NNP Number=Sing 30 compound _ _ 30 diagrams diagram NOUN NNS Number=Plur 25 conj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 7 # text = The second application is to Hecke algebras. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 second second ADJ JJ Degree=Pos 3 amod _ _ 3 application application NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 to to ADP IN _ 4 prep _ _ 6 Hecke Hecke PROPN NNP Number=Sing 7 compound _ _ 7 algebras algebra NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 8 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 8 # text = We explain how to groupoidify the Hecke algebra associated to a Dynkin diagram whenever the deformation parameter $ q $ is a prime power. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 explain explain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 how how SCONJ WRB _ 5 advmod _ _ 4 to to PART TO _ 5 aux _ _ 5 groupoidify groupoidify VERB VB VerbForm=Inf 2 xcomp _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 Hecke Hecke PROPN NNP Number=Sing 8 compound _ _ 8 algebra algebra NOUN NN Number=Sing 5 dobj _ _ 9 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 acl _ _ 10 to to ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 Dynkin Dynkin PROPN NNP Number=Sing 13 compound _ _ 13 diagram diagram NOUN NN Number=Sing 10 pobj _ _ 14 whenever whenever SCONJ WRB _ 19 advmod _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 deformation deformation NOUN NN Number=Sing 17 compound _ _ 17 parameter parameter NOUN NN Number=Sing 19 nsubj _ _ 18 $ q $ $ q $ SYM $ _ 17 appos _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 advcl _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 prime prime ADJ JJ Degree=Pos 22 amod _ _ 22 power power NOUN NN Number=Sing 19 attr _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 9 # text = We illustrate this with the simplest nontrivial example, coming from the $ A_2 $ Dynkin diagram. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 illustrate illustrate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 this this PRON DT Number=Sing|PronType=Dem 2 dobj _ _ 4 with with ADP IN _ 2 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 8 det _ _ 6 simplest simple ADJ JJS Degree=Sup 8 amod _ _ 7 nontrivial nontrivial ADJ JJ Degree=Pos 8 amod _ _ 8 example example NOUN NN Number=Sing 4 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 2 punct _ _ 10 coming come VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 11 from from ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 15 det _ _ 13 $ A_2 $ $ a_2 $ SYM $ _ 15 nmod _ _ 14 Dynkin Dynkin PROPN NNP Number=Sing 15 compound _ _ 15 diagram diagram NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 10 # text = In this example we show that the solution of the Yang - Baxter equation built into the $ A_2 $ Hecke algebra arises naturally from the axioms of projective geometry applied to the projective plane over the finite field $ mathbb{F}_q $ . 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 example example NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 that that SCONJ IN _ 21 mark _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 solution solution NOUN NN Number=Sing 21 nsubj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 14 det _ _ 11 Yang Yang PROPN NNP Number=Sing 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 Baxter Baxter PROPN NNP Number=Sing 14 compound _ _ 14 equation equation NOUN NN Number=Sing 9 pobj _ _ 15 built build VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 acl _ _ 16 into into ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 20 det _ _ 18 $ A_2 $ $ a_2 $ SYM $ _ 20 nmod _ _ 19 Hecke Hecke PROPN NNP Number=Sing 20 compound _ _ 20 algebra algebra NOUN NN Number=Sing 16 pobj _ _ 21 arises arise VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 ccomp _ _ 22 naturally naturally ADV RB _ 21 advmod _ _ 23 from from ADP IN _ 21 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 axioms axiom NOUN NNS Number=Plur 23 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 projective projective ADJ JJ Degree=Pos 28 amod _ _ 28 geometry geometry NOUN NN Number=Sing 26 pobj _ _ 29 applied apply VERB VBD Tense=Past|VerbForm=Fin 25 acl _ _ 30 to to ADP IN _ 29 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 33 det _ _ 32 projective projective ADJ JJ Degree=Pos 33 amod _ _ 33 plane plane NOUN NN Number=Sing 30 pobj _ _ 34 over over ADP IN _ 29 prep _ _ 35 the the DET DT Definite=Def|PronType=Art 37 det _ _ 36 finite finite ADJ JJ Degree=Pos 37 compound _ _ 37 field field NOUN NN Number=Sing 34 pobj _ _ 38 $ mathbb{F}_q $ $ mathbb{f}_q $ SYM $ _ 37 appos _ _ 39 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 11 # text = The third application is to Hall algebras. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 third third ADJ JJ Degree=Pos 3 amod _ _ 3 application application NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 to to ADP IN _ 4 prep _ _ 6 Hall Hall PROPN NNP Number=Sing 7 compound _ _ 7 algebras algebra NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 8 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 12 # text = We explain how the standard construction of the Hall algebra from the category of $ mathbb{F}_q $ representations of a simply - laced quiver can be seen as an example of degroupoidification. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 explain explain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 how how SCONJ WRB _ 25 advmod _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 standard standard ADJ JJ Degree=Pos 6 amod _ _ 6 construction construction NOUN NN Number=Sing 25 nsubjpass _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 Hall Hall PROPN NNP Number=Sing 10 compound _ _ 10 algebra algebra NOUN NN Number=Sing 7 pobj _ _ 11 from from ADP IN _ 6 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 category category NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 $ mathbb{F}_q $ $ mathbb{f}_q $ SYM $ _ 16 poss _ _ 16 representations representation NOUN NNS Number=Plur 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 19 simply simply ADV RB _ 21 advmod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 laced laced ADJ JJ Degree=Pos 22 amod _ _ 22 quiver quiver NOUN NN Number=Sing 25 nsubjpass _ _ 23 can can AUX MD VerbForm=Fin 25 aux _ _ 24 be be AUX VB VerbForm=Inf 25 auxpass _ _ 25 seen see VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 26 as as ADP IN _ 25 prep _ _ 27 an an DET DT Definite=Ind|PronType=Art 28 det _ _ 28 example example NOUN NN Number=Sing 26 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 degroupoidification degroupoidification NOUN NN Number=Sing 29 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 13 # text = This in turn provides a new way to categorify—or more precisely, groupoidify—the positive part of the quantum group associated to the quiver. 1 This this PRON DT Number=Sing|PronType=Dem 4 nsubj _ _ 2 in in ADP IN _ 4 prep _ _ 3 turn turn NOUN NN Number=Sing 2 pobj _ _ 4 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 new new ADJ JJ Degree=Pos 7 amod _ _ 7 way way NOUN NN Number=Sing 4 dobj _ _ 8 to to PART TO _ 9 aux _ _ 9 categorify categorify VERB VB VerbForm=Inf 7 relcl _ SpaceAfter=No 10 — — PUNCT : _ 7 punct _ SpaceAfter=No 11 or or CCONJ CC ConjType=Cmp 7 cc _ _ 12 more more ADV RBR Degree=Cmp 13 advmod _ _ 13 precisely precisely ADV RB _ 15 advmod _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 15 punct _ _ 15 groupoidify groupoidify VERB VB VerbForm=Inf 4 conj _ SpaceAfter=No 16 — — PUNCT : _ 15 punct _ SpaceAfter=No 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 positive positive ADJ JJ Degree=Pos 19 amod _ _ 19 part part NOUN NN Number=Sing 15 dobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 23 det _ _ 22 quantum quantum NOUN NN Number=Sing 23 compound _ _ 23 group group NOUN NN Number=Sing 20 pobj _ _ 24 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 acl _ _ 25 to to ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 quiver quiver NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 358 # sent_id = 1 # text = We clarify the relationship between internal profunctors and connectors on pairs $ (R, S) $ of equivalence relations which originally appeared in our new profunctorial approach of the Schreier - Mac Lane extension theorem. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 clarify clarify VERB VBP Tense=Pres|VerbForm=Fin 31 ccomp _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 relationship relationship NOUN NN Number=Sing 2 dobj _ _ 5 between between ADP IN _ 4 prep _ _ 6 internal internal ADJ JJ Degree=Pos 7 amod _ _ 7 profunctors profunctor NOUN NNS Number=Plur 5 pobj _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 connectors connector NOUN NNS Number=Plur 7 conj _ _ 10 on on ADP IN _ 2 prep _ _ 11 pairs pair NOUN NNS Number=Plur 10 pobj _ _ 12 $ (R, S) $ $ (r, s) $ SYM $ _ 31 nsubj _ _ 13 of of ADP IN _ 12 prep _ _ 14 equivalence equivalence NOUN NN Number=Sing 15 compound _ _ 15 relations relation NOUN NNS Number=Plur 13 pobj _ _ 16 which which PRON WDT _ 18 nsubj _ _ 17 originally originally ADV RB _ 18 advmod _ _ 18 appeared appear VERB VBD Tense=Past|VerbForm=Fin 15 relcl _ _ 19 in in ADP IN _ 18 prep _ _ 20 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 23 poss _ _ 21 new new ADJ JJ Degree=Pos 23 amod _ _ 22 profunctorial profunctorial ADJ JJ Degree=Pos 23 amod _ _ 23 approach approach NOUN NN Number=Sing 19 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 30 det _ _ 26 Schreier Schreier PROPN NNP Number=Sing 28 compound _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 Mac Mac PROPN NNP Number=Sing 29 compound _ _ 29 Lane Lane PROPN NNP Number=Sing 30 compound _ _ 30 extension extension NOUN NN Number=Sing 24 pobj _ _ 31 theorem theorem VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 31 punct _ SpaceAfter=No # sent_id = 2 # text = This clarification allows us to extend this Schreier - Mac Lane theorem to any exact Maltsev category with centralizers. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 clarification clarification NOUN NN Number=Sing 3 nsubj _ _ 3 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 5 to to PART TO _ 6 aux _ _ 6 extend extend VERB VB VerbForm=Inf 3 ccomp _ _ 7 this this DET DT Number=Sing|PronType=Dem 11 det _ _ 8 Schreier Schreier PROPN NNP Number=Sing 10 compound _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 Mac Mac PROPN NNP Number=Sing 11 compound _ _ 11 Lane Lane PROPN NNP Number=Sing 12 nsubj _ _ 12 theorem theorem VERB VBD Tense=Past|VerbForm=Fin 3 ccomp _ _ 13 to to ADP IN _ 12 prep _ _ 14 any any DET DT _ 17 det _ _ 15 exact exact ADJ JJ Degree=Pos 17 amod _ _ 16 Maltsev Maltsev PROPN NNP Number=Sing 17 compound _ _ 17 category category NOUN NN Number=Sing 13 pobj _ _ 18 with with ADP IN _ 17 prep _ _ 19 centralizers centralizer NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = On the other hand, still in the Maltsev context and in respect to the categorical Galois theory associated with a reflection $ I $ , it allows us to produce the faithful action of a certain abelian group on the set of classes (up to isomorphism) of $ I $ - normal extensions having a given Galois groupoid. 1 On on ADP IN _ 26 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 other other ADJ JJ Degree=Pos 4 amod _ _ 4 hand hand NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 26 punct _ _ 6 still still ADV RB _ 7 advmod _ _ 7 in in ADP IN _ 26 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 Maltsev maltsev ADJ JJ Degree=Pos 10 amod _ _ 10 context context NOUN NN Number=Sing 7 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 7 cc _ _ 12 in in ADP IN _ 26 prep _ _ 13 respect respect NOUN NN Number=Sing 12 pobj _ _ 14 to to ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 18 det _ _ 16 categorical categorical ADJ JJ Degree=Pos 18 amod _ _ 17 Galois Galois PROPN NNP Number=Sing 18 compound _ _ 18 theory theory NOUN NN Number=Sing 14 pobj _ _ 19 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 acl _ _ 20 with with ADP IN _ 19 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 reflection reflection NOUN NN Number=Sing 20 pobj _ _ 23 $ I $ $ i $ SYM $ _ 22 appos _ _ 24 , , PUNCT , PunctType=Comm 26 punct _ _ 25 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 26 nsubj _ _ 26 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 27 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 29 nsubj _ _ 28 to to PART TO _ 29 aux _ _ 29 produce produce VERB VB VerbForm=Inf 26 ccomp _ _ 30 the the DET DT Definite=Def|PronType=Art 32 det _ _ 31 faithful faithful ADJ JJ Degree=Pos 32 amod _ _ 32 action action NOUN NN Number=Sing 29 dobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 a a DET DT Definite=Ind|PronType=Art 37 det _ _ 35 certain certain ADJ JJ Degree=Pos 37 amod _ _ 36 abelian abelian ADJ JJ Degree=Pos 37 compound _ _ 37 group group NOUN NN Number=Sing 33 pobj _ _ 38 on on ADP IN _ 29 prep _ _ 39 the the DET DT Definite=Def|PronType=Art 40 det _ _ 40 set set NOUN NN Number=Sing 38 pobj _ _ 41 of of ADP IN _ 40 prep _ _ 42 classes class NOUN NNS Number=Plur 41 pobj _ _ 43 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 42 punct _ SpaceAfter=No 44 up up ADP IN _ 29 prep _ _ 45 to to ADP IN _ 44 prep _ _ 46 isomorphism isomorphism NOUN NN Number=Sing 45 pobj _ SpaceAfter=No 47 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 29 punct _ _ 48 of of ADP IN _ 29 prep _ _ 49 $ I $ $ i $ SYM $ _ 51 advmod _ _ 50 - - PUNCT HYPH PunctType=Dash 51 punct _ _ 51 normal normal ADJ JJ Degree=Pos 52 amod _ _ 52 extensions extension NOUN NNS Number=Plur 48 pobj _ _ 53 having have VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 52 acl _ _ 54 a a DET DT Definite=Ind|PronType=Art 57 det _ _ 55 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 57 amod _ _ 56 Galois Galois PROPN NNP Number=Sing 57 compound _ _ 57 groupoid groupoid NOUN NN Number=Sing 53 dobj _ SpaceAfter=No 58 . . PUNCT . PunctType=Peri 26 punct _ SpaceAfter=No # doc_id = 359 # sent_id = 1 # text = A combinatorial category Disk was introduced by André Joyal to play a role in his definition of weak $ omega $ - category. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 combinatorial combinatorial ADJ JJ Degree=Pos 3 amod _ _ 3 category category NOUN NN Number=Sing 6 nsubjpass _ _ 4 Disk Disk PROPN NNP Number=Sing 3 appos _ _ 5 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 6 auxpass _ _ 6 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 by by ADP IN _ 6 agent _ _ 8 André André PROPN NNP Number=Sing 9 compound _ _ 9 Joyal Joyal PROPN NNP Number=Sing 7 pobj _ _ 10 to to PART TO _ 11 aux _ _ 11 play play VERB VB VerbForm=Inf 6 xcomp _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 role role NOUN NN Number=Sing 11 dobj _ _ 14 in in ADP IN _ 13 prep _ _ 15 his his PRON PRP$ Gender=Masc|Number=Sing|Person=3|Poss=Yes|PronType=Prs 16 poss _ _ 16 definition definition NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 weak weak ADJ JJ Degree=Pos 21 amod _ _ 19 $ omega $ $ omega $ SYM $ _ 21 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 category category NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = He defined the category $ Theta $ to be dual to Disk. 1 He he PRON PRP Case=Nom|Gender=Masc|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 defined define VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 category category NOUN NN Number=Sing 2 dobj _ _ 5 $ Theta $ $ theta $ SYM $ _ 4 appos _ _ 6 to to PART TO _ 7 aux _ _ 7 be be AUX VB VerbForm=Inf 2 xcomp _ _ 8 dual dual ADJ JJ Degree=Pos 7 acomp _ _ 9 to to ADP IN _ 8 prep _ _ 10 Disk Disk PROPN NNP Number=Sing 9 pobj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = In the ensuing literature, a more concrete description of $ Theta $ was provided. 1 In in ADP IN _ 13 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 ensuing ensue VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 amod _ _ 4 literature literature NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 13 punct _ _ 6 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 7 more more ADV RBR Degree=Cmp 8 advmod _ _ 8 concrete concrete ADJ JJ Degree=Pos 9 amod _ _ 9 description description NOUN NN Number=Sing 13 nsubjpass _ _ 10 of of ADP IN _ 9 prep _ _ 11 $ Theta $ $ theta $ SYM $ _ 10 pobj _ _ 12 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 13 auxpass _ _ 13 provided provide VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 4 # text = In this paper we provide another proof of the dual equivalence and introduce various categories equivalent to Disk or $ Theta $ , each providing a helpful viewpoint. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 another another DET DT _ 7 det _ _ 7 proof proof NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 dual dual ADJ JJ Degree=Pos 11 amod _ _ 11 equivalence equivalence NOUN NN Number=Sing 8 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 5 cc _ _ 13 introduce introduce VERB VB VerbForm=Inf 5 conj _ _ 14 various various ADJ JJ Degree=Pos 15 amod _ _ 15 categories category NOUN NNS Number=Plur 13 dobj _ _ 16 equivalent equivalent ADJ JJ Degree=Pos 15 amod _ _ 17 to to ADP IN _ 16 prep _ _ 18 Disk Disk PROPN NNP Number=Sing 17 pobj _ _ 19 or or CCONJ CC ConjType=Cmp 18 cc _ _ 20 $ Theta $ $ theta $ SYM $ _ 18 conj _ _ 21 , , PUNCT , PunctType=Comm 13 punct _ _ 22 each each PRON DT _ 13 dep _ _ 23 providing provide VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 acl _ _ 24 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 25 helpful helpful ADJ JJ Degree=Pos 26 amod _ _ 26 viewpoint viewpoint NOUN NN Number=Sing 23 dobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 360 # sent_id = 1 # text = We present two generalizations of the Span construction. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 two two NUM CD NumType=Card 4 nummod _ _ 4 generalizations generalization NOUN NNS Number=Plur 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 Span Span PROPN NNP Number=Sing 8 compound _ _ 8 construction construction NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 9 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The first generalization gives Span of a category with all pullbacks as a (weak) double category. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 first first ADJ JJ Degree=Pos 3 amod _ _ 3 generalization generalization NOUN NN Number=Sing 4 nsubj _ _ 4 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 Span Span PROPN NNP Number=Sing 4 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 category category NOUN NN Number=Sing 6 pobj _ _ 9 with with ADP IN _ 8 prep _ _ 10 all all DET DT _ 11 det _ _ 11 pullbacks pullback NOUN NNS Number=Plur 9 pobj _ _ 12 as as ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 14 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 18 punct _ SpaceAfter=No 15 weak weak ADJ JJ Degree=Pos 18 amod _ SpaceAfter=No 16 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 18 punct _ _ 17 double double ADJ JJ Degree=Pos 18 amod _ _ 18 category category NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = This double category $ Span A $ can be viewed as the free double category on the vertical category $ A $ where every vertical arrow has both a companion and a conjoint (and these companions and conjoints are adjoint to each other). 1 This this DET DT Number=Sing|PronType=Dem 3 det _ _ 2 double double ADJ JJ Degree=Pos 3 amod _ _ 3 category category NOUN NN Number=Sing 7 nsubjpass _ _ 4 $ Span A $ $ span a $ SYM $ _ 3 appos _ _ 5 can can AUX MD VerbForm=Fin 7 aux _ _ 6 be be AUX VB VerbForm=Inf 7 auxpass _ _ 7 viewed view VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 as as ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 12 det _ _ 10 free free ADJ JJ Degree=Pos 12 amod _ _ 11 double double ADJ JJ Degree=Pos 12 amod _ _ 12 category category NOUN NN Number=Sing 8 pobj _ _ 13 on on ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 vertical vertical ADJ JJ Degree=Pos 16 amod _ _ 16 category category NOUN NN Number=Sing 13 pobj _ _ 17 $ A $ $ a $ SYM $ _ 16 appos _ _ 18 where where SCONJ WRB _ 22 advmod _ _ 19 every every DET DT _ 21 det _ _ 20 vertical vertical ADJ JJ Degree=Pos 21 amod _ _ 21 arrow arrow NOUN NN Number=Sing 22 nsubj _ _ 22 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 relcl _ _ 23 both both CCONJ CC ConjType=Cmp 25 preconj _ _ 24 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 25 companion companion NOUN NN Number=Sing 22 dobj _ _ 26 and and CCONJ CC ConjType=Cmp 25 cc _ _ 27 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 28 conjoint conjoint NOUN NN Number=Sing 25 conj _ _ 29 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 28 punct _ SpaceAfter=No 30 and and CCONJ CC ConjType=Cmp 28 cc _ _ 31 these these DET DT Number=Plur|PronType=Dem 32 det _ _ 32 companions companion NOUN NNS Number=Plur 35 nsubj _ _ 33 and and CCONJ CC ConjType=Cmp 32 cc _ _ 34 conjoints conjoint NOUN NNS Number=Plur 32 conj _ _ 35 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 conj _ _ 36 adjoint adjoint ADJ JJ Degree=Pos 35 acomp _ _ 37 to to ADP IN _ 36 prep _ _ 38 each each DET DT _ 39 det _ _ 39 other other ADJ JJ Degree=Pos 37 pobj _ SpaceAfter=No 40 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 35 punct _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 35 punct _ SpaceAfter=No # sent_id = 4 # text = Thus defined, $ Span : Cat - - > Doub $ becomes a 2 - functor, which is a partial left bi - adjoint to the forgetful functor $ Vrt : Doub - - > Cat $ , which sends a double category to its category of vertical arrows. 1 Thus thus ADV RB _ 2 advmod _ _ 2 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 advcl _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 $ Span : Cat - - > Doub $ $ span : cat - - > doub $ SYM $ _ 5 nsubj _ _ 5 becomes become VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 7 2 2 NUM CD NumType=Card 9 nummod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 functor functor NOUN NN Number=Sing 5 attr _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 which which PRON WDT _ 12 nsubj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 relcl _ _ 13 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 14 partial partial ADJ JJ Degree=Pos 16 amod _ _ 15 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 16 bi bi NOUN NN Number=Sing 12 attr _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 adjoint adjoint NOUN NN Number=Sing 12 attr _ _ 19 to to ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 forgetful forgetful ADJ JJ Degree=Pos 22 amod _ _ 22 functor functor NOUN NN Number=Sing 19 pobj _ _ 23 $ Vrt : Doub - - > Cat $ $ vrt : doub - - > cat $ SYM $ _ 22 appos _ _ 24 , , PUNCT , PunctType=Comm 22 punct _ _ 25 which which PRON WDT _ 26 nsubj _ _ 26 sends send VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 relcl _ _ 27 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 28 double double ADJ JJ Degree=Pos 29 amod _ _ 29 category category NOUN NN Number=Sing 26 dobj _ _ 30 to to ADP IN _ 26 prep _ _ 31 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 32 poss _ _ 32 category category NOUN NN Number=Sing 30 pobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 vertical vertical ADJ JJ Degree=Pos 35 amod _ _ 35 arrows arrow NOUN NNS Number=Plur 33 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 5 # text = The second generalization gives Span of an arbitrary category as an oplax normal double category. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 second second ADJ JJ Degree=Pos 3 amod _ _ 3 generalization generalization NOUN NN Number=Sing 4 nsubj _ _ 4 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 Span Span PROPN NNP Number=Sing 4 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 8 arbitrary arbitrary ADJ JJ Degree=Pos 9 amod _ _ 9 category category NOUN NN Number=Sing 6 pobj _ _ 10 as as ADP IN _ 9 prep _ _ 11 an an DET DT Definite=Ind|PronType=Art 15 det _ _ 12 oplax oplax ADJ JJ Degree=Pos 15 nmod _ _ 13 normal normal ADJ JJ Degree=Pos 15 amod _ _ 14 double double ADJ JJ Degree=Pos 15 amod _ _ 15 category category NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 6 # text = The universal property can again be given in terms of companions and conjoints and the presence of their composites. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 universal universal ADJ JJ Degree=Pos 3 amod _ _ 3 property property NOUN NN Number=Sing 7 nsubjpass _ _ 4 can can AUX MD VerbForm=Fin 7 aux _ _ 5 again again ADV RB _ 7 advmod _ _ 6 be be AUX VB VerbForm=Inf 7 auxpass _ _ 7 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 in in ADP IN _ 7 prep _ _ 9 terms term NOUN NNS Number=Plur 8 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 companions companion NOUN NNS Number=Plur 10 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 conjoints conjoint NOUN NNS Number=Plur 11 conj _ _ 14 and and CCONJ CC ConjType=Cmp 9 cc _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 presence presence NOUN NN Number=Sing 9 conj _ _ 17 of of ADP IN _ 16 prep _ _ 18 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 19 poss _ _ 19 composites composite NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 7 # text = Moreover, $ Span A $ is universal with this property in the sense that $ Span : Cat - - > OplaxNDoub $ is left bi - adjoint to the forgetful functor which sends an oplax double category to its vertical arrow category. 1 Moreover moreover ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 $ Span A $ $ span a $ SYM $ _ 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 universal universal ADJ JJ Degree=Pos 4 acomp _ _ 6 with with ADP IN _ 5 prep _ _ 7 this this DET DT Number=Sing|PronType=Dem 8 det _ _ 8 property property NOUN NN Number=Sing 6 pobj _ _ 9 in in ADP IN _ 4 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 sense sense NOUN NN Number=Sing 9 pobj _ _ 12 that that SCONJ IN _ 15 mark _ _ 13 $ Span : Cat - - > OplaxNDoub $ $ span : cat - - > oplaxndoub $ SYM $ _ 15 nsubjpass _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 auxpass _ _ 15 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 acl _ _ 16 bi bi PROPN NNP Number=Sing 15 oprd _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 adjoint adjoint NOUN NN Number=Sing 15 oprd _ _ 19 to to ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 forgetful forgetful ADJ JJ Degree=Pos 22 amod _ _ 22 functor functor NOUN NN Number=Sing 19 pobj _ _ 23 which which PRON WDT _ 24 nsubj _ _ 24 sends send VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 relcl _ _ 25 an an DET DT Definite=Ind|PronType=Art 28 det _ _ 26 oplax oplax NOUN NN Number=Sing 28 nmod _ _ 27 double double ADJ JJ Degree=Pos 28 amod _ _ 28 category category NOUN NN Number=Sing 24 dobj _ _ 29 to to ADP IN _ 24 prep _ _ 30 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 33 poss _ _ 31 vertical vertical ADJ JJ Degree=Pos 33 amod _ _ 32 arrow arrow NOUN NN Number=Sing 33 compound _ _ 33 category category NOUN NN Number=Sing 29 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 361 # sent_id = 1 # text = We present a doctrinal approach to category theory, obtained by abstracting from the indexed inclusion (via discrete fibrations and opfibrations) of left and of right actions of $ X $ in $ Cat $ in categories over $ X $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 doctrinal doctrinal ADJ JJ Degree=Pos 5 amod _ _ 5 approach approach NOUN NN Number=Sing 2 dobj _ _ 6 to to ADP IN _ 5 prep _ _ 7 category category NOUN NN Number=Sing 8 compound _ _ 8 theory theory NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 5 punct _ _ 10 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 acl _ _ 11 by by ADP IN _ 10 agent _ _ 12 abstracting abstract VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 11 pcomp _ _ 13 from from ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 indexed indexed ADJ JJ Degree=Pos 16 amod _ _ 16 inclusion inclusion NOUN NN Number=Sing 13 pobj _ _ 17 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 12 punct _ SpaceAfter=No 18 via via ADP IN _ 12 prep _ _ 19 discrete discrete ADJ JJ Degree=Pos 20 amod _ _ 20 fibrations fibration NOUN NNS Number=Plur 18 pobj _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 opfibrations opfibration NOUN NNS Number=Plur 20 conj _ SpaceAfter=No 23 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 12 punct _ _ 24 of of ADP IN _ 12 prep _ _ 25 left left ADJ JJ Degree=Pos 24 pobj _ _ 26 and and CCONJ CC ConjType=Cmp 25 cc _ _ 27 of of ADP IN _ 24 conj _ _ 28 right right ADJ JJ Degree=Pos 29 amod _ _ 29 actions action NOUN NNS Number=Plur 27 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 $ X $ $ x $ SYM $ _ 30 pobj _ _ 32 in in ADP IN _ 29 prep _ _ 33 $ Cat $ $ cat $ SYM $ _ 32 pobj _ _ 34 in in ADP IN _ 29 prep _ _ 35 categories category NOUN NNS Number=Plur 34 pobj _ _ 36 over over ADP IN _ 35 prep _ _ 37 $ X $ $ x $ SYM $ _ 36 pobj _ _ 38 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Namely, a ``weak temporal doctrine'' consists essentially of two indexed functors with the same codomain such that the induced functors have both left and right adjoints satisfying some exactness conditions, in the spirit of categorical logic. 1 Namely namely ADV RB _ 10 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 10 punct _ _ 3 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 4 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 8 punct _ SpaceAfter=No 5 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 8 punct _ SpaceAfter=No 6 weak weak ADJ JJ Degree=Pos 8 amod _ _ 7 temporal temporal ADJ JJ Degree=Pos 8 amod _ _ 8 doctrine doctrine NOUN NN Number=Sing 10 nsubj _ SpaceAfter=No 9 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 8 punct _ _ 10 consists consist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 essentially essentially ADV RB _ 10 advmod _ _ 12 of of ADP IN _ 10 prep _ _ 13 two two NUM CD NumType=Card 15 nummod _ _ 14 indexed index VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 amod _ _ 15 functors functor NOUN NNS Number=Plur 12 pobj _ _ 16 with with ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 same same ADJ JJ Degree=Pos 19 amod _ _ 19 codomain codomain NOUN NN Number=Sing 16 pobj _ _ 20 such such ADJ JJ Degree=Pos 27 amod _ _ 21 that that SCONJ IN _ 27 mark _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 24 functors functor NOUN NNS Number=Plur 27 nsubj _ _ 25 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 27 aux _ _ 26 both both PRON DT _ 27 preconj _ _ 27 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 advcl _ _ 28 and and CCONJ CC ConjType=Cmp 27 cc _ _ 29 right right ADJ JJ Degree=Pos 30 amod _ _ 30 adjoints adjoint NOUN NNS Number=Plur 27 conj _ _ 31 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 30 acl _ _ 32 some some DET DT _ 34 det _ _ 33 exactness exactness ADJ JJ Degree=Pos 34 amod _ _ 34 conditions condition NOUN NNS Number=Plur 31 dobj _ SpaceAfter=No 35 , , PUNCT , PunctType=Comm 27 punct _ _ 36 in in ADP IN _ 27 prep _ _ 37 the the DET DT Definite=Def|PronType=Art 38 det _ _ 38 spirit spirit NOUN NN Number=Sing 36 pobj _ _ 39 of of ADP IN _ 38 prep _ _ 40 categorical categorical ADJ JJ Degree=Pos 41 amod _ _ 41 logic logic NOUN NN Number=Sing 39 pobj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 3 # text = The derived logical rules include some adjunction - like laws involving the truth - values - enriched hom and tensor functors, which condense several basic categorical properties and display a nice symmetry. 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 derived derive VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 amod _ _ 3 logical logical ADJ JJ Degree=Pos 4 amod _ _ 4 rules rule NOUN NNS Number=Plur 5 nsubj _ _ 5 include include VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 some some DET DT _ 10 det _ _ 7 adjunction adjunction NOUN NN Number=Sing 9 npadvmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 like like ADJ JJ Degree=Pos 10 amod _ _ 10 laws law NOUN NNS Number=Plur 5 dobj _ _ 11 involving involve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 acl _ _ 12 the the DET DT Definite=Def|PronType=Art 21 det _ _ 13 truth truth NOUN NN Number=Sing 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 values value NOUN NNS Number=Plur 17 npadvmod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 amod _ _ 18 hom hom NOUN NN Number=Sing 17 nmod _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 tensor tensor NOUN NN Number=Sing 18 conj _ _ 21 functors functor NOUN NNS Number=Plur 11 dobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 which which PRON WDT _ 24 nsubj _ _ 24 condense condense VERB VBP Tense=Pres|VerbForm=Fin 21 relcl _ _ 25 several several ADJ JJ Degree=Pos 28 amod _ _ 26 basic basic ADJ JJ Degree=Pos 28 amod _ _ 27 categorical categorical ADJ JJ Degree=Pos 28 amod _ _ 28 properties property NOUN NNS Number=Plur 24 dobj _ _ 29 and and CCONJ CC ConjType=Cmp 24 cc _ _ 30 display display VERB VB VerbForm=Inf 24 conj _ _ 31 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 32 nice nice ADJ JJ Degree=Pos 33 amod _ _ 33 symmetry symmetry NOUN NN Number=Sing 30 dobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = The symmetry becomes more apparent in the slightly stronger context of ``temporal doctrines'', which we initially treat and which include as an instance the inclusion of lower and upper sets in the parts of a poset, as well as the inclusion of left and right actions of a graph in the graphs over it. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 symmetry symmetry NOUN NN Number=Sing 3 nsubj _ _ 3 becomes become VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 more more ADV RBR Degree=Cmp 5 advmod _ _ 5 apparent apparent ADJ JJ Degree=Pos 3 acomp _ _ 6 in in ADP IN _ 3 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 10 det _ _ 8 slightly slightly ADV RB _ 9 advmod _ _ 9 stronger strong ADJ JJR Degree=Cmp 10 amod _ _ 10 context context NOUN NN Number=Sing 6 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 11 punct _ SpaceAfter=No 13 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 15 punct _ SpaceAfter=No 14 temporal temporal ADJ JJ Degree=Pos 15 amod _ _ 15 doctrines doctrine NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 16 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 15 punct _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 15 punct _ _ 18 which which PRON WDT _ 21 dobj _ _ 19 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 21 nsubj _ _ 20 initially initially ADV RB _ 21 advmod _ _ 21 treat treat VERB VBP Tense=Pres|VerbForm=Fin 15 relcl _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 which which PRON WDT _ 24 nsubj _ _ 24 include include VERB VBP Tense=Pres|VerbForm=Fin 21 conj _ _ 25 as as ADP IN _ 24 prep _ _ 26 an an DET DT Definite=Ind|PronType=Art 27 det _ _ 27 instance instance NOUN NN Number=Sing 25 pobj _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 inclusion inclusion NOUN NN Number=Sing 24 dobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 lower low ADJ JJR Degree=Cmp 34 amod _ _ 32 and and CCONJ CC ConjType=Cmp 31 cc _ _ 33 upper upper ADJ JJ Degree=Pos 31 conj _ _ 34 sets set NOUN NNS Number=Plur 30 pobj _ _ 35 in in ADP IN _ 34 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 37 det _ _ 37 parts part NOUN NNS Number=Plur 35 pobj _ _ 38 of of ADP IN _ 37 prep _ _ 39 a a DET DT Definite=Ind|PronType=Art 40 det _ _ 40 poset poset NOUN NN Number=Sing 38 pobj _ SpaceAfter=No 41 , , PUNCT , PunctType=Comm 29 punct _ _ 42 as as ADV RB _ 44 advmod _ _ 43 well well ADV RB Degree=Pos 44 advmod _ _ 44 as as ADP IN _ 29 cc _ _ 45 the the DET DT Definite=Def|PronType=Art 46 det _ _ 46 inclusion inclusion NOUN NN Number=Sing 29 conj _ _ 47 of of ADP IN _ 46 prep _ _ 48 left left ADJ JJ Degree=Pos 51 amod _ _ 49 and and CCONJ CC ConjType=Cmp 48 cc _ _ 50 right right ADJ JJ Degree=Pos 48 conj _ _ 51 actions action NOUN NNS Number=Plur 47 pobj _ _ 52 of of ADP IN _ 51 prep _ _ 53 a a DET DT Definite=Ind|PronType=Art 54 det _ _ 54 graph graph NOUN NN Number=Sing 52 pobj _ _ 55 in in ADP IN _ 54 prep _ _ 56 the the DET DT Definite=Def|PronType=Art 57 det _ _ 57 graphs graph NOUN NNS Number=Plur 55 pobj _ _ 58 over over ADP IN _ 57 prep _ _ 59 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 58 pobj _ SpaceAfter=No 60 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 362 # sent_id = 1 # text = Let $ R $ be a commutative ring whose complete ring of quotients is $ R $ - injective. 1 Let let VERB VB VerbForm=Inf 0 ROOT _ _ 2 $ R $ $ r $ SYM $ _ 1 ccomp _ _ 3 be be AUX VB VerbForm=Inf 1 ccomp _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 commutative commutative ADJ JJ Degree=Pos 6 amod _ _ 6 ring ring NOUN NN Number=Sing 3 attr _ _ 7 whose whose DET WP$ Poss=Yes 9 poss _ _ 8 complete complete ADJ JJ Degree=Pos 9 amod _ _ 9 ring ring NOUN NN Number=Sing 12 nsubj _ _ 10 of of ADP IN _ 9 prep _ _ 11 quotients quotient NOUN NNS Number=Plur 10 pobj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 relcl _ _ 13 $ R $ $ r $ SYM $ _ 15 advmod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 injective injective ADJ JJ Degree=Pos 12 acomp _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = We show that the category of topological $ R $ - modules contains a full subcategory that is $ * $ - autonomous using $ R $ itself as dualizing object. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 11 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 11 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 topological topological ADJ JJ Degree=Pos 10 amod _ _ 8 $ R $ $ r $ SYM $ _ 10 compound _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 modules module NOUN NNS Number=Plur 6 pobj _ _ 11 contains contain VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 full full ADJ JJ Degree=Pos 14 amod _ _ 14 subcategory subcategory NOUN NN Number=Sing 11 dobj _ _ 15 that that PRON WDT PronType=Rel 16 nsubj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 relcl _ _ 17 $ * $ $ * $ SYM $ _ 19 advmod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 autonomous autonomous ADJ JJ Degree=Pos 16 acomp _ _ 20 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 advcl _ _ 21 $ R $ $ r $ SYM $ _ 22 nmod _ _ 22 itself itself PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs|Reflex=Yes 20 dobj _ _ 23 as as ADP IN _ 20 prep _ _ 24 dualizing dualize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 23 pcomp _ _ 25 object object NOUN NN Number=Sing 24 dobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = In order to do this, we develop a new variation on the category $ chu(D, R) $ , where $ D $ is the category of discrete $ R $ - modules: the high wide subcategory, which we show equivalent to the category of reflexive topological modules. 1 In in ADP IN _ 8 prep _ _ 2 order order NOUN NN Number=Sing 1 pobj _ _ 3 to to PART TO _ 4 aux _ _ 4 do do AUX VB VerbForm=Inf 2 acl _ _ 5 this this PRON DT Number=Sing|PronType=Dem 4 dobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 8 punct _ _ 7 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 8 nsubj _ _ 8 develop develop VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 new new ADJ JJ Degree=Pos 11 amod _ _ 11 variation variation NOUN NN Number=Sing 8 dobj _ _ 12 on on ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 category category NOUN NN Number=Sing 12 pobj _ _ 15 $ chu(D, R) $ $ chu(d, r) $ X FW Foreign=Yes 14 appos _ _ 16 , , PUNCT , PunctType=Comm 14 punct _ _ 17 where where SCONJ WRB _ 19 advmod _ _ 18 $ D $ $ d $ SYM $ _ 19 nsubj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 relcl _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 category category NOUN NN Number=Sing 19 attr _ _ 22 of of ADP IN _ 21 prep _ _ 23 discrete discrete ADJ JJ Degree=Pos 26 amod _ _ 24 $ R $ $ r $ SYM $ _ 26 compound _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 modules module NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 27 : : PUNCT : _ 8 punct _ _ 28 the the DET DT Definite=Def|PronType=Art 31 det _ _ 29 high high ADJ JJ Degree=Pos 30 amod _ _ 30 wide wide ADJ JJ Degree=Pos 31 amod _ _ 31 subcategory subcategory NOUN NN Number=Sing 8 dobj _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 31 punct _ _ 33 which which PRON WDT _ 35 dobj _ _ 34 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 35 nsubj _ _ 35 show show VERB VBP Tense=Pres|VerbForm=Fin 31 relcl _ _ 36 equivalent equivalent ADJ JJ Degree=Pos 35 acomp _ _ 37 to to ADP IN _ 36 prep _ _ 38 the the DET DT Definite=Def|PronType=Art 39 det _ _ 39 category category NOUN NN Number=Sing 37 pobj _ _ 40 of of ADP IN _ 39 prep _ _ 41 reflexive reflexive ADJ JJ Degree=Pos 43 amod _ _ 42 topological topological ADJ JJ Degree=Pos 43 amod _ _ 43 modules module NOUN NNS Number=Plur 40 pobj _ SpaceAfter=No 44 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # doc_id = 363 # sent_id = 1 # text = Deterministic automata are algebras of the monad $ T_M $ associated to a free monoid $ M $ . 1 Deterministic deterministic ADJ JJ Degree=Pos 2 amod _ _ 2 automata automata NOUN NN Number=Sing 3 nsubj _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 algebras algebra NOUN NNS Number=Plur 3 attr _ _ 5 of of ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 monad monad NOUN NNS Number=Plur 5 pobj _ _ 8 $ T_M $ $ t_m $ SYM $ _ 7 appos _ _ 9 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 acl _ _ 10 to to ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 free free ADJ JJ Degree=Pos 13 amod _ _ 13 monoid monoid NOUN NN Number=Sing 10 pobj _ _ 14 $ M $ $ m $ SYM $ _ 3 dep _ _ 15 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = To extend to nondeterministic and stochastic automata such a monadic formalism, it is suitable to resort to a notion richer than the one of monad, but equally basic: the notion of distributive law between two monads. 1 To to PART TO _ 2 aux _ _ 2 extend extend VERB VB VerbForm=Inf 14 advcl _ _ 3 to to ADP IN _ 2 prep _ _ 4 nondeterministic nondeterministic ADJ JJ Degree=Pos 7 amod _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 stochastic stochastic ADJ JJ Degree=Pos 4 conj _ _ 7 automata automata NOUN NN Number=Sing 3 pobj _ _ 8 such such DET PDT _ 11 predet _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 monadic monadic ADJ JJ Degree=Pos 11 amod _ _ 11 formalism formalism NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 14 punct _ _ 13 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 14 nsubj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 suitable suitable ADJ JJ Degree=Pos 14 acomp _ _ 16 to to PART TO _ 17 aux _ _ 17 resort resort VERB VB VerbForm=Inf 15 xcomp _ _ 18 to to ADP IN _ 17 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 notion notion NOUN NN Number=Sing 18 pobj _ _ 21 richer rich ADJ JJR Degree=Cmp 20 amod _ _ 22 than than ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 one one NUM CD NumType=Card 22 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 monad monad NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 21 punct _ _ 28 but but CCONJ CC ConjType=Cmp 14 cc _ _ 29 equally equally ADV RB _ 30 advmod _ _ 30 basic basic ADJ JJ Degree=Pos 14 conj _ SpaceAfter=No 31 : : PUNCT : _ 14 punct _ _ 32 the the DET DT Definite=Def|PronType=Art 33 det _ _ 33 notion notion NOUN NN Number=Sing 13 appos _ _ 34 of of ADP IN _ 33 prep _ _ 35 distributive distributive ADJ JJ Degree=Pos 36 amod _ _ 36 law law NOUN NN Number=Sing 34 pobj _ _ 37 between between ADP IN _ 36 prep _ _ 38 two two NUM CD NumType=Card 39 nummod _ _ 39 monads monad NOUN NNS Number=Plur 37 pobj _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 3 # text = The notion of algebra on a monad is then generalized by the one of algebra for a distributive law. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 notion notion NOUN NN Number=Sing 10 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 algebra algebra NOUN NN Number=Sing 3 pobj _ _ 5 on on ADP IN _ 2 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 monad monad NOUN NNS Number=Plur 5 pobj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 9 then then ADV RB PronType=Dem 10 advmod _ _ 10 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 11 by by ADP IN _ 10 agent _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 one one NUM CD NumType=Card 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 algebra algebra NOUN NN Number=Sing 14 pobj _ _ 16 for for ADP IN _ 13 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 18 distributive distributive ADJ JJ Degree=Pos 19 amod _ _ 19 law law NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 4 # text = The nondeterministic and stochastic automata are precisely algebras for distributive laws whose first monad is $ T_M $ . 1 The the DET DT Definite=Def|PronType=Art 5 det _ _ 2 nondeterministic nondeterministic ADJ JJ Degree=Pos 5 amod _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 stochastic stochastic ADJ JJ Degree=Pos 2 conj _ _ 5 automata automata NOUN NN Number=Sing 6 nsubj _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 precisely precisely ADV RB _ 8 advmod _ _ 8 algebras algebra NOUN NNS Number=Plur 6 attr _ _ 9 for for ADP IN _ 8 prep _ _ 10 distributive distributive ADJ JJ Degree=Pos 11 amod _ _ 11 laws law NOUN NNS Number=Plur 9 pobj _ _ 12 whose whose DET WP$ Poss=Yes 14 poss _ _ 13 first first ADJ JJ Degree=Pos 14 amod _ _ 14 monad monad NOUN NNS Number=Plur 15 nsubj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 conj _ _ 16 $ T_M $ $ t_m $ SYM $ _ 15 attr _ _ 17 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 5 # text = If the nondeterministic case involves a distributive law between $ T_M $ and the well - known power set monad, the stochastic case involves a distributive law between $ T_M $ (where, here, $ M $ is a measurable monoid) and the probability monad. 1 If if SCONJ IN _ 5 mark _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 nondeterministic nondeterministic ADJ JJ Degree=Pos 4 amod _ _ 4 case case NOUN NN Number=Sing 5 nsubj _ _ 5 involves involve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 advcl _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 distributive distributive ADJ JJ Degree=Pos 8 amod _ _ 8 law law NOUN NN Number=Sing 5 dobj _ _ 9 between between ADP IN _ 8 prep _ _ 10 $ T_M $ $ t_m $ SYM $ _ 9 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 the the DET DT Definite=Def|PronType=Art 18 det _ _ 13 well well ADV RB Degree=Pos 15 advmod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 amod _ _ 16 power power NOUN NN Number=Sing 17 compound _ _ 17 set set VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 compound _ _ 18 monad monad NOUN NNS Number=Plur 10 conj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 23 punct _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 stochastic stochastic ADJ JJ Degree=Pos 22 amod _ _ 22 case case NOUN NN Number=Sing 23 nsubj _ _ 23 involves involve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 24 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 25 distributive distributive ADJ JJ Degree=Pos 26 amod _ _ 26 law law NOUN NN Number=Sing 23 dobj _ _ 27 between between ADP IN _ 26 prep _ _ 28 $ T_M $ $ t_m $ SYM $ _ 27 pobj _ _ 29 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 28 punct _ SpaceAfter=No 30 where where SCONJ WRB _ 35 advmod _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 35 punct _ _ 32 here here ADV RB PronType=Dem 35 advmod _ SpaceAfter=No 33 , , PUNCT , PunctType=Comm 35 punct _ _ 34 $ M $ $ m $ SYM $ _ 35 nsubj _ _ 35 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 ccomp _ _ 36 a a DET DT Definite=Ind|PronType=Art 38 det _ _ 37 measurable measurable ADJ JJ Degree=Pos 38 amod _ _ 38 monoid monoid NOUN NN Number=Sing 35 attr _ SpaceAfter=No 39 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 35 punct _ _ 40 and and CCONJ CC ConjType=Cmp 35 cc _ _ 41 the the DET DT Definite=Def|PronType=Art 43 det _ _ 42 probability probability NOUN NN Number=Sing 43 compound _ _ 43 monad monad NOUN NNS Number=Plur 35 conj _ SpaceAfter=No 44 . . PUNCT . PunctType=Peri 23 punct _ SpaceAfter=No # sent_id = 6 # text = This allows presentation of the stochastic automata as algebras for this distributive law. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 presentation presentation NOUN NN Number=Sing 2 dobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 stochastic stochastic ADJ JJ Degree=Pos 7 amod _ _ 7 automata automata NOUN NN Number=Sing 4 pobj _ _ 8 as as ADP IN _ 3 prep _ _ 9 algebras algebra NOUN NNS Number=Plur 8 pobj _ _ 10 for for ADP IN _ 3 prep _ _ 11 this this DET DT Number=Sing|PronType=Dem 13 det _ _ 12 distributive distributive ADJ JJ Degree=Pos 13 amod _ _ 13 law law NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 7 # text = This paper taking place at the confluence of category, automata and probability theories, we have, for the convenience of the reader not aware of each area, made useful reviews about these subjects (in several appendices). 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 taking take VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 17 advcl _ _ 4 place place NOUN NN Number=Sing 3 dobj _ _ 5 at at ADP IN _ 3 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 confluence confluence NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 category category NOUN NN Number=Sing 14 nmod _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 automata automata NOUN NN Number=Sing 14 nmod _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 probability probability NOUN NN Number=Sing 11 conj _ _ 14 theories theory NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 17 punct _ _ 16 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 17 nsubj _ _ 17 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 31 aux _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 for for ADP IN _ 17 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 convenience convenience NOUN NN Number=Sing 19 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 reader reader NOUN NN Number=Sing 22 pobj _ _ 25 not not PART RB Polarity=Neg 26 neg _ _ 26 aware aware ADJ JJ Degree=Pos 17 xcomp _ _ 27 of of ADP IN _ 26 prep _ _ 28 each each DET DT _ 29 det _ _ 29 area area NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 17 punct _ _ 31 made make VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 32 useful useful ADJ JJ Degree=Pos 33 amod _ _ 33 reviews review NOUN NNS Number=Plur 31 dobj _ _ 34 about about ADP IN _ 33 prep _ _ 35 these these DET DT Number=Plur|PronType=Dem 36 det _ _ 36 subjects subject NOUN NNS Number=Plur 34 pobj _ _ 37 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 31 punct _ SpaceAfter=No 38 in in ADP IN _ 31 prep _ _ 39 several several ADJ JJ Degree=Pos 40 amod _ _ 40 appendices appendix NOUN NNS Number=Plur 38 pobj _ SpaceAfter=No 41 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 31 punct _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 31 punct _ SpaceAfter=No # sent_id = 8 # text = We also recall the detailed construction of the probability monad; and we construct precisely the distributive law which links it to the monad $ T_M $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 recall recall VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 detailed detailed ADJ JJ Degree=Pos 6 amod _ _ 6 construction construction NOUN NN Number=Sing 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 probability probability NOUN NN Number=Sing 10 compound _ _ 10 monad monad NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 11 ; ; PUNCT : _ 3 punct _ _ 12 and and CCONJ CC ConjType=Cmp 3 cc _ _ 13 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 14 nsubj _ _ 14 construct construct VERB VBP Tense=Pres|VerbForm=Fin 3 conj _ _ 15 precisely precisely ADV RB _ 18 advmod _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 distributive distributive ADJ JJ Degree=Pos 18 amod _ _ 18 law law NOUN NN Number=Sing 14 dobj _ _ 19 which which PRON WDT _ 20 nsubj _ _ 20 links link VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 relcl _ _ 21 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 20 dobj _ _ 22 to to ADP IN _ 20 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 monad monad NOUN NNS Number=Plur 22 pobj _ _ 25 $ T_M $ $ t_m $ SYM $ _ 24 appos _ _ 26 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # doc_id = 364 # sent_id = 1 # text = An alternative description of the tensor product of sup - lattices is given with yet another description provided for the tensor product in the special case of CCD sup - lattices. 1 An an DET DT Definite=Ind|PronType=Art 3 det _ _ 2 alternative alternative ADJ JJ Degree=Pos 3 amod _ _ 3 description description NOUN NN Number=Sing 13 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 tensor tensor NOUN NN Number=Sing 7 compound _ _ 7 product product NOUN NN Number=Sing 4 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 sup sup NOUN NN Number=Sing 11 compound _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 lattices lattice NOUN NNS Number=Plur 8 pobj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 14 with with ADP IN _ 13 prep _ _ 15 yet yet ADV RB _ 16 advmod _ _ 16 another another DET DT _ 17 det _ _ 17 description description NOUN NN Number=Sing 14 pobj _ _ 18 provided provide VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 acl _ _ 19 for for ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 tensor tensor NOUN NN Number=Sing 22 compound _ _ 22 product product NOUN NN Number=Sing 19 pobj _ _ 23 in in ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 26 det _ _ 25 special special ADJ JJ Degree=Pos 26 amod _ _ 26 case case NOUN NN Number=Sing 23 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 CCD CCD PROPN NNP Number=Sing 31 compound _ _ 29 sup sup NOUN NN Number=Sing 31 compound _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 lattices lattice NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 2 # text = In the course of developing the latter, properties of sup - preserving functions and the totally below relation are generalized to not - necessarily - complete ordered sets. 1 In in ADP IN _ 21 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 course course NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 developing develop VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 pcomp _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 latter latter ADJ JJ Degree=Pos 5 dobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 21 punct _ _ 9 properties property NOUN NNS Number=Plur 21 nsubjpass _ _ 10 of of ADP IN _ 9 prep _ _ 11 sup sup NOUN NN Number=Sing 13 npadvmod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 preserving preserve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 amod _ _ 14 functions function NOUN NNS Number=Plur 10 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 totally totally ADV RB _ 18 advmod _ _ 18 below below ADP IN _ 9 prep _ _ 19 relation relation NOUN NN Number=Sing 18 pobj _ _ 20 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 21 auxpass _ _ 21 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 22 to to PART TO _ 21 prep _ _ 23 not not PART RB Polarity=Neg 25 neg _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 necessarily necessarily ADV RB _ 27 advmod _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 complete complete ADJ JJ Degree=Pos 29 amod _ _ 28 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 amod _ _ 29 sets set NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 21 punct _ SpaceAfter=No # doc_id = 365 # sent_id = 1 # text = An unpublished result by the first author states that there exists a Hopf algebra $ H $ such that for any Möbius category $ cal C $ (in the sense of Leroux) there exists a canonical algebra morphism from the dual $ H^* $ of $ H $ to the incidence algebra of $ cal C $ . 1 An an DET DT Definite=Ind|PronType=Art 3 det _ _ 2 unpublished unpublished ADJ JJ Degree=Pos 3 amod _ _ 3 result result NOUN NN Number=Sing 8 nsubj _ _ 4 by by ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 first first ADJ JJ Degree=Pos 7 amod _ _ 7 author author NOUN NN Number=Sing 4 pobj _ _ 8 states state VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 that that SCONJ IN _ 11 mark _ _ 10 there there PRON EX _ 11 expl _ _ 11 exists exist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 ccomp _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 Hopf Hopf PROPN NNP Number=Sing 14 compound _ _ 14 algebra algebra NOUN NN Number=Sing 11 dobj _ _ 15 $ H $ $ h $ SYM $ _ 17 predet _ _ 16 such such ADJ JJ Degree=Pos 17 amod _ _ 17 that that SCONJ IN _ 11 dobj _ _ 18 for for ADP IN _ 31 prep _ _ 19 any any DET DT _ 21 det _ _ 20 Möbius Möbius PROPN NNP Number=Sing 21 compound _ _ 21 category category NOUN NN Number=Sing 18 pobj _ _ 22 $ cal C $ $ cal c $ SYM $ _ 21 nummod _ _ 23 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 31 punct _ SpaceAfter=No 24 in in ADP IN _ 31 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 sense sense NOUN NN Number=Sing 24 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 Leroux Leroux PROPN NNP Number=Sing 27 pobj _ SpaceAfter=No 29 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 31 punct _ _ 30 there there PRON EX _ 31 expl _ _ 31 exists exist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 advcl _ _ 32 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 33 canonical canonical ADJ JJ Degree=Pos 34 amod _ _ 34 algebra algebra NOUN NN Number=Sing 35 compound _ _ 35 morphism morphism NOUN NN Number=Sing 31 dobj _ _ 36 from from ADP IN _ 31 prep _ _ 37 the the DET DT Definite=Def|PronType=Art 39 det _ _ 38 dual dual ADJ JJ Degree=Pos 39 amod _ _ 39 $ H^* $ $ h^* $ SYM $ _ 36 pobj _ _ 40 of of ADP IN _ 39 prep _ _ 41 $ H $ $ h $ SYM $ _ 40 pobj _ _ 42 to to ADP IN _ 36 prep _ _ 43 the the DET DT Definite=Def|PronType=Art 45 det _ _ 44 incidence incidence NOUN NN Number=Sing 45 compound _ _ 45 algebra algebra NOUN NN Number=Sing 42 pobj _ _ 46 of of ADP IN _ 45 prep _ _ 47 $ cal C $ $ cal c $ SYM $ _ 46 pobj _ _ 48 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 2 # text = Moreover, the Möbius inversion principle in incidence algebras follows from a `master' inversion result in $ H^* $ . 1 Moreover moreover ADV RB _ 10 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 10 punct _ _ 3 the the DET DT Definite=Def|PronType=Art 6 det _ _ 4 Möbius Möbius PROPN NNP Number=Sing 6 compound _ _ 5 inversion inversion NOUN NN Number=Sing 6 compound _ _ 6 principle principle NOUN NN Number=Sing 10 nsubj _ _ 7 in in ADP IN _ 6 prep _ _ 8 incidence incidence NOUN NN Number=Sing 9 compound _ _ 9 algebras algebra NOUN NNS Number=Plur 7 pobj _ _ 10 follows follow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 from from ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 13 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 17 punct _ SpaceAfter=No 14 master master NOUN NN Number=Sing 17 poss _ SpaceAfter=No 15 ' ' PART POS _ 14 case _ _ 16 inversion inversion NOUN NN Number=Sing 17 compound _ _ 17 result result NOUN NN Number=Sing 11 pobj _ _ 18 in in ADP IN _ 17 prep _ _ 19 $ H^* $ $ h^* $ SYM $ _ 18 pobj _ _ 20 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 3 # text = The underlying module of $ H $ was originally defined as the free module on the set of isomorphism classes of Möbius intervals, that is Möbius categories with initial and terminal objects. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 underlying underlie VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 amod _ _ 3 module module NOUN NN Number=Sing 8 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 $ H $ $ h $ SYM $ _ 4 pobj _ _ 6 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 8 auxpass _ _ 7 originally originally ADV RB _ 8 advmod _ _ 8 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 ccomp _ _ 9 as as ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 free free ADJ JJ Degree=Pos 12 amod _ _ 12 module module NOUN NN Number=Sing 9 pobj _ _ 13 on on ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 set set NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 isomorphism isomorphism NOUN NN Number=Sing 18 compound _ _ 18 classes class NOUN NNS Number=Plur 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 Möbius Möbius PROPN NNP Number=Sing 21 compound _ _ 21 intervals interval NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 24 punct _ _ 23 that that PRON WDT PronType=Rel 24 nsubj _ _ 24 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 25 Möbius Möbius PROPN NNP Number=Sing 26 compound _ _ 26 categories category NOUN NNS Number=Plur 24 attr _ _ 27 with with ADP IN _ 26 prep _ _ 28 initial initial ADJ JJ Degree=Pos 31 amod _ _ 29 and and CCONJ CC ConjType=Cmp 28 cc _ _ 30 terminal terminal ADJ JJ Degree=Pos 28 conj _ _ 31 objects object NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 24 punct _ SpaceAfter=No # sent_id = 4 # text = Here we consider a category of Möbius intervals and construct the Hopf algebra via the objective approach applied to a monoidal extensive category of combinatorial objects, with the values in appropriate rings being abstracted from combinatorial functors on the objects. 1 Here here ADV RB PronType=Dem 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 Möbius Möbius PROPN NNP Number=Sing 8 compound _ _ 8 intervals interval NOUN NNS Number=Plur 6 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 3 cc _ _ 10 construct construct VERB VB VerbForm=Inf 3 conj _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 Hopf Hopf PROPN NNP Number=Sing 13 compound _ _ 13 algebra algebra NOUN NN Number=Sing 10 dobj _ _ 14 via via ADP IN _ 10 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 objective objective ADJ JJ Degree=Pos 17 amod _ _ 17 approach approach NOUN NN Number=Sing 14 pobj _ _ 18 applied apply VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 acl _ _ 19 to to ADP IN _ 18 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 21 monoidal monoidal ADJ JJ Degree=Pos 23 amod _ _ 22 extensive extensive ADJ JJ Degree=Pos 23 amod _ _ 23 category category NOUN NN Number=Sing 19 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 combinatorial combinatorial ADJ JJ Degree=Pos 26 amod _ _ 26 objects object NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 10 punct _ _ 28 with with ADP IN _ 10 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 values value NOUN NNS Number=Plur 28 pobj _ _ 31 in in ADP IN _ 30 prep _ _ 32 appropriate appropriate ADJ JJ Degree=Pos 33 amod _ _ 33 rings ring NOUN NNS Number=Plur 31 pobj _ _ 34 being be AUX VBG VerbForm=Ger 35 auxpass _ _ 35 abstracted abstract VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 33 acl _ _ 36 from from ADP IN _ 35 prep _ _ 37 combinatorial combinatorial ADJ JJ Degree=Pos 38 amod _ _ 38 functors functor NOUN NNS Number=Plur 36 pobj _ _ 39 on on ADP IN _ 38 prep _ _ 40 the the DET DT Definite=Def|PronType=Art 41 det _ _ 41 objects object NOUN NNS Number=Plur 39 pobj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = The explicit consideration of a category of Möbius intervals leads also to two new characterizations of Möbius categories. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 explicit explicit ADJ JJ Degree=Pos 3 amod _ _ 3 consideration consideration NOUN NN Number=Sing 10 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 category category NOUN NN Number=Sing 4 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 Möbius Möbius PROPN NNP Number=Sing 9 compound _ _ 9 intervals interval NOUN NNS Number=Plur 7 pobj _ _ 10 leads lead VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 also also ADV RB _ 10 advmod _ _ 12 to to ADP IN _ 10 prep _ _ 13 two two NUM CD NumType=Card 15 nummod _ _ 14 new new ADJ JJ Degree=Pos 15 amod _ _ 15 characterizations characterization NOUN NNS Number=Plur 12 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 Möbius Möbius PROPN NNP Number=Sing 18 compound _ _ 18 categories category NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # doc_id = 366 # sent_id = 1 # text = Let $ cal K $ be a locally finitely presentable category. 1 Let let VERB VB VerbForm=Inf 0 ROOT _ _ 2 $ cal K $ $ cal k $ SYM $ _ 1 ccomp _ _ 3 be be AUX VB VerbForm=Inf 1 conj _ _ 4 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 5 locally locally ADV RB _ 6 advmod _ _ 6 finitely finitely ADV RB _ 7 advmod _ _ 7 presentable presentable ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 3 attr _ SpaceAfter=No 9 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = If $ cal K $ is abelian and the sequence $ 0 to K to^k X to^c C to 0 $ is short exact, we show that (i) $ K $ is finitely generated if and only if $ c $ is finitely presentable; (ii) $ k $ is finitely presentable if and only if $ C $ is finitely presentable. 1 If if SCONJ IN _ 3 mark _ _ 2 $ cal K $ $ cal k $ SYM $ _ 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 advcl _ _ 4 abelian abelian ADJ JJ Degree=Pos 3 attr _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 sequence sequence NOUN NN Number=Sing 4 conj _ _ 8 $ 0 to K to^k X to^c C to 0 $ $ 0 to k to^k x to^c c to 0 $ SYM $ _ 9 nsubj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 ccomp _ _ 10 short short ADJ JJ Degree=Pos 11 amod _ _ 11 exact exact ADV RB _ 9 acomp _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 14 punct _ _ 13 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 14 nsubj _ _ 14 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 that that SCONJ IN _ 22 mark _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 17 punct _ SpaceAfter=No 17 i i NOUN NN Number=Sing 22 nsubjpass _ SpaceAfter=No 18 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 17 punct _ _ 19 $ K $ $ k $ SYM $ _ 17 appos _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 auxpass _ _ 21 finitely finitely ADV RB _ 22 advmod _ _ 22 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 ccomp _ _ 23 if if SCONJ IN _ 22 prep _ _ 24 and and CCONJ CC ConjType=Cmp 23 cc _ _ 25 only only ADV RB _ 28 advmod _ _ 26 if if SCONJ IN _ 28 mark _ _ 27 $ c $ $ c $ SYM $ _ 28 nsubj _ _ 28 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 36 advcl _ _ 29 finitely finitely ADV RB _ 30 advmod _ _ 30 presentable presentable ADJ JJ Degree=Pos 28 acomp _ SpaceAfter=No 31 ; ; PUNCT : _ 36 punct _ _ 32 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 33 punct _ SpaceAfter=No 33 ii ii PROPN NNP Number=Sing 36 nsubj _ SpaceAfter=No 34 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 33 punct _ _ 35 $ k $ $ k $ SYM $ _ 33 nmod _ _ 36 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 ccomp _ _ 37 finitely finitely ADV RB _ 38 advmod _ _ 38 presentable presentable ADJ JJ Degree=Pos 36 acomp _ _ 39 if if SCONJ IN _ 36 dep _ _ 40 and and CCONJ CC ConjType=Cmp 39 cc _ _ 41 only only ADV RB _ 44 advmod _ _ 42 if if SCONJ IN _ 44 mark _ _ 43 $ C $ $ c $ SYM $ _ 44 nsubj _ _ 44 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 36 advcl _ _ 45 finitely finitely ADV RB _ 46 advmod _ _ 46 presentable presentable ADJ JJ Degree=Pos 44 acomp _ SpaceAfter=No 47 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 3 # text = The ``if" directions fail for semi - abelian varieties. 1 The the DET DT Definite=Def|PronType=Art 7 det _ _ 2 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 7 punct _ SpaceAfter=No 3 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 7 punct _ SpaceAfter=No 4 if if SCONJ IN _ 7 mark _ SpaceAfter=No 5 " " PUNCT `` PunctSide=Ini|PunctType=Quot 7 punct _ _ 6 directions direction NOUN NNS Number=Plur 7 nsubj _ _ 7 fail fail VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 for for ADP IN _ 7 prep _ _ 9 semi semi ADJ JJ Degree=Pos 12 amod _ _ 10 - - ADJ JJ Degree=Pos 12 punct _ _ 11 abelian abelian ADJ JJ Degree=Pos 12 amod _ _ 12 varieties variety NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = We show that all but (possibly) (ii) in the if direction follow from analogous properties which hold in all locally finitely presentable categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 12 mark _ _ 4 all all PRON DT _ 12 nsubj _ _ 5 but but SCONJ IN _ 4 cc _ _ 6 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 7 punct _ SpaceAfter=No 7 possibly possibly ADV RB _ 4 conj _ SpaceAfter=No 8 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 4 punct _ _ 9 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 10 punct _ SpaceAfter=No 10 ii ii PROPN NNP Number=Sing 4 appos _ SpaceAfter=No 11 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 4 punct _ _ 12 in in ADP IN _ 2 ccomp _ _ 13 the the DET DT Definite=Def|PronType=Art 16 det _ _ 14 if if SCONJ IN _ 16 mark _ _ 15 direction direction NOUN NN Number=Sing 16 compound _ _ 16 follow follow VERB VBP Tense=Pres|VerbForm=Fin 12 pobj _ _ 17 from from ADP IN _ 16 prep _ _ 18 analogous analogous ADJ JJ Degree=Pos 19 amod _ _ 19 properties property NOUN NNS Number=Plur 17 pobj _ _ 20 which which PRON WDT _ 21 nsubj _ _ 21 hold hold VERB VBP Tense=Pres|VerbForm=Fin 19 relcl _ _ 22 in in ADP RP _ 21 prt _ _ 23 all all DET DT _ 27 det _ _ 24 locally locally ADV RB _ 25 advmod _ _ 25 finitely finitely ADV RB _ 27 amod _ _ 26 presentable presentable ADJ JJ Degree=Pos 27 amod _ _ 27 categories category NOUN NNS Number=Plur 21 dobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = As for (ii) in the if direction, it holds as soon as $ cal K $ is also co - homological, and all its strong epimorphisms are regular. 1 As as ADP IN _ 12 prep _ _ 2 for for ADP IN _ 1 prep _ _ 3 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 2 punct _ SpaceAfter=No 4 ii ii PROPN NNP Number=Sing 2 pobj _ SpaceAfter=No 5 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 2 punct _ _ 6 in in ADP IN _ 1 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 if if SCONJ IN _ 9 det _ _ 9 direction direction NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 12 punct _ _ 11 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 12 nsubj _ _ 12 holds hold VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 as as ADV RB _ 14 advmod _ _ 14 soon soon ADV RB _ 12 advmod _ _ 15 as as SCONJ IN _ 16 mark _ _ 16 $ cal K $ $ cal k $ SYM $ _ 14 advcl _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 ccomp _ _ 18 also also ADV RB _ 17 advmod _ _ 19 co co NOUN NN Number=Sing 17 attr _ _ 20 - - ADJ JJ Degree=Pos 17 acomp _ _ 21 homological homological ADJ JJ Degree=Pos 17 acomp _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 17 punct _ _ 23 and and CCONJ CC ConjType=Cmp 17 cc _ _ 24 all all DET DT _ 27 det _ _ 25 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 27 poss _ _ 26 strong strong ADJ JJ Degree=Pos 27 amod _ _ 27 epimorphisms epimorphism NOUN NNS Number=Plur 28 nsubj _ _ 28 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 17 conj _ _ 29 regular regular ADJ JJ Degree=Pos 28 acomp _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 6 # text = Finally, locally finitely coherent (respectively, noetherian) abelian categories are characterized as those for which all finitely presentable morphisms have finitely generated (respectively, presentable) kernel objects. 1 Finally finally ADV RB _ 14 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 14 punct _ _ 3 locally locally ADV RB _ 5 advmod _ _ 4 finitely finitely ADV RB _ 5 advmod _ _ 5 coherent coherent ADJ JJ Degree=Pos 14 amod _ _ 6 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 14 punct _ SpaceAfter=No 7 respectively respectively ADV RB _ 14 advmod _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 12 punct _ _ 9 noetherian noetherian ADJ JJ Degree=Pos 12 amod _ SpaceAfter=No 10 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 12 punct _ _ 11 abelian abelian PROPN NNP Number=Sing 12 compound _ _ 12 categories category NOUN NNS Number=Plur 14 nsubjpass _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 characterized characterize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 15 as as ADP IN _ 14 prep _ _ 16 those those PRON DT Number=Plur|PronType=Dem 15 pobj _ _ 17 for for ADP IN _ 25 prep _ _ 18 which which PRON WDT _ 17 pobj _ _ 19 all all DET DT _ 22 det _ _ 20 finitely finitely ADV RB _ 21 advmod _ _ 21 presentable presentable ADJ JJ Degree=Pos 22 amod _ _ 22 morphisms morphism NOUN NNS Number=Plur 25 nsubj _ _ 23 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 25 aux _ _ 24 finitely finitely ADV RB _ 25 advmod _ _ 25 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 relcl _ _ 26 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 32 punct _ SpaceAfter=No 27 respectively respectively ADV RB _ 32 advmod _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 32 punct _ _ 29 presentable presentable ADJ JJ Degree=Pos 31 amod _ SpaceAfter=No 30 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 31 punct _ _ 31 kernel kernel NOUN NN Number=Sing 32 compound _ _ 32 objects object NOUN NNS Number=Plur 25 dobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # doc_id = 367 # sent_id = 1 # text = Variations on the notions of Reedy model structures and projective model structures on categories of diagrams in a model category are introduced. 1 Variations variation NOUN NNS Number=Plur 22 nsubjpass _ _ 2 on on ADP IN _ 1 prep _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 notions notion NOUN NNS Number=Plur 2 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 Reedy reedy ADJ JJ Degree=Pos 8 amod _ _ 7 model model NOUN NN Number=Sing 8 compound _ _ 8 structures structure NOUN NNS Number=Plur 5 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 projective projective ADJ JJ Degree=Pos 12 amod _ _ 11 model model NOUN NN Number=Sing 12 compound _ _ 12 structures structure NOUN NNS Number=Plur 8 conj _ _ 13 on on ADP IN _ 8 prep _ _ 14 categories category NOUN NNS Number=Plur 13 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 diagrams diagram NOUN NNS Number=Plur 15 pobj _ _ 17 in in ADP IN _ 1 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 model model NOUN NN Number=Sing 20 compound _ _ 20 category category NOUN NN Number=Sing 17 pobj _ _ 21 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 22 auxpass _ _ 22 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 22 punct _ SpaceAfter=No # sent_id = 2 # text = These allow one to choose only a subset of the entries when defining weak equivalences, or to use different model categories at different entries of the diagrams. 1 These these PRON DT Number=Plur|PronType=Dem 2 nsubj _ _ 2 allow allow VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 one one NUM CD NumType=Card 5 nsubj _ _ 4 to to PART TO _ 5 aux _ _ 5 choose choose VERB VB VerbForm=Inf 2 ccomp _ _ 6 only only ADV RB _ 8 advmod _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 subset subset NOUN NN Number=Sing 5 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 entries entry NOUN NNS Number=Plur 9 pobj _ _ 12 when when SCONJ WRB _ 13 advmod _ _ 13 defining define VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 advcl _ _ 14 weak weak ADJ JJ Degree=Pos 15 amod _ _ 15 equivalences equivalence NOUN NNS Number=Plur 13 dobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 5 punct _ _ 17 or or CCONJ CC ConjType=Cmp 5 cc _ _ 18 to to PART TO _ 19 aux _ _ 19 use use VERB VB VerbForm=Inf 5 conj _ _ 20 different different ADJ JJ Degree=Pos 22 amod _ _ 21 model model NOUN NN Number=Sing 22 compound _ _ 22 categories category NOUN NNS Number=Plur 19 dobj _ _ 23 at at ADP IN _ 19 prep _ _ 24 different different ADJ JJ Degree=Pos 25 amod _ _ 25 entries entry NOUN NNS Number=Plur 23 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 diagrams diagram NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = As a result, a bisimplicial model category that can be used to recover the algebraic K - theory for any Waldhausen subcategory of a model category is produced. 1 As as ADP IN _ 29 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 result result NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 29 punct _ _ 5 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 6 bisimplicial bisimplicial ADJ JJ Degree=Pos 8 amod _ _ 7 model model NOUN NN Number=Sing 8 compound _ _ 8 category category NOUN NN Number=Sing 29 nsubjpass _ _ 9 that that PRON WDT PronType=Rel 12 nsubjpass _ _ 10 can can AUX MD VerbForm=Fin 12 aux _ _ 11 be be AUX VB VerbForm=Inf 12 auxpass _ _ 12 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 relcl _ _ 13 to to PART TO _ 14 aux _ _ 14 recover recover VERB VB VerbForm=Inf 12 xcomp _ _ 15 the the DET DT Definite=Def|PronType=Art 19 det _ _ 16 algebraic algebraic ADJ JJ Degree=Pos 19 amod _ _ 17 K K PROPN NNP Number=Sing 19 compound _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 theory theory PROPN NNP Number=Sing 14 dobj _ _ 20 for for ADP IN _ 19 prep _ _ 21 any any DET DT _ 23 det _ _ 22 Waldhausen Waldhausen PROPN NNP Number=Sing 23 compound _ _ 23 subcategory subcategory NOUN NN Number=Sing 20 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 26 model model NOUN NN Number=Sing 27 compound _ _ 27 category category NOUN NN Number=Sing 24 pobj _ _ 28 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 29 auxpass _ _ 29 produced produce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 29 punct _ SpaceAfter=No # doc_id = 368 # sent_id = 1 # text = Implementing an idea due to John Baez and James Dolan we define new invariants of Whitney stratified manifolds by considering the homotopy theory of smooth transversal maps. 1 Implementing implement VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 advcl _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 idea idea NOUN NN Number=Sing 1 dobj _ _ 4 due due ADP IN _ 1 prep _ _ 5 to to ADP IN _ 4 pcomp _ _ 6 John John PROPN NNP Number=Sing 7 compound _ _ 7 Baez Baez PROPN NNP Number=Sing 4 pobj _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 James James PROPN NNP Number=Sing 10 compound _ _ 10 Dolan Dolan PROPN NNP Number=Sing 7 conj _ _ 11 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 12 nsubj _ _ 12 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 new new ADJ JJ Degree=Pos 14 amod _ _ 14 invariants invariant NOUN NNS Number=Plur 12 dobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 Whitney Whitney PROPN NNP Number=Sing 15 pobj _ _ 17 stratified stratify VERB VBD Tense=Past|VerbForm=Fin 12 conj _ _ 18 manifolds manifold NOUN NNS Number=Plur 17 dobj _ _ 19 by by ADP IN _ 17 prep _ _ 20 considering consider VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 19 pcomp _ _ 21 the the DET DT Definite=Def|PronType=Art 23 det _ _ 22 homotopy homotopy NOUN NN Number=Sing 23 compound _ _ 23 theory theory NOUN NN Number=Sing 20 dobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 smooth smooth ADJ JJ Degree=Pos 27 amod _ _ 26 transversal transversal ADJ JJ Degree=Pos 27 amod _ _ 27 maps map NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 2 # text = To each stratified manifold we assign transversal homotopy monoids, one for each natural number. 1 To to ADP IN _ 6 prep _ _ 2 each each DET DT _ 4 det _ _ 3 stratified stratified ADJ JJ Degree=Pos 4 amod _ _ 4 manifold manifold NOUN NN Number=Sing 1 pobj _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 assign assign VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 transversal transversal ADJ JJ Degree=Pos 9 amod _ _ 8 homotopy homotopy NOUN NN Number=Sing 9 compound _ _ 9 monoids monoid NOUN NNS Number=Plur 6 dobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 one one NUM CD NumType=Card 9 appos _ _ 12 for for ADP IN _ 11 prep _ _ 13 each each DET DT _ 15 det _ _ 14 natural natural ADJ JJ Degree=Pos 15 amod _ _ 15 number number NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = The assignment is functorial for a natural class of maps which we call stratified normal submersions. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 assignment assignment NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 functorial functorial ADJ JJ Degree=Pos 3 acomp _ _ 5 for for ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 natural natural ADJ JJ Degree=Pos 8 amod _ _ 8 class class NOUN NN Number=Sing 5 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 maps map NOUN NNS Number=Plur 9 pobj _ _ 11 which which PRON WDT _ 13 nsubj _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 call call VERB VBP Tense=Pres|VerbForm=Fin 8 relcl _ _ 14 stratified stratify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 15 normal normal ADJ JJ Degree=Pos 16 amod _ _ 16 submersions submersion NOUN NNS Number=Plur 13 oprd _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = When the stratification is trivial the transversal homotopy monoids are isomorphic to the usual homotopy groups. 1 When when SCONJ WRB _ 4 advmod _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 stratification stratification NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 advcl _ _ 5 trivial trivial ADJ JJ Degree=Pos 4 acomp _ _ 6 the the DET DT Definite=Def|PronType=Art 9 det _ _ 7 transversal transversal ADJ JJ Degree=Pos 8 amod _ _ 8 homotopy homotopy NOUN NN Number=Sing 9 compound _ _ 9 monoids monoid NOUN NNS Number=Plur 10 nsubj _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 isomorphic isomorphic ADJ JJ Degree=Pos 10 acomp _ _ 12 to to ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 16 det _ _ 14 usual usual ADJ JJ Degree=Pos 16 amod _ _ 15 homotopy homotopy NOUN NN Number=Sing 16 compound _ _ 16 groups group NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 5 # text = We compute some simple examples and explore the elementary properties of these invariants. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 compute compute VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 some some DET DT _ 5 det _ _ 4 simple simple ADJ JJ Degree=Pos 5 amod _ _ 5 examples example NOUN NNS Number=Plur 2 dobj _ _ 6 and and CCONJ CC ConjType=Cmp 2 cc _ _ 7 explore explore VERB VB VerbForm=Inf 2 conj _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 elementary elementary ADJ JJ Degree=Pos 10 amod _ _ 10 properties property NOUN NNS Number=Plur 7 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 these these DET DT Number=Plur|PronType=Dem 13 det _ _ 13 invariants invariant NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = We also assign `higher invariants', the transversal homotopy categories, to each stratified manifold. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 assign assign VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 6 punct _ SpaceAfter=No 5 higher high ADJ JJR Degree=Cmp 6 amod _ _ 6 invariants invariant NOUN NNS Number=Plur 3 dobj _ SpaceAfter=No 7 ' ' PART POS _ 6 punct _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 6 punct _ _ 9 the the DET DT Definite=Def|PronType=Art 12 det _ _ 10 transversal transversal ADJ JJ Degree=Pos 11 amod _ _ 11 homotopy homotopy NOUN NN Number=Sing 12 compound _ _ 12 categories category NOUN NNS Number=Plur 6 appos _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 6 punct _ _ 14 to to ADP IN _ 6 prep _ _ 15 each each DET DT _ 17 det _ _ 16 stratified stratified ADJ JJ Degree=Pos 17 amod _ _ 17 manifold manifold NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 7 # text = These have a rich structure; they are rigid monoidal categories for $ n > 1 $ and ribbon categories for $ n > 2 $ . 1 These these PRON DT Number=Plur|PronType=Dem 2 nsubj _ _ 2 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 ccomp _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 rich rich ADJ JJ Degree=Pos 5 amod _ _ 5 structure structure NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 6 ; ; PUNCT : _ 8 punct _ _ 7 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 8 nsubj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 rigid rigid ADJ JJ Degree=Pos 11 amod _ _ 10 monoidal monoidal ADJ JJ Degree=Pos 11 amod _ _ 11 categories category NOUN NNS Number=Plur 8 attr _ _ 12 for for ADP IN _ 11 prep _ _ 13 $ n > 1 $ $ n > 1 $ SYM $ _ 16 nmod _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 ribbon ribbon NOUN NN Number=Sing 13 conj _ _ 16 categories category NOUN NNS Number=Plur 12 pobj _ _ 17 for for ADP IN _ 16 prep _ _ 18 $ n > 2 $ $ n > 2 $ SYM $ _ 17 pobj _ _ 19 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 8 # text = As an example we show that the transversal homotopy categories of a sphere, stratified by a point and its complement, are equivalent to categories of framed tangles. 1 As as ADP IN _ 5 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 example example NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 that that SCONJ IN _ 23 mark _ _ 7 the the DET DT Definite=Def|PronType=Art 10 det _ _ 8 transversal transversal ADJ JJ Degree=Pos 9 amod _ _ 9 homotopy homotopy NOUN NN Number=Sing 10 compound _ _ 10 categories category NOUN NNS Number=Plur 23 nsubj _ _ 11 of of ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 sphere sphere NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 13 punct _ _ 15 stratified stratify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 acl _ _ 16 by by ADP IN _ 15 agent _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 point point NOUN NN Number=Sing 16 pobj _ _ 19 and and CCONJ CC ConjType=Cmp 10 cc _ _ 20 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 21 poss _ _ 21 complement complement NOUN NN Number=Sing 10 conj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 10 punct _ _ 23 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 ccomp _ _ 24 equivalent equivalent ADJ JJ Degree=Pos 23 acomp _ _ 25 to to ADP IN _ 24 prep _ _ 26 categories category NOUN NNS Number=Plur 25 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 framed framed ADJ JJ Degree=Pos 29 amod _ _ 29 tangles tangle NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 369 # sent_id = 1 # text = We define the notion of a torsor for an inverse semigroup, which is based on semigroup actions, and prove that this is precisely the structure classified by the topos associated with an inverse semigroup. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 notion notion NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 torsor torsor NOUN NN Number=Sing 5 pobj _ _ 8 for for ADP IN _ 7 prep _ _ 9 an an DET DT Definite=Ind|PronType=Art 11 det _ _ 10 inverse inverse ADJ JJ Degree=Pos 11 amod _ _ 11 semigroup semigroup NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 which which PRON WDT _ 15 nsubjpass _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 auxpass _ _ 15 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 relcl _ _ 16 on on ADP IN _ 15 prep _ _ 17 semigroup semigroup NOUN NN Number=Sing 18 compound _ _ 18 actions action NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 2 punct _ _ 20 and and CCONJ CC ConjType=Cmp 2 cc _ _ 21 prove prove VERB VB VerbForm=Inf 2 conj _ _ 22 that that SCONJ IN _ 24 mark _ _ 23 this this PRON DT Number=Sing|PronType=Dem 24 nsubj _ _ 24 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 21 ccomp _ _ 25 precisely precisely ADV RB _ 24 advmod _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 structure structure NOUN NN Number=Sing 24 attr _ _ 28 classified classify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 acl _ _ 29 by by ADP IN _ 28 agent _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 topos topos NOUN NN Number=Sing 29 pobj _ _ 32 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 31 acl _ _ 33 with with ADP IN _ 32 prep _ _ 34 an an DET DT Definite=Ind|PronType=Art 36 det _ _ 35 inverse inverse ADJ JJ Degree=Pos 36 amod _ _ 36 semigroup semigroup NOUN NN Number=Sing 33 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Unlike in the group case, not all set - theoretic torsors are isomorphic: we shall give a complete description of the category of torsors. 1 Unlike unlike ADP IN _ 13 prep _ _ 2 in in ADP IN _ 1 prep _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 group group NOUN NN Number=Sing 5 compound _ _ 5 case case NOUN NN Number=Sing 2 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 not not PART RB Polarity=Neg 12 neg _ _ 8 all all DET DT _ 12 det _ _ 9 set set VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 amod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 theoretic theoretic NOUN NN Number=Sing 12 amod _ _ 12 torsors torsor NOUN NNS Number=Plur 13 nsubj _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 18 ccomp _ _ 14 isomorphic isomorphic ADJ JJ Degree=Pos 13 acomp _ SpaceAfter=No 15 : : PUNCT : _ 18 punct _ _ 16 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 18 nsubj _ _ 17 shall shall AUX MD VerbType=Mod 18 aux _ _ 18 give give VERB VB VerbForm=Inf 0 ROOT _ _ 19 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 20 complete complete ADJ JJ Degree=Pos 21 amod _ _ 21 description description NOUN NN Number=Sing 18 dobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 category category NOUN NN Number=Sing 22 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 torsors torsor NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # sent_id = 3 # text = We explain how a semigroup prehomomorphism gives rise to an adjunction between a restrictions - of - scalars functor and a tensor product functor, which we relate to the theory of covering spaces and $ E $ - unitary semigroups. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 explain explain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 how how SCONJ WRB _ 7 advmod _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 semigroup semigroup NOUN NN Number=Sing 6 compound _ _ 6 prehomomorphism prehomomorphism NOUN NN Number=Sing 7 nsubj _ _ 7 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 8 rise rise VERB VB VerbForm=Inf 7 dobj _ _ 9 to to ADP IN _ 8 prep _ _ 10 an an DET DT Definite=Ind|PronType=Art 11 det _ _ 11 adjunction adjunction NOUN NN Number=Sing 9 pobj _ _ 12 between between ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 restrictions restriction NOUN NNS Number=Plur 12 pobj _ _ 15 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 16 of of ADP IN _ 14 prep _ _ 17 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 18 scalars scalar NOUN NNS Number=Plur 16 pobj _ _ 19 functor functor NOUN NN Number=Sing 14 conj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 22 tensor tensor NOUN NN Number=Sing 23 compound _ _ 23 product product NOUN NN Number=Sing 24 compound _ _ 24 functor functor NOUN NN Number=Sing 19 conj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 which which PRON WDT _ 28 dobj _ _ 27 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 28 nsubj _ _ 28 relate relate VERB VBP Tense=Pres|VerbForm=Fin 24 relcl _ _ 29 to to ADP IN _ 28 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 theory theory NOUN NN Number=Sing 29 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 covering cover VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 32 pcomp _ _ 34 spaces space NOUN NNS Number=Plur 33 dobj _ _ 35 and and CCONJ CC ConjType=Cmp 34 cc _ _ 36 $ E $ $ e $ SYM $ _ 38 advmod _ _ 37 - - PUNCT HYPH PunctType=Dash 38 punct _ _ 38 unitary unitary ADJ JJ Degree=Pos 39 amod _ _ 39 semigroups semigroup NOUN NNS Number=Plur 34 conj _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We also interpret for semigroups the Lawvere - product of a sheaf and distribution and finally, we indicate how the theory might be extended to general semigroups, by defining a notion of torsor and a classifying topos for those. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 interpret interpret VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 for for ADP IN _ 3 prep _ _ 5 semigroups semigroup NOUN NNS Number=Plur 4 pobj _ _ 6 the the DET DT Definite=Def|PronType=Art 9 det _ _ 7 Lawvere Lawvere PROPN NNP Number=Sing 9 compound _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 product product NOUN NN Number=Sing 5 appos _ _ 10 of of ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 sheaf sheaf NOUN NN Number=Sing 10 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 distribution distribution NOUN NN Number=Sing 12 conj _ _ 15 and and CCONJ CC ConjType=Cmp 3 cc _ _ 16 finally finally ADV RB _ 19 advmod _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 19 punct _ _ 18 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 19 nsubj _ _ 19 indicate indicate VERB VBP Tense=Pres|VerbForm=Fin 3 conj _ _ 20 how how SCONJ WRB _ 25 advmod _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 theory theory NOUN NN Number=Sing 25 nsubjpass _ _ 23 might might AUX MD VerbForm=Fin 25 aux _ _ 24 be be AUX VB VerbForm=Inf 25 auxpass _ _ 25 extended extend VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 ccomp _ _ 26 to to ADP IN _ 25 prep _ _ 27 general general ADJ JJ Degree=Pos 28 amod _ _ 28 semigroups semigroup NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 25 punct _ _ 30 by by ADP IN _ 25 prep _ _ 31 defining define VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 30 pcomp _ _ 32 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 33 notion notion NOUN NN Number=Sing 31 dobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 torsor torsor NOUN NN Number=Sing 34 pobj _ _ 36 and and CCONJ CC ConjType=Cmp 33 cc _ _ 37 a a DET DT Definite=Ind|PronType=Art 39 det _ _ 38 classifying classify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 39 amod _ _ 39 topos topos NOUN NN Number=Sing 33 conj _ _ 40 for for ADP IN _ 39 prep _ _ 41 those those PRON DT Number=Plur|PronType=Dem 40 pobj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # doc_id = 370 # sent_id = 1 # text = We show that the class of weak equivalences of a combinatorial model category can be detected by an accessible functor into simplicial sets. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 16 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 class class NOUN NN Number=Sing 16 nsubjpass _ _ 6 of of ADP IN _ 5 prep _ _ 7 weak weak ADJ JJ Degree=Pos 8 amod _ _ 8 equivalences equivalence NOUN NNS Number=Plur 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 11 combinatorial combinatorial ADJ JJ Degree=Pos 12 amod _ _ 12 model model NOUN NN Number=Sing 13 compound _ _ 13 category category NOUN NN Number=Sing 9 pobj _ _ 14 can can AUX MD VerbForm=Fin 16 aux _ _ 15 be be AUX VB VerbForm=Inf 16 auxpass _ _ 16 detected detect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 17 by by ADP IN _ 16 agent _ _ 18 an an DET DT Definite=Ind|PronType=Art 20 det _ _ 19 accessible accessible ADJ JJ Degree=Pos 20 amod _ _ 20 functor functor NOUN NN Number=Sing 17 pobj _ _ 21 into into ADP IN _ 16 prep _ _ 22 simplicial simplicial ADJ JJ Degree=Pos 23 amod _ _ 23 sets set NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 371 # sent_id = 1 # text = We introduce a description of the algebras for a monad in terms of extension systems, similar to the one for monads given by Manes. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 description description NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 algebras algebra NOUN NNS Number=Plur 5 pobj _ _ 8 for for ADP IN _ 2 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 monad monad NOUN NNS Number=Plur 8 pobj _ _ 11 in in ADP IN _ 10 prep _ _ 12 terms term NOUN NNS Number=Plur 11 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 extension extension NOUN NN Number=Sing 15 compound _ _ 15 systems system NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 similar similar ADJ JJ Degree=Pos 15 amod _ _ 18 to to ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 one one NUM CD NumType=Card 18 pobj _ _ 21 for for ADP IN _ 20 prep _ _ 22 monads monad NOUN NNS Number=Plur 21 pobj _ _ 23 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 acl _ _ 24 by by ADP IN _ 23 agent _ _ 25 Manes Manes PROPN NNPS Number=Plur 24 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We rewrite distributive laws for monads and wreaths in terms of this description, avoiding the iteration of the functors involved. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 rewrite rewrite VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 distributive distributive ADJ JJ Degree=Pos 4 amod _ _ 4 laws law NOUN NNS Number=Plur 2 dobj _ _ 5 for for ADP IN _ 4 prep _ _ 6 monads monad NOUN NNS Number=Plur 5 pobj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 wreaths wreath NOUN NNS Number=Plur 6 conj _ _ 9 in in ADP IN _ 6 prep _ _ 10 terms term NOUN NNS Number=Plur 9 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 this this DET DT Number=Sing|PronType=Dem 13 det _ _ 13 description description NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 2 punct _ _ 15 avoiding avoid VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 iteration iteration NOUN NN Number=Sing 15 dobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 functors functor NOUN NNS Number=Plur 18 pobj _ _ 21 involved involve VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 acl _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We give a profunctorial explanation of why Manes' description of monads in terms of extension systems works. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 profunctorial profunctorial ADJ JJ Degree=Pos 5 amod _ _ 5 explanation explanation NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 why why SCONJ WRB _ 10 advmod _ _ 8 Manes Manes PROPN NNPS Number=Plur 10 poss _ SpaceAfter=No 9 ' ' PART POS _ 8 case _ _ 10 description description NOUN NN Number=Sing 6 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 monads monad NOUN NNS Number=Plur 11 pobj _ _ 13 in in ADP IN _ 10 prep _ _ 14 terms term NOUN NNS Number=Plur 13 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 extension extension NOUN NN Number=Sing 17 compound _ _ 17 systems system NOUN NNS Number=Plur 18 compound _ _ 18 works work NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 372 # sent_id = 1 # text = We generalize to the context internal to an autonomous monoidal bicategory the work of Bruguieres, Virelizier, and the second - named author on lifting closed structure on a monoidal category to the category of Eilenberg - Moore algebras for an opmonoidal monad. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 generalize generalize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 to to ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 context context NOUN NN Number=Sing 3 pobj _ _ 6 internal internal ADJ JJ Degree=Pos 5 amod _ _ 7 to to ADP IN _ 6 prep _ _ 8 an an DET DT Definite=Ind|PronType=Art 11 det _ _ 9 autonomous autonomous ADJ JJ Degree=Pos 11 amod _ _ 10 monoidal monoidal ADJ JJ Degree=Pos 11 amod _ _ 11 bicategory bicategory NOUN NN Number=Sing 7 pobj _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 work work NOUN NN Number=Sing 2 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 Bruguieres Bruguieres PROPN NNPS Number=Plur 14 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 Virelizier Virelizier PROPN NNP Number=Sing 15 conj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 and and CCONJ CC ConjType=Cmp 17 cc _ _ 20 the the DET DT Definite=Def|PronType=Art 24 det _ _ 21 second second ADV RB _ 23 advmod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 named name VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 24 author author NOUN NN Number=Sing 13 conj _ _ 25 on on ADP IN _ 24 prep _ _ 26 lifting lift VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 25 pcomp _ _ 27 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 amod _ _ 28 structure structure NOUN NN Number=Sing 26 dobj _ _ 29 on on ADP IN _ 28 prep _ _ 30 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 31 monoidal monoidal ADJ JJ Degree=Pos 32 amod _ _ 32 category category NOUN NN Number=Sing 29 pobj _ _ 33 to to ADP IN _ 24 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 35 det _ _ 35 category category NOUN NN Number=Sing 33 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 Eilenberg Eilenberg PROPN NNP Number=Sing 39 compound _ _ 38 - - PUNCT HYPH PunctType=Dash 39 punct _ _ 39 Moore Moore PROPN NNP Number=Sing 40 compound _ _ 40 algebras algebra VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 36 pobj _ _ 41 for for ADP IN _ 40 prep _ _ 42 an an DET DT Definite=Ind|PronType=Art 44 det _ _ 43 opmonoidal opmonoidal ADJ JJ Degree=Pos 44 amod _ _ 44 monad monad NOUN NNS Number=Plur 41 pobj _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The result then applies to quantum categories and bialgebroids. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 result result NOUN NN Number=Sing 4 nsubj _ _ 3 then then ADV RB PronType=Dem 4 advmod _ _ 4 applies apply VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 to to ADP IN _ 4 prep _ _ 6 quantum quantum ADJ JJ Degree=Pos 7 amod _ _ 7 categories category NOUN NNS Number=Plur 5 pobj _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 bialgebroids bialgebroid NOUN NNS Number=Plur 7 conj _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 373 # sent_id = 1 # text = The notion of Frobenius algebra originally arose in ring theory, but it is a fairly easy observation that this notion can be extended to arbitrary monoidal categories. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 notion notion NOUN NN Number=Sing 7 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 Frobenius Frobenius PROPN NNP Number=Sing 5 compound _ _ 5 algebra algebra NOUN NNS Number=Plur 3 pobj _ _ 6 originally originally ADV RB _ 7 advmod _ _ 7 arose arise VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 8 in in ADP IN _ 7 prep _ _ 9 ring ring NOUN NN Number=Sing 10 compound _ _ 10 theory theory NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 7 punct _ _ 12 but but CCONJ CC ConjType=Cmp 7 cc _ _ 13 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 14 nsubj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 conj _ _ 15 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 16 fairly fairly ADV RB _ 17 advmod _ _ 17 easy easy ADJ JJ Degree=Pos 18 amod _ _ 18 observation observation NOUN NN Number=Sing 14 attr _ _ 19 that that SCONJ IN _ 24 mark _ _ 20 this this DET DT Number=Sing|PronType=Dem 21 det _ _ 21 notion notion NOUN NN Number=Sing 24 nsubjpass _ _ 22 can can AUX MD VerbForm=Fin 24 aux _ _ 23 be be AUX VB VerbForm=Inf 24 auxpass _ _ 24 extended extend VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 acl _ _ 25 to to ADP IN _ 24 prep _ _ 26 arbitrary arbitrary ADJ JJ Degree=Pos 28 amod _ _ 27 monoidal monoidal ADJ JJ Degree=Pos 28 amod _ _ 28 categories category NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 2 # text = But, is this really the correct level of generalisation? 1 But but CCONJ CC ConjType=Cmp 3 cc _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 3 punct _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 this this PRON DT Number=Sing|PronType=Dem 3 nsubj _ _ 5 really really ADV RB _ 3 advmod _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 correct correct ADJ JJ Degree=Pos 8 amod _ _ 8 level level NOUN NN Number=Sing 3 attr _ _ 9 of of ADP IN _ 8 prep _ _ 10 generalisation generalisation NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 11 ? ? PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = For example, when studying Frobenius algebras in the $ * $ - autonomous category $ Sup $ , the standard concept using only the usual tensor product is less interesting than a similar one in which both the usual tensor product and its de Morgan dual are used. 1 For for ADP IN _ 25 prep _ _ 2 example example NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 25 punct _ _ 4 when when SCONJ WRB _ 5 advmod _ _ 5 studying study VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 25 advcl _ _ 6 Frobenius Frobenius PROPN NNP Number=Sing 7 compound _ _ 7 algebras algebra NOUN NNS Number=Plur 5 dobj _ _ 8 in in ADP IN _ 5 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 13 det _ _ 10 $ * $ $ * $ SYM $ _ 12 advmod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 autonomous autonomous ADJ JJ Degree=Pos 13 amod _ _ 13 category category NOUN NN Number=Sing 8 pobj _ _ 14 $ Sup $ $ sup $ SYM $ _ 13 appos _ _ 15 , , PUNCT , PunctType=Comm 25 punct _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 standard standard ADJ JJ Degree=Pos 18 amod _ _ 18 concept concept NOUN NN Number=Sing 25 nsubj _ _ 19 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 18 acl _ _ 20 only only ADV RB _ 24 advmod _ _ 21 the the DET DT Definite=Def|PronType=Art 24 det _ _ 22 usual usual ADJ JJ Degree=Pos 24 amod _ _ 23 tensor tensor NOUN NN Number=Sing 24 compound _ _ 24 product product NOUN NN Number=Sing 19 dobj _ _ 25 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 26 less less ADV RBR Degree=Cmp 27 advmod _ _ 27 interesting interesting ADJ JJ Degree=Pos 25 acomp _ _ 28 than than ADP IN _ 27 prep _ _ 29 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 30 similar similar ADJ JJ Degree=Pos 31 amod _ _ 31 one one NUM CD NumType=Card 28 pobj _ _ 32 in in ADP IN _ 45 prep _ _ 33 which which PRON WDT _ 32 pobj _ _ 34 both both CCONJ CC ConjType=Cmp 38 preconj _ _ 35 the the DET DT Definite=Def|PronType=Art 38 det _ _ 36 usual usual ADJ JJ Degree=Pos 38 amod _ _ 37 tensor tensor NOUN NN Number=Sing 38 compound _ _ 38 product product NOUN NN Number=Sing 45 nsubjpass _ _ 39 and and CCONJ CC ConjType=Cmp 38 cc _ _ 40 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 42 poss _ _ 41 de de PROPN NNP Number=Sing 42 nmod _ _ 42 Morgan Morgan PROPN NNP Number=Sing 38 conj _ _ 43 dual dual ADV RB _ 38 advmod _ _ 44 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 45 auxpass _ _ 45 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 31 relcl _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 25 punct _ SpaceAfter=No # sent_id = 4 # text = Thus we maintain that the notion of linear - distributive category (which has both a tensor and a par, but is nevertheless more general than the notion of monoidal category) provides the correct framework in which to interpret the concept of Frobenius algebra. 1 Thus thus ADV RB _ 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 maintain maintain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 23 mark _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 notion notion NOUN NN Number=Sing 23 nsubj _ _ 7 of of ADP IN _ 6 prep _ _ 8 linear linear ADJ JJ Degree=Pos 10 amod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 distributive distributive ADJ JJ Degree=Pos 11 amod _ _ 11 category category NOUN NN Number=Sing 7 pobj _ _ 12 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 11 punct _ SpaceAfter=No 13 which which PRON WDT _ 14 nsubj _ _ 14 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 relcl _ _ 15 both both CCONJ CC ConjType=Cmp 17 preconj _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 tensor tensor NOUN NN Number=Sing 14 dobj _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 par par NOUN NN Number=Sing 17 conj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 6 punct _ _ 22 but but CCONJ CC ConjType=Cmp 6 cc _ _ 23 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 24 nevertheless nevertheless ADV RB _ 23 advmod _ _ 25 more more ADV RBR Degree=Cmp 26 advmod _ _ 26 general general ADJ JJ Degree=Pos 23 acomp _ _ 27 than than ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 notion notion NOUN NN Number=Sing 27 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 monoidal monoidal ADJ JJ Degree=Pos 32 amod _ _ 32 category category NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 33 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 23 punct _ _ 34 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 conj _ _ 35 the the DET DT Definite=Def|PronType=Art 37 det _ _ 36 correct correct ADJ JJ Degree=Pos 37 amod _ _ 37 framework framework NOUN NN Number=Sing 34 dobj _ _ 38 in in ADP IN _ 41 prep _ _ 39 which which PRON WDT _ 38 pobj _ _ 40 to to PART TO _ 41 aux _ _ 41 interpret interpret VERB VB VerbForm=Inf 37 relcl _ _ 42 the the DET DT Definite=Def|PronType=Art 43 det _ _ 43 concept concept NOUN NN Number=Sing 41 dobj _ _ 44 of of ADP IN _ 43 prep _ _ 45 Frobenius Frobenius PROPN NNP Number=Sing 46 compound _ _ 46 algebra algebra PROPN NNP Number=Sing 44 pobj _ SpaceAfter=No 47 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 374 # sent_id = 1 # text = We explain in detail why the notion of list - arithmetic pretopos should be taken as the general categorical definition for the construction of arithmetic universes introduced by André Joyal to give a categorical proof of Gödel's incompleteness results. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 explain explain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 in in ADP IN _ 2 prep _ _ 4 detail detail NOUN NN Number=Sing 3 pobj _ _ 5 why why SCONJ WRB _ 15 advmod _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 notion notion NOUN NN Number=Sing 15 nsubjpass _ _ 8 of of ADP IN _ 7 prep _ _ 9 list list NOUN NN Number=Sing 11 npadvmod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 arithmetic arithmetic ADJ JJ Degree=Pos 12 amod _ _ 12 pretopos pretopos NOUN NN Number=Sing 8 pobj _ _ 13 should should AUX MD VerbForm=Fin 15 aux _ _ 14 be be AUX VB VerbForm=Inf 15 auxpass _ _ 15 taken take VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 16 as as ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 20 det _ _ 18 general general ADJ JJ Degree=Pos 20 amod _ _ 19 categorical categorical ADJ JJ Degree=Pos 20 amod _ _ 20 definition definition NOUN NN Number=Sing 16 pobj _ _ 21 for for ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 construction construction NOUN NN Number=Sing 21 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 arithmetic arithmetic ADJ JJ Degree=Pos 26 amod _ _ 26 universes universe NOUN NNS Number=Plur 24 pobj _ _ 27 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 acl _ _ 28 by by ADP IN _ 27 agent _ _ 29 André André PROPN NNP Number=Sing 30 compound _ _ 30 Joyal Joyal PROPN NNP Number=Sing 28 pobj _ _ 31 to to PART TO _ 32 aux _ _ 32 give give VERB VB VerbForm=Inf 15 advcl _ _ 33 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 34 categorical categorical ADJ JJ Degree=Pos 35 amod _ _ 35 proof proof NOUN NN Number=Sing 32 dobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 Gödel Gödel PROPN NNP Number=Sing 40 poss _ SpaceAfter=No 38 's 's PART POS _ 37 case _ _ 39 incompleteness incompleteness NOUN NN Number=Sing 40 compound _ _ 40 results result NOUN NNS Number=Plur 36 pobj _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 375 # sent_id = 1 # text = Bicategories of spans are characterized as cartesian bicategories in which every comonad has an Eilenberg - Moore object and every left adjoint arrow is comonadic. 1 Bicategories bicategorie NOUN NNS Number=Plur 5 nsubjpass _ _ 2 of of ADP IN _ 1 prep _ _ 3 spans span NOUN NNS Number=Plur 2 pobj _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 characterized characterize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 as as SCONJ IN _ 24 mark _ _ 7 cartesian cartesian ADJ JJ Degree=Pos 8 amod _ _ 8 bicategories bicategorie NOUN NNS Number=Plur 24 nsubj _ _ 9 in in ADP IN _ 13 prep _ _ 10 which which PRON WDT _ 9 pobj _ _ 11 every every DET DT _ 12 det _ _ 12 comonad comonad NOUN NNS Number=Plur 13 nsubj _ _ 13 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 relcl _ _ 14 an an DET DT Definite=Ind|PronType=Art 18 det _ _ 15 Eilenberg Eilenberg PROPN NNP Number=Sing 17 compound _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 Moore Moore PROPN NNP Number=Sing 18 compound _ _ 18 object object NOUN NN Number=Sing 13 dobj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 every every DET DT _ 23 det _ _ 21 left left ADJ JJ Degree=Pos 22 amod _ _ 22 adjoint adjoint NOUN NN Number=Sing 23 compound _ _ 23 arrow arrow NOUN NN Number=Sing 18 conj _ _ 24 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 advcl _ _ 25 comonadic comonadic ADJ JJ Degree=Pos 24 acomp _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 376 # sent_id = 1 # text = Symbolic dynamics is partly the study of walks in a directed graph. 1 Symbolic symbolic ADJ JJ Degree=Pos 2 amod _ _ 2 dynamics dynamic NOUN NNS Number=Plur 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 partly partly ADV RB _ 3 advmod _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 study study NOUN NN Number=Sing 3 attr _ _ 7 of of ADP IN _ 6 prep _ _ 8 walks walk NOUN NNS Number=Plur 7 pobj _ _ 9 in in ADP IN _ 6 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 directed direct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 12 graph graph NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = By a walk, here we mean a morphism to the graph from the Cayley graph of the monoid of non - negative integers. 1 By by ADP IN _ 7 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 walk walk NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 7 punct _ _ 5 here here ADV RB PronType=Dem 7 advmod _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 mean mean VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 morphism morphism NOUN NN Number=Sing 7 dobj _ _ 10 to to ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 graph graph NOUN NN Number=Sing 10 pobj _ _ 13 from from ADP IN _ 9 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 Cayley Cayley PROPN NNP Number=Sing 16 compound _ _ 16 graph graph NOUN NN Number=Sing 13 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 monoid monoid NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 non non ADJ JJ Degree=Pos 23 amod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 negative negative ADJ JJ Degree=Pos 24 amod _ _ 24 integers integer NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = Sets of these walks are also important in other areas, such as stochastic processes, automata, combinatorial group theory, $ C^* $ - algebras, et cetera. 1 Sets set NOUN NNS Number=Plur 5 nsubj _ _ 2 of of ADP IN _ 1 prep _ _ 3 these these DET DT Number=Plur|PronType=Dem 4 det _ _ 4 walks walk NOUN NNS Number=Plur 2 pobj _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 also also ADV RB _ 5 advmod _ _ 7 important important ADJ JJ Degree=Pos 5 acomp _ _ 8 in in ADP IN _ 5 prep _ _ 9 other other ADJ JJ Degree=Pos 10 amod _ _ 10 areas area NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 such such ADJ JJ Degree=Pos 13 amod _ _ 13 as as ADP IN _ 10 prep _ _ 14 stochastic stochastic ADJ JJ Degree=Pos 15 amod _ _ 15 processes process NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 automata automata PROPN NNP Number=Sing 15 conj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 combinatorial combinatorial ADJ JJ Degree=Pos 20 compound _ _ 20 group group NOUN NN Number=Sing 21 compound _ _ 21 theory theory NOUN NN Number=Sing 17 conj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 17 punct _ _ 23 $ C^* $ $ c^* $ SYM $ _ 25 compound _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 algebras algebra NOUN NNS Number=Plur 17 conj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 25 punct _ _ 27 et et NOUN NN Number=Sing 28 compound _ _ 28 cetera cetera NOUN NN Number=Sing 15 appos _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = We put a Quillen model structure on the category of directed graphs, for which the weak equivalences are those graph morphisms which induce bijections on the set of walks. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 put put VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 4 Quillen quillen ADJ JJ Degree=Pos 6 amod _ _ 5 model model NOUN NN Number=Sing 6 compound _ _ 6 structure structure NOUN NN Number=Sing 2 dobj _ _ 7 on on ADP IN _ 2 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 category category NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 directed direct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 12 graphs graph NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 for for ADP IN _ 19 prep _ _ 15 which which PRON WDT _ 14 pobj _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 weak weak ADJ JJ Degree=Pos 18 amod _ _ 18 equivalences equivalence NOUN NNS Number=Plur 19 nsubj _ _ 19 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 12 relcl _ _ 20 those those DET DT Number=Plur|PronType=Dem 22 det _ _ 21 graph graph NOUN NN Number=Sing 22 compound _ _ 22 morphisms morphism NOUN NNS Number=Plur 19 attr _ _ 23 which which PRON WDT _ 24 nsubj _ _ 24 induce induce VERB VBP Tense=Pres|VerbForm=Fin 22 relcl _ _ 25 bijections bijection NOUN NNS Number=Plur 24 dobj _ _ 26 on on ADP IN _ 25 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 set set NOUN NN Number=Sing 26 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 walks walk NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = We determine the resulting homotopy category. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 determine determine VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 6 det _ _ 4 resulting result VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 amod _ _ 5 homotopy homotopy NOUN NN Number=Sing 6 compound _ _ 6 category category NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 7 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = We also introduce a "finite - level" homotopy category which respects the natural topology on the set of walks. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 5 " " PUNCT `` PunctSide=Ini|PunctType=Quot 11 punct _ SpaceAfter=No 6 finite finite ADJ JJ Degree=Pos 8 amod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 level level NOUN NN Number=Sing 11 nmod _ SpaceAfter=No 9 " " PUNCT '' PunctSide=Fin|PunctType=Quot 11 punct _ _ 10 homotopy homotopy NOUN NN Number=Sing 11 compound _ _ 11 category category NOUN NN Number=Sing 3 dobj _ _ 12 which which PRON WDT _ 13 nsubj _ _ 13 respects respect VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 relcl _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 natural natural ADJ JJ Degree=Pos 16 amod _ _ 16 topology topology NOUN NN Number=Sing 13 dobj _ _ 17 on on ADP IN _ 13 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 set set NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 walks walk NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 7 # text = To each graph we associate a basal graph, well defined up to isomorphism. 1 To to ADP IN _ 5 prep _ _ 2 each each DET DT _ 3 det _ _ 3 graph graph NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 associate associate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 basal basal NOUN NN Number=Sing 8 compound _ _ 8 graph graph NOUN NN Number=Sing 5 dobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 11 punct _ _ 10 well well ADV RB Degree=Pos 11 advmod _ _ 11 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 conj _ _ 12 up up ADP RP _ 11 prt _ _ 13 to to ADP IN _ 11 prep _ _ 14 isomorphism isomorphism NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 8 # text = We show that the basal graph is a homotopy invariant for our model structure, and that it is a finer invariant than the zeta series of a finite graph. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 7 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 basal basal NOUN NN Number=Sing 6 compound _ _ 6 graph graph NOUN NN Number=Sing 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 homotopy homotopy NOUN NN Number=Sing 10 compound _ _ 10 invariant invariant ADJ JJ Degree=Pos 7 attr _ _ 11 for for ADP IN _ 10 prep _ _ 12 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 14 poss _ _ 13 model model NOUN NN Number=Sing 14 compound _ _ 14 structure structure NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 7 punct _ _ 16 and and CCONJ CC ConjType=Cmp 7 cc _ _ 17 that that SCONJ IN _ 19 mark _ _ 18 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 19 nsubj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 conj _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 finer finer ADJ JJ Degree=Pos 22 amod _ _ 22 invariant invariant NOUN NN Number=Sing 19 attr _ _ 23 than than ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 26 det _ _ 25 zeta zeta NOUN NN Number=Sing 26 compound _ _ 26 series series NOUN NN Number=Sing 23 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 29 finite finite ADJ JJ Degree=Pos 30 amod _ _ 30 graph graph NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 9 # text = We also show that, for finite walkable graphs, if $ B $ is basal and separated then the walk spaces for $ X $ and $ B $ are topologically conjugate if and only if $ X $ and $ B $ are homotopically equivalent for our model structure. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 13 mark _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 13 punct _ _ 6 for for ADP IN _ 13 prep _ _ 7 finite finite ADJ JJ Degree=Pos 9 amod _ _ 8 walkable walkable ADJ JJ Degree=Pos 9 amod _ _ 9 graphs graph NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 13 punct _ _ 11 if if SCONJ IN _ 13 mark _ _ 12 $ B $ $ b $ SYM $ _ 13 nsubj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 14 basal basal NOUN NN Number=Sing 13 attr _ _ 15 and and CCONJ CC ConjType=Cmp 13 cc _ _ 16 separated separate VERB VBD Tense=Past|VerbForm=Fin 13 conj _ _ 17 then then ADV RB PronType=Dem 16 advmod _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 walk walk NOUN NN Number=Sing 20 compound _ _ 20 spaces space NOUN NNS Number=Plur 25 nsubj _ _ 21 for for ADP IN _ 20 prep _ _ 22 $ X $ $ x $ SYM $ _ 21 pobj _ _ 23 and and CCONJ CC ConjType=Cmp 22 cc _ _ 24 $ B $ $ b $ SYM $ _ 22 conj _ _ 25 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 conj _ _ 26 topologically topologically ADV RB _ 27 advmod _ _ 27 conjugate conjugate ADJ JJ Degree=Pos 25 acomp _ _ 28 if if SCONJ IN _ 35 mark _ _ 29 and and CCONJ CC ConjType=Cmp 35 cc _ _ 30 only only ADV RB _ 35 advmod _ _ 31 if if SCONJ IN _ 35 mark _ _ 32 $ X $ $ x $ SYM $ _ 35 nsubj _ _ 33 and and CCONJ CC ConjType=Cmp 32 cc _ _ 34 $ B $ $ b $ SYM $ _ 32 conj _ _ 35 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 25 advcl _ _ 36 homotopically homotopically ADV RB _ 37 advmod _ _ 37 equivalent equivalent ADJ JJ Degree=Pos 35 acomp _ _ 38 for for ADP IN _ 37 prep _ _ 39 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 41 poss _ _ 40 model model NOUN NN Number=Sing 41 compound _ _ 41 structure structure NOUN NN Number=Sing 38 pobj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 377 # sent_id = 1 # text = We combine two recent ideas: cartesian differential categories, and restriction categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 combine combine VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 two two NUM CD NumType=Card 5 nummod _ _ 4 recent recent ADJ JJ Degree=Pos 5 amod _ _ 5 ideas idea NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 6 : : PUNCT : _ 5 punct _ _ 7 cartesian cartesian ADJ JJ Degree=Pos 9 amod _ _ 8 differential differential ADJ JJ Degree=Pos 9 amod _ _ 9 categories category NOUN NNS Number=Plur 5 appos _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 and and CCONJ CC ConjType=Cmp 9 cc _ _ 12 restriction restriction NOUN NN Number=Sing 13 compound _ _ 13 categories category NOUN NNS Number=Plur 9 conj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The result is a new structure which axiomatizes the category of smooth maps defined on open subsets of $ R^n $ in a way that is completely algebraic. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 result result NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 new new ADJ JJ Degree=Pos 6 amod _ _ 6 structure structure NOUN NN Number=Sing 3 attr _ _ 7 which which PRON WDT _ 8 nsubj _ _ 8 axiomatizes axiomatize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 relcl _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 category category NOUN NN Number=Sing 8 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 smooth smooth ADJ JJ Degree=Pos 13 amod _ _ 13 maps map NOUN NNS Number=Plur 11 pobj _ _ 14 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 acl _ _ 15 on on ADP IN _ 14 prep _ _ 16 open open ADJ JJ Degree=Pos 17 amod _ _ 17 subsets subset NOUN NNS Number=Plur 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 $ R^n $ $ r^n $ SYM $ _ 18 pobj _ _ 20 in in ADP IN _ 14 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 way way NOUN NN Number=Sing 20 pobj _ _ 23 that that PRON WDT PronType=Rel 24 nsubj _ _ 24 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 relcl _ _ 25 completely completely ADV RB _ 26 advmod _ _ 26 algebraic algebraic ADJ JJ Degree=Pos 24 acomp _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = We also give other models for the resulting structure, discuss what it means for a partial map to be additive or linear, and show that differential restriction structure can be lifted through various completion operations. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 other other ADJ JJ Degree=Pos 5 amod _ _ 5 models model NOUN NNS Number=Plur 3 dobj _ _ 6 for for ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 resulting result VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 amod _ _ 9 structure structure NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 3 punct _ _ 11 discuss discuss VERB VB VerbForm=Inf 3 advcl _ _ 12 what what PRON WP _ 14 dobj _ _ 13 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 14 nsubj _ _ 14 means mean VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 ccomp _ _ 15 for for ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 partial partial ADJ JJ Degree=Pos 18 amod _ _ 18 map map NOUN NN Number=Sing 15 pobj _ _ 19 to to PART TO _ 20 aux _ _ 20 be be AUX VB VerbForm=Inf 18 acl _ _ 21 additive additive ADJ JJ Degree=Pos 20 acomp _ _ 22 or or CCONJ CC ConjType=Cmp 21 cc _ _ 23 linear linear ADJ JJ Degree=Pos 21 conj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 11 punct _ _ 25 and and CCONJ CC ConjType=Cmp 11 cc _ _ 26 show show VERB VB VerbForm=Inf 11 conj _ _ 27 that that SCONJ IN _ 33 mark _ _ 28 differential differential ADJ JJ Degree=Pos 29 amod _ _ 29 restriction restriction NOUN NN Number=Sing 30 compound _ _ 30 structure structure NOUN NN Number=Sing 33 nsubjpass _ _ 31 can can AUX MD VerbForm=Fin 33 aux _ _ 32 be be AUX VB VerbForm=Inf 33 auxpass _ _ 33 lifted lift VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 ccomp _ _ 34 through through ADP IN _ 33 prep _ _ 35 various various ADJ JJ Degree=Pos 37 amod _ _ 36 completion completion NOUN NN Number=Sing 37 compound _ _ 37 operations operation NOUN NNS Number=Plur 34 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 378 # sent_id = 1 # text = This paper reviews the basic properties of coherent spaces, characterizes them, and proves a theorem about countable meets of open sets. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 reviews review VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 basic basic ADJ JJ Degree=Pos 6 amod _ _ 6 properties property NOUN NNS Number=Plur 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 coherent coherent ADJ JJ Degree=Pos 9 amod _ _ 9 spaces space NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 3 punct _ _ 11 characterizes characterize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 conj _ _ 12 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 11 dobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 11 punct _ _ 14 and and CCONJ CC ConjType=Cmp 11 cc _ _ 15 proves prove VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 conj _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 theorem theorem ADJ JJ Degree=Pos 15 dobj _ _ 18 about about ADP IN _ 17 prep _ _ 19 countable countable ADJ JJ Degree=Pos 20 amod _ _ 20 meets meet NOUN NNS Number=Plur 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 open open ADJ JJ Degree=Pos 23 amod _ _ 23 sets set NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = A number of examples of coherent spaces are given, including the set of all congruences (equipped with the Zariski topology) of a model of a theory based on a set of partial operations. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 number number NOUN NN Number=Sing 9 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 examples example NOUN NNS Number=Plur 3 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 coherent coherent ADJ JJ Degree=Pos 7 amod _ _ 7 spaces space NOUN NNS Number=Plur 5 pobj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 set set NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 all all DET DT _ 16 det _ _ 16 congruences congruence NOUN NNS Number=Plur 14 pobj _ _ 17 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 16 punct _ SpaceAfter=No 18 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 acl _ _ 19 with with ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 Zariski Zariski PROPN NNP Number=Sing 22 compound _ _ 22 topology topology NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 23 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 13 punct _ _ 24 of of ADP IN _ 13 prep _ _ 25 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 26 model model NOUN NN Number=Sing 24 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 29 theory theory NOUN NN Number=Sing 27 pobj _ _ 30 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 acl _ _ 31 on on ADP IN _ 30 prep _ _ 32 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 33 set set NOUN NN Number=Sing 31 pobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 partial partial ADJ JJ Degree=Pos 36 amod _ _ 36 operations operation NOUN NNS Number=Plur 34 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 3 # text = We also give two alternate proofs of the main theorem, one using a theorem of Isbell's and a second using an unpublished theorem of Makkai's. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 two two NUM CD NumType=Card 6 nummod _ _ 5 alternate alternate ADJ JJ Degree=Pos 6 amod _ _ 6 proofs proof NOUN NNS Number=Plur 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 main main ADJ JJ Degree=Pos 10 amod _ _ 10 theorem theorem NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 one one NUM CD NumType=Card 10 appos _ _ 13 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 acl _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 theorem theorem NOUN NN Number=Sing 13 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 Isbell Isbell PROPN NNP Number=Sing 16 pobj _ SpaceAfter=No 18 's 's PART POS _ 17 case _ _ 19 and and CCONJ CC ConjType=Cmp 17 cc _ _ 20 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 21 second second NOUN NN Number=Sing 17 conj _ _ 22 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 acl _ _ 23 an an DET DT Definite=Ind|PronType=Art 25 det _ _ 24 unpublished unpublished ADJ JJ Degree=Pos 25 amod _ _ 25 theorem theorem NOUN NN Number=Sing 22 dobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 Makkai Makkai PROPN NNP Number=Sing 26 pobj _ SpaceAfter=No 28 's 's PART POS _ 27 case _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = Finally, we apply these results to the Boolean cyclic spectrum and give some relevant examples. 1 Finally finally ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 apply apply VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 these these DET DT Number=Plur|PronType=Dem 6 det _ _ 6 results result NOUN NNS Number=Plur 4 dobj _ _ 7 to to ADP IN _ 4 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 11 det _ _ 9 Boolean Boolean PROPN NNP Number=Sing 11 amod _ _ 10 cyclic cyclic NOUN NN Number=Sing 11 compound _ _ 11 spectrum spectrum NOUN NN Number=Sing 7 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 4 cc _ _ 13 give give VERB VB VerbForm=Inf 4 conj _ _ 14 some some DET DT _ 16 det _ _ 15 relevant relevant ADJ JJ Degree=Pos 16 amod _ _ 16 examples example NOUN NNS Number=Plur 13 dobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 379 # sent_id = 1 # text = We show that a reflective/coreflective pair of full subcategories satisfies a ``maximal - normal'' - type equivalence if and only if it is an associated pair in the sense of Kelly and Lawvere. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 12 mark _ _ 4 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 5 reflective reflective ADJ JJ Degree=Pos 8 amod _ SpaceAfter=No 6 / / SYM SYM _ 7 punct _ SpaceAfter=No 7 coreflective coreflective ADJ JJ Degree=Pos 8 amod _ _ 8 pair pair NOUN NN Number=Sing 12 nsubj _ _ 9 of of ADP IN _ 8 prep _ _ 10 full full ADJ JJ Degree=Pos 11 amod _ _ 11 subcategories subcategorie NOUN NNS Number=Plur 9 pobj _ _ 12 satisfies satisfie NOUN NNS Number=Plur 2 ccomp _ _ 13 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 14 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 22 punct _ SpaceAfter=No 15 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 22 punct _ SpaceAfter=No 16 maximal maximal ADJ JJ Degree=Pos 18 amod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 normal normal ADJ JJ Degree=Pos 22 amod _ SpaceAfter=No 19 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 21 punct _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 type type NOUN NN Number=Sing 22 compound _ _ 22 equivalence equivalence NOUN NN Number=Sing 12 dobj _ _ 23 if if SCONJ IN _ 2 dep _ _ 24 and and CCONJ CC ConjType=Cmp 23 cc _ _ 25 only only ADV RB _ 28 advmod _ _ 26 if if SCONJ IN _ 28 mark _ _ 27 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 28 nsubj _ _ 28 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 conj _ _ 29 an an DET DT Definite=Ind|PronType=Art 31 det _ _ 30 associated associated ADJ JJ Degree=Pos 31 amod _ _ 31 pair pair NOUN NN Number=Sing 28 attr _ _ 32 in in ADP IN _ 31 prep _ _ 33 the the DET DT Definite=Def|PronType=Art 34 det _ _ 34 sense sense NOUN NN Number=Sing 32 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 Kelly Kelly PROPN NNP Number=Sing 35 pobj _ _ 37 and and CCONJ CC ConjType=Cmp 36 cc _ _ 38 Lawvere Lawvere PROPN NNP Number=Sing 36 conj _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 380 # sent_id = 1 # text = The category of $ Set $ - valued presheaves on a small category $ B $ is a topos. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 category category NOUN NN Number=Sing 13 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 $ Set $ $ set $ SYM $ _ 6 advmod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 amod _ _ 7 presheaves presheave NOUN NNS Number=Plur 3 pobj _ _ 8 on on ADP IN _ 2 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 small small ADJ JJ Degree=Pos 11 amod _ _ 11 category category NOUN NN Number=Sing 8 pobj _ _ 12 $ B $ $ b $ SYM $ _ 11 appos _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 topos topos NOUN NN Number=Sing 13 attr _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 2 # text = Replacing $ Set $ by a bicategory $ S $ whose objects are sets and morphisms are spans, relations, or partial maps, we consider a category $ Lax(B, S) $ of $ S $ - valued lax functors on $ B $ . 1 Replacing replace VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 23 advcl _ _ 2 $ Set $ $ set $ SYM $ _ 1 dobj _ _ 3 by by ADP IN _ 1 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 bicategory bicategory NOUN NN Number=Sing 3 pobj _ _ 6 $ S $ $ s $ SYM $ _ 5 nmod _ _ 7 whose whose DET WP$ Poss=Yes 8 poss _ _ 8 objects object NOUN NNS Number=Plur 9 nsubj _ _ 9 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 relcl _ _ 10 sets set NOUN NNS Number=Plur 9 attr _ _ 11 and and CCONJ CC ConjType=Cmp 9 cc _ _ 12 morphisms morphism NOUN NNS Number=Plur 13 nsubj _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 conj _ _ 14 spans span NOUN NNS Number=Plur 13 attr _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 relations relation NOUN NNS Number=Plur 14 conj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 or or CCONJ CC ConjType=Cmp 16 cc _ _ 19 partial partial ADJ JJ Degree=Pos 20 amod _ _ 20 maps map NOUN NNS Number=Plur 16 conj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 23 punct _ _ 22 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 23 nsubj _ _ 23 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 24 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 25 category category NOUN NN Number=Sing 23 dobj _ _ 26 $ Lax(B, S) $ $ lax(b, s) $ SYM $ _ 25 appos _ _ 27 of of ADP IN _ 26 prep _ _ 28 $ S $ $ s $ SYM $ _ 30 dep _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 amod _ _ 31 lax lax ADJ JJ Degree=Pos 32 amod _ _ 32 functors functor NOUN NNS Number=Plur 27 pobj _ _ 33 on on ADP IN _ 32 prep _ _ 34 $ B $ $ b $ SYM $ _ 33 pobj _ _ 35 . . PUNCT . PunctType=Peri 23 punct _ SpaceAfter=No # sent_id = 3 # text = When $ S = Span $ , the resulting category is equivalent to $ Cat/B $ , and hence, is rarely even cartesian closed. 1 When when SCONJ WRB _ 2 advmod _ _ 2 $ S = Span $ $ s = span $ SYM $ _ 7 advcl _ _ 3 , , PUNCT , PunctType=Comm 7 punct _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 resulting result VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 amod _ _ 6 category category NOUN NN Number=Sing 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 equivalent equivalent ADJ JJ Degree=Pos 7 acomp _ _ 9 to to ADP IN _ 8 prep _ _ 10 $ Cat/B $ $ cat/b $ SYM $ _ 9 pobj _ _ 11 , , PUNCT , PunctType=Comm 7 punct _ _ 12 and and CCONJ CC ConjType=Cmp 7 cc _ _ 13 hence hence ADV RB _ 15 advmod _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 15 punct _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 conj _ _ 16 rarely rarely ADV RB _ 15 advmod _ _ 17 even even ADV RB _ 18 advmod _ _ 18 cartesian cartesian ADJ JJ Degree=Pos 19 nsubj _ _ 19 closed close VERB VBD Tense=Past|VerbForm=Fin 15 acomp _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 4 # text = Restricting this equivalence gives rise to exponentiability characterizations for $ Lax(B, Rel) $ by Niefield and for $ Lax(B, Par) $ in this paper. 1 Restricting restrict VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 csubj _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 equivalence equivalence NOUN NN Number=Sing 1 dobj _ _ 4 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 rise rise NOUN NN Number=Sing 4 dobj _ _ 6 to to ADP IN _ 5 prep _ _ 7 exponentiability exponentiability NOUN NN Number=Sing 8 compound _ _ 8 characterizations characterization NOUN NNS Number=Plur 6 pobj _ _ 9 for for ADP IN _ 8 prep _ _ 10 $ Lax(B, Rel) $ $ lax(b, rel) $ SYM $ _ 9 pobj _ _ 11 by by ADP IN _ 10 agent _ _ 12 Niefield Niefield PROPN NNP Number=Sing 11 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 11 cc _ _ 14 for for ADP IN _ 11 conj _ _ 15 $ Lax(B, Par) $ $ lax(b, par) $ SYM $ _ 14 pobj _ _ 16 in in ADP IN _ 15 prep _ _ 17 this this DET DT Number=Sing|PronType=Dem 18 det _ _ 18 paper paper NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = Along the way, we obtain a characterization of those $ B $ for which the category $ UFL/B $ is a coreflective subcategory of $ Cat/B $ , and hence, a topos. 1 Along along ADP IN _ 6 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 way way NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 characterization characterization NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 those those DET DT Number=Plur|PronType=Dem 11 det _ _ 11 $ B $ $ b $ SYM $ _ 9 pobj _ _ 12 for for ADP IN _ 17 prep _ _ 13 which which PRON WDT _ 12 pobj _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 category category NOUN NN Number=Sing 17 nsubj _ _ 16 $ UFL/B $ $ ufl/b $ X ADD _ 15 appos _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 relcl _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 coreflective coreflective ADJ JJ Degree=Pos 20 amod _ _ 20 subcategory subcategory NOUN NN Number=Sing 17 attr _ _ 21 of of ADP IN _ 20 prep _ _ 22 $ Cat/B $ $ cat/b $ SYM $ _ 21 pobj _ _ 23 , , PUNCT , PunctType=Comm 17 punct _ _ 24 and and CCONJ CC ConjType=Cmp 17 cc _ _ 25 hence hence ADV RB _ 11 advmod _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 11 punct _ _ 27 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 28 topos topos NOUN NN Number=Sing 11 appos _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 381 # sent_id = 1 # text = A flow on a compact Hausdorff space is an automorphism. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 flow flow NOUN NN Number=Sing 8 nsubj _ _ 3 on on ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 5 compact compact ADJ JJ Degree=Pos 7 amod _ _ 6 Hausdorff Hausdorff PROPN NNP Number=Sing 7 compound _ _ 7 space space NOUN NN Number=Sing 3 pobj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 an an DET DT Definite=Ind|PronType=Art 10 det _ _ 10 automorphism automorphism NOUN NN Number=Sing 8 attr _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 2 # text = Using the closed structure on the category of uniform spaces, a flow gives rise, by iteration, to an action of the integers on the topological group of automorphisms of the object. 1 Using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 advcl _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 closed closed ADJ JJ Degree=Pos 4 amod _ _ 4 structure structure NOUN NN Number=Sing 1 dobj _ _ 5 on on ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 category category NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 uniform uniform PROPN NNP Number=Sing 10 compound _ _ 10 spaces space NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 14 punct _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 flow flow NOUN NN Number=Sing 14 nsubj _ _ 14 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 rise rise NOUN NN Number=Sing 14 dobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 14 punct _ _ 17 by by ADP IN _ 14 prep _ _ 18 iteration iteration NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 14 punct _ _ 20 to to ADP IN _ 14 prep _ _ 21 an an DET DT Definite=Ind|PronType=Art 22 det _ _ 22 action action NOUN NN Number=Sing 20 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 integers integer NOUN NNS Number=Plur 23 pobj _ _ 26 on on ADP IN _ 22 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 29 det _ _ 28 topological topological ADJ JJ Degree=Pos 29 amod _ _ 29 group group NOUN NN Number=Sing 26 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 automorphisms automorphism NOUN NNS Number=Plur 30 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 the the DET DT Definite=Def|PronType=Art 34 det _ _ 34 object object NOUN NN Number=Sing 32 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 3 # text = We study special classes of flows: periodic, cocyclic, and almost cocyclic, mainly in term of the possibility of extending this action continuously to various compactifications of the integers. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 special special ADJ JJ Degree=Pos 4 amod _ _ 4 classes class NOUN NNS Number=Plur 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 flows flow NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 7 : : PUNCT : _ 6 punct _ _ 8 periodic periodic ADJ JJ Degree=Pos 2 dobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 8 punct _ _ 10 cocyclic cocyclic NOUN NN Number=Sing 8 conj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 and and CCONJ CC ConjType=Cmp 10 cc _ _ 13 almost almost ADV RB _ 14 advmod _ _ 14 cocyclic cocyclic ADJ JJ Degree=Pos 10 conj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 2 punct _ _ 16 mainly mainly ADV RB _ 17 advmod _ _ 17 in in ADP IN _ 2 prep _ _ 18 term term NOUN NN Number=Sing 17 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 possibility possibility NOUN NN Number=Sing 19 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 extending extend VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 pcomp _ _ 24 this this DET DT Number=Sing|PronType=Dem 25 det _ _ 25 action action NOUN NN Number=Sing 23 dobj _ _ 26 continuously continuously ADV RB _ 23 advmod _ _ 27 to to ADP IN _ 23 prep _ _ 28 various various ADJ JJ Degree=Pos 29 amod _ _ 29 compactifications compactification NOUN NNS Number=Plur 27 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 integers integer NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 382 # sent_id = 1 # text = We present a new explicit construction of categorical semidirect products in an arbitrary variety $ V $ of right $ Omega $ - loops and use it to obtain simplified descriptions of internal precrossed and crossed modules in $ V $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 4 new new ADJ JJ Degree=Pos 6 amod _ _ 5 explicit explicit ADJ JJ Degree=Pos 6 amod _ _ 6 construction construction NOUN NN Number=Sing 2 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 categorical categorical ADJ JJ Degree=Pos 10 amod _ _ 9 semidirect semidirect NOUN NN Number=Sing 10 compound _ _ 10 products product NOUN NNS Number=Plur 7 pobj _ _ 11 in in ADP IN _ 2 prep _ _ 12 an an DET DT Definite=Ind|PronType=Art 14 det _ _ 13 arbitrary arbitrary ADJ JJ Degree=Pos 14 amod _ _ 14 variety variety NOUN NN Number=Sing 11 pobj _ _ 15 $ V $ $ v $ SYM $ _ 2 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 right right ADJ JJ Degree=Pos 20 amod _ _ 18 $ Omega $ $ omega $ SYM $ _ 20 compound _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 loops loop NOUN NNS Number=Plur 16 pobj _ _ 21 and and CCONJ CC ConjType=Cmp 2 cc _ _ 22 use use VERB VB VerbForm=Inf 2 conj _ _ 23 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 22 dobj _ _ 24 to to PART TO _ 25 aux _ _ 25 obtain obtain VERB VB VerbForm=Inf 22 xcomp _ _ 26 simplified simplified ADJ JJ Degree=Pos 27 amod _ _ 27 descriptions description NOUN NNS Number=Plur 25 dobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 internal internal ADJ JJ Degree=Pos 30 amod _ _ 30 precrossed precrosse VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 pobj _ _ 31 and and CCONJ CC ConjType=Cmp 30 cc _ _ 32 crossed cross VERB VBD Tense=Past|VerbForm=Fin 30 conj _ _ 33 modules module NOUN NNS Number=Plur 32 dobj _ _ 34 in in ADP IN _ 33 prep _ _ 35 $ V $ $ v $ SYM $ _ 34 pobj _ _ 36 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 383 # sent_id = 1 # text = Representables for double categories are defined to be lax morphisms into a certain double category of sets. 1 Representables representable NOUN NNS Number=Plur 6 nsubjpass _ _ 2 for for ADP IN _ 1 prep _ _ 3 double double ADJ JJ Degree=Pos 4 amod _ _ 4 categories category NOUN NNS Number=Plur 2 pobj _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 6 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 to to PART TO _ 8 aux _ _ 8 be be AUX VB VerbForm=Inf 6 xcomp _ _ 9 lax lax ADJ JJ Degree=Pos 10 amod _ _ 10 morphisms morphism NOUN NNS Number=Plur 8 attr _ _ 11 into into ADP IN _ 8 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 13 certain certain ADJ JJ Degree=Pos 15 amod _ _ 14 double double ADJ JJ Degree=Pos 15 amod _ _ 15 category category NOUN NN Number=Sing 11 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 sets set NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = We show that horizontal transformations from representables into lax morphisms correspond to elements of that lax morphism. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 11 mark _ _ 4 horizontal horizontal ADJ JJ Degree=Pos 5 amod _ _ 5 transformations transformation NOUN NNS Number=Plur 11 nsubj _ _ 6 from from ADP IN _ 5 prep _ _ 7 representables representable NOUN NNS Number=Plur 6 pobj _ _ 8 into into ADP IN _ 7 prep _ _ 9 lax lax ADJ JJ Degree=Pos 10 amod _ _ 10 morphisms morphism NOUN NNS Number=Plur 8 pobj _ _ 11 correspond correspond VERB VBP Tense=Pres|VerbForm=Fin 2 ccomp _ _ 12 to to ADP IN _ 11 prep _ _ 13 elements element NOUN NNS Number=Plur 12 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 that that DET DT Number=Sing|PronType=Dem 17 det _ _ 16 lax lax ADJ JJ Degree=Pos 17 amod _ _ 17 morphism morphism NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Vertical arrows give rise to modules between representables. 1 Vertical vertical ADJ JJ Degree=Pos 2 amod _ _ 2 arrows arrow NOUN NNS Number=Plur 3 nsubj _ _ 3 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 rise rise NOUN NN Number=Sing 3 dobj _ _ 5 to to ADP IN _ 3 prep _ _ 6 modules module NOUN NNS Number=Plur 5 pobj _ _ 7 between between ADP IN _ 6 prep _ _ 8 representables representable NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 9 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = We establish that the Yoneda embedding is a strong morphism of lax double categories which is horizontally full and faithful and dense. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 establish establish VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 7 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 Yoneda Yoneda PROPN NNP Number=Sing 6 nsubj _ _ 6 embedding embed VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 csubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 strong strong ADJ JJ Degree=Pos 10 amod _ _ 10 morphism morphism NOUN NN Number=Sing 7 attr _ _ 11 of of ADP IN _ 10 prep _ _ 12 lax lax ADJ JJ Degree=Pos 14 amod _ _ 13 double double ADJ JJ Degree=Pos 14 amod _ _ 14 categories category NOUN NNS Number=Plur 11 pobj _ _ 15 which which PRON WDT _ 16 nsubj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 relcl _ _ 17 horizontally horizontally ADV RB _ 16 advmod _ _ 18 full full ADJ JJ Degree=Pos 16 acomp _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 faithful faithful ADJ JJ Degree=Pos 18 conj _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 dense dense ADJ JJ Degree=Pos 20 conj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 384 # sent_id = 1 # text = In the context of Cartesian differential categories, the structure of the first - order chain rule gives rise to a fibration, the ``bundle category''. 1 In in ADP IN _ 18 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 context context NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 Cartesian cartesian ADJ JJ Degree=Pos 7 amod _ _ 6 differential differential ADJ JJ Degree=Pos 7 amod _ _ 7 categories category NOUN NNS Number=Plur 4 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 18 punct _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 structure structure NOUN NN Number=Sing 18 nsubj _ _ 11 of of ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 17 det _ _ 13 first first ADJ JJ Degree=Pos 15 amod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 order order NOUN NN Number=Sing 17 compound _ _ 16 chain chain NOUN NN Number=Sing 17 compound _ _ 17 rule rule NOUN NN Number=Sing 11 pobj _ _ 18 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 19 rise rise VERB VB VerbForm=Inf 18 dobj _ _ 20 to to ADP IN _ 19 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 fibration fibration NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 18 punct _ _ 24 the the DET DT Definite=Def|PronType=Art 28 det _ _ 25 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 28 punct _ SpaceAfter=No 26 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 28 punct _ SpaceAfter=No 27 bundle bundle NOUN NN Number=Sing 28 compound _ _ 28 category category NOUN NN Number=Sing 18 dobj _ SpaceAfter=No 29 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 28 punct _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # sent_id = 2 # text = In the present paper we generalise this to the higher - order chain rule (originally developed in the traditional setting by Faà di Bruno in the nineteenth century); given any Cartesian differential category $ X $ , there is a ``higher - order chain rule fibration'' $ Faa(X) - - > X $ over it. 1 In in ADP IN _ 6 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 present present ADJ JJ Degree=Pos 4 amod _ _ 4 paper paper NOUN NN Number=Sing 1 pobj _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 generalise generalise VERB VBP Tense=Pres|VerbForm=Fin 40 ccomp _ _ 7 this this PRON DT Number=Sing|PronType=Dem 6 dobj _ _ 8 to to ADP IN _ 6 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 14 det _ _ 10 higher high ADJ JJR Degree=Cmp 12 amod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 order order NOUN NN Number=Sing 14 compound _ _ 13 chain chain NOUN NN Number=Sing 14 compound _ _ 14 rule rule NOUN NN Number=Sing 8 pobj _ _ 15 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 14 punct _ SpaceAfter=No 16 originally originally ADV RB _ 17 advmod _ _ 17 developed develop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 acl _ _ 18 in in ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 traditional traditional ADJ JJ Degree=Pos 21 amod _ _ 21 setting setting NOUN NN Number=Sing 18 pobj _ _ 22 by by ADP IN _ 21 prep _ _ 23 Faà Faà PROPN NNP Number=Sing 25 compound _ _ 24 di di PROPN NNP Number=Sing 25 compound _ _ 25 Bruno Bruno PROPN NNP Number=Sing 22 pobj _ _ 26 in in ADP IN _ 17 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 29 det _ _ 28 nineteenth nineteenth ADJ JJ Degree=Pos 29 amod _ _ 29 century century NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 30 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 14 punct _ SpaceAfter=No 31 ; ; PUNCT : _ 40 punct _ _ 32 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 40 prep _ _ 33 any any DET DT _ 36 det _ _ 34 Cartesian cartesian ADJ JJ Degree=Pos 36 amod _ _ 35 differential differential ADJ JJ Degree=Pos 36 amod _ _ 36 category category NOUN NN Number=Sing 32 pobj _ _ 37 $ X $ $ x $ SYM $ _ 36 appos _ _ 38 , , PUNCT , PunctType=Comm 40 punct _ _ 39 there there PRON EX _ 40 expl _ _ 40 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 41 a a DET DT Definite=Ind|PronType=Art 49 det _ _ 42 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 49 punct _ SpaceAfter=No 43 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 49 punct _ SpaceAfter=No 44 higher high ADJ JJR Degree=Cmp 46 amod _ _ 45 - - PUNCT HYPH PunctType=Dash 46 punct _ _ 46 order order NOUN NN Number=Sing 47 compound _ _ 47 chain chain NOUN NN Number=Sing 48 compound _ _ 48 rule rule NOUN NN Number=Sing 49 compound _ _ 49 fibration fibration NOUN NN Number=Sing 40 attr _ SpaceAfter=No 50 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 49 punct _ _ 51 $ Faa(X) - - > X $ $ faa(x) - - > x $ SYM $ _ 40 dep _ _ 52 over over ADP IN _ 51 prep _ _ 53 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 52 pobj _ SpaceAfter=No 54 . . PUNCT . PunctType=Peri 40 punct _ SpaceAfter=No # sent_id = 3 # text = In fact, $ Faa $ is a comonad (over the category of Cartesian left (semi - )additive categories). 1 In in ADP IN _ 5 prep _ _ 2 fact fact NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 $ Faa $ $ faa $ SYM $ _ 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 comonad comonad NOUN NNS Number=Plur 5 attr _ _ 8 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 7 punct _ SpaceAfter=No 9 over over ADP IN _ 7 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 category category NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 Cartesian Cartesian PROPN NNP Number=Sing 12 pobj _ _ 14 left leave VERB VBD Tense=Past|VerbForm=Fin 7 acl _ _ 15 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 14 punct _ SpaceAfter=No 16 semi semi ADV RB _ 20 amod _ _ 17 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 18 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 20 punct _ SpaceAfter=No 19 additive additive ADJ JJ Degree=Pos 20 amod _ _ 20 categories category NOUN NNS Number=Plur 14 dobj _ SpaceAfter=No 21 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 14 punct _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = Our main theorem is that the coalgebras for this comonad are precisely the Cartesian differential categories. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 3 poss _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 theorem theorem NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 11 mark _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 coalgebras coalgebra NOUN NNS Number=Plur 11 nsubj _ _ 8 for for ADP IN _ 7 prep _ _ 9 this this DET DT Number=Sing|PronType=Dem 10 det _ _ 10 comonad comonad NOUN NNS Number=Plur 8 pobj _ _ 11 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 12 precisely precisely ADV RB _ 11 advmod _ _ 13 the the DET DT Definite=Def|PronType=Art 16 det _ _ 14 Cartesian cartesian ADJ JJ Degree=Pos 16 amod _ _ 15 differential differential ADJ JJ Degree=Pos 16 amod _ _ 16 categories category NOUN NNS Number=Plur 11 attr _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = In a sense, this result affirms the ``correctness'' of the notion of Cartesian differential categories. 1 In in ADP IN _ 7 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 sense sense NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 7 punct _ _ 5 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 6 result result NOUN NN Number=Sing 7 nsubj _ _ 7 affirms affirm VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 the the DET DT Definite=Def|PronType=Art 11 det _ _ 9 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 11 punct _ SpaceAfter=No 10 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 11 punct _ SpaceAfter=No 11 correctness correctness NOUN NN Number=Sing 7 dobj _ SpaceAfter=No 12 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 11 punct _ _ 13 of of ADP IN _ 11 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 notion notion NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 Cartesian cartesian ADJ JJ Degree=Pos 19 amod _ _ 18 differential differential ADJ JJ Degree=Pos 19 amod _ _ 19 categories category NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # doc_id = 385 # sent_id = 1 # text = In this paper, we consider a non - posetal analogue of the notion of involutive quantale; specifically, a (planar) monoidal category equipped with a covariant involution that reverses the order of tensoring. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 8 non non ADJ JJ Degree=Pos 10 amod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 posetal posetal ADJ JJ Degree=Pos 11 amod _ _ 11 analogue analogue NOUN NN Number=Sing 6 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 notion notion NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 involutive involutive ADJ JJ Degree=Pos 17 amod _ _ 17 quantale quantale NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 18 ; ; PUNCT : _ 6 punct _ _ 19 specifically specifically ADV RB _ 26 advmod _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 26 punct _ _ 21 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 22 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 26 punct _ SpaceAfter=No 23 planar planar ADJ JJ Degree=Pos 26 amod _ SpaceAfter=No 24 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 26 punct _ _ 25 monoidal monoidal ADJ JJ Degree=Pos 26 amod _ _ 26 category category NOUN NN Number=Sing 11 appos _ _ 27 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 acl _ _ 28 with with ADP IN _ 27 prep _ _ 29 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 30 covariant covariant ADJ JJ Degree=Pos 31 amod _ _ 31 involution involution NOUN NN Number=Sing 28 pobj _ _ 32 that that PRON WDT PronType=Rel 33 nsubj _ _ 33 reverses reverse VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 31 relcl _ _ 34 the the DET DT Definite=Def|PronType=Art 35 det _ _ 35 order order NOUN NN Number=Sing 33 dobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 tensoring tensoring NOUN NN Number=Sing 36 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = We study the coherence issues that inevitably result when passing from posets to categories; we also link our subject with other notions already in the literature, such as balanced monoidal categories and dagger pivotal categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 18 ccomp _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 coherence coherence NOUN NN Number=Sing 5 compound _ _ 5 issues issue NOUN NNS Number=Plur 2 dobj _ _ 6 that that PRON WDT PronType=Rel 8 nsubj _ _ 7 inevitably inevitably ADV RB _ 8 advmod _ _ 8 result result VERB VBP Tense=Pres|VerbForm=Fin 5 relcl _ _ 9 when when SCONJ WRB _ 10 advmod _ _ 10 passing pass VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 advcl _ _ 11 from from ADP IN _ 10 prep _ _ 12 posets poset NOUN NNS Number=Plur 11 pobj _ _ 13 to to ADP IN _ 10 prep _ _ 14 categories category NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 15 ; ; PUNCT : _ 18 punct _ _ 16 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 18 nsubj _ _ 17 also also ADV RB _ 18 advmod _ _ 18 link link VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 19 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 20 poss _ _ 20 subject subject NOUN NN Number=Sing 18 dobj _ _ 21 with with ADP IN _ 20 prep _ _ 22 other other ADJ JJ Degree=Pos 23 amod _ _ 23 notions notion NOUN NNS Number=Plur 21 pobj _ _ 24 already already ADV RB _ 25 advmod _ _ 25 in in ADP IN _ 18 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 literature literature NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 27 punct _ _ 29 such such ADJ JJ Degree=Pos 30 amod _ _ 30 as as ADP IN _ 27 prep _ _ 31 balanced balanced ADJ JJ Degree=Pos 33 amod _ _ 32 monoidal monoidal ADJ JJ Degree=Pos 33 amod _ _ 33 categories category NOUN NNS Number=Plur 30 pobj _ _ 34 and and CCONJ CC ConjType=Cmp 33 cc _ _ 35 dagger dagger NOUN NN Number=Sing 37 nmod _ _ 36 pivotal pivotal ADJ JJ Degree=Pos 37 amod _ _ 37 categories category NOUN NNS Number=Plur 33 conj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # doc_id = 386 # sent_id = 1 # text = For small involutive and integral quantaloids $ {cal Q} $ it is shown that covariant presheaves on symmetric $ {cal Q} $ - categories are equivalent to certain subalgebras of a specific monad on the category of symmetric $ {cal Q} $ - categories. 1 For for ADP IN _ 10 prep _ _ 2 small small ADJ JJ Degree=Pos 3 amod _ _ 3 involutive involutive NOUN NN Number=Sing 6 amod _ _ 4 and and CCONJ CC ConjType=Cmp 3 cc _ _ 5 integral integral ADJ JJ Degree=Pos 3 conj _ _ 6 quantaloids quantaloid NOUN NNS Number=Plur 1 pobj _ _ 7 $ {cal Q} $ $ {cal q} $ SYM $ _ 1 nmod _ _ 8 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 10 nsubjpass _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 10 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 11 that that SCONJ IN _ 13 det _ _ 12 covariant covariant ADJ JJ Degree=Pos 13 amod _ _ 13 presheaves presheave NOUN NNS Number=Plur 19 nsubj _ _ 14 on on ADP IN _ 13 prep _ _ 15 symmetric symmetric ADJ JJ Degree=Pos 18 amod _ _ 16 $ {cal Q} $ $ {cal Q} $ PROPN NNP Number=Sing 18 compound _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 categories category NOUN NNS Number=Plur 14 pobj _ _ 19 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 10 ccomp _ _ 20 equivalent equivalent ADJ JJ Degree=Pos 19 acomp _ _ 21 to to ADP IN _ 20 prep _ _ 22 certain certain ADJ JJ Degree=Pos 23 amod _ _ 23 subalgebras subalgebra NOUN NNS Number=Plur 21 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 26 specific specific ADJ JJ Degree=Pos 27 amod _ _ 27 monad monad NOUN NNS Number=Plur 24 pobj _ _ 28 on on ADP IN _ 27 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 category category NOUN NN Number=Sing 28 pobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 symmetric symmetric ADJ JJ Degree=Pos 35 amod _ _ 33 $ {cal Q} $ $ {cal Q} $ PROPN NNP Number=Sing 35 compound _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 categories category NOUN NNS Number=Plur 31 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = This construction is related to a weakening of the subobject classifier axiom which does not require the classification of all subalgebras, but only guarantees that classifiable subalgebras are uniquely classifiable. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 construction construction NOUN NN Number=Sing 4 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 to to ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 weakening weakening NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 subobject subobject NOUN NN Number=Sing 11 compound _ _ 11 classifier classifier PROPN NNP Number=Sing 12 compound _ _ 12 axiom axiom NOUN NN Number=Sing 8 pobj _ _ 13 which which PRON WDT _ 16 nsubj _ _ 14 does do AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 aux _ _ 15 not not PART RB Polarity=Neg 16 neg _ _ 16 require require VERB VB VerbForm=Inf 7 relcl _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 classification classification NOUN NN Number=Sing 16 dobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 all all DET DT _ 21 det _ _ 21 subalgebras subalgebras PROPN NNP Number=Sing 19 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 4 punct _ _ 23 but but CCONJ CC ConjType=Cmp 4 cc _ _ 24 only only ADV RB _ 25 advmod _ _ 25 guarantees guarantee VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 conj _ _ 26 that that SCONJ IN _ 29 mark _ _ 27 classifiable classifiable ADJ JJ Degree=Pos 28 amod _ _ 28 subalgebras subalgebras PROPN NNP Number=Sing 29 nsubj _ _ 29 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 25 ccomp _ _ 30 uniquely uniquely ADV RB _ 31 advmod _ _ 31 classifiable classifiable ADJ JJ Degree=Pos 29 acomp _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 25 punct _ SpaceAfter=No # sent_id = 3 # text = As an application the identification of closed left ideals of non - commutative $ C^* $ - algebras with certain "open", subalgebras of freely generated algebras is given. 1 As as ADP IN _ 29 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 application application NOUN NN Number=Sing 1 pobj _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 identification identification NOUN NN Number=Sing 1 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 closed closed ADJ JJ Degree=Pos 9 amod _ _ 8 left left ADJ JJ Degree=Pos 9 amod _ _ 9 ideals ideal NOUN NNS Number=Plur 6 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 non non PROPN NNP Number=Sing 13 amod _ _ 12 - - PROPN NNP Number=Sing 13 punct _ _ 13 commutative commutative ADJ JJ Degree=Pos 16 amod _ _ 14 $ C^* $ $ c^* $ SYM $ _ 16 compound _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 algebras algebra NOUN NNS Number=Plur 10 pobj _ _ 17 with with ADP IN _ 5 prep _ _ 18 certain certain ADJ JJ Degree=Pos 20 amod _ _ 19 " " PUNCT `` PunctSide=Ini|PunctType=Quot 20 punct _ SpaceAfter=No 20 open open ADJ JJ Degree=Pos 17 pobj _ SpaceAfter=No 21 " " PUNCT '' PunctSide=Fin|PunctType=Quot 20 punct _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 29 punct _ _ 23 subalgebras subalgebras PROPN NNP Number=Sing 29 nsubjpass _ _ 24 of of ADP IN _ 23 prep _ _ 25 freely freely ADV RB _ 26 advmod _ _ 26 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 amod _ _ 27 algebras algebra NOUN NNS Number=Plur 24 pobj _ _ 28 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 29 auxpass _ _ 29 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 29 punct _ SpaceAfter=No # doc_id = 387 # sent_id = 1 # text = We proved in a previous work that Cattani - Sassone's higher dimensional transition systems can be interpreted as a small - orthogonality class of a topological locally finitely presentable category of weak higher dimensional transition systems. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 proved prove VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 3 in in ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 previous previous ADJ JJ Degree=Pos 6 amod _ _ 6 work work NOUN NN Number=Sing 3 pobj _ _ 7 that that PRON WDT PronType=Rel 18 mark _ _ 8 Cattani Cattani PROPN NNP Number=Sing 10 compound _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 Sassone Sassone PROPN NNP Number=Sing 15 poss _ SpaceAfter=No 11 's 's PART POS _ 10 case _ _ 12 higher high ADJ JJR Degree=Cmp 15 amod _ _ 13 dimensional dimensional ADJ JJ Degree=Pos 15 amod _ _ 14 transition transition NOUN NN Number=Sing 15 compound _ _ 15 systems system NOUN NNS Number=Plur 18 nsubjpass _ _ 16 can can AUX MD VerbForm=Fin 18 aux _ _ 17 be be AUX VB VerbForm=Inf 18 auxpass _ _ 18 interpreted interpret VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 relcl _ _ 19 as as ADP IN _ 18 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 21 small small ADJ JJ Degree=Pos 23 amod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 orthogonality orthogonality NOUN NN Number=Sing 24 compound _ _ 24 class class NOUN NN Number=Sing 19 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 27 topological topological ADJ JJ Degree=Pos 31 amod _ _ 28 locally locally ADV RB _ 29 advmod _ _ 29 finitely finitely ADV RB _ 30 advmod _ _ 30 presentable presentable ADJ JJ Degree=Pos 31 amod _ _ 31 category category NOUN NN Number=Sing 25 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 weak weak ADJ JJ Degree=Pos 37 amod _ _ 34 higher high ADJ JJR Degree=Cmp 37 amod _ _ 35 dimensional dimensional ADJ JJ Degree=Pos 37 amod _ _ 36 transition transition NOUN NN Number=Sing 37 compound _ _ 37 systems system NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = In this paper, we turn our attention to the full subcategory of weak higher dimensional transition systems which are unions of cubes. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 turn turn VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 8 poss _ _ 8 attention attention NOUN NN Number=Sing 6 dobj _ _ 9 to to ADP IN _ 6 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 full full ADJ JJ Degree=Pos 12 amod _ _ 12 subcategory subcategory NOUN NN Number=Sing 9 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 weak weak ADJ JJ Degree=Pos 18 amod _ _ 15 higher high ADJ JJR Degree=Cmp 18 amod _ _ 16 dimensional dimensional ADJ JJ Degree=Pos 18 amod _ _ 17 transition transition NOUN NN Number=Sing 18 compound _ _ 18 systems system NOUN NNS Number=Plur 13 pobj _ _ 19 which which PRON WDT _ 20 nsubj _ _ 20 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 18 relcl _ _ 21 unions union NOUN NNS Number=Plur 20 attr _ _ 22 of of ADP IN _ 21 prep _ _ 23 cubes cube NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = It is proved that there exists a left proper combinatorial model structure such that two objects are weakly equivalent if and only if they have the same cubes after simplification of the labelling. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 that that SCONJ IN _ 6 mark _ _ 5 there there PRON EX _ 6 expl _ _ 6 exists exist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 7 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 8 left left ADJ JJ Degree=Pos 12 amod _ _ 9 proper proper ADJ JJ Degree=Pos 12 amod _ _ 10 combinatorial combinatorial ADJ JJ Degree=Pos 11 amod _ _ 11 model model NOUN NN Number=Sing 12 compound _ _ 12 structure structure NOUN NN Number=Sing 6 dobj _ _ 13 such such ADJ JJ Degree=Pos 17 amod _ _ 14 that that SCONJ IN _ 17 mark _ _ 15 two two NUM CD NumType=Card 16 nummod _ _ 16 objects object NOUN NNS Number=Plur 17 nsubj _ _ 17 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 advcl _ _ 18 weakly weakly ADV RB _ 19 advmod _ _ 19 equivalent equivalent ADJ JJ Degree=Pos 17 acomp _ _ 20 if if SCONJ IN _ 17 prep _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 only only ADV RB _ 25 advmod _ _ 23 if if SCONJ IN _ 25 mark _ _ 24 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 25 nsubj _ _ 25 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 20 conj _ _ 26 the the DET DT Definite=Def|PronType=Art 28 det _ _ 27 same same ADJ JJ Degree=Pos 28 amod _ _ 28 cubes cube NOUN NNS Number=Plur 25 dobj _ _ 29 after after ADP IN _ 28 prep _ _ 30 simplification simplification NOUN NN Number=Sing 29 pobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 the the DET DT Definite=Def|PronType=Art 33 det _ _ 33 labelling labelling NOUN NN Number=Sing 31 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = This model structure is obtained by Bousfield localizing a model structure which is left determined with respect to a class of maps which is not the class of monomorphisms. 1 This this DET DT Number=Sing|PronType=Dem 3 det _ _ 2 model model NOUN NN Number=Sing 3 compound _ _ 3 structure structure NOUN NN Number=Sing 5 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 by by ADP IN _ 5 agent _ _ 7 Bousfield Bousfield PROPN NNP Number=Sing 6 pobj _ _ 8 localizing localize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 advcl _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 model model NOUN NN Number=Sing 11 compound _ _ 11 structure structure NOUN NN Number=Sing 8 dobj _ _ 12 which which PRON WDT _ 14 nsubjpass _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 relcl _ _ 15 determined determined ADJ JJ Degree=Pos 14 oprd _ _ 16 with with ADP IN _ 15 prep _ _ 17 respect respect NOUN NN Number=Sing 16 pobj _ _ 18 to to ADP IN _ 17 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 class class NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 maps map NOUN NNS Number=Plur 21 pobj _ _ 23 which which PRON WDT _ 24 nsubj _ _ 24 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 relcl _ _ 25 not not PART RB Polarity=Neg 24 neg _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 class class NOUN NN Number=Sing 24 attr _ _ 28 of of ADP IN _ 27 prep _ _ 29 monomorphisms monomorphism NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 5 # text = We prove that the higher dimensional transition systems corresponding to two process algebras are weakly equivalent if and only if they are isomorphic. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 14 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 8 det _ _ 5 higher high ADJ JJR Degree=Cmp 8 amod _ _ 6 dimensional dimensional ADJ JJ Degree=Pos 8 amod _ _ 7 transition transition NOUN NN Number=Sing 8 compound _ _ 8 systems system NOUN NNS Number=Plur 14 nsubj _ _ 9 corresponding corresponding ADJ JJ Degree=Pos 8 amod _ _ 10 to to ADP IN _ 9 prep _ _ 11 two two NUM CD NumType=Card 12 nummod _ _ 12 process process NOUN NN Number=Sing 13 compound _ _ 13 algebras algebra NOUN NNS Number=Plur 10 pobj _ _ 14 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 15 weakly weakly ADV RB _ 16 advmod _ _ 16 equivalent equivalent ADJ JJ Degree=Pos 14 acomp _ _ 17 if if SCONJ IN _ 14 prep _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 only only ADV RB _ 22 advmod _ _ 20 if if SCONJ IN _ 22 mark _ _ 21 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 22 nsubj _ _ 22 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 14 advcl _ _ 23 isomorphic isomorphic ADJ JJ Degree=Pos 22 acomp _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = We also construct a second Bousfield localization in which two bisimilar cubical transition systems are weakly equivalent. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 5 second second ADJ JJ Degree=Pos 7 amod _ _ 6 Bousfield Bousfield PROPN NNP Number=Sing 7 compound _ _ 7 localization localization NOUN NN Number=Sing 3 dobj _ _ 8 in in ADP IN _ 15 prep _ _ 9 which which PRON WDT _ 8 pobj _ _ 10 two two NUM CD NumType=Card 14 nummod _ _ 11 bisimilar bisimilar ADJ JJ Degree=Pos 14 amod _ _ 12 cubical cubical ADJ JJ Degree=Pos 13 amod _ _ 13 transition transition NOUN NN Number=Sing 14 compound _ _ 14 systems system NOUN NNS Number=Plur 15 nsubj _ _ 15 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 relcl _ _ 16 weakly weakly ADJ JJ Degree=Pos 17 advmod _ _ 17 equivalent equivalent ADJ JJ Degree=Pos 15 acomp _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 7 # text = The appendix contains a technical lemma about smallness of weak factorization systems in coreflective subcategories which can be of independent interest. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 appendix appendix NOUN NN Number=Sing 3 nsubj _ _ 3 contains contain VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 technical technical ADJ JJ Degree=Pos 6 amod _ _ 6 lemma lemma NOUN NN Number=Sing 3 dobj _ _ 7 about about ADP IN _ 6 prep _ _ 8 smallness smallness NOUN NN Number=Sing 7 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 weak weak ADJ JJ Degree=Pos 12 amod _ _ 11 factorization factorization NOUN NN Number=Sing 12 compound _ _ 12 systems system NOUN NNS Number=Plur 9 pobj _ _ 13 in in ADP IN _ 8 prep _ _ 14 coreflective coreflective ADJ JJ Degree=Pos 15 amod _ _ 15 subcategories subcategorie NOUN NNS Number=Plur 13 pobj _ _ 16 which which PRON WDT _ 18 nsubj _ _ 17 can can AUX MD VerbForm=Fin 18 aux _ _ 18 be be AUX VB VerbForm=Inf 15 relcl _ _ 19 of of ADP IN _ 18 prep _ _ 20 independent independent ADJ JJ Degree=Pos 21 amod _ _ 21 interest interest NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 8 # text = This paper is a first step towards a homotopical interpretation of bisimulation for higher dimensional transition systems. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 first first ADJ JJ Degree=Pos 6 amod _ _ 6 step step NOUN NN Number=Sing 3 attr _ _ 7 towards towards ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 homotopical homotopical ADJ JJ Degree=Pos 10 amod _ _ 10 interpretation interpretation NOUN NN Number=Sing 7 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 bisimulation bisimulation NOUN NN Number=Sing 11 pobj _ _ 13 for for ADP IN _ 10 prep _ _ 14 higher high ADJ JJR Degree=Cmp 17 amod _ _ 15 dimensional dimensional ADJ JJ Degree=Pos 17 amod _ _ 16 transition transition NOUN NN Number=Sing 17 compound _ _ 17 systems system NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 388 # sent_id = 1 # text = We formulate an elementary condition on an involutive quantaloid $ Q $ under which there is a distributive law from the Cauchy completion monad over the symmetrisation comonad on the category of $ Q $ - enriched categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 formulate formulate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 4 elementary elementary ADJ JJ Degree=Pos 5 amod _ _ 5 condition condition NOUN NN Number=Sing 2 dobj _ _ 6 on on ADP IN _ 2 prep _ _ 7 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 8 involutive involutive ADJ JJ Degree=Pos 9 amod _ _ 9 quantaloid quantaloid NOUN NN Number=Sing 6 pobj _ _ 10 $ Q $ $ q $ SYM $ _ 9 nmod _ _ 11 under under ADP IN _ 14 prep _ _ 12 which which PRON WDT _ 11 pobj _ _ 13 there there PRON EX _ 14 expl _ _ 14 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 relcl _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 distributive distributive ADJ JJ Degree=Pos 17 amod _ _ 17 law law NOUN NN Number=Sing 14 attr _ _ 18 from from ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 Cauchy Cauchy PROPN NNP Number=Sing 21 compound _ _ 21 completion completion NOUN NN Number=Sing 22 compound _ _ 22 monad monad NOUN NNS Number=Plur 18 pobj _ _ 23 over over ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 26 det _ _ 25 symmetrisation symmetrisation NOUN NN Number=Sing 26 compound _ _ 26 comonad comonad NOUN NNS Number=Plur 23 pobj _ _ 27 on on ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 category category NOUN NN Number=Sing 27 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 $ Q $ $ q $ SYM $ _ 33 advmod _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 34 amod _ _ 34 categories category NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = For such quantaloids, which we call Cauchy - bilateral quantaloids, it follows that the Cauchy completion of any symmetric $ Q $ - enriched category is again symmetric. 1 For for ADP IN _ 14 prep _ _ 2 such such ADJ JJ Degree=Pos 3 amod _ _ 3 quantaloids quantaloid NOUN NNS Number=Plur 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 3 punct _ _ 5 which which PRON WDT _ 7 dobj _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 call call VERB VBP Tense=Pres|VerbForm=Fin 3 relcl _ _ 8 Cauchy Cauchy PROPN NNP Number=Sing 10 compound _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 bilateral bilateral ADJ JJ Degree=Pos 11 amod _ _ 11 quantaloids quantaloid NOUN NNS Number=Plur 7 oprd _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 14 punct _ _ 13 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 14 nsubj _ _ 14 follows follow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 that that SCONJ IN _ 26 mark _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 Cauchy Cauchy PROPN NNP Number=Sing 18 compound _ _ 18 completion completion NOUN NN Number=Sing 26 nsubj _ _ 19 of of ADP IN _ 18 prep _ _ 20 any any DET DT _ 25 det _ _ 21 symmetric symmetric ADJ JJ Degree=Pos 25 amod _ _ 22 $ Q $ $ q $ SYM $ _ 24 advmod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 25 amod _ _ 25 category category NOUN NN Number=Sing 19 pobj _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 ccomp _ _ 27 again again ADV RB _ 28 advmod _ _ 28 symmetric symmetric ADJ JJ Degree=Pos 26 acomp _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 3 # text = Examples include Lawvere's quantale of non - negative real numbers and Walters' small quantaloids of closed cribles. 1 Examples example NOUN NNS Number=Plur 2 nsubj _ _ 2 include include VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 Lawvere Lawvere PROPN NNP Number=Sing 5 poss _ SpaceAfter=No 4 's 's PART POS _ 3 case _ _ 5 quantale quantale NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 non non ADJ JJ Degree=Pos 9 amod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 negative negative ADJ JJ Degree=Pos 11 amod _ _ 10 real real ADJ JJ Degree=Pos 11 amod _ _ 11 numbers number NOUN NNS Number=Plur 6 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 Walters Walters PROPN NNP Number=Sing 16 poss _ SpaceAfter=No 14 ' ' PART POS _ 13 case _ _ 15 small small ADJ JJ Degree=Pos 16 amod _ _ 16 quantaloids quantaloid NOUN NNS Number=Plur 5 conj _ _ 17 of of ADP IN _ 16 prep _ _ 18 closed closed ADJ JJ Degree=Pos 19 amod _ _ 19 cribles crible NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 389 # sent_id = 1 # text = Various concerns suggest looking for internal co - categories in categories with strong logical structure. 1 Various various ADJ JJ Degree=Pos 2 amod _ _ 2 concerns concern NOUN NNS Number=Plur 3 nsubj _ _ 3 suggest suggest VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 looking look VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 xcomp _ _ 5 for for ADP IN _ 4 prep _ _ 6 internal internal ADJ JJ Degree=Pos 7 amod _ _ 7 co co NOUN NNS Number=Plur 5 pobj _ _ 8 - - NOUN NNS Number=Plur 5 pobj _ _ 9 categories category NOUN NNS Number=Plur 5 pobj _ _ 10 in in ADP IN _ 9 prep _ _ 11 categories category NOUN NNS Number=Plur 10 pobj _ _ 12 with with ADP IN _ 11 prep _ _ 13 strong strong ADJ JJ Degree=Pos 15 amod _ _ 14 logical logical ADJ JJ Degree=Pos 15 amod _ _ 15 structure structure NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = It turns out that in any coherent category $ E $ , all co - categories are co - equivalence relations. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 turns turn VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 out out ADP RP _ 2 prt _ _ 4 that that SCONJ IN _ 15 mark _ _ 5 in in ADP IN _ 15 prep _ _ 6 any any DET DT _ 8 det _ _ 7 coherent coherent ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 5 pobj _ _ 9 $ E $ $ e $ SYM $ _ 8 nummod _ _ 10 , , PUNCT , PunctType=Comm 15 punct _ _ 11 all all DET DT _ 12 det _ _ 12 co co NOUN NN Number=Sing 15 nsubj _ _ 13 - - NOUN NNS Number=Plur 15 punct _ _ 14 categories category NOUN NNS Number=Plur 15 nsubj _ _ 15 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 16 co co ADJ JJ Degree=Pos 19 amod _ _ 17 - - PUNCT HYPH PunctType=Dash 19 amod _ _ 18 equivalence equivalence NOUN NN Number=Sing 19 compound _ _ 19 relations relation NOUN NNS Number=Plur 15 attr _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 390 # sent_id = 1 # text = This paper constructs model structures on the categories of coalgebras and pointed irreducible coalgebras over an operad whose components are projective, finitely generated in each dimension, and satisfy a condition that allows one to take tensor products with a unit interval. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 constructs construct VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 model model NOUN NN Number=Sing 5 compound _ _ 5 structures structure NOUN NNS Number=Plur 3 dobj _ _ 6 on on ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 categories category NOUN NNS Number=Plur 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 coalgebras coalgebra NOUN NNS Number=Plur 9 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 3 cc _ _ 12 pointed point VERB VBD Tense=Past|VerbForm=Fin 3 conj _ _ 13 irreducible irreducible ADJ JJ Degree=Pos 14 amod _ _ 14 coalgebras coalgebra NOUN NNS Number=Plur 12 dobj _ _ 15 over over ADP IN _ 12 prep _ _ 16 an an DET DT Definite=Ind|PronType=Art 17 det _ _ 17 operad operad NOUN NN Number=Sing 15 pobj _ _ 18 whose whose DET WP$ Poss=Yes 19 poss _ _ 19 components component NOUN NNS Number=Plur 20 nsubj _ _ 20 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 17 relcl _ _ 21 projective projective ADJ JJ Degree=Pos 20 acomp _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 24 punct _ _ 23 finitely finitely ADV RB _ 24 advmod _ _ 24 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 acl _ _ 25 in in ADP IN _ 24 prep _ _ 26 each each DET DT _ 27 det _ _ 27 dimension dimension NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 24 punct _ _ 29 and and CCONJ CC ConjType=Cmp 24 cc _ _ 30 satisfy satisfy VERB VB VerbForm=Inf 24 conj _ _ 31 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 32 condition condition NOUN NN Number=Sing 30 dobj _ _ 33 that that PRON WDT PronType=Rel 34 nsubj _ _ 34 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 32 relcl _ _ 35 one one PRON PRP PronType=Prs 37 nsubj _ _ 36 to to PART TO _ 37 aux _ _ 37 take take VERB VB VerbForm=Inf 34 ccomp _ _ 38 tensor tensor NOUN NN Number=Sing 39 compound _ _ 39 products product NOUN NNS Number=Plur 37 dobj _ _ 40 with with ADP IN _ 37 prep _ _ 41 a a DET DT Definite=Ind|PronType=Art 43 det _ _ 42 unit unit NOUN NN Number=Sing 43 compound _ _ 43 interval interval NOUN NN Number=Sing 40 pobj _ SpaceAfter=No 44 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = The underlying chain - complex is assumed to be unbounded and the results for bounded coalgebras over an operad are derived from the unbounded case. 1 The the DET DT Definite=Def|PronType=Art 5 det _ _ 2 underlying underlie VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 amod _ _ 3 chain chain NOUN NN Number=Sing 5 compound _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 complex complex ADJ JJ Degree=Pos 7 nsubjpass _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 7 assumed assume VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 to to PART TO _ 9 aux _ _ 9 be be AUX VB VerbForm=Inf 7 xcomp _ _ 10 unbounded unbounded ADJ JJ Degree=Pos 9 acomp _ _ 11 and and CCONJ CC ConjType=Cmp 7 cc _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 results result NOUN NNS Number=Plur 21 nsubjpass _ _ 14 for for ADP IN _ 13 prep _ _ 15 bounded bound VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 16 coalgebras coalgebra NOUN NNS Number=Plur 14 pobj _ _ 17 over over ADP IN _ 13 prep _ _ 18 an an DET DT Definite=Ind|PronType=Art 19 det _ _ 19 operad operad NOUN NN Number=Sing 17 pobj _ _ 20 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 21 auxpass _ _ 21 derived derive VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 conj _ _ 22 from from ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 unbounded unbounded ADJ JJ Degree=Pos 25 amod _ _ 25 case case NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 21 punct _ SpaceAfter=No # doc_id = 391 # sent_id = 1 # text = We define Lie 3 - algebras and prove that these are in one - to - one correspondence with the 3 - term Lie infinity algebras whose bilinear and trilinear maps vanish in degree $ (1, 1) $ and in total degree 1, respectively. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 Lie lie NOUN NN Number=Sing 2 dobj _ _ 4 3 3 NUM CD NumType=Card 6 nummod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 algebras algebra NOUN NNS Number=Plur 2 dobj _ _ 7 and and CCONJ CC ConjType=Cmp 2 cc _ _ 8 prove prove VERB VB VerbForm=Inf 2 conj _ _ 9 that that SCONJ IN _ 11 mark _ _ 10 these these PRON DT Number=Plur|PronType=Dem 11 nsubj _ _ 11 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 ccomp _ _ 12 in in ADP IN _ 11 prep _ _ 13 one one NUM CD NumType=Card 18 nummod _ _ 14 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 15 to to ADP IN _ 13 prep _ _ 16 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 17 one one NUM CD NumType=Card 15 pobj _ _ 18 correspondence correspondence NOUN NN Number=Sing 12 pobj _ _ 19 with with ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 26 det _ _ 21 3 3 NUM CD NumType=Card 23 nummod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 term term NOUN NN Number=Sing 25 compound _ _ 24 Lie lie NOUN NN Number=Sing 25 compound _ _ 25 infinity infinity NOUN NN Number=Sing 26 compound _ _ 26 algebras algebra NOUN NNS Number=Plur 19 pobj _ _ 27 whose whose DET WP$ Poss=Yes 31 poss _ _ 28 bilinear bilinear NOUN NN Number=Sing 31 nmod _ _ 29 and and CCONJ CC ConjType=Cmp 28 cc _ _ 30 trilinear trilinear NOUN NN Number=Sing 28 conj _ _ 31 maps map NOUN NNS Number=Plur 32 nsubj _ _ 32 vanish vanish VERB VBP Tense=Pres|VerbForm=Fin 8 ccomp _ _ 33 in in ADP IN _ 32 prep _ _ 34 degree degree NOUN NN Number=Sing 33 pobj _ _ 35 $ (1, 1) $ $ (1, 1) $ NUM CD NumType=Card 32 dobj _ _ 36 and and CCONJ CC ConjType=Cmp 35 cc _ _ 37 in in ADP IN _ 35 conj _ _ 38 total total ADJ JJ Degree=Pos 39 amod _ _ 39 degree degree NOUN NN Number=Sing 37 pobj _ _ 40 1 1 NUM CD NumType=Card 39 nummod _ SpaceAfter=No 41 , , PUNCT , PunctType=Comm 32 punct _ _ 42 respectively respectively ADV RB _ 32 advmod _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Further, we give an answer to a question of Roytenberg pertaining to the use of the nerve and normalization functors in the study of the relationship between categorified algebras and truncated $ sh $ algebras. 1 Further far ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 an an DET DT Definite=Ind|PronType=Art 6 det _ _ 6 answer answer NOUN NN Number=Sing 4 dobj _ _ 7 to to ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 question question NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 Roytenberg Roytenberg PROPN NNP Number=Sing 10 pobj _ _ 12 pertaining pertain VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 acl _ _ 13 to to ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 use use NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 21 det _ _ 18 nerve nerve NOUN NN Number=Sing 21 nmod _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 normalization normalization NOUN NN Number=Sing 18 conj _ _ 21 functors functor NOUN NNS Number=Plur 16 pobj _ _ 22 in in ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 study study NOUN NN Number=Sing 22 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 relationship relationship NOUN NN Number=Sing 25 pobj _ _ 28 between between ADP IN _ 27 prep _ _ 29 categorified categorified ADJ JJ Degree=Pos 30 amod _ _ 30 algebras algebra NOUN NNS Number=Plur 28 pobj _ _ 31 and and CCONJ CC ConjType=Cmp 4 cc _ _ 32 truncated truncate VERB VBD Tense=Past|VerbForm=Fin 4 conj _ _ 33 $ sh $ $ sh $ SYM $ _ 34 nmod _ _ 34 algebras algebra NOUN NNS Number=Plur 32 dobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 392 # sent_id = 1 # text = Adhesive categories are categories which have pushouts with one leg a monomorphism, all pullbacks, and certain exactness conditions relating these pushouts and pullbacks. 1 Adhesive adhesive ADJ JJ Degree=Pos 2 amod _ _ 2 categories category NOUN NNS Number=Plur 3 nsubj _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 categories category NOUN NNS Number=Plur 3 attr _ _ 5 which which PRON WDT _ 6 nsubj _ _ 6 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 relcl _ _ 7 pushouts pushout NOUN NNS Number=Plur 6 dobj _ _ 8 with with ADP IN _ 7 prep _ _ 9 one one NUM CD NumType=Card 10 nummod _ _ 10 leg leg NOUN NN Number=Sing 8 pobj _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 monomorphism monomorphism NOUN NN Number=Sing 6 dobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 4 punct _ _ 14 all all DET DT _ 15 det _ _ 15 pullbacks pullback NOUN NNS Number=Plur 4 conj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 and and CCONJ CC ConjType=Cmp 15 cc _ _ 18 certain certain ADJ JJ Degree=Pos 20 amod _ _ 19 exactness exactness ADJ JJ Degree=Pos 20 amod _ _ 20 conditions condition NOUN NNS Number=Plur 15 conj _ _ 21 relating relate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 20 acl _ _ 22 these these DET DT Number=Plur|PronType=Dem 23 det _ _ 23 pushouts pushout NOUN NNS Number=Plur 21 dobj _ _ 24 and and CCONJ CC ConjType=Cmp 23 cc _ _ 25 pullbacks pullback NOUN NNS Number=Plur 23 conj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = We give a new proof of the fact that every topos is adhesive. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 new new ADJ JJ Degree=Pos 5 amod _ _ 5 proof proof NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 fact fact NOUN NN Number=Sing 6 pobj _ _ 9 that that SCONJ IN _ 13 mark _ _ 10 every every DET DT _ 11 det _ _ 11 topos topos NOUN NN Number=Sing 13 nsubjpass _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 adhesive adhesive ADJ JJ Degree=Pos 8 acl _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We also prove a converse: every small adhesive category has a fully faithful functor in a topos, with the functor preserving the all the structure. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 prove prove VERB VBP Tense=Pres|VerbForm=Fin 11 ccomp _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 converse converse NOUN NN Number=Sing 3 dobj _ SpaceAfter=No 6 : : PUNCT : _ 11 punct _ _ 7 every every DET DT _ 10 det _ _ 8 small small ADJ JJ Degree=Pos 10 amod _ _ 9 adhesive adhesive ADJ JJ Degree=Pos 10 amod _ _ 10 category category NOUN NN Number=Sing 11 nsubj _ _ 11 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 13 fully fully ADV RB _ 14 advmod _ _ 14 faithful faithful ADJ JJ Degree=Pos 15 amod _ _ 15 functor functor NOUN NN Number=Sing 11 dobj _ _ 16 in in ADP IN _ 11 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 topos topos NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 11 punct _ _ 20 with with ADP IN _ 11 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 functor functor NOUN NN Number=Sing 23 nsubj _ _ 23 preserving preserve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 20 pcomp _ _ 24 the the DET DT Definite=Def|PronType=Art 27 det _ _ 25 all all DET PDT _ 27 predet _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 structure structure NOUN NN Number=Sing 23 dobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 4 # text = Combining these two results, we see that the exactness conditions in the definition of adhesive category are exactly the relationship between pushouts along monomorphisms and pullbacks which hold in any topos. 1 Combining combine VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 advcl _ _ 2 these these DET DT Number=Plur|PronType=Dem 4 det _ _ 3 two two NUM CD NumType=Card 4 nummod _ _ 4 results result NOUN NNS Number=Plur 1 dobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 see see VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 that that SCONJ IN _ 18 mark _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 exactness exactness ADJ JJ Degree=Pos 11 amod _ _ 11 conditions condition NOUN NNS Number=Plur 18 nsubj _ _ 12 in in ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 definition definition NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 adhesive adhesive ADJ JJ Degree=Pos 17 amod _ _ 17 category category NOUN NN Number=Sing 15 pobj _ _ 18 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 ccomp _ _ 19 exactly exactly ADV RB _ 18 advmod _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 relationship relationship NOUN NN Number=Sing 18 attr _ _ 22 between between ADP IN _ 21 prep _ _ 23 pushouts pushout NOUN NNS Number=Plur 22 pobj _ _ 24 along along ADP IN _ 23 prep _ _ 25 monomorphisms monomorphism NOUN NNS Number=Plur 24 pobj _ _ 26 and and CCONJ CC ConjType=Cmp 25 cc _ _ 27 pullbacks pullback NOUN NNS Number=Plur 25 conj _ _ 28 which which PRON WDT _ 29 nsubj _ _ 29 hold hold VERB VBP Tense=Pres|VerbForm=Fin 25 relcl _ _ 30 in in ADP IN _ 29 prep _ _ 31 any any DET DT _ 32 det _ _ 32 topos topos NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # doc_id = 393 # sent_id = 1 # text = We explore a curious type of equivalence between certain pairs of reflective and coreflective subcategories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 explore explore VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 curious curious ADJ JJ Degree=Pos 5 amod _ _ 5 type type NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 equivalence equivalence NOUN NN Number=Sing 6 pobj _ _ 8 between between ADP IN _ 5 prep _ _ 9 certain certain ADJ JJ Degree=Pos 10 amod _ _ 10 pairs pair NOUN NNS Number=Plur 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 reflective reflective ADJ JJ Degree=Pos 15 amod _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 coreflective coreflective ADJ JJ Degree=Pos 12 conj _ _ 15 subcategories subcategorie NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We illustrate with examples involving noncommutative duality for $ C^* $ - dynamical systems and compact quantum groups, as well as examples where the subcategories are actually isomorphic. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 illustrate illustrate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 with with ADP IN _ 2 prep _ _ 4 examples example NOUN NNS Number=Plur 3 pobj _ _ 5 involving involve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 acl _ _ 6 noncommutative noncommutative ADJ JJ Degree=Pos 7 amod _ _ 7 duality duality NOUN NN Number=Sing 5 dobj _ _ 8 for for ADP IN _ 5 prep _ _ 9 $ C^* $ $ c^* $ SYM $ _ 11 advmod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 dynamical dynamical ADJ JJ Degree=Pos 12 amod _ _ 12 systems system NOUN NNS Number=Plur 8 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 compact compact ADJ JJ Degree=Pos 15 amod _ _ 15 quantum quantum NOUN NN Number=Sing 16 compound _ _ 16 groups group NOUN NNS Number=Plur 12 conj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 as as ADV RB _ 20 advmod _ _ 19 well well ADV RB Degree=Pos 20 advmod _ _ 20 as as ADP IN _ 16 cc _ _ 21 examples example NOUN NNS Number=Plur 16 conj _ _ 22 where where SCONJ WRB _ 25 advmod _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 subcategories subcategorie NOUN NNS Number=Plur 25 nsubj _ _ 25 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 21 relcl _ _ 26 actually actually ADV RB _ 25 advmod _ _ 27 isomorphic isomorphic ADJ JJ Degree=Pos 25 acomp _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 394 # sent_id = 1 # text = This article represents a preliminary attempt to link Kan extensions, and some of their further developments, to Fourier theory and quantum algebra through $ * $ - autonomous monoidal categories and related structures. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 article article NOUN NN Number=Sing 3 nsubj _ _ 3 represents represent VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 preliminary preliminary ADJ JJ Degree=Pos 6 amod _ _ 6 attempt attempt NOUN NN Number=Sing 3 dobj _ _ 7 to to PART TO _ 8 aux _ _ 8 link link VERB VB VerbForm=Inf 6 acl _ _ 9 Kan Kan PROPN NNP Number=Sing 10 compound _ _ 10 extensions extension NOUN NNS Number=Plur 8 dobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 3 punct _ _ 12 and and CCONJ CC ConjType=Cmp 3 cc _ _ 13 some some PRON DT _ 3 conj _ _ 14 of of ADP IN _ 13 prep _ _ 15 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 17 poss _ _ 16 further further ADJ JJ Degree=Pos 17 amod _ _ 17 developments development NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 13 punct _ _ 19 to to ADP IN _ 13 prep _ _ 20 Fourier fourier ADJ JJ Degree=Pos 21 amod _ _ 21 theory theory NOUN NN Number=Sing 19 pobj _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 quantum quantum ADJ JJ Degree=Pos 24 compound _ _ 24 algebra algebra NOUN NN Number=Sing 21 conj _ _ 25 through through ADP IN _ 21 prep _ _ 26 $ * $ $ * $ SYM $ _ 28 advmod _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 autonomous autonomous ADJ JJ Degree=Pos 30 amod _ _ 29 monoidal monoidal ADJ JJ Degree=Pos 30 amod _ _ 30 categories category NOUN NNS Number=Plur 25 pobj _ _ 31 and and CCONJ CC ConjType=Cmp 30 cc _ _ 32 related related ADJ JJ Degree=Pos 33 amod _ _ 33 structures structure NOUN NNS Number=Plur 30 conj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = There is a close resemblance to convolution products and the Wiener algebra (of transforms) in functional analysis. 1 There there PRON EX _ 2 expl _ _ 2 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 close close ADJ JJ Degree=Pos 5 amod _ _ 5 resemblance resemblance NOUN NN Number=Sing 2 attr _ _ 6 to to ADP IN _ 5 prep _ _ 7 convolution convolution NOUN NN Number=Sing 8 compound _ _ 8 products product NOUN NNS Number=Plur 6 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 Wiener Wiener PROPN NNP Number=Sing 12 compound _ _ 12 algebra algebra NOUN NN Number=Sing 8 conj _ _ 13 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 12 punct _ SpaceAfter=No 14 of of ADP IN _ 12 prep _ _ 15 transforms transform NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 16 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 12 punct _ _ 17 in in ADP IN _ 5 prep _ _ 18 functional functional ADJ JJ Degree=Pos 19 amod _ _ 19 analysis analysis NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = The analysis term ``kernel'' (of a distribution) has also been adapted below in connection with certain special types of ``distributors'' (in the terminology of Benabou) or ``modules'' (in the terminology of Street) in category theory. 1 The the DET DT Definite=Def|PronType=Art 6 det _ _ 2 analysis analysis NOUN NN Number=Sing 3 compound _ _ 3 term term NOUN NN Number=Sing 6 nmod _ _ 4 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 6 punct _ SpaceAfter=No 5 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 6 punct _ SpaceAfter=No 6 kernel kernel PROPN NNP Number=Sing 16 nsubjpass _ SpaceAfter=No 7 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 6 punct _ _ 8 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 6 punct _ SpaceAfter=No 9 of of ADP IN _ 6 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 distribution distribution NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 12 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 6 punct _ _ 13 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 aux _ _ 14 also also ADV RB _ 16 advmod _ _ 15 been be AUX VBN Tense=Past|VerbForm=Part 16 auxpass _ _ 16 adapted adapt VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 17 below below ADV RB _ 16 advmod _ _ 18 in in ADP IN _ 16 prep _ _ 19 connection connection NOUN NN Number=Sing 18 pobj _ _ 20 with with ADP IN _ 19 prep _ _ 21 certain certain ADJ JJ Degree=Pos 23 amod _ _ 22 special special ADJ JJ Degree=Pos 23 amod _ _ 23 types type NOUN NNS Number=Plur 20 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 27 punct _ SpaceAfter=No 26 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 27 punct _ SpaceAfter=No 27 distributors distributor NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 28 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 27 punct _ _ 29 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 24 punct _ SpaceAfter=No 30 in in ADP IN _ 19 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 terminology terminology NOUN NN Number=Sing 30 pobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 Benabou Benabou PROPN NNP Number=Sing 33 pobj _ SpaceAfter=No 35 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 30 punct _ _ 36 or or CCONJ CC ConjType=Cmp 19 cc _ _ 37 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 39 punct _ SpaceAfter=No 38 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 39 punct _ SpaceAfter=No 39 modules module NOUN NNS Number=Plur 19 conj _ SpaceAfter=No 40 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 39 punct _ _ 41 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 39 punct _ SpaceAfter=No 42 in in ADP IN _ 39 prep _ _ 43 the the DET DT Definite=Def|PronType=Art 44 det _ _ 44 terminology terminology NOUN NN Number=Sing 42 pobj _ _ 45 of of ADP IN _ 44 prep _ _ 46 Street Street PROPN NNP Number=Sing 45 pobj _ SpaceAfter=No 47 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 39 punct _ _ 48 in in ADP IN _ 39 prep _ _ 49 category category NOUN NN Number=Sing 50 compound _ _ 50 theory theory NOUN NN Number=Sing 48 pobj _ SpaceAfter=No 51 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 4 # text = In using the term ``graphic'', in a very broad sense, we are clearly distinguishing the categorical methods employed in this article from standard Fourier and wavelet mathematics. 1 In in ADP IN _ 19 prep _ _ 2 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 1 pcomp _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 term term NOUN NN Number=Sing 7 nmod _ _ 5 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 7 punct _ SpaceAfter=No 6 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 7 punct _ SpaceAfter=No 7 graphic graphic NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 8 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 7 punct _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 19 punct _ _ 10 in in ADP IN _ 19 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 12 very very ADV RB _ 13 advmod _ _ 13 broad broad ADJ JJ Degree=Pos 14 amod _ _ 14 sense sense NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 19 punct _ _ 16 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 19 nsubj _ _ 17 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 19 aux _ _ 18 clearly clearly ADV RB _ 19 advmod _ _ 19 distinguishing distinguish VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 0 ROOT _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 categorical categorical ADJ JJ Degree=Pos 22 amod _ _ 22 methods method NOUN NNS Number=Plur 19 dobj _ _ 23 employed employ VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 acl _ _ 24 in in ADP IN _ 23 prep _ _ 25 this this DET DT Number=Sing|PronType=Dem 26 det _ _ 26 article article NOUN NN Number=Sing 24 pobj _ _ 27 from from ADP IN _ 23 prep _ _ 28 standard standard ADJ JJ Degree=Pos 32 amod _ _ 29 Fourier Fourier PROPN NNP Number=Sing 32 nmod _ _ 30 and and CCONJ CC ConjType=Cmp 29 cc _ _ 31 wavelet wavelet ADJ JJ Degree=Pos 29 conj _ _ 32 mathematics mathematic NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 5 # text = The term ``graphic'' also applies to promultiplicative graphs, and related concepts, which can feature prominently in the theory. 1 The the DET DT Definite=Def|PronType=Art 5 det _ _ 2 term term NOUN NN Number=Sing 5 nmod _ _ 3 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 5 punct _ SpaceAfter=No 4 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 5 punct _ SpaceAfter=No 5 graphic graphic NOUN NN Number=Sing 8 nsubj _ SpaceAfter=No 6 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 5 punct _ _ 7 also also ADV RB _ 8 advmod _ _ 8 applies apply VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 to to ADP IN _ 8 prep _ _ 10 promultiplicative promultiplicative ADJ JJ Degree=Pos 11 amod _ _ 11 graphs graph NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 and and CCONJ CC ConjType=Cmp 11 cc _ _ 14 related related ADJ JJ Degree=Pos 15 amod _ _ 15 concepts concept NOUN NNS Number=Plur 11 conj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 which which PRON WDT _ 19 nsubj _ _ 18 can can AUX MD VerbForm=Fin 19 aux _ _ 19 feature feature VERB VB VerbForm=Inf 15 relcl _ _ 20 prominently prominently ADV RB _ 19 advmod _ _ 21 in in ADP IN _ 19 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 theory theory NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # doc_id = 395 # sent_id = 1 # text = We compare various different definitions of "the category of smooth objects". 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 compare compare VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 various various ADJ JJ Degree=Pos 5 amod _ _ 4 different different ADJ JJ Degree=Pos 5 amod _ _ 5 definitions definition NOUN NNS Number=Plur 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 " " PUNCT `` PunctSide=Ini|PunctType=Quot 6 punct _ SpaceAfter=No 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 category category NOUN NN Number=Sing 6 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 smooth smooth ADJ JJ Degree=Pos 12 amod _ _ 12 objects object NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 13 " " PUNCT '' PunctSide=Fin|PunctType=Quot 2 punct _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The definitions compared are due to Chen, Frolicher, Sikorski, Smith, and Souriau. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 definitions definition NOUN NNS Number=Plur 3 nsubj _ _ 3 compared compare VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 pobj _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 due due ADJ JJ Degree=Pos 4 acomp _ _ 6 to to ADP IN _ 5 prep _ _ 7 Chen Chen PROPN NNP Number=Sing 6 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 Frolicher Frolicher PROPN NNP Number=Sing 7 conj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 Sikorski Sikorski PROPN NNP Number=Sing 9 conj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 Smith Smith PROPN NNP Number=Sing 11 conj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 13 punct _ _ 15 and and CCONJ CC ConjType=Cmp 13 cc _ _ 16 Souriau Souriau PROPN NNP Number=Sing 13 conj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = The method of comparison is to construct functors between the categories that enable us to see how the categories relate to each other. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 method method NOUN NN Number=Sing 5 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 comparison comparison NOUN NN Number=Sing 3 pobj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 to to PART TO _ 7 aux _ _ 7 construct construct VERB VB VerbForm=Inf 5 xcomp _ _ 8 functors functor NOUN NNS Number=Plur 7 dobj _ _ 9 between between ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 categories category NOUN NNS Number=Plur 9 pobj _ _ 12 that that PRON WDT PronType=Rel 13 nsubj _ _ 13 enable enable VERB VBP Tense=Pres|VerbForm=Fin 11 relcl _ _ 14 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 13 dobj _ _ 15 to to PART TO _ 16 aux _ _ 16 see see VERB VB VerbForm=Inf 13 xcomp _ _ 17 how how SCONJ WRB _ 20 advmod _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 categories category NOUN NNS Number=Plur 20 nsubj _ _ 20 relate relate VERB VBP Tense=Pres|VerbForm=Fin 16 ccomp _ _ 21 to to ADP IN _ 20 prep _ _ 22 each each DET DT _ 23 det _ _ 23 other other ADJ JJ Degree=Pos 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = Our method of study involves finding a general context into which these categories can be placed. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 method method NOUN NN Number=Sing 5 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 study study NOUN NN Number=Sing 3 pobj _ _ 5 involves involve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 finding find VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 xcomp _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 general general ADJ JJ Degree=Pos 9 amod _ _ 9 context context NOUN NN Number=Sing 6 dobj _ _ 10 into into ADP IN _ 16 prep _ _ 11 which which PRON WDT _ 10 pobj _ _ 12 these these DET DT Number=Plur|PronType=Dem 13 det _ _ 13 categories category NOUN NNS Number=Plur 16 nsubjpass _ _ 14 can can AUX MD VerbForm=Fin 16 aux _ _ 15 be be AUX VB VerbForm=Inf 16 auxpass _ _ 16 placed place VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 relcl _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 5 # text = This involves considering categories wherein objects are considered in relation to a certain collection of standard test objects. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 involves involve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 considering consider VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 xcomp _ _ 4 categories category NOUN NNS Number=Plur 3 dobj _ _ 5 wherein wherein SCONJ WRB _ 6 amod _ _ 6 objects object NOUN NNS Number=Plur 8 nsubjpass _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 relcl _ _ 9 in in ADP IN _ 8 prep _ _ 10 relation relation NOUN NN Number=Sing 9 pobj _ _ 11 to to ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 certain certain ADJ JJ Degree=Pos 14 amod _ _ 14 collection collection NOUN NN Number=Sing 11 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 standard standard ADJ JJ Degree=Pos 18 amod _ _ 17 test test NOUN NN Number=Sing 18 compound _ _ 18 objects object NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = This therefore applies beyond the question of categories of smooth spaces. 1 This this PRON DT Number=Sing|PronType=Dem 3 nsubj _ _ 2 therefore therefore ADV RB _ 3 advmod _ _ 3 applies apply VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 beyond beyond ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 question question NOUN NN Number=Sing 4 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 categories category NOUN NNS Number=Plur 7 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 smooth smooth ADJ JJ Degree=Pos 11 amod _ _ 11 spaces space NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 396 # sent_id = 1 # text = We study the condition, on a connected and locally connected geometric morphism $ p : cal E to cal S $ , that the canonical natural transformation $ p_*to p_clik $ should be (pointwise) epimorphic—a condition which Lawvere called the `Nullstellensatz', but which we prefer to call `punctual local connectedness'. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 condition condition NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 2 punct _ _ 6 on on ADP IN _ 2 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 8 connected connected ADJ JJ Degree=Pos 13 amod _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 locally locally ADV RB _ 11 advmod _ _ 11 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 conj _ _ 12 geometric geometric ADJ JJ Degree=Pos 13 amod _ _ 13 morphism morphism NOUN NN Number=Sing 6 pobj _ _ 14 $ p : cal E to cal S $ $ p : cal e to cal s $ SYM $ _ 13 appos _ _ 15 , , PUNCT , PunctType=Comm 2 punct _ _ 16 that that SCONJ IN _ 23 mark _ _ 17 the the DET DT Definite=Def|PronType=Art 20 det _ _ 18 canonical canonical ADJ JJ Degree=Pos 20 amod _ _ 19 natural natural ADJ JJ Degree=Pos 20 amod _ _ 20 transformation transformation NOUN NN Number=Sing 23 nsubj _ _ 21 $ p_*to p_clik $ $ p_*to p_clik $ SYM $ _ 20 appos _ _ 22 should should AUX MD VerbForm=Fin 23 aux _ _ 23 be be AUX VB VerbForm=Inf 2 ccomp _ _ 24 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 27 punct _ SpaceAfter=No 25 pointwise pointwise NOUN NN Number=Sing 27 nmod _ SpaceAfter=No 26 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 27 punct _ _ 27 epimorphic epimorphic NOUN NN Number=Sing 23 attr _ SpaceAfter=No 28 — — PUNCT : _ 27 punct _ SpaceAfter=No 29 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 30 condition condition NOUN NN Number=Sing 27 appos _ _ 31 which which PRON WDT _ 33 nsubjpass _ _ 32 Lawvere lawvere AUX NNP Number=Sing 33 auxpass _ _ 33 called call VERB VBD Tense=Past|VerbForm=Fin 30 relcl _ _ 34 the the DET DT Definite=Def|PronType=Art 36 det _ _ 35 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 36 punct _ SpaceAfter=No 36 Nullstellensatz Nullstellensatz PROPN NNP Number=Sing 33 oprd _ SpaceAfter=No 37 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 33 oprd _ SpaceAfter=No 38 , , PUNCT , PunctType=Comm 27 punct _ _ 39 but but CCONJ CC ConjType=Cmp 23 cc _ _ 40 which which PRON WDT _ 44 dobj _ _ 41 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 42 nsubj _ _ 42 prefer prefer VERB VBP Tense=Pres|VerbForm=Fin 23 conj _ _ 43 to to PART TO _ 44 aux _ _ 44 call call VERB VB VerbForm=Inf 42 xcomp _ _ 45 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 48 punct _ SpaceAfter=No 46 punctual punctual ADJ JJ Degree=Pos 48 amod _ _ 47 local local ADJ JJ Degree=Pos 48 amod _ _ 48 connectedness connectedness NOUN NN Number=Sing 44 oprd _ SpaceAfter=No 49 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 2 punct _ SpaceAfter=No 50 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We show that this condition implies that $ p_clik $ preserves finite products, and that, for bounded morphisms between toposes with natural number objects, it is equivalent to being both local and hyperconnected. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 6 mark _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 condition condition NOUN NN Number=Sing 6 nsubj _ _ 6 implies imply VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 7 that that SCONJ IN _ 9 mark _ _ 8 $ p_clik $ $ p_clik $ X ADD _ 9 nsubj _ _ 9 preserves preserve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 10 finite finite ADJ JJ Degree=Pos 11 compound _ _ 11 products product NOUN NNS Number=Plur 9 dobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 9 punct _ _ 13 and and CCONJ CC ConjType=Cmp 9 cc _ _ 14 that that SCONJ IN _ 27 mark _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 27 punct _ _ 16 for for ADP IN _ 27 prep _ _ 17 bounded bound VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 amod _ _ 18 morphisms morphism NOUN NNS Number=Plur 16 pobj _ _ 19 between between ADP IN _ 18 prep _ _ 20 toposes topos NOUN NNS Number=Plur 19 pobj _ _ 21 with with ADP IN _ 20 prep _ _ 22 natural natural ADJ JJ Degree=Pos 23 amod _ _ 23 number number NOUN NN Number=Sing 24 compound _ _ 24 objects object NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 27 punct _ _ 26 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 27 nsubj _ _ 27 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 conj _ _ 28 equivalent equivalent ADJ JJ Degree=Pos 27 acomp _ _ 29 to to ADP IN _ 28 prep _ _ 30 being be AUX VBG VerbForm=Ger 29 pcomp _ _ 31 both both CCONJ CC ConjType=Cmp 32 preconj _ _ 32 local local ADJ JJ Degree=Pos 30 acomp _ _ 33 and and CCONJ CC ConjType=Cmp 32 cc _ _ 34 hyperconnected hyperconnecte VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 conj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 397 # sent_id = 1 # text = We consider commutative Frobenius algebras in braided strict monoidal categories in the study of the circuits and communicating systems which occur in Computer Science, including circuits in which the wires are tangled. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 commutative commutative ADJ JJ Degree=Pos 2 ccomp _ _ 4 Frobenius Frobenius PROPN NNP Number=Sing 5 compound _ _ 5 algebras algebra NOUN NNS Number=Plur 3 dobj _ _ 6 in in ADP IN _ 3 prep _ _ 7 braided braid VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 8 strict strict ADJ JJ Degree=Pos 10 amod _ _ 9 monoidal monoidal ADJ JJ Degree=Pos 10 amod _ _ 10 categories category NOUN NNS Number=Plur 6 pobj _ _ 11 in in ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 study study NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 circuits circuit NOUN NNS Number=Plur 14 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 communicating communicating NOUN NN Number=Sing 19 compound _ _ 19 systems system NOUN NNS Number=Plur 16 conj _ _ 20 which which PRON WDT _ 21 nsubj _ _ 21 occur occur VERB VBP Tense=Pres|VerbForm=Fin 16 relcl _ _ 22 in in ADP IN _ 21 prep _ _ 23 Computer Computer PROPN NNP Number=Sing 24 compound _ _ 24 Science Science PROPN NNP Number=Sing 22 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 24 prep _ _ 27 circuits circuit NOUN NNS Number=Plur 26 pobj _ _ 28 in in ADP IN _ 33 prep _ _ 29 which which PRON WDT _ 28 pobj _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 wires wire NOUN NNS Number=Plur 33 nsubjpass _ _ 32 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 33 auxpass _ _ 33 tangled tangle VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 relcl _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We indicate also some possible novel geometric interest in such algebras. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 indicate indicate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 also also ADV RB _ 2 advmod _ _ 4 some some DET DT _ 8 det _ _ 5 possible possible ADJ JJ Degree=Pos 8 amod _ _ 6 novel novel ADJ JJ Degree=Pos 8 amod _ _ 7 geometric geometric ADJ JJ Degree=Pos 8 amod _ _ 8 interest interest NOUN NN Number=Sing 2 dobj _ _ 9 in in ADP IN _ 8 prep _ _ 10 such such ADJ JJ Degree=Pos 11 amod _ _ 11 algebras algebra NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = For example, we show how Armstrong's description of knot colourings and knot groups fit into this context. 1 For for ADP IN _ 5 prep _ _ 2 example example NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 how how SCONJ WRB _ 9 advmod _ _ 7 Armstrong Armstrong PROPN NNP Number=Sing 9 poss _ SpaceAfter=No 8 's 's PART POS _ 7 case _ _ 9 description description NOUN NN Number=Sing 5 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 knot knot NOUN NN Number=Sing 12 compound _ _ 12 colourings colouring NOUN NNS Number=Plur 10 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 9 cc _ _ 14 knot knot VERB VB VerbForm=Inf 5 conj _ _ 15 groups group NOUN NNS Number=Plur 14 dobj _ _ 16 fit fit VERB VBP Tense=Pres|VerbForm=Fin 14 oprd _ _ 17 into into ADP IN _ 16 prep _ _ 18 this this DET DT Number=Sing|PronType=Dem 19 det _ _ 19 context context NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 398 # sent_id = 1 # text = In this article we review the theory of anafunctors introduced by Makkai and Bartels, and show that given a subcanonical site $ S $ , one can form a bicategorical localisation of various 2 - categories of internal categories or groupoids at weak equivalences using anafunctors as 1 - arrows. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 article article NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 review review VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 theory theory NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 anafunctors anafunctor NOUN NNS Number=Plur 8 pobj _ _ 10 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 acl _ _ 11 by by ADP IN _ 10 agent _ _ 12 Makkai Makkai PROPN NNP Number=Sing 11 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 Bartels Bartels PROPN NNP Number=Sing 12 conj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 5 punct _ _ 16 and and CCONJ CC ConjType=Cmp 5 cc _ _ 17 show show VERB VBP Tense=Pres|VerbForm=Fin 5 conj _ _ 18 that that SCONJ IN _ 27 mark _ _ 19 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 subcanonical subcanonical ADJ JJ Degree=Pos 22 amod _ _ 22 site site NOUN NN Number=Sing 19 pobj _ _ 23 $ S $ $ s $ SYM $ _ 22 appos _ _ 24 , , PUNCT , PunctType=Comm 27 punct _ _ 25 one one PRON PRP PronType=Prs 27 nsubj _ _ 26 can can AUX MD VerbForm=Fin 27 aux _ _ 27 form form VERB VB VerbForm=Inf 17 ccomp _ _ 28 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 29 bicategorical bicategorical ADJ JJ Degree=Pos 30 amod _ _ 30 localisation localisation NOUN NN Number=Sing 27 dobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 various various ADJ JJ Degree=Pos 35 amod _ _ 33 2 2 NUM CD NumType=Card 35 nummod _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 categories category NOUN NNS Number=Plur 31 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 internal internal ADJ JJ Degree=Pos 38 amod _ _ 38 categories category NOUN NNS Number=Plur 36 pobj _ _ 39 or or CCONJ CC ConjType=Cmp 38 cc _ _ 40 groupoids groupoid NOUN NNS Number=Plur 38 conj _ _ 41 at at ADP IN _ 27 prep _ _ 42 weak weak ADJ JJ Degree=Pos 43 amod _ _ 43 equivalences equivalence NOUN NNS Number=Plur 41 pobj _ _ 44 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 43 acl _ _ 45 anafunctors anafunctor NOUN NNS Number=Plur 44 dobj _ _ 46 as as ADP IN _ 44 prep _ _ 47 1 1 NUM CD NumType=Card 49 nummod _ _ 48 - - PUNCT HYPH PunctType=Dash 49 punct _ _ 49 arrows arrow NOUN NNS Number=Plur 46 pobj _ SpaceAfter=No 50 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = This unifies a number of proofs throughout the literature, using the fewest assumptions possible on $ S $ . 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 unifies unify VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 number number NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 proofs proof NOUN NNS Number=Plur 5 pobj _ _ 7 throughout throughout ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 literature literature NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 2 punct _ _ 11 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 fewest few ADJ JJS Degree=Sup 14 amod _ _ 14 assumptions assumption NOUN NNS Number=Plur 11 dobj _ _ 15 possible possible ADJ JJ Degree=Pos 14 amod _ _ 16 on on ADP IN _ 11 prep _ _ 17 $ S $ $ s $ SYM $ _ 16 pobj _ _ 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 399 # sent_id = 1 # text = We analyze the algebraic structure of the Connes fusion tensor product in the case of bi - finite Hilbert modules over a von Neumann algebra $ M $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 analyze analyze VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 algebraic algebraic ADJ JJ Degree=Pos 5 amod _ _ 5 structure structure NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 11 det _ _ 8 Connes Connes PROPN NNPS Number=Plur 9 compound _ _ 9 fusion fusion NOUN NN Number=Sing 11 compound _ _ 10 tensor tensor NOUN NN Number=Sing 11 compound _ _ 11 product product NOUN NN Number=Sing 6 pobj _ _ 12 in in ADP IN _ 2 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 case case NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 bi bi PROPN NNP Number=Sing 18 compound _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 finite finite PROPN NNP Number=Sing 20 amod _ _ 19 Hilbert Hilbert PROPN NNP Number=Sing 20 compound _ _ 20 modules module NOUN NNS Number=Plur 15 pobj _ _ 21 over over ADP IN _ 2 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 23 von von PROPN NNP Number=Sing 24 compound _ _ 24 Neumann Neumann PROPN NNP Number=Sing 25 compound _ _ 25 algebra algebra PROPN NNP Number=Sing 21 pobj _ _ 26 $ M $ $ m $ SYM $ _ 2 dep _ _ 27 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = It turns out that all complications in its definition disappear if one uses the closely related bi - modules of bounded vectors. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 turns turn VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 out out ADP RP _ 2 prt _ _ 4 that that SCONJ IN _ 10 mark _ _ 5 all all DET DT _ 6 det _ _ 6 complications complication NOUN NNS Number=Plur 10 nsubj _ _ 7 in in ADP IN _ 6 prep _ _ 8 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 9 poss _ _ 9 definition definition NOUN NN Number=Sing 7 pobj _ _ 10 disappear disappear VERB VBP Tense=Pres|VerbForm=Fin 2 ccomp _ _ 11 if if SCONJ IN _ 13 mark _ _ 12 one one PRON PRP PronType=Prs 13 nsubj _ _ 13 uses use VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 advcl _ _ 14 the the DET DT Definite=Def|PronType=Art 19 det _ _ 15 closely closely ADV RB _ 16 advmod _ _ 16 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 amod _ _ 17 bi bi NOUN NN Number=Sing 19 compound _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 modules module NOUN NNS Number=Plur 13 dobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 bounded bound VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 amod _ _ 22 vectors vector NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We construct an equivalence of monoidal categories with duality between a category of Hilbert bi - modules over $ M $ with Connes fusion tensor product and some natural category of bi - modules over $ M $ with the usual relative algebraic tensor product. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 4 det _ _ 4 equivalence equivalence NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 monoidal monoidal ADJ JJ Degree=Pos 7 amod _ _ 7 categories category NOUN NNS Number=Plur 5 pobj _ _ 8 with with ADP IN _ 4 prep _ _ 9 duality duality NOUN NN Number=Sing 8 pobj _ _ 10 between between ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 category category NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 Hilbert Hilbert PROPN NNP Number=Sing 17 compound _ _ 15 bi bi PROPN NNP Number=Sing 17 compound _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 modules module NOUN NNS Number=Plur 13 pobj _ _ 18 over over ADP IN _ 17 prep _ _ 19 $ M $ $ m $ SYM $ _ 18 pobj _ _ 20 with with ADP IN _ 17 prep _ _ 21 Connes Connes PROPN NNP Number=Sing 22 compound _ _ 22 fusion fusion NOUN NN Number=Sing 24 compound _ _ 23 tensor tensor NOUN NN Number=Sing 24 compound _ _ 24 product product NOUN NN Number=Sing 20 pobj _ _ 25 and and CCONJ CC ConjType=Cmp 24 cc _ _ 26 some some DET DT _ 28 det _ _ 27 natural natural ADJ JJ Degree=Pos 28 amod _ _ 28 category category NOUN NN Number=Sing 12 conj _ _ 29 of of ADP IN _ 28 prep _ _ 30 bi bi PROPN NNP Number=Sing 32 compound _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 modules module NOUN NNS Number=Plur 29 pobj _ _ 33 over over ADP IN _ 32 prep _ _ 34 $ M $ $ m $ SYM $ _ 33 pobj _ _ 35 with with ADP IN _ 4 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 41 det _ _ 37 usual usual ADJ JJ Degree=Pos 41 amod _ _ 38 relative relative ADJ JJ Degree=Pos 41 amod _ _ 39 algebraic algebraic ADJ JJ Degree=Pos 41 amod _ _ 40 tensor tensor NOUN NN Number=Sing 41 compound _ _ 41 product product NOUN NN Number=Sing 35 pobj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 400 # sent_id = 1 # text = Given a bisimplicial set, there are two ways to extract from it a simplicial set: the diagonal simplicial set and the less well known total simplicial set of Artin and Mazur. 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 bisimplicial bisimplicial ADJ JJ Degree=Pos 4 amod _ _ 4 set set NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 there there PRON EX _ 7 expl _ _ 7 are be VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 two two NUM CD NumType=Card 9 nummod _ _ 9 ways way NOUN NNS Number=Plur 7 attr _ _ 10 to to PART TO _ 11 aux _ _ 11 extract extract VERB VB VerbForm=Inf 9 relcl _ _ 12 from from ADP IN _ 11 prep _ _ 13 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 12 pobj _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 simplicial simplicial ADJ JJ Degree=Pos 16 amod _ _ 16 set set NOUN NN Number=Sing 11 dobj _ SpaceAfter=No 17 : : PUNCT : _ 9 punct _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 diagonal diagonal ADJ JJ Degree=Pos 20 amod _ _ 20 simplicial simplicial NOUN NN Number=Sing 21 nsubj _ _ 21 set set NOUN NN Number=Sing 9 appos _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 the the DET DT Definite=Def|PronType=Art 29 det _ _ 24 less less ADV RBR Degree=Cmp 25 advmod _ _ 25 well well ADV RB Degree=Pos 26 advmod _ _ 26 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 amod _ _ 27 total total ADJ JJ Degree=Pos 28 amod _ _ 28 simplicial simplicial ADJ JJ Degree=Pos 29 amod _ _ 29 set set NOUN NN Number=Sing 21 conj _ _ 30 of of ADP IN _ 29 prep _ _ 31 Artin Artin PROPN NNP Number=Sing 30 pobj _ _ 32 and and CCONJ CC ConjType=Cmp 31 cc _ _ 33 Mazur Mazur PROPN NNP Number=Sing 31 conj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 2 # text = There is a natural comparison map between these simplicial sets, and it is a theorem due to Cegarra and Remedios and independently Joyal and Tierney, that this comparison map is a weak homotopy equivalence for any bisimplicial set. 1 There there PRON EX _ 2 expl _ _ 2 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 4 natural natural ADJ JJ Degree=Pos 6 amod _ _ 5 comparison comparison NOUN NN Number=Sing 6 compound _ _ 6 map map NOUN NN Number=Sing 2 attr _ _ 7 between between ADP IN _ 6 prep _ _ 8 these these DET DT Number=Plur|PronType=Dem 10 det _ _ 9 simplicial simplicial ADJ JJ Degree=Pos 10 amod _ _ 10 sets set NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 2 punct _ _ 12 and and CCONJ CC ConjType=Cmp 2 cc _ _ 13 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 14 nsubj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 conj _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 theorem theorem ADJ JJ Degree=Pos 14 attr _ _ 17 due due ADP IN _ 14 prep _ _ 18 to to ADP IN _ 17 pcomp _ _ 19 Cegarra Cegarra PROPN NNP Number=Sing 17 pobj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 Remedios Remedios PROPN NNP Number=Sing 19 conj _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 independently independently ADV RB _ 24 advmod _ _ 24 Joyal Joyal PROPN NNP Number=Sing 21 conj _ _ 25 and and CCONJ CC ConjType=Cmp 24 cc _ _ 26 Tierney Tierney PROPN NNP Number=Sing 24 conj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 14 punct _ _ 28 that that SCONJ IN _ 32 mark _ _ 29 this this DET DT Number=Sing|PronType=Dem 31 det _ _ 30 comparison comparison NOUN NN Number=Sing 31 compound _ _ 31 map map NOUN NN Number=Sing 32 nsubj _ _ 32 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 ccomp _ _ 33 a a DET DT Definite=Ind|PronType=Art 36 det _ _ 34 weak weak ADJ JJ Degree=Pos 36 amod _ _ 35 homotopy homotopy NOUN NN Number=Sing 36 compound _ _ 36 equivalence equivalence NOUN NN Number=Sing 32 attr _ _ 37 for for ADP IN _ 36 prep _ _ 38 any any DET DT _ 40 det _ _ 39 bisimplicial bisimplicial ADJ JJ Degree=Pos 40 amod _ _ 40 set set NOUN NN Number=Sing 37 pobj _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 3 # text = In this paper we will give a new, elementary proof of this result. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 5 will will AUX MD VerbForm=Fin 6 aux _ _ 6 give give VERB VB VerbForm=Inf 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 8 new new ADJ JJ Degree=Pos 11 amod _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 11 punct _ _ 10 elementary elementary ADJ JJ Degree=Pos 11 amod _ _ 11 proof proof NOUN NN Number=Sing 6 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 this this DET DT Number=Sing|PronType=Dem 14 det _ _ 14 result result NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = As an application, we will revisit Kan's simplicial loop group functor $ G $ . 1 As as ADP IN _ 7 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 application application NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 7 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 6 will will AUX MD VerbForm=Fin 7 aux _ _ 7 revisit revisit VERB VB VerbForm=Inf 0 ROOT _ _ 8 Kan Kan PROPN NNP Number=Sing 12 poss _ SpaceAfter=No 9 's 's PART POS _ 8 case _ _ 10 simplicial simplicial ADJ JJ Degree=Pos 11 amod _ _ 11 loop loop NOUN NN Number=Sing 12 compound _ _ 12 group group NOUN NN Number=Sing 7 dobj _ _ 13 functor functor NOUN NN Number=Sing 7 dobj _ _ 14 $ G $ $ g $ SYM $ _ 7 npadvmod _ _ 15 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 5 # text = We will give a simple formula for this functor, which is based on a factorization, due to Duskin, of Eilenberg and Mac Lane's classifying complex functor $ overline{W} $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 will will AUX MD VerbForm=Fin 3 aux _ _ 3 give give VERB VB VerbForm=Inf 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 simple simple ADJ JJ Degree=Pos 6 amod _ _ 6 formula formula NOUN NN Number=Sing 3 dobj _ _ 7 for for ADP IN _ 6 prep _ _ 8 this this DET DT Number=Sing|PronType=Dem 9 det _ _ 9 functor functor NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 which which PRON WDT _ 13 nsubjpass _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 relcl _ _ 14 on on ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 factorization factorization NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 9 punct _ _ 18 due due ADP IN _ 3 prep _ _ 19 to to ADP IN _ 18 pcomp _ _ 20 Duskin Duskin PROPN NNP Number=Sing 18 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 of of ADP IN _ 20 prep _ _ 23 Eilenberg Eilenberg PROPN NNP Number=Sing 30 poss _ _ 24 and and CCONJ CC ConjType=Cmp 23 cc _ _ 25 Mac Mac PROPN NNP Number=Sing 26 compound _ _ 26 Lane Lane PROPN NNP Number=Sing 23 conj _ SpaceAfter=No 27 's 's PART POS _ 26 case _ _ 28 classifying classify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 30 amod _ _ 29 complex complex ADJ JJ Degree=Pos 30 amod _ _ 30 functor functor NOUN NN Number=Sing 22 pobj _ _ 31 $ overline{W} $ $ overline{w} $ SYM $ _ 3 dobj _ _ 32 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = We will give a new, short, proof of Kan's result that the unit map for the adjunction $ Gdashv overline{W} $ is a weak homotopy equivalence for reduced simplicial sets. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 will will AUX MD VerbForm=Fin 3 aux _ _ 3 give give VERB VB VerbForm=Inf 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 5 new new ADJ JJ Degree=Pos 9 amod _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 9 punct _ _ 7 short short ADJ JJ Degree=Pos 9 amod _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 9 punct _ _ 9 proof proof NOUN NN Number=Sing 3 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 Kan Kan PROPN NNP Number=Sing 13 poss _ SpaceAfter=No 12 's 's PART POS _ 11 case _ _ 13 result result NOUN NN Number=Sing 10 pobj _ _ 14 that that SCONJ IN _ 22 mark _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 unit unit NOUN NN Number=Sing 17 compound _ _ 17 map map NOUN NN Number=Sing 22 nsubj _ _ 18 for for ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 adjunction adjunction NOUN NN Number=Sing 18 pobj _ _ 21 $ Gdashv overline{W} $ $ gdashv overline{w} $ SYM $ _ 17 npadvmod _ _ 22 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 acl _ _ 23 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 24 weak weak ADJ JJ Degree=Pos 26 amod _ _ 25 homotopy homotopy NOUN NN Number=Sing 26 compound _ _ 26 equivalence equivalence NOUN NN Number=Sing 22 attr _ _ 27 for for ADP IN _ 26 prep _ _ 28 reduced reduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 30 amod _ _ 29 simplicial simplicial ADJ JJ Degree=Pos 30 amod _ _ 30 sets set NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 401 # sent_id = 1 # text = Quantum categories were introduced by Day and Street as generalizations of both bi(co)algebroids and small categories. 1 Quantum Quantum PROPN NNP Number=Sing 2 compound _ _ 2 categories category NOUN NNS Number=Plur 4 nsubjpass _ _ 3 were be AUX VBD Mood=Ind|Tense=Past|VerbForm=Fin 4 auxpass _ _ 4 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 by by ADP IN _ 4 agent _ _ 6 Day Day PROPN NNP Number=Sing 5 pobj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 Street Street PROPN NNP Number=Sing 6 conj _ _ 9 as as ADP IN _ 4 prep _ _ 10 generalizations generalization NOUN NNS Number=Plur 9 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 both both CCONJ CC ConjType=Cmp 13 preconj _ _ 13 bi(co)algebroids bi(co)algebroid NOUN NNS Number=Plur 11 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 small small ADJ JJ Degree=Pos 16 amod _ _ 16 categories category NOUN NNS Number=Plur 13 conj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = We clarify details of that work. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 clarify clarify VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 details detail NOUN NNS Number=Plur 2 dobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 that that DET DT Number=Sing|PronType=Dem 6 det _ _ 6 work work NOUN NN Number=Sing 4 pobj _ SpaceAfter=No 7 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = In particular, we show explicitly how the monadic definition of a quantum category unpacks to a set of axioms close to the definitions of a bialgebroid in the Hopf algebraic literature. 1 In in ADP IN _ 5 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 explicitly explicitly ADV RB _ 5 advmod _ _ 7 how how SCONJ WRB _ 10 advmod _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 monadic monadic ADJ JJ Degree=Pos 10 amod _ _ 10 definition definition NOUN NN Number=Sing 5 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 13 quantum quantum ADJ JJ Degree=Pos 15 amod _ _ 14 category category NOUN NN Number=Sing 15 compound _ _ 15 unpacks unpack NOUN NNS Number=Plur 11 pobj _ _ 16 to to ADP IN _ 10 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 set set NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 axioms axiom NOUN NNS Number=Plur 19 pobj _ _ 21 close close ADV RB _ 10 advmod _ _ 22 to to ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 definitions definition NOUN NNS Number=Plur 22 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 27 bialgebroid bialgebroid NOUN NN Number=Sing 25 pobj _ _ 28 in in ADP IN _ 27 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 32 det _ _ 30 Hopf Hopf PROPN NNP Number=Sing 32 nmod _ _ 31 algebraic algebraic ADJ JJ Degree=Pos 32 amod _ _ 32 literature literature NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = We introduce notions of functor and natural transformation for quantum categories and consider various constructions on quantum structures. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 notions notion NOUN NNS Number=Plur 2 dobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 functor functor NOUN NN Number=Sing 4 pobj _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 natural natural ADJ JJ Degree=Pos 8 amod _ _ 8 transformation transformation NOUN NN Number=Sing 5 conj _ _ 9 for for ADP IN _ 3 prep _ _ 10 quantum quantum ADJ JJ Degree=Pos 11 amod _ _ 11 categories category NOUN NNS Number=Plur 9 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 2 cc _ _ 13 consider consider VERB VB VerbForm=Inf 2 conj _ _ 14 various various ADJ JJ Degree=Pos 15 amod _ _ 15 constructions construction NOUN NNS Number=Plur 13 dobj _ _ 16 on on ADP IN _ 15 prep _ _ 17 quantum quantum ADJ JJ Degree=Pos 18 compound _ _ 18 structures structure NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 402 # sent_id = 1 # text = We discuss the problem of characterizing the property of a Grothendieck topos to satisfy a given `geometric' invariant as a property of its sites of definition, and indicate a set of general techniques for establishing such criteria. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 discuss discuss VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 problem problem NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 characterizing characterize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 pcomp _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 property property NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 Grothendieck Grothendieck PROPN NNP Number=Sing 12 compound _ _ 12 topos topos NOUN NN Number=Sing 9 pobj _ _ 13 to to PART TO _ 14 aux _ _ 14 satisfy satisfy VERB VB VerbForm=Inf 6 advcl _ _ 15 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 16 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 amod _ _ 17 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 20 punct _ SpaceAfter=No 18 geometric geometric ADJ JJ Degree=Pos 20 amod _ SpaceAfter=No 19 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 20 punct _ _ 20 invariant invariant ADJ JJ Degree=Pos 14 dobj _ _ 21 as as ADP IN _ 14 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 23 property property NOUN NN Number=Sing 21 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 26 poss _ _ 26 sites site NOUN NNS Number=Plur 24 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 definition definition NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 2 punct _ _ 30 and and CCONJ CC ConjType=Cmp 2 cc _ _ 31 indicate indicate VERB VB VerbForm=Inf 2 conj _ _ 32 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 33 set set NOUN NN Number=Sing 31 dobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 general general ADJ JJ Degree=Pos 36 amod _ _ 36 techniques technique NOUN NNS Number=Plur 34 pobj _ _ 37 for for ADP IN _ 33 prep _ _ 38 establishing establish VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 37 pcomp _ _ 39 such such ADJ JJ Degree=Pos 40 amod _ _ 40 criteria criterion NOUN NNS Number=Plur 38 dobj _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We then apply our methodologies to specific invariants, notably including the property of a Grothendieck topos to be localic (respectively, atomic, locally connected, equivalent to a presheaf topos), obtaining explicit site characterizations for them. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 apply apply VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 5 poss _ _ 5 methodologies methodology NOUN NNS Number=Plur 3 dobj _ _ 6 to to ADP IN _ 3 prep _ _ 7 specific specific ADJ JJ Degree=Pos 8 amod _ _ 8 invariants invariant NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 8 punct _ _ 10 notably notably ADV RB _ 11 advmod _ _ 11 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 property property NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 Grothendieck Grothendieck PROPN NNP Number=Sing 17 compound _ _ 17 topos topos NOUN NN Number=Sing 14 pobj _ _ 18 to to PART TO _ 19 aux _ _ 19 be be AUX VB VerbForm=Inf 3 advcl _ _ 20 localic localic ADJ JJ Degree=Pos 19 acomp _ _ 21 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 27 punct _ SpaceAfter=No 22 respectively respectively ADV RB _ 27 advmod _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 27 punct _ _ 24 atomic atomic ADJ JJ Degree=Pos 27 amod _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 27 punct _ _ 26 locally locally ADV RB _ 27 advmod _ _ 27 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 advcl _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 27 punct _ _ 29 equivalent equivalent ADJ JJ Degree=Pos 27 conj _ _ 30 to to ADP IN _ 29 prep _ _ 31 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 32 presheaf presheaf ADJ JJ Degree=Pos 33 amod _ _ 33 topos topos NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 34 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 27 punct _ SpaceAfter=No 35 , , PUNCT , PunctType=Comm 27 punct _ _ 36 obtaining obtain VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 27 advcl _ _ 37 explicit explicit ADJ JJ Degree=Pos 39 amod _ _ 38 site site NOUN NN Number=Sing 39 compound _ _ 39 characterizations characterization NOUN NNS Number=Plur 36 dobj _ _ 40 for for ADP IN _ 36 prep _ _ 41 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 40 pobj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 403 # sent_id = 1 # text = Given a double category $ mathbb D $ such that $ mathbb D_0 $ has pushouts, we characterize oplax/lax adjunctions between $ mathbb D $ and $ Cospan(mathbb D_0) $ for which the right adjoint is normal and restricts to the identity on $ mathbb D_0 $ , where $ Cospan(mathbb D_0) $ is the double category on $ mathbb D_0 $ whose vertical morphisms are cospans. 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 double double ADJ JJ Degree=Pos 4 amod _ _ 4 category category NOUN NN Number=Sing 1 pobj _ _ 5 $ mathbb D $ $ mathbb d $ SYM $ _ 6 nummod _ _ 6 such such ADJ JJ Degree=Pos 4 appos _ _ 7 that that SCONJ IN _ 9 nsubj _ _ 8 $ mathbb D_0 $ $ mathbb d_0 $ SYM $ _ 7 pobj _ _ 9 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 relcl _ _ 10 pushouts pushout NOUN NNS Number=Plur 9 dobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 13 punct _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 oplax oplax PROPN NNP Number=Sing 16 npadvmod _ SpaceAfter=No 15 / / SYM SYM _ 16 punct _ SpaceAfter=No 16 lax lax PROPN NNP Number=Sing 17 compound _ _ 17 adjunctions adjunction NOUN NNS Number=Plur 13 dobj _ _ 18 between between ADP IN _ 17 prep _ _ 19 $ mathbb D $ $ mathbb d $ SYM $ _ 18 pobj _ _ 20 and and CCONJ CC ConjType=Cmp 17 cc _ _ 21 $ Cospan(mathbb D_0) $ $ cospan(mathbb d_0) $ SYM $ _ 17 conj _ _ 22 for for ADP IN _ 27 prep _ _ 23 which which PRON WDT _ 22 pobj _ _ 24 the the DET DT Definite=Def|PronType=Art 26 det _ _ 25 right right ADJ JJ Degree=Pos 26 amod _ _ 26 adjoint adjoint NOUN NN Number=Sing 27 nsubj _ _ 27 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 21 relcl _ _ 28 normal normal ADJ JJ Degree=Pos 27 acomp _ _ 29 and and CCONJ CC ConjType=Cmp 27 cc _ _ 30 restricts restrict VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 27 conj _ _ 31 to to ADP IN _ 30 prep _ _ 32 the the DET DT Definite=Def|PronType=Art 33 det _ _ 33 identity identity NOUN NN Number=Sing 31 pobj _ _ 34 on on ADP IN _ 33 prep _ _ 35 $ mathbb D_0 $ $ mathbb d_0 $ SYM $ _ 34 pobj _ _ 36 , , PUNCT , PunctType=Comm 35 punct _ _ 37 where where SCONJ WRB _ 39 advmod _ _ 38 $ Cospan(mathbb D_0) $ $ cospan(mathbb d_0) $ SYM $ _ 39 nsubj _ _ 39 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 35 relcl _ _ 40 the the DET DT Definite=Def|PronType=Art 42 det _ _ 41 double double ADJ JJ Degree=Pos 42 amod _ _ 42 category category NOUN NN Number=Sing 39 attr _ _ 43 on on ADP IN _ 42 prep _ _ 44 $ mathbb D_0 $ $ mathbb d_0 $ SYM $ _ 43 pobj _ _ 45 whose whose DET WP$ Poss=Yes 47 poss _ _ 46 vertical vertical ADJ JJ Degree=Pos 47 amod _ _ 47 morphisms morphism NOUN NNS Number=Plur 48 nsubj _ _ 48 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 39 ccomp _ _ 49 cospans cospan NOUN NNS Number=Plur 48 attr _ SpaceAfter=No 50 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 2 # text = We show that such a pair exists if and only if $ mathbb D $ has companions, conjoints, and 1 - cotabulators. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 7 mark _ _ 4 such such DET PDT _ 6 predet _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 pair pair NOUN NN Number=Sing 7 nsubj _ _ 7 exists exist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 8 if if SCONJ IN _ 13 mark _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 only only ADV RB _ 13 advmod _ _ 11 if if SCONJ IN _ 13 mark _ _ 12 $ mathbb D $ $ mathbb d $ SYM $ _ 13 nsubj _ _ 13 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 advcl _ _ 14 companions companion NOUN NNS Number=Plur 13 dobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 conjoints conjoint NOUN NNS Number=Plur 14 conj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 and and CCONJ CC ConjType=Cmp 16 cc _ _ 19 1 1 NUM CD NumType=Card 21 nummod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 cotabulators cotabulator NOUN NNS Number=Plur 16 conj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = The right adjoints are induced by the companions and conjoints, and the left adjoints by the 1 - cotabulators. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 right right ADJ JJ Degree=Pos 3 amod _ _ 3 adjoints adjoint NOUN NNS Number=Plur 5 nsubjpass _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 by by ADP IN _ 5 agent _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 companions companion NOUN NNS Number=Plur 6 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 conjoints conjoint NOUN NNS Number=Plur 8 conj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 5 punct _ _ 12 and and CCONJ CC ConjType=Cmp 5 cc _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 left left ADJ JJ Degree=Pos 15 amod _ _ 15 adjoints adjoint NOUN NNS Number=Plur 5 conj _ _ 16 by by ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 20 det _ _ 18 1 1 NUM CD NumType=Card 20 nummod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 cotabulators cotabulator NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = The notion of a 1 - cotabulator is a common generalization of the symmetric algebra of a module and Artin - Wraith glueing of toposes, locales, and topological spaces. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 notion notion NOUN NN Number=Sing 8 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 5 1 1 NUM CD NumType=Card 7 nummod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 cotabulator cotabulator NOUN NN Number=Sing 3 pobj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 common common ADJ JJ Degree=Pos 11 amod _ _ 11 generalization generalization NOUN NN Number=Sing 8 attr _ _ 12 of of ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 symmetric symmetric ADJ JJ Degree=Pos 15 amod _ _ 15 algebra algebra PROPN NNP Number=Sing 12 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 module module NOUN NN Number=Sing 23 nmod _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 Artin Artin PROPN NNP Number=Sing 22 compound _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 Wraith Wraith PROPN NNP Number=Sing 23 compound _ _ 23 glueing glueing NOUN NN Number=Sing 16 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 toposes topos NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 25 punct _ _ 27 locales locale NOUN NNS Number=Plur 25 conj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 27 punct _ _ 29 and and CCONJ CC ConjType=Cmp 27 cc _ _ 30 topological topological ADJ JJ Degree=Pos 31 amod _ _ 31 spaces space NOUN NNS Number=Plur 27 conj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # doc_id = 404 # sent_id = 1 # text = Motivated by constructions in the theory of inverse semigroups and etale groupoids, we define and investigate the concept of isotropy from a topos - theoretic perspective. 1 Motivated motivate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 advcl _ _ 2 by by ADP IN _ 1 agent _ _ 3 constructions construction NOUN NNS Number=Plur 2 pobj _ _ 4 in in ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 theory theory NOUN NN Number=Sing 4 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 inverse inverse ADJ JJ Degree=Pos 9 amod _ _ 9 semigroups semigroup NOUN NNS Number=Plur 7 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 etale etale NOUN NN Number=Sing 12 compound _ _ 12 groupoids groupoid NOUN NNS Number=Plur 9 conj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 15 punct _ _ 14 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 15 nsubj _ _ 15 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 investigate investigate VERB VB VerbForm=Inf 15 conj _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 concept concept NOUN NN Number=Sing 17 dobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 isotropy isotropy NOUN NN Number=Sing 20 pobj _ _ 22 from from ADP IN _ 19 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 24 topos topos NOUN NN Number=Sing 26 npadvmod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 theoretic theoretic ADJ JJ Degree=Pos 27 amod _ _ 27 perspective perspective NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 2 # text = Our main conceptual tool is a monad on the category of grouped toposes. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 4 poss _ _ 2 main main ADJ JJ Degree=Pos 4 amod _ _ 3 conceptual conceptual ADJ JJ Degree=Pos 4 amod _ _ 4 tool tool NOUN NN Number=Sing 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 monad monad NOUN NNS Number=Plur 5 attr _ _ 8 on on ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 category category NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 grouped grouped ADJ JJ Degree=Pos 13 amod _ _ 13 toposes topos NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = Its algebras correspond to a generalized notion of crossed module, which we call a crossed topos. 1 Its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 2 poss _ _ 2 algebras algebra NOUN NNS Number=Plur 3 nsubj _ _ 3 correspond correspond VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 to to ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 generalized generalized ADJ JJ Degree=Pos 7 amod _ _ 7 notion notion NOUN NN Number=Sing 4 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 crossed crossed ADJ JJ Degree=Pos 10 amod _ _ 10 module module NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 which which PRON WDT _ 14 dobj _ _ 13 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 14 nsubj _ _ 14 call call VERB VBP Tense=Pres|VerbForm=Fin 10 relcl _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 crossed cross VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 17 topos topos NOUN NN Number=Sing 14 oprd _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = As an application, we present a topos - theoretic characterization and generalization of the `Clifford, fundamental' sequence associated with an inverse semigroup. 1 As as ADP IN _ 6 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 application application NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 8 topos topos NOUN NN Number=Sing 10 npadvmod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 theoretic theoretic ADJ JJ Degree=Pos 11 amod _ _ 11 characterization characterization NOUN NN Number=Sing 6 dobj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 generalization generalization NOUN NN Number=Sing 11 conj _ _ 14 of of ADP IN _ 11 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 21 det _ _ 16 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 21 punct _ SpaceAfter=No 17 Clifford Clifford PROPN NNP Number=Sing 21 nmod _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 21 punct _ _ 19 fundamental fundamental ADJ JJ Degree=Pos 21 amod _ SpaceAfter=No 20 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 21 punct _ _ 21 sequence sequence NOUN NN Number=Sing 14 pobj _ _ 22 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 acl _ _ 23 with with ADP IN _ 22 prep _ _ 24 an an DET DT Definite=Ind|PronType=Art 26 det _ _ 25 inverse inverse ADJ JJ Degree=Pos 26 amod _ _ 26 semigroup semigroup NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 405 # sent_id = 1 # text = By the Lefschetz fixed point theorem, if an endomorphism of a topological space is fixed - point - free, then its Lefschetz number vanishes. 1 By by ADP IN _ 6 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 5 det _ _ 3 Lefschetz Lefschetz PROPN NNP Number=Sing 5 amod _ _ 4 fixed fix VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 amod _ _ 5 point point NOUN NN Number=Sing 1 pobj _ _ 6 theorem theorem ADJ JJ Degree=Pos 0 ROOT _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 6 punct _ _ 8 if if SCONJ IN _ 15 mark _ _ 9 an an DET DT Definite=Ind|PronType=Art 10 det _ _ 10 endomorphism endomorphism NOUN NN Number=Sing 15 nsubj _ _ 11 of of ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 topological topological ADJ JJ Degree=Pos 14 amod _ _ 14 space space NOUN NN Number=Sing 11 pobj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 advcl _ _ 16 fixed fix VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 amod _ _ 17 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 18 point point NOUN NN Number=Sing 20 npadvmod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 free free ADJ JJ Degree=Pos 26 amod _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 26 punct _ _ 22 then then ADV RB PronType=Dem 26 advmod _ _ 23 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 26 poss _ _ 24 Lefschetz lefschetz ADJ JJ Degree=Pos 26 amod _ _ 25 number number NOUN NN Number=Sing 26 compound _ _ 26 vanishes vanishe NOUN NNS Number=Plur 15 attr _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = This necessary condition is not usually sufficient, however; for that we need a refinement of the Lefschetz number called the Reidemeister trace. 1 This this DET DT Number=Sing|PronType=Dem 3 det _ _ 2 necessary necessary ADJ JJ Degree=Pos 3 amod _ _ 3 condition condition NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 ccomp _ _ 5 not not PART RB Polarity=Neg 4 neg _ _ 6 usually usually ADV RB _ 4 advmod _ _ 7 sufficient sufficient ADJ JJ Degree=Pos 4 acomp _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 4 punct _ _ 9 however however ADV RB _ 4 advmod _ SpaceAfter=No 10 ; ; PUNCT : _ 14 punct _ _ 11 for for SCONJ IN _ 14 mark _ _ 12 that that SCONJ IN _ 14 mark _ _ 13 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 14 nsubj _ _ 14 need need VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 refinement refinement NOUN NN Number=Sing 14 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 Lefschetz lefschetz ADJ JJ Degree=Pos 20 amod _ _ 20 number number NOUN NN Number=Sing 17 pobj _ _ 21 called call VERB VBD Tense=Past|VerbForm=Fin 20 acl _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 Reidemeister Reidemeister PROPN NNP Number=Sing 24 compound _ _ 24 trace trace NOUN NN Number=Sing 21 oprd _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 3 # text = Abstractly, the Lefschetz number is a trace in a symmetric monoidal category, while the Reidemeister trace is a trace in a bicategory; in this paper we relate these contexts using indexed symmetric monoidal categories. 1 Abstractly abstractly ADV RB _ 6 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 6 punct _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 Lefschetz lefschetz ADJ JJ Degree=Pos 5 amod _ _ 5 number number NOUN NN Number=Sing 6 nsubj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 ccomp _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 trace trace NOUN NN Number=Sing 6 attr _ _ 9 in in ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 11 symmetric symmetric ADJ JJ Degree=Pos 13 amod _ _ 12 monoidal monoidal ADJ JJ Degree=Pos 13 amod _ _ 13 category category NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 6 punct _ _ 15 while while SCONJ IN _ 19 mark _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 Reidemeister Reidemeister PROPN NNP Number=Sing 18 compound _ _ 18 trace trace NOUN NN Number=Sing 19 nsubj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 advcl _ _ 20 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 21 trace trace NOUN NN Number=Sing 19 attr _ _ 22 in in ADP IN _ 21 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 24 bicategory bicategory NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 25 ; ; PUNCT : _ 30 punct _ _ 26 in in ADP IN _ 30 prep _ _ 27 this this DET DT Number=Sing|PronType=Dem 28 det _ _ 28 paper paper NOUN NN Number=Sing 26 pobj _ _ 29 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 30 nsubj _ _ 30 relate relate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 31 these these DET DT Number=Plur|PronType=Dem 32 det _ _ 32 contexts context NOUN NNS Number=Plur 30 dobj _ _ 33 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 30 advcl _ _ 34 indexed index VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 37 amod _ _ 35 symmetric symmetric ADJ JJ Degree=Pos 37 amod _ _ 36 monoidal monoidal ADJ JJ Degree=Pos 37 amod _ _ 37 categories category NOUN NNS Number=Plur 33 dobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 30 punct _ SpaceAfter=No # sent_id = 4 # text = In particular, we will show that for any symmetric monoidal category with an associated indexed symmetric monoidal category, there is an associated bicategory which produces refinements of trace analogous to the Reidemeister trace. 1 In in ADP IN _ 6 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 6 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 5 will will AUX MD VerbForm=Fin 6 aux _ _ 6 show show VERB VB VerbForm=Inf 0 ROOT _ _ 7 that that SCONJ IN _ 22 mark _ _ 8 for for ADP IN _ 22 prep _ _ 9 any any DET DT _ 12 det _ _ 10 symmetric symmetric ADJ JJ Degree=Pos 12 amod _ _ 11 monoidal monoidal ADJ JJ Degree=Pos 12 amod _ _ 12 category category NOUN NN Number=Sing 8 pobj _ _ 13 with with ADP IN _ 12 prep _ _ 14 an an DET DT Definite=Ind|PronType=Art 19 det _ _ 15 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 amod _ _ 16 indexed index VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 amod _ _ 17 symmetric symmetric ADJ JJ Degree=Pos 19 amod _ _ 18 monoidal monoidal ADJ JJ Degree=Pos 19 amod _ _ 19 category category NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 22 punct _ _ 21 there there PRON EX _ 22 expl _ _ 22 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 23 an an DET DT Definite=Ind|PronType=Art 25 det _ _ 24 associated associated ADJ JJ Degree=Pos 25 amod _ _ 25 bicategory bicategory NOUN NN Number=Sing 22 attr _ _ 26 which which PRON WDT _ 27 nsubj _ _ 27 produces produce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 25 relcl _ _ 28 refinements refinement NOUN NNS Number=Plur 27 dobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 trace trace NOUN NN Number=Sing 29 pobj _ _ 31 analogous analogous ADJ JJ Degree=Pos 28 amod _ _ 32 to to ADP IN _ 31 prep _ _ 33 the the DET DT Definite=Def|PronType=Art 35 det _ _ 34 Reidemeister Reidemeister PROPN NNP Number=Sing 35 compound _ _ 35 trace trace NOUN NN Number=Sing 32 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 5 # text = This bicategory also produces a new notion of trace for parametrized spaces with dualizable fibers, which refines the obvious ``fiberwise'' traces by incorporating the action of the fundamental group of the base space. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 bicategory bicategory NOUN NN Number=Sing 4 nsubj _ _ 3 also also ADV RB _ 4 advmod _ _ 4 produces produce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 new new ADJ JJ Degree=Pos 7 amod _ _ 7 notion notion NOUN NN Number=Sing 4 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 trace trace NOUN NN Number=Sing 8 pobj _ _ 10 for for ADP IN _ 7 prep _ _ 11 parametrized parametrized ADJ JJ Degree=Pos 12 amod _ _ 12 spaces space NOUN NNS Number=Plur 10 pobj _ _ 13 with with ADP IN _ 12 prep _ _ 14 dualizable dualizable ADJ JJ Degree=Pos 15 amod _ _ 15 fibers fiber NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 which which PRON WDT _ 18 nsubj _ _ 18 refines refine VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 relcl _ _ 19 the the DET DT Definite=Def|PronType=Art 25 det _ _ 20 obvious obvious ADJ JJ Degree=Pos 25 amod _ _ 21 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 25 punct _ SpaceAfter=No 22 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 25 punct _ SpaceAfter=No 23 fiberwise fiberwise NOUN NN Number=Sing 25 nmod _ SpaceAfter=No 24 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 25 punct _ _ 25 traces trace NOUN NNS Number=Plur 18 dobj _ _ 26 by by ADP IN _ 18 prep _ _ 27 incorporating incorporate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 26 pcomp _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 action action NOUN NN Number=Sing 27 dobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 33 det _ _ 32 fundamental fundamental ADJ JJ Degree=Pos 33 amod _ _ 33 group group NOUN NN Number=Sing 30 pobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 the the DET DT Definite=Def|PronType=Art 37 det _ _ 36 base base NOUN NN Number=Sing 37 compound _ _ 37 space space NOUN NN Number=Sing 34 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 6 # text = We also advance the basic theory of indexed monoidal categories, including introducing a string diagram calculus which makes calculations much more tractable. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 advance advance VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 basic basic ADJ JJ Degree=Pos 6 amod _ _ 6 theory theory NOUN NN Number=Sing 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 indexed index VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 9 monoidal monoidal ADJ JJ Degree=Pos 10 amod _ _ 10 categories category NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 prep _ _ 13 introducing introduce VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 pcomp _ _ 14 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 15 string string NOUN NN Number=Sing 16 compound _ _ 16 diagram diagram NOUN NN Number=Sing 17 compound _ _ 17 calculus calculus NOUN NN Number=Sing 13 dobj _ _ 18 which which PRON WDT _ 19 nsubj _ _ 19 makes make VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 relcl _ _ 20 calculations calculation NOUN NNS Number=Plur 23 nsubj _ _ 21 much much ADV RB _ 22 advmod _ _ 22 more more ADV RBR Degree=Cmp 23 advmod _ _ 23 tractable tractable ADJ JJ Degree=Pos 19 ccomp _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 7 # text = This abstract framework lays the foundation for generalizations of these ideas to other contexts. 1 This this DET DT Number=Sing|PronType=Dem 3 det _ _ 2 abstract abstract ADJ JJ Degree=Pos 3 amod _ _ 3 framework framework NOUN NN Number=Sing 4 nsubj _ _ 4 lays lay VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 foundation foundation NOUN NN Number=Sing 4 dobj _ _ 7 for for ADP IN _ 4 prep _ _ 8 generalizations generalization NOUN NNS Number=Plur 7 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 these these DET DT Number=Plur|PronType=Dem 11 det _ _ 11 ideas idea NOUN NNS Number=Plur 9 pobj _ _ 12 to to ADP IN _ 8 prep _ _ 13 other other ADJ JJ Degree=Pos 14 amod _ _ 14 contexts context NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 406 # sent_id = 1 # text = Let $ {Ldashv R:cal X rightarrowcal Y} $ be an adjunction with $ R $ monadic and $ L $ comonadic. 1 Let let VERB VB VerbForm=Inf 0 ROOT _ _ 2 $ {Ldashv R:cal X rightarrowcal Y} $ $ {ldashv r:cal x rightarrowcal y} $ SYM $ _ 3 nsubj _ _ 3 be be AUX VB VerbForm=Inf 1 ccomp _ _ 4 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 5 adjunction adjunction NOUN NN Number=Sing 3 attr _ _ 6 with with ADP IN _ 5 prep _ _ 7 $ R $ $ r $ SYM $ _ 8 nmod _ _ 8 monadic monadic ADJ JJ Degree=Pos 6 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 1 $ L $ $ l $ SYM $ _ 0 ROOT _ _ 2 comonadic comonadic ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = Denote the induced monad on $ cal Y $ by $ M $ and the induced comonad on $ calX $ by $ C $ . 1 Denote Denote PROPN NNP Number=Sing 0 ROOT _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 amod _ _ 4 monad monad NOUN NNS Number=Plur 1 dobj _ _ 5 on on ADP IN _ 4 prep _ _ 6 $ cal Y $ $ cal y $ SYM $ _ 5 pobj _ _ 7 by by ADP IN _ 1 prep _ _ 8 $ M $ $ m $ SYM $ _ 7 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 1 cc _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 12 comonad comonad NOUN NNS Number=Plur 1 conj _ _ 13 on on ADP IN _ 12 prep _ _ 14 $ calX $ $ calx $ SYM $ _ 13 pobj _ _ 15 by by ADP IN _ 1 prep _ _ 16 $ C $ $ c $ SYM $ _ 15 pobj _ _ 17 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 3 # text = We characterize those $ C $ such that $ M $ satisfies the Explicit Basis property. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 those those DET DT Number=Plur|PronType=Dem 4 det _ _ 4 $ C $ $ c $ SYM $ _ 5 nmod _ _ 5 such such ADJ JJ Degree=Pos 8 nsubj _ _ 6 that that SCONJ IN _ 8 det _ _ 7 $ M $ $ m $ SYM $ _ 8 nmod _ _ 8 satisfies satisfie NOUN NNS Number=Plur 2 ccomp _ _ 9 the the DET DT Definite=Def|PronType=Art 12 det _ _ 10 Explicit Explicit PROPN NNP Number=Sing 12 compound _ _ 11 Basis Basis PROPN NNP Number=Sing 12 compound _ _ 12 property property NOUN NN Number=Sing 8 dobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We also discuss some new examples and results motivated by this characterization. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 discuss discuss VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 some some DET DT _ 6 det _ _ 5 new new ADJ JJ Degree=Pos 6 amod _ _ 6 examples example NOUN NNS Number=Plur 3 dobj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 results result NOUN NNS Number=Plur 6 conj _ _ 9 motivated motivate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 acl _ _ 10 by by ADP IN _ 9 agent _ _ 11 this this DET DT Number=Sing|PronType=Dem 12 det _ _ 12 characterization characterization NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 407 # sent_id = 1 # text = We obtain semantic characterizations, holding for any Grothendieck site $ (C, J) $ , for the models of a theory classified by a topos of the form $ Sh(C, J) $ in terms of the models of a theory classified by a topos $ [C^{op}, Set] $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 semantic semantic ADJ JJ Degree=Pos 4 amod _ _ 4 characterizations characterization NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 2 punct _ _ 6 holding hold VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 7 for for ADP IN _ 6 prep _ _ 8 any any DET DT _ 10 det _ _ 9 Grothendieck Grothendieck PROPN NNP Number=Sing 10 compound _ _ 10 site site NOUN NN Number=Sing 11 compound _ _ 11 $ (C, J) $ $ (c, j) $ NOUN NN Number=Sing 7 pobj _ _ 12 , , PUNCT , PunctType=Comm 6 punct _ _ 13 for for ADP IN _ 6 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 models model NOUN NNS Number=Plur 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 theory theory NOUN NN Number=Sing 16 pobj _ _ 19 classified classify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 acl _ _ 20 by by ADP IN _ 19 agent _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 topos topos NOUN NN Number=Sing 20 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 form form NOUN NN Number=Sing 23 pobj _ _ 26 $ Sh(C, J) $ $ sh(c, j) $ SYM $ _ 6 dep _ _ 27 in in ADP IN _ 6 prep _ _ 28 terms term NOUN NNS Number=Plur 27 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 models model NOUN NNS Number=Plur 29 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 34 theory theory NOUN NN Number=Sing 32 pobj _ _ 35 classified classify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 34 acl _ _ 36 by by ADP IN _ 35 agent _ _ 37 a a DET DT Definite=Ind|PronType=Art 38 det _ _ 38 topos topos NOUN NN Number=Sing 36 pobj _ _ 39 $ [C^{op}, Set] $ $ [c^{op}, set] $ SYM $ _ 38 appos _ _ 40 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = These characterizations arise from an appropriate representation of flat functors into Grothendieck toposes based on an application of the Yoneda Lemma in conjunction with ideas from indexed category theory, and turn out to be relevant also in different contexts, in particular for addressing questions in classical Model Theory. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 characterizations characterization NOUN NNS Number=Plur 3 nsubj _ _ 3 arise arise VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 from from ADP IN _ 3 prep _ _ 5 an an DET DT Definite=Ind|PronType=Art 7 det _ _ 6 appropriate appropriate ADJ JJ Degree=Pos 7 amod _ _ 7 representation representation NOUN NN Number=Sing 4 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 flat flat ADJ JJ Degree=Pos 10 amod _ _ 10 functors functor NOUN NNS Number=Plur 8 pobj _ _ 11 into into ADP IN _ 7 prep _ _ 12 Grothendieck Grothendieck PROPN NNP Number=Sing 13 compound _ _ 13 toposes topos NOUN NNS Number=Plur 11 pobj _ _ 14 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 acl _ _ 15 on on ADP IN _ 14 prep _ _ 16 an an DET DT Definite=Ind|PronType=Art 17 det _ _ 17 application application NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 Yoneda Yoneda PROPN NNP Number=Sing 21 compound _ _ 21 Lemma Lemma PROPN NNP Number=Sing 18 pobj _ _ 22 in in ADP IN _ 17 prep _ _ 23 conjunction conjunction NOUN NN Number=Sing 22 pobj _ _ 24 with with ADP IN _ 23 prep _ _ 25 ideas idea NOUN NNS Number=Plur 24 pobj _ _ 26 from from ADP IN _ 25 prep _ _ 27 indexed indexed ADJ JJ Degree=Pos 29 amod _ _ 28 category category NOUN NN Number=Sing 29 compound _ _ 29 theory theory NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 3 punct _ _ 31 and and CCONJ CC ConjType=Cmp 3 cc _ _ 32 turn turn VERB VB VerbForm=Inf 3 conj _ _ 33 out out ADP RP _ 32 prt _ _ 34 to to PART TO _ 35 aux _ _ 35 be be AUX VB VerbForm=Inf 32 xcomp _ _ 36 relevant relevant ADJ JJ Degree=Pos 35 acomp _ _ 37 also also ADV RB _ 35 advmod _ _ 38 in in ADP IN _ 35 prep _ _ 39 different different ADJ JJ Degree=Pos 40 amod _ _ 40 contexts context NOUN NNS Number=Plur 38 pobj _ SpaceAfter=No 41 , , PUNCT , PunctType=Comm 35 punct _ _ 42 in in ADP IN _ 35 prep _ _ 43 particular particular ADJ JJ Degree=Pos 42 amod _ _ 44 for for ADP IN _ 42 prep _ _ 45 addressing address VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 44 pcomp _ _ 46 questions question NOUN NNS Number=Plur 45 dobj _ _ 47 in in ADP IN _ 46 prep _ _ 48 classical classical ADJ JJ Degree=Pos 50 amod _ _ 49 Model Model PROPN NNP Number=Sing 50 compound _ _ 50 Theory Theory PROPN NNP Number=Sing 47 pobj _ SpaceAfter=No 51 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 408 # sent_id = 1 # text = Classification of homotopy $ n $ - types has focused on developing algebraic categories which are equivalent to categories of $ n $ - types. 1 Classification classification NOUN NN Number=Sing 8 nsubj _ _ 2 of of ADP IN _ 1 prep _ _ 3 homotopy homotopy PROPN NNP Number=Sing 2 pobj _ _ 4 $ n $ $ n $ SYM $ _ 6 compound _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 types type NOUN NNS Number=Plur 1 conj _ _ 7 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 aux _ _ 8 focused focus VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 on on ADP IN _ 8 prep _ _ 10 developing develop VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 pcomp _ _ 11 algebraic algebraic ADJ JJ Degree=Pos 12 amod _ _ 12 categories category NOUN NNS Number=Plur 10 dobj _ _ 13 which which PRON WDT _ 14 nsubj _ _ 14 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 12 relcl _ _ 15 equivalent equivalent ADJ JJ Degree=Pos 14 acomp _ _ 16 to to ADP IN _ 15 prep _ _ 17 categories category NOUN NNS Number=Plur 16 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 $ n $ $ n $ SYM $ _ 21 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 types type NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 2 # text = We expand this theory by providing algebraic models of homotopy - theoretic constructions for stable one - types. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 expand expand VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 4 theory theory NOUN NN Number=Sing 2 dobj _ _ 5 by by ADP IN _ 2 prep _ _ 6 providing provide VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 pcomp _ _ 7 algebraic algebraic ADJ JJ Degree=Pos 8 amod _ _ 8 models model NOUN NNS Number=Plur 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 homotopy homotopy NOUN NN Number=Sing 12 npadvmod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 theoretic theoretic ADJ JJ Degree=Pos 13 amod _ _ 13 constructions construction NOUN NNS Number=Plur 9 pobj _ _ 14 for for ADP IN _ 13 prep _ _ 15 stable stable ADJ JJ Degree=Pos 18 amod _ _ 16 one one NUM CD NumType=Card 18 nummod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 types type NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = These include a model for the Postnikov one - truncation of the sphere spectrum, and for its action on the model of a stable one - type. 1 These these PRON DT Number=Plur|PronType=Dem 2 nsubj _ _ 2 include include VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 model model NOUN NN Number=Sing 2 dobj _ _ 5 for for ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 10 det _ _ 7 Postnikov Postnikov PROPN NNP Number=Sing 6 nmod _ _ 8 one one NUM CD NumType=Card 10 nummod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 truncation truncation NOUN NN Number=Sing 5 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 sphere sphere NOUN NN Number=Sing 14 compound _ _ 14 spectrum spectrum NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 2 punct _ _ 16 and and CCONJ CC ConjType=Cmp 2 cc _ _ 17 for for ADP IN _ 2 conj _ _ 18 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 19 poss _ _ 19 action action NOUN NN Number=Sing 17 pobj _ _ 20 on on ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 model model NOUN NN Number=Sing 20 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 25 stable stable ADJ JJ Degree=Pos 28 amod _ _ 26 one one NUM CD NumType=Card 28 nummod _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 type type NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We show that a bicategorical cokernel introduced by Vitale models the cofiber of a map between stable one - types, and apply this to develop an algebraic model for the Postnikov data of a stable one - type. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 6 mark _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 bicategorical bicategorical ADJ JJ Degree=Pos 6 amod _ _ 6 cokernel cokernel NOUN NN Number=Sing 2 ccomp _ _ 7 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 acl _ _ 8 by by ADP IN _ 7 agent _ _ 9 Vitale Vitale PROPN NNP Number=Sing 10 compound _ _ 10 models model NOUN NNS Number=Plur 8 pobj _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 cofiber cofiber NOUN NN Number=Sing 6 appos _ _ 13 of of ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 map map NOUN NN Number=Sing 13 pobj _ _ 16 between between ADP IN _ 15 prep _ _ 17 stable stable ADJ JJ Degree=Pos 20 amod _ _ 18 one one NUM CD NumType=Card 20 nummod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 types type NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 6 punct _ _ 22 and and CCONJ CC ConjType=Cmp 6 cc _ _ 23 apply apply VERB VB VerbForm=Inf 6 conj _ _ 24 this this PRON DT Number=Sing|PronType=Dem 23 dobj _ _ 25 to to PART TO _ 26 aux _ _ 26 develop develop VERB VB VerbForm=Inf 23 advcl _ _ 27 an an DET DT Definite=Ind|PronType=Art 29 det _ _ 28 algebraic algebraic ADJ JJ Degree=Pos 29 amod _ _ 29 model model NOUN NN Number=Sing 26 dobj _ _ 30 for for ADP IN _ 29 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 33 det _ _ 32 Postnikov Postnikov PROPN NNP Number=Sing 33 compound _ _ 33 data datum NOUN NNS Number=Plur 30 pobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 a a DET DT Definite=Ind|PronType=Art 39 det _ _ 36 stable stable ADJ JJ Degree=Pos 39 amod _ _ 37 one one NUM CD NumType=Card 39 nummod _ _ 38 - - PUNCT HYPH PunctType=Dash 39 punct _ _ 39 type type NOUN NN Number=Sing 34 pobj _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 409 # sent_id = 1 # text = We give a simple algebraic description of opetopes in terms of chain complexes, and we show how this description is related to combinatorial descriptions in terms of treelike structures. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 4 simple simple ADJ JJ Degree=Pos 6 amod _ _ 5 algebraic algebraic ADJ JJ Degree=Pos 6 amod _ _ 6 description description NOUN NN Number=Sing 2 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 opetopes opetope NOUN NNS Number=Plur 7 pobj _ _ 9 in in ADP IN _ 2 prep _ _ 10 terms term NOUN NNS Number=Plur 9 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 chain chain NOUN NN Number=Sing 13 compound _ _ 13 complexes complex NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 2 punct _ _ 15 and and CCONJ CC ConjType=Cmp 2 cc _ _ 16 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 17 nsubj _ _ 17 show show VERB VBP Tense=Pres|VerbForm=Fin 2 conj _ _ 18 how how SCONJ WRB _ 22 advmod _ _ 19 this this DET DT Number=Sing|PronType=Dem 20 det _ _ 20 description description NOUN NN Number=Sing 22 nsubjpass _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 auxpass _ _ 22 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 ccomp _ _ 23 to to ADP IN _ 22 prep _ _ 24 combinatorial combinatorial ADJ JJ Degree=Pos 25 amod _ _ 25 descriptions description NOUN NNS Number=Plur 23 pobj _ _ 26 in in ADP IN _ 25 prep _ _ 27 terms term NOUN NNS Number=Plur 26 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 treelike treelike ADJ JJ Degree=Pos 30 amod _ _ 30 structures structure NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 2 # text = More generally, we show that the chain complexes associated to higher categories generate graphlike structures. 1 More more ADV RBR Degree=Cmp 2 advmod _ _ 2 generally generally ADV RB _ 5 advmod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 that that SCONJ IN _ 14 mark _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 chain chain NOUN NN Number=Sing 9 compound _ _ 9 complexes complex NOUN NNS Number=Plur 14 nsubj _ _ 10 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 acl _ _ 11 to to ADP IN _ 10 prep _ _ 12 higher high ADJ JJR Degree=Cmp 13 amod _ _ 13 categories category NOUN NNS Number=Plur 11 pobj _ _ 14 generate generate VERB VBP Tense=Pres|VerbForm=Fin 5 ccomp _ _ 15 graphlike graphlike NOUN NN Number=Sing 16 compound _ _ 16 structures structure NOUN NNS Number=Plur 14 dobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = The algebraic description gives a relationship between the opetopic approach and other approaches to higher category theory. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 algebraic algebraic ADJ JJ Degree=Pos 3 amod _ _ 3 description description NOUN NN Number=Sing 4 nsubj _ _ 4 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 relationship relationship NOUN NN Number=Sing 4 dobj _ _ 7 between between ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 opetopic opetopic ADJ JJ Degree=Pos 10 amod _ _ 10 approach approach NOUN NN Number=Sing 7 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 other other ADJ JJ Degree=Pos 13 amod _ _ 13 approaches approach NOUN NNS Number=Plur 10 conj _ _ 14 to to ADP IN _ 13 prep _ _ 15 higher high ADJ JJR Degree=Cmp 17 amod _ _ 16 category category NOUN NN Number=Sing 17 compound _ _ 17 theory theory NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = It also gives an easy way to calculate the sources and targets of opetopes. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 an an DET DT Definite=Ind|PronType=Art 6 det _ _ 5 easy easy ADJ JJ Degree=Pos 6 amod _ _ 6 way way NOUN NN Number=Sing 3 dobj _ _ 7 to to PART TO _ 8 aux _ _ 8 calculate calculate VERB VB VerbForm=Inf 6 relcl _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 sources source NOUN NNS Number=Plur 8 dobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 targets target NOUN NNS Number=Plur 10 conj _ _ 13 of of ADP IN _ 10 prep _ _ 14 opetopes opetope NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 410 # sent_id = 1 # text = In this paper, which is the second part of a study of partial map categories with images, we investigate the interaction between images and various other kinds of categorical structure and properties. 1 In in ADP IN _ 21 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 3 punct _ _ 5 which which PRON WDT _ 6 nsubj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 relcl _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 second second ADJ JJ Degree=Pos 9 amod _ _ 9 part part NOUN NN Number=Sing 6 attr _ _ 10 of of ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 study study NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 partial partial ADJ JJ Degree=Pos 16 amod _ _ 15 map map NOUN NN Number=Sing 16 compound _ _ 16 categories category NOUN NNS Number=Plur 13 pobj _ _ 17 with with ADP IN _ 12 prep _ _ 18 images image NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 21 punct _ _ 20 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 21 nsubj _ _ 21 investigate investigate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 interaction interaction NOUN NN Number=Sing 21 dobj _ _ 24 between between ADP IN _ 23 prep _ _ 25 images image NOUN NNS Number=Plur 24 pobj _ _ 26 and and CCONJ CC ConjType=Cmp 25 cc _ _ 27 various various ADJ JJ Degree=Pos 29 amod _ _ 28 other other ADJ JJ Degree=Pos 29 amod _ _ 29 kinds kind NOUN NNS Number=Plur 25 conj _ _ 30 of of ADP IN _ 29 prep _ _ 31 categorical categorical ADJ JJ Degree=Pos 32 amod _ _ 32 structure structure NOUN NN Number=Sing 30 pobj _ _ 33 and and CCONJ CC ConjType=Cmp 32 cc _ _ 34 properties property NOUN NNS Number=Plur 32 conj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 21 punct _ SpaceAfter=No # sent_id = 2 # text = In particular, we consider images in the context of partial products, meets and discreteness and survey a taxonomy of structures leading towards the partial map categories of regular categories. 1 In in ADP IN _ 5 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 images image NOUN NNS Number=Plur 5 dobj _ _ 7 in in ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 context context NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 partial partial ADJ JJ Degree=Pos 12 amod _ _ 12 products product NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 5 punct _ _ 14 meets meet NOUN NNS Number=Plur 5 conj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 discreteness discreteness NOUN NN Number=Sing 14 conj _ _ 17 and and CCONJ CC ConjType=Cmp 14 cc _ _ 18 survey survey VERB VB VerbForm=Inf 14 conj _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 taxonomy taxonomy NOUN NN Number=Sing 18 dobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 structures structure NOUN NNS Number=Plur 21 pobj _ _ 23 leading lead VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 acl _ _ 24 towards towards ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 28 det _ _ 26 partial partial ADJ JJ Degree=Pos 28 amod _ _ 27 map map NOUN NN Number=Sing 28 compound _ _ 28 categories category NOUN NNS Number=Plur 24 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 regular regular ADJ JJ Degree=Pos 31 amod _ _ 31 categories category NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = We also present a term logic for cartesian partial map categories with images and prove a soundness and completeness theorem for this logic. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 term term NOUN NN Number=Sing 6 compound _ _ 6 logic logic NOUN NN Number=Sing 3 dobj _ _ 7 for for ADP IN _ 6 prep _ _ 8 cartesian cartesian ADJ JJ Degree=Pos 11 amod _ _ 9 partial partial ADJ JJ Degree=Pos 10 amod _ _ 10 map map NOUN NN Number=Sing 11 compound _ _ 11 categories category NOUN NNS Number=Plur 7 pobj _ _ 12 with with ADP IN _ 3 prep _ _ 13 images image NOUN NNS Number=Plur 12 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 3 cc _ _ 15 prove prove VERB VB VerbForm=Inf 3 conj _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 soundness soundness NOUN NN Number=Sing 15 dobj _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 completeness completeness NOUN NN Number=Sing 17 conj _ _ 20 theorem theorem ADJ JJ Degree=Pos 15 oprd _ _ 21 for for ADP IN _ 20 prep _ _ 22 this this DET DT Number=Sing|PronType=Dem 23 det _ _ 23 logic logic NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = Finally, we exhibit several free constructions relating the different classes of categories under consideration. 1 Finally finally ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 exhibit exhibit VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 several several ADJ JJ Degree=Pos 7 amod _ _ 6 free free ADJ JJ Degree=Pos 7 amod _ _ 7 constructions construction NOUN NNS Number=Plur 4 dobj _ _ 8 relating relate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 acl _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 different different ADJ JJ Degree=Pos 11 amod _ _ 11 classes class NOUN NNS Number=Plur 8 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 categories category NOUN NNS Number=Plur 12 pobj _ _ 14 under under ADP IN _ 8 prep _ _ 15 consideration consideration NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 411 # sent_id = 1 # text = In this two - part paper, we undertake a systematic study of abstract partial map categories in which every map has both a restriction (domain of definition) and a range (image). 1 In in ADP IN _ 9 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 3 two two NUM CD NumType=Card 5 nummod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 part part NOUN NN Number=Sing 6 compound _ _ 6 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 9 punct _ _ 8 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 9 nsubj _ _ 9 undertake undertake VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 systematic systematic ADJ JJ Degree=Pos 12 amod _ _ 12 study study NOUN NN Number=Sing 9 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 abstract abstract ADJ JJ Degree=Pos 17 amod _ _ 15 partial partial ADJ JJ Degree=Pos 17 amod _ _ 16 map map NOUN NN Number=Sing 17 compound _ _ 17 categories category NOUN NNS Number=Plur 13 pobj _ _ 18 in in ADP IN _ 22 prep _ _ 19 which which PRON WDT _ 18 pobj _ _ 20 every every DET DT _ 21 det _ _ 21 map map NOUN NN Number=Sing 22 nsubj _ _ 22 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 relcl _ _ 23 both both CCONJ CC ConjType=Cmp 25 preconj _ _ 24 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 25 restriction restriction NOUN NN Number=Sing 22 dobj _ _ 26 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 25 punct _ SpaceAfter=No 27 domain domain NOUN NN Number=Sing 25 appos _ _ 28 of of ADP IN _ 27 prep _ _ 29 definition definition NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 30 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 27 punct _ _ 31 and and CCONJ CC ConjType=Cmp 25 cc _ _ 32 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 33 range range NOUN NN Number=Sing 25 conj _ _ 34 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 35 punct _ SpaceAfter=No 35 image image NOUN NN Number=Sing 33 appos _ SpaceAfter=No 36 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 33 punct _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 2 # text = In this first part, we explore connections with related structures such as inverse categories and allegories, and establish two representational results. 1 In in ADP IN _ 7 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 3 first first ADJ JJ Degree=Pos 4 amod _ _ 4 part part NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 explore explore VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 connections connection NOUN NNS Number=Plur 7 dobj _ _ 9 with with ADP IN _ 8 prep _ _ 10 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 amod _ _ 11 structures structure NOUN NNS Number=Plur 9 pobj _ _ 12 such such ADJ JJ Degree=Pos 13 amod _ _ 13 as as ADP IN _ 11 prep _ _ 14 inverse inverse ADJ JJ Degree=Pos 15 amod _ _ 15 categories category NOUN NNS Number=Plur 13 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 allegories allegory NOUN NNS Number=Plur 15 conj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 7 punct _ _ 19 and and CCONJ CC ConjType=Cmp 7 cc _ _ 20 establish establish VERB VB VerbForm=Inf 7 conj _ _ 21 two two NUM CD NumType=Card 23 nummod _ _ 22 representational representational ADJ JJ Degree=Pos 23 amod _ _ 23 results result NOUN NNS Number=Plur 20 dobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = The first of these explains how every range category can be fully and faithfully embedded into a category of partial maps equipped with a suitable factorization system. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 first first ADJ JJ Degree=Pos 5 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 these these PRON DT Number=Plur|PronType=Dem 3 pobj _ _ 5 explains explain VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 how how SCONJ WRB _ 15 advmod _ _ 7 every every DET DT _ 9 det _ _ 8 range range NOUN NN Number=Sing 9 compound _ _ 9 category category NOUN NN Number=Sing 15 nsubjpass _ _ 10 can can AUX MD VerbForm=Fin 15 aux _ _ 11 be be AUX VB VerbForm=Inf 15 auxpass _ _ 12 fully fully ADV RB _ 15 advmod _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 faithfully faithfully ADV RB _ 12 conj _ _ 15 embedded embed VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 ccomp _ _ 16 into into ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 category category NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 partial partial ADJ JJ Degree=Pos 21 amod _ _ 21 maps map NOUN NNS Number=Plur 19 pobj _ _ 22 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 acl _ _ 23 with with ADP IN _ 22 prep _ _ 24 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 25 suitable suitable ADJ JJ Degree=Pos 27 amod _ _ 26 factorization factorization NOUN NN Number=Sing 27 compound _ _ 27 system system NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = The second is a generalization of a result from semigroup theory by Boris Schein, and says that every small range category satisfying the additional condition that every map is an epimorphism onto its range can be faithfully embedded into the category of sets and partial functions with the usual notion of range. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 second second ADJ JJ Degree=Pos 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 generalization generalization NOUN NN Number=Sing 3 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 result result NOUN NN Number=Sing 6 pobj _ _ 9 from from ADP IN _ 8 prep _ _ 10 semigroup semigroup NOUN NN Number=Sing 11 compound _ _ 11 theory theory NOUN NN Number=Sing 9 pobj _ _ 12 by by ADP IN _ 11 prep _ _ 13 Boris Boris PROPN NNP Number=Sing 14 compound _ _ 14 Schein Schein PROPN NNP Number=Sing 12 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 3 punct _ _ 16 and and CCONJ CC ConjType=Cmp 3 cc _ _ 17 says say VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 conj _ _ 18 that that SCONJ IN _ 39 mark _ _ 19 every every DET DT _ 22 det _ _ 20 small small ADJ JJ Degree=Pos 22 amod _ _ 21 range range NOUN NN Number=Sing 22 compound _ _ 22 category category NOUN NN Number=Sing 39 nsubjpass _ _ 23 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 acl _ _ 24 the the DET DT Definite=Def|PronType=Art 26 det _ _ 25 additional additional ADJ JJ Degree=Pos 26 amod _ _ 26 condition condition NOUN NN Number=Sing 23 dobj _ _ 27 that that SCONJ IN _ 30 mark _ _ 28 every every DET DT _ 29 det _ _ 29 map map NOUN NN Number=Sing 30 nsubj _ _ 30 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 26 acl _ _ 31 an an DET DT Definite=Ind|PronType=Art 32 det _ _ 32 epimorphism epimorphism NOUN NN Number=Sing 30 attr _ _ 33 onto onto ADP IN _ 30 prep _ _ 34 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 35 poss _ _ 35 range range NOUN NN Number=Sing 33 pobj _ _ 36 can can AUX MD VerbForm=Fin 39 aux _ _ 37 be be AUX VB VerbForm=Inf 39 auxpass _ _ 38 faithfully faithfully ADV RB _ 39 advmod _ _ 39 embedded embed VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 ccomp _ _ 40 into into ADP IN _ 39 prep _ _ 41 the the DET DT Definite=Def|PronType=Art 42 det _ _ 42 category category NOUN NN Number=Sing 40 pobj _ _ 43 of of ADP IN _ 42 prep _ _ 44 sets set NOUN NNS Number=Plur 43 pobj _ _ 45 and and CCONJ CC ConjType=Cmp 44 cc _ _ 46 partial partial ADJ JJ Degree=Pos 47 amod _ _ 47 functions function NOUN NNS Number=Plur 44 conj _ _ 48 with with ADP IN _ 39 prep _ _ 49 the the DET DT Definite=Def|PronType=Art 51 det _ _ 50 usual usual ADJ JJ Degree=Pos 51 amod _ _ 51 notion notion NOUN NN Number=Sing 48 pobj _ _ 52 of of ADP IN _ 51 prep _ _ 53 range range NOUN NN Number=Sing 52 pobj _ SpaceAfter=No 54 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = Finally, we give an explicit construction of the free range category on a partial map category in terms of certain types of labeled trees. 1 Finally finally ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 an an DET DT Definite=Ind|PronType=Art 7 det _ _ 6 explicit explicit ADJ JJ Degree=Pos 7 amod _ _ 7 construction construction NOUN NN Number=Sing 4 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 12 det _ _ 10 free free ADJ JJ Degree=Pos 11 amod _ _ 11 range range NOUN NN Number=Sing 12 compound _ _ 12 category category NOUN NN Number=Sing 8 pobj _ _ 13 on on ADP IN _ 4 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 15 partial partial ADJ JJ Degree=Pos 17 amod _ _ 16 map map NOUN NN Number=Sing 17 compound _ _ 17 category category NOUN NN Number=Sing 13 pobj _ _ 18 in in ADP IN _ 4 prep _ _ 19 terms term NOUN NNS Number=Plur 18 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 certain certain ADJ JJ Degree=Pos 22 amod _ _ 22 types type NOUN NNS Number=Plur 20 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 labeled label VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 25 amod _ _ 25 trees tree NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 412 # sent_id = 1 # text = We give a generalized version of the Freyd conjecture and a way to think about a possible proof. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 amod _ _ 5 version version NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 Freyd Freyd PROPN NNP Number=Sing 9 compound _ _ 9 conjecture conjecture NOUN NN Number=Sing 6 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 5 cc _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 way way NOUN NN Number=Sing 5 conj _ _ 13 to to PART TO _ 14 aux _ _ 14 think think VERB VB VerbForm=Inf 12 relcl _ _ 15 about about ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 possible possible ADJ JJ Degree=Pos 18 amod _ _ 18 proof proof NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The essential point is to describe an elementary formal reduction of the question that holds in any triangulated category. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 essential essential ADJ JJ Degree=Pos 3 amod _ _ 3 point point NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 to to PART TO _ 6 aux _ _ 6 describe describe VERB VB VerbForm=Inf 4 xcomp _ _ 7 an an DET DT Definite=Ind|PronType=Art 10 det _ _ 8 elementary elementary ADJ JJ Degree=Pos 10 amod _ _ 9 formal formal ADJ JJ Degree=Pos 10 amod _ _ 10 reduction reduction NOUN NN Number=Sing 6 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 question question NOUN NN Number=Sing 11 pobj _ _ 14 that that PRON WDT PronType=Rel 15 nsubj _ _ 15 holds hold VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 relcl _ _ 16 in in ADP IN _ 15 prep _ _ 17 any any DET DT _ 19 det _ _ 18 triangulated triangulate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 amod _ _ 19 category category NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = There are no new results, but at least one known example drops out very easily. 1 There there PRON EX _ 2 expl _ _ 2 are be VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 no no DET DT _ 5 det _ _ 4 new new ADJ JJ Degree=Pos 5 amod _ _ 5 results result NOUN NNS Number=Plur 2 attr _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 2 punct _ _ 7 but but CCONJ CC ConjType=Cmp 2 cc _ _ 8 at at ADP IN _ 9 advmod _ _ 9 least least ADV RBS Degree=Sup 10 advmod _ _ 10 one one NUM CD NumType=Card 12 nummod _ _ 11 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 12 example example NOUN NN Number=Sing 13 nsubj _ _ 13 drops drop VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 conj _ _ 14 out out ADP RP _ 13 prt _ _ 15 very very ADV RB _ 16 advmod _ _ 16 easily easily ADV RB _ 13 advmod _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # doc_id = 413 # sent_id = 1 # text = Kornel Szlachanyi recently used the term skew - monoidal category for a particular laxified version of monoidal category. 1 Kornel Kornel PROPN NNP Number=Sing 2 compound _ _ 2 Szlachanyi Szlachanyi PROPN NNP Number=Sing 4 nsubj _ _ 3 recently recently ADV RB _ 4 advmod _ _ 4 used use VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 10 det _ _ 6 term term NOUN NN Number=Sing 10 nmod _ _ 7 skew skew NOUN NN Number=Sing 9 advmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 monoidal monoidal ADJ JJ Degree=Pos 10 amod _ _ 10 category category NOUN NN Number=Sing 4 dobj _ _ 11 for for ADP IN _ 4 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 13 particular particular ADJ JJ Degree=Pos 15 amod _ _ 14 laxified laxified ADJ JJ Degree=Pos 15 amod _ _ 15 version version NOUN NN Number=Sing 11 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 monoidal monoidal ADJ JJ Degree=Pos 18 amod _ _ 18 category category NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = He showed that bialgebroids $ H $ with base ring $ R $ could be characterized in terms of skew - monoidal structures on the category of one - sided $ R $ - modules for which the lax unit was $ R $ itself. 1 He he PRON PRP Case=Nom|Gender=Masc|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 showed show VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 4 nsubj _ _ 4 bialgebroids bialgebroid VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 5 $ H $ $ h $ SYM $ _ 4 dobj _ _ 6 with with ADP IN _ 4 prep _ _ 7 base base NOUN NN Number=Sing 8 compound _ _ 8 ring ring NOUN NN Number=Sing 6 pobj _ _ 9 $ R $ $ r $ SYM $ _ 12 nsubjpass _ _ 10 could could AUX MD VerbForm=Fin 12 aux _ _ 11 be be AUX VB VerbForm=Inf 12 auxpass _ _ 12 characterized characterize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 13 in in ADP IN _ 12 prep _ _ 14 terms term NOUN NNS Number=Plur 13 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 skew skew NOUN NN Number=Sing 18 advmod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 monoidal monoidal ADJ JJ Degree=Pos 19 amod _ _ 19 structures structure NOUN NNS Number=Plur 15 pobj _ _ 20 on on ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 category category NOUN NN Number=Sing 20 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 one one NUM CD NumType=Card 23 pobj _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 sided sided ADJ JJ Degree=Pos 29 amod _ _ 27 $ R $ $ r $ SYM $ _ 29 compound _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 modules module NOUN NNS Number=Plur 2 dobj _ _ 30 for for ADP IN _ 35 prep _ _ 31 which which PRON WDT _ 30 pobj _ _ 32 the the DET DT Definite=Def|PronType=Art 34 det _ _ 33 lax lax ADJ JJ Degree=Pos 34 amod _ _ 34 unit unit NOUN NN Number=Sing 35 nsubj _ _ 35 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 29 relcl _ _ 36 $ R $ $ r $ SYM $ _ 37 nmod _ _ 37 itself itself PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs|Reflex=Yes 35 attr _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We define skew monoidales (or skew pseudo - monoids) in any monoidal bicategory $ cal M $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 skew skew NOUN NN Number=Sing 4 compound _ _ 4 monoidales monoidale NOUN NNS Number=Plur 2 dobj _ _ 5 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 4 punct _ SpaceAfter=No 6 or or CCONJ CC ConjType=Cmp 4 cc _ _ 7 skew skew VERB VB VerbForm=Inf 10 compound _ _ 8 pseudo pseudo NOUN NN Number=Sing 7 dobj _ _ 9 - - PUNCT : _ 10 punct _ _ 10 monoids monoid NOUN NNS Number=Plur 4 conj _ SpaceAfter=No 11 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 4 punct _ _ 12 in in ADP IN _ 2 prep _ _ 13 any any DET DT _ 15 det _ _ 14 monoidal monoidal ADJ JJ Degree=Pos 15 amod _ _ 15 bicategory bicategory NOUN NN Number=Sing 12 pobj _ _ 16 $ cal M $ $ cal m $ SYM $ _ 2 dep _ _ 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = These are skew - monoidal categories when $ cal M $ is $ Cat $ . 1 These these PRON DT Number=Plur|PronType=Dem 2 nsubj _ _ 2 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 skew skew NOUN NN Number=Sing 5 advmod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 monoidal monoidal ADJ JJ Degree=Pos 6 amod _ _ 6 categories category NOUN NNS Number=Plur 2 attr _ _ 7 when when SCONJ WRB _ 9 advmod _ _ 8 $ cal M $ $ cal m $ SYM $ _ 9 nsubj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 advcl _ _ 10 $ Cat $ $ cat $ SYM $ _ 9 attr _ _ 11 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = Our main results are presented at the level of monoidal bicategories. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 3 poss _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 results result NOUN NNS Number=Plur 5 nsubjpass _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 at at ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 level level NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 monoidal monoidal ADJ JJ Degree=Pos 11 amod _ _ 11 bicategories bicategorie NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 6 # text = However, a consequence is that quantum categories with base comonoid $ C $ in a suitably complete braided monoidal category $ CV $ are precisely skew monoidales in $ Comod (cal V) $ with unit coming from the counit of $ C $ . 1 However however ADV RB _ 5 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 5 punct _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 consequence consequence NOUN NN Number=Sing 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 that that DET DT Number=Sing|PronType=Dem 8 det _ _ 7 quantum quantum ADJ JJ Degree=Pos 8 amod _ _ 8 categories category NOUN NNS Number=Plur 21 nsubj _ _ 9 with with ADP IN _ 8 prep _ _ 10 base base NOUN NN Number=Sing 11 compound _ _ 11 comonoid comonoid NOUN NN Number=Sing 9 pobj _ _ 12 $ C $ $ c $ SYM $ _ 8 appos _ _ 13 in in ADP IN _ 8 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 15 suitably suitably ADV RB _ 16 advmod _ _ 16 complete complete ADJ JJ Degree=Pos 19 amod _ _ 17 braided braid VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 amod _ _ 18 monoidal monoidal ADJ JJ Degree=Pos 19 amod _ _ 19 category category NOUN NN Number=Sing 13 pobj _ _ 20 $ CV $ $ cv $ SYM $ _ 8 appos _ _ 21 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 ccomp _ _ 22 precisely precisely ADV RB _ 23 advmod _ _ 23 skew skew VERB VB VerbForm=Inf 24 amod _ _ 24 monoidales monoidale NOUN NNS Number=Plur 21 attr _ _ 25 in in ADP IN _ 24 prep _ _ 26 $ Comod (cal V) $ $ comod (cal v) $ SYM $ _ 25 pobj _ _ 27 with with ADP IN _ 24 prep _ _ 28 unit unit NOUN NN Number=Sing 27 pobj _ _ 29 coming come VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 28 acl _ _ 30 from from ADP IN _ 29 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 counit counit NOUN NN Number=Sing 30 pobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 $ C $ $ c $ SYM $ _ 33 pobj _ _ 35 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 7 # text = Quantum groupoids are those skew monoidales with invertible associativity constraint. 1 Quantum quantum NOUN NN Number=Sing 2 compound _ _ 2 groupoids groupoid NOUN NNS Number=Plur 3 nsubj _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 those those DET DT Number=Plur|PronType=Dem 6 det _ _ 5 skew skew NOUN NN Number=Sing 6 compound _ _ 6 monoidales monoidale NOUN NNS Number=Plur 10 nsubj _ _ 7 with with ADP IN _ 6 prep _ _ 8 invertible invertible ADJ JJ Degree=Pos 9 amod _ _ 9 associativity associativity NOUN NN Number=Sing 7 pobj _ _ 10 constraint constraint VERB VBP Tense=Pres|VerbForm=Fin 3 ccomp _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 8 # text = In fact, we provide some very general results connecting opmonoidal monads and skew monoidales. 1 In in ADP IN _ 5 prep _ _ 2 fact fact NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 some some DET DT _ 9 det _ _ 7 very very ADV RB _ 8 advmod _ _ 8 general general ADJ JJ Degree=Pos 9 amod _ _ 9 results result NOUN NNS Number=Plur 5 dobj _ _ 10 connecting connect VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 acl _ _ 11 opmonoidal opmonoidal ADJ JJ Degree=Pos 12 amod _ _ 12 monads monad NOUN NNS Number=Plur 10 dobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 skew skew NOUN NN Number=Sing 15 amod _ _ 15 monoidales monoidale NOUN NNS Number=Plur 12 conj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 9 # text = We use a lax version of the concept of warping defined by Booker and Street to modify monoidal structures. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 lax lax ADJ JJ Degree=Pos 5 amod _ _ 5 version version NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 concept concept NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 warping warp VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 pcomp _ _ 11 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 xcomp _ _ 12 by by ADP IN _ 11 agent _ _ 13 Booker Booker PROPN NNP Number=Sing 12 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 Street Street PROPN NNP Number=Sing 13 conj _ _ 16 to to PART TO _ 17 aux _ _ 17 modify modify VERB VB VerbForm=Inf 2 xcomp _ _ 18 monoidal monoidal ADJ JJ Degree=Pos 19 amod _ _ 19 structures structure NOUN NNS Number=Plur 17 dobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 414 # sent_id = 1 # text = We show that every internal biequivalence in a tricategory $ T $ is part of a biadjoint biequivalence. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 11 mark _ _ 4 every every DET DT _ 6 det _ _ 5 internal internal ADJ JJ Degree=Pos 6 amod _ _ 6 biequivalence biequivalence NOUN NN Number=Sing 11 nsubj _ _ 7 in in ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 tricategory tricategory NOUN NN Number=Sing 7 pobj _ _ 10 $ T $ $ t $ SYM $ _ 11 nsubj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 12 part part NOUN NN Number=Sing 11 attr _ _ 13 of of ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 biadjoint biadjoint NOUN NN Number=Sing 16 compound _ _ 16 biequivalence biequivalence NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We give two applications of this result, one for transporting monoidal structures and one for equipping a monoidal bicategory with invertible objects with a coherent choice of those inverses. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 two two NUM CD NumType=Card 4 nummod _ _ 4 applications application NOUN NNS Number=Plur 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 this this DET DT Number=Sing|PronType=Dem 7 det _ _ 7 result result NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 2 punct _ _ 9 one one NUM CD NumType=Card 4 appos _ _ 10 for for ADP IN _ 9 prep _ _ 11 transporting transport VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 pcomp _ _ 12 monoidal monoidal ADJ JJ Degree=Pos 13 amod _ _ 13 structures structure NOUN NNS Number=Plur 11 dobj _ _ 14 and and CCONJ CC ConjType=Cmp 9 cc _ _ 15 one one NUM CD NumType=Card 9 conj _ _ 16 for for ADP IN _ 15 prep _ _ 17 equipping equip VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 pcomp _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 monoidal monoidal ADJ JJ Degree=Pos 20 amod _ _ 20 bicategory bicategory NOUN NN Number=Sing 17 dobj _ _ 21 with with ADP IN _ 17 prep _ _ 22 invertible invertible ADJ JJ Degree=Pos 23 amod _ _ 23 objects object NOUN NNS Number=Plur 21 pobj _ _ 24 with with ADP IN _ 23 prep _ _ 25 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 26 coherent coherent ADJ JJ Degree=Pos 27 amod _ _ 27 choice choice NOUN NN Number=Sing 24 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 those those DET DT Number=Plur|PronType=Dem 30 det _ _ 30 inverses inverse NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 415 # sent_id = 1 # text = We find the injective hulls of partially ordered monoids in the category whose objects are po - monoids and submultiplicative order - preserving functions. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 find find VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 injective injective ADJ JJ Degree=Pos 5 amod _ _ 5 hulls hull NOUN NNS Number=Plur 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 partially partially ADV RB _ 8 advmod _ _ 8 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 amod _ _ 9 monoids monoid NOUN NNS Number=Plur 6 pobj _ _ 10 in in ADP IN _ 5 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 category category NOUN NN Number=Sing 10 pobj _ _ 13 whose whose DET WP$ Poss=Yes 14 poss _ _ 14 objects object NOUN NNS Number=Plur 15 nsubj _ _ 15 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 12 relcl _ _ 16 po po NOUN NN Number=Sing 18 compound _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 monoids monoid NOUN NNS Number=Plur 15 attr _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 submultiplicative submultiplicative ADJ JJ Degree=Pos 24 amod _ _ 21 order order NOUN NN Number=Sing 23 npadvmod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 preserving preserve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 24 amod _ _ 24 functions function NOUN NNS Number=Plur 18 conj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = These injective hulls are with respect to a special class of monics called ``embeddings''. 1 These these DET DT Number=Plur|PronType=Dem 3 det _ _ 2 injective injective ADJ JJ Degree=Pos 3 amod _ _ 3 hulls hull NOUN NNS Number=Plur 4 nsubj _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 with with ADP IN _ 4 prep _ _ 6 respect respect NOUN NN Number=Sing 5 pobj _ _ 7 to to ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 special special ADJ JJ Degree=Pos 10 amod _ _ 10 class class NOUN NN Number=Sing 7 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 monics monic NOUN NNS Number=Plur 11 pobj _ _ 13 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 acl _ _ 14 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 16 punct _ SpaceAfter=No 15 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 16 punct _ SpaceAfter=No 16 embeddings embedding NOUN NNS Number=Plur 13 oprd _ SpaceAfter=No 17 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 4 punct _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = We show as well that the injective objects with respect to these embeddings are precisely the quantales. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 as as ADV RB _ 4 advmod _ _ 4 well well ADV RB Degree=Pos 2 advmod _ _ 5 that that SCONJ IN _ 14 mark _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 injective injective ADJ JJ Degree=Pos 8 amod _ _ 8 objects object NOUN NNS Number=Plur 14 nsubj _ _ 9 with with ADP IN _ 8 prep _ _ 10 respect respect NOUN NN Number=Sing 9 pobj _ _ 11 to to ADP IN _ 10 prep _ _ 12 these these DET DT Number=Plur|PronType=Dem 13 det _ _ 13 embeddings embedding NOUN NNS Number=Plur 11 pobj _ _ 14 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 15 precisely precisely ADV RB _ 14 advmod _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 quantales quantale NOUN NNS Number=Plur 14 attr _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 416 # sent_id = 1 # text = Two categories are called Morita equivalent if the categories of functors from these categories to the category of sets are equivalent. 1 Two two NUM CD NumType=Card 2 nummod _ _ 2 categories category NOUN NNS Number=Plur 4 nsubjpass _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 Morita Morita PROPN NNP Number=Sing 6 compound _ _ 6 equivalent equivalent ADJ JJ Degree=Pos 4 oprd _ _ 7 if if SCONJ IN _ 20 mark _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 categories category NOUN NNS Number=Plur 20 nsubj _ _ 10 of of ADP IN _ 9 prep _ _ 11 functors functor NOUN NNS Number=Plur 10 pobj _ _ 12 from from ADP IN _ 9 prep _ _ 13 these these DET DT Number=Plur|PronType=Dem 14 det _ _ 14 categories category NOUN NNS Number=Plur 12 pobj _ _ 15 to to ADP IN _ 9 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 category category NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 sets set NOUN NNS Number=Plur 18 pobj _ _ 20 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 advcl _ _ 21 equivalent equivalent ADJ JJ Degree=Pos 20 acomp _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = We prove that congruence lattices of Morita equivalent small categories are isomorphic. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 11 mark _ _ 4 congruence congruence NOUN NN Number=Sing 5 compound _ _ 5 lattices lattice NOUN NNS Number=Plur 11 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 Morita Morita PROPN NNP Number=Sing 10 nmod _ _ 8 equivalent equivalent ADJ JJ Degree=Pos 10 amod _ _ 9 small small ADJ JJ Degree=Pos 10 amod _ _ 10 categories category NOUN NNS Number=Plur 6 pobj _ _ 11 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 12 isomorphic isomorphic ADJ JJ Degree=Pos 11 acomp _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 417 # sent_id = 1 # text = The relative cell complexes with respect to a generating set of cofibrations are an important class of morphisms in any model structure. 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 relative relative ADJ JJ Degree=Pos 3 amod _ _ 3 cell cell NOUN NN Number=Sing 4 compound _ _ 4 complexes complexe VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 nsubj _ _ 5 with with ADP IN _ 4 prep _ _ 6 respect respect NOUN NN Number=Sing 5 pobj _ _ 7 to to ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 generating generating NOUN NN Number=Sing 10 amod _ _ 10 set set NOUN NN Number=Sing 7 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 cofibrations cofibration NOUN NNS Number=Plur 11 pobj _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 an an DET DT Definite=Ind|PronType=Art 16 det _ _ 15 important important ADJ JJ Degree=Pos 16 amod _ _ 16 class class NOUN NN Number=Sing 13 attr _ _ 17 of of ADP IN _ 16 prep _ _ 18 morphisms morphism NOUN NNS Number=Plur 17 pobj _ _ 19 in in ADP IN _ 16 prep _ _ 20 any any DET DT _ 22 det _ _ 21 model model NOUN NN Number=Sing 22 compound _ _ 22 structure structure NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 2 # text = In the particular case of the standard (algebraic) model structure on Top, we give a new expression of these morphisms by defining a category of relative cell complexes, which has a forgetful functor to the arrow category. 1 In in ADP IN _ 17 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 particular particular ADJ JJ Degree=Pos 4 amod _ _ 4 case case NOUN NN Number=Sing 1 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 12 det _ _ 7 standard standard ADJ JJ Degree=Pos 12 amod _ _ 8 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 12 punct _ SpaceAfter=No 9 algebraic algebraic ADJ JJ Degree=Pos 11 amod _ SpaceAfter=No 10 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 11 punct _ _ 11 model model NOUN NN Number=Sing 12 compound _ _ 12 structure structure NOUN NN Number=Sing 5 pobj _ _ 13 on on ADP IN _ 12 prep _ _ 14 Top Top PROPN NNP Number=Sing 13 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 17 punct _ _ 16 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 17 nsubj _ _ 17 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 new new ADJ JJ Degree=Pos 20 amod _ _ 20 expression expression NOUN NN Number=Sing 17 dobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 these these DET DT Number=Plur|PronType=Dem 23 det _ _ 23 morphisms morphism NOUN NNS Number=Plur 21 pobj _ _ 24 by by ADP IN _ 17 prep _ _ 25 defining define VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 24 pcomp _ _ 26 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 27 category category NOUN NN Number=Sing 25 dobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 relative relative ADJ JJ Degree=Pos 31 amod _ _ 30 cell cell NOUN NN Number=Sing 31 compound _ _ 31 complexes complex NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 31 punct _ _ 33 which which PRON WDT _ 34 nsubj _ _ 34 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 31 relcl _ _ 35 a a DET DT Definite=Ind|PronType=Art 37 det _ _ 36 forgetful forgetful ADJ JJ Degree=Pos 37 amod _ _ 37 functor functor NOUN NN Number=Sing 34 dobj _ _ 38 to to ADP IN _ 34 prep _ _ 39 the the DET DT Definite=Def|PronType=Art 41 det _ _ 40 arrow arrow NOUN NN Number=Sing 41 compound _ _ 41 category category NOUN NN Number=Sing 38 pobj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 3 # text = This allows us to prove a conjecture of Richard Garner: considering the algebraic weak factorisation system given in that algebraic model structure between cofibrations and trivial fibrations, we show that the category of relative cell complexes is equivalent to the category of coalgebras. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 31 ccomp _ _ 3 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 4 to to PART TO _ 5 aux _ _ 5 prove prove VERB VB VerbForm=Inf 2 ccomp _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 conjecture conjecture NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 Richard Richard PROPN NNP Number=Sing 10 compound _ _ 10 Garner Garner PROPN NNP Number=Sing 8 pobj _ SpaceAfter=No 11 : : PUNCT : _ 2 punct _ _ 12 considering consider VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 13 the the DET DT Definite=Def|PronType=Art 17 det _ _ 14 algebraic algebraic ADJ JJ Degree=Pos 17 amod _ _ 15 weak weak ADJ JJ Degree=Pos 17 amod _ _ 16 factorisation factorisation NOUN NN Number=Sing 17 compound _ _ 17 system system NOUN NN Number=Sing 12 dobj _ _ 18 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 acl _ _ 19 in in ADP IN _ 18 prep _ _ 20 that that DET DT Number=Sing|PronType=Dem 23 det _ _ 21 algebraic algebraic ADJ JJ Degree=Pos 22 amod _ _ 22 model model NOUN NN Number=Sing 23 compound _ _ 23 structure structure NOUN NN Number=Sing 19 pobj _ _ 24 between between ADP IN _ 23 prep _ _ 25 cofibrations cofibration NOUN NNS Number=Plur 24 pobj _ _ 26 and and CCONJ CC ConjType=Cmp 25 cc _ _ 27 trivial trivial ADJ JJ Degree=Pos 28 amod _ _ 28 fibrations fibration NOUN NNS Number=Plur 25 conj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 31 punct _ _ 30 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 31 nsubj _ _ 31 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 32 that that SCONJ IN _ 39 mark _ _ 33 the the DET DT Definite=Def|PronType=Art 34 det _ _ 34 category category NOUN NN Number=Sing 39 nsubj _ _ 35 of of ADP IN _ 34 prep _ _ 36 relative relative ADJ JJ Degree=Pos 38 amod _ _ 37 cell cell NOUN NN Number=Sing 38 compound _ _ 38 complexes complex NOUN NNS Number=Plur 35 pobj _ _ 39 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 31 ccomp _ _ 40 equivalent equivalent ADJ JJ Degree=Pos 39 acomp _ _ 41 to to ADP IN _ 40 prep _ _ 42 the the DET DT Definite=Def|PronType=Art 43 det _ _ 43 category category NOUN NN Number=Sing 41 pobj _ _ 44 of of ADP IN _ 43 prep _ _ 45 coalgebras coalgebras PROPN NNP Number=Sing 44 pobj _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 31 punct _ SpaceAfter=No # doc_id = 418 # sent_id = 1 # text = For a generalisation of the classical theory of Hopf algebra over fields, Bruguièeres and Virelizier study opmonoidal monads on monoidal categories (which they called bimonads). 1 For for ADP IN _ 0 ROOT _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 generalisation generalisation NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 classical classical ADJ JJ Degree=Pos 7 amod _ _ 7 theory theory NOUN NN Number=Sing 4 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 Hopf Hopf PROPN NNP Number=Sing 10 compound _ _ 10 algebra algebra NOUN NNS Number=Plur 8 pobj _ _ 11 over over ADP IN _ 10 prep _ _ 12 fields field NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 Bruguièeres Bruguièeres PROPN NNP Number=Sing 17 nmod _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 Virelizier Virelizier PROPN NNP Number=Sing 14 conj _ _ 17 study study NOUN NN Number=Sing 19 nmod _ _ 18 opmonoidal opmonoidal ADJ JJ Degree=Pos 19 amod _ _ 19 monads monad NOUN NNS Number=Plur 12 conj _ _ 20 on on ADP IN _ 19 prep _ _ 21 monoidal monoidal ADJ JJ Degree=Pos 22 amod _ _ 22 categories category NOUN NNS Number=Plur 20 pobj _ _ 23 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 22 punct _ SpaceAfter=No 24 which which PRON WDT _ 26 dobj _ _ 25 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 26 nsubj _ _ 26 called call VERB VBD Tense=Past|VerbForm=Fin 22 relcl _ _ 27 bimonads bimonad NOUN NNS Number=Plur 26 dobj _ SpaceAfter=No 28 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 1 punct _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = In a recent joint paper with Lack, the same authors define the notion of a pre - Hopf monad by requiring only a special form of the fusion operator to be invertible. 1 In in ADP IN _ 12 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 3 recent recent ADJ JJ Degree=Pos 5 amod _ _ 4 joint joint ADJ JJ Degree=Pos 5 amod _ _ 5 paper paper NOUN NN Number=Sing 1 pobj _ _ 6 with with ADP IN _ 5 prep _ _ 7 Lack Lack PROPN NNP Number=Sing 6 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 12 punct _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 same same ADJ JJ Degree=Pos 11 amod _ _ 11 authors author NOUN NNS Number=Plur 12 nsubj _ _ 12 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 notion notion NOUN NN Number=Sing 12 dobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 17 pre pre ADJ JJ Degree=Pos 19 compound _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 Hopf hopf ADJ JJ Degree=Pos 20 amod _ _ 20 monad monad NOUN NNS Number=Plur 15 pobj _ _ 21 by by ADP IN _ 12 prep _ _ 22 requiring require VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 21 pcomp _ _ 23 only only ADV RB _ 26 advmod _ _ 24 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 25 special special ADJ JJ Degree=Pos 26 amod _ _ 26 form form NOUN NN Number=Sing 22 dobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 30 det _ _ 29 fusion fusion NOUN NN Number=Sing 30 compound _ _ 30 operator operator NOUN NN Number=Sing 27 pobj _ _ 31 to to PART TO _ 32 aux _ _ 32 be be AUX VB VerbForm=Inf 22 xcomp _ _ 33 invertible invertible ADJ JJ Degree=Pos 32 acomp _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 3 # text = In previous papers it was observed by the present authors that bimonads yield a special case of an entwining of a pair of functors (on arbitrary categories). 1 In in ADP IN _ 6 prep _ _ 2 previous previous ADJ JJ Degree=Pos 3 amod _ _ 3 papers paper NOUN NNS Number=Plur 1 pobj _ _ 4 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 6 nsubjpass _ _ 5 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 6 auxpass _ _ 6 observed observe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 by by ADP IN _ 6 agent _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 present present ADJ JJ Degree=Pos 10 amod _ _ 10 authors author NOUN NNS Number=Plur 7 pobj _ _ 11 that that PRON WDT PronType=Rel 13 nsubj _ _ 12 bimonads bimonad NOUN NNS Number=Plur 13 nsubj _ _ 13 yield yield VERB VBP Tense=Pres|VerbForm=Fin 10 relcl _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 special special ADJ JJ Degree=Pos 16 amod _ _ 16 case case NOUN NN Number=Sing 13 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 an an DET DT Definite=Ind|PronType=Art 19 det _ _ 19 entwining entwining NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 pair pair NOUN NN Number=Sing 20 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 functors functor NOUN NNS Number=Plur 23 pobj _ _ 25 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 22 punct _ SpaceAfter=No 26 on on ADP IN _ 22 prep _ _ 27 arbitrary arbitrary ADJ JJ Degree=Pos 28 amod _ _ 28 categories category NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 29 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 6 punct _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = The purpose of this note is to show that in this setting the pre - Hopf monads are a special case of Galois entwinings. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 purpose purpose NOUN NN Number=Sing 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 note note NOUN NN Number=Sing 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 to to PART TO _ 8 aux _ _ 8 show show VERB VB VerbForm=Inf 6 xcomp _ _ 9 that that SCONJ IN _ 18 mark _ _ 10 in in ADP IN _ 18 prep _ _ 11 this this PRON DT Number=Sing|PronType=Dem 10 pobj _ _ 12 setting set VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 11 acl _ _ 13 the the DET DT Definite=Def|PronType=Art 17 det _ _ 14 pre pre ADJ JJ Degree=Pos 16 compound _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 Hopf hopf ADJ JJ Degree=Pos 17 compound _ _ 17 monads monad NOUN NNS Number=Plur 12 dobj _ _ 18 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 ccomp _ _ 19 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 20 special special ADJ JJ Degree=Pos 21 amod _ _ 21 case case NOUN NN Number=Sing 18 attr _ _ 22 of of ADP IN _ 21 prep _ _ 23 Galois Galois PROPN NNP Number=Sing 24 compound _ _ 24 entwinings entwining NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 5 # text = As a byproduct some new properties are detected which make a (general) bimonad on a Cauchy complete category to a Hopf monad. 1 As as ADP IN _ 8 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 byproduct byproduct NOUN NN Number=Sing 1 pobj _ _ 4 some some DET DT _ 6 det _ _ 5 new new ADJ JJ Degree=Pos 6 amod _ _ 6 properties property NOUN NNS Number=Plur 8 nsubjpass _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 detected detect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 which which PRON WDT _ 10 nsubj _ _ 10 make make VERB VBP Tense=Pres|VerbForm=Fin 6 relcl _ _ 11 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 12 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 15 punct _ SpaceAfter=No 13 general general ADJ JJ Degree=Pos 15 amod _ SpaceAfter=No 14 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 15 punct _ _ 15 bimonad bimonad NOUN NNS Number=Plur 10 dobj _ _ 16 on on ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 18 Cauchy cauchy ADJ JJ Degree=Pos 20 nmod _ _ 19 complete complete ADJ JJ Degree=Pos 20 amod _ _ 20 category category NOUN NN Number=Sing 16 pobj _ _ 21 to to ADP IN _ 10 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 23 Hopf Hopf PROPN NNP Number=Sing 24 compound _ _ 24 monad monad NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 6 # text = In the final section applications to cartesian monoidal categories are considered. 1 In in ADP IN _ 11 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 5 det _ _ 3 final final ADJ JJ Degree=Pos 5 amod _ _ 4 section section NOUN NN Number=Sing 5 compound _ _ 5 applications application NOUN NNS Number=Plur 1 pobj _ _ 6 to to ADP IN _ 5 prep _ _ 7 cartesian cartesian ADJ JJ Degree=Pos 9 amod _ _ 8 monoidal monoidal ADJ JJ Degree=Pos 9 amod _ _ 9 categories category NOUN NNS Number=Plur 6 pobj _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 11 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # doc_id = 419 # sent_id = 1 # text = Tannaka duality describes the relationship between algebraic objects in a given category and functors into that category; an important case is that of Hopf algebras and their categories of representations; these have strong monoidal forgetful ``fibre functors'' to the category of vector spaces. 1 Tannaka Tannaka PROPN NNP Number=Sing 2 compound _ _ 2 duality duality NOUN NN Number=Sing 3 nsubj _ _ 3 describes describe VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 ccomp _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 relationship relationship NOUN NN Number=Sing 3 dobj _ _ 6 between between ADP IN _ 5 prep _ _ 7 algebraic algebraic ADJ JJ Degree=Pos 8 amod _ _ 8 objects object NOUN NNS Number=Plur 6 pobj _ _ 9 in in ADP IN _ 3 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 12 category category NOUN NN Number=Sing 9 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 functors functor NOUN NNS Number=Plur 12 conj _ _ 15 into into ADP IN _ 12 prep _ _ 16 that that DET DT Number=Sing|PronType=Dem 17 det _ _ 17 category category NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 18 ; ; PUNCT : _ 22 punct _ _ 19 an an DET DT Definite=Ind|PronType=Art 21 det _ _ 20 important important ADJ JJ Degree=Pos 21 amod _ _ 21 case case NOUN NN Number=Sing 22 nsubj _ _ 22 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 34 ccomp _ _ 23 that that PRON DT Number=Sing|PronType=Dem 22 nsubj _ _ 24 of of ADP IN _ 23 prep _ _ 25 Hopf Hopf PROPN NNP Number=Sing 26 compound _ _ 26 algebras algebra NOUN NNS Number=Plur 24 pobj _ _ 27 and and CCONJ CC ConjType=Cmp 26 cc _ _ 28 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 29 poss _ _ 29 categories category NOUN NNS Number=Plur 26 conj _ _ 30 of of ADP IN _ 29 prep _ _ 31 representations representation NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 32 ; ; PUNCT : _ 34 punct _ _ 33 these these PRON DT Number=Plur|PronType=Dem 34 nsubj _ _ 34 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 35 strong strong ADJ JJ Degree=Pos 41 amod _ _ 36 monoidal monoidal ADJ JJ Degree=Pos 41 amod _ _ 37 forgetful forgetful ADJ JJ Degree=Pos 41 amod _ _ 38 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 41 punct _ SpaceAfter=No 39 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 41 punct _ SpaceAfter=No 40 fibre fibre NOUN NN Number=Sing 41 compound _ _ 41 functors functor NOUN NNS Number=Plur 34 dobj _ SpaceAfter=No 42 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 41 punct _ _ 43 to to ADP IN _ 34 prep _ _ 44 the the DET DT Definite=Def|PronType=Art 45 det _ _ 45 category category NOUN NN Number=Sing 43 pobj _ _ 46 of of ADP IN _ 45 prep _ _ 47 vector vector NOUN NN Number=Sing 48 compound _ _ 48 spaces space NOUN NNS Number=Plur 46 pobj _ SpaceAfter=No 49 . . PUNCT . PunctType=Peri 34 punct _ SpaceAfter=No # sent_id = 2 # text = We simultaneously generalize the theory of Tannaka duality in two ways: first, we replace Hopf algebras with weak Hopf algebras and strong monoidal functors with separable Frobenius monoidal functors; second, we replace the category of vector spaces with an arbitrary braided monoidal category. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 simultaneously simultaneously ADV RB _ 3 advmod _ _ 3 generalize generalize VERB VBP Tense=Pres|VerbForm=Fin 16 ccomp _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 theory theory NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 Tannaka Tannaka PROPN NNP Number=Sing 8 compound _ _ 8 duality duality NOUN NN Number=Sing 6 pobj _ _ 9 in in ADP IN _ 3 prep _ _ 10 two two NUM CD NumType=Card 11 nummod _ _ 11 ways way NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 12 : : PUNCT : _ 16 punct _ _ 13 first first ADV RB _ 16 advmod _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 16 punct _ _ 15 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 16 nsubj _ _ 16 replace replace VERB VBP Tense=Pres|VerbForm=Fin 36 ccomp _ _ 17 Hopf Hopf PROPN NNP Number=Sing 18 compound _ _ 18 algebras algebra NOUN NNS Number=Plur 16 dobj _ _ 19 with with ADP IN _ 18 prep _ _ 20 weak weak ADJ JJ Degree=Pos 22 amod _ _ 21 Hopf Hopf PROPN NNP Number=Sing 22 compound _ _ 22 algebras algebra NOUN NNS Number=Plur 19 pobj _ _ 23 and and CCONJ CC ConjType=Cmp 22 cc _ _ 24 strong strong ADJ JJ Degree=Pos 26 amod _ _ 25 monoidal monoidal ADJ JJ Degree=Pos 26 amod _ _ 26 functors functor NOUN NNS Number=Plur 22 conj _ _ 27 with with ADP IN _ 26 prep _ _ 28 separable separable ADJ JJ Degree=Pos 31 amod _ _ 29 Frobenius Frobenius PROPN NNP Number=Sing 31 compound _ _ 30 monoidal monoidal NOUN NN Number=Sing 31 compound _ _ 31 functors functor NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 32 ; ; PUNCT : _ 36 punct _ _ 33 second second X LS NumType=Ord 36 advmod _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 36 punct _ _ 35 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 36 nsubj _ _ 36 replace replace VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 37 the the DET DT Definite=Def|PronType=Art 38 det _ _ 38 category category NOUN NN Number=Sing 36 dobj _ _ 39 of of ADP IN _ 38 prep _ _ 40 vector vector NOUN NN Number=Sing 41 compound _ _ 41 spaces space NOUN NNS Number=Plur 39 pobj _ _ 42 with with ADP IN _ 38 prep _ _ 43 an an DET DT Definite=Ind|PronType=Art 47 det _ _ 44 arbitrary arbitrary ADJ JJ Degree=Pos 47 amod _ _ 45 braided braid VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 47 amod _ _ 46 monoidal monoidal ADJ JJ Degree=Pos 47 amod _ _ 47 category category NOUN NN Number=Sing 42 pobj _ SpaceAfter=No 48 . . PUNCT . PunctType=Peri 36 punct _ SpaceAfter=No # sent_id = 3 # text = To accomplish this goal, we make use of a graphical notation for functors between monoidal categories, using string diagrams with coloured regions. 1 To to PART TO _ 2 aux _ _ 2 accomplish accomplish VERB VB VerbForm=Inf 7 advcl _ _ 3 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 4 goal goal NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 make make VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 use use NOUN NN Number=Sing 7 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 graphical graphical ADJ JJ Degree=Pos 12 amod _ _ 12 notation notation NOUN NN Number=Sing 9 pobj _ _ 13 for for ADP IN _ 12 prep _ _ 14 functors functor NOUN NNS Number=Plur 13 pobj _ _ 15 between between ADP IN _ 14 prep _ _ 16 monoidal monoidal ADJ JJ Degree=Pos 17 amod _ _ 17 categories category NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 7 punct _ _ 19 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 advcl _ _ 20 string string NOUN NN Number=Sing 21 compound _ _ 21 diagrams diagram NOUN NNS Number=Plur 19 dobj _ _ 22 with with ADP IN _ 21 prep _ _ 23 coloured coloured ADJ JJ Degree=Pos 24 amod _ _ 24 regions region NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = Not only does this notation extend our capacity to give simple proofs of complicated calculations, it makes plain some of the connections between Frobenius monoidal or separable Frobenius monoidal functors and the topology of the axioms defining certain algebraic structures. 1 Not not PART RB Polarity=Neg 6 preconj _ _ 2 only only ADV RB _ 1 advmod _ _ 3 does do AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 aux _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 notation notation NOUN NN Number=Sing 6 nsubj _ _ 6 extend extend VERB VB VerbForm=Inf 18 ccomp _ _ 7 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 8 poss _ _ 8 capacity capacity NOUN NN Number=Sing 6 dobj _ _ 9 to to PART TO _ 10 aux _ _ 10 give give VERB VB VerbForm=Inf 8 acl _ _ 11 simple simple ADJ JJ Degree=Pos 12 amod _ _ 12 proofs proof NOUN NNS Number=Plur 10 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 complicated complicated ADJ JJ Degree=Pos 15 amod _ _ 15 calculations calculation NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 18 punct _ _ 17 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 18 nsubj _ _ 18 makes make VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 19 plain plain ADJ JJ Degree=Pos 20 amod _ _ 20 some some PRON DT _ 18 dobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 connections connection NOUN NNS Number=Plur 21 pobj _ _ 24 between between ADP IN _ 23 prep _ _ 25 Frobenius Frobenius PROPN NNP Number=Sing 26 compound _ _ 26 monoidal monoidal NOUN NN Number=Sing 24 pobj _ _ 27 or or CCONJ CC ConjType=Cmp 26 cc _ _ 28 separable separable ADJ JJ Degree=Pos 31 amod _ _ 29 Frobenius Frobenius PROPN NNP Number=Sing 31 compound _ _ 30 monoidal monoidal NOUN NN Number=Sing 31 amod _ _ 31 functors functor NOUN NNS Number=Plur 26 conj _ _ 32 and and CCONJ CC ConjType=Cmp 31 cc _ _ 33 the the DET DT Definite=Def|PronType=Art 34 det _ _ 34 topology topology NOUN NN Number=Sing 31 conj _ _ 35 of of ADP IN _ 34 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 37 det _ _ 37 axioms axiom NOUN NNS Number=Plur 35 pobj _ _ 38 defining define VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 37 acl _ _ 39 certain certain ADJ JJ Degree=Pos 41 amod _ _ 40 algebraic algebraic ADJ JJ Degree=Pos 41 amod _ _ 41 structures structure NOUN NNS Number=Plur 38 dobj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # sent_id = 5 # text = Finally, having generalized Tannaka duality to an arbitrary base category, we briefly discuss the functoriality of the construction as this base is varied. 1 Finally finally ADV RB _ 15 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 15 punct _ _ 3 having having AUX VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 aux _ _ 4 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 advcl _ _ 5 Tannaka Tannaka PROPN NNP Number=Sing 6 compound _ _ 6 duality duality NOUN NN Number=Sing 4 dobj _ _ 7 to to ADP IN _ 4 prep _ _ 8 an an DET DT Definite=Ind|PronType=Art 11 det _ _ 9 arbitrary arbitrary ADJ JJ Degree=Pos 11 amod _ _ 10 base base NOUN NN Number=Sing 11 compound _ _ 11 category category NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 15 punct _ _ 13 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 15 nsubj _ _ 14 briefly briefly ADV RB _ 15 advmod _ _ 15 discuss discuss VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 functoriality functoriality NOUN NN Number=Sing 15 dobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 construction construction NOUN NN Number=Sing 18 pobj _ _ 21 as as SCONJ IN _ 24 mark _ _ 22 this this DET DT Number=Sing|PronType=Dem 23 det _ _ 23 base base NOUN NN Number=Sing 24 nsubj _ _ 24 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 advcl _ _ 25 varied varied ADJ JJ Degree=Pos 24 acomp _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # doc_id = 420 # sent_id = 1 # text = In this note we provide a characterization, in terms of additional algebraic structure, of those strict intervals (certain cocategory objects) in a symmetric monoidal closed category $ cal E $ that are representable in the sense of inducing on $ cal E $ the structure of a finitely bicomplete 2 - category. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 note note NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 characterization characterization NOUN NN Number=Sing 5 dobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 5 punct _ _ 9 in in ADP IN _ 5 prep _ _ 10 terms term NOUN NNS Number=Plur 9 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 additional additional ADJ JJ Degree=Pos 14 amod _ _ 13 algebraic algebraic ADJ JJ Degree=Pos 14 amod _ _ 14 structure structure NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 of of ADP IN _ 14 prep _ _ 17 those those DET DT Number=Plur|PronType=Dem 19 det _ _ 18 strict strict ADJ JJ Degree=Pos 19 amod _ _ 19 intervals interval NOUN NNS Number=Plur 16 pobj _ _ 20 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 19 punct _ SpaceAfter=No 21 certain certain ADJ JJ Degree=Pos 23 amod _ _ 22 cocategory cocategory NOUN NN Number=Sing 23 compound _ _ 23 objects object NOUN NNS Number=Plur 19 appos _ SpaceAfter=No 24 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 19 punct _ _ 25 in in ADP IN _ 5 prep _ _ 26 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 27 symmetric symmetric ADJ JJ Degree=Pos 28 amod _ _ 28 monoidal monoidal NOUN NN Number=Sing 25 pobj _ _ 29 closed close VERB VBD Tense=Past|VerbForm=Fin 5 conj _ _ 30 category category NOUN NN Number=Sing 29 dobj _ _ 31 $ cal E $ $ cal e $ SYM $ _ 29 dep _ _ 32 that that PRON WDT PronType=Rel 33 nsubj _ _ 33 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 31 relcl _ _ 34 representable representable ADJ JJ Degree=Pos 33 acomp _ _ 35 in in ADP IN _ 34 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 37 det _ _ 37 sense sense NOUN NN Number=Sing 35 pobj _ _ 38 of of ADP IN _ 37 prep _ _ 39 inducing induce VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 38 pcomp _ _ 40 on on ADP RP _ 39 prt _ _ 41 $ cal E $ $ cal e $ SYM $ _ 29 prep _ _ 42 the the DET DT Definite=Def|PronType=Art 43 det _ _ 43 structure structure NOUN NN Number=Sing 29 dobj _ _ 44 of of ADP IN _ 43 prep _ _ 45 a a DET DT Definite=Ind|PronType=Art 50 det _ _ 46 finitely finitely ADV RB _ 47 advmod _ _ 47 bicomplete bicomplete ADJ JJ Degree=Pos 50 amod _ _ 48 2 2 NUM CD NumType=Card 50 nummod _ _ 49 - - PUNCT HYPH PunctType=Dash 50 punct _ _ 50 category category NOUN NN Number=Sing 44 pobj _ SpaceAfter=No 51 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = Several examples and connections with the homotopy theory of 2 - categories are also discussed. 1 Several several ADJ JJ Degree=Pos 2 amod _ _ 2 examples example NOUN NNS Number=Plur 15 nsubjpass _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 connections connection NOUN NNS Number=Plur 2 conj _ _ 5 with with ADP IN _ 2 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 homotopy homotopy NOUN NN Number=Sing 8 compound _ _ 8 theory theory NOUN NN Number=Sing 5 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 2 2 NUM CD NumType=Card 12 nummod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 categories category NOUN NNS Number=Plur 9 pobj _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 auxpass _ _ 14 also also ADV RB _ 15 advmod _ _ 15 discussed discuss VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # doc_id = 421 # sent_id = 1 # text = We develop an alternative approach to star - autonomous comonads via linearly distributive categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 develop develop VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 4 alternative alternative ADJ JJ Degree=Pos 5 amod _ _ 5 approach approach NOUN NN Number=Sing 2 dobj _ _ 6 to to ADP IN _ 5 prep _ _ 7 star star NOUN NN Number=Sing 9 npadvmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 autonomous autonomous ADJ JJ Degree=Pos 10 amod _ _ 10 comonads comonad NOUN NNS Number=Plur 6 pobj _ _ 11 via via ADP IN _ 5 prep _ _ 12 linearly linearly ADV RB _ 13 advmod _ _ 13 distributive distributive ADJ JJ Degree=Pos 14 amod _ _ 14 categories category NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = It is shown that in the autonomous case the notions of star - autonomous comonad and Hopf comonad coincide. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 that that SCONJ IN _ 10 mark _ _ 5 in in ADP IN _ 10 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 autonomous autonomous ADJ JJ Degree=Pos 8 amod _ _ 8 case case NOUN NN Number=Sing 5 pobj _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 notions notion NOUN NNS Number=Plur 3 ccomp _ _ 11 of of ADP IN _ 10 prep _ _ 12 star star NOUN NN Number=Sing 14 npadvmod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 autonomous autonomous ADJ JJ Degree=Pos 15 amod _ _ 15 comonad comonad NOUN NNS Number=Plur 11 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 Hopf Hopf PROPN NNP Number=Sing 18 compound _ _ 18 comonad comonad NOUN NNS Number=Plur 19 compound _ _ 19 coincide coincide NOUN NN Number=Sing 15 conj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 422 # sent_id = 1 # text = We give characterizations, for various fragments of geometric logic, of the class of theories classified by a locally connected (respectively connected and locally connected, atomic, compact, presheaf) topos, and exploit the existence of multiple sites of definition for a given topos to establish various results on quotients of theories of presheaf type. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 characterizations characterization NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 2 punct _ _ 5 for for ADP IN _ 2 prep _ _ 6 various various ADJ JJ Degree=Pos 7 amod _ _ 7 fragments fragment NOUN NNS Number=Plur 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 geometric geometric ADJ JJ Degree=Pos 10 amod _ _ 10 logic logic NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 7 punct _ _ 12 of of ADP IN _ 7 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 class class NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 theories theory NOUN NNS Number=Plur 15 pobj _ _ 17 classified classify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 acl _ _ 18 by by ADP IN _ 17 agent _ _ 19 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 20 locally locally ADV RB _ 21 advmod _ _ 21 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 35 amod _ _ 22 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 35 punct _ SpaceAfter=No 23 respectively respectively ADV RB _ 24 advmod _ _ 24 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 35 amod _ _ 25 and and CCONJ CC ConjType=Cmp 24 cc _ _ 26 locally locally ADV RB _ 27 advmod _ _ 27 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 conj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 35 punct _ _ 29 atomic atomic ADJ JJ Degree=Pos 33 amod _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 29 punct _ _ 31 compact compact ADJ JJ Degree=Pos 29 conj _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 31 punct _ _ 33 presheaf presheaf ADJ JJ Degree=Pos 35 amod _ SpaceAfter=No 34 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 35 punct _ _ 35 topos topos NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 36 , , PUNCT , PunctType=Comm 2 punct _ _ 37 and and CCONJ CC ConjType=Cmp 2 cc _ _ 38 exploit exploit VERB VB VerbForm=Inf 2 conj _ _ 39 the the DET DT Definite=Def|PronType=Art 40 det _ _ 40 existence existence NOUN NN Number=Sing 38 dobj _ _ 41 of of ADP IN _ 40 prep _ _ 42 multiple multiple ADJ JJ Degree=Pos 43 amod _ _ 43 sites site NOUN NNS Number=Plur 41 pobj _ _ 44 of of ADP IN _ 43 prep _ _ 45 definition definition NOUN NN Number=Sing 44 pobj _ _ 46 for for ADP IN _ 38 prep _ _ 47 a a DET DT Definite=Ind|PronType=Art 49 det _ _ 48 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 49 amod _ _ 49 topos topo NOUN NNS Number=Plur 46 pobj _ _ 50 to to PART TO _ 51 aux _ _ 51 establish establish VERB VB VerbForm=Inf 38 advcl _ _ 52 various various ADJ JJ Degree=Pos 53 amod _ _ 53 results result NOUN NNS Number=Plur 51 dobj _ _ 54 on on ADP IN _ 51 prep _ _ 55 quotients quotient NOUN NNS Number=Plur 54 pobj _ _ 56 of of ADP IN _ 55 prep _ _ 57 theories theory NOUN NNS Number=Plur 56 pobj _ _ 58 of of ADP IN _ 57 prep _ _ 59 presheaf presheaf ADJ JJ Degree=Pos 60 amod _ _ 60 type type NOUN NN Number=Sing 58 pobj _ SpaceAfter=No 61 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 423 # sent_id = 1 # text = We prove that the 2 - category of closed categories of Eilenberg and Kelly is equivalent to a suitable full 2 - subcategory of the 2 - category of closed multicategories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 15 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 2 2 NUM CD NumType=Card 7 nummod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 category category NOUN NN Number=Sing 15 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 closed closed ADJ JJ Degree=Pos 10 amod _ _ 10 categories category NOUN NNS Number=Plur 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 Eilenberg Eilenberg PROPN NNP Number=Sing 11 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 Kelly Kelly PROPN NNP Number=Sing 12 conj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 16 equivalent equivalent ADJ JJ Degree=Pos 15 acomp _ _ 17 to to ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 19 suitable suitable ADJ JJ Degree=Pos 23 amod _ _ 20 full full ADJ JJ Degree=Pos 23 amod _ _ 21 2 2 NUM CD NumType=Card 23 nummod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 subcategory subcategory NOUN NN Number=Sing 17 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 28 det _ _ 26 2 2 NUM CD NumType=Card 28 nummod _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 category category NOUN NN Number=Sing 24 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 closed closed ADJ JJ Degree=Pos 31 amod _ _ 31 multicategories multicategorie NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 424 # sent_id = 1 # text = It is shown how the theory of commutative monads provides an axiomatic framework for several aspects of distribution theory in a broad sense, including probability distributions, physical extensive quantities, and Schwartz distributions of compact support. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 how how SCONJ WRB _ 10 advmod _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 theory theory NOUN NN Number=Sing 10 nsubj _ _ 7 of of ADP IN _ 6 prep _ _ 8 commutative commutative ADJ JJ Degree=Pos 9 amod _ _ 9 monads monad NOUN NNS Number=Plur 7 pobj _ _ 10 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 11 an an DET DT Definite=Ind|PronType=Art 13 det _ _ 12 axiomatic axiomatic ADJ JJ Degree=Pos 13 amod _ _ 13 framework framework NOUN NN Number=Sing 10 dobj _ _ 14 for for ADP IN _ 13 prep _ _ 15 several several ADJ JJ Degree=Pos 16 amod _ _ 16 aspects aspect NOUN NNS Number=Plur 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 distribution distribution NOUN NN Number=Sing 19 compound _ _ 19 theory theory NOUN NN Number=Sing 17 pobj _ _ 20 in in ADP IN _ 10 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 22 broad broad ADJ JJ Degree=Pos 23 amod _ _ 23 sense sense NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 10 punct _ _ 25 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 prep _ _ 26 probability probability NOUN NN Number=Sing 27 compound _ _ 27 distributions distribution NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 27 punct _ _ 29 physical physical ADJ JJ Degree=Pos 31 amod _ _ 30 extensive extensive ADJ JJ Degree=Pos 31 amod _ _ 31 quantities quantity NOUN NNS Number=Plur 27 conj _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 31 punct _ _ 33 and and CCONJ CC ConjType=Cmp 31 cc _ _ 34 Schwartz Schwartz PROPN NNP Number=Sing 35 compound _ _ 35 distributions distribution NOUN NNS Number=Plur 31 conj _ _ 36 of of ADP IN _ 35 prep _ _ 37 compact compact ADJ JJ Degree=Pos 38 amod _ _ 38 support support NOUN NN Number=Sing 36 pobj _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = Among the particular aspects considered here are the notions of convolution, density, expectation, and conditional probability. 1 Among among ADP IN _ 7 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 particular particular ADJ JJ Degree=Pos 4 amod _ _ 4 aspects aspect NOUN NNS Number=Plur 1 pobj _ _ 5 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 acl _ _ 6 here here ADV RB PronType=Dem 5 advmod _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 notions notion NOUN NNS Number=Plur 7 nsubj _ _ 10 of of ADP IN _ 9 prep _ _ 11 convolution convolution NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 density density NOUN NN Number=Sing 11 conj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 13 punct _ _ 15 expectation expectation NOUN NN Number=Sing 13 conj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 and and CCONJ CC ConjType=Cmp 15 cc _ _ 18 conditional conditional ADJ JJ Degree=Pos 19 amod _ _ 19 probability probability NOUN NN Number=Sing 15 conj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # doc_id = 425 # sent_id = 1 # text = We construct, for any double complex in an abelian category, certain ``short - distance'' maps, and an exact sequence involving these, instances of which can be pieced together to give the ``long - distance'' maps and exact sequences of results such as the Snake Lemma. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 2 punct _ _ 4 for for ADP IN _ 2 prep _ _ 5 any any DET DT _ 7 det _ _ 6 double double ADJ JJ Degree=Pos 7 amod _ _ 7 complex complex NOUN NN Number=Sing 4 pobj _ _ 8 in in ADP IN _ 7 prep _ _ 9 an an DET DT Definite=Ind|PronType=Art 11 det _ _ 10 abelian abelian ADJ JJ Degree=Pos 11 amod _ _ 11 category category NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 2 punct _ _ 13 certain certain ADJ JJ Degree=Pos 20 amod _ _ 14 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 20 punct _ SpaceAfter=No 15 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 20 punct _ SpaceAfter=No 16 short short ADJ JJ Degree=Pos 18 amod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 distance distance NOUN NN Number=Sing 20 nmod _ SpaceAfter=No 19 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 20 punct _ _ 20 maps map NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 and and CCONJ CC ConjType=Cmp 20 cc _ _ 23 an an DET DT Definite=Ind|PronType=Art 25 det _ _ 24 exact exact ADJ JJ Degree=Pos 25 amod _ _ 25 sequence sequence NOUN NN Number=Sing 20 conj _ _ 26 involving involve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 25 acl _ _ 27 these these PRON DT Number=Plur|PronType=Dem 26 dobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 34 punct _ _ 29 instances instance NOUN NNS Number=Plur 34 nsubjpass _ _ 30 of of ADP IN _ 29 prep _ _ 31 which which PRON WDT _ 30 pobj _ _ 32 can can AUX MD VerbForm=Fin 34 aux _ _ 33 be be AUX VB VerbForm=Inf 34 auxpass _ _ 34 pieced piece VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 35 together together ADV RB _ 34 advmod _ _ 36 to to PART TO _ 37 aux _ _ 37 give give VERB VB VerbForm=Inf 34 xcomp _ _ 38 the the DET DT Definite=Def|PronType=Art 45 det _ _ 39 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 45 punct _ SpaceAfter=No 40 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 45 punct _ SpaceAfter=No 41 long long ADJ JJ Degree=Pos 43 amod _ _ 42 - - PUNCT HYPH PunctType=Dash 43 punct _ _ 43 distance distance NOUN NN Number=Sing 45 nmod _ SpaceAfter=No 44 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 45 punct _ _ 45 maps map NOUN NNS Number=Plur 37 dobj _ _ 46 and and CCONJ CC ConjType=Cmp 45 cc _ _ 47 exact exact ADJ JJ Degree=Pos 48 amod _ _ 48 sequences sequence NOUN NNS Number=Plur 45 conj _ _ 49 of of ADP IN _ 45 prep _ _ 50 results result NOUN NNS Number=Plur 49 pobj _ _ 51 such such ADJ JJ Degree=Pos 52 amod _ _ 52 as as ADP IN _ 50 prep _ _ 53 the the DET DT Definite=Def|PronType=Art 55 det _ _ 54 Snake Snake PROPN NNP Number=Sing 55 compound _ _ 55 Lemma Lemma PROPN NNP Number=Sing 52 pobj _ SpaceAfter=No 56 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Further applications are given. 1 Further further ADJ JJ Degree=Pos 2 amod _ _ 2 applications application NOUN NNS Number=Plur 4 nsubjpass _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 5 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = We also note what the building blocks of an analogous study of triple complexes would be. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 note note VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 what what PRON WP _ 16 attr _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 building building NOUN NN Number=Sing 7 compound _ _ 7 blocks block NOUN NNS Number=Plur 16 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 an an DET DT Definite=Ind|PronType=Art 11 det _ _ 10 analogous analogous ADJ JJ Degree=Pos 11 amod _ _ 11 study study NOUN NN Number=Sing 8 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 triple triple ADJ JJ Degree=Pos 14 amod _ _ 14 complexes complex NOUN NNS Number=Plur 12 pobj _ _ 15 would would AUX MD VerbForm=Fin 16 aux _ _ 16 be be AUX VB VerbForm=Inf 3 ccomp _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 426 # sent_id = 1 # text = Based on a study of the 2 - category of weak distributive laws, we describe a method of iterating Street's weak wreath product construction. 1 Based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 prep _ _ 2 on on ADP IN _ 1 prep _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 study study NOUN NN Number=Sing 2 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 9 det _ _ 7 2 2 NUM CD NumType=Card 9 nummod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 category category NOUN NN Number=Sing 5 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 weak weak ADJ JJ Degree=Pos 13 amod _ _ 12 distributive distributive ADJ JJ Degree=Pos 13 amod _ _ 13 laws law NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 16 punct _ _ 15 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 16 nsubj _ _ 16 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 method method NOUN NN Number=Sing 16 dobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 iterating iterate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 19 pcomp _ _ 21 Street Street PROPN NNP Number=Sing 26 poss _ SpaceAfter=No 22 's 's PART POS _ 21 case _ _ 23 weak weak ADJ JJ Degree=Pos 26 amod _ _ 24 wreath wreath NOUN NN Number=Sing 25 compound _ _ 25 product product NOUN NN Number=Sing 26 compound _ _ 26 construction construction NOUN NN Number=Sing 20 dobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 2 # text = That is, for any 2 - category $ cal K $ and for any non - negative integer $ n $ , we introduce 2 - categories $ Wdl^{(n)}(cal K) $ , of $ (n+1) $ - tuples of monads in $ cal K $ pairwise related by weak distributive laws obeying the Yang - Baxter equation. 1 That that ADV RB _ 2 advmod _ _ 2 is is ADV RB _ 20 advmod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 20 punct _ _ 4 for for ADP IN _ 20 prep _ _ 5 any any DET DT _ 8 det _ _ 6 2 2 NUM CD NumType=Card 8 nummod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 category category NOUN NN Number=Sing 4 pobj _ _ 9 $ cal K $ $ cal k $ SYM $ _ 8 nummod _ _ 10 and and CCONJ CC ConjType=Cmp 8 cc _ _ 11 for for ADP IN _ 4 conj _ _ 12 any any DET DT _ 16 det _ _ 13 non non ADJ JJ Degree=Pos 15 amod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 negative negative ADJ JJ Degree=Pos 16 amod _ _ 16 integer integer NOUN NN Number=Sing 11 pobj _ _ 17 $ n $ $ n $ SYM $ _ 16 appos _ _ 18 , , PUNCT , PunctType=Comm 20 punct _ _ 19 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 20 nsubj _ _ 20 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 21 2 2 NUM CD NumType=Card 23 nummod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 categories category NOUN NNS Number=Plur 24 compound _ _ 24 $ Wdl^{(n)}(cal K) $ $ wdl^{(n)}(cal k) $ SYM $ _ 20 dobj _ _ 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 of of ADP IN _ 24 prep _ _ 27 $ (n+1) $ $ (n+1) $ SYM $ _ 29 compound _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 tuples tuple NOUN NNS Number=Plur 26 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 monads monad NOUN NNS Number=Plur 30 pobj _ _ 32 in in ADP IN _ 29 prep _ _ 33 $ cal K $ $ cal k $ SYM $ _ 34 nmod _ _ 34 pairwise pairwise NOUN NN Number=Sing 32 pobj _ _ 35 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 34 acl _ _ 36 by by ADP IN _ 35 agent _ _ 37 weak weak ADJ JJ Degree=Pos 39 amod _ _ 38 distributive distributive ADJ JJ Degree=Pos 39 amod _ _ 39 laws law NOUN NNS Number=Plur 36 pobj _ _ 40 obeying obey VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 39 acl _ _ 41 the the DET DT Definite=Def|PronType=Art 45 det _ _ 42 Yang Yang PROPN NNP Number=Sing 44 compound _ _ 43 - - PUNCT HYPH PunctType=Dash 44 punct _ _ 44 Baxter Baxter PROPN NNP Number=Sing 45 compound _ _ 45 equation equation NOUN NN Number=Sing 40 dobj _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # sent_id = 3 # text = The first instance $ Wdl^{(0)}(cal K) $ coincides with $ Mnd(cal K) $ , the usual 2 - category of monads in $ cal K $ , and for other values of $ n $ , $ Wdl^{(n)}(cal K) $ contains $ Mnd^{n+1}(cK) $ as a full 2 - subcategory. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 first first ADJ JJ Degree=Pos 3 amod _ _ 3 instance instance NOUN NN Number=Sing 5 nsubj _ _ 4 $ Wdl^{(0)}(cal K) $ $ wdl^{(0)}(cal k) $ SYM $ _ 5 nsubj _ _ 5 coincides coincide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 with with ADP IN _ 5 prep _ _ 7 $ Mnd(cal K) $ $ mnd(cal k) $ SYM $ _ 6 pobj _ _ 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 the the DET DT Definite=Def|PronType=Art 13 det _ _ 10 usual usual ADJ JJ Degree=Pos 13 amod _ _ 11 2 2 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 category category NOUN NN Number=Sing 7 appos _ _ 14 of of ADP IN _ 13 prep _ _ 15 monads monad NOUN NNS Number=Plur 14 pobj _ _ 16 in in ADP IN _ 13 prep _ _ 17 $ cal K $ $ cal k $ SYM $ _ 16 pobj _ _ 18 , , PUNCT , PunctType=Comm 5 punct _ _ 19 and and CCONJ CC ConjType=Cmp 5 cc _ _ 20 for for ADP IN _ 27 prep _ _ 21 other other ADJ JJ Degree=Pos 22 amod _ _ 22 values value NOUN NNS Number=Plur 20 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 $ n $ $ n $ SYM $ _ 23 pobj _ _ 25 , , PUNCT , PunctType=Comm 27 punct _ _ 26 $ Wdl^{(n)}(cal K) $ $ wdl^{(n)}(cal k) $ SYM $ _ 27 nsubj _ _ 27 contains contain VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 conj _ _ 28 $ Mnd^{n+1}(cK) $ $ mnd^{n+1}(ck) $ SYM $ _ 27 dep _ _ 29 as as ADP IN _ 28 prep _ _ 30 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 31 full full ADJ JJ Degree=Pos 34 amod _ _ 32 2 2 NUM CD NumType=Card 34 nummod _ _ 33 - - PUNCT HYPH PunctType=Dash 34 punct _ _ 34 subcategory subcategory NOUN NN Number=Sing 29 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 27 punct _ SpaceAfter=No # sent_id = 4 # text = For the local idempotent closure $ overline cal K $ of $ cal K $ , extending the multiplication of the 2 - monad $ Mnd $ , we equip these 2 - categories with $ n $ possible `weak wreath product' 2 - functors $ Wdl^{(n)}(ocK)to Wdl^{(n - 1)}(overline cal K) $ , such that all of their possible $ n $ - fold composites $ Wdl^{(n)}(overline cal K)to Wdl^{(0)}(overline cal K) $ are equal; that is, such that the weak wreath product is `associative'. 1 For for ADP IN _ 21 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 5 det _ _ 3 local local ADJ JJ Degree=Pos 5 amod _ _ 4 idempotent idempotent NOUN NN Number=Sing 5 amod _ _ 5 closure closure NOUN NN Number=Sing 1 pobj _ _ 6 $ overline cal K $ $ overline cal k $ SYM $ _ 5 prep _ _ 7 of of ADP IN _ 6 prep _ _ 8 $ cal K $ $ cal k $ SYM $ _ 7 pobj _ _ 9 , , PUNCT , PunctType=Comm 21 punct _ _ 10 extending extend VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 21 advcl _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 multiplication multiplication NOUN NN Number=Sing 10 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 18 det _ _ 15 2 2 NUM CD NumType=Card 17 nummod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 monad monad NOUN NNS Number=Plur 18 compound _ _ 18 $ Mnd $ $ mnd $ SYM $ _ 13 pobj _ _ 19 , , PUNCT , PunctType=Comm 21 punct _ _ 20 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 21 nsubj _ _ 21 equip equip VERB VBP Tense=Pres|VerbForm=Fin 54 ccomp _ _ 22 these these DET DT Number=Plur|PronType=Dem 25 det _ _ 23 2 2 NUM CD NumType=Card 25 nummod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 categories category NOUN NNS Number=Plur 21 dobj _ _ 26 with with ADP IN _ 21 prep _ _ 27 $ n $ $ n $ SYM $ _ 32 quantmod _ _ 28 possible possible ADJ JJ Degree=Pos 32 amod _ _ 29 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 32 punct _ SpaceAfter=No 30 weak weak ADJ JJ Degree=Pos 32 amod _ _ 31 wreath wreath NOUN NN Number=Sing 32 compound _ _ 32 product product NOUN NN Number=Sing 37 poss _ SpaceAfter=No 33 ' ' PART POS _ 32 case _ _ 34 2 2 NUM CD NumType=Card 36 nummod _ _ 35 - - PUNCT HYPH PunctType=Dash 36 punct _ _ 36 functors functor NOUN NNS Number=Plur 37 compound _ _ 37 $ Wdl^{(n)}(ocK)to Wdl^{(n - 1)}(overline cal K) $ $ wdl^{(n)}(ock)to wdl^{(n - 1)}(overline cal k) $ SYM $ _ 26 pobj _ _ 38 , , PUNCT , PunctType=Comm 37 punct _ _ 39 such such ADJ JJ Degree=Pos 50 amod _ _ 40 that that SCONJ IN _ 50 mark _ _ 41 all all PRON DT _ 50 nsubj _ _ 42 of of ADP IN _ 41 prep _ _ 43 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 46 poss _ _ 44 possible possible ADJ JJ Degree=Pos 43 acomp _ _ 45 $ n $ $ n $ SYM $ _ 44 nmod _ _ 46 - - ADJ JJ Degree=Pos 48 amod _ _ 47 fold fold ADJ JJ Degree=Pos 48 amod _ _ 48 composites composite NOUN NNS Number=Plur 42 pobj _ _ 49 $ Wdl^{(n)}(overline cal K)to Wdl^{(0)}(overline cal K) $ $ wdl^{(n)}(overline cal k)to wdl^{(0)}(overline cal k) $ SYM $ _ 41 appos _ _ 50 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 21 ccomp _ _ 51 equal equal ADJ JJ Degree=Pos 50 acomp _ SpaceAfter=No 52 ; ; PUNCT : _ 54 punct _ _ 53 that that PRON DT Number=Sing|PronType=Dem 54 nsubj _ _ 54 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 55 , , PUNCT , PunctType=Comm 54 punct _ _ 56 such such ADJ JJ Degree=Pos 54 acomp _ _ 57 that that SCONJ IN _ 62 mark _ _ 58 the the DET DT Definite=Def|PronType=Art 61 det _ _ 59 weak weak ADJ JJ Degree=Pos 61 amod _ _ 60 wreath wreath NOUN NN Number=Sing 61 compound _ _ 61 product product NOUN NN Number=Sing 62 nsubj _ _ 62 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 54 ccomp _ _ 63 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 62 punct _ SpaceAfter=No 64 associative associative NOUN NN Number=Sing 62 acomp _ SpaceAfter=No 65 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 62 punct _ SpaceAfter=No 66 . . PUNCT . PunctType=Peri 54 punct _ SpaceAfter=No # sent_id = 5 # text = Whenever idempotent 2 - cells in $ cal K $ split, this leads to pseudofunctors $ Wdl^{(n)}(cal K)to Wdl^{(n - 1)}(cal K) $ obeying the associativity property up - to isomorphism. 1 Whenever whenever SCONJ WRB _ 2 advmod _ _ 2 idempotent idempotent ADJ JJ Degree=Pos 5 amod _ _ 3 2 2 NUM CD NumType=Card 5 nummod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 cells cell NOUN NNS Number=Plur 11 advcl _ _ 6 in in ADP IN _ 5 prep _ _ 7 $ cal K $ $ cal k $ SYM $ _ 8 det _ _ 8 split split NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 11 punct _ _ 10 this this PRON DT Number=Sing|PronType=Dem 11 nsubj _ _ 11 leads lead VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 to to ADP IN _ 11 prep _ _ 13 pseudofunctors pseudofunctor NOUN NNS Number=Plur 12 pobj _ _ 14 $ Wdl^{(n)}(cal K)to Wdl^{(n - 1)}(cal K) $ $ wdl^{(n)}(cal k)to wdl^{(n - 1)}(cal k) $ SYM $ _ 11 dobj _ _ 15 obeying obey VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 acl _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 associativity associativity NOUN NN Number=Sing 18 compound _ _ 18 property property NOUN NN Number=Sing 15 dobj _ _ 19 up up ADP IN _ 22 nmod _ _ 20 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 21 to to ADP IN _ 19 prep _ _ 22 isomorphism isomorphism NOUN NN Number=Sing 15 dobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 6 # text = We present a practically important occurrence of an iterated weak wreath product: the algebra of observable quantities in an Ising type quantum spin chain where the spins take their values in a dual pair of finite weak Hopf algebras. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 4 practically practically ADV RB _ 5 advmod _ _ 5 important important ADJ JJ Degree=Pos 6 amod _ _ 6 occurrence occurrence NOUN NN Number=Sing 2 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 9 iterated iterate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 10 weak weak ADJ JJ Degree=Pos 12 amod _ _ 11 wreath wreath NOUN NN Number=Sing 12 compound _ _ 12 product product NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 13 : : PUNCT : _ 6 punct _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 algebra algebra NOUN NN Number=Sing 6 appos _ _ 16 of of ADP IN _ 15 prep _ _ 17 observable observable ADJ JJ Degree=Pos 18 amod _ _ 18 quantities quantity NOUN NNS Number=Plur 16 pobj _ _ 19 in in ADP IN _ 15 prep _ _ 20 an an DET DT Definite=Ind|PronType=Art 25 det _ _ 21 Ising Ising PROPN NNP Number=Sing 23 compound _ _ 22 type type NOUN NN Number=Sing 23 compound _ _ 23 quantum quantum NOUN NN Number=Sing 25 compound _ _ 24 spin spin NOUN NN Number=Sing 25 compound _ _ 25 chain chain NOUN NN Number=Sing 19 pobj _ _ 26 where where SCONJ WRB _ 29 advmod _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 spins spin NOUN NNS Number=Plur 29 nsubj _ _ 29 take take VERB VBP Tense=Pres|VerbForm=Fin 25 relcl _ _ 30 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 31 poss _ _ 31 values value NOUN NNS Number=Plur 29 dobj _ _ 32 in in ADP IN _ 29 prep _ _ 33 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 34 dual dual ADJ JJ Degree=Pos 35 amod _ _ 35 pair pair NOUN NN Number=Sing 32 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 finite finite ADJ JJ Degree=Pos 40 nmod _ _ 38 weak weak ADJ JJ Degree=Pos 40 amod _ _ 39 Hopf Hopf PROPN NNP Number=Sing 40 compound _ _ 40 algebras algebra NOUN NNS Number=Plur 36 pobj _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 7 # text = We also construct a fully faithful embedding of $ Wdl^{(n)}(overline cal K) $ into the 2 - category of commutative $ n+1 $ dimensional cubes in $ Mnd(overline cal K) $ (hence into the 2 - category of commutative $ n+1 $ dimensional cubes in $ cal K $ whenever $ cal K $ has Eilenberg - Moore objects and its idempotent 2 - cells split). 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 construct construct VERB VBP Tense=Pres|VerbForm=Fin 38 ccomp _ _ 4 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 5 fully fully ADV RB _ 6 advmod _ _ 6 faithful faithful ADJ JJ Degree=Pos 7 amod _ _ 7 embedding embedding NOUN NN Number=Sing 3 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 $ Wdl^{(n)}(overline cal K) $ $ wdl^{(n)}(overline cal k) $ SYM $ _ 8 pobj _ _ 10 into into ADP IN _ 3 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 14 det _ _ 12 2 2 NUM CD NumType=Card 14 nummod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 category category NOUN NN Number=Sing 10 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 commutative commutative ADJ JJ Degree=Pos 19 amod _ _ 17 $ n+1 $ $ n+1 $ SYM $ _ 19 nmod _ _ 18 dimensional dimensional ADJ JJ Degree=Pos 19 amod _ _ 19 cubes cube NOUN NNS Number=Plur 15 pobj _ _ 20 in in ADP IN _ 19 prep _ _ 21 $ Mnd(overline cal K) $ $ mnd(overline cal k) $ SYM $ _ 20 pobj _ _ 22 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 3 punct _ SpaceAfter=No 23 hence hence ADV RB _ 24 advmod _ _ 24 into into ADP IN _ 38 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 28 det _ _ 26 2 2 NUM CD NumType=Card 28 nummod _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 category category NOUN NN Number=Sing 24 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 commutative commutative ADJ JJ Degree=Pos 33 amod _ _ 31 $ n+1 $ $ n+1 $ SYM $ _ 33 nmod _ _ 32 dimensional dimensional ADJ JJ Degree=Pos 33 amod _ _ 33 cubes cube NOUN NNS Number=Plur 29 pobj _ _ 34 in in ADP IN _ 28 prep _ _ 35 $ cal K $ $ cal k $ SYM $ _ 34 pobj _ _ 36 whenever whenever SCONJ WRB _ 37 advmod _ _ 37 $ cal K $ $ cal k $ SYM $ _ 38 nsubj _ _ 38 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 39 Eilenberg Eilenberg PROPN NNP Number=Sing 41 compound _ _ 40 - - PUNCT HYPH PunctType=Dash 41 punct _ _ 41 Moore Moore PROPN NNP Number=Sing 42 compound _ _ 42 objects object NOUN NNS Number=Plur 38 dobj _ _ 43 and and CCONJ CC ConjType=Cmp 42 cc _ _ 44 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 48 poss _ _ 45 idempotent idempotent ADJ JJ Degree=Pos 48 amod _ _ 46 2 2 NUM CD NumType=Card 48 nummod _ _ 47 - - PUNCT HYPH PunctType=Dash 48 punct _ _ 48 cells cell NOUN NNS Number=Plur 49 nsubj _ _ 49 split split VERB VBP Tense=Pres|VerbForm=Fin 42 conj _ SpaceAfter=No 50 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 42 punct _ SpaceAfter=No 51 . . PUNCT . PunctType=Peri 38 punct _ SpaceAfter=No # sent_id = 8 # text = Finally we give a sufficient and necessary condition on a monad in $ overline cal K $ to be isomorphic to an $ n $ - ary weak wreath product. 1 Finally finally ADV RB _ 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 5 sufficient sufficient ADJ JJ Degree=Pos 8 amod _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 necessary necessary ADJ JJ Degree=Pos 5 conj _ _ 8 condition condition NOUN NN Number=Sing 3 dobj _ _ 9 on on ADP IN _ 3 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 monad monad NOUN NNS Number=Plur 9 pobj _ _ 12 in in ADP IN _ 11 prep _ _ 13 $ overline cal K $ $ overline cal k $ SYM $ _ 12 pobj _ _ 14 to to PART TO _ 15 aux _ _ 15 be be AUX VB VerbForm=Inf 3 advcl _ _ 16 isomorphic isomorphic ADJ JJ Degree=Pos 15 acomp _ _ 17 to to ADP IN _ 15 prep _ _ 18 an an DET DT Definite=Ind|PronType=Art 24 det _ _ 19 $ n $ $ n $ SYM $ _ 21 quantmod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 ary ary PROPN NNP Number=Sing 24 nmod _ _ 22 weak weak ADJ JJ Degree=Pos 24 amod _ _ 23 wreath wreath NOUN NN Number=Sing 24 compound _ _ 24 product product NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 427 # sent_id = 1 # text = We show that colax idempotent pseudomonads and their algebras can be presented in terms of right Kan extensions. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 12 mark _ _ 4 colax colax ADJ JJ Degree=Pos 6 amod _ _ 5 idempotent idempotent ADJ JJ Degree=Pos 6 amod _ _ 6 pseudomonads pseudomonad NOUN NNS Number=Plur 12 nsubjpass _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 9 poss _ _ 9 algebras algebra NOUN NNS Number=Plur 6 conj _ _ 10 can can AUX MD VerbForm=Fin 12 aux _ _ 11 be be AUX VB VerbForm=Inf 12 auxpass _ _ 12 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 13 in in ADP IN _ 12 prep _ _ 14 terms term NOUN NNS Number=Plur 13 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 right right ADJ JJ Degree=Pos 18 amod _ _ 17 Kan Kan PROPN NNP Number=Sing 18 compound _ _ 18 extensions extension NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Dually, lax idempotent pseudomonads and their algebras can be presented in terms of left Kan extensions. 1 Dually Dually PROPN NNP Number=Sing 11 npadvmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 11 punct _ _ 3 lax lax ADJ JJ Degree=Pos 5 amod _ _ 4 idempotent idempotent ADJ JJ Degree=Pos 5 amod _ _ 5 pseudomonads pseudomonad NOUN NNS Number=Plur 11 nsubjpass _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 8 poss _ _ 8 algebras algebra NOUN NNS Number=Plur 5 conj _ _ 9 can can AUX MD VerbForm=Fin 11 aux _ _ 10 be be AUX VB VerbForm=Inf 11 auxpass _ _ 11 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 12 in in ADP IN _ 11 prep _ _ 13 terms term NOUN NNS Number=Plur 12 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 16 Kan Kan PROPN NNP Number=Sing 17 compound _ _ 17 extensions extension NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 3 # text = We also show that a distributive law of a colax idempotent pseudomonad over a lax idempotent pseudomonad has a presentation in terms of Kan extensions. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 18 mark _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 distributive distributive ADJ JJ Degree=Pos 7 amod _ _ 7 law law NOUN NN Number=Sing 18 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 10 colax colax ADJ JJ Degree=Pos 12 amod _ _ 11 idempotent idempotent ADJ JJ Degree=Pos 12 amod _ _ 12 pseudomonad pseudomonad NOUN NNS Number=Plur 8 pobj _ _ 13 over over ADP IN _ 7 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 15 lax lax ADJ JJ Degree=Pos 17 amod _ _ 16 idempotent idempotent ADJ JJ Degree=Pos 17 amod _ _ 17 pseudomonad pseudomonad NOUN NNS Number=Plur 13 pobj _ _ 18 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 presentation presentation NOUN NN Number=Sing 18 dobj _ _ 21 in in ADP IN _ 20 prep _ _ 22 terms term NOUN NNS Number=Plur 21 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 Kan Kan PROPN NNP Number=Sing 25 compound _ _ 25 extensions extension NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 428 # sent_id = 1 # text = The paper presents algebraic and logical developments. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 presents present VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 algebraic algebraic ADJ JJ Degree=Pos 7 amod _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 logical logical ADJ JJ Degree=Pos 4 conj _ _ 7 developments development NOUN NNS Number=Plur 3 dobj _ SpaceAfter=No 8 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = From the algebraic viewpoint, we introduce Monadic Equational Systems as an abstract enriched notion of equational presentation. 1 From from ADP IN _ 7 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 algebraic algebraic ADJ JJ Degree=Pos 4 amod _ _ 4 viewpoint viewpoint NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 Monadic Monadic PROPN NNP Number=Sing 10 compound _ _ 9 Equational Equational PROPN NNP Number=Sing 10 compound _ _ 10 Systems Systems PROPN NNPS Number=Plur 7 dobj _ _ 11 as as ADP IN _ 7 prep _ _ 12 an an DET DT Definite=Ind|PronType=Art 15 det _ _ 13 abstract abstract ADJ JJ Degree=Pos 15 amod _ _ 14 enriched enriched ADJ JJ Degree=Pos 15 amod _ _ 15 notion notion NOUN NN Number=Sing 11 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 equational equational ADJ JJ Degree=Pos 18 amod _ _ 18 presentation presentation NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = From the logical viewpoint, we provide Equational Metalogic as a general formal deductive system for the derivability of equational consequences. 1 From from ADP IN _ 7 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 logical logical ADJ JJ Degree=Pos 4 amod _ _ 4 viewpoint viewpoint NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 Equational Equational PROPN NNP Number=Sing 9 compound _ _ 9 Metalogic Metalogic PROPN NNP Number=Sing 7 dobj _ _ 10 as as ADP IN _ 7 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 12 general general ADJ JJ Degree=Pos 15 amod _ _ 13 formal formal ADJ JJ Degree=Pos 15 amod _ _ 14 deductive deductive ADJ JJ Degree=Pos 15 amod _ _ 15 system system NOUN NN Number=Sing 10 pobj _ _ 16 for for ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 derivability derivability NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 equational equational ADJ JJ Degree=Pos 21 amod _ _ 21 consequences consequence NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = Relating the two, a canonical model theory for Monadic Equational Systems is given and for it the soundness of Equational Metalogic is established. 1 Relating relate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 advcl _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 two two NUM CD NumType=Card 1 dobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 3 punct _ _ 5 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 6 canonical canonical ADJ JJ Degree=Pos 7 amod _ _ 7 model model NOUN NN Number=Sing 8 compound _ _ 8 theory theory NOUN NN Number=Sing 14 nsubjpass _ _ 9 for for ADP IN _ 8 prep _ _ 10 Monadic Monadic PROPN NNP Number=Sing 12 compound _ _ 11 Equational Equational PROPN NNP Number=Sing 12 compound _ _ 12 Systems Systems PROPN NNPS Number=Plur 9 pobj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 for for ADP IN _ 24 prep _ _ 17 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 16 pobj _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 soundness soundness NOUN NN Number=Sing 24 nsubjpass _ _ 20 of of ADP IN _ 19 prep _ _ 21 Equational Equational PROPN NNP Number=Sing 22 compound _ _ 22 Metalogic Metalogic PROPN NNP Number=Sing 20 pobj _ _ 23 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 auxpass _ _ 24 established establish VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 conj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 24 punct _ SpaceAfter=No # sent_id = 5 # text = This development involves a study of clone and double - dualization structures. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 development development NOUN NN Number=Sing 3 nsubj _ _ 3 involves involve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 study study NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 clone clone VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 nmod _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 double double ADJ JJ Degree=Pos 11 amod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 dualization dualization NOUN NN Number=Sing 7 conj _ _ 12 structures structure NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = We also show that in the presence of free algebras %constructions the model theory of Monadic Equational Systems satisfies an internal strong - completeness property. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 5 mark _ _ 5 in in ADP IN _ 3 ccomp _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 presence presence NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 free free ADJ JJ Degree=Pos 10 amod _ _ 10 algebras algebra NOUN NNS Number=Plur 11 compound _ _ 11 % % NOUN NN Number=Sing 12 compound _ SpaceAfter=No 12 constructions construction NOUN NNS Number=Plur 8 pobj _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 model model NOUN NN Number=Sing 15 compound _ _ 15 theory theory NOUN NN Number=Sing 5 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 Monadic Monadic PROPN NNP Number=Sing 19 compound _ _ 18 Equational Equational PROPN NNP Number=Sing 19 compound _ _ 19 Systems Systems PROPN NNPS Number=Plur 20 compound _ _ 20 satisfies satisfie NOUN NNS Number=Plur 16 pobj _ _ 21 an an DET DT Definite=Ind|PronType=Art 26 det _ _ 22 internal internal ADJ JJ Degree=Pos 26 amod _ _ 23 strong strong ADJ JJ Degree=Pos 25 amod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 completeness completeness NOUN NN Number=Sing 26 compound _ _ 26 property property NOUN NN Number=Sing 20 dobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 429 # sent_id = 1 # text = We extend the notion of exact completion on a category with weak finite limits to Lawvere's elementary doctrines. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 extend extend VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 notion notion NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 exact exact ADJ JJ Degree=Pos 7 amod _ _ 7 completion completion NOUN NN Number=Sing 5 pobj _ _ 8 on on ADP IN _ 4 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 category category NOUN NN Number=Sing 8 pobj _ _ 11 with with ADP IN _ 10 prep _ _ 12 weak weak ADJ JJ Degree=Pos 14 amod _ _ 13 finite finite ADJ JJ Degree=Pos 14 compound _ _ 14 limits limit NOUN NNS Number=Plur 11 pobj _ _ 15 to to ADP IN _ 14 prep _ _ 16 Lawvere Lawvere PROPN NNP Number=Sing 19 poss _ SpaceAfter=No 17 's 's PART POS _ 16 case _ _ 18 elementary elementary ADJ JJ Degree=Pos 19 amod _ _ 19 doctrines doctrine NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We show how any such doctrine admits an elementary quotient completion, which is the universal solution to adding certain quotients. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 how how SCONJ WRB _ 7 advmod _ _ 4 any any DET DT _ 6 det _ _ 5 such such ADJ JJ Degree=Pos 6 amod _ _ 6 doctrine doctrine NOUN NN Number=Sing 7 nsubj _ _ 7 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 8 an an DET DT Definite=Ind|PronType=Art 11 det _ _ 9 elementary elementary ADJ JJ Degree=Pos 11 amod _ _ 10 quotient quotient NOUN NN Number=Sing 11 compound _ _ 11 completion completion NOUN NN Number=Sing 7 dobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 which which PRON WDT _ 14 nsubj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 relcl _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 universal universal ADJ JJ Degree=Pos 17 amod _ _ 17 solution solution NOUN NN Number=Sing 14 attr _ _ 18 to to ADP IN _ 17 prep _ _ 19 adding add VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 18 pcomp _ _ 20 certain certain ADJ JJ Degree=Pos 21 amod _ _ 21 quotients quotient NOUN NNS Number=Plur 19 dobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We note that the elementary quotient completion can be obtained as the composite of two other universal constructions: one adds effective quotients, the other forces extensionality of morphisms. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 note note VERB VBP Tense=Pres|VerbForm=Fin 21 ccomp _ _ 3 that that SCONJ IN _ 10 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 elementary elementary ADJ JJ Degree=Pos 6 amod _ _ 6 quotient quotient NOUN NN Number=Sing 7 compound _ _ 7 completion completion NOUN NN Number=Sing 10 nsubjpass _ _ 8 can can AUX MD VerbForm=Fin 10 aux _ _ 9 be be AUX VB VerbForm=Inf 10 auxpass _ _ 10 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 11 as as ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 composite composite NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 two two NUM CD NumType=Card 18 nummod _ _ 16 other other ADJ JJ Degree=Pos 18 amod _ _ 17 universal universal ADJ JJ Degree=Pos 18 amod _ _ 18 constructions construction NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 19 : : PUNCT : _ 21 punct _ _ 20 one one NUM CD NumType=Card 21 nsubj _ _ 21 adds add VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 22 effective effective ADJ JJ Degree=Pos 23 amod _ _ 23 quotients quotient NOUN NNS Number=Plur 21 dobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 21 punct _ _ 25 the the DET DT Definite=Def|PronType=Art 27 det _ _ 26 other other ADJ JJ Degree=Pos 27 amod _ _ 27 forces force NOUN NNS Number=Plur 28 compound _ _ 28 extensionality extensionality NOUN NN Number=Sing 21 dobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 morphisms morphism NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 21 punct _ SpaceAfter=No # sent_id = 4 # text = We also prove that each construction preserves comprehension. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 7 mark _ _ 5 each each DET DT _ 6 det _ _ 6 construction construction NOUN NN Number=Sing 7 nsubj _ _ 7 preserves preserve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 8 comprehension comprehension NOUN NN Number=Sing 7 dobj _ SpaceAfter=No 9 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 430 # sent_id = 1 # text = Bruguières, Lack and Virelizier have recently obtained a vast generalization of Sweedler's Fundamental Theorem of Hopf modules, in which the role of the Hopf algebra is played by a bimonad. 1 Bruguières bruguière NOUN NNS Number=Plur 8 nsubj _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 1 punct _ _ 3 Lack Lack PROPN NNP Number=Sing 1 conj _ _ 4 and and CCONJ CC ConjType=Cmp 3 cc _ _ 5 Virelizier Virelizier PROPN NNP Number=Sing 3 conj _ _ 6 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 aux _ _ 7 recently recently ADV RB _ 8 advmod _ _ 8 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 vast vast ADJ JJ Degree=Pos 11 amod _ _ 11 generalization generalization NOUN NN Number=Sing 8 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 Sweedler Sweedler PROPN NNP Number=Sing 16 poss _ SpaceAfter=No 14 's 's PART POS _ 13 case _ _ 15 Fundamental fundamental ADJ JJ Degree=Pos 16 amod _ _ 16 Theorem Theorem PROPN NNP Number=Sing 12 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 Hopf Hopf PROPN NNP Number=Sing 19 compound _ _ 19 modules module NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 16 punct _ _ 21 in in ADP IN _ 30 prep _ _ 22 which which PRON WDT _ 21 pobj _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 role role NOUN NN Number=Sing 30 nsubjpass _ _ 25 of of ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 28 det _ _ 27 Hopf Hopf PROPN NNP Number=Sing 28 compound _ _ 28 algebra algebra NOUN NN Number=Sing 25 pobj _ _ 29 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 auxpass _ _ 30 played play VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 relcl _ _ 31 by by ADP IN _ 30 agent _ _ 32 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 33 bimonad bimonad NOUN NNS Number=Plur 31 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 2 # text = We present an extension of this result which involves, in addition to the bimonad, a comodule - monad and a algebra - comonoid over it. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 4 det _ _ 4 extension extension NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 this this DET DT Number=Sing|PronType=Dem 7 det _ _ 7 result result NOUN NN Number=Sing 5 pobj _ _ 8 which which PRON WDT _ 9 nsubj _ _ 9 involves involve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 relcl _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 in in ADP IN _ 9 prep _ _ 12 addition addition NOUN NN Number=Sing 11 pobj _ _ 13 to to ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 bimonad bimonad NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 4 punct _ _ 17 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 18 comodule comodule NOUN NN Number=Sing 20 compound _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 monad monad NOUN NNS Number=Plur 4 appos _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 23 algebra algebra NOUN NN Number=Sing 25 compound _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 comonoid comonoid NOUN NN Number=Sing 20 conj _ _ 26 over over ADP IN _ 25 prep _ _ 27 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 26 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = As an application we obtain a generalization of another classical theorem from the Hopf algebra literature, due to Schneider, which itself is an extension of Sweedler's result (to the setting of Hopf Galois extensions). 1 As as ADP IN _ 5 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 application application NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 generalization generalization NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 another another DET DT _ 11 det _ _ 10 classical classical ADJ JJ Degree=Pos 11 amod _ _ 11 theorem theorem NOUN NN Number=Sing 8 pobj _ _ 12 from from ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 16 det _ _ 14 Hopf Hopf PROPN NNP Number=Sing 16 compound _ _ 15 algebra algebra NOUN NN Number=Sing 16 compound _ _ 16 literature literature NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 11 punct _ _ 18 due due ADP IN _ 5 prep _ _ 19 to to ADP IN _ 18 pcomp _ _ 20 Schneider Schneider PROPN NNP Number=Sing 18 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 which which PRON WDT _ 24 nsubj _ _ 23 itself itself PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs|Reflex=Yes 22 appos _ _ 24 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 relcl _ _ 25 an an DET DT Definite=Ind|PronType=Art 26 det _ _ 26 extension extension NOUN NN Number=Sing 24 attr _ _ 27 of of ADP IN _ 26 prep _ _ 28 Sweedler Sweedler PROPN NNP Number=Sing 30 poss _ SpaceAfter=No 29 's 's PART POS _ 28 case _ _ 30 result result NOUN NN Number=Sing 27 pobj _ _ 31 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 20 punct _ SpaceAfter=No 32 to to ADP IN _ 5 prep _ _ 33 the the DET DT Definite=Def|PronType=Art 34 det _ _ 34 setting setting NOUN NN Number=Sing 32 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 Hopf Hopf PROPN NNP Number=Sing 37 compound _ _ 37 Galois Galois PROPN NNP Number=Sing 38 compound _ _ 38 extensions extension NOUN NNS Number=Plur 35 pobj _ SpaceAfter=No 39 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 5 punct _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 431 # sent_id = 1 # text = We study the composition of modules between lax functors of weak double categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 composition composition NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 modules module NOUN NNS Number=Plur 5 pobj _ _ 7 between between ADP IN _ 6 prep _ _ 8 lax lax ADJ JJ Degree=Pos 9 amod _ _ 9 functors functor NOUN NNS Number=Plur 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 weak weak ADJ JJ Degree=Pos 13 amod _ _ 12 double double ADJ JJ Degree=Pos 13 amod _ _ 13 categories category NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We adapt the bicategorical notion of local cocompleteness to weak double categories, which the codomain of our lax functors will be assumed to satisfy. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 adapt adapt VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 bicategorical bicategorical ADJ JJ Degree=Pos 5 amod _ _ 5 notion notion NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 local local ADJ JJ Degree=Pos 8 amod _ _ 8 cocompleteness cocompleteness NOUN NN Number=Sing 6 pobj _ _ 9 to to PART TO _ 10 aux _ _ 10 weak weak ADJ JJ Degree=Pos 12 amod _ _ 11 double double ADJ JJ Degree=Pos 12 amod _ _ 12 categories category NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 which which PRON WDT _ 25 dobj _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 codomain codomain NOUN NN Number=Sing 23 nsubjpass _ _ 17 of of ADP IN _ 16 prep _ _ 18 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 20 poss _ _ 19 lax lax ADJ JJ Degree=Pos 20 amod _ _ 20 functors functor NOUN NNS Number=Plur 17 pobj _ _ 21 will will AUX MD VerbForm=Fin 23 aux _ _ 22 be be AUX VB VerbForm=Inf 23 auxpass _ _ 23 assumed assume VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 relcl _ _ 24 to to PART TO _ 25 aux _ _ 25 satisfy satisfy VERB VB VerbForm=Inf 23 xcomp _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We introduce a notion of factorization of cells, which most weak double categories of interest possess, and which is sufficient to guarantee the strong representability of composites of modules between lax functors whose domain satisfies it. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 notion notion NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 factorization factorization NOUN NN Number=Sing 5 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 cells cell NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 8 punct _ _ 10 which which DET WDT _ 14 det _ _ 11 most most ADV RBS Degree=Sup 12 advmod _ _ 12 weak weak ADJ JJ Degree=Pos 14 amod _ _ 13 double double ADJ JJ Degree=Pos 14 amod _ _ 14 categories category NOUN NNS Number=Plur 4 relcl _ _ 15 of of ADP IN _ 14 prep _ _ 16 interest interest NOUN NN Number=Sing 17 compound _ _ 17 possess possess NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 2 punct _ _ 19 and and CCONJ CC ConjType=Cmp 2 cc _ _ 20 which which PRON WDT _ 21 nsubj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 conj _ _ 22 sufficient sufficient ADJ JJ Degree=Pos 21 acomp _ _ 23 to to PART TO _ 24 aux _ _ 24 guarantee guarantee VERB VB VerbForm=Inf 22 xcomp _ _ 25 the the DET DT Definite=Def|PronType=Art 27 det _ _ 26 strong strong ADJ JJ Degree=Pos 27 amod _ _ 27 representability representability NOUN NN Number=Sing 24 dobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 composites composite NOUN NNS Number=Plur 28 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 modules module NOUN NNS Number=Plur 30 pobj _ _ 32 between between ADP IN _ 31 prep _ _ 33 lax lax ADJ JJ Degree=Pos 34 amod _ _ 34 functors functor NOUN NNS Number=Plur 32 pobj _ _ 35 whose whose DET WP$ Poss=Yes 36 poss _ _ 36 domain domain NOUN NN Number=Sing 37 nsubj _ _ 37 satisfies satisfy VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 34 relcl _ _ 38 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 37 dobj _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 432 # sent_id = 1 # text = Let $ G $ be an object of a finitely cocomplete homological category $ mathbb C $ . 1 Let let VERB VB VerbForm=Inf 0 ROOT _ _ 2 $ G $ $ g $ SYM $ _ 1 dobj _ _ 3 be be AUX VB VerbForm=Inf 1 ccomp _ _ 4 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 5 object object NOUN NN Number=Sing 3 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 8 finitely finitely ADV RB _ 9 advmod _ _ 9 cocomplete cocomplete ADJ JJ Degree=Pos 11 amod _ _ 10 homological homological ADJ JJ Degree=Pos 11 amod _ _ 11 category category NOUN NN Number=Sing 6 pobj _ _ 12 $ mathbb C $ $ mathbb c $ SYM $ _ 11 appos _ _ 13 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = We study actions of $ G $ on objects $ A $ of $ mathbb C $ (defined by Bourn and Janelidze as being algebras over a certain monad $ mathbb T_G $ ), with two objectives: investigating to which extent actions can be described in terms of smaller data, called action cores; and to single out those abstract action cores which extend to actions corresponding to semi - direct products of $ A $ and $ G $ (in a non - exact setting, not every action does). 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 actions action NOUN NNS Number=Plur 2 dobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 $ G $ $ g $ SYM $ _ 4 pobj _ _ 6 on on ADP IN _ 2 prep _ _ 7 objects object NOUN NNS Number=Plur 6 pobj _ _ 8 $ A $ $ a $ SYM $ _ 7 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 $ mathbb C $ $ mathbb c $ SYM $ _ 9 pobj _ _ 11 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 8 punct _ SpaceAfter=No 12 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 acl _ _ 13 by by ADP IN _ 12 agent _ _ 14 Bourn Bourn PROPN NNP Number=Sing 13 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 Janelidze Janelidze PROPN NNP Number=Sing 14 conj _ _ 17 as as ADP IN _ 12 prep _ _ 18 being be AUX VBG VerbForm=Ger 17 pcomp _ _ 19 algebras algebra NOUN NNS Number=Plur 18 attr _ _ 20 over over ADP IN _ 19 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 22 certain certain ADJ JJ Degree=Pos 23 amod _ _ 23 monad monad NOUN NNS Number=Plur 20 pobj _ _ 24 $ mathbb T_G $ $ mathbb t_g $ SYM $ _ 18 npadvmod _ _ 25 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 7 punct _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 2 punct _ _ 27 with with ADP IN _ 2 prep _ _ 28 two two NUM CD NumType=Card 29 nummod _ _ 29 objectives objective NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 30 : : PUNCT : _ 29 punct _ _ 31 investigating investigate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 29 acl _ _ 32 to to PART TO _ 38 prep _ _ 33 which which PRON WDT _ 32 pobj _ _ 34 extent extent NOUN NN Number=Sing 35 compound _ _ 35 actions action NOUN NNS Number=Plur 38 nsubjpass _ _ 36 can can AUX MD VerbForm=Fin 38 aux _ _ 37 be be AUX VB VerbForm=Inf 38 auxpass _ _ 38 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 31 advcl _ _ 39 in in ADP IN _ 38 prep _ _ 40 terms term NOUN NNS Number=Plur 39 pobj _ _ 41 of of ADP IN _ 40 prep _ _ 42 smaller small ADJ JJR Degree=Cmp 43 amod _ _ 43 data datum NOUN NNS Number=Plur 41 pobj _ SpaceAfter=No 44 , , PUNCT , PunctType=Comm 29 punct _ _ 45 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 acl _ _ 46 action action NOUN NN Number=Sing 47 compound _ _ 47 cores core NOUN NNS Number=Plur 45 oprd _ SpaceAfter=No 48 ; ; PUNCT : _ 27 punct _ _ 49 and and CCONJ CC ConjType=Cmp 27 cc _ _ 50 to to PART TO _ 51 aux _ _ 51 single single VERB VB VerbForm=Inf 82 advcl _ _ 52 out out ADP RP _ 51 prt _ _ 53 those those DET DT Number=Plur|PronType=Dem 56 det _ _ 54 abstract abstract ADJ JJ Degree=Pos 56 amod _ _ 55 action action NOUN NN Number=Sing 56 compound _ _ 56 cores core NOUN NNS Number=Plur 51 dobj _ _ 57 which which PRON WDT _ 58 nsubj _ _ 58 extend extend VERB VBP Tense=Pres|VerbForm=Fin 56 relcl _ _ 59 to to ADP IN _ 58 prep _ _ 60 actions action NOUN NNS Number=Plur 59 pobj _ _ 61 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 60 acl _ _ 62 to to ADP IN _ 61 prep _ _ 63 semi semi ADJ JJ Degree=Pos 65 advmod _ _ 64 - - ADJ JJ Degree=Pos 65 punct _ _ 65 direct direct ADJ JJ Degree=Pos 66 amod _ _ 66 products product NOUN NNS Number=Plur 62 pobj _ _ 67 of of ADP IN _ 66 prep _ _ 68 $ A $ $ a $ SYM $ _ 67 pobj _ _ 69 and and CCONJ CC ConjType=Cmp 68 cc _ _ 70 $ G $ $ g $ SYM $ _ 68 conj _ _ 71 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 51 punct _ SpaceAfter=No 72 in in ADP IN _ 51 prep _ _ 73 a a DET DT Definite=Ind|PronType=Art 77 det _ _ 74 non non ADJ JJ Degree=Pos 76 amod _ _ 75 - - PUNCT HYPH PunctType=Dash 76 punct _ _ 76 exact exact ADJ JJ Degree=Pos 77 amod _ _ 77 setting setting NOUN NN Number=Sing 72 pobj _ SpaceAfter=No 78 , , PUNCT , PunctType=Comm 82 punct _ _ 79 not not PART RB Polarity=Neg 80 neg _ _ 80 every every DET DT _ 81 det _ _ 81 action action NOUN NN Number=Sing 82 nsubj _ _ 82 does do VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 conj _ SpaceAfter=No 83 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 2 punct _ SpaceAfter=No 84 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = This amounts to exhibiting a subcategory of the category of the actions of $ G $ on objects $ A $ which is equivalent with the category of points in $ mathbb C $ over $ G $ , and to describing it in terms of action cores. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 amounts amount VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 to to ADP IN _ 2 prep _ _ 4 exhibiting exhibit VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 pcomp _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 subcategory subcategory NOUN NN Number=Sing 4 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 category category NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 actions action NOUN NNS Number=Plur 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 $ G $ $ g $ SYM $ _ 13 pobj _ _ 15 on on ADP IN _ 2 prep _ _ 16 objects object NOUN NNS Number=Plur 15 pobj _ _ 17 $ A $ $ a $ SYM $ _ 16 dobj _ _ 18 which which PRON WDT _ 19 nsubj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 relcl _ _ 20 equivalent equivalent ADJ JJ Degree=Pos 19 acomp _ _ 21 with with ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 category category NOUN NN Number=Sing 21 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 points point NOUN NNS Number=Plur 24 pobj _ _ 26 in in ADP IN _ 23 prep _ _ 27 $ mathbb C $ $ mathbb c $ SYM $ _ 29 nmod _ _ 28 over over ADP IN _ 29 advmod _ _ 29 $ G $ $ g $ SYM $ _ 26 pobj _ _ 30 , , PUNCT , PunctType=Comm 2 punct _ _ 31 and and CCONJ CC ConjType=Cmp 2 cc _ _ 32 to to ADP IN _ 2 conj _ _ 33 describing describe VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 32 pcomp _ _ 34 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 33 dobj _ _ 35 in in ADP IN _ 33 prep _ _ 36 terms term NOUN NNS Number=Plur 35 pobj _ _ 37 of of ADP IN _ 36 prep _ _ 38 action action NOUN NN Number=Sing 39 compound _ _ 39 cores core NOUN NNS Number=Plur 37 pobj _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = This notion and its study are based on a preliminary investigation of co - smash products, in which cross - effects of functors in a general categorical context turn out to be a useful tool. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 notion notion NOUN NN Number=Sing 7 nsubjpass _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 5 poss _ _ 5 study study NOUN NN Number=Sing 2 conj _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 7 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 on on ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 preliminary preliminary ADJ JJ Degree=Pos 11 amod _ _ 11 investigation investigation NOUN NN Number=Sing 8 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 co co NOUN NN Number=Sing 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 smash smash VERB VB VerbForm=Inf 16 compound _ _ 16 products product NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 11 punct _ _ 18 in in ADP IN _ 22 prep _ _ 19 which which PRON WDT _ 18 pobj _ _ 20 cross cross NOUN NN Number=Sing 22 compound _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 effects effect NOUN NNS Number=Plur 30 nsubj _ _ 23 of of ADP IN _ 22 prep _ _ 24 functors functor NOUN NNS Number=Plur 23 pobj _ _ 25 in in ADP IN _ 22 prep _ _ 26 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 27 general general ADJ JJ Degree=Pos 29 amod _ _ 28 categorical categorical ADJ JJ Degree=Pos 29 amod _ _ 29 context context NOUN NN Number=Sing 25 pobj _ _ 30 turn turn VERB VB VerbForm=Inf 7 dep _ _ 31 out out ADP RP _ 30 prt _ _ 32 to to PART TO _ 33 aux _ _ 33 be be AUX VB VerbForm=Inf 30 xcomp _ _ 34 a a DET DT Definite=Ind|PronType=Art 36 det _ _ 35 useful useful ADJ JJ Degree=Pos 36 amod _ _ 36 tool tool NOUN NN Number=Sing 33 attr _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 5 # text = The co - smash products also allow us to define higher categorical commutators, different from the ones of Huq, which are not generally expressible in terms of nested binary ones. 1 The the DET DT Definite=Def|PronType=Art 5 det _ _ 2 co co NOUN NN Number=Sing 4 compound _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 smash smash NOUN NN Number=Sing 5 compound _ _ 5 products product NOUN NNS Number=Plur 7 nsubj _ _ 6 also also ADV RB _ 7 advmod _ _ 7 allow allow VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 10 nsubj _ _ 9 to to PART TO _ 10 aux _ _ 10 define define VERB VB VerbForm=Inf 7 ccomp _ _ 11 higher high ADJ JJR Degree=Cmp 13 amod _ _ 12 categorical categorical ADJ JJ Degree=Pos 13 amod _ _ 13 commutators commutator NOUN NNS Number=Plur 10 dobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 10 punct _ _ 15 different different ADJ JJ Degree=Pos 10 advmod _ _ 16 from from ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 ones one NOUN NNS Number=Plur 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 Huq Huq PROPN NNP Number=Sing 19 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 which which PRON WDT _ 23 nsubj _ _ 23 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 20 relcl _ _ 24 not not PART RB Polarity=Neg 23 neg _ _ 25 generally generally ADV RB _ 26 advmod _ _ 26 expressible expressible ADJ JJ Degree=Pos 23 acomp _ _ 27 in in ADP IN _ 26 prep _ _ 28 terms term NOUN NNS Number=Plur 27 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 nested nested ADJ JJ Degree=Pos 32 amod _ _ 31 binary binary ADJ JJ Degree=Pos 32 amod _ _ 32 ones one NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 6 # text = We use strict action cores to show that any normal subobject of an object $ E $ (that is, the equivalence class of $ 0 $ for some equivalence relation on $ E $ in $ mathbb C $ ) admits a strict conjugation action of $ E $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 strict strict ADJ JJ Degree=Pos 5 amod _ _ 4 action action NOUN NN Number=Sing 5 compound _ _ 5 cores core NOUN NNS Number=Plur 2 dobj _ _ 6 to to PART TO _ 7 aux _ _ 7 show show VERB VB VerbForm=Inf 2 xcomp _ _ 8 that that SCONJ IN _ 34 mark _ _ 9 any any DET DT _ 11 det _ _ 10 normal normal ADJ JJ Degree=Pos 11 amod _ _ 11 subobject subobject NOUN NN Number=Sing 34 nsubj _ _ 12 of of ADP IN _ 11 prep _ _ 13 an an DET DT Definite=Ind|PronType=Art 14 det _ _ 14 object object NOUN NN Number=Sing 12 pobj _ _ 15 $ E $ $ e $ SYM $ _ 11 appos _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 11 punct _ SpaceAfter=No 17 that that ADV RB _ 18 advmod _ _ 18 is is ADV RB _ 11 parataxis _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 equivalence equivalence NOUN NN Number=Sing 22 compound _ _ 22 class class NOUN NN Number=Sing 11 appos _ _ 23 of of ADP IN _ 22 prep _ _ 24 $ 0 $ $ 0 $ SYM $ _ 23 pobj _ _ 25 for for ADP IN _ 22 prep _ _ 26 some some DET DT _ 28 det _ _ 27 equivalence equivalence NOUN NN Number=Sing 28 compound _ _ 28 relation relation NOUN NN Number=Sing 25 pobj _ _ 29 on on ADP IN _ 28 prep _ _ 30 $ E $ $ e $ SYM $ _ 29 pobj _ _ 31 in in ADP IN _ 28 prep _ _ 32 $ mathbb C $ $ mathbb c $ SYM $ _ 31 pobj _ _ 33 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 11 punct _ _ 34 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 ccomp _ _ 35 a a DET DT Definite=Ind|PronType=Art 38 det _ _ 36 strict strict ADJ JJ Degree=Pos 38 amod _ _ 37 conjugation conjugation NOUN NN Number=Sing 38 compound _ _ 38 action action NOUN NN Number=Sing 34 dobj _ _ 39 of of ADP IN _ 38 prep _ _ 40 $ E $ $ e $ SYM $ _ 39 pobj _ _ 41 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 7 # text = If $ mathbb C $ is semi - abelian, we show that for subobjects $ X $ , $ Y $ of some object $ A $ , $ X $ is proper in the supremum of $ X $ and $ Y $ if and only if $ X $ is stable under the restriction to $ Y $ of the conjugation action of $ A $ on itself. 1 If if SCONJ IN _ 3 mark _ _ 2 $ mathbb C $ $ mathbb c $ SYM $ _ 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 advcl _ _ 4 semi semi ADJ JJ Degree=Pos 3 acomp _ _ 5 - - ADJ JJ Degree=Pos 3 attr _ _ 6 abelian abelian ADJ JJ Degree=Pos 3 acomp _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 9 punct _ _ 8 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 9 nsubj _ _ 9 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 that that SCONJ IN _ 22 mark _ _ 11 for for ADP IN _ 22 prep _ _ 12 subobjects subobject VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 pobj _ _ 13 $ X $ $ x $ SYM $ _ 11 punct _ _ 14 , , PUNCT , PunctType=Comm 13 punct _ _ 15 $ Y $ $ y $ SYM $ _ 11 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 some some DET DT _ 18 det _ _ 18 object object NOUN NN Number=Sing 16 pobj _ _ 19 $ A $ $ a $ SYM $ _ 18 nummod _ _ 20 , , PUNCT , PunctType=Comm 18 punct _ _ 21 $ X $ $ x $ SYM $ _ 11 pcomp _ _ 22 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 ccomp _ _ 23 proper proper ADJ JJ Degree=Pos 22 acomp _ _ 24 in in ADP IN _ 22 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 supremum supremum NOUN NN Number=Sing 24 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 $ X $ $ x $ SYM $ _ 27 pobj _ _ 29 and and CCONJ CC ConjType=Cmp 26 cc _ _ 30 $ Y $ $ y $ SYM $ _ 31 nmod _ _ 31 if if SCONJ IN _ 22 dep _ _ 32 and and CCONJ CC ConjType=Cmp 31 cc _ _ 33 only only ADV RB _ 36 advmod _ _ 34 if if SCONJ IN _ 36 mark _ _ 35 $ X $ $ x $ SYM $ _ 36 nsubj _ _ 36 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 advcl _ _ 37 stable stable ADJ JJ Degree=Pos 36 acomp _ _ 38 under under ADP IN _ 36 prep _ _ 39 the the DET DT Definite=Def|PronType=Art 40 det _ _ 40 restriction restriction NOUN NN Number=Sing 38 pobj _ _ 41 to to ADP IN _ 36 prep _ _ 42 $ Y $ $ y $ SYM $ _ 41 pobj _ _ 43 of of ADP IN _ 42 prep _ _ 44 the the DET DT Definite=Def|PronType=Art 46 det _ _ 45 conjugation conjugation NOUN NN Number=Sing 46 compound _ _ 46 action action NOUN NN Number=Sing 43 pobj _ _ 47 of of ADP IN _ 46 prep _ _ 48 $ A $ $ a $ SYM $ _ 47 pobj _ _ 49 on on ADP IN _ 36 prep _ _ 50 itself itself PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs|Reflex=Yes 49 pobj _ SpaceAfter=No 51 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 8 # text = This also amounts to an alternative proof of Bourn and Janelidze's category equivalence between points over $ G $ in $ mathbb C $ and actions of $ G $ in the semi - abelian context. 1 This this PRON DT Number=Sing|PronType=Dem 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 amounts amount VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 to to ADP IN _ 3 prep _ _ 5 an an DET DT Definite=Ind|PronType=Art 7 det _ _ 6 alternative alternative ADJ JJ Degree=Pos 7 amod _ _ 7 proof proof NOUN NN Number=Sing 4 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 Bourn Bourn PROPN NNP Number=Sing 8 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 Janelidze Janelidze PROPN NNP Number=Sing 14 poss _ SpaceAfter=No 12 's 's PART POS _ 11 case _ _ 13 category category NOUN NN Number=Sing 14 compound _ _ 14 equivalence equivalence NOUN NN Number=Sing 9 conj _ _ 15 between between ADP IN _ 7 prep _ _ 16 points point NOUN NNS Number=Plur 15 pobj _ _ 17 over over ADP IN _ 16 prep _ _ 18 $ G $ $ g $ SYM $ _ 17 pobj _ _ 19 in in ADP IN _ 16 prep _ _ 20 $ mathbb C $ $ mathbb c $ SYM $ _ 19 pobj _ _ 21 and and CCONJ CC ConjType=Cmp 16 cc _ _ 22 actions action NOUN NNS Number=Plur 16 conj _ _ 23 of of ADP IN _ 22 prep _ _ 24 $ G $ $ g $ SYM $ _ 23 pobj _ _ 25 in in ADP IN _ 7 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 30 det _ _ 27 semi semi ADJ JJ Degree=Pos 30 amod _ _ 28 - - ADJ JJ Degree=Pos 30 amod _ _ 29 abelian abelian ADJ JJ Degree=Pos 30 amod _ _ 30 context context NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 9 # text = Finally, we show that the two axioms of an algebra which characterize $ G $ - actions are equivalent with three others ones, in terms of action cores. 1 Finally finally ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 17 mark _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 two two NUM CD NumType=Card 8 nummod _ _ 8 axioms axiom NOUN NNS Number=Plur 17 nsubj _ _ 9 of of ADP IN _ 8 prep _ _ 10 an an DET DT Definite=Ind|PronType=Art 11 det _ _ 11 algebra algebra NOUN NN Number=Sing 9 pobj _ _ 12 which which PRON WDT _ 13 nsubj _ _ 13 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 11 relcl _ _ 14 $ G $ $ g $ SYM $ _ 16 compound _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 actions action NOUN NNS Number=Plur 17 nsubj _ _ 17 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 18 equivalent equivalent ADJ JJ Degree=Pos 17 acomp _ _ 19 with with ADP IN _ 18 prep _ _ 20 three three NUM CD NumType=Card 22 nummod _ _ 21 others other NOUN NNS Number=Plur 22 compound _ _ 22 ones one NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 17 punct _ _ 24 in in ADP IN _ 17 prep _ _ 25 terms term NOUN NNS Number=Plur 24 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 action action NOUN NN Number=Sing 28 compound _ _ 28 cores core NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 10 # text = These axioms are commutative squares involving only co - smash products. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 axioms axiom NOUN NNS Number=Plur 3 nsubj _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 commutative commutative ADJ JJ Degree=Pos 5 amod _ _ 5 squares square NOUN NNS Number=Plur 3 attr _ _ 6 involving involve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 acl _ _ 7 only only ADV RB _ 11 amod _ _ 8 co co NOUN NN Number=Sing 10 compound _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 smash smash VERB VB VerbForm=Inf 11 compound _ _ 11 products product NOUN NNS Number=Plur 6 dobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 11 # text = Two of them are associativity type conditions which generalize the usual properties of an action of one group on another, while the third is kind of a higher coherence condition which is a consequence of the other two in the category of groups, but probably not in general. 1 Two two NUM CD NumType=Card 4 nsubj _ _ 2 of of ADP IN _ 1 prep _ _ 3 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 2 pobj _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 associativity associativity NOUN NN Number=Sing 7 compound _ _ 6 type type NOUN NN Number=Sing 7 compound _ _ 7 conditions condition NOUN NNS Number=Plur 4 attr _ _ 8 which which PRON WDT _ 9 nsubj _ _ 9 generalize generalize VERB VBP Tense=Pres|VerbForm=Fin 7 relcl _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 usual usual ADJ JJ Degree=Pos 12 amod _ _ 12 properties property NOUN NNS Number=Plur 9 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 an an DET DT Definite=Ind|PronType=Art 15 det _ _ 15 action action NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 one one NUM CD NumType=Card 18 nummod _ _ 18 group group NOUN NN Number=Sing 16 pobj _ _ 19 on on ADP IN _ 15 prep _ _ 20 another another PRON DT _ 19 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 4 punct _ _ 22 while while SCONJ IN _ 25 mark _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 third third ADJ JJ Degree=Pos 25 nsubj _ _ 25 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 advcl _ _ 26 kind kind ADV RB _ 27 advmod _ _ 27 of of ADV RB _ 31 advmod _ _ 28 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 29 higher high ADJ JJR Degree=Cmp 31 amod _ _ 30 coherence coherence NOUN NN Number=Sing 31 compound _ _ 31 condition condition NOUN NN Number=Sing 25 attr _ _ 32 which which PRON WDT _ 33 nsubj _ _ 33 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 31 relcl _ _ 34 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 35 consequence consequence NOUN NN Number=Sing 33 attr _ _ 36 of of ADP IN _ 35 prep _ _ 37 the the DET DT Definite=Def|PronType=Art 39 det _ _ 38 other other ADJ JJ Degree=Pos 39 amod _ _ 39 two two NUM CD NumType=Card 36 pobj _ _ 40 in in ADP IN _ 39 prep _ _ 41 the the DET DT Definite=Def|PronType=Art 42 det _ _ 42 category category NOUN NN Number=Sing 40 pobj _ _ 43 of of ADP IN _ 42 prep _ _ 44 groups group NOUN NNS Number=Plur 43 pobj _ SpaceAfter=No 45 , , PUNCT , PunctType=Comm 33 punct _ _ 46 but but CCONJ CC ConjType=Cmp 33 cc _ _ 47 probably probably ADV RB _ 49 advmod _ _ 48 not not PART RB Polarity=Neg 49 neg _ _ 49 in in ADP IN _ 33 conj _ _ 50 general general ADJ JJ Degree=Pos 49 amod _ SpaceAfter=No 51 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 12 # text = As an application, we characterize abelian action cores, that is, action cores corresponding to Beck modules; here also the coherence condition follows from the others. 1 As as ADP IN _ 6 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 application application NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 26 ccomp _ _ 7 abelian abelian ADJ JJ Degree=Pos 9 amod _ _ 8 action action NOUN NN Number=Sing 9 compound _ _ 9 cores core NOUN NNS Number=Plur 6 dobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 that that ADV RB _ 12 advmod _ _ 12 is is ADV RB _ 9 relcl _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 9 punct _ _ 14 action action NOUN NN Number=Sing 15 compound _ _ 15 cores core NOUN NNS Number=Plur 6 dobj _ _ 16 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 amod _ _ 17 to to ADP IN _ 16 prep _ _ 18 Beck Beck PROPN NNP Number=Sing 19 compound _ _ 19 modules module NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 ; ; PUNCT : _ 26 punct _ _ 21 here here ADV RB PronType=Dem 26 advmod _ _ 22 also also ADV RB _ 26 advmod _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 coherence coherence NOUN NN Number=Sing 25 compound _ _ 25 condition condition NOUN NN Number=Sing 26 nsubj _ _ 26 follows follow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 27 from from ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 others other NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 26 punct _ SpaceAfter=No # doc_id = 433 # sent_id = 1 # text = Lawvere's notion of completeness for quantale - enriched categories has been extended to the theory of lax algebras under the name of $ L $ - completeness. 1 Lawvere Lawvere PROPN NNP Number=Sing 3 poss _ SpaceAfter=No 2 's 's PART POS _ 1 case _ _ 3 notion notion NOUN NN Number=Sing 13 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 completeness completeness NOUN NN Number=Sing 4 pobj _ _ 6 for for ADP IN _ 5 prep _ _ 7 quantale quantale ADJ JJ Degree=Pos 9 npadvmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 10 categories category NOUN NNS Number=Plur 6 pobj _ _ 11 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 aux _ _ 12 been be AUX VBN Tense=Past|VerbForm=Part 13 auxpass _ _ 13 extended extend VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 14 to to ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 theory theory NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 lax lax ADJ JJ Degree=Pos 19 amod _ _ 19 algebras algebra NOUN NNS Number=Plur 17 pobj _ _ 20 under under ADP IN _ 13 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 name name NOUN NN Number=Sing 20 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 $ L $ $ l $ SYM $ _ 26 compound _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 completeness completeness NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 2 # text = In this paper we introduce the corresponding morphism concept and examine its properties. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 9 det _ _ 7 corresponding corresponding ADJ JJ Degree=Pos 9 amod _ _ 8 morphism morphism NOUN NN Number=Sing 9 compound _ _ 9 concept concept NOUN NN Number=Sing 5 dobj _ _ 10 and and CCONJ CC ConjType=Cmp 5 cc _ _ 11 examine examine VERB VB VerbForm=Inf 5 conj _ _ 12 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 13 poss _ _ 13 properties property NOUN NNS Number=Plur 11 dobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = We explore some important relativized topological concepts like separatedness, denseness, compactness and compactification with respect to $ L $ - complete morphisms. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 explore explore VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 some some DET DT _ 7 det _ _ 4 important important ADJ JJ Degree=Pos 7 amod _ _ 5 relativized relativize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 amod _ _ 6 topological topological ADJ JJ Degree=Pos 7 amod _ _ 7 concepts concept NOUN NNS Number=Plur 2 dobj _ _ 8 like like ADP IN _ 7 prep _ _ 9 separatedness separatedness NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 denseness denseness ADJ JJ Degree=Pos 9 conj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 compactness compactness NOUN NN Number=Sing 11 conj _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 compactification compactification NOUN NN Number=Sing 13 conj _ _ 16 with with ADP IN _ 2 prep _ _ 17 respect respect NOUN NN Number=Sing 16 pobj _ _ 18 to to ADP IN _ 17 prep _ _ 19 $ L $ $ l $ SYM $ _ 21 advmod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 complete complete ADJ JJ Degree=Pos 22 amod _ _ 22 morphisms morphism NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = Moreover, we show that separated $ L $ - complete morphisms belong to a factorization system. 1 Moreover moreover ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that PRON WDT PronType=Rel 6 nsubj _ _ 6 separated separate VERB VBD Tense=Past|VerbForm=Fin 4 ccomp _ _ 7 $ L $ $ l $ SYM $ _ 9 advmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 complete complete ADJ JJ Degree=Pos 10 amod _ _ 10 morphisms morphism NOUN NNS Number=Plur 11 nsubj _ _ 11 belong belong VERB VBP Tense=Pres|VerbForm=Fin 6 ccomp _ _ 12 to to ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 factorization factorization NOUN NN Number=Sing 15 compound _ _ 15 system system NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 434 # sent_id = 1 # text = The characterization of stably closed maps of topological spaces as the closed maps with compact fibres and the role of the Kuratowski - Mrówka' Theorem in this characterization are being explored in the general context of lax $ (T, V) $ - algebras, for a quantale $ V $ and a $ Set $ - monad $ T $ with a lax extension to $ V $ - relations. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 characterization characterization NOUN NN Number=Sing 32 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 stably stably ADV RB _ 5 advmod _ _ 5 closed closed ADJ JJ Degree=Pos 6 amod _ _ 6 maps map NOUN NNS Number=Plur 3 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 topological topological ADJ JJ Degree=Pos 9 amod _ _ 9 spaces space NOUN NNS Number=Plur 7 pobj _ _ 10 as as ADP IN _ 2 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 closed closed ADJ JJ Degree=Pos 13 amod _ _ 13 maps map NOUN NNS Number=Plur 10 pobj _ _ 14 with with ADP IN _ 13 prep _ _ 15 compact compact ADJ JJ Degree=Pos 16 amod _ _ 16 fibres fibre NOUN NNS Number=Plur 14 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 13 cc _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 role role NOUN NN Number=Sing 32 nsubjpass _ _ 20 of of ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 24 det _ _ 22 Kuratowski Kuratowski PROPN NNP Number=Sing 24 compound _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 Mrówka Mrówka PROPN NNP Number=Sing 26 poss _ SpaceAfter=No 25 ' ' PART POS _ 24 case _ _ 26 Theorem Theorem PROPN NNP Number=Sing 20 pobj _ _ 27 in in ADP IN _ 19 prep _ _ 28 this this DET DT Number=Sing|PronType=Dem 29 det _ _ 29 characterization characterization NOUN NN Number=Sing 27 pobj _ _ 30 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 32 aux _ _ 31 being be AUX VBG VerbForm=Ger 32 auxpass _ _ 32 explored explore VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 33 in in ADP IN _ 32 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 36 det _ _ 35 general general ADJ JJ Degree=Pos 36 amod _ _ 36 context context NOUN NN Number=Sing 33 pobj _ _ 37 of of ADP IN _ 36 prep _ _ 38 lax lax ADJ JJ Degree=Pos 41 amod _ _ 39 $ (T, V) $ $ (t, v) $ SYM $ _ 41 compound _ _ 40 - - PUNCT HYPH PunctType=Dash 41 punct _ _ 41 algebras algebra NOUN NNS Number=Plur 37 pobj _ SpaceAfter=No 42 , , PUNCT , PunctType=Comm 32 punct _ _ 43 for for ADP IN _ 32 prep _ _ 44 a a DET DT Definite=Ind|PronType=Art 46 det _ _ 45 quantale quantale ADJ JJ Degree=Pos 46 compound _ _ 46 $ V $ $ v $ SYM $ _ 43 pobj _ _ 47 and and CCONJ CC ConjType=Cmp 46 cc _ _ 48 a a DET DT Definite=Ind|PronType=Art 51 det _ _ 49 $ Set $ $ set $ SYM $ _ 51 compound _ _ 50 - - PUNCT HYPH PunctType=Dash 51 punct _ _ 51 monad monad NOUN NNS Number=Plur 46 conj _ _ 52 $ T $ $ t $ SYM $ _ 46 appos _ _ 53 with with ADP IN _ 46 prep _ _ 54 a a DET DT Definite=Ind|PronType=Art 56 det _ _ 55 lax lax ADJ JJ Degree=Pos 56 amod _ _ 56 extension extension NOUN NN Number=Sing 53 pobj _ _ 57 to to ADP IN _ 56 prep _ _ 58 $ V $ $ v $ SYM $ _ 60 compound _ _ 59 - - PUNCT HYPH PunctType=Dash 60 punct _ _ 60 relations relation NOUN NNS Number=Plur 57 pobj _ SpaceAfter=No 61 . . PUNCT . PunctType=Peri 32 punct _ SpaceAfter=No # sent_id = 2 # text = The general results are being applied in standard (topological and metric) and non - standard (labeled graphs) contexts. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 general general ADJ JJ Degree=Pos 3 amod _ _ 3 results result NOUN NNS Number=Plur 6 nsubjpass _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 aux _ _ 5 being be AUX VBG VerbForm=Ger 6 auxpass _ _ 6 applied apply VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 in in ADP IN _ 6 prep _ _ 8 standard standard ADJ JJ Degree=Pos 22 amod _ _ 9 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 8 punct _ SpaceAfter=No 10 topological topological ADJ JJ Degree=Pos 8 conj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 metric metric ADJ JJ Degree=Pos 10 conj _ SpaceAfter=No 13 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 8 punct _ _ 14 and and CCONJ CC ConjType=Cmp 8 cc _ _ 15 non non ADJ JJ Degree=Pos 20 amod _ _ 16 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 17 standard standard ADJ JJ Degree=Pos 20 amod _ _ 18 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 20 punct _ SpaceAfter=No 19 labeled label VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 amod _ _ 20 graphs graph NOUN NNS Number=Plur 22 nmod _ SpaceAfter=No 21 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 22 punct _ _ 22 contexts context NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 435 # sent_id = 1 # text = We consider a symmetric monoidal closed category $ V = (V, otimes, I, [ - , - ]) $ together with a regular injective object $ Q $ such that the functor $ [ - , Q] : to V^{op} $ is comonadic and prove that in such a category, as in the monoidal category of abelian groups, a morphism of commutative monoids is an effective descent morphism for modules if and only if it is a pure monomorphism. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 symmetric symmetric ADJ JJ Degree=Pos 5 amod _ _ 5 monoidal monoidal NOUN NN Number=Sing 6 nsubj _ _ 6 closed close VERB VBD Tense=Past|VerbForm=Fin 2 ccomp _ _ 7 category category NOUN NN Number=Sing 6 dobj _ _ 8 $ V = (V, otimes, I, [ - , - ]) $ $ v = (v, otimes, i, [ - , - ]) $ SYM $ _ 6 dep _ _ 9 together together ADV RB _ 10 advmod _ _ 10 with with ADP IN _ 6 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 12 regular regular ADJ JJ Degree=Pos 14 amod _ _ 13 injective injective ADJ JJ Degree=Pos 14 amod _ _ 14 object object NOUN NN Number=Sing 10 pobj _ _ 15 $ Q $ $ q $ SYM $ _ 14 appos _ _ 16 such such ADJ JJ Degree=Pos 14 appos _ _ 17 that that SCONJ IN _ 21 mark _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 functor functor NOUN NN Number=Sing 21 nsubj _ _ 20 $ [ - , Q] : to V^{op} $ $ [ - , q] : to v^{op} $ SYM $ _ 19 appos _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 advcl _ _ 22 comonadic comonadic ADJ JJ Degree=Pos 21 acomp _ _ 23 and and CCONJ CC ConjType=Cmp 21 cc _ _ 24 prove prove VERB VB VerbForm=Inf 21 conj _ _ 25 that that SCONJ IN _ 45 mark _ _ 26 in in ADP IN _ 45 prep _ _ 27 such such DET PDT _ 29 predet _ _ 28 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 29 category category NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 45 punct _ _ 31 as as ADP IN _ 45 prep _ _ 32 in in ADP IN _ 31 prep _ _ 33 the the DET DT Definite=Def|PronType=Art 35 det _ _ 34 monoidal monoidal ADJ JJ Degree=Pos 35 amod _ _ 35 category category NOUN NN Number=Sing 32 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 abelian abelian ADJ JJ Degree=Pos 38 compound _ _ 38 groups group NOUN NNS Number=Plur 36 pobj _ SpaceAfter=No 39 , , PUNCT , PunctType=Comm 45 punct _ _ 40 a a DET DT Definite=Ind|PronType=Art 41 det _ _ 41 morphism morphism NOUN NN Number=Sing 45 nsubj _ _ 42 of of ADP IN _ 41 prep _ _ 43 commutative commutative ADJ JJ Degree=Pos 44 amod _ _ 44 monoids monoid NOUN NNS Number=Plur 42 pobj _ _ 45 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 ccomp _ _ 46 an an DET DT Definite=Ind|PronType=Art 49 det _ _ 47 effective effective ADJ JJ Degree=Pos 49 amod _ _ 48 descent descent NOUN NN Number=Sing 49 compound _ _ 49 morphism morphism NOUN NN Number=Sing 45 attr _ _ 50 for for ADP IN _ 49 prep _ _ 51 modules module NOUN NNS Number=Plur 50 pobj _ _ 52 if if SCONJ IN _ 45 dep _ _ 53 and and CCONJ CC ConjType=Cmp 52 cc _ _ 54 only only ADV RB _ 57 advmod _ _ 55 if if SCONJ IN _ 57 mark _ _ 56 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 57 nsubj _ _ 57 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 45 advcl _ _ 58 a a DET DT Definite=Ind|PronType=Art 60 det _ _ 59 pure pure ADJ JJ Degree=Pos 60 amod _ _ 60 monomorphism monomorphism NOUN NN Number=Sing 57 attr _ SpaceAfter=No 61 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Examples of this kind of monoidal categories are elementary toposes considered as cartesian closed monoidal categories, the module categories over a commutative ring object in a Grothendieck topos and Barr's star - autonomous categories. 1 Examples example NOUN NNS Number=Plur 8 nsubj _ _ 2 of of ADP IN _ 1 prep _ _ 3 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 4 kind kind NOUN NN Number=Sing 2 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 monoidal monoidal ADJ JJ Degree=Pos 7 amod _ _ 7 categories category NOUN NNS Number=Plur 5 pobj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 elementary elementary ADJ JJ Degree=Pos 10 amod _ _ 10 toposes topos NOUN NNS Number=Plur 8 attr _ _ 11 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 acl _ _ 12 as as SCONJ IN _ 14 mark _ _ 13 cartesian cartesian NOUN NN Number=Sing 14 nsubj _ _ 14 closed close VERB VBD Tense=Past|VerbForm=Fin 11 advcl _ _ 15 monoidal monoidal ADJ JJ Degree=Pos 16 amod _ _ 16 categories category NOUN NNS Number=Plur 14 dobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 8 punct _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 module module NOUN NN Number=Sing 20 compound _ _ 20 categories category NOUN NNS Number=Plur 8 dep _ _ 21 over over ADP IN _ 20 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 23 commutative commutative ADJ JJ Degree=Pos 25 amod _ _ 24 ring ring NOUN NN Number=Sing 25 compound _ _ 25 object object NOUN NN Number=Sing 21 pobj _ _ 26 in in ADP IN _ 25 prep _ _ 27 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 28 Grothendieck Grothendieck PROPN NNP Number=Sing 29 compound _ _ 29 topos topo NOUN NNS Number=Plur 26 pobj _ _ 30 and and CCONJ CC ConjType=Cmp 29 cc _ _ 31 Barr Barr PROPN NNP Number=Sing 36 poss _ SpaceAfter=No 32 's 's PART POS _ 31 case _ _ 33 star star NOUN NN Number=Sing 35 npadvmod _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 autonomous autonomous ADJ JJ Degree=Pos 36 amod _ _ 36 categories category NOUN NNS Number=Plur 29 conj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # doc_id = 436 # sent_id = 1 # text = In 2001 Barr and Kleisli described $ * $ - autonomous structures on two full subcategories of topological abelian groups. 1 In in ADP IN _ 6 prep _ _ 2 2001 2001 NUM CD NumType=Card 1 pobj _ _ 3 Barr Barr PROPN NNP Number=Sing 6 nsubj _ _ 4 and and CCONJ CC ConjType=Cmp 3 cc _ _ 5 Kleisli Kleisli PROPN NNP Number=Sing 3 conj _ _ 6 described describe VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 7 $ * $ $ * $ SYM $ _ 9 advmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 autonomous autonomous ADJ JJ Degree=Pos 10 amod _ _ 10 structures structure NOUN NNS Number=Plur 6 dobj _ _ 11 on on ADP IN _ 10 prep _ _ 12 two two NUM CD NumType=Card 14 nummod _ _ 13 full full ADJ JJ Degree=Pos 14 amod _ _ 14 subcategories subcategorie NOUN NNS Number=Plur 11 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 topological topological ADJ JJ Degree=Pos 18 amod _ _ 17 abelian abelian ADJ JJ Degree=Pos 18 compound _ _ 18 groups group NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = In this paper we do the same for sup semi - lattices except that uniform structures play the role that topology did in the earlier paper. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 do do VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 same same ADJ JJ Degree=Pos 5 dobj _ _ 8 for for ADP IN _ 5 prep _ _ 9 sup sup NOUN NN Number=Sing 8 pobj _ _ 10 semi semi NOUN NNS Number=Plur 5 advmod _ _ 11 - - NOUN NNS Number=Plur 5 punct _ _ 12 lattices lattice NOUN NNS Number=Plur 5 dobj _ _ 13 except except SCONJ IN _ 12 prep _ _ 14 that that SCONJ IN _ 17 mark _ _ 15 uniform uniform ADJ JJ Degree=Pos 16 amod _ _ 16 structures structure NOUN NNS Number=Plur 17 nsubj _ _ 17 play play VERB VBP Tense=Pres|VerbForm=Fin 13 pcomp _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 role role NOUN NN Number=Sing 17 dobj _ _ 20 that that PRON WDT PronType=Rel 22 dobj _ _ 21 topology topology NOUN NN Number=Sing 22 nsubj _ _ 22 did do VERB VBD Tense=Past|VerbForm=Fin 19 relcl _ _ 23 in in ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 26 det _ _ 25 earlier early ADJ JJR Degree=Cmp 26 amod _ _ 26 paper paper NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 437 # sent_id = 1 # text = We prove that all semi - abelian categories with the the Smith is Huq property satisfy the Commutator Condition: higher central extensions may be characterised in terms of binary (Huq or Smith) commutators. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 26 ccomp _ _ 3 that that SCONJ IN _ 13 mark _ _ 4 all all DET DT _ 8 det _ _ 5 semi semi ADJ JJ Degree=Pos 8 amod _ _ 6 - - ADJ JJ Degree=Pos 8 amod _ _ 7 abelian abelian ADJ JJ Degree=Pos 8 amod _ _ 8 categories category NOUN NNS Number=Plur 13 nsubj _ _ 9 with with ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 Smith Smith PROPN NNP Number=Sing 9 pobj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 14 Huq Huq PROPN NNP Number=Sing 16 compound _ _ 15 property property NOUN NN Number=Sing 16 compound _ _ 16 satisfy satisfy NOUN NN Number=Sing 13 attr _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 Commutator Commutator PROPN NNP Number=Sing 19 compound _ _ 19 Condition Condition PROPN NNP Number=Sing 16 dobj _ SpaceAfter=No 20 : : PUNCT : _ 26 punct _ _ 21 higher high ADJ JJR Degree=Cmp 23 amod _ _ 22 central central ADJ JJ Degree=Pos 23 amod _ _ 23 extensions extension NOUN NNS Number=Plur 26 nsubjpass _ _ 24 may may AUX MD VerbForm=Fin 26 aux _ _ 25 be be AUX VB VerbForm=Inf 26 auxpass _ _ 26 characterised characterise VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 27 in in ADP IN _ 26 prep _ _ 28 terms term NOUN NNS Number=Plur 27 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 binary binary NOUN NN Number=Sing 36 amod _ _ 31 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 30 punct _ SpaceAfter=No 32 Huq Huq PROPN NNP Number=Sing 30 appos _ _ 33 or or CCONJ CC ConjType=Cmp 32 cc _ _ 34 Smith Smith PROPN NNP Number=Sing 32 conj _ SpaceAfter=No 35 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 30 punct _ _ 36 commutators commutator NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 26 punct _ SpaceAfter=No # sent_id = 2 # text = In fact, even Higgins commutators suffice. 1 In in ADP IN _ 7 prep _ _ 2 fact fact NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 7 punct _ _ 4 even even ADV RB _ 7 advmod _ _ 5 Higgins Higgins PROPN NNP Number=Sing 6 compound _ _ 6 commutators commutator NOUN NNS Number=Plur 7 nsubj _ _ 7 suffice suffice VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 8 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = As a consequence, in the presence of enough projectives we obtain explicit Hopf formulae for homology with coefficients in the abelianisation functor, and an interpretation of cohomology with coefficients in an abelian object in terms of equivalence classes of higher central extensions. 1 As as ADP IN _ 5 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 consequence consequence NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 5 punct _ _ 5 in in ADP IN _ 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 presence presence NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 enough enough ADJ JJ Degree=Pos 10 amod _ _ 10 projectives projective NOUN NNS Number=Plur 8 pobj _ _ 11 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 12 nsubj _ _ 12 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 10 relcl _ _ 13 explicit explicit ADJ JJ Degree=Pos 15 amod _ _ 14 Hopf hopf NOUN NN Number=Sing 15 compound _ _ 15 formulae formulae ADJ JJ Degree=Pos 12 dobj _ _ 16 for for ADP IN _ 15 prep _ _ 17 homology homology NOUN NN Number=Sing 16 pobj _ _ 18 with with ADP IN _ 12 prep _ _ 19 coefficients coefficient NOUN NNS Number=Plur 18 pobj _ _ 20 in in ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 23 det _ _ 22 abelianisation abelianisation NOUN NN Number=Sing 23 compound _ _ 23 functor functor NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 5 punct _ _ 25 and and CCONJ CC ConjType=Cmp 5 cc _ _ 26 an an DET DT Definite=Ind|PronType=Art 27 det _ _ 27 interpretation interpretation NOUN NN Number=Sing 5 conj _ _ 28 of of ADP IN _ 27 prep _ _ 29 cohomology cohomology NOUN NN Number=Sing 28 pobj _ _ 30 with with ADP IN _ 27 prep _ _ 31 coefficients coefficient NOUN NNS Number=Plur 30 pobj _ _ 32 in in ADP IN _ 31 prep _ _ 33 an an DET DT Definite=Ind|PronType=Art 35 det _ _ 34 abelian abelian ADJ JJ Degree=Pos 35 compound _ _ 35 object object NOUN NN Number=Sing 32 pobj _ _ 36 in in ADP IN _ 31 prep _ _ 37 terms term NOUN NNS Number=Plur 36 pobj _ _ 38 of of ADP IN _ 37 prep _ _ 39 equivalence equivalence NOUN NN Number=Sing 40 compound _ _ 40 classes class NOUN NNS Number=Plur 38 pobj _ _ 41 of of ADP IN _ 40 prep _ _ 42 higher high ADJ JJR Degree=Cmp 44 amod _ _ 43 central central ADJ JJ Degree=Pos 44 amod _ _ 44 extensions extension NOUN NNS Number=Plur 41 pobj _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = We also give a counterexample against Commutator Condition in the semi - abelian category of (commutative) loops. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 counterexample counterexample NOUN NN Number=Sing 3 dobj _ _ 6 against against ADP IN _ 3 prep _ _ 7 Commutator Commutator PROPN NNP Number=Sing 8 compound _ _ 8 Condition Condition PROPN NNP Number=Sing 6 pobj _ _ 9 in in ADP IN _ 3 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 14 det _ _ 11 semi semi ADJ JJ Degree=Pos 14 amod _ _ 12 - - ADJ JJ Degree=Pos 14 amod _ _ 13 abelian abelian ADJ JJ Degree=Pos 14 amod _ _ 14 category category NOUN NN Number=Sing 9 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 15 punct _ SpaceAfter=No 17 commutative commutative PROPN NNP Number=Sing 15 pobj _ SpaceAfter=No 18 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 15 punct _ _ 19 loops loop NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 438 # sent_id = 1 # text = We introduce an intrinsic description of the Ursini commutator in any ideal determined category and we compare it with the Higgins and Huq commutators. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 4 intrinsic intrinsic ADJ JJ Degree=Pos 5 amod _ _ 5 description description NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 Ursini Ursini PROPN NNP Number=Sing 9 compound _ _ 9 commutator commutator NOUN NN Number=Sing 6 pobj _ _ 10 in in ADP IN _ 2 prep _ _ 11 any any DET DT _ 14 det _ _ 12 ideal ideal ADJ JJ Degree=Pos 14 amod _ _ 13 determined determined ADJ JJ Degree=Pos 14 amod _ _ 14 category category NOUN NN Number=Sing 10 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 2 cc _ _ 16 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 17 nsubj _ _ 17 compare compare VERB VBP Tense=Pres|VerbForm=Fin 2 conj _ _ 18 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 17 dobj _ _ 19 with with ADP IN _ 17 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 Higgins Higgins PROPN NNP Number=Sing 19 pobj _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 Huq Huq PROPN NNP Number=Sing 21 conj _ _ 24 commutators commutator NOUN NNS Number=Plur 21 conj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 2 # text = After describing also the Smith - Pedicchio commutator by means of canonical arrows from a coproduct, we compare the two notions, showing that in any exact Maltsev normal category the Ursini commutator $ [H, K]_{U} $ of two subobjects $ H $ , $ K $ of $ A $ is the normalization of the Smith - Pedicchio commutator of the equivalence relations generated by $ H $ and $ K $ , extending the result valid for ideal determined varieties given by Ursini and Gumm. 1 After after ADP IN _ 19 prep _ _ 2 describing describe VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 1 pcomp _ _ 3 also also ADV RB _ 2 advmod _ _ 4 the the DET DT Definite=Def|PronType=Art 8 det _ _ 5 Smith Smith PROPN NNP Number=Sing 7 compound _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 Pedicchio Pedicchio PROPN NNP Number=Sing 8 compound _ _ 8 commutator commutator NOUN NN Number=Sing 2 dobj _ _ 9 by by ADP IN _ 2 prep _ _ 10 means mean NOUN NNS Number=Plur 9 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 canonical canonical ADJ JJ Degree=Pos 13 amod _ _ 13 arrows arrow NOUN NNS Number=Plur 11 pobj _ _ 14 from from ADP IN _ 10 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 coproduct coproduct NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 19 punct _ _ 18 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 19 nsubj _ _ 19 compare compare VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 two two NUM CD NumType=Card 22 nummod _ _ 22 notions notion NOUN NNS Number=Plur 19 dobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 19 punct _ _ 24 showing show VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 44 csubj _ _ 25 that that SCONJ IN _ 38 mark _ _ 26 in in ADP IN _ 38 prep _ _ 27 any any DET DT _ 31 det _ _ 28 exact exact ADJ JJ Degree=Pos 31 amod _ _ 29 Maltsev Maltsev PROPN NNP Number=Sing 31 nmod _ _ 30 normal normal ADJ JJ Degree=Pos 31 amod _ _ 31 category category NOUN NN Number=Sing 26 pobj _ _ 32 the the DET DT Definite=Def|PronType=Art 34 det _ _ 33 Ursini Ursini PROPN NNP Number=Sing 34 compound _ _ 34 commutator commutator NOUN NN Number=Sing 31 appos _ _ 35 $ [H, K]_{U} $ $ [h, k]_{u} $ SYM $ _ 38 nsubj _ _ 36 of of ADP IN _ 35 prep _ _ 37 two two NUM CD NumType=Card 36 pobj _ _ 38 subobjects subobject NOUN NNS Number=Plur 24 ccomp _ _ 39 $ H $ $ h $ SYM $ _ 38 dobj _ _ 40 , , PUNCT , PunctType=Comm 39 punct _ _ 41 $ K $ $ k $ SYM $ _ 38 dep _ _ 42 of of ADP IN _ 41 prep _ _ 43 $ A $ $ a $ SYM $ _ 42 pobj _ _ 44 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 advcl _ _ 45 the the DET DT Definite=Def|PronType=Art 46 det _ _ 46 normalization normalization NOUN NN Number=Sing 44 attr _ _ 47 of of ADP IN _ 46 prep _ _ 48 the the DET DT Definite=Def|PronType=Art 52 det _ _ 49 Smith Smith PROPN NNP Number=Sing 51 compound _ _ 50 - - PUNCT HYPH PunctType=Dash 51 punct _ _ 51 Pedicchio Pedicchio PROPN NNP Number=Sing 52 compound _ _ 52 commutator commutator NOUN NN Number=Sing 47 pobj _ _ 53 of of ADP IN _ 52 prep _ _ 54 the the DET DT Definite=Def|PronType=Art 56 det _ _ 55 equivalence equivalence NOUN NN Number=Sing 56 compound _ _ 56 relations relation NOUN NNS Number=Plur 53 pobj _ _ 57 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 56 acl _ _ 58 by by ADP IN _ 57 agent _ _ 59 $ H $ $ h $ SYM $ _ 58 pobj _ _ 60 and and CCONJ CC ConjType=Cmp 59 cc _ _ 61 $ K $ $ k $ SYM $ _ 57 advmod _ _ 62 , , PUNCT , PunctType=Comm 44 punct _ _ 63 extending extend VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 44 advcl _ _ 64 the the DET DT Definite=Def|PronType=Art 65 det _ _ 65 result result NOUN NN Number=Sing 63 dobj _ _ 66 valid valid ADJ JJ Degree=Pos 63 oprd _ _ 67 for for ADP IN _ 66 prep _ _ 68 ideal ideal ADJ JJ Degree=Pos 70 amod _ _ 69 determined determined ADJ JJ Degree=Pos 70 amod _ _ 70 varieties variety NOUN NNS Number=Plur 67 pobj _ _ 71 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 70 acl _ _ 72 by by ADP IN _ 71 agent _ _ 73 Ursini Ursini PROPN NNP Number=Sing 72 pobj _ _ 74 and and CCONJ CC ConjType=Cmp 73 cc _ _ 75 Gumm Gumm PROPN NNP Number=Sing 73 conj _ SpaceAfter=No 76 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # doc_id = 439 # sent_id = 1 # text = We prove a general theorem which includes most notions of "exact completion" as special cases. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 general general ADJ JJ Degree=Pos 5 amod _ _ 5 theorem theorem NOUN NN Number=Sing 2 dobj _ _ 6 which which PRON WDT _ 7 nsubj _ _ 7 includes include VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 relcl _ _ 8 most most ADJ JJS Degree=Sup 9 amod _ _ 9 notions notion NOUN NNS Number=Plur 7 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 " " PUNCT `` PunctSide=Ini|PunctType=Quot 13 punct _ SpaceAfter=No 12 exact exact ADJ JJ Degree=Pos 13 amod _ _ 13 completion completion NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 14 " " PUNCT '' PunctSide=Fin|PunctType=Quot 13 punct _ _ 15 as as ADP IN _ 7 prep _ _ 16 special special ADJ JJ Degree=Pos 17 amod _ _ 17 cases case NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The theorem is that " $ κ $ - ary exact categories" are a reflective sub - 2 - category of " $ κ $ - ary sites", for any regular cardinal $ κ $ . 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 theorem theorem NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 12 mark _ _ 5 " " PUNCT `` PunctSide=Ini|PunctType=Quot 12 punct _ _ 6 $ κ $ $ κ $ SYM $ _ 8 quantmod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 ary ary ADJ JJ Degree=Pos 10 nmod _ _ 9 exact exact ADJ JJ Degree=Pos 10 amod _ _ 10 categories category NOUN NNS Number=Plur 12 nsubj _ SpaceAfter=No 11 " " PUNCT '' PunctSide=Fin|PunctType=Quot 10 punct _ _ 12 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 13 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 14 reflective reflective ADJ JJ Degree=Pos 19 amod _ _ 15 sub sub NOUN NN Number=Sing 19 nmod _ _ 16 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 17 2 2 NUM CD NumType=Card 19 nummod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 category category NOUN NN Number=Sing 12 attr _ _ 20 of of ADP IN _ 19 prep _ _ 21 " " PUNCT `` PunctSide=Ini|PunctType=Quot 25 punct _ _ 22 $ κ $ $ κ $ SYM $ _ 24 quantmod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 ary ary ADJ JJ Degree=Pos 25 compound _ _ 25 sites site NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 26 " " PUNCT '' PunctSide=Fin|PunctType=Quot 12 punct _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 12 punct _ _ 28 for for ADP IN _ 32 prep _ _ 29 any any DET DT _ 31 det _ _ 30 regular regular ADJ JJ Degree=Pos 31 amod _ _ 31 cardinal cardinal NOUN NN Number=Sing 28 pobj _ _ 32 $ κ $ $ κ $ SYM $ _ 12 dep _ _ 33 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = A $ κ $ - ary exact category is an exact category with disjoint and universal $ κ $ - small coproducts, and a $ κ $ - ary site is a site whose covering sieves are generated by $ κ $ - small families and which satisfies a solution - set condition for finite limits relative to $ κ $ . 1 A a DET DT Definite=Ind|PronType=Art 6 det _ _ 2 $ κ $ $ κ $ SYM $ _ 4 quantmod _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 ary ary ADJ JJ Degree=Pos 6 nmod _ _ 5 exact exact ADJ JJ Degree=Pos 6 amod _ _ 6 category category NOUN NN Number=Sing 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 an an DET DT Definite=Ind|PronType=Art 10 det _ _ 9 exact exact ADJ JJ Degree=Pos 10 amod _ _ 10 category category NOUN NN Number=Sing 7 attr _ _ 11 with with ADP IN _ 10 prep _ _ 12 disjoint disjoint NOUN NN Number=Sing 11 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 universal universal ADJ JJ Degree=Pos 12 conj _ _ 15 $ κ $ $ κ $ SYM $ _ 17 advmod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 small small ADJ JJ Degree=Pos 18 amod _ _ 18 coproducts coproduct NOUN NNS Number=Plur 12 conj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 7 punct _ _ 20 and and CCONJ CC ConjType=Cmp 7 cc _ _ 21 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 22 $ κ $ $ κ $ SYM $ _ 24 quantmod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 ary ary ADJ JJ Degree=Pos 25 amod _ _ 25 site site NOUN NN Number=Sing 26 nsubj _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 conj _ _ 27 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 28 site site NOUN NN Number=Sing 26 attr _ _ 29 whose whose DET WP$ Poss=Yes 31 poss _ _ 30 covering cover VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 31 amod _ _ 31 sieves sieve NOUN NNS Number=Plur 33 nsubjpass _ _ 32 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 33 auxpass _ _ 33 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 relcl _ _ 34 by by ADP IN _ 33 agent _ _ 35 $ κ $ $ κ $ SYM $ _ 37 advmod _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 small small ADJ JJ Degree=Pos 38 amod _ _ 38 families family NOUN NNS Number=Plur 34 pobj _ _ 39 and and CCONJ CC ConjType=Cmp 33 cc _ _ 40 which which PRON WDT _ 41 nsubj _ _ 41 satisfies satisfy VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 33 conj _ _ 42 a a DET DT Definite=Ind|PronType=Art 46 det _ _ 43 solution solution NOUN NN Number=Sing 45 npadvmod _ _ 44 - - PUNCT HYPH PunctType=Dash 45 punct _ _ 45 set set VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 46 amod _ _ 46 condition condition NOUN NN Number=Sing 41 dobj _ _ 47 for for ADP IN _ 46 prep _ _ 48 finite finite ADJ JJ Degree=Pos 49 compound _ _ 49 limits limit NOUN NNS Number=Plur 47 pobj _ _ 50 relative relative ADJ JJ Degree=Pos 49 amod _ _ 51 to to ADP IN _ 50 prep _ _ 52 $ κ $ $ κ $ SYM $ _ 51 pobj _ _ 53 . . PUNCT . PunctType=Peri 26 punct _ SpaceAfter=No # sent_id = 4 # text = In the unary case, this includes the exact completions of a regular category, of a category with (weak) finite limits, and of a category with a factorization system. 1 In in ADP IN _ 7 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 unary unary ADJ JJ Degree=Pos 4 amod _ _ 4 case case NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 this this PRON DT Number=Sing|PronType=Dem 7 nsubj _ _ 7 includes include VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 exact exact ADJ JJ Degree=Pos 10 amod _ _ 10 completions completion NOUN NNS Number=Plur 7 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 regular regular ADJ JJ Degree=Pos 14 amod _ _ 14 category category NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 10 punct _ _ 16 of of ADP IN _ 10 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 category category NOUN NN Number=Sing 16 pobj _ _ 19 with with ADP IN _ 18 prep _ _ 20 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 24 punct _ SpaceAfter=No 21 weak weak ADJ JJ Degree=Pos 24 amod _ SpaceAfter=No 22 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 24 punct _ _ 23 finite finite ADJ JJ Degree=Pos 24 compound _ _ 24 limits limit NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 and and CCONJ CC ConjType=Cmp 16 cc _ _ 27 of of ADP IN _ 16 conj _ _ 28 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 29 category category NOUN NN Number=Sing 27 pobj _ _ 30 with with ADP IN _ 29 prep _ _ 31 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 32 factorization factorization NOUN NN Number=Sing 33 compound _ _ 33 system system NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 5 # text = When κ=ω it includes the pretopos completion of a coherent category. 1 When when SCONJ WRB _ 6 advmod _ _ 2 κ κ PROPN NNP Number=Sing 6 dep _ SpaceAfter=No 3 = = X XX _ 2 punct _ SpaceAfter=No 4 ω ω NUM CD NumType=Card 2 punct _ _ 5 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 6 nsubj _ _ 6 includes include VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 pretopos pretopos NOUN NN Number=Sing 9 compound _ _ 9 completion completion NOUN NN Number=Sing 6 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 coherent coherent ADJ JJ Degree=Pos 13 amod _ _ 13 category category NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 6 # text = And when $ κ=∞ $ is the size of the universe, it includes the category of sheaves on a small site, and the category of small presheaves on a locally small and finitely complete category. 1 And and CCONJ CC ConjType=Cmp 12 cc _ _ 2 when when SCONJ WRB _ 4 advmod _ _ 3 $ κ=∞ $ $ κ=∞ $ SYM $ _ 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 advcl _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 size size NOUN NN Number=Sing 4 attr _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 universe universe NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 12 punct _ _ 11 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 12 nsubj _ _ 12 includes include VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 category category NOUN NN Number=Sing 12 dobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 sheaves sheaf NOUN NNS Number=Plur 15 pobj _ _ 17 on on ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 small small ADJ JJ Degree=Pos 20 amod _ _ 20 site site NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 12 punct _ _ 22 and and CCONJ CC ConjType=Cmp 12 cc _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 category category NOUN NN Number=Sing 12 conj _ _ 25 of of ADP IN _ 24 prep _ _ 26 small small ADJ JJ Degree=Pos 27 amod _ _ 27 presheaves presheave NOUN NNS Number=Plur 25 pobj _ _ 28 on on ADP IN _ 24 prep _ _ 29 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 30 locally locally ADV RB _ 31 advmod _ _ 31 small small ADJ JJ Degree=Pos 35 amod _ _ 32 and and CCONJ CC ConjType=Cmp 31 cc _ _ 33 finitely finitely ADV RB _ 34 advmod _ _ 34 complete complete ADJ JJ Degree=Pos 31 conj _ _ 35 category category NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 7 # text = The $ ∞ $ - ary exact completion of a large nontrivial site gives a well - behaved "category of small sheaves". 1 The the DET DT Definite=Def|PronType=Art 6 det _ _ 2 $ ∞ $ $ ∞ $ SYM $ _ 4 advmod _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 ary ary ADJ JJ Degree=Pos 6 nmod _ _ 5 exact exact ADJ JJ Degree=Pos 6 amod _ _ 6 completion completion NOUN NN Number=Sing 12 nsubj _ _ 7 of of ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 9 large large ADJ JJ Degree=Pos 11 amod _ _ 10 nontrivial nontrivial ADJ JJ Degree=Pos 11 amod _ _ 11 site site NOUN NN Number=Sing 7 pobj _ _ 12 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 14 well well ADV RB Degree=Pos 16 advmod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 behaved behave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 amod _ _ 17 " " PUNCT `` PunctSide=Ini|PunctType=Quot 18 punct _ SpaceAfter=No 18 category category NOUN NN Number=Sing 12 dobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 small small ADJ JJ Degree=Pos 21 amod _ _ 21 sheaves sheaf NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 22 " " PUNCT '' PunctSide=Fin|PunctType=Quot 12 punct _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 8 # text = Along the way, we define a slightly generalized notion of "morphism of sites" and show that $ κ $ - ary sites are equivalent to a type of "enhanced allegory". 1 Along along ADP IN _ 6 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 way way NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 8 slightly slightly ADV RB _ 9 advmod _ _ 9 generalized generalized ADJ JJ Degree=Pos 10 amod _ _ 10 notion notion NOUN NN Number=Sing 6 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 " " PUNCT `` PunctSide=Ini|PunctType=Quot 11 punct _ SpaceAfter=No 13 morphism morphism NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 sites site NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 16 " " PUNCT '' PunctSide=Fin|PunctType=Quot 6 punct _ _ 17 and and CCONJ CC ConjType=Cmp 6 cc _ _ 18 show show VERB VB VerbForm=Inf 6 conj _ _ 19 that that SCONJ IN _ 24 mark _ _ 20 $ κ $ $ κ $ SYM $ _ 22 quantmod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 ary ary ADJ JJ Degree=Pos 23 amod _ _ 23 sites site NOUN NNS Number=Plur 24 nsubj _ _ 24 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 18 ccomp _ _ 25 equivalent equivalent ADJ JJ Degree=Pos 24 acomp _ _ 26 to to ADP IN _ 25 prep _ _ 27 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 28 type type NOUN NN Number=Sing 26 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 " " PUNCT `` PunctSide=Ini|PunctType=Quot 32 punct _ SpaceAfter=No 31 enhanced enhanced ADJ JJ Degree=Pos 32 amod _ _ 32 allegory allegory NOUN NN Number=Sing 29 pobj _ SpaceAfter=No 33 " " PUNCT '' PunctSide=Fin|PunctType=Quot 24 punct _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 9 # text = This enables us to construct the exact completion in two ways, which can be regarded as decategorifications of "representable profunctors" (that is, entire functional relations) and "anafunctors", respectively. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 enables enable VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 2 dobj _ _ 4 to to PART TO _ 5 aux _ _ 5 construct construct VERB VB VerbForm=Inf 2 xcomp _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 exact exact ADJ JJ Degree=Pos 8 amod _ _ 8 completion completion NOUN NN Number=Sing 5 dobj _ _ 9 in in ADP IN _ 5 prep _ _ 10 two two NUM CD NumType=Card 11 nummod _ _ 11 ways way NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 which which PRON WDT _ 16 nsubjpass _ _ 14 can can AUX MD VerbForm=Fin 16 aux _ _ 15 be be AUX VB VerbForm=Inf 16 auxpass _ _ 16 regarded regard VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 relcl _ _ 17 as as ADP IN _ 16 prep _ _ 18 decategorifications decategorification NOUN NNS Number=Plur 17 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 " " PUNCT `` PunctSide=Ini|PunctType=Quot 22 punct _ SpaceAfter=No 21 representable representable ADJ JJ Degree=Pos 22 amod _ _ 22 profunctors profunctor NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 23 " " PUNCT '' PunctSide=Fin|PunctType=Quot 22 punct _ _ 24 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 22 punct _ SpaceAfter=No 25 that that ADV RB _ 26 advmod _ _ 26 is is ADV RB _ 30 advmod _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 30 punct _ _ 28 entire entire ADJ JJ Degree=Pos 30 amod _ _ 29 functional functional ADJ JJ Degree=Pos 30 amod _ _ 30 relations relation NOUN NNS Number=Plur 22 appos _ SpaceAfter=No 31 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 22 punct _ _ 32 and and CCONJ CC ConjType=Cmp 22 cc _ _ 33 " " PUNCT `` PunctSide=Ini|PunctType=Quot 34 punct _ SpaceAfter=No 34 anafunctors anafunctor NOUN NNS Number=Plur 22 conj _ SpaceAfter=No 35 " " PUNCT '' PunctSide=Fin|PunctType=Quot 34 punct _ SpaceAfter=No 36 , , PUNCT , PunctType=Comm 34 punct _ _ 37 respectively respectively ADV RB _ 34 advmod _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 440 # sent_id = 1 # text = We investigate $ 3 $ - permutability, in the sense of universal algebra, in an abstract categorical setting which unifies the pointed and the non - pointed contexts in categorical algebra. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 investigate investigate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 $ 3 $ $ 3 $ SYM $ _ 5 nummod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 permutability permutability NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 2 punct _ _ 7 in in ADP IN _ 2 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 sense sense NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 universal universal ADJ JJ Degree=Pos 12 amod _ _ 12 algebra algebra NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 7 punct _ _ 14 in in ADP IN _ 7 prep _ _ 15 an an DET DT Definite=Ind|PronType=Art 18 det _ _ 16 abstract abstract ADJ JJ Degree=Pos 18 amod _ _ 17 categorical categorical ADJ JJ Degree=Pos 18 amod _ _ 18 setting setting NOUN NN Number=Sing 14 pobj _ _ 19 which which PRON WDT _ 20 nsubj _ _ 20 unifies unify VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 relcl _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 pointed pointed NOUN NN Number=Sing 20 dobj _ _ 23 and and CCONJ CC ConjType=Cmp 22 cc _ _ 24 the the DET DT Definite=Def|PronType=Art 28 det _ _ 25 non non PROPN NNP Number=Sing 27 npadvmod _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 pointed pointed ADJ JJ Degree=Pos 28 amod _ _ 28 contexts context NOUN NNS Number=Plur 22 conj _ _ 29 in in ADP IN _ 22 prep _ _ 30 categorical categorical ADJ JJ Degree=Pos 31 amod _ _ 31 algebra algebra NOUN NN Number=Sing 29 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = This leads to a unified treatment of regular subtractive categories and of regular Goursat categories, as well as of $ E $ - subtractive varieties (where $ E $ is the set of constants in a variety) recently introduced by the fourth author. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 leads lead VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 to to ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 unified unified ADJ JJ Degree=Pos 6 amod _ _ 6 treatment treatment NOUN NN Number=Sing 3 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 regular regular ADJ JJ Degree=Pos 10 amod _ _ 9 subtractive subtractive ADJ JJ Degree=Pos 10 amod _ _ 10 categories category NOUN NNS Number=Plur 7 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 7 cc _ _ 12 of of ADP IN _ 7 conj _ _ 13 regular regular ADJ JJ Degree=Pos 15 amod _ _ 14 Goursat Goursat PROPN NNP Number=Sing 15 compound _ _ 15 categories category NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 6 punct _ _ 17 as as ADV RB _ 19 advmod _ _ 18 well well ADV RB Degree=Pos 19 advmod _ _ 19 as as ADP IN _ 6 cc _ _ 20 of of ADP IN _ 19 prep _ _ 21 $ E $ $ e $ SYM $ _ 23 advmod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 subtractive subtractive ADJ JJ Degree=Pos 24 amod _ _ 24 varieties variety NOUN NNS Number=Plur 20 pobj _ _ 25 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 24 punct _ SpaceAfter=No 26 where where SCONJ WRB _ 27 advmod _ _ 27 $ E $ $ e $ SYM $ _ 6 relcl _ _ 28 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 advcl _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 set set NOUN NN Number=Sing 28 attr _ _ 31 of of ADP IN _ 30 prep _ _ 32 constants constant NOUN NNS Number=Plur 31 pobj _ _ 33 in in ADP IN _ 30 prep _ _ 34 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 35 variety variety NOUN NN Number=Sing 33 pobj _ SpaceAfter=No 36 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 28 punct _ _ 37 recently recently ADV RB _ 38 advmod _ _ 38 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 advcl _ _ 39 by by ADP IN _ 38 agent _ _ 40 the the DET DT Definite=Def|PronType=Art 42 det _ _ 41 fourth fourth ADJ JJ Degree=Pos 42 amod _ _ 42 author author NOUN NN Number=Sing 39 pobj _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = As an application, we show that ``ideals'' coincide with ``clots'' in any regular subtractive category, which can be considered as a pointed analogue of a known result for regular Goursat categories. 1 As as ADP IN _ 6 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 application application NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 that that SCONJ IN _ 12 mark _ _ 8 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 10 punct _ SpaceAfter=No 9 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 10 punct _ SpaceAfter=No 10 ideals ideal NOUN NNS Number=Plur 12 nsubj _ SpaceAfter=No 11 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 10 punct _ _ 12 coincide coincide NOUN NN Number=Sing 6 ccomp _ _ 13 with with ADP IN _ 12 prep _ _ 14 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 16 punct _ SpaceAfter=No 15 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 16 punct _ SpaceAfter=No 16 clots clot NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 17 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 16 punct _ _ 18 in in ADP IN _ 16 prep _ _ 19 any any DET DT _ 22 det _ _ 20 regular regular ADJ JJ Degree=Pos 22 amod _ _ 21 subtractive subtractive ADJ JJ Degree=Pos 22 amod _ _ 22 category category NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 which which PRON WDT _ 27 nsubjpass _ _ 25 can can AUX MD VerbForm=Fin 27 aux _ _ 26 be be AUX VB VerbForm=Inf 27 auxpass _ _ 27 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 relcl _ _ 28 as as ADP IN _ 27 prep _ _ 29 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 30 pointed pointed ADJ JJ Degree=Pos 31 amod _ _ 31 analogue analogue NOUN NN Number=Sing 28 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 34 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 35 amod _ _ 35 result result NOUN NN Number=Sing 32 pobj _ _ 36 for for ADP IN _ 35 prep _ _ 37 regular regular ADJ JJ Degree=Pos 39 amod _ _ 38 Goursat Goursat PROPN NNP Number=Sing 39 compound _ _ 39 categories category NOUN NNS Number=Plur 36 pobj _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 441 # sent_id = 1 # text = We define a strong relation in a category $ mathbb{C} $ to be a span which is ``orthogonal'' to the class of jointly epimorphic pairs of morphisms. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 strong strong ADJ JJ Degree=Pos 5 amod _ _ 5 relation relation NOUN NN Number=Sing 2 dobj _ _ 6 in in ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 category category NOUN NN Number=Sing 9 nmod _ _ 9 $ mathbb{C} $ $ mathbb{c} $ SYM $ _ 6 pobj _ _ 10 to to PART TO _ 11 aux _ _ 11 be be AUX VB VerbForm=Inf 5 acl _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 span span NOUN NN Number=Sing 11 attr _ _ 14 which which PRON WDT _ 15 nsubj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 relcl _ _ 16 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 15 punct _ SpaceAfter=No 17 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 18 punct _ SpaceAfter=No 18 orthogonal orthogonal ADJ JJ Degree=Pos 15 acomp _ SpaceAfter=No 19 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 18 punct _ _ 20 to to ADP IN _ 18 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 class class NOUN NN Number=Sing 20 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 jointly jointly ADV RB _ 25 advmod _ _ 25 epimorphic epimorphic ADJ JJ Degree=Pos 26 amod _ _ 26 pairs pair NOUN NNS Number=Plur 23 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 morphisms morphism NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Under the presence of finite limits, a strong relation is simply a strong monomorphism $ Rrightarrow Xtimes Y $ . 1 Under under ADP IN _ 11 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 presence presence NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 finite finite ADJ JJ Degree=Pos 6 compound _ _ 6 limits limit NOUN NNS Number=Plur 4 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 11 punct _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 strong strong ADJ JJ Degree=Pos 10 amod _ _ 10 relation relation NOUN NN Number=Sing 11 nsubj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 simply simply ADV RB _ 11 advmod _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 strong strong ADJ JJ Degree=Pos 15 amod _ _ 15 monomorphism monomorphism NOUN NN Number=Sing 11 attr _ _ 16 $ Rrightarrow Xtimes Y $ $ rrightarrow xtimes y $ SYM $ _ 15 prep _ _ 17 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 3 # text = We show that a category $ mathbb{C} $ with pullbacks and equalizers is a weakly Maltsev category if and only if every reflexive strong relation in $ mathbb{C} $ is an equivalence relation. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 11 mark _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 11 nsubj _ _ 6 $ mathbb{C} $ $ mathbb{c} $ SYM $ _ 5 appos _ _ 7 with with ADP IN _ 5 prep _ _ 8 pullbacks pullback NOUN NNS Number=Plur 7 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 equalizers equalizer NOUN NNS Number=Plur 8 conj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 12 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 13 weakly weakly ADJ JJ Degree=Pos 15 amod _ _ 14 Maltsev Maltsev PROPN NNP Number=Sing 15 compound _ _ 15 category category NOUN NN Number=Sing 11 attr _ _ 16 if if SCONJ IN _ 26 mark _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 only only ADV RB _ 23 advmod _ _ 19 if if SCONJ IN _ 23 mark _ _ 20 every every DET DT _ 23 det _ _ 21 reflexive reflexive ADJ JJ Degree=Pos 23 amod _ _ 22 strong strong ADJ JJ Degree=Pos 23 amod _ _ 23 relation relation NOUN NN Number=Sing 26 nsubj _ _ 24 in in ADP IN _ 23 prep _ _ 25 $ mathbb{C} $ $ mathbb{c} $ SYM $ _ 24 pobj _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 advcl _ _ 27 an an DET DT Definite=Ind|PronType=Art 29 det _ _ 28 equivalence equivalence NOUN NN Number=Sing 29 compound _ _ 29 relation relation NOUN NN Number=Sing 26 attr _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = In fact, we obtain a more general result which includes, as its another particular instance, a similar well - known characterization of Maltsev categories. 1 In in ADP IN _ 5 prep _ _ 2 fact fact NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 7 more more ADV RBR Degree=Cmp 8 advmod _ _ 8 general general ADJ JJ Degree=Pos 9 amod _ _ 9 result result NOUN NN Number=Sing 5 dobj _ _ 10 which which PRON WDT _ 11 nsubj _ _ 11 includes include VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 relcl _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 as as ADP IN _ 11 prep _ _ 14 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 17 poss _ _ 15 another another DET DT _ 17 det _ _ 16 particular particular ADJ JJ Degree=Pos 17 amod _ _ 17 instance instance NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 20 similar similar ADJ JJ Degree=Pos 24 amod _ _ 21 well well ADV RB Degree=Pos 23 advmod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 24 characterization characterization NOUN NN Number=Sing 17 appos _ _ 25 of of ADP IN _ 24 prep _ _ 26 Maltsev maltsev ADJ JJ Degree=Pos 27 amod _ _ 27 categories category NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 442 # sent_id = 1 # text = A category is adhesive if it has all pullbacks, all push - outs along monomorphisms, and all exactness conditions between pullbacks and pushouts along monomorphisms which hold in a topos. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 category category NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 adhesive adhesive ADJ JJ Degree=Pos 3 acomp _ _ 5 if if SCONJ IN _ 7 mark _ _ 6 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 7 nsubj _ _ 7 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 advcl _ _ 8 all all DET DT _ 9 det _ _ 9 pullbacks pullback NOUN NNS Number=Plur 7 dobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 3 punct _ _ 11 all all DET DT _ 14 det _ _ 12 push push NOUN NN Number=Sing 14 compound _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 outs out NOUN NNS Number=Plur 3 attr _ _ 15 along along ADP IN _ 14 prep _ _ 16 monomorphisms monomorphism NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 14 punct _ _ 18 and and CCONJ CC ConjType=Cmp 14 cc _ _ 19 all all DET DT _ 21 det _ _ 20 exactness exactness ADJ JJ Degree=Pos 21 amod _ _ 21 conditions condition NOUN NNS Number=Plur 14 conj _ _ 22 between between ADP IN _ 21 prep _ _ 23 pullbacks pullback NOUN NNS Number=Plur 22 pobj _ _ 24 and and CCONJ CC ConjType=Cmp 23 cc _ _ 25 pushouts pushout NOUN NNS Number=Plur 23 conj _ _ 26 along along ADP IN _ 23 prep _ _ 27 monomorphisms monomorphism NOUN NNS Number=Plur 26 pobj _ _ 28 which which PRON WDT _ 29 nsubj _ _ 29 hold hold VERB VBP Tense=Pres|VerbForm=Fin 27 relcl _ _ 30 in in ADP IN _ 29 prep _ _ 31 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 32 topos topos NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = This condition can be modified by considering only pushouts along regular monomorphisms, or by asking only for the exactness conditions which hold in a quasitopos. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 condition condition NOUN NN Number=Sing 5 nsubjpass _ _ 3 can can AUX MD VerbForm=Fin 5 aux _ _ 4 be be AUX VB VerbForm=Inf 5 auxpass _ _ 5 modified modify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 by by ADP IN _ 5 prep _ _ 7 considering consider VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 pcomp _ _ 8 only only ADJ JJ Degree=Pos 9 advmod _ _ 9 pushouts pushout NOUN NNS Number=Plur 7 dobj _ _ 10 along along ADP IN _ 9 prep _ _ 11 regular regular ADJ JJ Degree=Pos 12 amod _ _ 12 monomorphisms monomorphism NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 7 punct _ _ 14 or or CCONJ CC ConjType=Cmp 6 cc _ _ 15 by by ADP IN _ 6 conj _ _ 16 asking ask VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 pcomp _ _ 17 only only ADV RB _ 18 advmod _ _ 18 for for ADP IN _ 16 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 exactness exactness ADJ JJ Degree=Pos 21 amod _ _ 21 conditions condition NOUN NNS Number=Plur 18 pobj _ _ 22 which which PRON WDT _ 23 nsubj _ _ 23 hold hold VERB VBP Tense=Pres|VerbForm=Fin 21 relcl _ _ 24 in in ADP IN _ 23 prep _ _ 25 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 26 quasitopos quasitopos NOUN NN Number=Sing 24 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = We prove four characterization theorems dealing with adhesive categories and their variants. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 four four NUM CD NumType=Card 5 nummod _ _ 4 characterization characterization NOUN NN Number=Sing 5 compound _ _ 5 theorems theorem NOUN NNS Number=Plur 2 dobj _ _ 6 dealing deal VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 acl _ _ 7 with with ADP IN _ 6 prep _ _ 8 adhesive adhesive ADJ JJ Degree=Pos 9 amod _ _ 9 categories category NOUN NNS Number=Plur 7 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 12 poss _ _ 12 variants variant NOUN NNS Number=Plur 9 conj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 443 # sent_id = 1 # text = For a small category $ B $ and a double category $ mathbb D $ , let $ {rm Lax}_N(B, mathbb D) $ denote the category whose objects are vertical normal lax functors $ Btomathbb D $ and morphisms are horizontal lax transformations. 1 For for ADP IN _ 12 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 small small ADJ JJ Degree=Pos 4 amod _ _ 4 category category NOUN NN Number=Sing 1 pobj _ _ 5 $ B $ $ b $ SYM $ _ 4 nummod _ _ 6 and and CCONJ CC ConjType=Cmp 4 cc _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 double double ADJ JJ Degree=Pos 9 amod _ _ 9 category category NOUN NN Number=Sing 4 conj _ _ 10 $ mathbb D $ $ mathbb d $ SYM $ _ 4 appos _ _ 11 , , PUNCT , PunctType=Comm 12 punct _ _ 12 let let VERB VB VerbForm=Inf 0 ROOT _ _ 13 $ {rm Lax}_N(B, mathbb D) $ $ {rm lax}_n(b, mathbb d) $ SYM $ _ 14 nsubj _ _ 14 denote denote VERB VBD Tense=Past|VerbForm=Fin 12 ccomp _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 category category NOUN NN Number=Sing 14 dobj _ _ 17 whose whose DET WP$ Poss=Yes 18 poss _ _ 18 objects object NOUN NNS Number=Plur 19 nsubj _ _ 19 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 16 relcl _ _ 20 vertical vertical ADJ JJ Degree=Pos 23 amod _ _ 21 normal normal ADJ JJ Degree=Pos 23 amod _ _ 22 lax lax PROPN NNP Number=Sing 23 amod _ _ 23 functors functor NOUN NNS Number=Plur 19 attr _ _ 24 $ Btomathbb D $ $ btomathbb d $ SYM $ _ 14 dep _ _ 25 and and CCONJ CC ConjType=Cmp 14 cc _ _ 26 morphisms morphism NOUN NNS Number=Plur 27 nsubj _ _ 27 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 14 conj _ _ 28 horizontal horizontal ADJ JJ Degree=Pos 30 amod _ _ 29 lax lax ADJ JJ Degree=Pos 30 amod _ _ 30 transformations transformation NOUN NNS Number=Plur 27 attr _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 2 # text = It is well known that $ Lax_N(B, mathbb Cat) simeq Cat/B $ , where $ mathbb Cat $ is the double category of small categories, functors, and profunctors. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 well well ADV RB Degree=Pos 4 advmod _ _ 4 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 acomp _ _ 5 that that SCONJ IN _ 10 mark _ _ 6 $ Lax_N(B, mathbb Cat) simeq Cat/B $ $ lax_n(b, mathbb cat) simeq cat/b $ SYM $ _ 10 nsubj _ _ 7 , , PUNCT , PunctType=Comm 6 punct _ _ 8 where where SCONJ WRB _ 9 advmod _ _ 9 $ mathbb Cat $ $ mathbb cat $ SYM $ _ 6 relcl _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 double double ADJ JJ Degree=Pos 13 amod _ _ 13 category category NOUN NN Number=Sing 10 attr _ _ 14 of of ADP IN _ 13 prep _ _ 15 small small ADJ JJ Degree=Pos 16 amod _ _ 16 categories category NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 functors functor NOUN NNS Number=Plur 16 conj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 and and CCONJ CC ConjType=Cmp 18 cc _ _ 21 profunctors profunctor NOUN NNS Number=Plur 18 conj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We generalized this equivalence to certain double categories, in the case where $ B $ is a finite poset. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 generalized generalize VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 3 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 4 equivalence equivalence NOUN NN Number=Sing 2 dobj _ _ 5 to to ADP IN _ 2 prep _ _ 6 certain certain ADJ JJ Degree=Pos 8 amod _ _ 7 double double ADJ JJ Degree=Pos 8 amod _ _ 8 categories category NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 2 punct _ _ 10 in in ADP IN _ 2 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 case case NOUN NN Number=Sing 10 pobj _ _ 13 where where SCONJ WRB _ 15 advmod _ _ 14 $ B $ $ b $ SYM $ _ 15 nsubj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 relcl _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 finite finite ADJ JJ Degree=Pos 18 amod _ _ 18 poset poset NOUN NN Number=Sing 15 attr _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = Street showed that $ Yto B $ is exponentiable in $ Cat/B $ if and only if the corresponding normal lax functor $ Bto mathbb Cat $ is a pseudo - functor. 1 Street Street PROPN NNP Number=Sing 2 nsubj _ _ 2 showed show VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 5 mark _ _ 4 $ Yto B $ $ yto b $ SYM $ _ 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 6 exponentiable exponentiable ADJ JJ Degree=Pos 5 acomp _ _ 7 in in ADP IN _ 6 prep _ _ 8 $ Cat/B $ $ cat/b $ SYM $ _ 7 pobj _ _ 9 if if SCONJ IN _ 5 dep _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 only only ADV RB _ 19 advmod _ _ 12 if if SCONJ IN _ 19 mark _ _ 13 the the DET DT Definite=Def|PronType=Art 17 det _ _ 14 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 17 amod _ _ 15 normal normal ADJ JJ Degree=Pos 17 amod _ _ 16 lax lax PROPN NNP Number=Sing 17 compound _ _ 17 functor functor NOUN NN Number=Sing 19 nsubj _ _ 18 $ Bto mathbb Cat $ $ bto mathbb cat $ SYM $ _ 17 appos _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 advcl _ _ 20 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 21 pseudo pseudo NOUN NN Number=Sing 23 compound _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 functor functor NOUN NN Number=Sing 19 attr _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = Using our generalized equivalence, we show that a morphism $ Yto B $ is exponentiable in $ {mathbb D}_0/B $ if and only if the corresponding normal lax functor $ Btomathbb D $ is a pseudo - functor plus an additional condition that holds for all $ Xto clikB $ in $ Cat $ . 1 Using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 advcl _ _ 2 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 4 poss _ _ 3 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 amod _ _ 4 equivalence equivalence NOUN NN Number=Sing 1 dobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 that that SCONJ IN _ 12 mark _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 morphism morphism NOUN NN Number=Sing 12 nsubj _ _ 11 $ Yto B $ $ yto b $ SYM $ _ 10 appos _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 ccomp _ _ 13 exponentiable exponentiable ADJ JJ Degree=Pos 12 acomp _ _ 14 in in ADP IN _ 13 prep _ _ 15 $ {mathbb D}_0/B $ $ {mathbb d}_0/b $ SYM $ _ 14 pobj _ _ 16 if if SCONJ IN _ 12 dep _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 only only ADV RB _ 26 advmod _ _ 19 if if SCONJ IN _ 26 mark _ _ 20 the the DET DT Definite=Def|PronType=Art 24 det _ _ 21 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 24 amod _ _ 22 normal normal ADJ JJ Degree=Pos 24 amod _ _ 23 lax lax PROPN NNP Number=Sing 24 compound _ _ 24 functor functor NOUN NN Number=Sing 26 nsubj _ _ 25 $ Btomathbb D $ $ btomathbb d $ SYM $ _ 24 appos _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 advcl _ _ 27 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 28 pseudo pseudo NOUN NN Number=Sing 30 compound _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 functor functor NOUN NN Number=Sing 26 attr _ _ 31 plus plus CCONJ CC ConjType=Cmp 30 cc _ _ 32 an an DET DT Definite=Ind|PronType=Art 34 det _ _ 33 additional additional ADJ JJ Degree=Pos 34 amod _ _ 34 condition condition NOUN NN Number=Sing 30 conj _ _ 35 that that PRON WDT PronType=Rel 36 nsubj _ _ 36 holds hold VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 34 relcl _ _ 37 for for ADP IN _ 36 prep _ _ 38 all all PRON DT _ 40 advmod _ _ 39 $ Xto clikB $ $ xto clikb $ SYM $ _ 38 nmod _ _ 40 in in ADP IN _ 36 prep _ _ 41 $ Cat $ $ cat $ SYM $ _ 40 pobj _ _ 42 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 6 # text = Thus, we obtain a single theorem which yields characterizations of certain exponentiable morphisms of small categories, topological spaces, locales, and posets. 1 Thus thus ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 single single ADJ JJ Degree=Pos 7 amod _ _ 7 theorem theorem NOUN NN Number=Sing 4 dobj _ _ 8 which which PRON WDT _ 9 nsubj _ _ 9 yields yield VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 relcl _ _ 10 characterizations characterization NOUN NNS Number=Plur 9 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 certain certain ADJ JJ Degree=Pos 14 amod _ _ 13 exponentiable exponentiable ADJ JJ Degree=Pos 14 amod _ _ 14 morphisms morphism NOUN NNS Number=Plur 11 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 small small ADJ JJ Degree=Pos 17 amod _ _ 17 categories category NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 topological topological ADJ JJ Degree=Pos 20 amod _ _ 20 spaces space NOUN NNS Number=Plur 17 conj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 locales locale NOUN NNS Number=Plur 20 conj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 and and CCONJ CC ConjType=Cmp 22 cc _ _ 25 posets poset NOUN NNS Number=Plur 22 conj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 444 # sent_id = 1 # text = There is a lot of redundancy in the usual definition of adjoint functors. 1 There there PRON EX _ 2 expl _ _ 2 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 lot lot NOUN NN Number=Sing 2 attr _ _ 5 of of ADP IN _ 4 prep _ _ 6 redundancy redundancy NOUN NN Number=Sing 5 pobj _ _ 7 in in ADP IN _ 4 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 usual usual ADJ JJ Degree=Pos 10 amod _ _ 10 definition definition NOUN NN Number=Sing 7 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 adjoint adjoint NOUN NN Number=Sing 13 compound _ _ 13 functors functor NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We define and prove the core of what is required. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 prove prove VERB VB VerbForm=Inf 2 conj _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 core core NOUN NN Number=Sing 4 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 what what PRON WP _ 10 nsubjpass _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 10 required require VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 pcomp _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = First we do this in the hom - enriched context. 1 First first ADV RB _ 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 do do VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 this this PRON DT Number=Sing|PronType=Dem 3 dobj _ _ 5 in in ADP IN _ 3 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 10 det _ _ 7 hom hom ADV RB _ 9 advmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 10 context context NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = Then we do it in the cocompletion of a bicategory with respect to Kleisli objects, which we then apply to internal categories. 1 Then then ADV RB PronType=Dem 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 do do VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 dobj _ _ 5 in in ADP IN _ 3 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 cocompletion cocompletion NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 bicategory bicategory NOUN NN Number=Sing 8 pobj _ _ 11 with with ADP IN _ 10 prep _ _ 12 respect respect NOUN NN Number=Sing 11 pobj _ _ 13 to to ADP IN _ 12 prep _ _ 14 Kleisli Kleisli PROPN NNP Number=Sing 15 compound _ _ 15 objects object NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 which which PRON WDT _ 20 dobj _ _ 18 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 20 nsubj _ _ 19 then then ADV RB PronType=Dem 20 advmod _ _ 20 apply apply VERB VBP Tense=Pres|VerbForm=Fin 15 relcl _ _ 21 to to ADP IN _ 20 prep _ _ 22 internal internal ADJ JJ Degree=Pos 23 amod _ _ 23 categories category NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = Finally, we describe a doctrinal setting. 1 Finally finally ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 doctrinal doctrinal ADJ JJ Degree=Pos 7 amod _ _ 7 setting setting NOUN NN Number=Sing 4 dobj _ SpaceAfter=No 8 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 445 # sent_id = 1 # text = We call a finitely complete category diexact if every difunctional relation admits a pushout which is stable under pullback and itself a pullback. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 call call VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 4 finitely finitely ADV RB _ 5 advmod _ _ 5 complete complete ADJ JJ Degree=Pos 7 amod _ _ 6 category category NOUN NN Number=Sing 7 compound _ _ 7 diexact diexact NOUN NN Number=Sing 2 dobj _ _ 8 if if SCONJ IN _ 12 mark _ _ 9 every every DET DT _ 11 det _ _ 10 difunctional difunctional ADJ JJ Degree=Pos 11 amod _ _ 11 relation relation NOUN NN Number=Sing 12 nsubj _ _ 12 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 advcl _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 pushout pushout NOUN NN Number=Sing 12 dobj _ _ 15 which which PRON WDT _ 16 nsubj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 relcl _ _ 17 stable stable ADJ JJ Degree=Pos 16 acomp _ _ 18 under under ADP IN _ 17 prep _ _ 19 pullback pullback NOUN NN Number=Sing 18 pobj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 itself itself PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs|Reflex=Yes 19 conj _ _ 22 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 23 pullback pullback NOUN NN Number=Sing 16 attr _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We prove three results relating to diexact categories: firstly, that a category is a pretopos if and only if it is diexact with a strict initial object; secondly, that a category is diexact if and only if it is Barr - exact, and every pair of monomorphisms admits a pushout which is stable and a pullback; and thirdly, that a small category with finite limits and pushouts of difunctional relations is diexact if and only if it admits a full structure - preserving embedding into a Grothendieck topos. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 15 ccomp _ _ 3 three three NUM CD NumType=Card 4 nummod _ _ 4 results result NOUN NNS Number=Plur 2 dobj _ _ 5 relating relate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 acl _ _ 6 to to PART TO _ 7 aux _ _ 7 diexact diexact VERB VB VerbForm=Inf 5 advcl _ _ 8 categories category NOUN NNS Number=Plur 7 dobj _ SpaceAfter=No 9 : : PUNCT : _ 2 punct _ _ 10 firstly firstly ADV RB _ 15 advmod _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 15 punct _ _ 12 that that SCONJ IN _ 15 mark _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 category category NOUN NN Number=Sing 15 nsubj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 36 ccomp _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 pretopos pretopos NOUN NN Number=Sing 15 attr _ _ 18 if if SCONJ IN _ 17 prep _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 only only ADV RB _ 23 advmod _ _ 21 if if SCONJ IN _ 23 mark _ _ 22 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 23 nsubj _ _ 23 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 advcl _ _ 24 diexact diexact NOUN NN Number=Sing 23 attr _ _ 25 with with ADP IN _ 24 prep _ _ 26 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 27 strict strict ADJ JJ Degree=Pos 29 amod _ _ 28 initial initial ADJ JJ Degree=Pos 29 amod _ _ 29 object object NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 30 ; ; PUNCT : _ 36 punct _ _ 31 secondly secondly ADV RB _ 36 advmod _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 36 punct _ _ 33 that that SCONJ IN _ 36 mark _ _ 34 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 35 category category NOUN NN Number=Sing 36 nsubj _ _ 36 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 37 diexact diexact NOUN NN Number=Sing 36 attr _ _ 38 if if SCONJ IN _ 43 mark _ _ 39 and and CCONJ CC ConjType=Cmp 43 cc _ _ 40 only only ADV RB _ 43 advmod _ _ 41 if if SCONJ IN _ 43 mark _ _ 42 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 43 nsubj _ _ 43 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 36 advcl _ _ 44 Barr Barr PROPN NNP Number=Sing 43 attr _ _ 45 - - PUNCT HYPH PunctType=Dash 46 punct _ _ 46 exact exact ADJ JJ Degree=Pos 43 acomp _ SpaceAfter=No 47 , , PUNCT , PunctType=Comm 36 punct _ _ 48 and and CCONJ CC ConjType=Cmp 36 cc _ _ 49 every every DET DT _ 50 det _ _ 50 pair pair NOUN NN Number=Sing 53 nsubj _ _ 51 of of ADP IN _ 50 prep _ _ 52 monomorphisms monomorphism NOUN NNS Number=Plur 51 pobj _ _ 53 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 36 conj _ _ 54 a a DET DT Definite=Ind|PronType=Art 55 det _ _ 55 pushout pushout NOUN NN Number=Sing 53 dobj _ _ 56 which which PRON WDT _ 57 nsubj _ _ 57 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 55 relcl _ _ 58 stable stable ADJ JJ Degree=Pos 57 acomp _ _ 59 and and CCONJ CC ConjType=Cmp 58 cc _ _ 60 a a DET DT Definite=Ind|PronType=Art 61 det _ _ 61 pullback pullback NOUN NN Number=Sing 58 conj _ SpaceAfter=No 62 ; ; PUNCT : _ 53 punct _ _ 63 and and CCONJ CC ConjType=Cmp 53 cc _ _ 64 thirdly thirdly ADV RB _ 78 advmod _ SpaceAfter=No 65 , , PUNCT , PunctType=Comm 78 punct _ _ 66 that that SCONJ IN _ 78 mark _ _ 67 a a DET DT Definite=Ind|PronType=Art 69 det _ _ 68 small small ADJ JJ Degree=Pos 69 amod _ _ 69 category category NOUN NN Number=Sing 78 nsubj _ _ 70 with with ADP IN _ 69 prep _ _ 71 finite finite ADJ JJ Degree=Pos 72 compound _ _ 72 limits limit NOUN NNS Number=Plur 70 pobj _ _ 73 and and CCONJ CC ConjType=Cmp 72 cc _ _ 74 pushouts pushout NOUN NNS Number=Plur 72 conj _ _ 75 of of ADP IN _ 74 prep _ _ 76 difunctional difunctional ADJ JJ Degree=Pos 77 amod _ _ 77 relations relation NOUN NNS Number=Plur 75 pobj _ _ 78 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 53 conj _ _ 79 diexact diexact NOUN NN Number=Sing 78 attr _ _ 80 if if SCONJ IN _ 91 mark _ _ 81 and and CCONJ CC ConjType=Cmp 91 cc _ _ 82 only only ADV RB _ 85 advmod _ _ 83 if if SCONJ IN _ 85 mark _ _ 84 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 85 nsubj _ _ 85 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 91 advcl _ _ 86 a a DET DT Definite=Ind|PronType=Art 90 det _ _ 87 full full ADJ JJ Degree=Pos 90 amod _ _ 88 structure structure NOUN NN Number=Sing 90 npadvmod _ _ 89 - - PUNCT HYPH PunctType=Dash 90 punct _ _ 90 preserving preserve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 91 nsubj _ _ 91 embedding embed VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 78 advcl _ _ 92 into into ADP IN _ 91 prep _ _ 93 a a DET DT Definite=Ind|PronType=Art 95 det _ _ 94 Grothendieck Grothendieck PROPN NNP Number=Sing 95 compound _ _ 95 topos topos NOUN NN Number=Sing 92 pobj _ SpaceAfter=No 96 . . PUNCT . PunctType=Peri 78 punct _ SpaceAfter=No # doc_id = 446 # sent_id = 1 # text = The classes of stably - vertical, normal, separable, inseparable, purely inseparable and covering morphisms, defined in categorical Galois theory, are characterized for the reflection of the variety of commutative semigroups into its subvariety of semilattices. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 classes class NOUN NNS Number=Plur 27 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 stably stably ADV RB _ 6 advmod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 vertical vertical ADJ JJ Degree=Pos 10 amod _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 10 punct _ _ 8 normal normal ADJ JJ Degree=Pos 10 amod _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 10 punct _ _ 10 separable separable ADJ JJ Degree=Pos 18 amod _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 inseparable inseparable ADJ JJ Degree=Pos 10 conj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 purely purely ADV RB _ 15 advmod _ _ 15 inseparable inseparable ADJ JJ Degree=Pos 10 conj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 covering cover VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 conj _ _ 18 morphisms morphism NOUN NNS Number=Plur 3 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 2 punct _ _ 20 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 acl _ _ 21 in in ADP IN _ 20 prep _ _ 22 categorical categorical ADJ JJ Degree=Pos 24 amod _ _ 23 Galois Galois PROPN NNP Number=Sing 24 compound _ _ 24 theory theory NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 2 punct _ _ 26 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 27 auxpass _ _ 27 characterized characterize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 28 for for ADP IN _ 27 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 reflection reflection NOUN NN Number=Sing 28 pobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 the the DET DT Definite=Def|PronType=Art 33 det _ _ 33 variety variety NOUN NN Number=Sing 31 pobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 commutative commutative ADJ JJ Degree=Pos 36 amod _ _ 36 semigroups semigroup NOUN NNS Number=Plur 34 pobj _ _ 37 into into ADP IN _ 30 prep _ _ 38 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 39 poss _ _ 39 subvariety subvariety NOUN NN Number=Sing 37 pobj _ _ 40 of of ADP IN _ 39 prep _ _ 41 semilattices semilattice NOUN NNS Number=Plur 40 pobj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 27 punct _ SpaceAfter=No # sent_id = 2 # text = It is also shown that there is an inseparable - separable factorization, but there is no monotone - light factorization. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 4 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 3 also also ADV RB _ 4 advmod _ _ 4 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 that that SCONJ IN _ 7 mark _ _ 6 there there PRON EX _ 7 expl _ _ 7 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 8 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 9 inseparable inseparable ADJ JJ Degree=Pos 11 amod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 separable separable ADJ JJ Degree=Pos 12 amod _ _ 12 factorization factorization NOUN NN Number=Sing 7 attr _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 4 punct _ _ 14 but but CCONJ CC ConjType=Cmp 4 cc _ _ 15 there there PRON EX _ 16 expl _ _ 16 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 conj _ _ 17 no no DET DT _ 21 det _ _ 18 monotone monotone ADJ JJ Degree=Pos 20 amod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 light light ADJ JJ Degree=Pos 21 amod _ _ 21 factorization factorization NOUN NN Number=Sing 16 attr _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # doc_id = 447 # sent_id = 1 # text = Recently Benno van den Berg introduced a new class of realizability toposes which he christened Herbrand toposes. 1 Recently recently ADV RB _ 6 advmod _ _ 2 Benno Benno PROPN NNP Number=Sing 3 compound _ _ 3 van van PROPN NNP Number=Sing 4 compound _ _ 4 den den NOUN NN Number=Sing 5 compound _ _ 5 Berg Berg PROPN NNP Number=Sing 6 nsubj _ _ 6 introduced introduce VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 new new ADJ JJ Degree=Pos 9 amod _ _ 9 class class NOUN NN Number=Sing 6 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 realizability realizability NOUN NN Number=Sing 12 compound _ _ 12 toposes topos NOUN NNS Number=Plur 10 pobj _ _ 13 which which PRON WDT _ 15 dobj _ _ 14 he he PRON PRP Case=Nom|Gender=Masc|Number=Sing|Person=3|PronType=Prs 15 nsubj _ _ 15 christened christen VERB VBD Tense=Past|VerbForm=Fin 12 relcl _ _ 16 Herbrand Herbrand PROPN NNP Number=Sing 15 dobj _ _ 17 toposes topos NOUN NNS Number=Plur 15 dobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = These toposes have strikingly different properties from ordinary realizability toposes, notably the (related) properties that the `constant object' functor from the topos of sets preserves finite coproducts, and that De Morgan's law is satisfied. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 toposes topos NOUN NNS Number=Plur 3 nsubj _ _ 3 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 strikingly strikingly ADV RB _ 5 advmod _ _ 5 different different ADJ JJ Degree=Pos 6 amod _ _ 6 properties property NOUN NNS Number=Plur 3 dobj _ _ 7 from from ADP IN _ 6 prep _ _ 8 ordinary ordinary ADJ JJ Degree=Pos 10 amod _ _ 9 realizability realizability NOUN NN Number=Sing 10 compound _ _ 10 toposes topos NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 notably notably ADV RB _ 17 advmod _ _ 13 the the DET DT Definite=Def|PronType=Art 17 det _ _ 14 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 17 punct _ SpaceAfter=No 15 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ SpaceAfter=No 16 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 17 punct _ _ 17 properties property NOUN NNS Number=Plur 10 appos _ _ 18 that that SCONJ IN _ 30 mark _ _ 19 the the DET DT Definite=Def|PronType=Art 22 det _ _ 20 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 22 punct _ SpaceAfter=No 21 constant constant ADJ JJ Degree=Pos 22 amod _ _ 22 object object NOUN NN Number=Sing 24 nmod _ SpaceAfter=No 23 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 24 punct _ _ 24 functor functor NOUN NN Number=Sing 30 nsubj _ _ 25 from from ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 topos topos NOUN NN Number=Sing 25 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 sets set NOUN NNS Number=Plur 28 pobj _ _ 30 preserves preserve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 relcl _ _ 31 finite finite ADJ JJ Degree=Pos 32 amod _ _ 32 coproducts coproduct NOUN NNS Number=Plur 30 dobj _ SpaceAfter=No 33 , , PUNCT , PunctType=Comm 3 punct _ _ 34 and and CCONJ CC ConjType=Cmp 3 cc _ _ 35 that that SCONJ IN _ 40 mark _ _ 36 De De PROPN NNP Number=Sing 37 compound _ _ 37 Morgan Morgan PROPN NNP Number=Sing 39 poss _ SpaceAfter=No 38 's 's PART POS _ 37 case _ _ 39 law law NOUN NN Number=Sing 40 nsubj _ _ 40 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 conj _ _ 41 satisfied satisfied ADJ JJ Degree=Pos 40 acomp _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = In this paper we show that these properties are no accident: for any Schonfinkel algebra $ Lambda $ , the Herbrand realizability topos over $ Lambda $ may be obtained as the Gleason cover (in the sense of Johnstone) of the ordinary realizability topos over $ Lambda $ . 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 that that SCONJ IN _ 9 mark _ _ 7 these these DET DT Number=Plur|PronType=Dem 8 det _ _ 8 properties property NOUN NNS Number=Plur 9 nsubj _ _ 9 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 ccomp _ _ 10 no no DET DT _ 11 det _ _ 11 accident accident NOUN NN Number=Sing 9 attr _ SpaceAfter=No 12 : : PUNCT : _ 9 punct _ _ 13 for for ADP IN _ 27 prep _ _ 14 any any DET DT _ 16 det _ _ 15 Schonfinkel Schonfinkel PROPN NNP Number=Sing 16 compound _ _ 16 algebra algebra NOUN NN Number=Sing 13 pobj _ _ 17 $ Lambda $ $ lambda $ SYM $ _ 13 pobj _ _ 18 , , PUNCT , PunctType=Comm 27 punct _ _ 19 the the DET DT Definite=Def|PronType=Art 22 det _ _ 20 Herbrand Herbrand PROPN NNP Number=Sing 22 compound _ _ 21 realizability realizability NOUN NN Number=Sing 22 compound _ _ 22 topos topos NOUN NN Number=Sing 27 nsubjpass _ _ 23 over over ADP IN _ 22 prep _ _ 24 $ Lambda $ $ lambda $ SYM $ _ 23 pobj _ _ 25 may may AUX MD VerbForm=Fin 27 aux _ _ 26 be be AUX VB VerbForm=Inf 27 auxpass _ _ 27 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 ccomp _ _ 28 as as ADP IN _ 27 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 31 det _ _ 30 Gleason Gleason PROPN NNP Number=Sing 31 compound _ _ 31 cover cover NOUN NN Number=Sing 28 pobj _ _ 32 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 31 punct _ SpaceAfter=No 33 in in ADP IN _ 27 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 35 det _ _ 35 sense sense NOUN NN Number=Sing 33 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 Johnstone Johnstone PROPN NNP Number=Sing 36 pobj _ SpaceAfter=No 38 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 33 punct _ _ 39 of of ADP IN _ 27 prep _ _ 40 the the DET DT Definite=Def|PronType=Art 43 det _ _ 41 ordinary ordinary ADJ JJ Degree=Pos 42 amod _ _ 42 realizability realizability NOUN NN Number=Sing 43 compound _ _ 43 topos topos PROPN NNP Number=Sing 39 pobj _ _ 44 over over ADP IN _ 27 prep _ _ 45 $ Lambda $ $ lambda $ SYM $ _ 44 pobj _ _ 46 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = As a corollary, we obtain the functoriality of the Herbrand realizability construction on the category of Schonfinkel algebras and computationally dense applicative morphisms. 1 As as ADP IN _ 6 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 corollary corollary NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 functoriality functoriality NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 13 det _ _ 11 Herbrand Herbrand PROPN NNP Number=Sing 13 compound _ _ 12 realizability realizability NOUN NN Number=Sing 13 compound _ _ 13 construction construction NOUN NN Number=Sing 9 pobj _ _ 14 on on ADP IN _ 8 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 category category NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 Schonfinkel Schonfinkel PROPN NNP Number=Sing 19 compound _ _ 19 algebras algebra NOUN NNS Number=Plur 17 pobj _ _ 20 and and CCONJ CC ConjType=Cmp 8 cc _ _ 21 computationally computationally ADV RB _ 22 advmod _ _ 22 dense dense ADJ JJ Degree=Pos 24 amod _ _ 23 applicative applicative ADJ JJ Degree=Pos 24 amod _ _ 24 morphisms morphism NOUN NNS Number=Plur 8 conj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 448 # sent_id = 1 # text = An ergodic action of a compact quantum group $ G $ on an operator algebra $ A $ can be interpreted as a quantum homogeneous space for $ G $ . 1 An an DET DT Definite=Ind|PronType=Art 3 det _ _ 2 ergodic ergodic ADJ JJ Degree=Pos 3 amod _ _ 3 action action NOUN NN Number=Sing 17 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 6 compact compact ADJ JJ Degree=Pos 7 amod _ _ 7 quantum quantum NOUN NN Number=Sing 8 compound _ _ 8 group group NOUN NN Number=Sing 4 pobj _ _ 9 $ G $ $ g $ SYM $ _ 8 appos _ _ 10 on on ADP IN _ 3 prep _ _ 11 an an DET DT Definite=Ind|PronType=Art 13 det _ _ 12 operator operator NOUN NN Number=Sing 13 compound _ _ 13 algebra algebra NOUN NN Number=Sing 10 pobj _ _ 14 $ A $ $ a $ SYM $ _ 17 nsubjpass _ _ 15 can can AUX MD VerbForm=Fin 17 aux _ _ 16 be be AUX VB VerbForm=Inf 17 auxpass _ _ 17 interpreted interpret VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 18 as as ADP IN _ 17 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 20 quantum quantum ADJ JJ Degree=Pos 22 amod _ _ 21 homogeneous homogeneous ADJ JJ Degree=Pos 22 amod _ _ 22 space space NOUN NN Number=Sing 18 pobj _ _ 23 for for ADP IN _ 22 prep _ _ 24 $ G $ $ g $ SYM $ _ 23 pobj _ _ 25 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 2 # text = Such an action gives rise to the category of finite equivariant Hilbert modules over $ A $ , which has a module structure over the tensor category $ Rep(G) $ of finite - dimensional representations of $ G $ . 1 Such such DET PDT _ 3 predet _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 action action NOUN NN Number=Sing 4 nsubj _ _ 4 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 rise rise NOUN NN Number=Sing 4 dobj _ _ 6 to to ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 category category NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 finite finite PROPN NNP Number=Sing 11 amod _ _ 11 equivariant equivariant ADJ JJ Degree=Pos 13 compound _ _ 12 Hilbert Hilbert PROPN NNP Number=Sing 13 compound _ _ 13 modules module NOUN NNS Number=Plur 9 pobj _ _ 14 over over ADP IN _ 13 prep _ _ 15 $ A $ $ a $ SYM $ _ 14 pobj _ _ 16 , , PUNCT , PunctType=Comm 13 punct _ _ 17 which which PRON WDT _ 18 nsubj _ _ 18 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 relcl _ _ 19 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 20 module module NOUN NN Number=Sing 21 compound _ _ 21 structure structure NOUN NN Number=Sing 18 dobj _ _ 22 over over ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 tensor tensor NOUN NN Number=Sing 25 compound _ _ 25 category category NOUN NN Number=Sing 22 pobj _ _ 26 $ Rep(G) $ $ rep(g) $ SYM $ _ 25 appos _ _ 27 of of ADP IN _ 26 prep _ _ 28 finite finite ADJ JJ Degree=Pos 30 amod _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 dimensional dimensional ADJ JJ Degree=Pos 31 amod _ _ 31 representations representation NOUN NNS Number=Plur 27 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 $ G $ $ g $ SYM $ _ 32 pobj _ _ 34 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = We show that there is a one - to - one correspondence between the quantum $ G $ - homogeneous spaces up to equivariant Morita equivalence, and indecomposable module $ C^* $ - categories over $ Rep(G) $ up to natural equivalence. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 5 mark _ _ 4 there there PRON EX _ 5 expl _ _ 5 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 6 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 7 one one NUM CD NumType=Card 12 nummod _ _ 8 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 9 to to ADP IN _ 7 prep _ _ 10 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 11 one one NUM CD NumType=Card 9 pobj _ _ 12 correspondence correspondence NOUN NN Number=Sing 5 attr _ _ 13 between between ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 quantum quantum NOUN NN Number=Sing 13 pobj _ _ 16 $ G $ $ g $ SYM $ _ 18 advmod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 homogeneous homogeneous ADJ JJ Degree=Pos 19 amod _ _ 19 spaces space NOUN NNS Number=Plur 12 conj _ _ 20 up up ADP RP _ 19 prep _ _ 21 to to ADP IN _ 20 prep _ _ 22 equivariant equivariant ADJ JJ Degree=Pos 24 amod _ _ 23 Morita Morita PROPN NNP Number=Sing 24 compound _ _ 24 equivalence equivalence NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 19 punct _ _ 26 and and CCONJ CC ConjType=Cmp 19 cc _ _ 27 indecomposable indecomposable ADJ JJ Degree=Pos 28 amod _ _ 28 module module NOUN NN Number=Sing 19 conj _ _ 29 $ C^* $ $ c^* $ SYM $ _ 31 nummod _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 categories category NOUN NNS Number=Plur 28 appos _ _ 32 over over ADP IN _ 31 prep _ _ 33 $ Rep(G) $ $ rep(g) $ SYM $ _ 32 pobj _ _ 34 up up ADP IN _ 5 prep _ _ 35 to to ADP IN _ 34 prep _ _ 36 natural natural ADJ JJ Degree=Pos 37 amod _ _ 37 equivalence equivalence NOUN NN Number=Sing 35 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = This gives a global approach to the duality theory for ergodic actions as developed by Pinzari and Roberts. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 global global ADJ JJ Degree=Pos 5 amod _ _ 5 approach approach NOUN NN Number=Sing 2 dobj _ _ 6 to to ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 duality duality NOUN NN Number=Sing 9 compound _ _ 9 theory theory NOUN NN Number=Sing 6 pobj _ _ 10 for for ADP IN _ 9 prep _ _ 11 ergodic ergodic ADJ JJ Degree=Pos 12 amod _ _ 12 actions action NOUN NNS Number=Plur 10 pobj _ _ 13 as as SCONJ IN _ 14 mark _ _ 14 developed develop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 advcl _ _ 15 by by ADP IN _ 14 agent _ _ 16 Pinzari Pinzari PROPN NNP Number=Sing 15 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 Roberts Roberts PROPN NNP Number=Sing 16 conj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 449 # sent_id = 1 # text = This is the first in a series of papers laying the foundations for a differential graded approach to derived differential geometry (and other geometries in characteristic zero). 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 first first ADJ JJ Degree=Pos 2 attr _ _ 5 in in ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 series series NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 papers paper NOUN NNS Number=Plur 8 pobj _ _ 10 laying lay VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 acl _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 foundations foundation NOUN NNS Number=Plur 10 dobj _ _ 13 for for ADP IN _ 10 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 15 differential differential ADJ JJ Degree=Pos 16 advmod _ _ 16 graded grade VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 17 approach approach NOUN NN Number=Sing 13 pobj _ _ 18 to to ADP IN _ 17 prep _ _ 19 derived derive VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 amod _ _ 20 differential differential ADJ JJ Degree=Pos 21 amod _ _ 21 geometry geometry NOUN NN Number=Sing 18 pobj _ _ 22 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 21 punct _ SpaceAfter=No 23 and and CCONJ CC ConjType=Cmp 21 cc _ _ 24 other other ADJ JJ Degree=Pos 25 amod _ _ 25 geometries geometry NOUN NNS Number=Plur 17 conj _ _ 26 in in ADP IN _ 25 prep _ _ 27 characteristic characteristic ADJ JJ Degree=Pos 28 amod _ _ 28 zero zero NUM CD NumType=Card 26 pobj _ SpaceAfter=No 29 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 25 punct _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = In this paper, we study theories of supercommutative algebras for which infinitely differentiable functions can be evaluated on elements. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 theories theory NOUN NNS Number=Plur 6 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 supercommutative supercommutative ADJ JJ Degree=Pos 10 amod _ _ 10 algebras algebra NOUN NNS Number=Plur 8 pobj _ _ 11 for for ADP IN _ 18 prep _ _ 12 which which PRON WDT _ 11 pobj _ _ 13 infinitely infinitely ADV RB _ 14 advmod _ _ 14 differentiable differentiable ADJ JJ Degree=Pos 15 amod _ _ 15 functions function NOUN NNS Number=Plur 18 nsubjpass _ _ 16 can can AUX MD VerbForm=Fin 18 aux _ _ 17 be be AUX VB VerbForm=Inf 18 auxpass _ _ 18 evaluated evaluate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 relcl _ _ 19 on on ADP IN _ 18 prep _ _ 20 elements element NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = Such a theory is called a super Fermat theory. 1 Such such DET PDT _ 3 predet _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 theory theory NOUN NN Number=Sing 5 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 7 super super ADJ JJ Degree=Pos 9 amod _ _ 8 Fermat Fermat PROPN NNP Number=Sing 9 compound _ _ 9 theory theory NOUN NN Number=Sing 5 oprd _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = Any category of superspaces and smooth functions has an associated such theory. 1 Any any DET DT _ 2 det _ _ 2 category category NOUN NN Number=Sing 8 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 superspaces superspace NOUN NNS Number=Plur 3 pobj _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 smooth smooth ADJ JJ Degree=Pos 7 amod _ _ 7 functions function NOUN NNS Number=Plur 4 conj _ _ 8 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 10 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 11 such such ADJ JJ Degree=Pos 12 amod _ _ 12 theory theory NOUN NN Number=Sing 8 dobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 5 # text = This includes both real and complex supermanifolds, as well as algebraic superschemes. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 includes include VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 both both CCONJ CC ConjType=Cmp 7 det _ _ 4 real real ADJ JJ Degree=Pos 7 amod _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 complex complex ADJ JJ Degree=Pos 4 conj _ _ 7 supermanifolds supermanifold NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 as as ADV RB _ 11 advmod _ _ 10 well well ADV RB Degree=Pos 11 advmod _ _ 11 as as ADP IN _ 7 cc _ _ 12 algebraic algebraic ADJ JJ Degree=Pos 13 amod _ _ 13 superschemes superscheme NOUN NNS Number=Plur 7 conj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = In particular, there is a super Fermat theory of $ C^infty $ - superalgebras. $ C^infty $ - superalgebras are the appropriate notion of supercommutative algebras in the world of $ C^infty $ - rings, the latter being of central importance both to synthetic differential geometry and to all existing models of derived smooth manifolds. 1 In in ADP IN _ 5 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 there there PRON EX _ 5 expl _ _ 5 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 7 super super ADJ JJ Degree=Pos 9 amod _ _ 8 Fermat Fermat PROPN NNP Number=Sing 9 compound _ _ 9 theory theory NOUN NN Number=Sing 5 attr _ _ 10 of of ADP IN _ 9 prep _ _ 11 $ C^infty $ $ c^infty $ SYM $ _ 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 superalgebras superalgebra NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 5 punct _ _ 15 $ C^infty $ $ c^infty $ SYM $ _ 17 nummod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 superalgebras superalgebra NOUN NNS Number=Plur 18 nsubj _ _ 18 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 conj _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 appropriate appropriate ADJ JJ Degree=Pos 21 amod _ _ 21 notion notion NOUN NN Number=Sing 18 attr _ _ 22 of of ADP IN _ 21 prep _ _ 23 supercommutative supercommutative ADJ JJ Degree=Pos 24 amod _ _ 24 algebras algebra NOUN NNS Number=Plur 22 pobj _ _ 25 in in ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 world world NOUN NN Number=Sing 25 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 $ C^infty $ $ c^infty $ SYM $ _ 31 compound _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 rings ring NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 21 punct _ _ 33 the the DET DT Definite=Def|PronType=Art 35 det _ _ 34 latter latter ADJ JJ Degree=Pos 35 amod _ _ 35 being being NOUN NN Number=Sing 21 appos _ _ 36 of of ADP IN _ 35 prep _ _ 37 central central ADJ JJ Degree=Pos 38 amod _ _ 38 importance importance NOUN NN Number=Sing 36 pobj _ _ 39 both both PRON DT _ 40 preconj _ _ 40 to to ADP IN _ 35 prep _ _ 41 synthetic synthetic ADJ JJ Degree=Pos 43 amod _ _ 42 differential differential ADJ JJ Degree=Pos 43 amod _ _ 43 geometry geometry NOUN NN Number=Sing 40 pobj _ _ 44 and and CCONJ CC ConjType=Cmp 40 cc _ _ 45 to to ADP IN _ 40 conj _ _ 46 all all DET DT _ 48 det _ _ 47 existing exist VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 48 amod _ _ 48 models model NOUN NNS Number=Plur 45 pobj _ _ 49 of of ADP IN _ 48 prep _ _ 50 derived derive VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 52 amod _ _ 51 smooth smooth ADJ JJ Degree=Pos 52 amod _ _ 52 manifolds manifold NOUN NNS Number=Plur 49 pobj _ SpaceAfter=No 53 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 7 # text = A super Fermat theory is a natural generalization of the concept of a Fermat theory introduced by Dubuc and Kock. 1 A a DET DT Definite=Ind|PronType=Art 4 det _ _ 2 super super ADJ JJ Degree=Pos 4 amod _ _ 3 Fermat Fermat PROPN NNP Number=Sing 4 compound _ _ 4 theory theory NOUN NN Number=Sing 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 natural natural ADJ JJ Degree=Pos 8 amod _ _ 8 generalization generalization NOUN NN Number=Sing 5 attr _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 concept concept NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 Fermat Fermat PROPN NNP Number=Sing 15 compound _ _ 15 theory theory NOUN NN Number=Sing 12 pobj _ _ 16 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 acl _ _ 17 by by ADP IN _ 16 agent _ _ 18 Dubuc Dubuc PROPN NNP Number=Sing 17 pobj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 Kock Kock PROPN NNP Number=Sing 18 conj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 8 # text = We show that any Fermat theory admits a canonical superization, however not every super Fermat theory arises in this way. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 18 ccomp _ _ 3 that that SCONJ IN _ 7 mark _ _ 4 any any DET DT _ 6 det _ _ 5 Fermat Fermat PROPN NNP Number=Sing 6 compound _ _ 6 theory theory NOUN NN Number=Sing 7 nsubj _ _ 7 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 canonical canonical ADJ JJ Degree=Pos 10 amod _ _ 10 superization superization NOUN NN Number=Sing 7 dobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 18 punct _ _ 12 however however ADV RB _ 18 advmod _ _ 13 not not PART RB Polarity=Neg 17 neg _ _ 14 every every DET DT _ 17 det _ _ 15 super super ADJ JJ Degree=Pos 17 amod _ _ 16 Fermat Fermat PROPN NNP Number=Sing 17 compound _ _ 17 theory theory NOUN NN Number=Sing 18 nsubj _ _ 18 arises arise VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 19 in in ADP IN _ 18 prep _ _ 20 this this DET DT Number=Sing|PronType=Dem 21 det _ _ 21 way way NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # sent_id = 9 # text = For a fixed super Fermat theory, we go on to study a special subcategory of algebras called near - point determined algebras, and derive many of their algebraic properties. 1 For for ADP IN _ 9 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 3 fixed fix VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 amod _ _ 4 super super ADJ JJ Degree=Pos 6 amod _ _ 5 Fermat Fermat PROPN NNP Number=Sing 6 compound _ _ 6 theory theory NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 9 punct _ _ 8 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 9 nsubj _ _ 9 go go VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 on on ADP RP _ 9 prt _ _ 11 to to PART TO _ 12 aux _ _ 12 study study VERB VB VerbForm=Inf 9 advcl _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 special special ADJ JJ Degree=Pos 15 amod _ _ 15 subcategory subcategory NOUN NN Number=Sing 12 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 algebras algebra NOUN NNS Number=Plur 16 pobj _ _ 18 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 acl _ _ 19 near near ADJ JJ Degree=Pos 21 nmod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 point point NOUN NN Number=Sing 23 nmod _ _ 22 determined determined ADJ JJ Degree=Pos 23 amod _ _ 23 algebras algebra NOUN NNS Number=Plur 18 oprd _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 9 punct _ _ 25 and and CCONJ CC ConjType=Cmp 9 cc _ _ 26 derive derive VERB VB VerbForm=Inf 9 conj _ _ 27 many many ADJ JJ Degree=Pos 26 dobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 31 poss _ _ 30 algebraic algebraic ADJ JJ Degree=Pos 31 amod _ _ 31 properties property NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 450 # sent_id = 1 # text = We introduce the notion of weakly globular double categories, a particular class of strict double categories, as a way to model weak 2 - categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 notion notion NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 weakly weakly ADJ JJ Degree=Pos 9 amod _ _ 7 globular globular ADJ JJ Degree=Pos 9 amod _ _ 8 double double ADJ JJ Degree=Pos 9 amod _ _ 9 categories category NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 particular particular ADJ JJ Degree=Pos 13 amod _ _ 13 class class NOUN NN Number=Sing 9 appos _ _ 14 of of ADP IN _ 13 prep _ _ 15 strict strict ADJ JJ Degree=Pos 17 amod _ _ 16 double double ADJ JJ Degree=Pos 17 amod _ _ 17 categories category NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 2 punct _ _ 19 as as ADP IN _ 2 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 21 way way NOUN NN Number=Sing 19 pobj _ _ 22 to to PART TO _ 23 aux _ _ 23 model model VERB VB VerbForm=Inf 21 relcl _ _ 24 weak weak ADJ JJ Degree=Pos 27 amod _ _ 25 2 2 NUM CD NumType=Card 27 nummod _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 categories category NOUN NNS Number=Plur 23 dobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We show that this model is suitably equivalent to bicategories and give an explicit description of the functors involved in this biequivalence. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 6 mark _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 model model NOUN NN Number=Sing 6 nsubj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 7 suitably suitably ADV RB _ 8 advmod _ _ 8 equivalent equivalent ADJ JJ Degree=Pos 6 acomp _ _ 9 to to ADP IN _ 8 prep _ _ 10 bicategories bicategorie NOUN NNS Number=Plur 9 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 6 cc _ _ 12 give give VERB VB VerbForm=Inf 6 conj _ _ 13 an an DET DT Definite=Ind|PronType=Art 15 det _ _ 14 explicit explicit ADJ JJ Degree=Pos 15 amod _ _ 15 description description NOUN NN Number=Sing 12 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 functors functor NOUN NNS Number=Plur 16 pobj _ _ 19 involved involve VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 acl _ _ 20 in in ADP IN _ 19 prep _ _ 21 this this DET DT Number=Sing|PronType=Dem 22 det _ _ 22 biequivalence biequivalence NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = As an application we show that groupoidal weakly globular double categories model homotopy 2 - types. 1 As as ADP IN _ 5 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 application application NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 that that SCONJ IN _ 13 det _ _ 7 groupoidal groupoidal NOUN NN Number=Sing 12 nmod _ _ 8 weakly weakly ADJ JJ Degree=Pos 12 amod _ _ 9 globular globular ADJ JJ Degree=Pos 12 amod _ _ 10 double double ADJ JJ Degree=Pos 11 amod _ _ 11 categories category NOUN NNS Number=Plur 12 compound _ _ 12 model model NOUN NN Number=Sing 13 compound _ _ 13 homotopy homotopy PROPN NNP Number=Sing 5 dobj _ _ 14 2 2 NUM CD NumType=Card 16 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 types type NOUN NNS Number=Plur 13 npadvmod _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 451 # sent_id = 1 # text = We define relative regular Maltsev categories and give an overview of conditions which are equivalent to the relative Maltsev axiom. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 relative relative ADJ JJ Degree=Pos 6 amod _ _ 4 regular regular ADJ JJ Degree=Pos 6 amod _ _ 5 Maltsev Maltsev PROPN NNP Number=Sing 6 amod _ _ 6 categories category NOUN NNS Number=Plur 2 dobj _ _ 7 and and CCONJ CC ConjType=Cmp 2 cc _ _ 8 give give VERB VB VerbForm=Inf 2 conj _ _ 9 an an DET DT Definite=Ind|PronType=Art 10 det _ _ 10 overview overview NOUN NN Number=Sing 8 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 conditions condition NOUN NNS Number=Plur 11 pobj _ _ 13 which which PRON WDT _ 14 nsubj _ _ 14 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 12 relcl _ _ 15 equivalent equivalent ADJ JJ Degree=Pos 14 acomp _ _ 16 to to ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 20 det _ _ 18 relative relative ADJ JJ Degree=Pos 19 amod _ _ 19 Maltsev Maltsev PROPN NNP Number=Sing 20 compound _ _ 20 axiom axiom NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = These include conditions on relations as well as conditions on simplicial objects. 1 These these PRON DT Number=Plur|PronType=Dem 2 nsubj _ _ 2 include include VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 conditions condition NOUN NNS Number=Plur 2 dobj _ _ 4 on on ADP IN _ 3 prep _ _ 5 relations relation NOUN NNS Number=Plur 4 pobj _ _ 6 as as ADV RB _ 8 advmod _ _ 7 well well ADV RB Degree=Pos 8 advmod _ _ 8 as as ADP IN _ 5 cc _ _ 9 conditions condition NOUN NNS Number=Plur 5 conj _ _ 10 on on ADP IN _ 9 prep _ _ 11 simplicial simplicial ADJ JJ Degree=Pos 12 amod _ _ 12 objects object NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We also give various examples and counterexamples. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 various various ADJ JJ Degree=Pos 5 amod _ _ 5 examples example NOUN NNS Number=Plur 3 dobj _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 counterexamples counterexample NOUN NNS Number=Plur 5 conj _ SpaceAfter=No 8 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 452 # sent_id = 1 # text = Cartesian differential categories abstractly capture the notion of a differentiation operation. 1 Cartesian cartesian ADJ JJ Degree=Pos 3 amod _ _ 2 differential differential ADJ JJ Degree=Pos 3 amod _ _ 3 categories category NOUN NNS Number=Plur 5 nsubj _ _ 4 abstractly abstractly ADV RB _ 5 advmod _ _ 5 capture capture VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 notion notion NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 differentiation differentiation NOUN NN Number=Sing 11 compound _ _ 11 operation operation NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = In this paper, we develop some of the theory of such categories by defining differential forms and exterior differentiation in this setting. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 develop develop VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 some some PRON DT _ 6 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 theory theory NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 such such ADJ JJ Degree=Pos 13 amod _ _ 13 categories category NOUN NNS Number=Plur 11 pobj _ _ 14 by by ADP IN _ 6 prep _ _ 15 defining define VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 pcomp _ _ 16 differential differential ADJ JJ Degree=Pos 17 amod _ _ 17 forms form NOUN NNS Number=Plur 15 dobj _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 exterior exterior ADJ JJ Degree=Pos 20 amod _ _ 20 differentiation differentiation NOUN NN Number=Sing 17 conj _ _ 21 in in ADP IN _ 15 prep _ _ 22 this this DET DT Number=Sing|PronType=Dem 23 det _ _ 23 setting setting NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = We show that this exterior derivative, as expected, produces a cochain complex. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 11 mark _ _ 4 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 5 exterior exterior ADJ JJ Degree=Pos 6 amod _ _ 6 derivative derivative NOUN NN Number=Sing 11 nsubj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 6 punct _ _ 8 as as SCONJ IN _ 9 mark _ _ 9 expected expect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 advcl _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 11 punct _ _ 11 produces produce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 cochain cochain NOUN NN Number=Sing 14 compound _ _ 14 complex complex NOUN NN Number=Sing 11 dobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 453 # sent_id = 1 # text = In this article we extend the theory of lax monoidal structures, also known as multitensors, and the monads on categories of enriched graphs that they give rise to. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 article article NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 extend extend VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 theory theory NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 lax lax ADJ JJ Degree=Pos 11 amod _ _ 10 monoidal monoidal ADJ JJ Degree=Pos 11 amod _ _ 11 structures structure NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 5 punct _ _ 13 also also ADV RB _ 14 advmod _ _ 14 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 advcl _ _ 15 as as ADP IN _ 14 prep _ _ 16 multitensors multitensor NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 5 punct _ _ 18 and and CCONJ CC ConjType=Cmp 5 cc _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 monads monad NOUN NNS Number=Plur 5 conj _ _ 21 on on ADP IN _ 20 prep _ _ 22 categories category NOUN NNS Number=Plur 21 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 25 amod _ _ 25 graphs graph NOUN NNS Number=Plur 23 pobj _ _ 26 that that PRON WDT PronType=Rel 28 mark _ _ 27 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 28 nsubj _ _ 28 give give VERB VBP Tense=Pres|VerbForm=Fin 20 relcl _ _ 29 rise rise NOUN NN Number=Sing 28 dobj _ _ 30 to to ADP IN _ 29 prep _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = Our first principal result—the lifting theorem for multitensors—enables us to see the Gray tensor product of 2 - categories and the Crans tensor product of Gray categories as part of this framework. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 4 poss _ _ 2 first first ADJ JJ Degree=Pos 4 amod _ _ 3 principal principal ADJ JJ Degree=Pos 4 amod _ _ 4 result result NOUN NN Number=Sing 12 nsubj _ SpaceAfter=No 5 — — PUNCT : _ 8 punct _ SpaceAfter=No 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 lifting lifting NOUN NN Number=Sing 8 nsubj _ _ 8 theorem theorem VERB VBD Tense=Past|VerbForm=Fin 4 acl _ _ 9 for for ADP IN _ 8 prep _ _ 10 multitensors multitensor NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 11 — — PUNCT : _ 12 punct _ SpaceAfter=No 12 enables enable VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 12 dobj _ _ 14 to to PART TO _ 15 aux _ _ 15 see see VERB VB VerbForm=Inf 12 xcomp _ _ 16 the the DET DT Definite=Def|PronType=Art 19 det _ _ 17 Gray Gray PROPN NNP Number=Sing 19 compound _ _ 18 tensor tensor NOUN NN Number=Sing 19 compound _ _ 19 product product NOUN NN Number=Sing 15 dobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 2 2 NUM CD NumType=Card 23 nummod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 categories category NOUN NNS Number=Plur 20 pobj _ _ 24 and and CCONJ CC ConjType=Cmp 23 cc _ _ 25 the the DET DT Definite=Def|PronType=Art 28 det _ _ 26 Crans Crans PROPN NNPS Number=Plur 28 compound _ _ 27 tensor tensor NOUN NN Number=Sing 28 compound _ _ 28 product product NOUN NN Number=Sing 23 conj _ _ 29 of of ADP IN _ 28 prep _ _ 30 Gray Gray PROPN NNP Number=Sing 31 amod _ _ 31 categories category NOUN NNS Number=Plur 29 pobj _ _ 32 as as ADP IN _ 15 prep _ _ 33 part part NOUN NN Number=Sing 32 pobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 this this DET DT Number=Sing|PronType=Dem 36 det _ _ 36 framework framework NOUN NN Number=Sing 34 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 3 # text = We define weak $ n $ - categories with strict units by means of a notion of reduced higher operad, using the theory of algebraic weak factorisation systems. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 weak weak ADJ JJ Degree=Pos 6 amod _ _ 4 $ n $ $ n $ SYM $ _ 6 compound _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 categories category NOUN NNS Number=Plur 2 dobj _ _ 7 with with ADP IN _ 6 prep _ _ 8 strict strict ADJ JJ Degree=Pos 9 amod _ _ 9 units unit NOUN NNS Number=Plur 7 pobj _ _ 10 by by ADP IN _ 2 prep _ _ 11 means mean NOUN NNS Number=Plur 10 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 notion notion NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 reduced reduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 amod _ _ 17 higher high ADJ JJR Degree=Cmp 18 amod _ _ 18 operad operad ADV RB _ 15 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 2 punct _ _ 20 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 theory theory NOUN NN Number=Sing 20 dobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 algebraic algebraic ADJ JJ Degree=Pos 27 amod _ _ 25 weak weak ADJ JJ Degree=Pos 27 amod _ _ 26 factorisation factorisation NOUN NN Number=Sing 27 compound _ _ 27 systems system NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = Our second principal result is to establish a lax tensor product on the category of weak $ n $ - categories with strict units, so that enriched categories with respect to this tensor product are exactly weak $ (n+1) $ - categories with strict units. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 4 poss _ _ 2 second second ADJ JJ Degree=Pos 4 amod _ _ 3 principal principal ADJ JJ Degree=Pos 4 amod _ _ 4 result result NOUN NN Number=Sing 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 to to PART TO _ 7 aux _ _ 7 establish establish VERB VB VerbForm=Inf 5 xcomp _ _ 8 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 9 lax lax ADJ JJ Degree=Pos 11 amod _ _ 10 tensor tensor NOUN NN Number=Sing 11 compound _ _ 11 product product NOUN NN Number=Sing 7 dobj _ _ 12 on on ADP IN _ 7 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 category category NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 weak weak ADJ JJ Degree=Pos 19 amod _ _ 17 $ n $ $ n $ SYM $ _ 19 compound _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 categories category NOUN NNS Number=Plur 15 pobj _ _ 20 with with ADP IN _ 19 prep _ _ 21 strict strict ADJ JJ Degree=Pos 22 amod _ _ 22 units unit NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 5 punct _ _ 24 so so SCONJ IN _ 34 mark _ _ 25 that that SCONJ IN _ 34 mark _ _ 26 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 amod _ _ 27 categories category NOUN NNS Number=Plur 34 nsubj _ _ 28 with with ADP IN _ 27 prep _ _ 29 respect respect NOUN NN Number=Sing 28 pobj _ _ 30 to to ADP IN _ 29 prep _ _ 31 this this DET DT Number=Sing|PronType=Dem 33 det _ _ 32 tensor tensor NOUN NN Number=Sing 33 compound _ _ 33 product product NOUN NN Number=Sing 30 pobj _ _ 34 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 advcl _ _ 35 exactly exactly ADV RB _ 36 advmod _ _ 36 weak weak ADJ JJ Degree=Pos 39 amod _ _ 37 $ (n+1) $ $ (n+1) $ SYM $ _ 39 compound _ _ 38 - - PUNCT HYPH PunctType=Dash 39 punct _ _ 39 categories category NOUN NNS Number=Plur 34 attr _ _ 40 with with ADP IN _ 39 prep _ _ 41 strict strict ADJ JJ Degree=Pos 42 amod _ _ 42 units unit NOUN NNS Number=Plur 40 pobj _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 454 # sent_id = 1 # text = In this paper we unify the developments of Batanin, Batanin - Weber and Cheng into a single framework in which the interplay between multitensors on a category $ V $ , and monads on the category $ cal G V $ of graphs enriched in $ V $ , is taken as fundamental. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 unify unify VERB VBP Tense=Pres|VerbForm=Fin 44 csubjpass _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 developments development NOUN NNS Number=Plur 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 Batanin Batanin PROPN NNP Number=Sing 8 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 Batanin Batanin PROPN NNP Number=Sing 13 compound _ _ 12 - - PUNCT : _ 13 punct _ _ 13 Weber Weber PROPN NNP Number=Sing 9 conj _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 Cheng Cheng PROPN NNP Number=Sing 13 conj _ _ 16 into into ADP IN _ 5 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 18 single single ADJ JJ Degree=Pos 19 amod _ _ 19 framework framework NOUN NN Number=Sing 16 pobj _ _ 20 in in ADP IN _ 29 prep _ _ 21 which which PRON WDT _ 20 pobj _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 interplay interplay NOUN NN Number=Sing 29 nsubj _ _ 24 between between ADP IN _ 23 prep _ _ 25 multitensors multitensor NOUN NNS Number=Plur 24 pobj _ _ 26 on on ADP IN _ 25 prep _ _ 27 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 28 category category NOUN NN Number=Sing 26 pobj _ _ 29 $ V $ $ v $ SYM $ _ 19 relcl _ _ 30 , , PUNCT , PunctType=Comm 5 punct _ _ 31 and and CCONJ CC ConjType=Cmp 5 cc _ _ 32 monads monad NOUN NNS Number=Plur 5 conj _ _ 33 on on ADP IN _ 32 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 35 det _ _ 35 category category NOUN NN Number=Sing 33 pobj _ _ 36 $ cal G V $ $ cal g v $ SYM $ _ 5 dep _ _ 37 of of ADP IN _ 36 prep _ _ 38 graphs graph NOUN NNS Number=Plur 37 pobj _ _ 39 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 38 acl _ _ 40 in in ADP IN _ 39 prep _ _ 41 $ V $ $ v $ SYM $ _ 40 pobj _ _ 42 , , PUNCT , PunctType=Comm 44 punct _ _ 43 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 44 auxpass _ _ 44 taken take VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 45 as as ADV RB _ 44 prep _ _ 46 fundamental fundamental ADJ JJ Degree=Pos 45 amod _ SpaceAfter=No 47 . . PUNCT . PunctType=Peri 44 punct _ SpaceAfter=No # sent_id = 2 # text = The material presented here is the conceptual background for subsequent work: in Batanin - Cisinski - Weber the Gray tensor product of 2 - categories and the Crans tensor product of Gray categories are exhibited as existing within our framework, and in Weber the explicit construction of the funny tensor product of categories is generalised to a large class of Batanin operads. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 material material NOUN NN Number=Sing 5 nsubj _ _ 3 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 acl _ _ 4 here here ADV RB PronType=Dem 3 advmod _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 36 ccomp _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 conceptual conceptual ADJ JJ Degree=Pos 8 amod _ _ 8 background background NOUN NN Number=Sing 5 attr _ _ 9 for for ADP IN _ 8 prep _ _ 10 subsequent subsequent ADJ JJ Degree=Pos 11 amod _ _ 11 work work NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 12 : : PUNCT : _ 8 punct _ _ 13 in in ADP IN _ 36 prep _ _ 14 Batanin Batanin PROPN NNP Number=Sing 16 compound _ _ 15 - - PUNCT : _ 16 punct _ _ 16 Cisinski Cisinski PROPN NNP Number=Sing 18 compound _ _ 17 - - PUNCT : _ 18 punct _ _ 18 Weber Weber PROPN NNP Number=Sing 13 pobj _ _ 19 the the DET DT Definite=Def|PronType=Art 22 det _ _ 20 Gray Gray PROPN NNP Number=Sing 22 compound _ _ 21 tensor tensor NOUN NN Number=Sing 22 compound _ _ 22 product product NOUN NN Number=Sing 36 nsubjpass _ _ 23 of of ADP IN _ 22 prep _ _ 24 2 2 NUM CD NumType=Card 26 nummod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 categories category NOUN NNS Number=Plur 23 pobj _ _ 27 and and CCONJ CC ConjType=Cmp 26 cc _ _ 28 the the DET DT Definite=Def|PronType=Art 31 det _ _ 29 Crans Crans PROPN NNPS Number=Plur 31 compound _ _ 30 tensor tensor NOUN NN Number=Sing 31 compound _ _ 31 product product NOUN NN Number=Sing 26 conj _ _ 32 of of ADP IN _ 31 prep _ _ 33 Gray Gray PROPN NNP Number=Sing 34 amod _ _ 34 categories category NOUN NNS Number=Plur 32 pobj _ _ 35 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 36 auxpass _ _ 36 exhibited exhibit VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 37 as as ADP IN _ 36 prep _ _ 38 existing exist VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 37 pcomp _ _ 39 within within ADP IN _ 38 prep _ _ 40 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 41 poss _ _ 41 framework framework NOUN NN Number=Sing 39 pobj _ SpaceAfter=No 42 , , PUNCT , PunctType=Comm 36 punct _ _ 43 and and CCONJ CC ConjType=Cmp 36 cc _ _ 44 in in ADP IN _ 57 prep _ _ 45 Weber Weber PROPN NNP Number=Sing 44 pobj _ _ 46 the the DET DT Definite=Def|PronType=Art 48 det _ _ 47 explicit explicit ADJ JJ Degree=Pos 48 amod _ _ 48 construction construction NOUN NN Number=Sing 57 nsubjpass _ _ 49 of of ADP IN _ 48 prep _ _ 50 the the DET DT Definite=Def|PronType=Art 53 det _ _ 51 funny funny ADJ JJ Degree=Pos 53 amod _ _ 52 tensor tensor NOUN NN Number=Sing 53 compound _ _ 53 product product NOUN NN Number=Sing 49 pobj _ _ 54 of of ADP IN _ 53 prep _ _ 55 categories category NOUN NNS Number=Plur 54 pobj _ _ 56 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 57 auxpass _ _ 57 generalised generalise VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 36 conj _ _ 58 to to ADP IN _ 57 prep _ _ 59 a a DET DT Definite=Ind|PronType=Art 61 det _ _ 60 large large ADJ JJ Degree=Pos 61 amod _ _ 61 class class NOUN NN Number=Sing 58 pobj _ _ 62 of of ADP IN _ 61 prep _ _ 63 Batanin Batanin PROPN NNP Number=Sing 64 amod _ _ 64 operads operad NOUN NNS Number=Plur 62 pobj _ SpaceAfter=No 65 . . PUNCT . PunctType=Peri 57 punct _ SpaceAfter=No # doc_id = 455 # sent_id = 1 # text = It is known that strict omega - categories are equivalent through the nerve functor to complicial sets and to sets with complicial identities. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 that that SCONJ IN _ 9 mark _ _ 5 strict strict ADJ JJ Degree=Pos 8 amod _ _ 6 omega omega NOUN NN Number=Sing 8 compound _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 categories category NOUN NNS Number=Plur 9 nsubj _ _ 9 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 10 equivalent equivalent ADJ JJ Degree=Pos 9 acomp _ _ 11 through through ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 nerve nerve NOUN NN Number=Sing 14 compound _ _ 14 functor functor NOUN NN Number=Sing 11 pobj _ _ 15 to to ADP IN _ 10 prep _ _ 16 complicial complicial ADJ JJ Degree=Pos 17 amod _ _ 17 sets set NOUN NNS Number=Plur 15 pobj _ _ 18 and and CCONJ CC ConjType=Cmp 15 cc _ _ 19 to to PART TO _ 20 aux _ _ 20 sets set NOUN NNS Number=Plur 9 conj _ _ 21 with with ADP IN _ 20 prep _ _ 22 complicial complicial ADJ JJ Degree=Pos 23 amod _ _ 23 identities identity NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = It follows that complicial sets are equivalent to sets with complicial identities. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 follows follow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 6 mark _ _ 4 complicial complicial ADJ JJ Degree=Pos 5 amod _ _ 5 sets set NOUN NNS Number=Plur 6 nsubj _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 7 equivalent equivalent ADJ JJ Degree=Pos 6 acomp _ _ 8 to to PART TO _ 9 aux _ _ 9 sets set NOUN NNS Number=Plur 7 xcomp _ _ 10 with with ADP IN _ 9 prep _ _ 11 complicial complicial ADJ JJ Degree=Pos 12 amod _ _ 12 identities identity NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We discuss these equivalences. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 discuss discuss VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 these these DET DT Number=Plur|PronType=Dem 4 det _ _ 4 equivalences equivalence NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 5 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = In particular we give a conceptual proof that the nerves of omega - categories are complicial sets, and a direct proof that complicial sets are sets with complicial identities. 1 In in ADP IN _ 4 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 conceptual conceptual ADJ JJ Degree=Pos 7 amod _ _ 7 proof proof NOUN NN Number=Sing 4 dobj _ _ 8 that that SCONJ IN _ 15 mark _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 nerves nerve NOUN NNS Number=Plur 15 nsubj _ _ 11 of of ADP IN _ 10 prep _ _ 12 omega omega NOUN NN Number=Sing 14 compound _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 categories category NOUN NNS Number=Plur 11 pobj _ _ 15 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 acl _ _ 16 complicial complicial ADJ JJ Degree=Pos 17 amod _ _ 17 sets set NOUN NNS Number=Plur 15 attr _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 15 punct _ _ 19 and and CCONJ CC ConjType=Cmp 15 cc _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 direct direct ADJ JJ Degree=Pos 22 amod _ _ 22 proof proof NOUN NN Number=Sing 4 dobj _ _ 23 that that SCONJ IN _ 26 mark _ _ 24 complicial complicial ADJ JJ Degree=Pos 25 amod _ _ 25 sets set NOUN NNS Number=Plur 26 nsubj _ _ 26 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 22 acl _ _ 27 sets set NOUN NNS Number=Plur 26 attr _ _ 28 with with ADP IN _ 27 prep _ _ 29 complicial complicial ADJ JJ Degree=Pos 30 amod _ _ 30 identities identity NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 456 # sent_id = 1 # text = We show that the nerve of a strict omega - category can be described algebraically as a simplicial set with additional operations subject to certain identities. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 14 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 nerve nerve NOUN NN Number=Sing 14 nsubjpass _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 8 strict strict ADJ JJ Degree=Pos 11 amod _ _ 9 omega omega NOUN NN Number=Sing 11 compound _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 category category NOUN NN Number=Sing 6 pobj _ _ 12 can can AUX MD VerbForm=Fin 14 aux _ _ 13 be be AUX VB VerbForm=Inf 14 auxpass _ _ 14 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 15 algebraically algebraically ADV RB _ 14 advmod _ _ 16 as as SCONJ IN _ 23 mark _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 simplicial simplicial NOUN NN Number=Sing 23 nsubj _ _ 19 set set VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 acl _ _ 20 with with ADP IN _ 19 prep _ _ 21 additional additional ADJ JJ Degree=Pos 22 amod _ _ 22 operations operation NOUN NNS Number=Plur 20 pobj _ _ 23 subject subject ADJ JJ Degree=Pos 14 advcl _ _ 24 to to ADP IN _ 23 prep _ _ 25 certain certain ADJ JJ Degree=Pos 26 amod _ _ 26 identities identity NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The resulting structures are called sets with complicial identities. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 resulting result VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 amod _ _ 3 structures structure NOUN NNS Number=Plur 5 nsubjpass _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 sets set NOUN NNS Number=Plur 5 oprd _ _ 7 with with ADP IN _ 6 prep _ _ 8 complicial complicial ADJ JJ Degree=Pos 9 amod _ _ 9 identities identity NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = We also construct an equivalence between the categories of strict omega - categories and of sets with complical identities. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 5 equivalence equivalence NOUN NN Number=Sing 3 dobj _ _ 6 between between ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 categories category NOUN NNS Number=Plur 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 strict strict ADJ JJ Degree=Pos 13 amod _ _ 11 omega omega NOUN NN Number=Sing 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 categories category NOUN NNS Number=Plur 9 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 9 cc _ _ 15 of of ADP IN _ 9 conj _ _ 16 sets set NOUN NNS Number=Plur 15 pobj _ _ 17 with with ADP IN _ 16 prep _ _ 18 complical complical ADJ JJ Degree=Pos 19 amod _ _ 19 identities identity NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 457 # sent_id = 1 # text = In this paper we consider generalized metric spaces in the sense of Lawvere and the categorical Isbell completion construction. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 7 metric metric ADJ JJ Degree=Pos 8 amod _ _ 8 spaces space NOUN NNS Number=Plur 5 dobj _ _ 9 in in ADP IN _ 5 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 sense sense NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 Lawvere Lawvere PROPN NNP Number=Sing 12 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 the the DET DT Definite=Def|PronType=Art 19 det _ _ 16 categorical categorical ADJ JJ Degree=Pos 17 amod _ _ 17 Isbell Isbell PROPN NNP Number=Sing 19 compound _ _ 18 completion completion NOUN NN Number=Sing 19 compound _ _ 19 construction construction NOUN NN Number=Sing 13 conj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = We show that this is an analogue of the tight span construction of classical metric spaces, and that the Isbell completion coincides with the directed tight span of Hirai and Koichi. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 5 mark _ _ 4 this this PRON DT Number=Sing|PronType=Dem 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 6 an an DET DT Definite=Ind|PronType=Art 7 det _ _ 7 analogue analogue NOUN NN Number=Sing 5 attr _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 12 det _ _ 10 tight tight ADJ JJ Degree=Pos 12 amod _ _ 11 span span NOUN NN Number=Sing 12 compound _ _ 12 construction construction NOUN NN Number=Sing 8 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 classical classical ADJ JJ Degree=Pos 16 amod _ _ 15 metric metric ADJ JJ Degree=Pos 16 amod _ _ 16 spaces space NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 5 punct _ _ 18 and and CCONJ CC ConjType=Cmp 5 cc _ _ 19 that that SCONJ IN _ 23 mark _ _ 20 the the DET DT Definite=Def|PronType=Art 23 det _ _ 21 Isbell Isbell PROPN NNP Number=Sing 23 compound _ _ 22 completion completion NOUN NN Number=Sing 23 compound _ _ 23 coincides coincide NOUN NNS Number=Plur 5 conj _ _ 24 with with ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 28 det _ _ 26 directed direct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 amod _ _ 27 tight tight ADJ JJ Degree=Pos 28 amod _ _ 28 span span NOUN NN Number=Sing 24 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 Hirai Hirai PROPN NNP Number=Sing 29 pobj _ _ 31 and and CCONJ CC ConjType=Cmp 30 cc _ _ 32 Koichi Koichi PROPN NNP Number=Sing 30 conj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = The notions of categorical completion and cocompletion are related to the existence of semi - tropical module structure, and it is shown that the Isbell completion (hence the directed tight span) has two different semi - tropical module structures. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 notions notion NOUN NNS Number=Plur 9 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 categorical categorical ADJ JJ Degree=Pos 5 amod _ _ 5 completion completion NOUN NN Number=Sing 3 pobj _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 cocompletion cocompletion NOUN NN Number=Sing 5 conj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 to to ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 existence existence NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 semi semi ADJ JJ Degree=Pos 18 amod _ _ 15 - - ADJ JJ Degree=Pos 18 amod _ _ 16 tropical tropical ADJ JJ Degree=Pos 18 amod _ _ 17 module module NOUN NN Number=Sing 18 compound _ _ 18 structure structure NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 9 punct _ _ 20 and and CCONJ CC ConjType=Cmp 9 cc _ _ 21 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 23 nsubjpass _ _ 22 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 auxpass _ _ 23 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 conj _ _ 24 that that SCONJ IN _ 35 mark _ _ 25 the the DET DT Definite=Def|PronType=Art 27 det _ _ 26 Isbell Isbell PROPN NNP Number=Sing 27 compound _ _ 27 completion completion NOUN NN Number=Sing 35 nsubj _ _ 28 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 33 punct _ SpaceAfter=No 29 hence hence ADV RB _ 33 advmod _ _ 30 the the DET DT Definite=Def|PronType=Art 33 det _ _ 31 directed direct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 33 amod _ _ 32 tight tight ADJ JJ Degree=Pos 33 amod _ _ 33 span span NOUN NN Number=Sing 27 appos _ SpaceAfter=No 34 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 27 punct _ _ 35 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 ccomp _ _ 36 two two NUM CD NumType=Card 42 nummod _ _ 37 different different ADJ JJ Degree=Pos 42 amod _ _ 38 semi semi ADJ JJ Degree=Pos 42 amod _ _ 39 - - ADJ JJ Degree=Pos 42 amod _ _ 40 tropical tropical ADJ JJ Degree=Pos 42 amod _ _ 41 module module NOUN NN Number=Sing 42 compound _ _ 42 structures structure NOUN NNS Number=Plur 35 dobj _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 23 punct _ SpaceAfter=No # doc_id = 458 # sent_id = 1 # text = We develop a theory of categories which are simultaneously (i) indexed over a base category $ S $ with finite products, and (ii) enriched over an $ S $ - indexed monoidal category $ V $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 develop develop VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 theory theory NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 categories category NOUN NNS Number=Plur 5 pobj _ _ 7 which which PRON WDT _ 8 nsubj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 relcl _ _ 9 simultaneously simultaneously ADV RB _ 8 advmod _ _ 10 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 11 punct _ SpaceAfter=No 11 i i NOUN NN Number=Sing 8 parataxis _ SpaceAfter=No 12 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 11 punct _ _ 13 indexed index VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 acomp _ _ 14 over over ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 base base NOUN NN Number=Sing 17 compound _ _ 17 category category NOUN NN Number=Sing 14 pobj _ _ 18 $ S $ $ s $ SYM $ _ 17 appos _ _ 19 with with ADP IN _ 13 prep _ _ 20 finite finite ADJ JJ Degree=Pos 21 amod _ _ 21 products product NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 13 punct _ _ 23 and and CCONJ CC ConjType=Cmp 13 cc _ _ 24 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 25 punct _ SpaceAfter=No 25 ii ii PROPN NNP Number=Sing 13 conj _ SpaceAfter=No 26 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 25 punct _ _ 27 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 acl _ _ 28 over over ADP IN _ 27 prep _ _ 29 an an DET DT Definite=Ind|PronType=Art 34 det _ _ 30 $ S $ $ s $ SYM $ _ 32 advmod _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 indexed index VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 34 amod _ _ 33 monoidal monoidal ADJ JJ Degree=Pos 34 amod _ _ 34 category category NOUN NN Number=Sing 28 pobj _ _ 35 $ V $ $ v $ SYM $ _ 27 npadvmod _ _ 36 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = This includes classical enriched categories, indexed and fibered categories, and internal categories as special cases. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 includes include VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 classical classical ADJ JJ Degree=Pos 5 amod _ _ 4 enriched enriched ADJ JJ Degree=Pos 5 amod _ _ 5 categories category NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 indexed index VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 fibered fibere VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 conj _ _ 10 categories category NOUN NNS Number=Plur 5 conj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 and and CCONJ CC ConjType=Cmp 10 cc _ _ 13 internal internal ADJ JJ Degree=Pos 14 amod _ _ 14 categories category NOUN NNS Number=Plur 10 conj _ _ 15 as as ADP IN _ 5 prep _ _ 16 special special ADJ JJ Degree=Pos 17 amod _ _ 17 cases case NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We then describe the appropriate notion of ``limit'' for such enriched indexed categories, and show that they admit ``free cocompletions'' constructed as usual with a Yoneda embedding. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 appropriate appropriate ADJ JJ Degree=Pos 6 amod _ _ 6 notion notion NOUN NN Number=Sing 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 10 punct _ SpaceAfter=No 9 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 10 punct _ SpaceAfter=No 10 limit limit VERB VB VerbForm=Inf 7 pobj _ SpaceAfter=No 11 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 10 punct _ _ 12 for for ADP IN _ 10 prep _ _ 13 such such ADJ JJ Degree=Pos 16 amod _ _ 14 enriched enriched ADJ JJ Degree=Pos 16 amod _ _ 15 indexed index VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 16 categories category NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 3 punct _ _ 18 and and CCONJ CC ConjType=Cmp 3 cc _ _ 19 show show VERB VBP Tense=Pres|VerbForm=Fin 3 conj _ _ 20 that that SCONJ IN _ 22 mark _ _ 21 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 22 nsubj _ _ 22 admit admit VERB VBP Tense=Pres|VerbForm=Fin 19 ccomp _ _ 23 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 26 punct _ SpaceAfter=No 24 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 26 punct _ SpaceAfter=No 25 free free ADJ JJ Degree=Pos 26 amod _ _ 26 cocompletions cocompletion NOUN NNS Number=Plur 22 dobj _ SpaceAfter=No 27 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 26 punct _ _ 28 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 acl _ _ 29 as as ADP IN _ 28 prep _ _ 30 usual usual ADJ JJ Degree=Pos 29 amod _ _ 31 with with ADP IN _ 28 prep _ _ 32 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 33 Yoneda Yoneda PROPN NNP Number=Sing 34 compound _ _ 34 embedding embed VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 31 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 459 # sent_id = 1 # text = Each distributor between categories enriched over a small quantaloid $ Q $ gives rise to two adjunctions between the categories of contravariant and covariant presheaves, and hence to two monads. 1 Each each DET DT _ 2 det _ _ 2 distributor distributor NOUN NN Number=Sing 11 nsubj _ _ 3 between between ADP IN _ 2 prep _ _ 4 categories category NOUN NNS Number=Plur 3 pobj _ _ 5 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 acl _ _ 6 over over ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 small small ADJ JJ Degree=Pos 9 amod _ _ 9 quantaloid quantaloid NOUN NN Number=Sing 6 pobj _ _ 10 $ Q $ $ q $ SYM $ _ 5 npadvmod _ _ 11 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 rise rise VERB VB VerbForm=Inf 11 dobj _ _ 13 to to ADP IN _ 12 prep _ _ 14 two two NUM CD NumType=Card 15 nummod _ _ 15 adjunctions adjunction NOUN NNS Number=Plur 13 pobj _ _ 16 between between ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 categories category NOUN NNS Number=Plur 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 contravariant contravariant ADJ JJ Degree=Pos 23 amod _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 covariant covariant ADJ JJ Degree=Pos 20 conj _ _ 23 presheaves presheave NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 11 punct _ _ 25 and and CCONJ CC ConjType=Cmp 11 cc _ _ 26 hence hence ADV RB _ 27 advmod _ _ 27 to to ADP IN _ 11 conj _ _ 28 two two NUM CD NumType=Card 29 nummod _ _ 29 monads monad NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 2 # text = These two adjunctions are respectively generalizations of Isbell adjunctions and Kan extensions in category theory. 1 These these DET DT Number=Plur|PronType=Dem 3 det _ _ 2 two two NUM CD NumType=Card 3 nummod _ _ 3 adjunctions adjunction NOUN NNS Number=Plur 4 nsubj _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 respectively respectively ADV RB _ 4 advmod _ _ 6 generalizations generalization NOUN NNS Number=Plur 4 attr _ _ 7 of of ADP IN _ 6 prep _ _ 8 Isbell Isbell PROPN NNP Number=Sing 9 compound _ _ 9 adjunctions adjunction NOUN NNS Number=Plur 7 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 Kan Kan PROPN NNP Number=Sing 12 compound _ _ 12 extensions extension NOUN NNS Number=Plur 9 conj _ _ 13 in in ADP IN _ 12 prep _ _ 14 category category NOUN NN Number=Sing 15 compound _ _ 15 theory theory NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = It is proved that these two processes are functorial with infomorphisms playing as morphisms between distributors; and that the free cocompletion functor of $ Q $ - categories factors through both of these functors. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 that that SCONJ IN _ 8 mark _ _ 5 these these DET DT Number=Plur|PronType=Dem 7 det _ _ 6 two two NUM CD NumType=Card 7 nummod _ _ 7 processes process NOUN NNS Number=Plur 8 nsubj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 9 functorial functorial ADJ JJ Degree=Pos 8 acomp _ _ 10 with with ADP IN _ 9 prep _ _ 11 infomorphisms infomorphism NOUN NNS Number=Plur 10 pobj _ _ 12 playing play VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 11 acl _ _ 13 as as ADP IN _ 12 prep _ _ 14 morphisms morphism NOUN NNS Number=Plur 13 pobj _ _ 15 between between ADP IN _ 12 prep _ _ 16 distributors distributor NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 17 ; ; PUNCT : _ 3 punct _ _ 18 and and CCONJ CC ConjType=Cmp 3 cc _ _ 19 that that SCONJ IN _ 23 mark _ _ 20 the the DET DT Definite=Def|PronType=Art 23 det _ _ 21 free free ADJ JJ Degree=Pos 22 amod _ _ 22 cocompletion cocompletion NOUN NN Number=Sing 23 compound _ _ 23 functor functor NOUN NN Number=Sing 3 conj _ _ 24 of of ADP IN _ 23 prep _ _ 25 $ Q $ $ q $ SYM $ _ 27 nummod _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 categories category NOUN NNS Number=Plur 28 compound _ _ 28 factors factor NOUN NNS Number=Plur 24 pobj _ _ 29 through through ADP IN _ 23 prep _ _ 30 both both PRON DT _ 29 pobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 these these DET DT Number=Plur|PronType=Dem 33 det _ _ 33 functors functor NOUN NNS Number=Plur 31 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 460 # sent_id = 1 # text = The purpose of this text is the study of the class of homotopy types which are modelized by strict $ infty $ - groupoids. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 purpose purpose NOUN NN Number=Sing 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 text text NOUN NN Number=Sing 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 study study NOUN NN Number=Sing 6 attr _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 class class NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 homotopy homotopy NOUN NN Number=Sing 14 compound _ _ 14 types type NOUN NNS Number=Plur 12 pobj _ _ 15 which which PRON WDT _ 17 nsubjpass _ _ 16 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 17 auxpass _ _ 17 modelized modelize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 relcl _ _ 18 by by ADP IN _ 17 agent _ _ 19 strict strict ADJ JJ Degree=Pos 22 amod _ _ 20 $ infty $ $ infty $ SYM $ _ 22 compound _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 groupoids groupoid NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = We show that the homotopy category of simply connected strict $ infty $ - groupoids is equivalent to the derived category in homological degree $ d ge 2 $ of abelian groups. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 14 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 homotopy homotopy NOUN NN Number=Sing 6 compound _ _ 6 category category NOUN NN Number=Sing 14 nsubj _ _ 7 of of ADP IN _ 6 prep _ _ 8 simply simply ADV RB _ 9 advmod _ _ 9 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 amod _ _ 10 strict strict ADJ JJ Degree=Pos 13 amod _ _ 11 $ infty $ $ infty $ SYM $ _ 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 groupoids groupoid NOUN NNS Number=Plur 7 pobj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 15 equivalent equivalent ADJ JJ Degree=Pos 14 acomp _ _ 16 to to ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 derived derive VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 amod _ _ 19 category category NOUN NN Number=Sing 16 pobj _ _ 20 in in ADP IN _ 19 prep _ _ 21 homological homological ADJ JJ Degree=Pos 22 amod _ _ 22 degree degree NOUN NN Number=Sing 20 pobj _ _ 23 $ d ge 2 $ $ d ge 2 $ SYM $ _ 19 appos _ _ 24 of of ADP IN _ 23 prep _ _ 25 abelian abelian ADJ JJ Degree=Pos 26 compound _ _ 26 groups group NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We deduce that the simply connected homotopy types modelized by strict $ infty $ - groupoids are precisely the products of Eilenberg - Mac Lane spaces. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 deduce deduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 15 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 8 det _ _ 5 simply simply ADV RB _ 6 advmod _ _ 6 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 7 homotopy homotopy NOUN NN Number=Sing 8 compound _ _ 8 types type NOUN NNS Number=Plur 15 nsubj _ _ 9 modelized modelize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 acl _ _ 10 by by ADP IN _ 9 agent _ _ 11 strict strict ADJ JJ Degree=Pos 14 amod _ _ 12 $ infty $ $ infty $ SYM $ _ 14 compound _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 groupoids groupoid NOUN NNS Number=Plur 10 pobj _ _ 15 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 16 precisely precisely ADV RB _ 15 advmod _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 products product NOUN NNS Number=Plur 15 attr _ _ 19 of of ADP IN _ 18 prep _ _ 20 Eilenberg Eilenberg PROPN NNP Number=Sing 22 compound _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 Mac Mac PROPN NNP Number=Sing 23 compound _ _ 23 Lane Lane PROPN NNP Number=Sing 24 compound _ _ 24 spaces space VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We also briefly study 3 - categories with weak inverses. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 2 also also ADV RB _ 4 advmod _ _ 3 briefly briefly ADV RB _ 4 advmod _ _ 4 study study VERB VB VerbForm=Inf 0 ROOT _ _ 5 3 3 NUM CD NumType=Card 7 nummod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 categories category NOUN NNS Number=Plur 4 dobj _ _ 8 with with ADP IN _ 4 prep _ _ 9 weak weak ADJ JJ Degree=Pos 10 amod _ _ 10 inverses inverse NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = We finish by two questions about the problem suggested by the title of this text. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 finish finish VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 by by ADP IN _ 2 prep _ _ 4 two two NUM CD NumType=Card 5 nummod _ _ 5 questions question NOUN NNS Number=Plur 3 pobj _ _ 6 about about ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 problem problem NOUN NN Number=Sing 6 pobj _ _ 9 suggested suggest VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 acl _ _ 10 by by ADP IN _ 9 agent _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 title title NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 this this DET DT Number=Sing|PronType=Dem 15 det _ _ 15 text text NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 461 # sent_id = 1 # text = Moerdijk's site description for equivariant sheaf toposes on open topological groupoids is used to give a proof for the (known, but apparently unpublished) proposition that if $ H $ is a subgroupoid of an open topological groupoid $ G $ , then the topos of equivariant sheaves on $ H $ is a subtopos of the topos of equivariant sheaves on $ G $ . 1 Moerdijk Moerdijk PROPN NNP Number=Sing 4 poss _ SpaceAfter=No 2 's 's PART POS _ 1 case _ _ 3 site site NOUN NN Number=Sing 4 compound _ _ 4 description description NOUN NN Number=Sing 14 nsubjpass _ _ 5 for for ADP IN _ 4 prep _ _ 6 equivariant equivariant ADJ JJ Degree=Pos 7 amod _ _ 7 sheaf sheaf NOUN NN Number=Sing 8 compound _ _ 8 toposes topos NOUN NNS Number=Plur 5 pobj _ _ 9 on on ADP IN _ 8 prep _ _ 10 open open ADJ JJ Degree=Pos 12 amod _ _ 11 topological topological ADJ JJ Degree=Pos 12 amod _ _ 12 groupoids groupoid NOUN NNS Number=Plur 9 pobj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 15 to to PART TO _ 16 aux _ _ 16 give give VERB VB VerbForm=Inf 14 xcomp _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 proof proof NOUN NN Number=Sing 16 dobj _ _ 19 for for ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 28 det _ _ 21 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 22 punct _ SpaceAfter=No 22 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 amod _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 but but CCONJ CC ConjType=Cmp 22 cc _ _ 25 apparently apparently ADV RB _ 26 advmod _ _ 26 unpublished unpublished ADJ JJ Degree=Pos 28 amod _ SpaceAfter=No 27 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 28 punct _ _ 28 proposition proposition NOUN NN Number=Sing 19 pobj _ _ 29 that that SCONJ IN _ 50 mark _ _ 30 if if SCONJ IN _ 32 mark _ _ 31 $ H $ $ h $ SYM $ _ 32 nsubj _ _ 32 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 50 advcl _ _ 33 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 34 subgroupoid subgroupoid NOUN NN Number=Sing 32 attr _ _ 35 of of ADP IN _ 34 prep _ _ 36 an an DET DT Definite=Ind|PronType=Art 39 det _ _ 37 open open ADJ JJ Degree=Pos 39 amod _ _ 38 topological topological ADJ JJ Degree=Pos 39 amod _ _ 39 groupoid groupoid NOUN NN Number=Sing 35 pobj _ _ 40 $ G $ $ g $ SYM $ _ 39 appos _ _ 41 , , PUNCT , PunctType=Comm 50 punct _ _ 42 then then ADV RB PronType=Dem 50 advmod _ _ 43 the the DET DT Definite=Def|PronType=Art 44 det _ _ 44 topos topos NOUN NN Number=Sing 50 nsubj _ _ 45 of of ADP IN _ 44 prep _ _ 46 equivariant equivariant ADJ JJ Degree=Pos 47 amod _ _ 47 sheaves sheaf NOUN NNS Number=Plur 45 pobj _ _ 48 on on ADP IN _ 44 prep _ _ 49 $ H $ $ h $ SYM $ _ 48 pobj _ _ 50 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 28 acl _ _ 51 a a DET DT Definite=Ind|PronType=Art 52 det _ _ 52 subtopos subtopos NOUN NN Number=Sing 50 attr _ _ 53 of of ADP IN _ 52 prep _ _ 54 the the DET DT Definite=Def|PronType=Art 55 det _ _ 55 topos topos NOUN NN Number=Sing 53 pobj _ _ 56 of of ADP IN _ 55 prep _ _ 57 equivariant equivariant ADJ JJ Degree=Pos 58 amod _ _ 58 sheaves sheaf NOUN NNS Number=Plur 56 pobj _ _ 59 on on ADP IN _ 55 prep _ _ 60 $ G $ $ g $ SYM $ _ 59 pobj _ _ 61 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 2 # text = This proposition is then applied to the study of quotient geometric theories and subtoposes. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 proposition proposition NOUN NN Number=Sing 5 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 4 then then ADV RB PronType=Dem 5 advmod _ _ 5 applied apply VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 to to ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 study study NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 quotient quotient ADJ JJ Degree=Pos 12 amod _ _ 11 geometric geometric ADJ JJ Degree=Pos 12 amod _ _ 12 theories theory NOUN NNS Number=Plur 9 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 subtoposes subtopose NOUN NNS Number=Plur 12 conj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = In particular, an intrinsic characterization is given of those subgroupoids that are definable by quotient theories. 1 In in ADP IN _ 8 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 8 punct _ _ 4 an an DET DT Definite=Ind|PronType=Art 6 det _ _ 5 intrinsic intrinsic ADJ JJ Degree=Pos 6 amod _ _ 6 characterization characterization NOUN NN Number=Sing 8 nsubjpass _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 of of ADP IN _ 8 prep _ _ 10 those those DET DT Number=Plur|PronType=Dem 11 det _ _ 11 subgroupoids subgroupoid NOUN NNS Number=Plur 9 pobj _ _ 12 that that PRON WDT PronType=Rel 13 nsubj _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 11 relcl _ _ 14 definable definable ADJ JJ Degree=Pos 13 acomp _ _ 15 by by ADP IN _ 13 prep _ _ 16 quotient quotient ADJ JJ Degree=Pos 17 amod _ _ 17 theories theory NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # doc_id = 462 # sent_id = 1 # text = We introduce an axiomatic framework for the parallel transport of connections on gerbes. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 4 axiomatic axiomatic ADJ JJ Degree=Pos 5 amod _ _ 5 framework framework NOUN NN Number=Sing 2 dobj _ _ 6 for for ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 parallel parallel ADJ JJ Degree=Pos 9 amod _ _ 9 transport transport NOUN NN Number=Sing 6 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 connections connection NOUN NNS Number=Plur 10 pobj _ _ 12 on on ADP IN _ 11 prep _ _ 13 gerbes gerbes PROPN NNP Number=Sing 12 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = It incorporates parallel transport along curves and along surfaces, and is formulated in terms of gluing axioms and smoothness conditions. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 incorporates incorporate VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 parallel parallel ADJ JJ Degree=Pos 4 amod _ _ 4 transport transport NOUN NN Number=Sing 2 dobj _ _ 5 along along ADP IN _ 4 prep _ _ 6 curves curve NOUN NNS Number=Plur 5 pobj _ _ 7 and and CCONJ CC ConjType=Cmp 5 cc _ _ 8 along along ADP IN _ 5 conj _ _ 9 surfaces surface NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 2 punct _ _ 11 and and CCONJ CC ConjType=Cmp 2 cc _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 formulated formulate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 conj _ _ 14 in in ADP IN _ 13 prep _ _ 15 terms term NOUN NNS Number=Plur 14 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 gluing gluing NOUN NN Number=Sing 18 compound _ _ 18 axioms axiom NOUN NNS Number=Plur 16 pobj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 smoothness smoothness ADJ JJ Degree=Pos 21 amod _ _ 21 conditions condition NOUN NNS Number=Plur 18 conj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = The smoothness conditions are imposed with respect to a strict Lie 2 - group, which plays the role of a band, or structure 2 - group. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 smoothness smoothness ADJ JJ Degree=Pos 3 amod _ _ 3 conditions condition NOUN NNS Number=Plur 5 nsubjpass _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 imposed impose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 with with ADP IN _ 5 prep _ _ 7 respect respect NOUN NN Number=Sing 6 pobj _ _ 8 to to ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 10 strict strict ADJ JJ Degree=Pos 11 amod _ _ 11 Lie lie NOUN NN Number=Sing 14 nmod _ _ 12 2 2 NUM CD NumType=Card 14 nummod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 group group NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 which which PRON WDT _ 17 nsubj _ _ 17 plays play VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 relcl _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 role role NOUN NN Number=Sing 17 dobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 band band NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 14 punct _ _ 24 or or CCONJ CC ConjType=Cmp 5 cc _ _ 25 structure structure NOUN NN Number=Sing 5 conj _ _ 26 2 2 NUM CD NumType=Card 28 nummod _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 group group NOUN NN Number=Sing 25 npadvmod _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = Upon choosing certain examples of Lie 2 - groups, our axiomatic framework reproduces in a systematical way several known concepts of gerbes with connection: non - abelian differential cocycles, Breen - Messing gerbes, abelian and non - abelian bundle gerbes. 1 Upon upon SCONJ IN _ 31 prep _ _ 2 choosing choose VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 1 pcomp _ _ 3 certain certain ADJ JJ Degree=Pos 4 amod _ _ 4 examples example NOUN NNS Number=Plur 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 Lie lie NOUN NN Number=Sing 5 pobj _ _ 7 2 2 NUM CD NumType=Card 9 nummod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 groups group NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 14 poss _ _ 12 axiomatic axiomatic ADJ JJ Degree=Pos 14 amod _ _ 13 framework framework NOUN NN Number=Sing 14 compound _ _ 14 reproduces reproduce NOUN NNS Number=Plur 2 dobj _ _ 15 in in ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 systematical systematical ADJ JJ Degree=Pos 18 amod _ _ 18 way way NOUN NN Number=Sing 15 pobj _ _ 19 several several ADJ JJ Degree=Pos 21 amod _ _ 20 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 amod _ _ 21 concepts concept NOUN NNS Number=Plur 14 conj _ _ 22 of of ADP IN _ 21 prep _ _ 23 gerbes gerbes PROPN NNP Number=Sing 22 pobj _ _ 24 with with ADP IN _ 21 prep _ _ 25 connection connection NOUN NN Number=Sing 24 pobj _ SpaceAfter=No 26 : : PUNCT : _ 31 punct _ _ 27 non non ADJ JJ Degree=Pos 31 amod _ _ 28 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 29 abelian abelian ADJ JJ Degree=Pos 31 amod _ _ 30 differential differential ADJ JJ Degree=Pos 31 amod _ _ 31 cocycles cocycle NOUN NNS Number=Plur 0 ROOT _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 31 punct _ _ 33 Breen Breen PROPN NNP Number=Sing 35 compound _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 Messing Messing PROPN NNP Number=Sing 36 compound _ _ 36 gerbes gerbes PROPN NNP Number=Sing 31 conj _ SpaceAfter=No 37 , , PUNCT , PunctType=Comm 36 punct _ _ 38 abelian abelian PROPN NNP Number=Sing 44 nmod _ _ 39 and and CCONJ CC ConjType=Cmp 38 cc _ _ 40 non non PROPN NNP Number=Sing 42 amod _ _ 41 - - PUNCT HYPH PunctType=Dash 42 punct _ _ 42 abelian abelian PROPN NNP Number=Sing 38 conj _ _ 43 bundle bundle PROPN NNP Number=Sing 44 compound _ _ 44 gerbes gerbes PROPN NNP Number=Sing 36 conj _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 31 punct _ SpaceAfter=No # sent_id = 5 # text = These relationships convey a well - defined notion of surface holonomy from our axiomatic framework to each of these concrete models. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 relationships relationship NOUN NNS Number=Plur 3 nsubj _ _ 3 convey convey VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 5 well well ADV RB Degree=Pos 7 advmod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 8 notion notion NOUN NN Number=Sing 3 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 surface surface NOUN NN Number=Sing 11 compound _ _ 11 holonomy holonomy NOUN NN Number=Sing 9 pobj _ _ 12 from from ADP IN _ 8 prep _ _ 13 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 15 poss _ _ 14 axiomatic axiomatic ADJ JJ Degree=Pos 15 amod _ _ 15 framework framework NOUN NN Number=Sing 12 pobj _ _ 16 to to ADP IN _ 8 prep _ _ 17 each each PRON DT _ 16 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 these these DET DT Number=Plur|PronType=Dem 21 det _ _ 20 concrete concrete ADJ JJ Degree=Pos 21 amod _ _ 21 models model NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = Till now, holonomy was only known for abelian gerbes; our approach reproduces that known concept and extends it to non - abelian gerbes. 1 Till till SCONJ IN _ 7 prep _ _ 2 now now ADV RB _ 1 pcomp _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 7 punct _ _ 4 holonomy holonomy NOUN NN Number=Sing 7 nsubjpass _ _ 5 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 7 auxpass _ _ 6 only only ADV RB _ 7 advmod _ _ 7 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 ccomp _ _ 8 for for ADP IN _ 7 prep _ _ 9 abelian abelian PROPN NNP Number=Sing 10 compound _ _ 10 gerbes gerbes PROPN NNP Number=Sing 8 pobj _ SpaceAfter=No 11 ; ; PUNCT : _ 14 punct _ _ 12 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 14 poss _ _ 13 approach approach NOUN NN Number=Sing 14 compound _ _ 14 reproduces reproduce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 that that SCONJ IN _ 17 det _ _ 16 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 17 concept concept NOUN NN Number=Sing 14 dobj _ _ 18 and and CCONJ CC ConjType=Cmp 14 cc _ _ 19 extends extend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 conj _ _ 20 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 19 dobj _ _ 21 to to ADP IN _ 19 prep _ _ 22 non non ADJ JJ Degree=Pos 24 amod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 abelian abelian ADJ JJ Degree=Pos 25 amod _ _ 25 gerbes gerbes PROPN NNP Number=Sing 21 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 7 # text = Several new features of surface holonomy are exposed under its extension to non - abelian gerbes; for example, it carries an action of the mapping class group of the surface. 1 Several several ADJ JJ Degree=Pos 3 amod _ _ 2 new new ADJ JJ Degree=Pos 3 amod _ _ 3 features feature NOUN NNS Number=Plur 8 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 surface surface NOUN NN Number=Sing 6 compound _ _ 6 holonomy holonomy NOUN NN Number=Sing 4 pobj _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 exposed expose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 ccomp _ _ 9 under under ADP IN _ 8 prep _ _ 10 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 11 poss _ _ 11 extension extension NOUN NN Number=Sing 9 pobj _ _ 12 to to ADP IN _ 11 prep _ _ 13 non non ADJ JJ Degree=Pos 15 amod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 abelian abelian ADJ JJ Degree=Pos 16 amod _ _ 16 gerbes gerbes PROPN NNP Number=Sing 12 pobj _ SpaceAfter=No 17 ; ; PUNCT : _ 22 punct _ _ 18 for for ADP IN _ 22 prep _ _ 19 example example NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 22 punct _ _ 21 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 22 nsubj _ _ 22 carries carry VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 23 an an DET DT Definite=Ind|PronType=Art 24 det _ _ 24 action action NOUN NN Number=Sing 22 dobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 29 det _ _ 27 mapping mapping NOUN NN Number=Sing 28 compound _ _ 28 class class NOUN NN Number=Sing 29 compound _ _ 29 group group NOUN NN Number=Sing 25 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 surface surface NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 22 punct _ SpaceAfter=No # doc_id = 463 # sent_id = 1 # text = By Gelfand - Neumark duality, the category $ C^*Alg $ of commutative $ C^* $ - algebras is dually equivalent to the category of compact Hausdorff spaces, which by Stone duality, is also dually equivalent to the category $ ubal $ of uniformly complete bounded Archimedean $ ell $ - algebras. 1 By by ADP IN _ 15 prep _ _ 2 Gelfand Gelfand PROPN NNP Number=Sing 4 compound _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 Neumark Neumark PROPN NNP Number=Sing 5 compound _ _ 5 duality duality NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 category category NOUN NN Number=Sing 15 nsubj _ _ 9 $ C^*Alg $ $ c^*alg $ SYM $ _ 8 appos _ _ 10 of of ADP IN _ 9 prep _ _ 11 commutative commutative ADJ JJ Degree=Pos 14 amod _ _ 12 $ C^* $ $ c^* $ SYM $ _ 14 compound _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 algebras algebras PROPN NNP Number=Sing 10 pobj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 16 dually dually ADV RB _ 17 advmod _ _ 17 equivalent equivalent ADJ JJ Degree=Pos 15 acomp _ _ 18 to to ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 category category NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 compact compact ADJ JJ Degree=Pos 24 amod _ _ 23 Hausdorff Hausdorff PROPN NNP Number=Sing 24 compound _ _ 24 spaces space NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 which which PRON WDT _ 31 nsubj _ _ 27 by by ADP IN _ 26 prep _ _ 28 Stone Stone PROPN NNP Number=Sing 29 compound _ _ 29 duality duality NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 31 punct _ _ 31 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 relcl _ _ 32 also also ADV RB _ 31 advmod _ _ 33 dually dually ADV RB _ 34 advmod _ _ 34 equivalent equivalent ADJ JJ Degree=Pos 31 acomp _ _ 35 to to ADP IN _ 34 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 37 det _ _ 37 category category NOUN NN Number=Sing 35 pobj _ _ 38 $ ubal $ $ ubal $ SYM $ _ 37 appos _ _ 39 of of ADP IN _ 38 prep _ _ 40 uniformly uniformly ADV RB _ 41 advmod _ _ 41 complete complete ADJ JJ Degree=Pos 43 amod _ _ 42 bounded bound VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 43 amod _ _ 43 Archimedean Archimedean PROPN NNP Number=Sing 39 pobj _ _ 44 $ ell $ $ ell $ SYM $ _ 46 compound _ _ 45 - - PUNCT HYPH PunctType=Dash 46 punct _ _ 46 algebras algebra NOUN NNS Number=Plur 31 attr _ SpaceAfter=No 47 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 2 # text = Consequently, $ C^*Alg $ is equivalent to $ ubal $ , and this equivalence can be described through complexification. 1 Consequently consequently ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 $ C^*Alg $ $ c^*alg $ SYM $ _ 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 equivalent equivalent ADJ JJ Degree=Pos 4 acomp _ _ 6 to to ADP IN _ 5 prep _ _ 7 $ ubal $ $ ubal $ SYM $ _ 6 pobj _ _ 8 , , PUNCT , PunctType=Comm 4 punct _ _ 9 and and CCONJ CC ConjType=Cmp 4 cc _ _ 10 this this DET DT Number=Sing|PronType=Dem 11 det _ _ 11 equivalence equivalence NOUN NN Number=Sing 14 nsubjpass _ _ 12 can can AUX MD VerbForm=Fin 14 aux _ _ 13 be be AUX VB VerbForm=Inf 14 auxpass _ _ 14 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 conj _ _ 15 through through ADP IN _ 14 prep _ _ 16 complexification complexification NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 3 # text = In this article we study $ ubal $ within the larger category $ bal $ of bounded Archimedean $ ell $ - algebras. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 article article NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 $ ubal $ $ ubal $ SYM $ _ 5 dobj _ _ 7 within within ADP IN _ 5 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 larger large ADJ JJR Degree=Cmp 10 amod _ _ 10 category category NOUN NN Number=Sing 7 pobj _ _ 11 $ bal $ $ bal $ SYM $ _ 10 appos _ _ 12 of of ADP IN _ 11 prep _ _ 13 bounded bound VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 14 Archimedean Archimedean PROPN NNP Number=Sing 12 pobj _ _ 15 $ ell $ $ ell $ SYM $ _ 17 compound _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 algebras algebra NOUN NNS Number=Plur 5 dobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = We show that $ ubal $ is the smallest nontrivial reflective subcategory of $ bal $ , and that $ ubal $ consists of exactly those objects in $ bal $ that are epicomplete, a fact that includes a categorical formulation of the Stone - Weierstrass theorem for $ bal $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 5 mark _ _ 4 $ ubal $ $ ubal $ SYM $ _ 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 6 the the DET DT Definite=Def|PronType=Art 10 det _ _ 7 smallest small ADJ JJS Degree=Sup 10 amod _ _ 8 nontrivial nontrivial ADJ JJ Degree=Pos 10 amod _ _ 9 reflective reflective ADJ JJ Degree=Pos 10 amod _ _ 10 subcategory subcategory NOUN NN Number=Sing 5 attr _ _ 11 of of ADP IN _ 10 prep _ _ 12 $ bal $ $ bal $ SYM $ _ 11 pobj _ _ 13 , , PUNCT , PunctType=Comm 5 punct _ _ 14 and and CCONJ CC ConjType=Cmp 5 cc _ _ 15 that that SCONJ IN _ 17 mark _ _ 16 $ ubal $ $ ubal $ SYM $ _ 17 nsubj _ _ 17 consists consist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 conj _ _ 18 of of ADP IN _ 17 prep _ _ 19 exactly exactly ADV RB _ 21 advmod _ _ 20 those those DET DT Number=Plur|PronType=Dem 21 det _ _ 21 objects object NOUN NNS Number=Plur 18 pobj _ _ 22 in in ADP IN _ 21 prep _ _ 23 $ bal $ $ bal $ SYM $ _ 22 pobj _ _ 24 that that PRON WDT PronType=Rel 25 nsubj _ _ 25 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 23 relcl _ _ 26 epicomplete epicomplete ADJ JJ Degree=Pos 25 acomp _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 17 punct _ _ 28 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 29 fact fact NOUN NN Number=Sing 17 npadvmod _ _ 30 that that PRON WDT PronType=Rel 31 nsubj _ _ 31 includes include VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 29 relcl _ _ 32 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 33 categorical categorical ADJ JJ Degree=Pos 34 amod _ _ 34 formulation formulation NOUN NN Number=Sing 31 dobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 40 det _ _ 37 Stone Stone PROPN NNP Number=Sing 39 compound _ _ 38 - - PUNCT HYPH PunctType=Dash 39 punct _ _ 39 Weierstrass Weierstrass PROPN NNP Number=Sing 40 compound _ _ 40 theorem theorem NOUN NN Number=Sing 35 pobj _ _ 41 for for ADP IN _ 34 prep _ _ 42 $ bal $ $ bal $ SYM $ _ 41 pobj _ _ 43 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = It follows that $ ubal $ is the unique nontrivial reflective epicomplete subcategory of $ bal $ . 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 follows follow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 5 mark _ _ 4 $ ubal $ $ ubal $ SYM $ _ 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 6 the the DET DT Definite=Def|PronType=Art 11 det _ _ 7 unique unique ADJ JJ Degree=Pos 11 amod _ _ 8 nontrivial nontrivial ADJ JJ Degree=Pos 11 amod _ _ 9 reflective reflective ADJ JJ Degree=Pos 11 amod _ _ 10 epicomplete epicomplete ADJ JJ Degree=Pos 11 amod _ _ 11 subcategory subcategory NOUN NN Number=Sing 5 attr _ _ 12 of of ADP IN _ 11 prep _ _ 13 $ bal $ $ bal $ SYM $ _ 12 pobj _ _ 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = We also show that each nontrivial reflective subcategory of $ bal $ is both monoreflective and epireflective, and exhibit two other interesting reflective subcategories of $ bal $ involving Gelfand rings and square closed rings. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 11 mark _ _ 5 each each DET DT _ 8 det _ _ 6 nontrivial nontrivial ADJ JJ Degree=Pos 8 amod _ _ 7 reflective reflective ADJ JJ Degree=Pos 8 amod _ _ 8 subcategory subcategory NOUN NN Number=Sing 11 nsubj _ _ 9 of of ADP IN _ 8 prep _ _ 10 $ bal $ $ bal $ SYM $ _ 9 pobj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 12 both both PRON DT _ 13 preconj _ _ 13 monoreflective monoreflective ADJ JJ Degree=Pos 11 acomp _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 epireflective epireflective ADJ JJ Degree=Pos 13 conj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 11 punct _ _ 17 and and CCONJ CC ConjType=Cmp 11 cc _ _ 18 exhibit exhibit VERB VB VerbForm=Inf 11 conj _ _ 19 two two NUM CD NumType=Card 23 nummod _ _ 20 other other ADJ JJ Degree=Pos 23 amod _ _ 21 interesting interesting ADJ JJ Degree=Pos 23 amod _ _ 22 reflective reflective ADJ JJ Degree=Pos 23 amod _ _ 23 subcategories subcategorie NOUN NNS Number=Plur 18 dobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 $ bal $ $ bal $ SYM $ _ 24 pobj _ _ 26 involving involve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 18 advcl _ _ 27 Gelfand Gelfand PROPN NNP Number=Sing 28 compound _ _ 28 rings ring NOUN NNS Number=Plur 26 dobj _ _ 29 and and CCONJ CC ConjType=Cmp 28 cc _ _ 30 square square ADJ JJ Degree=Pos 32 amod _ _ 31 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 amod _ _ 32 rings ring NOUN NNS Number=Plur 28 conj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 7 # text = Dually, we show that Specker $ {mathbb R} $ - algebras are precisely the co - epicomplete objects in $ bal $ . 1 Dually Dually PROPN NNP Number=Sing 4 npadvmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 10 mark _ _ 6 Specker Specker PROPN NNP Number=Sing 9 nmod _ _ 7 $ {mathbb R} $ $ {mathbb r} $ SYM $ _ 9 compound _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 algebras algebra NOUN NNS Number=Plur 10 nsubj _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 11 precisely precisely ADV RB _ 10 advmod _ _ 12 the the DET DT Definite=Def|PronType=Art 16 det _ _ 13 co co ADJ JJ Degree=Pos 15 amod _ _ 14 - - ADJ JJ Degree=Pos 15 punct _ _ 15 epicomplete epicomplete ADJ JJ Degree=Pos 16 amod _ _ 16 objects object NOUN NNS Number=Plur 10 attr _ _ 17 in in ADP IN _ 16 prep _ _ 18 $ bal $ $ bal $ SYM $ _ 17 pobj _ _ 19 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 8 # text = We prove that the category $ spec $ of Specker $ mathbb R $ - algebras is a mono - coreflective subcategory of $ bal $ that is co - epireflective in a mono - coreflective subcategory of $ bal $ consisting of what we term $ ell $ - clean rings, a version of clean rings adapted to the order - theoretic setting of $ bal $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 12 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 12 nsubj _ _ 6 $ spec $ $ spec $ SYM $ _ 5 appos _ _ 7 of of ADP IN _ 6 prep _ _ 8 Specker Specker PROPN NNP Number=Sing 7 pobj _ _ 9 $ mathbb R $ $ mathbb r $ SYM $ _ 11 compound _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 algebras algebras PROPN NNP Number=Sing 7 pobj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 13 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 14 mono mono NOUN NN Number=Sing 16 npadvmod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 coreflective coreflective ADJ JJ Degree=Pos 17 amod _ _ 17 subcategory subcategory NOUN NN Number=Sing 12 attr _ _ 18 of of ADP IN _ 17 prep _ _ 19 $ bal $ $ bal $ SYM $ _ 18 pobj _ _ 20 that that PRON WDT PronType=Rel 21 nsubj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 relcl _ _ 22 co co NOUN NN Number=Sing 21 acomp _ _ 23 - - ADJ JJ Degree=Pos 21 attr _ _ 24 epireflective epireflective ADJ JJ Degree=Pos 21 acomp _ _ 25 in in ADP IN _ 21 prep _ _ 26 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 27 mono mono NOUN NN Number=Sing 29 npadvmod _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 coreflective coreflective ADJ JJ Degree=Pos 30 amod _ _ 30 subcategory subcategory NOUN NN Number=Sing 25 pobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 $ bal $ $ bal $ SYM $ _ 31 pobj _ _ 33 consisting consist VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 17 acl _ _ 34 of of ADP IN _ 33 prep _ _ 35 what what PRON WP _ 37 dobj _ _ 36 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 37 nsubj _ _ 37 term term VERB VBP Tense=Pres|VerbForm=Fin 34 pcomp _ _ 38 $ ell $ $ ell $ SYM $ _ 40 advmod _ _ 39 - - PUNCT HYPH PunctType=Dash 40 punct _ _ 40 clean clean ADJ JJ Degree=Pos 41 amod _ _ 41 rings ring NOUN NNS Number=Plur 37 dobj _ SpaceAfter=No 42 , , PUNCT , PunctType=Comm 17 punct _ _ 43 a a DET DT Definite=Ind|PronType=Art 44 det _ _ 44 version version NOUN NN Number=Sing 17 appos _ _ 45 of of ADP IN _ 44 prep _ _ 46 clean clean ADJ JJ Degree=Pos 47 amod _ _ 47 rings ring NOUN NNS Number=Plur 45 pobj _ _ 48 adapted adapt VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 44 acl _ _ 49 to to ADP IN _ 48 prep _ _ 50 the the DET DT Definite=Def|PronType=Art 54 det _ _ 51 order order NOUN NN Number=Sing 53 npadvmod _ _ 52 - - PUNCT HYPH PunctType=Dash 53 punct _ _ 53 theoretic theoretic ADJ JJ Degree=Pos 54 amod _ _ 54 setting setting NOUN NN Number=Sing 49 pobj _ _ 55 of of ADP IN _ 54 prep _ _ 56 $ bal $ $ bal $ SYM $ _ 55 pobj _ _ 57 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 9 # text = We conclude the article by discussing the import of our results in the setting of complex $ * $ - algebras through complexification. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 conclude conclude VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 article article NOUN NN Number=Sing 2 dobj _ _ 5 by by ADP IN _ 2 prep _ _ 6 discussing discuss VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 pcomp _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 import import NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 11 poss _ _ 11 results result NOUN NNS Number=Plur 9 pobj _ _ 12 in in ADP IN _ 6 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 setting setting NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 complex complex ADJ JJ Degree=Pos 19 amod _ _ 17 $ * $ $ * $ SYM $ _ 19 compound _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 algebras algebra NOUN NNS Number=Plur 15 pobj _ _ 20 through through ADP IN _ 6 prep _ _ 21 complexification complexification NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 464 # sent_id = 1 # text = We exhibit sufficient conditions for a monoidal monad $ T $ on a monoidal category $ C $ to induce a monoidal structure on the Eilenberg - Moore category $ C^T $ that represents bimorphisms. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 exhibit exhibit VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 sufficient sufficient ADJ JJ Degree=Pos 4 amod _ _ 4 conditions condition NOUN NNS Number=Plur 2 dobj _ _ 5 for for ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 monoidal monoidal NOUN NN Number=Sing 8 amod _ _ 8 monad monad NOUN NNS Number=Plur 5 pobj _ _ 9 $ T $ $ t $ SYM $ _ 8 appos _ _ 10 on on ADP IN _ 8 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 monoidal monoidal ADJ JJ Degree=Pos 13 amod _ _ 13 category category NOUN NN Number=Sing 10 pobj _ _ 14 $ C $ $ c $ SYM $ _ 10 dep _ _ 15 to to PART TO _ 16 aux _ _ 16 induce induce VERB VB VerbForm=Inf 2 advcl _ _ 17 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 18 monoidal monoidal ADJ JJ Degree=Pos 19 amod _ _ 19 structure structure NOUN NN Number=Sing 16 dobj _ _ 20 on on ADP IN _ 16 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 25 det _ _ 22 Eilenberg Eilenberg PROPN NNP Number=Sing 24 compound _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 Moore Moore PROPN NNP Number=Sing 25 compound _ _ 25 category category NOUN NN Number=Sing 20 pobj _ _ 26 $ C^T $ $ c^t $ SYM $ _ 25 appos _ _ 27 that that PRON WDT PronType=Rel 28 nsubj _ _ 28 represents represent VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 25 relcl _ _ 29 bimorphisms bimorphism NOUN NNS Number=Plur 28 dobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The category of actions in $ C^T $ is then shown to be monadic over the base category $ C $ . 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 category category NOUN NN Number=Sing 9 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 actions action NOUN NNS Number=Plur 3 pobj _ _ 5 in in ADP IN _ 4 prep _ _ 6 $ C^T $ $ c^t $ SYM $ _ 5 pobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 8 then then ADV RB PronType=Dem 9 advmod _ _ 9 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 to to PART TO _ 11 aux _ _ 11 be be AUX VB VerbForm=Inf 9 xcomp _ _ 12 monadic monadic ADJ JJ Degree=Pos 11 acomp _ _ 13 over over ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 base base NOUN NN Number=Sing 16 compound _ _ 16 category category NOUN NN Number=Sing 13 pobj _ _ 17 $ C $ $ c $ SYM $ _ 16 appos _ _ 18 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 465 # sent_id = 1 # text = In this paper, we prove that the category of vacant $ n $ - tuple groupoids is equivalent to the category of factorizations of groupoids by 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 that that SCONJ IN _ 16 mark _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 category category NOUN NN Number=Sing 16 nsubj _ _ 10 of of ADP IN _ 9 prep _ _ 11 vacant vacant ADJ JJ Degree=Pos 14 amod _ _ 12 $ n $ $ n $ SYM $ _ 14 quantmod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 tuple tuple NOUN NN Number=Sing 15 compound _ _ 15 groupoids groupoid NOUN NNS Number=Plur 10 pobj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 17 equivalent equivalent ADJ JJ Degree=Pos 16 acomp _ _ 18 to to ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 category category NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 factorizations factorization NOUN NNS Number=Plur 21 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 groupoids groupoid NOUN NNS Number=Plur 23 pobj _ _ 25 by by ADP IN _ 16 prep _ SpaceAfter=No # sent_id = 2 # text = $ n $ factors that satisfy some Yang - Baxter type equation 1 $ n $ $ n $ SYM $ _ 2 nummod _ _ 2 factors factor NOUN NNS Number=Plur 0 ROOT _ _ 3 that that PRON WDT PronType=Rel 4 nsubj _ _ 4 satisfy satisfy VERB VBP Tense=Pres|VerbForm=Fin 2 relcl _ _ 5 some some DET DT _ 10 det _ _ 6 Yang Yang PROPN NNP Number=Sing 8 compound _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 Baxter Baxter PROPN NNP Number=Sing 10 compound _ _ 9 type type NOUN NN Number=Sing 10 compound _ _ 10 equation equation NOUN NN Number=Sing 4 dobj _ SpaceAfter=No # sent_id = 3 # text = . 1 . . PUNCT . PunctType=Peri 0 ROOT _ SpaceAfter=No # sent_id = 4 # text = Moreover we extend this equivalence to the category of maximally exclusive $ n $ - tuple groupoids, which we define, by dropping one assumption. 1 Moreover moreover ADV RB _ 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 extend extend VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 equivalence equivalence NOUN NN Number=Sing 3 dobj _ _ 6 to to ADP IN _ 3 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 category category NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 maximally maximally ADV RB _ 11 advmod _ _ 11 exclusive exclusive ADJ JJ Degree=Pos 15 amod _ _ 12 $ n $ $ n $ SYM $ _ 14 quantmod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 tuple tuple NOUN NN Number=Sing 15 compound _ _ 15 groupoids groupoid NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 which which PRON WDT _ 19 dobj _ _ 18 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 19 nsubj _ _ 19 define define VERB VBP Tense=Pres|VerbForm=Fin 15 relcl _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 3 punct _ _ 21 by by ADP IN _ 3 prep _ _ 22 dropping drop VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 21 pcomp _ _ 23 one one NUM CD NumType=Card 24 nummod _ _ 24 assumption assumption NOUN NN Number=Sing 22 dobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = The paper concludes by a note on how these results could tell us more about some Lie groups of interest. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 concludes conclude VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 by by ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 note note NOUN NN Number=Sing 4 pobj _ _ 7 on on ADP IN _ 6 prep _ _ 8 how how SCONJ WRB _ 12 advmod _ _ 9 these these DET DT Number=Plur|PronType=Dem 10 det _ _ 10 results result NOUN NNS Number=Plur 12 nsubj _ _ 11 could could AUX MD VerbForm=Fin 12 aux _ _ 12 tell tell VERB VB VerbForm=Inf 7 pcomp _ _ 13 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 12 dative _ _ 14 more more ADJ JJR Degree=Cmp 12 dobj _ _ 15 about about ADP IN _ 14 prep _ _ 16 some some DET DT _ 18 det _ _ 17 Lie lie NOUN NN Number=Sing 18 compound _ _ 18 groups group NOUN NNS Number=Plur 15 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 interest interest NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 466 # sent_id = 1 # text = Suppose that $ S $ is a space. 1 Suppose suppose VERB VB VerbForm=Inf 0 ROOT _ _ 2 that that SCONJ IN _ 4 mark _ _ 3 $ S $ $ s $ SYM $ _ 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 1 ccomp _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 space space NOUN NN Number=Sing 4 attr _ SpaceAfter=No 7 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = There is an injective and a projective model structure for the resulting category of spaces with $ S $ - action, and both are easily derived. 1 There there PRON EX _ 2 expl _ _ 2 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 4 det _ _ 4 injective injective ADJ JJ Degree=Pos 2 attr _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 7 projective projective ADJ JJ Degree=Pos 9 amod _ _ 8 model model NOUN NN Number=Sing 9 compound _ _ 9 structure structure NOUN NN Number=Sing 4 conj _ _ 10 for for ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 resulting result VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 amod _ _ 13 category category NOUN NN Number=Sing 10 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 spaces space NOUN NNS Number=Plur 14 pobj _ _ 16 with with ADP IN _ 15 prep _ _ 17 $ S $ $ s $ SYM $ _ 19 compound _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 action action NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 2 punct _ _ 21 and and CCONJ CC ConjType=Cmp 2 cc _ _ 22 both both PRON DT _ 25 nsubjpass _ _ 23 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 25 auxpass _ _ 24 easily easily ADV RB _ 25 advmod _ _ 25 derived derive VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 conj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 25 punct _ SpaceAfter=No # sent_id = 3 # text = These model structures are special cases of model structures for presheaf - valued diagrams $ X $ defined on a fixed presheaf of categories $ E $ which is enriched in simplicial sets. 1 These these DET DT Number=Plur|PronType=Dem 3 det _ _ 2 model model NOUN NN Number=Sing 3 compound _ _ 3 structures structure NOUN NNS Number=Plur 4 nsubj _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 special special ADJ JJ Degree=Pos 6 amod _ _ 6 cases case NOUN NNS Number=Plur 4 attr _ _ 7 of of ADP IN _ 6 prep _ _ 8 model model NOUN NN Number=Sing 9 compound _ _ 9 structures structure NOUN NNS Number=Plur 7 pobj _ _ 10 for for ADP IN _ 6 prep _ _ 11 presheaf presheaf ADV RB _ 13 npadvmod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 14 diagrams diagram NOUN NNS Number=Plur 10 pobj _ _ 15 $ X $ $ x $ SYM $ _ 6 nmod _ _ 16 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 acl _ _ 17 on on ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 fixed fix VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 amod _ _ 20 presheaf presheaf NOUN NN Number=Sing 17 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 categories category NOUN NNS Number=Plur 21 pobj _ _ 23 $ E $ $ e $ SYM $ _ 6 punct _ _ 24 which which PRON WDT _ 26 nsubjpass _ _ 25 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 26 auxpass _ _ 26 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 relcl _ _ 27 in in ADP IN _ 26 prep _ _ 28 simplicial simplicial ADJ JJ Degree=Pos 29 amod _ _ 29 sets set NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = Varying the parameter category object $ E $ (or parameter space $ S $ ) along with the diagrams $ X $ up to weak equivalence requires model structures for $ E $ - diagrams having weak equivalences defined by homotopy colimits, and a generalization of Thomason's model structure for small categories to a model structure for presheaves of simplicial categories. 1 Varying vary VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 csubj _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 parameter parameter NOUN NN Number=Sing 4 compound _ _ 4 category category NOUN NN Number=Sing 1 dobj _ _ 5 object object VERB VBP Tense=Pres|VerbForm=Fin 1 dep _ _ 6 $ E $ $ e $ SYM $ _ 5 advmod _ _ 7 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 6 punct _ SpaceAfter=No 8 or or CCONJ CC ConjType=Cmp 5 cc _ _ 9 parameter parameter VERB VB VerbForm=Inf 5 conj _ _ 10 space space NOUN NN Number=Sing 9 dobj _ _ 11 $ S $ $ s $ SYM $ _ 9 npadvmod _ _ 12 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 9 punct _ _ 13 along along ADP IN _ 1 prep _ _ 14 with with ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 diagrams diagram NOUN NNS Number=Plur 14 pobj _ _ 17 $ X $ $ x $ SYM $ _ 16 nmod _ _ 18 up up ADP IN _ 1 prep _ _ 19 to to ADP IN _ 18 prep _ _ 20 weak weak ADJ JJ Degree=Pos 21 amod _ _ 21 equivalence equivalence NOUN NN Number=Sing 19 pobj _ _ 22 requires require VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 23 model model NOUN NN Number=Sing 24 compound _ _ 24 structures structure NOUN NNS Number=Plur 22 dobj _ _ 25 for for ADP IN _ 24 prep _ _ 26 $ E $ $ e $ SYM $ _ 28 compound _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 diagrams diagram NOUN NNS Number=Plur 25 pobj _ _ 29 having have VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 28 acl _ _ 30 weak weak ADJ JJ Degree=Pos 31 amod _ _ 31 equivalences equivalence NOUN NNS Number=Plur 29 dobj _ _ 32 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 31 acl _ _ 33 by by ADP IN _ 32 agent _ _ 34 homotopy homotopy PROPN NNP Number=Sing 35 compound _ _ 35 colimits colimit NOUN NNS Number=Plur 33 pobj _ SpaceAfter=No 36 , , PUNCT , PunctType=Comm 22 punct _ _ 37 and and CCONJ CC ConjType=Cmp 22 cc _ _ 38 a a DET DT Definite=Ind|PronType=Art 39 det _ _ 39 generalization generalization NOUN NN Number=Sing 22 conj _ _ 40 of of ADP IN _ 39 prep _ _ 41 Thomason Thomason PROPN NNP Number=Sing 44 poss _ SpaceAfter=No 42 's 's PART POS _ 41 case _ _ 43 model model NOUN NN Number=Sing 44 compound _ _ 44 structure structure NOUN NN Number=Sing 40 pobj _ _ 45 for for ADP IN _ 44 prep _ _ 46 small small ADJ JJ Degree=Pos 47 amod _ _ 47 categories category NOUN NNS Number=Plur 45 pobj _ _ 48 to to ADP IN _ 39 prep _ _ 49 a a DET DT Definite=Ind|PronType=Art 51 det _ _ 50 model model NOUN NN Number=Sing 51 compound _ _ 51 structure structure NOUN NN Number=Sing 48 pobj _ _ 52 for for ADP IN _ 51 prep _ _ 53 presheaves presheave NOUN NNS Number=Plur 52 pobj _ _ 54 of of ADP IN _ 53 prep _ _ 55 simplicial simplicial ADJ JJ Degree=Pos 56 amod _ _ 56 categories category NOUN NNS Number=Plur 54 pobj _ SpaceAfter=No 57 . . PUNCT . PunctType=Peri 22 punct _ SpaceAfter=No # doc_id = 467 # sent_id = 1 # text = We present the no - iteration version of the coherence conditions necessary to define a pseudomonad, and a description of the algebras for it in a similar fashion. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 7 det _ _ 4 no no DET DT _ 6 det _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 iteration iteration NOUN NN Number=Sing 7 compound _ _ 7 version version NOUN NN Number=Sing 2 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 coherence coherence NOUN NN Number=Sing 11 compound _ _ 11 conditions condition NOUN NNS Number=Plur 8 pobj _ _ 12 necessary necessary ADJ JJ Degree=Pos 11 amod _ _ 13 to to PART TO _ 14 aux _ _ 14 define define VERB VB VerbForm=Inf 12 xcomp _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 pseudomonad pseudomonad NOUN NNS Number=Plur 14 dobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 2 punct _ _ 18 and and CCONJ CC ConjType=Cmp 2 cc _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 description description NOUN NN Number=Sing 2 conj _ _ 21 of of ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 algebras algebra NOUN NNS Number=Plur 21 pobj _ _ 24 for for ADP IN _ 20 prep _ _ 25 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 24 pobj _ _ 26 in in ADP IN _ 20 prep _ _ 27 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 28 similar similar ADJ JJ Degree=Pos 29 amod _ _ 29 fashion fashion NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We show that every no - iteration pseudomonad induces a pseudomonad, and that the corresponding algebras are equivalent. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 9 mark _ _ 4 every every DET DT _ 8 det _ _ 5 no no DET DT _ 7 det _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 iteration iteration NOUN NN Number=Sing 8 compound _ _ 8 pseudomonad pseudomonad NOUN NNS Number=Plur 9 nsubj _ _ 9 induces induce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 pseudomonad pseudomonad NOUN NNS Number=Plur 9 dobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 9 punct _ _ 13 and and CCONJ CC ConjType=Cmp 9 cc _ _ 14 that that SCONJ IN _ 18 mark _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 corresponding corresponding ADJ JJ Degree=Pos 17 amod _ _ 17 algebras algebra NOUN NNS Number=Plur 18 nsubj _ _ 18 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 conj _ _ 19 equivalent equivalent ADJ JJ Degree=Pos 18 acomp _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We also show that every pseudomonad induces a no - iteration pseudomonad, and again, that the corresponding algebras are equivalent. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 7 mark _ _ 5 every every DET DT _ 6 det _ _ 6 pseudomonad pseudomonad NOUN NNS Number=Plur 7 nsubj _ _ 7 induces induce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 8 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 9 no no DET DT _ 11 det _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 iteration iteration NOUN NN Number=Sing 12 compound _ _ 12 pseudomonad pseudomonad NOUN NNS Number=Plur 7 dobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 7 punct _ _ 14 and and CCONJ CC ConjType=Cmp 7 cc _ _ 15 again again ADV RB _ 21 advmod _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 21 punct _ _ 17 that that SCONJ IN _ 21 mark _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 corresponding corresponding ADJ JJ Degree=Pos 20 amod _ _ 20 algebras algebra NOUN NNS Number=Plur 21 nsubj _ _ 21 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 conj _ _ 22 equivalent equivalent ADJ JJ Degree=Pos 21 acomp _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = We conclude with an analysis of the algebras for the 2 - monad $ ( - )^{mathbf{2}} $ on Cat in the light of the no - iteration description of the algebras. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 conclude conclude VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 with with ADP IN _ 2 prep _ _ 4 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 5 analysis analysis NOUN NN Number=Sing 3 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 algebras algebra NOUN NNS Number=Plur 6 pobj _ _ 9 for for ADP IN _ 5 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 14 det _ _ 11 2 2 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 monad monad NOUN NNS Number=Plur 14 compound _ _ 14 $ ( - )^{mathbf{2}} $ $ ( - )^{mathbf{2}} $ SYM $ _ 9 pobj _ _ 15 on on ADP IN _ 14 prep _ _ 16 Cat Cat PROPN NNP Number=Sing 15 pobj _ _ 17 in in ADP IN _ 5 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 light light NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 25 det _ _ 22 no no DET DT _ 24 det _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 iteration iteration NOUN NN Number=Sing 25 compound _ _ 25 description description NOUN NN Number=Sing 20 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 algebras algebra NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 468 # sent_id = 1 # text = Even a functor without an adjoint induces a monad, namely, its codensity monad; this is subject only to the existence of certain limits. 1 Even even ADV RB _ 3 advmod _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 functor functor NOUN NN Number=Sing 7 nsubj _ _ 4 without without ADP IN _ 3 prep _ _ 5 an an DET DT Definite=Ind|PronType=Art 6 det _ _ 6 adjoint adjoint NOUN NN Number=Sing 4 pobj _ _ 7 induces induce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 ccomp _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 monad monad NOUN NNS Number=Plur 7 dobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 namely namely ADV RB _ 15 advmod _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 15 punct _ _ 13 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 15 poss _ _ 14 codensity codensity NOUN NN Number=Sing 15 compound _ _ 15 monad monad NOUN NNS Number=Plur 9 appos _ SpaceAfter=No 16 ; ; PUNCT : _ 18 punct _ _ 17 this this PRON DT Number=Sing|PronType=Dem 18 nsubj _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 19 subject subject ADJ JJ Degree=Pos 18 acomp _ _ 20 only only ADV RB _ 21 advmod _ _ 21 to to ADP IN _ 19 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 existence existence NOUN NN Number=Sing 21 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 certain certain ADJ JJ Degree=Pos 26 amod _ _ 26 limits limit NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # sent_id = 2 # text = We clarify the sense in which codensity monads act as substitutes for monads induced by adjunctions. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 clarify clarify VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 sense sense NOUN NN Number=Sing 2 dobj _ _ 5 in in ADP IN _ 9 prep _ _ 6 which which PRON WDT _ 5 pobj _ _ 7 codensity codensity ADJ JJ Degree=Pos 8 amod _ _ 8 monads monad NOUN NNS Number=Plur 9 nsubj _ _ 9 act act VERB VBP Tense=Pres|VerbForm=Fin 4 relcl _ _ 10 as as ADP IN _ 9 prep _ _ 11 substitutes substitute NOUN NNS Number=Plur 10 pobj _ _ 12 for for ADP IN _ 11 prep _ _ 13 monads monad NOUN NNS Number=Plur 12 pobj _ _ 14 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 acl _ _ 15 by by ADP IN _ 14 agent _ _ 16 adjunctions adjunction NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We also expand on an undeservedly ignored theorem of Kennison and Gildenhuys: that the codensity monad of the inclusion of (finite sets) into (sets) is the ultrafilter monad. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 expand expand VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 on on ADP IN _ 3 prep _ _ 5 an an DET DT Definite=Ind|PronType=Art 8 det _ _ 6 undeservedly undeservedly ADV RB _ 7 advmod _ _ 7 ignored ignore VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 8 theorem theorem ADJ JJ Degree=Pos 4 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 Kennison Kennison PROPN NNP Number=Sing 9 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 Gildenhuys gildenhuy NOUN NNS Number=Plur 10 conj _ SpaceAfter=No 13 : : PUNCT : _ 3 punct _ _ 14 that that SCONJ IN _ 30 mark _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 codensity codensity ADJ JJ Degree=Pos 17 compound _ _ 17 monad monad NOUN NNS Number=Plur 30 nsubj _ _ 18 of of ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 inclusion inclusion NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 24 punct _ SpaceAfter=No 23 finite finite PROPN NNP Number=Sing 24 compound _ _ 24 sets set NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 25 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 24 punct _ _ 26 into into ADP IN _ 20 prep _ _ 27 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 26 punct _ SpaceAfter=No 28 sets set NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 29 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 17 punct _ _ 30 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 31 the the DET DT Definite=Def|PronType=Art 33 det _ _ 32 ultrafilter ultrafilter ADJ JJ Degree=Pos 33 amod _ _ 33 monad monad NOUN NNS Number=Plur 30 attr _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = This result is analogous to the correspondence between measures and integrals. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 result result NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 analogous analogous ADJ JJ Degree=Pos 3 acomp _ _ 5 to to ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 correspondence correspondence NOUN NN Number=Sing 5 pobj _ _ 8 between between ADP IN _ 7 prep _ _ 9 measures measure NOUN NNS Number=Plur 8 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 integrals integral NOUN NNS Number=Plur 9 conj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = So, for example, we can speak of integration against an ultrafilter. 1 So so ADV RB _ 8 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 8 punct _ _ 3 for for ADP IN _ 8 prep _ _ 4 example example NOUN NN Number=Sing 3 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 8 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 8 nsubj _ _ 7 can can AUX MD VerbForm=Fin 8 aux _ _ 8 speak speak VERB VB VerbForm=Inf 0 ROOT _ _ 9 of of ADP IN _ 8 prep _ _ 10 integration integration NOUN NN Number=Sing 9 pobj _ _ 11 against against ADP IN _ 8 prep _ _ 12 an an DET DT Definite=Ind|PronType=Art 13 det _ _ 13 ultrafilter ultrafilter NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 6 # text = Using this language, we show that the codensity monad of the inclusion of (finite - dimensional vector spaces) into (vector spaces) is double dualization. 1 Using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 advcl _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 language language NOUN NN Number=Sing 1 dobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 that that SCONJ IN _ 27 mark _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 codensity codensity ADJ JJ Degree=Pos 10 amod _ _ 10 monad monad NOUN NNS Number=Plur 27 nsubj _ _ 11 of of ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 inclusion inclusion NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 20 punct _ SpaceAfter=No 16 finite finite ADJ JJ Degree=Pos 18 amod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 dimensional dimensional ADJ JJ Degree=Pos 20 amod _ _ 19 vector vector NOUN NN Number=Sing 20 compound _ _ 20 spaces space NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 21 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 20 punct _ _ 22 into into ADP IN _ 13 prep _ _ 23 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 22 punct _ SpaceAfter=No 24 vector vector NOUN NN Number=Sing 25 compound _ _ 25 spaces space NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 26 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 10 punct _ _ 27 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 28 double double ADJ JJ Degree=Pos 29 amod _ _ 29 dualization dualization NOUN NN Number=Sing 27 attr _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 7 # text = From this it follows that compact Hausdorff spaces have a linear analogue: linearly compact vector spaces. 1 From from ADP IN _ 4 prep _ _ 2 this this PRON DT Number=Sing|PronType=Dem 1 pobj _ _ 3 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 4 nsubj _ _ 4 follows follow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 9 mark _ _ 6 compact compact ADJ JJ Degree=Pos 8 amod _ _ 7 Hausdorff Hausdorff PROPN NNP Number=Sing 8 compound _ _ 8 spaces space NOUN NNS Number=Plur 9 nsubj _ _ 9 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 linear linear ADJ JJ Degree=Pos 12 amod _ _ 12 analogue analogue NOUN NN Number=Sing 9 dobj _ SpaceAfter=No 13 : : PUNCT : _ 4 punct _ _ 14 linearly linearly ADV RB _ 17 advmod _ _ 15 compact compact ADJ JJ Degree=Pos 17 amod _ _ 16 vector vector NOUN NN Number=Sing 17 compound _ _ 17 spaces space NOUN NNS Number=Plur 12 appos _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 8 # text = Finally, we show that ultraproducts are categorically inevitable: the codensity monad of the inclusion of (finite families of sets) into (families of sets) is the ultraproduct monad. 1 Finally finally ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 show show VERB VBP Tense=Pres|VerbForm=Fin 30 ccomp _ _ 5 that that SCONJ IN _ 7 mark _ _ 6 ultraproducts ultraproduct NOUN NNS Number=Plur 7 nsubj _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 8 categorically categorically ADV RB _ 7 advmod _ _ 9 inevitable inevitable ADJ JJ Degree=Pos 7 acomp _ SpaceAfter=No 10 : : PUNCT : _ 30 punct _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 codensity codensity ADJ JJ Degree=Pos 13 amod _ _ 13 monad monad NOUN NNS Number=Plur 30 nsubj _ _ 14 of of ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 inclusion inclusion NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 20 punct _ SpaceAfter=No 19 finite finite ADJ JJ Degree=Pos 20 amod _ _ 20 families family NOUN NNS Number=Plur 17 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 sets set NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 23 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 20 punct _ _ 24 into into ADP IN _ 13 prep _ _ 25 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 24 punct _ SpaceAfter=No 26 families family NOUN NNS Number=Plur 24 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 sets set NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 29 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 13 punct _ _ 30 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 31 the the DET DT Definite=Def|PronType=Art 33 det _ _ 32 ultraproduct ultraproduct ADJ JJ Degree=Pos 33 amod _ _ 33 monad monad NOUN NNS Number=Plur 30 attr _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 30 punct _ SpaceAfter=No # doc_id = 469 # sent_id = 1 # text = The category of bisimplicial presheaves carries a model structure for which the weak equivalences are defined by the diagonal functor and the cofibrations are monomorphisms. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 category category NOUN NN Number=Sing 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 bisimplicial bisimplicial ADJ JJ Degree=Pos 5 amod _ _ 5 presheaves presheave NOUN NNS Number=Plur 3 pobj _ _ 6 carries carry VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 model model NOUN NN Number=Sing 9 compound _ _ 9 structure structure NOUN NN Number=Sing 6 dobj _ _ 10 for for ADP IN _ 16 prep _ _ 11 which which PRON WDT _ 10 pobj _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 weak weak ADJ JJ Degree=Pos 14 amod _ _ 14 equivalences equivalence NOUN NNS Number=Plur 16 nsubjpass _ _ 15 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 16 auxpass _ _ 16 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 relcl _ _ 17 by by ADP IN _ 16 agent _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 diagonal diagonal ADJ JJ Degree=Pos 20 amod _ _ 20 functor functor NOUN NN Number=Sing 17 pobj _ _ 21 and and CCONJ CC ConjType=Cmp 16 cc _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 cofibrations cofibration NOUN NNS Number=Plur 24 nsubj _ _ 24 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 16 conj _ _ 25 monomorphisms monomorphism NOUN NNS Number=Plur 24 attr _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 24 punct _ SpaceAfter=No # sent_id = 2 # text = This model structure has the most cofibrations of a large family of model structures with weak equivalences defined by the diagonal. 1 This this DET DT Number=Sing|PronType=Dem 3 det _ _ 2 model model NOUN NN Number=Sing 3 compound _ _ 3 structure structure NOUN NN Number=Sing 4 nsubj _ _ 4 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 most most ADJ JJS Degree=Sup 7 amod _ _ 7 cofibrations cofibration NOUN NNS Number=Plur 4 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 large large ADJ JJ Degree=Pos 11 amod _ _ 11 family family NOUN NN Number=Sing 8 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 model model NOUN NN Number=Sing 14 compound _ _ 14 structures structure NOUN NNS Number=Plur 12 pobj _ _ 15 with with ADP IN _ 11 prep _ _ 16 weak weak ADJ JJ Degree=Pos 17 amod _ _ 17 equivalences equivalence NOUN NNS Number=Plur 15 pobj _ _ 18 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 acl _ _ 19 by by ADP IN _ 18 agent _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 diagonal diagonal NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = The diagonal structure for bisimplicial presheaves specializes to a diagonal model structure for bisimplicial sets, for which the fibrations are the Kan fibrations. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 diagonal diagonal ADJ JJ Degree=Pos 3 amod _ _ 3 structure structure NOUN NN Number=Sing 7 nsubj _ _ 4 for for ADP IN _ 3 prep _ _ 5 bisimplicial bisimplicial ADJ JJ Degree=Pos 6 amod _ _ 6 presheaves presheave NOUN NNS Number=Plur 4 pobj _ _ 7 specializes specialize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 to to ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 10 diagonal diagonal ADJ JJ Degree=Pos 11 amod _ _ 11 model model NOUN NN Number=Sing 12 compound _ _ 12 structure structure NOUN NN Number=Sing 8 pobj _ _ 13 for for ADP IN _ 12 prep _ _ 14 bisimplicial bisimplicial ADJ JJ Degree=Pos 15 amod _ _ 15 sets set NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 for for ADP IN _ 21 prep _ _ 18 which which PRON WDT _ 17 pobj _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 fibrations fibration NOUN NNS Number=Plur 21 nsubj _ _ 21 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 relcl _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 Kan Kan PROPN NNP Number=Sing 24 compound _ _ 24 fibrations fibration NOUN NNS Number=Plur 21 attr _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # doc_id = 470 # sent_id = 1 # text = We show that every geometric morphism between realizability toposes satisfies the condition that its inverse image commutes with the `constant object' functors, which was assumed by John Longley in his pioneering study of such morphisms. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 9 mark _ _ 4 every every DET DT _ 6 det _ _ 5 geometric geometric ADJ JJ Degree=Pos 6 amod _ _ 6 morphism morphism NOUN NN Number=Sing 9 nsubj _ _ 7 between between ADP IN _ 6 prep _ _ 8 realizability realizability NOUN NN Number=Sing 7 pobj _ _ 9 toposes topos NOUN NNS Number=Plur 2 ccomp _ _ 10 satisfies satisfie NOUN NNS Number=Plur 9 dobj _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 condition condition NOUN NN Number=Sing 9 dobj _ _ 13 that that SCONJ IN _ 17 mark _ _ 14 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 16 poss _ _ 15 inverse inverse ADJ JJ Degree=Pos 16 amod _ _ 16 image image NOUN NN Number=Sing 17 nsubj _ _ 17 commutes commute NOUN NNS Number=Plur 12 acl _ _ 18 with with ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 24 det _ _ 20 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 24 punct _ SpaceAfter=No 21 constant constant ADJ JJ Degree=Pos 22 amod _ _ 22 object object NOUN NN Number=Sing 24 nmod _ SpaceAfter=No 23 ' ' PART POS _ 24 punct _ _ 24 functors functor NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 which which PRON WDT _ 28 nsubjpass _ _ 27 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 28 auxpass _ _ 28 assumed assume VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 relcl _ _ 29 by by ADP IN _ 28 agent _ _ 30 John John PROPN NNP Number=Sing 31 compound _ _ 31 Longley Longley PROPN NNP Number=Sing 29 pobj _ _ 32 in in ADP IN _ 28 prep _ _ 33 his his PRON PRP$ Gender=Masc|Number=Sing|Person=3|Poss=Yes|PronType=Prs 35 poss _ _ 34 pioneering pioneering ADJ JJ Degree=Pos 35 amod _ _ 35 study study NOUN NN Number=Sing 32 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 such such ADJ JJ Degree=Pos 38 amod _ _ 38 morphisms morphism NOUN NNS Number=Plur 36 pobj _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We also provide the answer to something which was stated as an open problem on Jaap van Oosten's book on realizability toposes: if a subtopos of a realizability topos is (co)complete, it must be either the topos of sets or the degenerate topos. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 provide provide VERB VBP Tense=Pres|VerbForm=Fin 38 ccomp _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 answer answer NOUN NN Number=Sing 3 dobj _ _ 6 to to ADP IN _ 5 prep _ _ 7 something something PRON NN Number=Sing|PronType=Ind 6 pobj _ _ 8 which which PRON WDT _ 10 nsubjpass _ _ 9 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 10 auxpass _ _ 10 stated state VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 relcl _ _ 11 as as ADP IN _ 10 prep _ _ 12 an an DET DT Definite=Ind|PronType=Art 14 det _ _ 13 open open ADJ JJ Degree=Pos 14 amod _ _ 14 problem problem NOUN NN Number=Sing 11 pobj _ _ 15 on on ADP IN _ 14 prep _ _ 16 Jaap Jaap PROPN NNP Number=Sing 18 compound _ _ 17 van van PROPN NNP Number=Sing 18 compound _ _ 18 Oosten Oosten PROPN NNP Number=Sing 20 poss _ SpaceAfter=No 19 's 's PART POS _ 18 case _ _ 20 book book NOUN NN Number=Sing 15 pobj _ _ 21 on on ADP IN _ 20 prep _ _ 22 realizability realizability NOUN NN Number=Sing 23 compound _ _ 23 toposes topos NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 24 : : PUNCT : _ 38 punct _ _ 25 if if SCONJ IN _ 32 mark _ _ 26 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 27 subtopos subtopos NOUN NN Number=Sing 32 nsubj _ _ 28 of of ADP IN _ 27 prep _ _ 29 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 30 realizability realizability NOUN NN Number=Sing 31 compound _ _ 31 topos topos NOUN NN Number=Sing 28 pobj _ _ 32 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 38 advcl _ _ 33 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 32 punct _ SpaceAfter=No 34 co)complete co)complete ADJ JJ Degree=Pos 32 acomp _ SpaceAfter=No 35 , , PUNCT , PunctType=Comm 38 punct _ _ 36 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 38 nsubj _ _ 37 must must AUX MD VerbForm=Fin 38 aux _ _ 38 be be AUX VB VerbForm=Inf 0 ROOT _ _ 39 either either CCONJ CC ConjType=Cmp 41 preconj _ _ 40 the the DET DT Definite=Def|PronType=Art 41 det _ _ 41 topos topo NOUN NNS Number=Plur 38 attr _ _ 42 of of ADP IN _ 41 prep _ _ 43 sets set NOUN NNS Number=Plur 42 pobj _ _ 44 or or CCONJ CC ConjType=Cmp 43 cc _ _ 45 the the DET DT Definite=Def|PronType=Art 47 det _ _ 46 degenerate degenerate ADJ JJ Degree=Pos 47 amod _ _ 47 topos topos NOUN NN Number=Sing 43 conj _ SpaceAfter=No 48 . . PUNCT . PunctType=Peri 38 punct _ SpaceAfter=No # sent_id = 3 # text = And we present a new and simpler condition equivalent to the notion of computational density for applicative morphisms of Schonfinkel algebras. 1 And and CCONJ CC ConjType=Cmp 3 cc _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 5 new new ADJ JJ Degree=Pos 8 amod _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 simpler simple ADJ JJR Degree=Cmp 5 conj _ _ 8 condition condition NOUN NN Number=Sing 3 dobj _ _ 9 equivalent equivalent ADJ JJ Degree=Pos 8 amod _ _ 10 to to ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 notion notion NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 computational computational ADJ JJ Degree=Pos 15 amod _ _ 15 density density NOUN NN Number=Sing 13 pobj _ _ 16 for for ADP IN _ 15 prep _ _ 17 applicative applicative ADJ JJ Degree=Pos 18 amod _ _ 18 morphisms morphism NOUN NNS Number=Plur 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 Schonfinkel Schonfinkel PROPN NNP Number=Sing 21 compound _ _ 21 algebras algebra NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 471 # sent_id = 1 # text = By a `completion' on a 2 - category $ K $ we mean here an idempotent pseudomonad on $ K $ . 1 By by ADP IN _ 0 ROOT _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 4 punct _ SpaceAfter=No 4 completion completion NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 4 punct _ _ 6 on on ADP IN _ 4 prep _ _ 7 a a PRON DT Definite=Ind|PronType=Art 6 pobj _ _ 8 2 2 NUM CD NumType=Card 10 nummod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 category category NOUN NN Number=Sing 7 nmod _ _ 11 $ K $ $ k $ SYM $ _ 10 nmod _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 mean mean VERB VBP Tense=Pres|VerbForm=Fin 17 parataxis _ _ 14 here here ADV RB PronType=Dem 17 advmod _ _ 15 an an DET DT Definite=Ind|PronType=Art 17 det _ _ 16 idempotent idempotent ADJ JJ Degree=Pos 17 amod _ _ 17 pseudomonad pseudomonad NOUN NNS Number=Plur 1 pobj _ _ 18 on on ADP IN _ 17 prep _ _ 19 $ K $ $ k $ SYM $ _ 18 pobj _ _ 20 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = We are particularly interested in pseudomonads that arise from $ KZ $ - doctrines. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 particularly particularly ADV RB _ 4 advmod _ _ 4 interested interested ADJ JJ Degree=Pos 2 acomp _ _ 5 in in ADP IN _ 4 prep _ _ 6 pseudomonads pseudomonad NOUN NNS Number=Plur 5 pobj _ _ 7 that that PRON WDT PronType=Rel 8 nsubj _ _ 8 arise arise VERB VBP Tense=Pres|VerbForm=Fin 6 relcl _ _ 9 from from ADP IN _ 8 prep _ _ 10 $ KZ $ $ kz $ SYM $ _ 12 compound _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 doctrines doctrine NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Motivated by a question of Lawvere, we compare the Cauchy completion, defined in the setting of $ V - Cat $ for $ V $ a symmetric monoidal closed category, with the Grothendieck completion, defined in the setting of $ S $ - indexed $ Cat $ for $ S $ a topos. 1 Motivated motivate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 advcl _ _ 2 by by ADP IN _ 1 agent _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 question question NOUN NN Number=Sing 2 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 Lawvere Lawvere PROPN NNP Number=Sing 5 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 9 punct _ _ 8 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 9 nsubj _ _ 9 compare compare VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 Cauchy Cauchy PROPN NNP Number=Sing 12 compound _ _ 12 completion completion NOUN NN Number=Sing 9 dobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 acl _ _ 15 in in ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 setting setting NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 $ V - Cat $ $ v - cat $ SYM $ _ 18 pobj _ _ 20 for for ADP IN _ 14 prep _ _ 21 $ V $ $ v $ SYM $ _ 26 nmod _ _ 22 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 23 symmetric symmetric ADJ JJ Degree=Pos 24 amod _ _ 24 monoidal monoidal NOUN NN Number=Sing 26 amod _ _ 25 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 amod _ _ 26 category category NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 14 punct _ _ 28 with with ADP IN _ 14 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 31 det _ _ 30 Grothendieck Grothendieck PROPN NNP Number=Sing 31 compound _ _ 31 completion completion NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 31 punct _ _ 33 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 31 acl _ _ 34 in in ADP IN _ 33 prep _ _ 35 the the DET DT Definite=Def|PronType=Art 36 det _ _ 36 setting setting NOUN NN Number=Sing 34 pobj _ _ 37 of of ADP IN _ 36 prep _ _ 38 $ S $ $ s $ SYM $ _ 40 dep _ _ 39 - - PUNCT HYPH PunctType=Dash 40 punct _ _ 40 indexed index VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 37 pobj _ _ 41 $ Cat $ $ cat $ SYM $ _ 40 dep _ _ 42 for for ADP IN _ 33 prep _ _ 43 $ S $ $ s $ SYM $ _ 45 nmod _ _ 44 a a DET DT Definite=Ind|PronType=Art 45 det _ _ 45 topos topos NOUN NN Number=Sing 42 pobj _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 4 # text = To this end we introduce a unified setting (`indexed enriched category theory') in which to formulate and study certain properties of $ KZ $ - doctrines. 1 To to ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 end end NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 unified unified ADJ JJ Degree=Pos 8 amod _ _ 8 setting setting NOUN NN Number=Sing 5 dobj _ _ 9 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 8 punct _ SpaceAfter=No 10 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 14 punct _ SpaceAfter=No 11 indexed index VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 12 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 amod _ _ 13 category category NOUN NN Number=Sing 14 compound _ _ 14 theory theory NOUN NN Number=Sing 8 appos _ SpaceAfter=No 15 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 14 punct _ SpaceAfter=No 16 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 8 punct _ _ 17 in in ADP IN _ 20 prep _ _ 18 which which PRON WDT _ 17 pobj _ _ 19 to to PART TO _ 20 aux _ _ 20 formulate formulate VERB VB VerbForm=Inf 8 relcl _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 study study VERB VB VerbForm=Inf 20 conj _ _ 23 certain certain ADJ JJ Degree=Pos 24 amod _ _ 24 properties property NOUN NNS Number=Plur 22 dobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 $ KZ $ $ kz $ SYM $ _ 28 compound _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 doctrines doctrine NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 5 # text = We find that, whereas all of the $ KZ $ - doctrines that are relevant to this discussion (Karoubi, Cauchy, Stack, Grothendieck) may be regarded as `bounded', only the Cauchy and the Grothendieck completions are `tightly bounded'–two notions that we introduce and study in this paper. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 find find VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 42 mark _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 42 punct _ _ 5 whereas whereas SCONJ IN _ 29 mark _ _ 6 all all PRON DT _ 29 nsubjpass _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 11 det _ _ 9 $ KZ $ $ kz $ SYM $ _ 11 nmod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 doctrines doctrine NOUN NNS Number=Plur 7 pobj _ _ 12 that that PRON WDT PronType=Rel 13 nsubj _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 11 relcl _ _ 14 relevant relevant ADJ JJ Degree=Pos 13 acomp _ _ 15 to to ADP IN _ 14 prep _ _ 16 this this DET DT Number=Sing|PronType=Dem 17 det _ _ 17 discussion discussion NOUN NN Number=Sing 15 pobj _ _ 18 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 17 punct _ SpaceAfter=No 19 Karoubi Karoubi PROPN NNP Number=Sing 17 appos _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 19 punct _ _ 21 Cauchy Cauchy PROPN NNP Number=Sing 19 conj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 Stack Stack PROPN NNP Number=Sing 21 conj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 23 punct _ _ 25 Grothendieck Grothendieck PROPN NNP Number=Sing 23 appos _ SpaceAfter=No 26 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 17 punct _ _ 27 may may AUX MD VerbForm=Fin 29 aux _ _ 28 be be AUX VB VerbForm=Inf 29 auxpass _ _ 29 regarded regard VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 42 advcl _ _ 30 as as ADP IN _ 29 prep _ _ 31 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 30 punct _ SpaceAfter=No 32 bounded bound VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 30 pobj _ SpaceAfter=No 33 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 29 punct _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 42 punct _ _ 35 only only ADV RB _ 37 advmod _ _ 36 the the DET DT Definite=Def|PronType=Art 37 det _ _ 37 Cauchy Cauchy PROPN NNP Number=Sing 42 nsubj _ _ 38 and and CCONJ CC ConjType=Cmp 37 cc _ _ 39 the the DET DT Definite=Def|PronType=Art 41 det _ _ 40 Grothendieck Grothendieck PROPN NNP Number=Sing 41 compound _ _ 41 completions completion NOUN NNS Number=Plur 37 conj _ _ 42 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 43 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 42 punct _ SpaceAfter=No 44 tightly tightly ADV RB _ 45 advmod _ _ 45 bounded'–two bounded'–two NUM CD NumType=Card 46 nummod _ _ 46 notions notion NOUN NNS Number=Plur 42 attr _ _ 47 that that SCONJ IN _ 49 dobj _ _ 48 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 49 nsubj _ _ 49 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 46 relcl _ _ 50 and and CCONJ CC ConjType=Cmp 49 cc _ _ 51 study study VERB VB VerbForm=Inf 49 conj _ _ 52 in in ADP IN _ 51 prep _ _ 53 this this DET DT Number=Sing|PronType=Dem 54 det _ _ 54 paper paper NOUN NN Number=Sing 52 pobj _ SpaceAfter=No 55 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = Tightly bounded $ KZ $ - doctrines are shown to be idempotent. 1 Tightly tightly ADV RB _ 2 advmod _ _ 2 bounded bound VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 3 $ KZ $ $ kz $ SYM $ _ 5 nmod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 doctrines doctrine NOUN NNS Number=Plur 7 nsubjpass _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 7 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 8 to to PART TO _ 9 aux _ _ 9 be be AUX VB VerbForm=Inf 7 xcomp _ _ 10 idempotent idempotent ADJ JJ Degree=Pos 9 acomp _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 7 # text = We also show, in a different approach to answering the motivating question, that the Cauchy completion (defined using `distributors') and the Grothendieck completion (defined using `generalized functors') are actually equivalent constructions. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 3 punct _ _ 5 in in ADP IN _ 3 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 different different ADJ JJ Degree=Pos 8 amod _ _ 8 approach approach NOUN NN Number=Sing 5 pobj _ _ 9 to to ADP IN _ 8 prep _ _ 10 answering answer VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 pcomp _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 motivating motivating NOUN NN Number=Sing 13 compound _ _ 13 question question NOUN NN Number=Sing 10 dobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 3 punct _ _ 15 that that SCONJ IN _ 38 mark _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 Cauchy Cauchy PROPN NNP Number=Sing 18 compound _ _ 18 completion completion NOUN NN Number=Sing 38 nsubj _ _ 19 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 18 punct _ SpaceAfter=No 20 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 acl _ _ 21 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 20 xcomp _ _ 22 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 21 punct _ SpaceAfter=No 23 distributors distributor NOUN NNS Number=Plur 21 dobj _ SpaceAfter=No 24 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 18 punct _ SpaceAfter=No 25 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 18 punct _ _ 26 and and CCONJ CC ConjType=Cmp 18 cc _ _ 27 the the DET DT Definite=Def|PronType=Art 29 det _ _ 28 Grothendieck Grothendieck PROPN NNP Number=Sing 29 compound _ _ 29 completion completion NOUN NN Number=Sing 18 conj _ _ 30 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 29 punct _ SpaceAfter=No 31 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 acl _ _ 32 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 31 xcomp _ _ 33 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 35 punct _ SpaceAfter=No 34 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 35 amod _ _ 35 functors functor NOUN NNS Number=Plur 32 dobj _ SpaceAfter=No 36 ' ' PART POS _ 35 case _ SpaceAfter=No 37 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 29 punct _ _ 38 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 39 actually actually ADV RB _ 38 advmod _ _ 40 equivalent equivalent ADJ JJ Degree=Pos 41 amod _ _ 41 constructions construction NOUN NNS Number=Plur 38 attr _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 472 # sent_id = 1 # text = We show that any traced $ * $ - autonomous category is compact closed. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 10 mark _ _ 4 any any DET DT _ 9 det _ _ 5 traced trace VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 amod _ _ 6 $ * $ $ * $ SYM $ _ 8 advmod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 autonomous autonomous ADJ JJ Degree=Pos 9 amod _ _ 9 category category NOUN NN Number=Sing 10 nsubj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 11 compact compact ADJ JJ Degree=Pos 12 advmod _ _ 12 closed closed ADJ JJ Degree=Pos 10 acomp _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 473 # sent_id = 1 # text = We deeply analyse the structural organisation of the fibration of points and of the monad of internal groupoids. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 deeply deeply ADV RB _ 3 advmod _ _ 3 analyse analyse VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 structural structural ADJ JJ Degree=Pos 6 amod _ _ 6 organisation organisation NOUN NN Number=Sing 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 fibration fibration NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 points point NOUN NNS Number=Plur 10 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 10 cc _ _ 13 of of ADP IN _ 10 conj _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 monad monad NOUN NNS Number=Plur 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 internal internal ADJ JJ Degree=Pos 18 amod _ _ 18 groupoids groupoid NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = From that we derive: (i) a new characterization of internal groupoids among reflexive graphs in the Maltsev context; (ii) a setting in which a Maltsev category is necessarily a protomodular category. 1 From from SCONJ IN _ 4 mark _ _ 2 that that PRON DT Number=Sing|PronType=Dem 4 mark _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 derive derive VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 5 : : PUNCT : _ 4 punct _ _ 6 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 7 punct _ SpaceAfter=No 7 i i NOUN NN Number=Sing 4 dep _ SpaceAfter=No 8 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 7 punct _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 new new ADJ JJ Degree=Pos 11 amod _ _ 11 characterization characterization NOUN NN Number=Sing 7 appos _ _ 12 of of ADP IN _ 11 prep _ _ 13 internal internal ADJ JJ Degree=Pos 14 amod _ _ 14 groupoids groupoid NOUN NNS Number=Plur 12 pobj _ _ 15 among among ADP IN _ 11 prep _ _ 16 reflexive reflexive ADJ JJ Degree=Pos 17 amod _ _ 17 graphs graph NOUN NNS Number=Plur 15 pobj _ _ 18 in in ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 Maltsev Maltsev PROPN NNP Number=Sing 21 amod _ _ 21 context context NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 22 ; ; PUNCT : _ 7 punct _ _ 23 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 24 punct _ SpaceAfter=No 24 ii ii PROPN NNP Number=Sing 7 appos _ SpaceAfter=No 25 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 24 punct _ _ 26 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 27 setting setting NOUN NN Number=Sing 7 appos _ _ 28 in in ADP IN _ 33 prep _ _ 29 which which PRON WDT _ 28 pobj _ _ 30 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 31 Maltsev Maltsev PROPN NNP Number=Sing 32 compound _ _ 32 category category NOUN NN Number=Sing 33 nsubj _ _ 33 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 27 relcl _ _ 34 necessarily necessarily ADV RB _ 33 advmod _ _ 35 a a DET DT Definite=Ind|PronType=Art 37 det _ _ 36 protomodular protomodular ADJ JJ Degree=Pos 37 amod _ _ 37 category category NOUN NN Number=Sing 33 attr _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 474 # sent_id = 1 # text = The category $ _{A}mathbb{S}_{A} $ of bisemimodules over a semialgebra $ A, $ with the so called Takahashi's tensor - like product $ - boxtimes _{A} - , $ is semimonoidal but not monoidal. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 category category NOUN NN Number=Sing 21 nsubj _ _ 3 $ _{A}mathbb{S}_{A} $ $ _{a}mathbb{s}_{a} $ SYM $ _ 2 appos _ _ 4 of of ADP IN _ 3 prep _ _ 5 bisemimodules bisemimodule NOUN NNS Number=Plur 4 pobj _ _ 6 over over ADP IN _ 2 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 semialgebra semialgebra NOUN NN Number=Sing 6 pobj _ _ 9 $ A, $ $ a, $ SYM $ _ 2 appos _ _ 10 with with ADP IN _ 2 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 so so ADV RB _ 13 advmod _ _ 13 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 pcomp _ _ 14 Takahashi Takahashi PROPN NNP Number=Sing 19 poss _ SpaceAfter=No 15 's 's PART POS _ 14 case _ _ 16 tensor tensor NOUN NN Number=Sing 18 npadvmod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 like like ADJ JJ Degree=Pos 19 amod _ _ 19 product product NOUN NN Number=Sing 13 oprd _ _ 20 $ - boxtimes _{A} - , $ $ - boxtimes _{a} - , $ SYM $ _ 21 nsubj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 22 semimonoidal semimonoidal ADJ JJ Degree=Pos 21 acomp _ _ 23 but but CCONJ CC ConjType=Cmp 22 cc _ _ 24 not not PART RB Polarity=Neg 25 neg _ _ 25 monoidal monoidal ADJ JJ Degree=Pos 22 conj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 21 punct _ SpaceAfter=No # sent_id = 2 # text = Although not a unit in $ _{A}mathbb{S}% _{A}, $ the base semialgebra $ A $ has properties of a semiunit (in a sense which we clarify in this note). 1 Although although SCONJ IN _ 4 mark _ _ 2 not not PART RB Polarity=Neg 4 neg _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 unit unit NOUN NN Number=Sing 11 nsubj _ _ 5 in in ADP IN _ 4 prep _ _ 6 $ _{A}mathbb{S}% _{A}, $ $ _{a}mathbb{s}% _{a}, $ SYM $ _ 9 nsubj _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 base base NOUN NN Number=Sing 9 compound _ _ 9 semialgebra semialgebra VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 pobj _ _ 10 $ A $ $ a $ SYM $ _ 9 dobj _ _ 11 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 properties property NOUN NNS Number=Plur 11 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 semiunit semiunit NOUN NN Number=Sing 13 pobj _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 11 punct _ SpaceAfter=No 17 in in ADP IN _ 11 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 19 sense sense NOUN NN Number=Sing 17 pobj _ _ 20 which which PRON WDT _ 22 dobj _ _ 21 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 22 nsubj _ _ 22 clarify clarify VERB VBP Tense=Pres|VerbForm=Fin 19 relcl _ _ 23 in in ADP IN _ 22 prep _ _ 24 this this DET DT Number=Sing|PronType=Dem 25 det _ _ 25 note note NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 26 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 11 punct _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 3 # text = Motivated by this interesting example, we investigate semiunital semimonoidal categories $ (mathcal{V}% , bullet , mathbf{I}) $ as a framework for studying notions like semimonoids (semicomonoids) as well as a notion of monads (comonads) which we call $ mathbb{J} $ - monads ( $ mathbb{J} $ - comonads) with respect to the endo - functor $ mathbb{J}:=mathbf{I}bullet - simeq - bullet mathbf{I}:mathcal{V}longrightarrow mathcal{V} $ . 1 Motivated motivate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 advcl _ _ 2 by by ADP IN _ 1 agent _ _ 3 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 4 interesting interesting ADJ JJ Degree=Pos 5 amod _ _ 5 example example NOUN NN Number=Sing 2 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 8 punct _ _ 7 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 8 nsubj _ _ 8 investigate investigate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 semiunital semiunital NOUN NN Number=Sing 11 nmod _ _ 10 semimonoidal semimonoidal ADJ JJ Degree=Pos 11 amod _ _ 11 categories category NOUN NNS Number=Plur 8 dobj _ _ 12 $ (mathcal{V}% , bullet , mathbf{I}) $ $ (mathcal{v}% , bullet , mathbf{i}) $ SYM $ _ 8 dep _ _ 13 as as ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 framework framework NOUN NN Number=Sing 13 pobj _ _ 16 for for ADP IN _ 15 prep _ _ 17 studying study VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 pcomp _ _ 18 notions notion NOUN NNS Number=Plur 17 dobj _ _ 19 like like ADP IN _ 18 prep _ _ 20 semimonoids semimonoid NOUN NNS Number=Plur 19 pobj _ _ 21 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 20 punct _ SpaceAfter=No 22 semicomonoids semicomonoid NOUN NNS Number=Plur 20 appos _ SpaceAfter=No 23 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 20 punct _ _ 24 as as ADV RB _ 26 advmod _ _ 25 well well ADV RB Degree=Pos 26 advmod _ _ 26 as as ADP IN _ 15 cc _ _ 27 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 28 notion notion NOUN NN Number=Sing 15 conj _ _ 29 of of ADP IN _ 28 prep _ _ 30 monads monad NOUN NNS Number=Plur 29 pobj _ _ 31 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 30 punct _ SpaceAfter=No 32 comonads comonad NOUN NNS Number=Plur 30 appos _ SpaceAfter=No 33 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 30 punct _ _ 34 which which PRON WDT _ 45 pobj _ _ 35 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 36 nsubj _ _ 36 call call VERB VBP Tense=Pres|VerbForm=Fin 28 relcl _ _ 37 $ mathbb{J} $ $ mathbb{j} $ SYM $ _ 39 compound _ _ 38 - - PUNCT HYPH PunctType=Dash 39 punct _ _ 39 monads monad NOUN NNS Number=Plur 36 dobj _ _ 40 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 39 punct _ _ 41 $ mathbb{J} $ $ mathbb{j} $ SYM $ _ 43 compound _ _ 42 - - PUNCT HYPH PunctType=Dash 43 punct _ _ 43 comonads comonad NOUN NNS Number=Plur 39 appos _ SpaceAfter=No 44 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 39 punct _ _ 45 with with ADP IN _ 36 prep _ _ 46 respect respect NOUN NN Number=Sing 45 pobj _ _ 47 to to ADP IN _ 46 prep _ _ 48 the the DET DT Definite=Def|PronType=Art 52 det _ _ 49 endo endo PROPN NNP Number=Sing 51 compound _ _ 50 - - PUNCT HYPH PunctType=Dash 51 punct _ _ 51 functor functor PROPN NNP Number=Sing 52 compound _ _ 52 $ mathbb{J}:=mathbf{I}bullet - simeq - bullet mathbf{I}:mathcal{V}longrightarrow mathcal{V} $ $ mathbb{j}:=mathbf{i}bullet - simeq - bullet mathbf{i}:mathcal{v}longrightarrow mathcal{v} $ SYM $ _ 47 pobj _ _ 53 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 4 # text = This motivated also introducing a more generalized notion of monads (comonads) in arbitrary categories with respect to arbitrary endo - functors. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 motivated motivate VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 3 also also ADV RB _ 4 advmod _ _ 4 introducing introduce VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 xcomp _ _ 5 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 6 more more ADV RBR Degree=Cmp 7 advmod _ _ 7 generalized generalized ADJ JJ Degree=Pos 8 amod _ _ 8 notion notion NOUN NN Number=Sing 4 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 monads monad NOUN NNS Number=Plur 9 pobj _ _ 11 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 10 punct _ SpaceAfter=No 12 comonads comonad NOUN NNS Number=Plur 10 appos _ SpaceAfter=No 13 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 10 punct _ _ 14 in in ADP IN _ 8 prep _ _ 15 arbitrary arbitrary ADJ JJ Degree=Pos 16 amod _ _ 16 categories category NOUN NNS Number=Plur 14 pobj _ _ 17 with with ADP IN _ 4 prep _ _ 18 respect respect NOUN NN Number=Sing 17 pobj _ _ 19 to to ADP IN _ 18 prep _ _ 20 arbitrary arbitrary ADJ JJ Degree=Pos 23 amod _ _ 21 endo endo PROPN NNP Number=Sing 23 compound _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 functors functor NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = Applications to the semiunital semimonoidal variety $ (_{A}mathbb{S}_{A}, boxtimes _{A}, A) $ provide us with examples of semiunital $ A $ - semirings (semicounital $ A $ - semicorings) and semiunitary semimodules (semicounitary semicomodules) which extend the classical notions of unital rings (counital corings) and unitary modules (counitary comodules). 1 Applications application NOUN NNS Number=Plur 8 nsubj _ _ 2 to to ADP IN _ 1 prep _ _ 3 the the DET DT Definite=Def|PronType=Art 6 det _ _ 4 semiunital semiunital NOUN NN Number=Sing 6 compound _ _ 5 semimonoidal semimonoidal PROPN NNP Number=Sing 6 compound _ _ 6 variety variety NOUN NN Number=Sing 2 pobj _ _ 7 $ (_{A}mathbb{S}_{A}, boxtimes _{A}, A) $ $ (_{A}mathbb{S}_{A}, boxtimes _{A}, A) $ PROPN NNP Number=Sing 8 nsubj _ _ 8 provide provide VERB VB VerbForm=Inf 0 ROOT _ _ 9 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 8 dobj _ _ 10 with with ADP IN _ 8 prep _ _ 11 examples example NOUN NNS Number=Plur 10 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 semiunital semiunital NOUN NN Number=Sing 16 compound _ _ 14 $ A $ $ a $ SYM $ _ 16 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 semirings semiring NOUN NNS Number=Plur 12 pobj _ _ 17 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 18 punct _ SpaceAfter=No 18 semicounital semicounital VERB VB VerbForm=Inf 8 dep _ _ 19 $ A $ $ a $ SYM $ _ 21 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 semicorings semicoring NOUN NNS Number=Plur 18 dobj _ SpaceAfter=No 22 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 18 punct _ _ 23 and and CCONJ CC ConjType=Cmp 18 cc _ _ 24 semiunitary semiunitary ADJ JJ Degree=Pos 25 amod _ _ 25 semimodules semimodule NOUN NNS Number=Plur 18 conj _ _ 26 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 25 punct _ SpaceAfter=No 27 semicounitary semicounitary NOUN NN Number=Sing 28 compound _ _ 28 semicomodules semicomodule NOUN NNS Number=Plur 25 appos _ SpaceAfter=No 29 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 25 punct _ _ 30 which which PRON WDT _ 31 nsubj _ _ 31 extend extend VERB VBP Tense=Pres|VerbForm=Fin 25 relcl _ _ 32 the the DET DT Definite=Def|PronType=Art 34 det _ _ 33 classical classical ADJ JJ Degree=Pos 34 amod _ _ 34 notions notion NOUN NNS Number=Plur 31 dobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 unital unital PROPN NNP Number=Sing 37 compound _ _ 37 rings ring NOUN NNS Number=Plur 35 pobj _ _ 38 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 37 punct _ SpaceAfter=No 39 counital counital NOUN NN Number=Sing 40 compound _ _ 40 corings coring NOUN NNS Number=Plur 37 appos _ SpaceAfter=No 41 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 37 punct _ _ 42 and and CCONJ CC ConjType=Cmp 37 cc _ _ 43 unitary unitary ADJ JJ Degree=Pos 44 amod _ _ 44 modules module NOUN NNS Number=Plur 34 conj _ _ 45 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 44 punct _ SpaceAfter=No 46 counitary counitary ADJ JJ Degree=Pos 47 amod _ _ 47 comodules comodule NOUN NNS Number=Plur 44 appos _ SpaceAfter=No 48 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 44 punct _ SpaceAfter=No 49 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # doc_id = 475 # sent_id = 1 # text = The main source of inspiration for the present paper is the work of Rosebrugh and Wood on constructively completely distributive lattices where the authors elegantly employ the concepts of adjunction and module. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 source source NOUN NN Number=Sing 10 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 inspiration inspiration NOUN NN Number=Sing 4 pobj _ _ 6 for for ADP IN _ 3 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 present present ADJ JJ Degree=Pos 9 amod _ _ 9 paper paper NOUN NN Number=Sing 6 pobj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 work work NOUN NN Number=Sing 10 attr _ _ 13 of of ADP IN _ 12 prep _ _ 14 Rosebrugh Rosebrugh PROPN NNP Number=Sing 13 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 Wood Wood PROPN NNP Number=Sing 14 conj _ _ 17 on on ADP IN _ 12 prep _ _ 18 constructively constructively ADV RB _ 20 advmod _ _ 19 completely completely ADV RB _ 20 advmod _ _ 20 distributive distributive ADJ JJ Degree=Pos 21 amod _ _ 21 lattices lattice NOUN NNS Number=Plur 17 pobj _ _ 22 where where SCONJ WRB _ 26 advmod _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 authors author NOUN NNS Number=Plur 26 nsubj _ _ 25 elegantly elegantly ADV RB _ 26 advmod _ _ 26 employ employ VERB VBP Tense=Pres|VerbForm=Fin 21 relcl _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 concepts concept NOUN NNS Number=Plur 26 dobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 adjunction adjunction NOUN NN Number=Sing 29 pobj _ _ 31 and and CCONJ CC ConjType=Cmp 30 cc _ _ 32 module module NOUN NN Number=Sing 30 conj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = Both notions (suitably adapted) are available in topology too, which permits us to investigate topological, metric and other kinds of spaces in a similar spirit. 1 Both both DET DT _ 2 det _ _ 2 notions notion NOUN NNS Number=Plur 7 nsubj _ _ 3 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 5 punct _ SpaceAfter=No 4 suitably suitably ADV RB _ 5 advmod _ _ 5 adapted adapt VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 parataxis _ SpaceAfter=No 6 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 5 punct _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 available available ADJ JJ Degree=Pos 7 acomp _ _ 9 in in ADP IN _ 7 prep _ _ 10 topology topology NOUN NN Number=Sing 9 pobj _ _ 11 too too ADV RB _ 7 advmod _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 7 punct _ _ 13 which which PRON WDT _ 14 nsubj _ _ 14 permits permit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 advcl _ _ 15 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 14 dobj _ _ 16 to to PART TO _ 17 aux _ _ 17 investigate investigate VERB VB VerbForm=Inf 14 xcomp _ _ 18 topological topological ADJ JJ Degree=Pos 23 amod _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 metric metric ADJ JJ Degree=Pos 18 conj _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 other other ADJ JJ Degree=Pos 20 conj _ _ 23 kinds kind NOUN NNS Number=Plur 17 dobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 spaces space NOUN NNS Number=Plur 24 pobj _ _ 26 in in ADP IN _ 17 prep _ _ 27 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 28 similar similar ADJ JJ Degree=Pos 29 amod _ _ 29 spirit spirit NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = We introduce here the notion of distributive space and algebraic space and show in particular that the category of distributive spaces and colimit preserving maps is dually equivalent to the idempotent split completion of a category of spaces and convergence relations between them. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 here here ADV RB PronType=Dem 2 advmod _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 notion notion NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 distributive distributive ADJ JJ Degree=Pos 8 amod _ _ 8 space space NOUN NN Number=Sing 6 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 algebraic algebraic ADJ JJ Degree=Pos 11 amod _ _ 11 space space NOUN NN Number=Sing 8 conj _ _ 12 and and CCONJ CC ConjType=Cmp 5 cc _ _ 13 show show VERB VB VerbForm=Inf 5 conj _ _ 14 in in ADP IN _ 13 prep _ _ 15 particular particular ADJ JJ Degree=Pos 14 amod _ _ 16 that that SCONJ IN _ 26 mark _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 category category NOUN NN Number=Sing 26 nsubj _ _ 19 of of ADP IN _ 18 prep _ _ 20 distributive distributive ADJ JJ Degree=Pos 21 amod _ _ 21 spaces space NOUN NNS Number=Plur 19 pobj _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 colimit colimit NOUN NN Number=Sing 25 nmod _ _ 24 preserving preserve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 25 amod _ _ 25 maps map NOUN NNS Number=Plur 21 conj _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 ccomp _ _ 27 dually dually ADV RB _ 28 advmod _ _ 28 equivalent equivalent ADJ JJ Degree=Pos 26 acomp _ _ 29 to to ADP IN _ 28 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 33 det _ _ 31 idempotent idempotent ADJ JJ Degree=Pos 32 amod _ _ 32 split split ADJ JJ Degree=Pos 33 amod _ _ 33 completion completion NOUN NN Number=Sing 29 pobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 a a DET DT Definite=Ind|PronType=Art 36 det _ _ 36 category category NOUN NN Number=Sing 34 pobj _ _ 37 of of ADP IN _ 36 prep _ _ 38 spaces space NOUN NNS Number=Plur 37 pobj _ _ 39 and and CCONJ CC ConjType=Cmp 38 cc _ _ 40 convergence convergence NOUN NN Number=Sing 41 compound _ _ 41 relations relation NOUN NNS Number=Plur 38 conj _ _ 42 between between ADP IN _ 38 prep _ _ 43 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 42 pobj _ SpaceAfter=No 44 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We explain the connection of this result to the well - known duality between topological spaces and frames, and deduce further duality theorems. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 explain explain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 connection connection NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 this this DET DT Number=Sing|PronType=Dem 7 det _ _ 7 result result NOUN NN Number=Sing 5 pobj _ _ 8 to to ADP IN _ 4 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 13 det _ _ 10 well well ADV RB Degree=Pos 12 advmod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 amod _ _ 13 duality duality NOUN NN Number=Sing 8 pobj _ _ 14 between between ADP IN _ 13 prep _ _ 15 topological topological ADJ JJ Degree=Pos 16 amod _ _ 16 spaces space NOUN NNS Number=Plur 14 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 frames frame NOUN NNS Number=Plur 16 conj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 2 punct _ _ 20 and and CCONJ CC ConjType=Cmp 2 cc _ _ 21 deduce deduce VERB VB VerbForm=Inf 2 conj _ _ 22 further further ADJ JJ Degree=Pos 24 amod _ _ 23 duality duality NOUN NN Number=Sing 24 compound _ _ 24 theorems theorem NOUN NNS Number=Plur 21 dobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 476 # sent_id = 1 # text = Given a horizontal monoid $ M $ in a duoidal category $ cal F $ , we examine the relationship between bimonoid structures on $ M $ and monoidal structures on the category $ cal F^{ast M} $ of right $ M $ - modules which lift the vertical monoidal structure of $ cal F $ . 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 horizontal horizontal ADJ JJ Degree=Pos 4 amod _ _ 4 monoid monoid NOUN NN Number=Sing 1 pobj _ _ 5 $ M $ $ m $ SYM $ _ 1 pobj _ _ 6 in in ADP IN _ 1 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 duoidal duoidal NOUN NN Number=Sing 9 compound _ _ 9 category category NOUN NN Number=Sing 6 pobj _ _ 10 $ cal F $ $ cal f $ SYM $ _ 1 advmod _ _ 11 , , PUNCT , PunctType=Comm 13 punct _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 examine examine VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 relationship relationship NOUN NN Number=Sing 13 dobj _ _ 16 between between ADP IN _ 15 prep _ _ 17 bimonoid bimonoid NOUN NN Number=Sing 18 compound _ _ 18 structures structure NOUN NNS Number=Plur 16 pobj _ _ 19 on on ADP IN _ 18 prep _ _ 20 $ M $ $ m $ SYM $ _ 23 nmod _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 monoidal monoidal ADJ JJ Degree=Pos 20 conj _ _ 23 structures structure NOUN NNS Number=Plur 19 pobj _ _ 24 on on ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 category category NOUN NN Number=Sing 24 pobj _ _ 27 $ cal F^{ast M} $ $ cal f^{ast m} $ SYM $ _ 13 dobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 right right ADJ JJ Degree=Pos 32 amod _ _ 30 $ M $ $ m $ SYM $ _ 32 compound _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 modules module NOUN NNS Number=Plur 28 pobj _ _ 33 which which PRON WDT _ 34 nsubj _ _ 34 lift lift VERB VBP Tense=Pres|VerbForm=Fin 32 relcl _ _ 35 the the DET DT Definite=Def|PronType=Art 38 det _ _ 36 vertical vertical ADJ JJ Degree=Pos 38 amod _ _ 37 monoidal monoidal ADJ JJ Degree=Pos 38 amod _ _ 38 structure structure NOUN NN Number=Sing 34 dobj _ _ 39 of of ADP IN _ 38 prep _ _ 40 $ cal F $ $ cal f $ SYM $ _ 39 pobj _ _ 41 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 2 # text = We obtain our result using a variant of the so - called Tannaka adjunction; that is, an adjunction inducing the equivalence which expresses Tannaka duality. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 17 ccomp _ _ 3 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 4 poss _ _ 4 result result NOUN NN Number=Sing 2 dobj _ _ 5 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 variant variant NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 14 det _ _ 10 so so ADV RB _ 12 advmod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 13 Tannaka Tannaka PROPN NNP Number=Sing 14 compound _ _ 14 adjunction adjunction NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 15 ; ; PUNCT : _ 17 punct _ _ 16 that that PRON DT Number=Sing|PronType=Dem 17 advmod _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 an an DET DT Definite=Ind|PronType=Art 20 det _ _ 20 adjunction adjunction NOUN NN Number=Sing 17 attr _ _ 21 inducing induce VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 20 acl _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 equivalence equivalence NOUN NN Number=Sing 21 dobj _ _ 24 which which PRON WDT _ 25 nsubj _ _ 25 expresses express VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 relcl _ _ 26 Tannaka Tannaka PROPN NNP Number=Sing 27 compound _ _ 27 duality duality NOUN NN Number=Sing 25 dobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 3 # text = The approach taken utilizes hom - enriched categories rather than categories on which a monoidal category acts (``actegories''). 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 approach approach NOUN NN Number=Sing 4 nsubj _ _ 3 taken take VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 acl _ _ 4 utilizes utilize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 hom hom VERB VB VerbForm=Inf 7 advmod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 8 categories category NOUN NNS Number=Plur 4 dobj _ _ 9 rather rather ADV RB _ 10 advmod _ _ 10 than than ADP IN _ 8 cc _ _ 11 categories category NOUN NNS Number=Plur 8 conj _ _ 12 on on ADP IN _ 17 prep _ _ 13 which which PRON WDT _ 12 pobj _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 monoidal monoidal ADJ JJ Degree=Pos 16 amod _ _ 16 category category NOUN NN Number=Sing 17 nsubj _ _ 17 acts act VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 relcl _ _ 18 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 17 punct _ SpaceAfter=No 19 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 17 punct _ SpaceAfter=No 20 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 17 punct _ SpaceAfter=No 21 actegories actegorie NOUN NNS Number=Plur 17 dobj _ SpaceAfter=No 22 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 21 punct _ SpaceAfter=No 23 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 17 punct _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = The requirement of enrichment in $ cal F $ itself demands the existence of some internal homs, leading to the consideration of convolution for duoidal categories. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 requirement requirement NOUN NN Number=Sing 8 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 enrichment enrichment NOUN NN Number=Sing 3 pobj _ _ 5 in in ADP IN _ 2 prep _ _ 6 $ cal F $ $ cal f $ SYM $ _ 7 nmod _ _ 7 itself itself PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs|Reflex=Yes 5 pobj _ _ 8 demands demand VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 existence existence NOUN NN Number=Sing 8 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 some some DET DT _ 14 det _ _ 13 internal internal ADJ JJ Degree=Pos 14 amod _ _ 14 homs hom NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 8 punct _ _ 16 leading lead VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 advcl _ _ 17 to to ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 consideration consideration NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 convolution convolution NOUN NN Number=Sing 20 pobj _ _ 22 for for ADP IN _ 21 prep _ _ 23 duoidal duoidal NOUN NN Number=Sing 24 compound _ _ 24 categories category NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 5 # text = Proving that certain hom - functors are monoidal, and so take monoids to monoids, unifies classical convolution in algebra and Day convolution for categories. 1 Proving prove VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 0 ROOT _ _ 2 that that SCONJ IN _ 7 mark _ _ 3 certain certain ADJ JJ Degree=Pos 6 amod _ _ 4 hom hom NOUN NN Number=Sing 6 compound _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 functors functor NOUN NNS Number=Plur 7 nsubj _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 1 ccomp _ _ 8 monoidal monoidal ADJ JJ Degree=Pos 7 acomp _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 7 punct _ _ 10 and and CCONJ CC ConjType=Cmp 7 cc _ _ 11 so so ADV RB _ 12 advmod _ _ 12 take take VERB VB VerbForm=Inf 7 conj _ _ 13 monoids monoid NOUN NNS Number=Plur 12 dobj _ _ 14 to to ADP IN _ 12 prep _ _ 15 monoids monoid NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 12 punct _ _ 17 unifies unify VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 conj _ _ 18 classical classical ADJ JJ Degree=Pos 19 amod _ _ 19 convolution convolution NOUN NN Number=Sing 17 dobj _ _ 20 in in ADP IN _ 19 prep _ _ 21 algebra algebra NOUN NN Number=Sing 24 nmod _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 Day Day PROPN NNP Number=Sing 21 conj _ _ 24 convolution convolution NOUN NN Number=Sing 20 pobj _ _ 25 for for ADP IN _ 24 prep _ _ 26 categories category NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 6 # text = Hopf bimonoids are defined leading to a lifting of closed structures on $ cal F $ to $ cal F^{ast M} $ . 1 Hopf hopf NOUN NN Number=Sing 2 compound _ _ 2 bimonoids bimonoid NOUN NNS Number=Plur 4 nsubjpass _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 leading lead VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 advcl _ _ 6 to to ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 lifting lifting NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 closed closed ADJ JJ Degree=Pos 11 amod _ _ 11 structures structure NOUN NNS Number=Plur 9 pobj _ _ 12 on on ADP IN _ 8 prep _ _ 13 $ cal F $ $ cal f $ SYM $ _ 12 pobj _ _ 14 to to ADP IN _ 12 prep _ _ 15 $ cal F^{ast M} $ $ cal f^{ast m} $ SYM $ _ 4 dobj _ _ 16 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 7 # text = We introduce the concept of warping monoidal structures and this permits the construction of new duoidal categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 concept concept NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 warping warp VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 pcomp _ _ 7 monoidal monoidal ADJ JJ Degree=Pos 8 amod _ _ 8 structures structure NOUN NNS Number=Plur 6 dobj _ _ 9 and and CCONJ CC ConjType=Cmp 2 cc _ _ 10 this this PRON DT Number=Sing|PronType=Dem 11 nsubj _ _ 11 permits permit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 conj _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 construction construction NOUN NN Number=Sing 11 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 new new ADJ JJ Degree=Pos 17 amod _ _ 16 duoidal duoidal NOUN NN Number=Sing 17 compound _ _ 17 categories category NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # doc_id = 477 # sent_id = 1 # text = One of the open problems in higher category theory is the systematic construction of the higher dimensional analogues of the Gray tensor product of 2 - categories. 1 One one NUM CD NumType=Card 10 nsubj _ _ 2 of of ADP IN _ 1 prep _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 open open ADJ JJ Degree=Pos 5 amod _ _ 5 problems problem NOUN NNS Number=Plur 2 pobj _ _ 6 in in ADP IN _ 5 prep _ _ 7 higher high ADJ JJR Degree=Cmp 9 amod _ _ 8 category category NOUN NN Number=Sing 9 compound _ _ 9 theory theory NOUN NN Number=Sing 6 pobj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 systematic systematic ADJ JJ Degree=Pos 13 amod _ _ 13 construction construction NOUN NN Number=Sing 10 attr _ _ 14 of of ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 18 det _ _ 16 higher high ADJ JJR Degree=Cmp 18 amod _ _ 17 dimensional dimensional ADJ JJ Degree=Pos 18 amod _ _ 18 analogues analogue NOUN NNS Number=Plur 14 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 23 det _ _ 21 Gray Gray PROPN NNP Number=Sing 23 compound _ _ 22 tensor tensor NOUN NN Number=Sing 23 compound _ _ 23 product product NOUN NN Number=Sing 19 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 2 2 NUM CD NumType=Card 27 nummod _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 categories category NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = In this paper we continue the developments of some other papers by understanding the natural generalisations of Gray's little brother, the funny tensor product of categories. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 continue continue VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 developments development NOUN NNS Number=Plur 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 some some DET DT _ 11 det _ _ 10 other other ADJ JJ Degree=Pos 11 amod _ _ 11 papers paper NOUN NNS Number=Plur 8 pobj _ _ 12 by by ADP IN _ 5 prep _ _ 13 understanding understand VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 pcomp _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 natural natural ADJ JJ Degree=Pos 16 amod _ _ 16 generalisations generalisation NOUN NNS Number=Plur 13 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 Gray Gray PROPN NNP Number=Sing 21 poss _ SpaceAfter=No 19 's 's PART POS _ 18 case _ _ 20 little little ADJ JJ Degree=Pos 21 amod _ _ 21 brother brother NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 the the DET DT Definite=Def|PronType=Art 26 det _ _ 24 funny funny ADJ JJ Degree=Pos 26 amod _ _ 25 tensor tensor NOUN NN Number=Sing 26 compound _ _ 26 product product NOUN NN Number=Sing 21 appos _ _ 27 of of ADP IN _ 26 prep _ _ 28 categories category NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = In fact we exhibit for any higher categorical structure definable by a normalised $ n $ - operad in the sense of Batanin, an analogous tensor product which forms a symmetric monoidal closed structure on the category of algebras of the operad. 1 In in ADP IN _ 4 prep _ _ 2 fact fact NOUN NN Number=Sing 1 pobj _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 exhibit exhibit VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 for for ADP IN _ 4 prep _ _ 6 any any DET DT _ 9 det _ _ 7 higher high ADJ JJR Degree=Cmp 9 amod _ _ 8 categorical categorical ADJ JJ Degree=Pos 9 amod _ _ 9 structure structure NOUN NN Number=Sing 5 pobj _ _ 10 definable definable ADJ JJ Degree=Pos 9 amod _ _ 11 by by ADP IN _ 4 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 13 normalised normalise VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 14 $ n $ $ n $ SYM $ _ 13 nmod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 operad operad ADV RB _ 11 pobj _ _ 17 in in ADP IN _ 4 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 sense sense NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 Batanin Batanin PROPN NNP Number=Sing 20 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 an an DET DT Definite=Ind|PronType=Art 26 det _ _ 24 analogous analogous ADJ JJ Degree=Pos 26 amod _ _ 25 tensor tensor NOUN NN Number=Sing 26 compound _ _ 26 product product NOUN NN Number=Sing 21 appos _ _ 27 which which PRON WDT _ 28 nsubj _ _ 28 forms form VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 26 relcl _ _ 29 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 30 symmetric symmetric ADJ JJ Degree=Pos 31 amod _ _ 31 monoidal monoidal NOUN NN Number=Sing 33 amod _ _ 32 closed close VERB VBD Tense=Past|VerbForm=Fin 33 amod _ _ 33 structure structure NOUN NN Number=Sing 28 dobj _ _ 34 on on ADP IN _ 33 prep _ _ 35 the the DET DT Definite=Def|PronType=Art 36 det _ _ 36 category category NOUN NN Number=Sing 34 pobj _ _ 37 of of ADP IN _ 36 prep _ _ 38 algebras algebra NOUN NNS Number=Plur 37 pobj _ _ 39 of of ADP IN _ 38 prep _ _ 40 the the DET DT Definite=Def|PronType=Art 41 det _ _ 41 operad operad NOUN NN Number=Sing 39 pobj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 478 # sent_id = 1 # text = We study the monoidal structure of the standard strictification functor $ st : Bicat rightarrow 2Cat $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 monoidal monoidal ADJ JJ Degree=Pos 5 amod _ _ 5 structure structure NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 10 det _ _ 8 standard standard ADJ JJ Degree=Pos 10 amod _ _ 9 strictification strictification NOUN NN Number=Sing 10 compound _ _ 10 functor functor NOUN NN Number=Sing 6 pobj _ _ 11 $ st : Bicat rightarrow 2Cat $ $ st : bicat rightarrow 2cat $ SYM $ _ 2 dobj _ _ 12 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = In doing so, we construct monoidal structures on the 2 - category whose objects are bicategories and on the 2 - category whose objects are 2 - categories. 1 In in ADP IN _ 6 prep _ _ 2 doing do VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 1 pcomp _ _ 3 so so ADV RB _ 2 advmod _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 monoidal monoidal ADJ JJ Degree=Pos 8 amod _ _ 8 structures structure NOUN NNS Number=Plur 6 dobj _ _ 9 on on ADP IN _ 6 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 13 det _ _ 11 2 2 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 category category NOUN NN Number=Sing 9 pobj _ _ 14 whose whose DET WP$ Poss=Yes 15 poss _ _ 15 objects object NOUN NNS Number=Plur 16 nsubj _ _ 16 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 relcl _ _ 17 bicategories bicategorie NOUN NNS Number=Plur 16 attr _ _ 18 and and CCONJ CC ConjType=Cmp 16 cc _ _ 19 on on ADP IN _ 6 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 23 det _ _ 21 2 2 NUM CD NumType=Card 23 nummod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 category category NOUN NN Number=Sing 19 pobj _ _ 24 whose whose DET WP$ Poss=Yes 25 poss _ _ 25 objects object NOUN NNS Number=Plur 26 nsubj _ _ 26 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 23 relcl _ _ 27 2 2 NUM CD NumType=Card 29 nummod _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 categories category NOUN NNS Number=Plur 26 attr _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 479 # sent_id = 1 # text = We study the totality of categories weakly enriched in a monoidal bicategory using a notion of enriched icon as 2 - cells. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 totality totality NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 categories category NOUN NNS Number=Plur 5 pobj _ _ 7 weakly weakly ADV RB _ 8 advmod _ _ 8 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 acl _ _ 9 in in ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 monoidal monoidal ADJ JJ Degree=Pos 12 amod _ _ 12 bicategory bicategory NOUN NN Number=Sing 9 pobj _ _ 13 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 acl _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 notion notion NOUN NN Number=Sing 13 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 amod _ _ 18 icon icon NOUN NN Number=Sing 16 pobj _ _ 19 as as ADP IN _ 15 prep _ _ 20 2 2 NUM CD NumType=Card 22 nummod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 cells cell NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We show that when the monoidal bicategory in question is symmetric then this process can be iterated. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 17 mark _ _ 4 when when SCONJ WRB _ 10 advmod _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 monoidal monoidal ADJ JJ Degree=Pos 7 amod _ _ 7 bicategory bicategory NOUN NN Number=Sing 10 nsubj _ _ 8 in in ADP IN _ 7 prep _ _ 9 question question NOUN NN Number=Sing 8 pobj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 advcl _ _ 11 symmetric symmetric ADJ JJ Degree=Pos 10 acomp _ _ 12 then then ADV RB PronType=Dem 17 advmod _ _ 13 this this DET DT Number=Sing|PronType=Dem 14 det _ _ 14 process process NOUN NN Number=Sing 17 nsubjpass _ _ 15 can can AUX MD VerbForm=Fin 17 aux _ _ 16 be be AUX VB VerbForm=Inf 17 auxpass _ _ 17 iterated iterate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We show that starting from the symmetric monoidal bicategory Cat and performing the construction twice yields a convenient symmetric monoidal bicategory of partially strict tricategories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 16 mark _ _ 4 starting start VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 csubj _ _ 5 from from ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 10 det _ _ 7 symmetric symmetric ADJ JJ Degree=Pos 9 amod _ _ 8 monoidal monoidal ADJ JJ Degree=Pos 9 amod _ _ 9 bicategory bicategory NOUN NN Number=Sing 10 compound _ _ 10 Cat Cat PROPN NNP Number=Sing 5 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 4 cc _ _ 12 performing perform VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 conj _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 construction construction NOUN NN Number=Sing 12 dobj _ _ 15 twice twice ADV RB _ 12 advmod _ _ 16 yields yield VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 17 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 18 convenient convenient ADJ JJ Degree=Pos 21 amod _ _ 19 symmetric symmetric ADJ JJ Degree=Pos 21 amod _ _ 20 monoidal monoidal ADJ JJ Degree=Pos 21 amod _ _ 21 bicategory bicategory NOUN NN Number=Sing 16 dobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 partially partially ADV RB _ 24 advmod _ _ 24 strict strict ADJ JJ Degree=Pos 25 amod _ _ 25 tricategories tricategorie NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We show that restricting to the doubly degenerate ones immediately gives the correct bicategory of `2 - tuply monoidal categories' missing from our earlier studies of the Periodic Table. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 11 mark _ _ 4 restricting restrict VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 11 csubj _ _ 5 to to ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 9 det _ _ 7 doubly doubly ADV RB _ 8 advmod _ _ 8 degenerate degenerate ADJ JJ Degree=Pos 9 amod _ _ 9 ones one NOUN NNS Number=Plur 5 pobj _ _ 10 immediately immediately ADV RB _ 11 advmod _ _ 11 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 correct correct ADJ JJ Degree=Pos 14 amod _ _ 14 bicategory bicategory NOUN NN Number=Sing 11 dobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 15 punct _ SpaceAfter=No 17 2 2 NUM CD NumType=Card 19 nummod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 tuply tuply NOUN NN Number=Sing 21 amod _ _ 20 monoidal monoidal NOUN NN Number=Sing 21 amod _ _ 21 categories category NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 22 ' ' PART POS _ 21 case _ _ 23 missing miss VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 21 amod _ _ 24 from from ADP IN _ 11 prep _ _ 25 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 27 poss _ _ 26 earlier early ADJ JJR Degree=Cmp 27 amod _ _ 27 studies study NOUN NNS Number=Plur 24 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 31 det _ _ 30 Periodic Periodic PROPN NNP Number=Sing 31 compound _ _ 31 Table Table PROPN NNP Number=Sing 28 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = We propose a generalisation to all $ k $ - tuply monoidal $ n $ - categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 propose propose VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 generalisation generalisation NOUN NN Number=Sing 2 dobj _ _ 5 to to ADP IN _ 2 prep _ _ 6 all all DET DT _ 10 det _ _ 7 $ k $ $ k $ SYM $ _ 9 advmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 tuply tuply NOUN NN Number=Sing 10 compound _ _ 10 monoidal monoidal NOUN NN Number=Sing 5 pobj _ _ 11 $ n $ $ n $ SYM $ _ 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 categories category NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 480 # sent_id = 1 # text = Geometric morphisms between realizability toposes are studied in terms of morphisms between partial combinatory algebras. 1 Geometric geometric ADJ JJ Degree=Pos 2 amod _ _ 2 morphisms morphism NOUN NNS Number=Plur 7 nsubjpass _ _ 3 between between ADP IN _ 2 prep _ _ 4 realizability realizability NOUN NN Number=Sing 5 compound _ _ 5 toposes topos NOUN NNS Number=Plur 3 pobj _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 7 studied study VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 in in ADP IN _ 7 prep _ _ 9 terms term NOUN NNS Number=Plur 8 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 morphisms morphism NOUN NNS Number=Plur 10 pobj _ _ 12 between between ADP IN _ 11 prep _ _ 13 partial partial ADJ JJ Degree=Pos 15 amod _ _ 14 combinatory combinatory NOUN NN Number=Sing 15 compound _ _ 15 algebras algebra NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 2 # text = The morphisms inducing geometric morphisms (the computationally dense ones) are seen to be the ones whose `lifts' to a kind of completion have right adjoints. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 morphisms morphism NOUN NNS Number=Plur 13 nsubjpass _ _ 3 inducing induce VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 acl _ _ 4 geometric geometric ADJ JJ Degree=Pos 5 amod _ _ 5 morphisms morphism NOUN NNS Number=Plur 3 dobj _ _ 6 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 5 punct _ SpaceAfter=No 7 the the DET DT Definite=Def|PronType=Art 10 det _ _ 8 computationally computationally ADV RB _ 9 advmod _ _ 9 dense dense ADJ JJ Degree=Pos 10 amod _ _ 10 ones one NOUN NNS Number=Plur 5 appos _ SpaceAfter=No 11 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 5 punct _ _ 12 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 seen see VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 14 to to PART TO _ 15 aux _ _ 15 be be AUX VB VerbForm=Inf 13 xcomp _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 ones one NOUN NNS Number=Plur 15 attr _ _ 18 whose whose DET WP$ Poss=Yes 20 poss _ _ 19 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 20 punct _ SpaceAfter=No 20 lifts lift NOUN NNS Number=Plur 27 nsubj _ SpaceAfter=No 21 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 20 punct _ _ 22 to to ADP IN _ 20 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 24 kind kind NOUN NN Number=Sing 22 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 completion completion NOUN NN Number=Sing 25 pobj _ _ 27 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 17 relcl _ _ 28 right right ADJ JJ Degree=Pos 29 amod _ _ 29 adjoints adjoint NOUN NNS Number=Plur 27 dobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 3 # text = We characterize topos inclusions corresponding to a general form of relative computability. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 topos topos NOUN NN Number=Sing 4 compound _ _ 4 inclusions inclusion NOUN NNS Number=Plur 2 dobj _ _ 5 corresponding corresponding ADJ JJ Degree=Pos 4 amod _ _ 6 to to ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 general general ADJ JJ Degree=Pos 9 amod _ _ 9 form form NOUN NN Number=Sing 6 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 relative relative ADJ JJ Degree=Pos 12 amod _ _ 12 computability computability NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We characterize partial combinatory algebras whose realizability topos admits a geometric morphism to the effective topos. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 partial partial ADJ JJ Degree=Pos 5 amod _ _ 4 combinatory combinatory NOUN NN Number=Sing 5 compound _ _ 5 algebras algebra NOUN NNS Number=Plur 2 dobj _ _ 6 whose whose DET WP$ Poss=Yes 8 poss _ _ 7 realizability realizability NOUN NN Number=Sing 8 compound _ _ 8 topos topos NOUN NN Number=Sing 9 nsubj _ _ 9 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 relcl _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 geometric geometric ADJ JJ Degree=Pos 12 amod _ _ 12 morphism morphism NOUN NN Number=Sing 9 dobj _ _ 13 to to ADP IN _ 9 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 effective effective ADJ JJ Degree=Pos 16 amod _ _ 16 topos topos NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 481 # sent_id = 1 # text = In this paper we introduce two notions—systems of fibrant objects and fibration structures—which will allow us to associate to a bicategory $ B $ a homotopy bicategory $ Ho(B) $ in such a way that $ Ho(B) $ is the universal way to add pseudo - inverses to weak equivalences in $ B $ . 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 two two NUM CD NumType=Card 7 nummod _ _ 7 notions notion NOUN NNS Number=Plur 5 dobj _ SpaceAfter=No 8 — — PUNCT : _ 7 punct _ SpaceAfter=No 9 systems system NOUN NNS Number=Plur 7 appos _ _ 10 of of ADP IN _ 9 prep _ _ 11 fibrant fibrant ADJ JJ Degree=Pos 12 amod _ _ 12 objects object NOUN NNS Number=Plur 10 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 fibration fibration NOUN NN Number=Sing 15 compound _ _ 15 structures structure NOUN NNS Number=Plur 12 conj _ SpaceAfter=No 16 — — PUNCT : _ 7 punct _ SpaceAfter=No 17 which which PRON WDT _ 19 nsubj _ _ 18 will will AUX MD VerbForm=Fin 19 aux _ _ 19 allow allow VERB VB VerbForm=Inf 7 relcl _ _ 20 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 22 nsubj _ _ 21 to to PART TO _ 22 aux _ _ 22 associate associate VERB VB VerbForm=Inf 19 ccomp _ _ 23 to to ADP IN _ 22 prep _ _ 24 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 25 bicategory bicategory NOUN NN Number=Sing 23 pobj _ _ 26 $ B $ $ b $ SYM $ _ 29 nmod _ _ 27 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 28 homotopy homotopy NOUN NN Number=Sing 29 compound _ _ 29 bicategory bicategory NOUN NN Number=Sing 22 dobj _ _ 30 $ Ho(B) $ $ ho(b) $ SYM $ _ 22 dep _ _ 31 in in ADP IN _ 30 prep _ _ 32 such such DET PDT _ 34 predet _ _ 33 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 34 way way NOUN NN Number=Sing 31 pobj _ _ 35 that that PRON WDT PronType=Rel 37 attr _ _ 36 $ Ho(B) $ $ ho(b) $ SYM $ _ 37 nsubj _ _ 37 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 ccomp _ _ 38 the the DET DT Definite=Def|PronType=Art 40 det _ _ 39 universal universal ADJ JJ Degree=Pos 40 amod _ _ 40 way way NOUN NN Number=Sing 37 attr _ _ 41 to to PART TO _ 42 aux _ _ 42 add add VERB VB VerbForm=Inf 40 relcl _ _ 43 pseudo pseudo NOUN NN Number=Sing 42 dobj _ _ 44 - - PUNCT : _ 37 punct _ _ 45 inverses inverse NOUN NNS Number=Plur 37 attr _ _ 46 to to ADP IN _ 45 prep _ _ 47 weak weak ADJ JJ Degree=Pos 48 amod _ _ 48 equivalences equivalence NOUN NNS Number=Plur 46 pobj _ _ 49 in in ADP IN _ 48 prep _ _ 50 $ B $ $ b $ SYM $ _ 49 pobj _ _ 51 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = Furthermore, $ Ho(B) $ is locally small when $ B $ is and $ Ho(B) $ is a 2 - category when $ B $ is. 1 Furthermore furthermore ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 $ Ho(B) $ $ ho(b) $ SYM $ _ 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 locally locally ADV RB _ 6 advmod _ _ 6 small small ADJ JJ Degree=Pos 4 acomp _ _ 7 when when SCONJ WRB _ 9 advmod _ _ 8 $ B $ $ b $ SYM $ _ 9 nsubj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 advcl _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 $ Ho(B) $ $ ho(b) $ SYM $ _ 12 nsubj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 conj _ _ 13 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 14 2 2 NUM CD NumType=Card 16 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 category category NOUN NN Number=Sing 12 attr _ _ 17 when when SCONJ WRB _ 19 advmod _ _ 18 $ B $ $ b $ SYM $ _ 19 nsubj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 advcl _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = We thereby resolve two of the problems with known approaches to bicategorical localization. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 thereby thereby ADV RB _ 3 advmod _ _ 3 resolve resolve VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 two two NUM CD NumType=Card 3 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 problems problem NOUN NNS Number=Plur 5 pobj _ _ 8 with with ADP IN _ 7 prep _ _ 9 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 10 approaches approach NOUN NNS Number=Plur 8 pobj _ _ 11 to to ADP IN _ 10 prep _ _ 12 bicategorical bicategorical ADJ JJ Degree=Pos 13 amod _ _ 13 localization localization NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = As an important example, we describe a fibration structure on the 2 - category of prestacks on a site and prove that the resulting homotopy bicategory is the 2 - category of stacks. 1 As as ADP IN _ 7 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 4 det _ _ 3 important important ADJ JJ Degree=Pos 4 amod _ _ 4 example example NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 fibration fibration NOUN NN Number=Sing 10 compound _ _ 10 structure structure NOUN NN Number=Sing 7 dobj _ _ 11 on on ADP IN _ 7 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 15 det _ _ 13 2 2 NUM CD NumType=Card 15 nummod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 category category NOUN NN Number=Sing 11 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 prestacks prestack NOUN NNS Number=Plur 16 pobj _ _ 18 on on ADP IN _ 17 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 site site NOUN NN Number=Sing 18 pobj _ _ 21 and and CCONJ CC ConjType=Cmp 7 cc _ _ 22 prove prove VERB VB VerbForm=Inf 7 conj _ _ 23 that that SCONJ IN _ 28 mark _ _ 24 the the DET DT Definite=Def|PronType=Art 27 det _ _ 25 resulting result VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 27 amod _ _ 26 homotopy homotopy NOUN NN Number=Sing 27 compound _ _ 27 bicategory bicategory NOUN NN Number=Sing 28 nsubj _ _ 28 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 ccomp _ _ 29 the the DET DT Definite=Def|PronType=Art 32 det _ _ 30 2 2 NUM CD NumType=Card 32 nummod _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 category category NOUN NN Number=Sing 28 attr _ _ 33 of of ADP IN _ 32 prep _ _ 34 stacks stack NOUN NNS Number=Plur 33 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 5 # text = We also show how this example can be restricted to obtain algebraic, differentiable and topological (respectively) stacks as homotopy categories of algebraic, differential and topological (respectively) prestacks. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 how how SCONJ WRB _ 9 advmod _ _ 5 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 6 example example NOUN NN Number=Sing 9 nsubjpass _ _ 7 can can AUX MD VerbForm=Fin 9 aux _ _ 8 be be AUX VB VerbForm=Inf 9 auxpass _ _ 9 restricted restrict VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 ccomp _ _ 10 to to PART TO _ 11 aux _ _ 11 obtain obtain VERB VB VerbForm=Inf 9 advcl _ _ 12 algebraic algebraic ADJ JJ Degree=Pos 20 amod _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 differentiable differentiable ADJ JJ Degree=Pos 12 conj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 topological topological ADJ JJ Degree=Pos 14 conj _ _ 17 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 20 punct _ SpaceAfter=No 18 respectively respectively ADV RB _ 20 advmod _ SpaceAfter=No 19 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 20 punct _ _ 20 stacks stack NOUN NNS Number=Plur 11 dobj _ _ 21 as as ADP IN _ 20 prep _ _ 22 homotopy homotopy NOUN NN Number=Sing 23 compound _ _ 23 categories category NOUN NNS Number=Plur 21 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 algebraic algebraic ADJ JJ Degree=Pos 33 amod _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 25 punct _ _ 27 differential differential ADJ JJ Degree=Pos 25 conj _ _ 28 and and CCONJ CC ConjType=Cmp 27 cc _ _ 29 topological topological ADJ JJ Degree=Pos 27 conj _ _ 30 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 33 punct _ SpaceAfter=No 31 respectively respectively ADV RB _ 33 advmod _ SpaceAfter=No 32 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 33 punct _ _ 33 prestacks prestack NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 482 # sent_id = 1 # text = Given a torsion bundle gerbe on a compact smooth manifold or, more generally, on a compact étale Lie groupoid $ M $ , we show that the corresponding category of gerbe modules is equivalent to the category of finitely generated projective modules over an Azumaya algebra on $ M $ . 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 3 torsion torsion NOUN NN Number=Sing 4 compound _ _ 4 bundle bundle NOUN NN Number=Sing 5 compound _ _ 5 gerbe gerbe NOUN NN Number=Sing 1 pobj _ _ 6 on on ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 8 compact compact ADJ JJ Degree=Pos 10 amod _ _ 9 smooth smooth ADJ JJ Degree=Pos 10 amod _ _ 10 manifold manifold NOUN NN Number=Sing 6 pobj _ _ 11 or or CCONJ CC ConjType=Cmp 10 cc _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 21 punct _ _ 13 more more ADV RBR Degree=Cmp 14 advmod _ _ 14 generally generally ADV RB _ 21 advmod _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 21 punct _ _ 16 on on ADP IN _ 21 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 18 compact compact ADJ JJ Degree=Pos 20 amod _ _ 19 étale étale ADJ JJ Degree=Pos 20 amod _ _ 20 Lie lie NOUN NN Number=Sing 16 pobj _ _ 21 groupoid groupoid VERB VB VerbForm=Inf 25 advcl _ _ 22 $ M $ $ m $ SYM $ _ 21 dobj _ _ 23 , , PUNCT , PunctType=Comm 25 punct _ _ 24 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 25 nsubj _ _ 25 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 26 that that SCONJ IN _ 33 mark _ _ 27 the the DET DT Definite=Def|PronType=Art 29 det _ _ 28 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 29 amod _ _ 29 category category NOUN NN Number=Sing 33 nsubj _ _ 30 of of ADP IN _ 29 prep _ _ 31 gerbe gerbe PROPN NNP Number=Sing 32 compound _ _ 32 modules module NOUN NNS Number=Plur 30 pobj _ _ 33 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 25 ccomp _ _ 34 equivalent equivalent ADJ JJ Degree=Pos 33 acomp _ _ 35 to to ADP IN _ 34 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 37 det _ _ 37 category category NOUN NN Number=Sing 35 pobj _ _ 38 of of ADP IN _ 37 prep _ _ 39 finitely finitely ADV RB _ 40 advmod _ _ 40 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 42 amod _ _ 41 projective projective ADJ JJ Degree=Pos 42 amod _ _ 42 modules module NOUN NNS Number=Plur 38 pobj _ _ 43 over over ADP IN _ 42 prep _ _ 44 an an DET DT Definite=Ind|PronType=Art 46 det _ _ 45 Azumaya Azumaya PROPN NNP Number=Sing 46 compound _ _ 46 algebra algebra NOUN NN Number=Sing 43 pobj _ _ 47 on on ADP IN _ 42 prep _ _ 48 $ M $ $ m $ SYM $ _ 47 pobj _ _ 49 . . PUNCT . PunctType=Peri 25 punct _ SpaceAfter=No # sent_id = 2 # text = This result can be seen as an equivariant Serre - Swan theorem for twisted vector bundles. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 result result NOUN NN Number=Sing 5 nsubjpass _ _ 3 can can AUX MD VerbForm=Fin 5 aux _ _ 4 be be AUX VB VerbForm=Inf 5 auxpass _ _ 5 seen see VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 as as ADP IN _ 5 prep _ _ 7 an an DET DT Definite=Ind|PronType=Art 11 det _ _ 8 equivariant equivariant ADJ JJ Degree=Pos 11 amod _ _ 9 Serre Serre PROPN NNP Number=Sing 11 compound _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 Swan Swan PROPN NNP Number=Sing 12 nsubj _ _ 12 theorem theorem VERB VBD Tense=Past|VerbForm=Fin 5 conj _ _ 13 for for ADP IN _ 12 prep _ _ 14 twisted twisted ADJ JJ Degree=Pos 16 amod _ _ 15 vector vector NOUN NN Number=Sing 16 compound _ _ 16 bundles bundle NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 483 # sent_id = 1 # text = Given a monad $ T $ on a suitable enriched category $ B $ equipped with a proper factorization system $ (E, M) $ , we define notions of $ T $ - completion, $ T $ - closure, and $ T $ - density. 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 monad monad NOUN NNS Number=Plur 1 pobj _ _ 4 $ T $ $ t $ SYM $ _ 3 appos _ _ 5 on on ADP IN _ 1 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 7 suitable suitable ADJ JJ Degree=Pos 9 amod _ _ 8 enriched enriched ADJ JJ Degree=Pos 9 amod _ _ 9 category category NOUN NN Number=Sing 17 nmod _ _ 10 $ B $ $ b $ SYM $ _ 9 appos _ _ 11 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 acl _ _ 12 with with ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 14 proper proper ADJ JJ Degree=Pos 16 amod _ _ 15 factorization factorization NOUN NN Number=Sing 16 compound _ _ 16 system system NOUN NN Number=Sing 17 nmod _ _ 17 $ (E, M) $ $ (e, m) $ SYM $ _ 5 pobj _ _ 18 , , PUNCT , PunctType=Comm 20 punct _ _ 19 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 20 nsubj _ _ 20 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 21 notions notion NOUN NNS Number=Plur 20 dobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 $ T $ $ t $ SYM $ _ 25 nummod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 completion completion NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 25 punct _ _ 27 $ T $ $ t $ SYM $ _ 20 npadvmod _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 closure closure NOUN NN Number=Sing 27 amod _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 20 punct _ _ 31 and and CCONJ CC ConjType=Cmp 20 cc _ _ 32 $ T $ $ t $ SYM $ _ 34 nummod _ _ 33 - - PUNCT HYPH PunctType=Dash 34 punct _ _ 34 density density NOUN NN Number=Sing 20 conj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # sent_id = 2 # text = We show that not only the familiar notions of completion, closure, and density in normed vector spaces, but also the notions of sheafification, closure, and density with respect to a Lawvere - Tierney topology, are instances of the given abstract notions. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 41 mark _ _ 4 not not PART RB Polarity=Neg 8 preconj _ _ 5 only only ADV RB _ 4 advmod _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 familiar familiar ADJ JJ Degree=Pos 8 amod _ _ 8 notions notion NOUN NNS Number=Plur 41 nsubj _ _ 9 of of ADP IN _ 8 prep _ _ 10 completion completion NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 closure closure NOUN NN Number=Sing 10 conj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 and and CCONJ CC ConjType=Cmp 12 cc _ _ 15 density density NOUN NN Number=Sing 12 conj _ _ 16 in in ADP IN _ 15 prep _ _ 17 normed normed ADJ JJ Degree=Pos 19 amod _ _ 18 vector vector NOUN NN Number=Sing 19 compound _ _ 19 spaces space NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 8 punct _ _ 21 but but CCONJ CC ConjType=Cmp 8 cc _ _ 22 also also ADV RB _ 21 advmod _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 notions notion NOUN NNS Number=Plur 8 conj _ _ 25 of of ADP IN _ 24 prep _ _ 26 sheafification sheafification NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 26 punct _ _ 28 closure closure NOUN NN Number=Sing 26 conj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 28 punct _ _ 30 and and CCONJ CC ConjType=Cmp 28 cc _ _ 31 density density NOUN NN Number=Sing 28 conj _ _ 32 with with ADP IN _ 31 prep _ _ 33 respect respect NOUN NN Number=Sing 32 pobj _ _ 34 to to ADP IN _ 33 prep _ _ 35 a a DET DT Definite=Ind|PronType=Art 39 det _ _ 36 Lawvere Lawvere PROPN NNP Number=Sing 38 compound _ _ 37 - - PUNCT HYPH PunctType=Dash 38 punct _ _ 38 Tierney Tierney PROPN NNP Number=Sing 39 compound _ _ 39 topology topology NOUN NN Number=Sing 34 pobj _ SpaceAfter=No 40 , , PUNCT , PunctType=Comm 41 punct _ _ 41 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 42 instances instance NOUN NNS Number=Plur 41 attr _ _ 43 of of ADP IN _ 42 prep _ _ 44 the the DET DT Definite=Def|PronType=Art 47 det _ _ 45 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 47 amod _ _ 46 abstract abstract ADJ JJ Degree=Pos 47 amod _ _ 47 notions notion NOUN NNS Number=Plur 43 pobj _ SpaceAfter=No 48 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = The process of $ T $ - completion is equally the enriched idempotent monad associated to $ T $ (which we call the idempotent core of $ T $ ), and we show that it exists as soon as every morphism in $ B $ factors as a $ T $ - dense morphism followed by a $ T $ - closed $ M $ - embedding. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 process process NOUN NN Number=Sing 7 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 $ T $ $ t $ SYM $ _ 6 compound _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 completion completion NOUN NN Number=Sing 3 pobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 equally equally ADV RB _ 7 advmod _ _ 9 the the DET DT Definite=Def|PronType=Art 12 det _ _ 10 enriched enriched ADJ JJ Degree=Pos 12 amod _ _ 11 idempotent idempotent ADJ JJ Degree=Pos 12 amod _ _ 12 monad monad NOUN NNS Number=Plur 7 attr _ _ 13 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 acl _ _ 14 to to ADP IN _ 13 prep _ _ 15 $ T $ $ t $ SYM $ _ 14 pobj _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 15 punct _ SpaceAfter=No 17 which which PRON WDT _ 19 dobj _ _ 18 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 19 nsubj _ _ 19 call call VERB VBP Tense=Pres|VerbForm=Fin 12 relcl _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 idempotent idempotent ADJ JJ Degree=Pos 22 amod _ _ 22 core core NOUN NN Number=Sing 19 dobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 $ T $ $ t $ SYM $ _ 23 pobj _ _ 25 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 7 punct _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 7 punct _ _ 27 and and CCONJ CC ConjType=Cmp 7 cc _ _ 28 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 29 nsubj _ _ 29 show show VERB VBP Tense=Pres|VerbForm=Fin 7 conj _ _ 30 that that SCONJ IN _ 32 mark _ _ 31 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 32 nsubj _ _ 32 exists exist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 29 ccomp _ _ 33 as as ADV RB _ 34 advmod _ _ 34 soon soon ADV RB _ 32 advmod _ _ 35 as as SCONJ IN _ 37 mark _ _ 36 every every DET DT _ 37 det _ _ 37 morphism morphism NOUN NN Number=Sing 34 advcl _ _ 38 in in ADP IN _ 37 prep _ _ 39 $ B $ $ b $ SYM $ _ 40 nummod _ _ 40 factors factor NOUN NNS Number=Plur 38 pobj _ _ 41 as as ADP IN _ 37 prep _ _ 42 a a DET DT Definite=Ind|PronType=Art 46 det _ _ 43 $ T $ $ t $ SYM $ _ 45 advmod _ _ 44 - - PUNCT HYPH PunctType=Dash 45 punct _ _ 45 dense dense ADJ JJ Degree=Pos 46 amod _ _ 46 morphism morphism NOUN NN Number=Sing 41 pobj _ _ 47 followed follow VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 46 acl _ _ 48 by by ADP IN _ 47 agent _ _ 49 a a DET DT Definite=Ind|PronType=Art 55 det _ _ 50 $ T $ $ t $ SYM $ _ 52 advmod _ _ 51 - - PUNCT HYPH PunctType=Dash 52 punct _ _ 52 closed close VERB VBD Tense=Past|VerbForm=Fin 55 amod _ _ 53 $ M $ $ m $ SYM $ _ 55 advmod _ _ 54 - - PUNCT HYPH PunctType=Dash 55 punct _ _ 55 embedding embed VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 48 pobj _ SpaceAfter=No 56 . . PUNCT . PunctType=Peri 29 punct _ SpaceAfter=No # sent_id = 4 # text = The latter hypothesis is satisfied as soon as $ B $ has certain pullbacks as well as wide intersections of $ M $ - embeddings. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 latter latter ADJ JJ Degree=Pos 3 amod _ _ 3 hypothesis hypothesis NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 satisfied satisfied ADJ JJ Degree=Pos 4 acomp _ _ 6 as as ADV RB _ 7 advmod _ _ 7 soon soon ADV RB _ 5 advmod _ _ 8 as as SCONJ IN _ 10 mark _ _ 9 $ B $ $ b $ SYM $ _ 10 nsubj _ _ 10 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 advcl _ _ 11 certain certain ADJ JJ Degree=Pos 12 amod _ _ 12 pullbacks pullback NOUN NNS Number=Plur 10 dobj _ _ 13 as as ADV RB _ 15 advmod _ _ 14 well well ADV RB Degree=Pos 15 advmod _ _ 15 as as ADP IN _ 12 cc _ _ 16 wide wide ADJ JJ Degree=Pos 17 amod _ _ 17 intersections intersection NOUN NNS Number=Plur 12 conj _ _ 18 of of ADP IN _ 17 prep _ _ 19 $ M $ $ m $ SYM $ _ 21 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 embeddings embedding NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = Hence the resulting theorem on the existence of the idempotent core of an enriched monad entails Fakir's existence result in the non - enriched case, as well as adjoint functor factorization results of Applegate - Tierney and Day. 1 Hence hence ADV RB _ 4 advmod _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 resulting result VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 amod _ _ 4 theorem theorem ADJ JJ Degree=Pos 16 nsubj _ _ 5 on on ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 existence existence NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 idempotent idempotent ADJ JJ Degree=Pos 11 amod _ _ 11 core core NOUN NN Number=Sing 8 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 an an DET DT Definite=Ind|PronType=Art 15 det _ _ 14 enriched enriched ADJ JJ Degree=Pos 15 amod _ _ 15 monad monad NOUN NNS Number=Plur 12 pobj _ _ 16 entails entail VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 17 Fakir Fakir PROPN NNP Number=Sing 19 poss _ SpaceAfter=No 18 's 's PART POS _ 17 case _ _ 19 existence existence NOUN NN Number=Sing 20 nsubj _ _ 20 result result NOUN NN Number=Sing 16 dobj _ _ 21 in in ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 26 det _ _ 23 non non ADJ JJ Degree=Pos 25 advmod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 amod _ _ 26 case case NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 20 punct _ _ 28 as as ADV RB _ 30 advmod _ _ 29 well well ADV RB Degree=Pos 30 advmod _ _ 30 as as ADP IN _ 20 cc _ _ 31 adjoint adjoint NOUN NN Number=Sing 32 compound _ _ 32 functor functor NOUN NN Number=Sing 33 compound _ _ 33 factorization factorization NOUN NN Number=Sing 34 compound _ _ 34 results result NOUN NNS Number=Plur 20 conj _ _ 35 of of ADP IN _ 34 prep _ _ 36 Applegate Applegate PROPN NNP Number=Sing 38 compound _ _ 37 - - PUNCT HYPH PunctType=Dash 38 punct _ _ 38 Tierney Tierney PROPN NNP Number=Sing 35 pobj _ _ 39 and and CCONJ CC ConjType=Cmp 38 cc _ _ 40 Day Day PROPN NNP Number=Sing 38 conj _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # doc_id = 484 # sent_id = 1 # text = In this paper we consider a notion of pointwise Kan extension in double categories that naturally generalises Dubuc's notion of pointwise Kan extension along enriched functors. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 notion notion NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 pointwise pointwise ADJ JJ Degree=Pos 11 amod _ _ 10 Kan Kan PROPN NNP Number=Sing 11 compound _ _ 11 extension extension NOUN NN Number=Sing 8 pobj _ _ 12 in in ADP IN _ 11 prep _ _ 13 double double ADJ JJ Degree=Pos 14 amod _ _ 14 categories category NOUN NNS Number=Plur 12 pobj _ _ 15 that that PRON WDT PronType=Rel 17 nsubj _ _ 16 naturally naturally ADV RB _ 17 advmod _ _ 17 generalises generalise VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 relcl _ _ 18 Dubuc Dubuc PROPN NNP Number=Sing 20 poss _ SpaceAfter=No 19 's 's PART POS _ 18 case _ _ 20 notion notion NOUN NN Number=Sing 17 dobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 pointwise pointwise ADJ JJ Degree=Pos 24 amod _ _ 23 Kan Kan PROPN NNP Number=Sing 24 compound _ _ 24 extension extension NOUN NN Number=Sing 21 pobj _ _ 25 along along ADP IN _ 24 prep _ _ 26 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 amod _ _ 27 functors functor NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = We show that, when considered in equipments that admit opcartesian tabulations, it generalises Street's notion of pointwise Kan extension in 2 - categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 15 mark _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 15 punct _ _ 5 when when SCONJ WRB _ 6 advmod _ _ 6 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 advcl _ _ 7 in in ADP IN _ 6 prep _ _ 8 equipments equipment NOUN NNS Number=Plur 7 pobj _ _ 9 that that PRON WDT PronType=Rel 10 nsubj _ _ 10 admit admit VERB VBP Tense=Pres|VerbForm=Fin 8 relcl _ _ 11 opcartesian opcartesian ADJ JJ Degree=Pos 12 amod _ _ 12 tabulations tabulation NOUN NNS Number=Plur 10 dobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 15 punct _ _ 14 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 15 nsubj _ _ 15 generalises generalise VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 16 Street Street PROPN NNP Number=Sing 18 poss _ SpaceAfter=No 17 's 's PART POS _ 16 case _ _ 18 notion notion NOUN NN Number=Sing 15 dobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 pointwise pointwise ADJ JJ Degree=Pos 22 amod _ _ 21 Kan Kan PROPN NNP Number=Sing 22 compound _ _ 22 extension extension NOUN NN Number=Sing 19 pobj _ _ 23 in in ADP IN _ 22 prep _ _ 24 2 2 NUM CD NumType=Card 26 nummod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 categories category NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 485 # sent_id = 1 # text = We provide a diagrammatic criterion for the existence of an absolute colimit in the context of enriched category theory. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 diagrammatic diagrammatic ADJ JJ Degree=Pos 5 amod _ _ 5 criterion criterion NOUN NN Number=Sing 2 dobj _ _ 6 for for ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 existence existence NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 11 absolute absolute ADJ JJ Degree=Pos 12 amod _ _ 12 colimit colimit NOUN NN Number=Sing 9 pobj _ _ 13 in in ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 context context NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 amod _ _ 18 category category NOUN NN Number=Sing 19 compound _ _ 19 theory theory NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 486 # sent_id = 1 # text = We show that the category of categories fibred over a site is a generalized Quillen model category in which the weak equivalences are the local equivalences and the fibrant objects are the stacks, as they were defined by Giraud. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 8 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 8 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 categories category NOUN NNS Number=Plur 6 pobj _ _ 8 fibred fibre VERB VBD Tense=Past|VerbForm=Fin 2 ccomp _ _ 9 over over ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 site site NOUN NN Number=Sing 9 pobj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 13 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 14 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 15 Quillen quillen ADJ JJ Degree=Pos 17 amod _ _ 16 model model NOUN NN Number=Sing 17 compound _ _ 17 category category NOUN NN Number=Sing 12 attr _ _ 18 in in ADP IN _ 23 prep _ _ 19 which which PRON WDT _ 18 pobj _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 weak weak ADJ JJ Degree=Pos 22 amod _ _ 22 equivalences equivalence NOUN NNS Number=Plur 23 nsubj _ _ 23 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 17 relcl _ _ 24 the the DET DT Definite=Def|PronType=Art 26 det _ _ 25 local local ADJ JJ Degree=Pos 26 amod _ _ 26 equivalences equivalence NOUN NNS Number=Plur 23 attr _ _ 27 and and CCONJ CC ConjType=Cmp 23 cc _ _ 28 the the DET DT Definite=Def|PronType=Art 30 det _ _ 29 fibrant fibrant ADJ JJ Degree=Pos 30 amod _ _ 30 objects object NOUN NNS Number=Plur 31 nsubj _ _ 31 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 23 conj _ _ 32 the the DET DT Definite=Def|PronType=Art 33 det _ _ 33 stacks stack NOUN NNS Number=Plur 31 attr _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 31 punct _ _ 35 as as SCONJ IN _ 38 mark _ _ 36 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 38 nsubjpass _ _ 37 were be AUX VBD Mood=Ind|Tense=Past|VerbForm=Fin 38 auxpass _ _ 38 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 31 advcl _ _ 39 by by ADP IN _ 38 agent _ _ 40 Giraud Giraud PROPN NNP Number=Sing 39 pobj _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The generalized model category restricts to one on the full subcategory whose objects are the categories fibred in groupoids. 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 generalized generalized ADJ JJ Degree=Pos 4 amod _ _ 3 model model NOUN NN Number=Sing 4 compound _ _ 4 category category NOUN NN Number=Sing 5 nsubj _ _ 5 restricts restrict VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 to to ADP IN _ 5 prep _ _ 7 one one NUM CD NumType=Card 6 pobj _ _ 8 on on ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 full full ADJ JJ Degree=Pos 11 amod _ _ 11 subcategory subcategory NOUN NN Number=Sing 8 pobj _ _ 12 whose whose DET WP$ Poss=Yes 13 poss _ _ 13 objects object NOUN NNS Number=Plur 14 nsubj _ _ 14 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 11 relcl _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 categories category NOUN NNS Number=Plur 14 attr _ _ 17 fibred fibre VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 acl _ _ 18 in in ADP IN _ 17 prep _ _ 19 groupoids groupoid NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = We show that the category of sheaves of categories is a model category that is Quillen equivalent to the generalized model category for stacks and to the model category for strong stacks due to Joyal and Tierney. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 10 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 10 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 sheaves sheaf NOUN NNS Number=Plur 6 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 categories category NOUN NNS Number=Plur 8 pobj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 model model NOUN NN Number=Sing 13 compound _ _ 13 category category NOUN NN Number=Sing 10 attr _ _ 14 that that PRON WDT PronType=Rel 15 nsubj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 relcl _ _ 16 Quillen quillen ADJ JJ Degree=Pos 17 amod _ _ 17 equivalent equivalent ADJ JJ Degree=Pos 15 acomp _ _ 18 to to ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 22 det _ _ 20 generalized generalized ADJ JJ Degree=Pos 22 amod _ _ 21 model model NOUN NN Number=Sing 22 compound _ _ 22 category category NOUN NN Number=Sing 18 pobj _ _ 23 for for ADP IN _ 22 prep _ _ 24 stacks stack NOUN NNS Number=Plur 23 pobj _ _ 25 and and CCONJ CC ConjType=Cmp 23 cc _ _ 26 to to ADP IN _ 23 conj _ _ 27 the the DET DT Definite=Def|PronType=Art 29 det _ _ 28 model model NOUN NN Number=Sing 29 compound _ _ 29 category category NOUN NN Number=Sing 26 pobj _ _ 30 for for ADP IN _ 29 prep _ _ 31 strong strong ADJ JJ Degree=Pos 32 amod _ _ 32 stacks stack NOUN NNS Number=Plur 30 pobj _ _ 33 due due ADJ JJ Degree=Pos 32 amod _ _ 34 to to ADP IN _ 33 pcomp _ _ 35 Joyal Joyal PROPN NNP Number=Sing 34 pobj _ _ 36 and and CCONJ CC ConjType=Cmp 35 cc _ _ 37 Tierney Tierney PROPN NNP Number=Sing 35 conj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 487 # sent_id = 1 # text = A pre - cohesive geometric morphism $ p:cal E rightarrow cal S $ satisfies Continuity if the canonical $ p_clik (X^{p^* S}) rightarrow (p_clik X)^S $ is an isomorphism for every $ X $ in $ cal E $ and $ S $ in $ cal S $ . 1 A a DET DT Definite=Ind|PronType=Art 6 det _ _ 2 pre pre ADJ JJ Degree=Pos 4 advmod _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 cohesive cohesive ADJ JJ Degree=Pos 6 amod _ _ 5 geometric geometric ADJ JJ Degree=Pos 6 amod _ _ 6 morphism morphism NOUN NN Number=Sing 8 nsubj _ _ 7 $ p:cal E rightarrow cal S $ $ p:cal e rightarrow cal s $ SYM $ _ 8 nmod _ _ 8 satisfies satisfie NOUN NNS Number=Plur 0 ROOT _ _ 9 Continuity continuity NOUN NN Number=Sing 8 dobj _ _ 10 if if SCONJ IN _ 14 mark _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 canonical canonical NOUN NN Number=Sing 14 nsubj _ _ 13 $ p_clik (X^{p^* S}) rightarrow (p_clik X)^S $ $ p_clik (x^{p^* s}) rightarrow (p_clik x)^s $ X FW Foreign=Yes 12 prep _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 advcl _ _ 15 an an DET DT Definite=Ind|PronType=Art 16 det _ _ 16 isomorphism isomorphism NOUN NN Number=Sing 14 attr _ _ 17 for for ADP IN _ 16 prep _ _ 18 every every DET DT _ 19 det _ _ 19 $ X $ $ x $ SYM $ _ 17 pobj _ _ 20 in in ADP IN _ 19 prep _ _ 21 $ cal E $ $ cal e $ SYM $ _ 20 pobj _ _ 22 and and CCONJ CC ConjType=Cmp 20 cc _ _ 23 $ S $ $ s $ SYM $ _ 17 pobj _ _ 24 in in ADP IN _ 16 prep _ _ 25 $ cal S $ $ cal s $ SYM $ _ 24 pobj _ _ 26 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 2 # text = We show that if $ cal S = Set $ and $ cal E $ is a presheaf topos then, $ p $ satisfies Continuity if and only if it is a quality type. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 8 mark _ _ 4 if if SCONJ IN _ 5 mark _ _ 5 $ cal S = Set $ $ cal s = set $ SYM $ _ 8 nsubj _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 $ cal E $ $ cal e $ SYM $ _ 5 conj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 presheaf presheaf ADJ JJ Degree=Pos 11 amod _ _ 11 topos topos NOUN NN Number=Sing 8 attr _ _ 12 then then ADV RB PronType=Dem 8 advmod _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 8 punct _ _ 14 $ p $ $ p $ SYM $ _ 15 nummod _ _ 15 satisfies satisfie NOUN NNS Number=Plur 8 attr _ _ 16 Continuity continuity NOUN NN Number=Sing 15 npadvmod _ _ 17 if if SCONJ IN _ 8 dep _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 only only ADV RB _ 22 advmod _ _ 20 if if SCONJ IN _ 22 mark _ _ 21 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 22 nsubj _ _ 22 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 advcl _ _ 23 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 24 quality quality NOUN NN Number=Sing 25 compound _ _ 25 type type NOUN NN Number=Sing 22 attr _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Our proof of this characterization rests on a related result showing that Continuity and Sufficient Cohesion are incompatible for presheaf toposes. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 proof proof NOUN NN Number=Sing 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 characterization characterization NOUN NN Number=Sing 3 pobj _ _ 6 rests rest VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 on on ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 related related ADJ JJ Degree=Pos 10 amod _ _ 10 result result NOUN NN Number=Sing 7 pobj _ _ 11 showing show VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 acl _ _ 12 that that SCONJ IN _ 17 mark _ _ 13 Continuity Continuity PROPN NNP Number=Sing 16 nmod _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 Sufficient Sufficient PROPN NNP Number=Sing 13 conj _ _ 16 Cohesion Cohesion PROPN NNP Number=Sing 17 nsubj _ _ 17 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 11 ccomp _ _ 18 incompatible incompatible ADJ JJ Degree=Pos 17 acomp _ _ 19 for for ADP IN _ 18 prep _ _ 20 presheaf presheaf ADJ JJ Degree=Pos 21 compound _ _ 21 toposes topos NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = This incompatibility raises the question whether Continuity and Sufficient Cohesion are ever compatible for Grothendieck toposes. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 incompatibility incompatibility NOUN NN Number=Sing 3 nsubj _ _ 3 raises raise VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 question question NOUN NN Number=Sing 3 dobj _ _ 6 whether whether SCONJ IN _ 11 mark _ _ 7 Continuity Continuity PROPN NNP Number=Sing 10 nmod _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 Sufficient Sufficient PROPN NNP Number=Sing 7 conj _ _ 10 Cohesion Cohesion PROPN NNP Number=Sing 11 nsubj _ _ 11 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 acl _ _ 12 ever ever ADV RB _ 11 advmod _ _ 13 compatible compatible ADJ JJ Degree=Pos 11 acomp _ _ 14 for for ADP IN _ 13 prep _ _ 15 Grothendieck Grothendieck PROPN NNP Number=Sing 16 compound _ _ 16 toposes topos NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = We show that the answer is positive by building some examples. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 6 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 answer answer NOUN NN Number=Sing 6 nsubj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 7 positive positive ADJ JJ Degree=Pos 6 acomp _ _ 8 by by ADP IN _ 7 prep _ _ 9 building build VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 pcomp _ _ 10 some some DET DT _ 11 det _ _ 11 examples example NOUN NNS Number=Plur 9 dobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 488 # sent_id = 1 # text = We present a weak form of a recognition principle for Quillen model categories due to Smith. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 weak weak ADJ JJ Degree=Pos 5 amod _ _ 5 form form NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 recognition recognition NOUN NN Number=Sing 9 compound _ _ 9 principle principle NOUN NN Number=Sing 6 pobj _ _ 10 for for ADP IN _ 9 prep _ _ 11 Quillen quillen ADJ JJ Degree=Pos 13 amod _ _ 12 model model NOUN NN Number=Sing 13 compound _ _ 13 categories category NOUN NNS Number=Plur 10 pobj _ _ 14 due due ADJ JJ Degree=Pos 13 amod _ _ 15 to to ADP IN _ 14 pcomp _ _ 16 Smith Smith PROPN NNP Number=Sing 15 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We use it to put a model category structure on the category of small categories enriched over a suitable monoidal simplicial model category. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 dobj _ _ 4 to to PART TO _ 5 aux _ _ 5 put put VERB VB VerbForm=Inf 2 xcomp _ _ 6 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 7 model model NOUN NN Number=Sing 9 compound _ _ 8 category category NOUN NN Number=Sing 9 compound _ _ 9 structure structure NOUN NN Number=Sing 5 dobj _ _ 10 on on ADP IN _ 5 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 category category NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 small small ADJ JJ Degree=Pos 15 amod _ _ 15 categories category NOUN NNS Number=Plur 13 pobj _ _ 16 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 acl _ _ 17 over over ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 19 suitable suitable ADJ JJ Degree=Pos 23 amod _ _ 20 monoidal monoidal ADJ JJ Degree=Pos 22 amod _ _ 21 simplicial simplicial ADJ JJ Degree=Pos 22 amod _ _ 22 model model NOUN NN Number=Sing 23 compound _ _ 23 category category NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = The proof uses a part of the model structure on small simplicial categories due to Bergner. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 proof proof NOUN NN Number=Sing 3 nsubj _ _ 3 uses use VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 part part NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 model model NOUN NN Number=Sing 9 compound _ _ 9 structure structure NOUN NN Number=Sing 6 pobj _ _ 10 on on ADP IN _ 9 prep _ _ 11 small small ADJ JJ Degree=Pos 13 amod _ _ 12 simplicial simplicial ADJ JJ Degree=Pos 13 amod _ _ 13 categories category NOUN NNS Number=Plur 10 pobj _ _ 14 due due ADJ JJ Degree=Pos 3 prep _ _ 15 to to ADP IN _ 14 pcomp _ _ 16 Bergner Bergner PROPN NNP Number=Sing 14 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = We give an application of the weak form of Smith's result to left Bousfield localizations of categories of monoids in a suitable monoidal model category. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 4 det _ _ 4 application application NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 weak weak ADJ JJ Degree=Pos 8 amod _ _ 8 form form NOUN NN Number=Sing 5 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 Smith Smith PROPN NNP Number=Sing 12 poss _ SpaceAfter=No 11 's 's PART POS _ 10 case _ _ 12 result result NOUN NN Number=Sing 9 pobj _ _ 13 to to PART TO _ 14 aux _ _ 14 left left VERB VB VerbForm=Inf 12 acl _ _ 15 Bousfield Bousfield PROPN NNP Number=Sing 16 compound _ _ 16 localizations localization NOUN NNS Number=Plur 14 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 categories category NOUN NNS Number=Plur 17 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 monoids monoid NOUN NNS Number=Plur 19 pobj _ _ 21 in in ADP IN _ 14 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 23 suitable suitable ADJ JJ Degree=Pos 26 amod _ _ 24 monoidal monoidal ADJ JJ Degree=Pos 25 amod _ _ 25 model model NOUN NN Number=Sing 26 compound _ _ 26 category category NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 489 # sent_id = 1 # text = We show that the composition of a homotopically meaningful `geometric realization' (or simple functor) with the simplicial replacement produces all homotopy colimits and Kan extensions in a relative category which is closed under coproducts. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 23 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 composition composition NOUN NN Number=Sing 23 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 8 homotopically homotopically ADV RB _ 9 advmod _ _ 9 meaningful meaningful ADJ JJ Degree=Pos 12 amod _ _ 10 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 12 punct _ SpaceAfter=No 11 geometric geometric ADJ JJ Degree=Pos 12 amod _ _ 12 realization realization NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 13 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 12 punct _ _ 14 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 12 punct _ SpaceAfter=No 15 or or CCONJ CC ConjType=Cmp 12 cc _ _ 16 simple simple ADJ JJ Degree=Pos 17 amod _ _ 17 functor functor NOUN NN Number=Sing 12 conj _ SpaceAfter=No 18 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 12 punct _ _ 19 with with ADP IN _ 5 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 simplicial simplicial ADJ JJ Degree=Pos 22 amod _ _ 22 replacement replacement NOUN NN Number=Sing 19 pobj _ _ 23 produces produce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 24 all all DET DT _ 26 det _ _ 25 homotopy homotopy NOUN NN Number=Sing 26 compound _ _ 26 colimits colimit NOUN NNS Number=Plur 23 dobj _ _ 27 and and CCONJ CC ConjType=Cmp 26 cc _ _ 28 Kan Kan PROPN NNP Number=Sing 29 compound _ _ 29 extensions extension NOUN NNS Number=Plur 26 conj _ _ 30 in in ADP IN _ 23 prep _ _ 31 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 32 relative relative ADJ JJ Degree=Pos 33 amod _ _ 33 category category NOUN NN Number=Sing 30 pobj _ _ 34 which which PRON WDT _ 36 nsubjpass _ _ 35 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 36 auxpass _ _ 36 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 33 relcl _ _ 37 under under ADP IN _ 36 prep _ _ 38 coproducts coproduct NOUN NNS Number=Plur 37 pobj _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Examples (and its duals) include model categories, $ Delta $ - closed classes and other concrete examples such as complexes on (AB4) abelian categories, (filtered) commutative dg algebras and mixed Hodge complexes. 1 Examples example NOUN NNS Number=Plur 7 nsubj _ _ 2 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 1 punct _ SpaceAfter=No 3 and and CCONJ CC ConjType=Cmp 1 cc _ _ 4 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 5 poss _ _ 5 duals dual NOUN NNS Number=Plur 1 conj _ SpaceAfter=No 6 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 5 punct _ _ 7 include include VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 model model NOUN NN Number=Sing 9 compound _ _ 9 categories category NOUN NNS Number=Plur 7 dobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 $ Delta $ $ delta $ SYM $ _ 13 advmod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 14 classes class NOUN NNS Number=Plur 9 conj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 other other ADJ JJ Degree=Pos 18 amod _ _ 17 concrete concrete ADJ JJ Degree=Pos 18 amod _ _ 18 examples example NOUN NNS Number=Plur 14 conj _ _ 19 such such ADJ JJ Degree=Pos 20 amod _ _ 20 as as ADP IN _ 18 prep _ _ 21 complexes complex NOUN NNS Number=Plur 20 pobj _ _ 22 on on ADP IN _ 21 prep _ _ 23 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 27 punct _ SpaceAfter=No 24 AB4 AB4 PROPN NNP Number=Sing 26 nmod _ SpaceAfter=No 25 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 26 punct _ _ 26 abelian abelian ADJ JJ Degree=Pos 27 compound _ _ 27 categories category NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 9 punct _ _ 29 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 9 punct _ SpaceAfter=No 30 filtered filter VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 acl _ SpaceAfter=No 31 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 32 punct _ _ 32 commutative commutative PROPN NNP Number=Sing 9 appos _ _ 33 dg dg PROPN NNP Number=Sing 7 conj _ _ 34 algebras algebra NOUN NNS Number=Plur 7 dobj _ _ 35 and and CCONJ CC ConjType=Cmp 34 cc _ _ 36 mixed mixed ADJ JJ Degree=Pos 38 amod _ _ 37 Hodge Hodge PROPN NNP Number=Sing 38 compound _ _ 38 complexes complex NOUN NNS Number=Plur 34 conj _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = The resulting homotopy colimits satisfy the expected properties as cofinality and Fubini, and are moreover colimits in a suitable 2 - category of relative categories. 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 resulting result VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 amod _ _ 3 homotopy homotopy NOUN NN Number=Sing 4 compound _ _ 4 colimits colimit NOUN NNS Number=Plur 5 nsubj _ _ 5 satisfy satisfy VERB VB VerbForm=Inf 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 expected expect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 8 properties property NOUN NNS Number=Plur 5 dobj _ _ 9 as as ADP IN _ 5 prep _ _ 10 cofinality cofinality NOUN NN Number=Sing 9 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 Fubini Fubini PROPN NNP Number=Sing 10 conj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 5 punct _ _ 14 and and CCONJ CC ConjType=Cmp 5 cc _ _ 15 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 conj _ _ 16 moreover moreover ADV RB _ 15 advmod _ _ 17 colimits colimit NOUN NNS Number=Plur 15 attr _ _ 18 in in ADP IN _ 15 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 20 suitable suitable ADJ JJ Degree=Pos 23 amod _ _ 21 2 2 NUM CD NumType=Card 23 nummod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 category category NOUN NN Number=Sing 18 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 relative relative ADJ JJ Degree=Pos 26 amod _ _ 26 categories category NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = Conversely, the existence of homotopy colimits satisfying these properties guarantees that $ hocolim_{Delta^o} $ is a simple functor. 1 Conversely conversely ADV RB _ 11 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 11 punct _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 existence existence NOUN NN Number=Sing 11 nsubj _ _ 5 of of ADP IN _ 4 prep _ _ 6 homotopy homotopy NOUN NN Number=Sing 7 compound _ _ 7 colimits colimit NOUN NNS Number=Plur 5 pobj _ _ 8 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 acl _ _ 9 these these DET DT Number=Plur|PronType=Dem 10 det _ _ 10 properties property NOUN NNS Number=Plur 8 dobj _ _ 11 guarantees guarantee VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 that that SCONJ IN _ 14 mark _ _ 13 $ hocolim_{Delta^o} $ $ hocolim_{delta^o} $ SYM $ _ 14 nsubj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 ccomp _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 simple simple ADJ JJ Degree=Pos 17 amod _ _ 17 functor functor NOUN NN Number=Sing 14 attr _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # doc_id = 490 # sent_id = 1 # text = We continue the development of the infinitesimal deformation theory of pasting diagrams of $ k $ - linear categories begun in other work. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 continue continue VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 development development NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 9 det _ _ 7 infinitesimal infinitesimal ADJ JJ Degree=Pos 9 amod _ _ 8 deformation deformation NOUN NN Number=Sing 9 compound _ _ 9 theory theory NOUN NN Number=Sing 5 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 pasting paste VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 compound _ _ 12 diagrams diagram NOUN NNS Number=Plur 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 $ k $ $ k $ SYM $ _ 16 quantmod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 linear linear ADJ JJ Degree=Pos 17 amod _ _ 17 categories category NOUN NNS Number=Plur 13 pobj _ _ 18 begun begin VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 acl _ _ 19 in in ADP IN _ 18 prep _ _ 20 other other ADJ JJ Degree=Pos 21 amod _ _ 21 work work NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = In that article the standard result that all obstructions are cocycles was established only for the elementary, composition - free parts of pasting diagrams. 1 In in ADP IN _ 6 prep _ _ 2 that that DET DT Number=Sing|PronType=Dem 3 det _ _ 3 article article NOUN NN Number=Sing 1 pobj _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 standard standard ADJ JJ Degree=Pos 6 nsubj _ _ 6 result result VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 that that SCONJ IN _ 10 mark _ _ 8 all all DET DT _ 9 det _ _ 9 obstructions obstruction NOUN NNS Number=Plur 10 nsubj _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 11 cocycles cocycle NOUN NNS Number=Plur 13 nsubjpass _ _ 12 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 13 auxpass _ _ 13 established establish VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 ccomp _ _ 14 only only ADV RB _ 15 advmod _ _ 15 for for ADP IN _ 13 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 22 det _ _ 17 elementary elementary ADJ JJ Degree=Pos 22 amod _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 composition composition NOUN NN Number=Sing 21 npadvmod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 free free ADJ JJ Degree=Pos 22 amod _ _ 22 parts part NOUN NNS Number=Plur 15 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 pasting pasting NOUN NN Number=Sing 25 compound _ _ 25 diagrams diagram NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = In the present work we give a proof for pasting diagrams in general. 1 In in ADP IN _ 6 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 present present ADJ JJ Degree=Pos 4 amod _ _ 4 work work NOUN NN Number=Sing 1 pobj _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 proof proof NOUN NN Number=Sing 6 dobj _ _ 9 for for ADP IN _ 8 prep _ _ 10 pasting paste VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 pcomp _ _ 11 diagrams diagram NOUN NNS Number=Plur 10 dobj _ _ 12 in in ADP IN _ 10 prep _ _ 13 general general ADJ JJ Degree=Pos 12 amod _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = As tools we use the method developed by Shrestha of simultaneously representing formulas for obstructions, along with the corresponding cocycle and cobounding conditions by suitably labeled polygons, giving a rigorous exposition of the previously heuristic method; and deformations of pasting diagrams in which some cells are required to be deformed trivially. 1 As as SCONJ IN _ 30 mark _ _ 2 tools tool NOUN NNS Number=Plur 1 pobj _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 use use VERB VBP Tense=Pres|VerbForm=Fin 2 relcl _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 method method NOUN NN Number=Sing 4 dobj _ _ 7 developed develop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 acl _ _ 8 by by ADP IN _ 7 agent _ _ 9 Shrestha Shrestha PROPN NNP Number=Sing 8 pobj _ _ 10 of of ADP IN _ 7 prep _ _ 11 simultaneously simultaneously ADV RB _ 12 advmod _ _ 12 representing represent VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 pcomp _ _ 13 formulas formula NOUN NNS Number=Plur 12 dobj _ _ 14 for for ADP IN _ 12 prep _ _ 15 obstructions obstruction NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 1 punct _ _ 17 along along ADP IN _ 1 prep _ _ 18 with with ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 21 amod _ _ 21 cocycle cocycle NOUN NN Number=Sing 18 pobj _ _ 22 and and CCONJ CC ConjType=Cmp 17 cc _ _ 23 cobounding cobounde VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 17 conj _ _ 24 conditions condition NOUN NNS Number=Plur 23 dobj _ _ 25 by by ADP IN _ 24 prep _ _ 26 suitably suitably ADV RB _ 27 advmod _ _ 27 labeled label VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 amod _ _ 28 polygons polygon NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 1 punct _ _ 30 giving give VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 0 ROOT _ _ 31 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 32 rigorous rigorous ADJ JJ Degree=Pos 33 amod _ _ 33 exposition exposition NOUN NN Number=Sing 30 dobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 the the DET DT Definite=Def|PronType=Art 38 det _ _ 36 previously previously ADV RB _ 37 advmod _ _ 37 heuristic heuristic ADJ JJ Degree=Pos 38 amod _ _ 38 method method NOUN NN Number=Sing 34 pobj _ SpaceAfter=No 39 ; ; PUNCT : _ 30 punct _ _ 40 and and CCONJ CC ConjType=Cmp 30 cc _ _ 41 deformations deformation NOUN NNS Number=Plur 30 conj _ _ 42 of of ADP IN _ 41 prep _ _ 43 pasting paste VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 44 compound _ _ 44 diagrams diagram NOUN NNS Number=Plur 42 pobj _ _ 45 in in ADP IN _ 50 prep _ _ 46 which which PRON WDT _ 45 pobj _ _ 47 some some DET DT _ 48 det _ _ 48 cells cell NOUN NNS Number=Plur 50 nsubjpass _ _ 49 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 50 auxpass _ _ 50 required require VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 44 relcl _ _ 51 to to PART TO _ 52 aux _ _ 52 be be AUX VB VerbForm=Inf 53 auxpass _ _ 53 deformed deform VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 50 xcomp _ _ 54 trivially trivially ADV RB _ 53 advmod _ SpaceAfter=No 55 . . PUNCT . PunctType=Peri 30 punct _ SpaceAfter=No # doc_id = 491 # sent_id = 1 # text = We study the monoidal closed category of symmetric multicategories, especially in relation with its cartesian structure and with sequential multicategories (whose arrows are sequences of concurrent arrows in a given category). 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 monoidal monoidal NOUN NN Number=Sing 5 nsubj _ _ 5 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 amod _ _ 6 category category NOUN NN Number=Sing 2 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 symmetric symmetric ADJ JJ Degree=Pos 9 amod _ _ 9 multicategories multicategorie NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 6 punct _ _ 11 especially especially ADV RB _ 12 advmod _ _ 12 in in ADP IN _ 6 prep _ _ 13 relation relation NOUN NN Number=Sing 12 pobj _ _ 14 with with ADP IN _ 13 prep _ _ 15 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 17 poss _ _ 16 cartesian cartesian ADJ JJ Degree=Pos 17 amod _ _ 17 structure structure NOUN NN Number=Sing 14 pobj _ _ 18 and and CCONJ CC ConjType=Cmp 12 cc _ _ 19 with with ADP IN _ 12 conj _ _ 20 sequential sequential ADJ JJ Degree=Pos 21 amod _ _ 21 multicategories multicategorie NOUN NNS Number=Plur 19 pobj _ _ 22 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 21 punct _ SpaceAfter=No 23 whose whose DET WP$ Poss=Yes 24 poss _ _ 24 arrows arrow NOUN NNS Number=Plur 25 nsubj _ _ 25 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 21 relcl _ _ 26 sequences sequence NOUN NNS Number=Plur 25 attr _ _ 27 of of ADP IN _ 26 prep _ _ 28 concurrent concurrent ADJ JJ Degree=Pos 29 amod _ _ 29 arrows arrow NOUN NNS Number=Plur 27 pobj _ _ 30 in in ADP IN _ 25 prep _ _ 31 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 32 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 33 amod _ _ 33 category category NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 34 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 2 punct _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Then we consider cartesian multicategories in a similar perspective and develop some peculiar items such as algebraic products. 1 Then then ADV RB PronType=Dem 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 cartesian cartesian ADJ JJ Degree=Pos 5 amod _ _ 5 multicategories multicategorie NOUN NNS Number=Plur 3 dobj _ _ 6 in in ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 similar similar ADJ JJ Degree=Pos 9 amod _ _ 9 perspective perspective NOUN NN Number=Sing 6 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 3 cc _ _ 11 develop develop VERB VB VerbForm=Inf 3 conj _ _ 12 some some DET DT _ 14 det _ _ 13 peculiar peculiar ADJ JJ Degree=Pos 14 amod _ _ 14 items item NOUN NNS Number=Plur 11 dobj _ _ 15 such such ADJ JJ Degree=Pos 16 amod _ _ 16 as as ADP IN _ 14 prep _ _ 17 algebraic algebraic ADJ JJ Degree=Pos 18 amod _ _ 18 products product NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = Several classical facts arise as a consequence of this analysis when some of the multicategories involved are representable. 1 Several several ADJ JJ Degree=Pos 3 amod _ _ 2 classical classical ADJ JJ Degree=Pos 3 amod _ _ 3 facts fact NOUN NNS Number=Plur 4 nsubj _ _ 4 arise arise VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 as as ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 consequence consequence NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 this this DET DT Number=Sing|PronType=Dem 10 det _ _ 10 analysis analysis NOUN NN Number=Sing 8 pobj _ _ 11 when when SCONJ WRB _ 17 advmod _ _ 12 some some PRON DT _ 17 nsubj _ _ 13 of of ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 multicategories multicategorie NOUN NNS Number=Plur 13 pobj _ _ 16 involved involve VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 acl _ _ 17 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 advcl _ _ 18 representable representable ADJ JJ Degree=Pos 17 acomp _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 492 # sent_id = 1 # text = In a paper of 1974, Brian Day employed a notion of factorization system in the context of enriched category theory, replacing the usual diagonal lifting property with a corresponding criterion phrased in terms of hom - objects. 1 In in ADP IN _ 9 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 1974 1974 NUM CD NumType=Card 4 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 9 punct _ _ 7 Brian Brian PROPN NNP Number=Sing 8 compound _ _ 8 Day Day PROPN NNP Number=Sing 9 nsubj _ _ 9 employed employ VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 notion notion NOUN NN Number=Sing 9 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 factorization factorization NOUN NN Number=Sing 14 compound _ _ 14 system system NOUN NN Number=Sing 12 pobj _ _ 15 in in ADP IN _ 9 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 context context NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 amod _ _ 20 category category NOUN NN Number=Sing 21 compound _ _ 21 theory theory NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 9 punct _ _ 23 replacing replace VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 advcl _ _ 24 the the DET DT Definite=Def|PronType=Art 28 det _ _ 25 usual usual ADJ JJ Degree=Pos 28 amod _ _ 26 diagonal diagonal ADJ JJ Degree=Pos 28 amod _ _ 27 lifting lifting NOUN NN Number=Sing 28 compound _ _ 28 property property NOUN NN Number=Sing 23 dobj _ _ 29 with with ADP IN _ 23 prep _ _ 30 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 31 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 32 amod _ _ 32 criterion criterion NOUN NN Number=Sing 29 pobj _ _ 33 phrased phrase VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 acl _ _ 34 in in ADP IN _ 33 prep _ _ 35 terms term NOUN NNS Number=Plur 34 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 hom hom NOUN NN Number=Sing 39 amod _ _ 38 - - PUNCT HYPH PunctType=Dash 39 punct _ _ 39 objects object NOUN NNS Number=Plur 36 pobj _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 2 # text = We set forth the basic theory of such enriched factorization systems. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 set set VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 3 forth forth ADP RP _ 2 prt _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 basic basic ADJ JJ Degree=Pos 6 amod _ _ 6 theory theory NOUN NN Number=Sing 2 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 such such ADJ JJ Degree=Pos 11 amod _ _ 9 enriched enriched ADJ JJ Degree=Pos 11 amod _ _ 10 factorization factorization NOUN NN Number=Sing 11 compound _ _ 11 systems system NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = In particular, we establish stability properties for enriched prefactorization systems, we examine the relation of enriched to ordinary factorization systems, and we provide general results for obtaining enriched factorizations by means of wide (co)intersections. 1 In in ADP IN _ 5 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 establish establish VERB VBP Tense=Pres|VerbForm=Fin 14 ccomp _ _ 6 stability stability NOUN NN Number=Sing 7 compound _ _ 7 properties property NOUN NNS Number=Plur 5 dobj _ _ 8 for for ADP IN _ 5 prep _ _ 9 enriched enriched ADJ JJ Degree=Pos 11 amod _ _ 10 prefactorization prefactorization NOUN NN Number=Sing 11 compound _ _ 11 systems system NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 14 punct _ _ 13 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 14 nsubj _ _ 14 examine examine VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 relation relation NOUN NN Number=Sing 14 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 pobj _ _ 19 to to ADP IN _ 18 prep _ _ 20 ordinary ordinary ADJ JJ Degree=Pos 22 amod _ _ 21 factorization factorization NOUN NN Number=Sing 22 compound _ _ 22 systems system NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 14 punct _ _ 24 and and CCONJ CC ConjType=Cmp 14 cc _ _ 25 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 26 nsubj _ _ 26 provide provide VERB VBP Tense=Pres|VerbForm=Fin 14 conj _ _ 27 general general ADJ JJ Degree=Pos 28 amod _ _ 28 results result NOUN NNS Number=Plur 26 dobj _ _ 29 for for ADP IN _ 28 prep _ _ 30 obtaining obtain VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 29 pcomp _ _ 31 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 amod _ _ 32 factorizations factorization NOUN NNS Number=Plur 30 dobj _ _ 33 by by ADP IN _ 30 prep _ _ 34 means mean NOUN NNS Number=Plur 33 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 wide wide ADJ JJ Degree=Pos 38 amod _ _ 37 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 38 punct _ SpaceAfter=No 38 co)intersections co)intersection NOUN NNS Number=Plur 35 pobj _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 26 punct _ SpaceAfter=No # sent_id = 4 # text = As a special case, we prove results on the existence of enriched factorization systems involving enriched strong monomorphisms or strong epimorphisms. 1 As as ADP IN _ 7 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 special special ADJ JJ Degree=Pos 4 amod _ _ 4 case case NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 results result NOUN NNS Number=Plur 7 dobj _ _ 9 on on ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 existence existence NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 amod _ _ 14 factorization factorization NOUN NN Number=Sing 15 compound _ _ 15 systems system NOUN NNS Number=Plur 12 pobj _ _ 16 involving involve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 acl _ _ 17 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 amod _ _ 18 strong strong ADJ JJ Degree=Pos 19 amod _ _ 19 monomorphisms monomorphism NOUN NNS Number=Plur 16 dobj _ _ 20 or or CCONJ CC ConjType=Cmp 19 cc _ _ 21 strong strong ADJ JJ Degree=Pos 22 amod _ _ 22 epimorphisms epimorphism NOUN NNS Number=Plur 19 conj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # doc_id = 493 # sent_id = 1 # text = Any functor from the category of $ C* $ - algebras to the category of locales that assigns to each commutative $ C* $ - algebra its Gelfand spectrum must be trivial on algebras of $ n $ - by - $ n $ matrices for $ n geq 3 $ . 1 Any any DET DT _ 2 det _ _ 2 functor functor NOUN NN Number=Sing 27 nsubj _ _ 3 from from ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 3 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 $ C* $ $ c* $ SYM $ _ 9 compound _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 algebras algebra NOUN NNS Number=Plur 6 pobj _ _ 10 to to ADP IN _ 5 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 category category NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 locales locale NOUN NNS Number=Plur 13 pobj _ _ 15 that that PRON WDT PronType=Rel 16 nsubj _ _ 16 assigns assign VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 relcl _ _ 17 to to ADP IN _ 16 prep _ _ 18 each each DET DT _ 19 det _ _ 19 commutative commutative ADJ JJ Degree=Pos 17 pobj _ _ 20 $ C* $ $ c* $ SYM $ _ 22 nummod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 algebra algebra NOUN NN Number=Sing 2 appos _ _ 23 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 25 poss _ _ 24 Gelfand Gelfand PROPN NNP Number=Sing 25 compound _ _ 25 spectrum spectrum NOUN NN Number=Sing 2 appos _ _ 26 must must AUX MD VerbForm=Fin 27 aux _ _ 27 be be AUX VB VerbForm=Inf 0 ROOT _ _ 28 trivial trivial ADJ JJ Degree=Pos 27 acomp _ _ 29 on on ADP IN _ 28 prep _ _ 30 algebras algebra NOUN NNS Number=Plur 29 pobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 $ n $ $ n $ SYM $ _ 37 nmod _ _ 33 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 34 by by ADP IN _ 32 prep _ _ 35 - - PUNCT HYPH PunctType=Dash 34 punct _ _ 36 $ n $ $ n $ SYM $ _ 34 pobj _ _ 37 matrices matrix NOUN NNS Number=Plur 31 pobj _ _ 38 for for ADP IN _ 37 prep _ _ 39 $ n geq 3 $ $ n geq 3 $ SYM $ _ 38 pobj _ _ 40 . . PUNCT . PunctType=Peri 27 punct _ SpaceAfter=No # sent_id = 2 # text = This obstruction also applies to other spectra such as those named after Zariski, Stone, and Pierce. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 obstruction obstruction NOUN NN Number=Sing 4 nsubj _ _ 3 also also ADV RB _ 4 advmod _ _ 4 applies apply VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 to to ADP IN _ 4 prep _ _ 6 other other ADJ JJ Degree=Pos 7 amod _ _ 7 spectra spectra NOUN NN Number=Sing 5 pobj _ _ 8 such such ADJ JJ Degree=Pos 9 amod _ _ 9 as as ADP IN _ 7 prep _ _ 10 those those PRON DT Number=Plur|PronType=Dem 9 pobj _ _ 11 named name VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 acl _ _ 12 after after ADP IN _ 11 prep _ _ 13 Zariski Zariski PROPN NNP Number=Sing 12 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 13 punct _ _ 15 Stone Stone PROPN NNP Number=Sing 13 conj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 and and CCONJ CC ConjType=Cmp 15 cc _ _ 18 Pierce Pierce PROPN NNP Number=Sing 15 conj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = We extend these no - go results to functors with values in (ringed) topological spaces, (ringed) toposes, schemes, and quantales. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 extend extend VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 these these DET DT Number=Plur|PronType=Dem 7 det _ _ 4 no no DET DT _ 6 det _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 go go VERB VB VerbForm=Inf 7 compound _ _ 7 results result NOUN NNS Number=Plur 2 dobj _ _ 8 to to ADP IN _ 2 prep _ _ 9 functors functor NOUN NNS Number=Plur 8 pobj _ _ 10 with with ADP IN _ 9 prep _ _ 11 values value NOUN NNS Number=Plur 10 pobj _ _ 12 in in ADP IN _ 2 prep _ _ 13 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 17 punct _ SpaceAfter=No 14 ringed ringed ADJ JJ Degree=Pos 17 amod _ SpaceAfter=No 15 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 17 punct _ _ 16 topological topological ADJ JJ Degree=Pos 17 amod _ _ 17 spaces space NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 17 punct _ SpaceAfter=No 20 ringed ring VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 acl _ SpaceAfter=No 21 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 20 punct _ _ 22 toposes topos NOUN NNS Number=Plur 17 conj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 schemes scheme NOUN NNS Number=Plur 22 conj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 and and CCONJ CC ConjType=Cmp 24 cc _ _ 27 quantales quantale NOUN NNS Number=Plur 24 conj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = The possibility of spectra in other categories is discussed. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 possibility possibility NOUN NN Number=Sing 9 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 spectra spectra PROPN NNP Number=Sing 3 pobj _ _ 5 in in ADP IN _ 4 prep _ _ 6 other other ADJ JJ Degree=Pos 7 amod _ _ 7 categories category NOUN NNS Number=Plur 5 pobj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 discussed discuss VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 494 # sent_id = 1 # text = We introduce a category that represents varying risk as well as ambiguity. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 category category NOUN NN Number=Sing 2 dobj _ _ 5 that that PRON WDT PronType=Rel 6 nsubj _ _ 6 represents represent VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 relcl _ _ 7 varying vary VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 amod _ _ 8 risk risk NOUN NN Number=Sing 6 dobj _ _ 9 as as ADV RB _ 11 advmod _ _ 10 well well ADV RB Degree=Pos 11 advmod _ _ 11 as as ADP IN _ 8 cc _ _ 12 ambiguity ambiguity NOUN NN Number=Sing 8 conj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We give a generalized conditional expectation as a presheaf for this category, which not only works as a traditional conditional expectation given a $ sigma $ - field but also is compatible with change of measure. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 4 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 amod _ _ 5 conditional conditional ADJ JJ Degree=Pos 6 amod _ _ 6 expectation expectation NOUN NN Number=Sing 2 dobj _ _ 7 as as ADP IN _ 2 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 presheaf presheaf NOUN NN Number=Sing 7 pobj _ _ 10 for for ADP IN _ 9 prep _ _ 11 this this DET DT Number=Sing|PronType=Dem 12 det _ _ 12 category category NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 which which PRON WDT _ 17 nsubj _ _ 15 not not PART RB Polarity=Neg 17 preconj _ _ 16 only only ADV RB _ 15 advmod _ _ 17 works work VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 relcl _ _ 18 as as ADP IN _ 17 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 20 traditional traditional ADJ JJ Degree=Pos 22 amod _ _ 21 conditional conditional ADJ JJ Degree=Pos 22 amod _ _ 22 expectation expectation NOUN NN Number=Sing 18 pobj _ _ 23 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 prep _ _ 24 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 25 $ sigma $ $ sigma $ SYM $ _ 27 nmod _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 field field NOUN NN Number=Sing 23 pobj _ _ 28 but but CCONJ CC ConjType=Cmp 17 cc _ _ 29 also also ADV RB _ 30 advmod _ _ 30 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 conj _ _ 31 compatible compatible ADJ JJ Degree=Pos 30 acomp _ _ 32 with with ADP IN _ 31 prep _ _ 33 change change NOUN NN Number=Sing 32 pobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 measure measure NOUN NN Number=Sing 34 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Then, we reformulate dynamic monetary value measures as a presheaf for the category. 1 Then then ADV RB PronType=Dem 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 reformulate reformulate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 dynamic dynamic ADJ JJ Degree=Pos 8 amod _ _ 6 monetary monetary ADJ JJ Degree=Pos 7 amod _ _ 7 value value NOUN NN Number=Sing 8 compound _ _ 8 measures measure NOUN NNS Number=Plur 4 dobj _ _ 9 as as ADP IN _ 4 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 presheaf presheaf NOUN NN Number=Sing 9 pobj _ _ 12 for for ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 category category NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = We show how some axioms of dynamic monetary value measures in the classical setting are deduced as theorems in the new formulation, which is evidence that the axioms are correct. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 how how SCONJ WRB _ 16 advmod _ _ 4 some some DET DT _ 5 det _ _ 5 axioms axiom NOUN NNS Number=Plur 16 nsubjpass _ _ 6 of of ADP IN _ 5 prep _ _ 7 dynamic dynamic ADJ JJ Degree=Pos 10 amod _ _ 8 monetary monetary ADJ JJ Degree=Pos 9 amod _ _ 9 value value NOUN NN Number=Sing 10 compound _ _ 10 measures measure NOUN NNS Number=Plur 6 pobj _ _ 11 in in ADP IN _ 5 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 classical classical ADJ JJ Degree=Pos 14 amod _ _ 14 setting setting NOUN NN Number=Sing 11 pobj _ _ 15 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 16 auxpass _ _ 16 deduced deduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 17 as as ADP IN _ 16 prep _ _ 18 theorems theorem NOUN NNS Number=Plur 17 pobj _ _ 19 in in ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 new new ADJ JJ Degree=Pos 22 amod _ _ 22 formulation formulation NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 which which PRON WDT _ 25 nsubj _ _ 25 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 relcl _ _ 26 evidence evidence NOUN NN Number=Sing 25 attr _ _ 27 that that SCONJ IN _ 30 mark _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 axioms axiom NOUN NNS Number=Plur 30 nsubj _ _ 30 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 26 acl _ _ 31 correct correct ADJ JJ Degree=Pos 30 acomp _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = Finally, we point out the possibility of giving a theoretical criteria with which we can pick up appropriate sets of axioms required for monetary value measures to be good, using a topology - as - axioms paradigm. 1 Finally finally ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 point point VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 out out ADP RP _ 4 prt _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 possibility possibility NOUN NN Number=Sing 4 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 giving give VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 pcomp _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 theoretical theoretical ADJ JJ Degree=Pos 12 amod _ _ 12 criteria criterion NOUN NNS Number=Plur 9 dobj _ _ 13 with with ADP IN _ 17 prep _ _ 14 which which PRON WDT _ 13 pobj _ _ 15 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 17 nsubj _ _ 16 can can AUX MD VerbForm=Fin 17 aux _ _ 17 pick pick VERB VB VerbForm=Inf 12 relcl _ _ 18 up up ADP RP _ 17 prt _ _ 19 appropriate appropriate ADJ JJ Degree=Pos 20 amod _ _ 20 sets set NOUN NNS Number=Plur 17 dobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 axioms axiom NOUN NNS Number=Plur 21 pobj _ _ 23 required require VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 acl _ _ 24 for for ADP IN _ 23 prep _ _ 25 monetary monetary ADJ JJ Degree=Pos 26 amod _ _ 26 value value NOUN NN Number=Sing 27 compound _ _ 27 measures measure NOUN NNS Number=Plur 24 pobj _ _ 28 to to PART TO _ 29 aux _ _ 29 be be AUX VB VerbForm=Inf 20 relcl _ _ 30 good good ADJ JJ Degree=Pos 29 acomp _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 17 punct _ _ 32 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 advcl _ _ 33 a a DET DT Definite=Ind|PronType=Art 39 det _ _ 34 topology topology NOUN NN Number=Sing 39 nmod _ _ 35 - - PUNCT HYPH PunctType=Dash 34 punct _ _ 36 as as ADP IN _ 34 prep _ _ 37 - - PUNCT HYPH PunctType=Dash 36 punct _ _ 38 axioms axiom NOUN NNS Number=Plur 36 pobj _ _ 39 paradigm paradigm NOUN NN Number=Sing 32 dobj _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 495 # sent_id = 1 # text = The coordinate projective line over a field is seen as a groupoid with a further `projection' structure. 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 coordinate coordinate NOUN NN Number=Sing 4 nmod _ _ 3 projective projective ADJ JJ Degree=Pos 4 amod _ _ 4 line line NOUN NN Number=Sing 9 nsubjpass _ _ 5 over over ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 field field NOUN NN Number=Sing 5 pobj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 seen see VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 as as ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 groupoid groupoid NOUN NN Number=Sing 10 pobj _ _ 13 with with ADP IN _ 9 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 15 further further ADJ JJ Degree=Pos 19 amod _ _ 16 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 19 punct _ SpaceAfter=No 17 projection projection NOUN NN Number=Sing 19 nmod _ SpaceAfter=No 18 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 17 case _ _ 19 structure structure NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 2 # text = We investigate conversely to what extent such an, abstractly given, groupoid may be coordinatized by a suitable field constructed out of the geometry. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 investigate investigate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 conversely conversely ADV RB _ 2 advmod _ _ 4 to to ADP IN _ 16 prep _ _ 5 what what DET WDT _ 6 det _ _ 6 extent extent NOUN NN Number=Sing 4 pcomp _ _ 7 such such DET PDT _ 8 amod _ _ 8 an an PRON DT Definite=Ind|PronType=Art 6 dobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 16 punct _ _ 10 abstractly abstractly ADV RB _ 11 advmod _ _ 11 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 advcl _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 16 punct _ _ 13 groupoid groupoid NOUN NN Number=Sing 16 nsubjpass _ _ 14 may may AUX MD VerbForm=Fin 16 aux _ _ 15 be be AUX VB VerbForm=Inf 16 auxpass _ _ 16 coordinatized coordinatize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 advcl _ _ 17 by by ADP IN _ 16 agent _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 suitable suitable ADJ JJ Degree=Pos 20 amod _ _ 20 field field NOUN NN Number=Sing 17 pobj _ _ 21 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 acl _ _ 22 out out ADP IN _ 21 prep _ _ 23 of of ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 geometry geometry NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 496 # sent_id = 1 # text = We give a new characterization of relative entropy, also known as the Kullback - Leibler divergence. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 new new ADJ JJ Degree=Pos 5 amod _ _ 5 characterization characterization NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 relative relative ADJ JJ Degree=Pos 8 amod _ _ 8 entropy entropy NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 2 punct _ _ 10 also also ADV RB _ 11 advmod _ _ 11 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 advcl _ _ 12 as as ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 17 det _ _ 14 Kullback Kullback PROPN NNP Number=Sing 16 compound _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 Leibler Leibler PROPN NNP Number=Sing 17 compound _ _ 17 divergence divergence NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We use a number of interesting categories related to probability theory. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 number number NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 interesting interesting ADJ JJ Degree=Pos 7 amod _ _ 7 categories category NOUN NNS Number=Plur 5 pobj _ _ 8 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 acl _ _ 9 to to ADP IN _ 8 prep _ _ 10 probability probability NOUN NN Number=Sing 11 compound _ _ 11 theory theory NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = In particular, we consider a category FinStat where an object is a finite set equipped with a probability distribution, while a morphism is a measure - preserving function $ f maps X to Y $ together with a stochastic right inverse $ s maps Y to X $ . 1 In in ADP IN _ 5 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 category category NOUN NN Number=Sing 8 nsubj _ _ 8 FinStat FinStat PROPN NNP Number=Sing 5 ccomp _ _ 9 where where SCONJ WRB _ 12 advmod _ _ 10 an an DET DT Definite=Ind|PronType=Art 11 det _ _ 11 object object NOUN NN Number=Sing 12 nsubj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 relcl _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 finite finite NOUN NN Number=Sing 15 amod _ _ 15 set set VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 attr _ _ 16 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 acl _ _ 17 with with ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 probability probability NOUN NN Number=Sing 20 compound _ _ 20 distribution distribution NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 5 punct _ _ 22 while while SCONJ IN _ 25 mark _ _ 23 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 24 morphism morphism NOUN NN Number=Sing 25 nsubj _ _ 25 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 advcl _ _ 26 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 27 measure measure NOUN NN Number=Sing 29 npadvmod _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 preserving preserve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 30 amod _ _ 30 function function NOUN NN Number=Sing 25 attr _ _ 31 $ f maps X to Y $ $ f maps x to y $ SYM $ _ 32 nmod _ _ 32 together together ADV RB _ 25 advmod _ _ 33 with with ADP IN _ 25 prep _ _ 34 a a DET DT Definite=Ind|PronType=Art 37 det _ _ 35 stochastic stochastic ADJ JJ Degree=Pos 37 amod _ _ 36 right right ADV RB _ 37 advmod _ _ 37 inverse inverse NOUN NN Number=Sing 33 pobj _ _ 38 $ s maps Y to X $ $ s maps y to x $ SYM $ _ 33 pobj _ _ 39 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = The function $ f $ can be thought of as a measurement process, while $ s $ provides a hypothesis about the state of the measured system given the result of a measurement. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 function function NOUN NN Number=Sing 6 nsubjpass _ _ 3 $ f $ $ f $ SYM $ _ 2 appos _ _ 4 can can AUX MD VerbForm=Fin 6 aux _ _ 5 be be AUX VB VerbForm=Inf 6 auxpass _ _ 6 thought think VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 of of ADP IN _ 6 prep _ _ 8 as as ADP IN _ 6 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 measurement measurement NOUN NN Number=Sing 11 compound _ _ 11 process process NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 6 punct _ _ 13 while while SCONJ IN _ 15 mark _ _ 14 $ s $ $ s $ SYM $ _ 15 nsubj _ _ 15 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 advcl _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 hypothesis hypothesis NOUN NN Number=Sing 15 dobj _ _ 18 about about ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 state state NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 measured measure VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 24 system system NOUN NN Number=Sing 21 pobj _ _ 25 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 result result NOUN NN Number=Sing 25 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 30 measurement measurement NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 5 # text = Given this data we can define the entropy of the probability distribution on $ X $ relative to the `prior' given by pushing the probability distribution on $ Y $ forwards along $ s $ . 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 data datum NOUN NNS Number=Plur 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 5 can can AUX MD VerbForm=Fin 6 aux _ _ 6 define define VERB VB VerbForm=Inf 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 entropy entropy NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 probability probability NOUN NN Number=Sing 12 compound _ _ 12 distribution distribution NOUN NN Number=Sing 9 pobj _ _ 13 on on ADP IN _ 12 prep _ _ 14 $ X $ $ x $ SYM $ _ 13 pobj _ _ 15 relative relative ADJ JJ Degree=Pos 13 pobj _ _ 16 to to ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 19 punct _ SpaceAfter=No 19 prior prior ADV RB _ 16 pobj _ SpaceAfter=No 20 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 19 punct _ _ 21 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 acl _ _ 22 by by ADP IN _ 21 agent _ _ 23 pushing push VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 pcomp _ _ 24 the the DET DT Definite=Def|PronType=Art 26 det _ _ 25 probability probability NOUN NN Number=Sing 26 compound _ _ 26 distribution distribution NOUN NN Number=Sing 23 dobj _ _ 27 on on ADP IN _ 23 prep _ _ 28 $ Y $ $ y $ SYM $ _ 27 pobj _ _ 29 forwards forward NOUN NNS Number=Plur 23 advmod _ _ 30 along along ADP IN _ 23 prep _ _ 31 $ s $ $ s $ SYM $ _ 30 pobj _ _ 32 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 6 # text = We say that $ s $ is `optimal' if these distributions agree. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 say say VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 5 mark _ _ 4 $ s $ $ s $ SYM $ _ 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 6 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 7 punct _ SpaceAfter=No 7 optimal optimal ADJ JJ Degree=Pos 5 acomp _ SpaceAfter=No 8 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 5 punct _ _ 9 if if SCONJ IN _ 12 mark _ _ 10 these these DET DT Number=Plur|PronType=Dem 11 det _ _ 11 distributions distribution NOUN NNS Number=Plur 12 nsubj _ _ 12 agree agree VERB VBP Tense=Pres|VerbForm=Fin 5 advcl _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 7 # text = We show that any convex linear, lower semicontinuous functor from $ FinStat $ to the additive monoid $ [0, infty] $ which vanishes when $ s $ is optimal must be a scalar multiple of this relative entropy. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 10 mark _ _ 4 any any DET DT _ 6 det _ _ 5 convex convex ADJ JJ Degree=Pos 6 amod _ _ 6 linear linear NOUN NN Number=Sing 10 nsubj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 10 punct _ _ 8 lower low ADJ JJR Degree=Cmp 10 amod _ _ 9 semicontinuous semicontinuous ADJ JJ Degree=Pos 10 amod _ _ 10 functor functor NOUN NN Number=Sing 2 ccomp _ _ 11 from from ADP IN _ 10 prep _ _ 12 $ FinStat $ $ finstat $ SYM $ _ 11 pobj _ _ 13 to to ADP IN _ 11 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 additive additive ADJ JJ Degree=Pos 16 amod _ _ 16 monoid monoid NOUN NN Number=Sing 13 pobj _ _ 17 $ [0, infty] $ $ [0, infty] $ PROPN NNP Number=Sing 10 prep _ _ 18 which which DET WDT _ 19 det _ _ 19 vanishes vanishe NOUN NNS Number=Plur 10 relcl _ _ 20 when when SCONJ WRB _ 21 advmod _ _ 21 $ s $ $ s $ SYM $ _ 22 nsubj _ _ 22 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 23 optimal optimal ADJ JJ Degree=Pos 22 acomp _ _ 24 must must AUX MD VerbForm=Fin 25 aux _ _ 25 be be AUX VB VerbForm=Inf 2 ccomp _ _ 26 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 27 scalar scalar ADJ JJ Degree=Pos 28 amod _ _ 28 multiple multiple NOUN NN Number=Sing 25 attr _ _ 29 of of ADP IN _ 28 prep _ _ 30 this this DET DT Number=Sing|PronType=Dem 32 det _ _ 31 relative relative ADJ JJ Degree=Pos 32 amod _ _ 32 entropy entropy NOUN NN Number=Sing 29 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 8 # text = Our proof is independent of all earlier characterizations, but inspired by the work of Petz. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 proof proof NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 independent independent ADJ JJ Degree=Pos 3 acomp _ _ 5 of of ADP IN _ 4 prep _ _ 6 all all DET DT _ 8 det _ _ 7 earlier early ADJ JJR Degree=Cmp 8 amod _ _ 8 characterizations characterization NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 3 punct _ _ 10 but but CCONJ CC ConjType=Cmp 3 cc _ _ 11 inspired inspire VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 conj _ _ 12 by by ADP IN _ 11 agent _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 work work NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 Petz Petz PROPN NNP Number=Sing 15 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 497 # sent_id = 1 # text = A notion of central importance in categorical topology is that of topological functor. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 notion notion NOUN NN Number=Sing 9 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 central central ADJ JJ Degree=Pos 5 amod _ _ 5 importance importance NOUN NN Number=Sing 3 pobj _ _ 6 in in ADP IN _ 5 prep _ _ 7 categorical categorical ADJ JJ Degree=Pos 8 amod _ _ 8 topology topology NOUN NN Number=Sing 6 pobj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 that that PRON DT Number=Sing|PronType=Dem 9 attr _ _ 11 of of ADP IN _ 10 prep _ _ 12 topological topological ADJ JJ Degree=Pos 13 amod _ _ 13 functor functor NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 2 # text = A faithful functor $ cal E to cal B $ is called topological if it admits cartesian liftings of all (possibly large) families of arrows; the basic example is the forgetful functor $ Top to Set $ . 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 faithful faithful ADJ JJ Degree=Pos 3 amod _ _ 3 functor functor NOUN NN Number=Sing 6 nsubjpass _ _ 4 $ cal E to cal B $ $ cal e to cal b $ SYM $ _ 3 appos _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 6 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 ccomp _ _ 7 topological topological ADJ JJ Degree=Pos 6 oprd _ _ 8 if if SCONJ IN _ 10 mark _ _ 9 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 10 nsubj _ _ 10 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 advcl _ _ 11 cartesian cartesian ADJ JJ Degree=Pos 12 amod _ _ 12 liftings lifting NOUN NNS Number=Plur 10 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 all all DET DT _ 19 det _ _ 15 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 19 punct _ SpaceAfter=No 16 possibly possibly ADV RB _ 17 advmod _ _ 17 large large ADJ JJ Degree=Pos 19 amod _ SpaceAfter=No 18 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 19 punct _ _ 19 families family NOUN NNS Number=Plur 13 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 arrows arrow NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 22 ; ; PUNCT : _ 26 punct _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 basic basic ADJ JJ Degree=Pos 25 amod _ _ 25 example example NOUN NN Number=Sing 26 nsubj _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 27 the the DET DT Definite=Def|PronType=Art 29 det _ _ 28 forgetful forgetful ADJ JJ Degree=Pos 29 amod _ _ 29 functor functor NOUN NN Number=Sing 26 attr _ _ 30 $ Top to Set $ $ top to set $ SYM $ _ 29 appos _ _ 31 . . PUNCT . PunctType=Peri 26 punct _ SpaceAfter=No # sent_id = 3 # text = A topological functor $ cal E to 1 $ is the same thing as a (large) complete preorder, and the general topological functor $ cal E to cal B $ is intuitively thought of as a "complete preorder relative to $ cal B $ ". 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 topological topological ADJ JJ Degree=Pos 3 amod _ _ 3 functor functor NOUN NN Number=Sing 5 nsubj _ _ 4 $ cal E to 1 $ $ cal e to 1 $ SYM $ _ 3 appos _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 same same ADJ JJ Degree=Pos 8 amod _ _ 8 thing thing NOUN NN Number=Sing 5 attr _ _ 9 as as ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 11 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 15 punct _ SpaceAfter=No 12 large large ADJ JJ Degree=Pos 15 amod _ SpaceAfter=No 13 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 15 punct _ _ 14 complete complete ADJ JJ Degree=Pos 15 amod _ _ 15 preorder preorder NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 5 punct _ _ 17 and and CCONJ CC ConjType=Cmp 5 cc _ _ 18 the the DET DT Definite=Def|PronType=Art 21 det _ _ 19 general general ADJ JJ Degree=Pos 21 amod _ _ 20 topological topological ADJ JJ Degree=Pos 21 amod _ _ 21 functor functor NOUN NN Number=Sing 25 nsubjpass _ _ 22 $ cal E to cal B $ $ cal e to cal b $ SYM $ _ 21 appos _ _ 23 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 25 auxpass _ _ 24 intuitively intuitively ADV RB _ 25 advmod _ _ 25 thought think VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 conj _ _ 26 of of ADP IN _ 25 prep _ _ 27 as as ADP IN _ 25 prep _ _ 28 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 29 " " PUNCT `` PunctSide=Ini|PunctType=Quot 31 punct _ SpaceAfter=No 30 complete complete ADJ JJ Degree=Pos 31 amod _ _ 31 preorder preorder NOUN NN Number=Sing 27 pobj _ _ 32 relative relative ADJ JJ Degree=Pos 31 amod _ _ 33 to to ADP IN _ 32 prep _ _ 34 $ cal B $ $ cal b $ SYM $ _ 33 pobj _ _ 35 " " PUNCT '' PunctSide=Fin|PunctType=Quot 25 punct _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = We make this intuition precise by considering an enrichment base $ cal Q_cal B $ such that $ cal Q_cal B $ - enriched categories are faithful functors into $ cal B $ , and show that, in this context, a faithful functor is topological if and only if it is total (or totally cocomplete) in the sense of Street - Walters. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 make make VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 4 intuition intuition NOUN NN Number=Sing 5 nsubj _ _ 5 precise precise ADJ JJ Degree=Pos 2 ccomp _ _ 6 by by ADP IN _ 2 prep _ _ 7 considering consider VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 pcomp _ _ 8 an an DET DT Definite=Ind|PronType=Art 10 det _ _ 9 enrichment enrichment NOUN NN Number=Sing 10 compound _ _ 10 base base NOUN NN Number=Sing 7 dobj _ _ 11 $ cal Q_cal B $ $ cal q_cal b $ SYM $ _ 10 nmod _ _ 12 such such ADJ JJ Degree=Pos 17 amod _ _ 13 that that SCONJ IN _ 17 det _ _ 14 $ cal Q_cal B $ $ cal q_cal b $ SYM $ _ 16 advmod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 17 categories category NOUN NNS Number=Plur 18 nsubj _ _ 18 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 19 faithful faithful ADJ JJ Degree=Pos 20 amod _ _ 20 functors functor NOUN NNS Number=Plur 18 attr _ _ 21 into into ADP IN _ 18 prep _ _ 22 $ cal B $ $ cal b $ SYM $ _ 21 pobj _ _ 23 , , PUNCT , PunctType=Comm 18 punct _ _ 24 and and CCONJ CC ConjType=Cmp 18 cc _ _ 25 show show VERB VB VerbForm=Inf 18 conj _ _ 26 that that SCONJ IN _ 35 mark _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 35 punct _ _ 28 in in ADP IN _ 35 prep _ _ 29 this this DET DT Number=Sing|PronType=Dem 30 det _ _ 30 context context NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 35 punct _ _ 32 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 33 faithful faithful ADJ JJ Degree=Pos 34 amod _ _ 34 functor functor NOUN NN Number=Sing 35 nsubj _ _ 35 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 25 ccomp _ _ 36 topological topological ADJ JJ Degree=Pos 35 acomp _ _ 37 if if SCONJ IN _ 42 mark _ _ 38 and and CCONJ CC ConjType=Cmp 42 cc _ _ 39 only only ADV RB _ 42 advmod _ _ 40 if if SCONJ IN _ 42 mark _ _ 41 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 42 nsubj _ _ 42 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 35 advcl _ _ 43 total total ADJ JJ Degree=Pos 42 acomp _ _ 44 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 43 punct _ SpaceAfter=No 45 or or CCONJ CC ConjType=Cmp 43 cc _ _ 46 totally totally ADV RB _ 47 advmod _ _ 47 cocomplete cocomplete ADJ JJ Degree=Pos 43 conj _ SpaceAfter=No 48 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 42 punct _ _ 49 in in ADP IN _ 42 prep _ _ 50 the the DET DT Definite=Def|PronType=Art 51 det _ _ 51 sense sense NOUN NN Number=Sing 49 pobj _ _ 52 of of ADP IN _ 51 prep _ _ 53 Street Street PROPN NNP Number=Sing 55 compound _ _ 54 - - PUNCT HYPH PunctType=Dash 55 punct _ _ 55 Walters Walters PROPN NNP Number=Sing 52 pobj _ SpaceAfter=No 56 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = We also consider the MacNeille completion of a faithful functor to a topological one, first described by Herrlich, and show that it may be obtained as an instance of Isbell's generalised notion of MacNeille completion for enriched categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 MacNeille MacNeille PROPN NNP Number=Sing 6 compound _ _ 6 completion completion NOUN NN Number=Sing 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 faithful faithful ADJ JJ Degree=Pos 10 amod _ _ 10 functor functor NOUN NN Number=Sing 7 pobj _ _ 11 to to ADP IN _ 3 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 topological topological ADJ JJ Degree=Pos 14 amod _ _ 14 one one NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 3 punct _ _ 16 first first ADV RB _ 17 advmod _ _ 17 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 advcl _ _ 18 by by ADP IN _ 17 agent _ _ 19 Herrlich Herrlich PROPN NNP Number=Sing 18 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 17 punct _ _ 21 and and CCONJ CC ConjType=Cmp 17 cc _ _ 22 show show VERB VBP Tense=Pres|VerbForm=Fin 17 conj _ _ 23 that that SCONJ IN _ 27 mark _ _ 24 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 27 nsubjpass _ _ 25 may may AUX MD VerbForm=Fin 27 aux _ _ 26 be be AUX VB VerbForm=Inf 27 auxpass _ _ 27 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 ccomp _ _ 28 as as ADP IN _ 27 prep _ _ 29 an an DET DT Definite=Ind|PronType=Art 30 det _ _ 30 instance instance NOUN NN Number=Sing 28 pobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 Isbell Isbell PROPN NNP Number=Sing 35 poss _ SpaceAfter=No 33 's 's PART POS _ 32 case _ _ 34 generalised generalised ADJ JJ Degree=Pos 35 amod _ _ 35 notion notion NOUN NN Number=Sing 31 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 MacNeille MacNeille PROPN NNP Number=Sing 38 compound _ _ 38 completion completion NOUN NN Number=Sing 36 pobj _ _ 39 for for ADP IN _ 38 prep _ _ 40 enriched enriched ADJ JJ Degree=Pos 41 amod _ _ 41 categories category NOUN NNS Number=Plur 39 pobj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 498 # sent_id = 1 # text = We discuss various concepts of $ infty $ - homotopies, as well as the relations between them (focussing on the Leibniz type). 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 discuss discuss VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 various various ADJ JJ Degree=Pos 4 amod _ _ 4 concepts concept NOUN NNS Number=Plur 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 $ infty $ $ infty $ SYM $ _ 8 compound _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 homotopies homotopie NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 4 punct _ _ 10 as as ADV RB _ 12 advmod _ _ 11 well well ADV RB Degree=Pos 12 advmod _ _ 12 as as ADP IN _ 4 cc _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 relations relation NOUN NNS Number=Plur 4 conj _ _ 15 between between ADP IN _ 14 prep _ _ 16 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 15 pobj _ _ 17 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 18 punct _ SpaceAfter=No 18 focussing focusse VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 acl _ _ 19 on on ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 Leibniz Leibniz PROPN NNP Number=Sing 22 compound _ _ 22 type type NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 23 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 18 punct _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = In particular $ infty $ - $ n $ - homotopies appear as the $ n $ - simplices of the nerve of a complete Lie $ {infty} $ - algebra. 1 In in ADP IN _ 8 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ _ 3 $ infty $ $ infty $ SYM $ _ 7 nmod _ _ 4 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 5 $ n $ $ n $ SYM $ _ 7 nummod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 homotopies homotopie NOUN NNS Number=Plur 8 nsubj _ _ 8 appear appear VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 as as ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 13 det _ _ 11 $ n $ $ n $ SYM $ _ 13 quantmod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 simplices simplice NOUN NNS Number=Plur 9 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 nerve nerve NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 complete complete ADJ JJ Degree=Pos 20 amod _ _ 20 Lie lie NOUN NN Number=Sing 17 pobj _ _ 21 $ {infty} $ $ {infty} $ SYM $ _ 23 compound _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 algebra algebra NOUN NN Number=Sing 20 appos _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 3 # text = In the nilpotent case, this nerve is known to be a Kan complex. 1 In in ADP IN _ 9 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 nilpotent nilpotent ADJ JJ Degree=Pos 4 amod _ _ 4 case case NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 9 punct _ _ 6 this this DET DT Number=Sing|PronType=Dem 7 det _ _ 7 nerve nerve NOUN NN Number=Sing 9 nsubjpass _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 to to PART TO _ 11 aux _ _ 11 be be AUX VB VerbForm=Inf 9 xcomp _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 Kan Kan PROPN NNP Number=Sing 14 compound _ _ 14 complex complex NOUN NN Number=Sing 11 attr _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 4 # text = We argue that there is a quasi - category of $ infty $ - algebras and show that for truncated $ infty $ - algebras, that is, categorified algebras, this $ infty $ - categorical structure projects to a strict 2 - categorical one. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 argue argue VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 5 mark _ _ 4 there there PRON EX _ 5 expl _ _ 5 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 quasi quasi NOUN NN Number=Sing 5 attr _ _ 8 - - NOUN NN Number=Sing 5 attr _ _ 9 category category NOUN NN Number=Sing 5 attr _ _ 10 of of ADP IN _ 9 prep _ _ 11 $ infty $ $ infty $ SYM $ _ 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 algebras algebra NOUN NNS Number=Plur 10 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 5 cc _ _ 15 show show VERB VB VerbForm=Inf 5 conj _ _ 16 that that SCONJ IN _ 34 mark _ _ 17 for for ADP IN _ 34 prep _ _ 18 truncated truncate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 amod _ _ 19 $ infty $ $ infty $ SYM $ _ 21 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 algebras algebra NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 34 punct _ _ 23 that that ADV RB _ 24 advmod _ _ 24 is is ADV RB _ 27 advmod _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 27 punct _ _ 26 categorified categorifie VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 amod _ _ 27 algebras algebra NOUN NNS Number=Plur 34 dep _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 34 punct _ _ 29 this this DET DT Number=Sing|PronType=Dem 34 det _ _ 30 $ infty $ $ infty $ SYM $ _ 32 advmod _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 categorical categorical ADJ JJ Degree=Pos 34 amod _ _ 33 structure structure NOUN NN Number=Sing 34 compound _ _ 34 projects project NOUN NNS Number=Plur 15 dobj _ _ 35 to to ADP IN _ 34 prep _ _ 36 a a DET DT Definite=Ind|PronType=Art 41 det _ _ 37 strict strict ADJ JJ Degree=Pos 41 amod _ _ 38 2 2 NUM CD NumType=Card 40 nummod _ _ 39 - - PUNCT HYPH PunctType=Dash 40 punct _ _ 40 categorical categorical ADJ JJ Degree=Pos 41 amod _ _ 41 one one NUM CD NumType=Card 35 pobj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = The paper contains a shortcut to $ (infty, 1) $ - categories, as well as a review of Getzler's proof of the Kan property. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 contains contain VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 shortcut shortcut NOUN NN Number=Sing 3 dobj _ _ 6 to to ADP IN _ 5 prep _ _ 7 $ (infty, 1) $ $ (infty, 1) $ SYM $ _ 9 nmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 categories category NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 5 punct _ _ 11 as as ADV RB _ 13 advmod _ _ 12 well well ADV RB Degree=Pos 13 advmod _ _ 13 as as ADP IN _ 5 cc _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 review review NOUN NN Number=Sing 5 conj _ _ 16 of of ADP IN _ 15 prep _ _ 17 Getzler Getzler PROPN NNP Number=Sing 19 poss _ SpaceAfter=No 18 's 's PART POS _ 17 case _ _ 19 proof proof NOUN NN Number=Sing 16 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 23 det _ _ 22 Kan Kan PROPN NNP Number=Sing 23 compound _ _ 23 property property NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = We make the latter concrete by applying it to the 2 - term $ infty $ - algebra case, thus recovering the concept of homotopy of Baez and Crans, as well as the corresponding composition rule cite{SS07}. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 make make VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 latter latter ADJ JJ Degree=Pos 5 amod _ _ 5 concrete concrete NOUN NN Number=Sing 2 dobj _ _ 6 by by ADP IN _ 2 prep _ _ 7 applying apply VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 pcomp _ _ 8 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 7 dobj _ _ 9 to to ADP IN _ 7 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 17 det _ _ 11 2 2 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 term term NOUN NN Number=Sing 17 nmod _ _ 14 $ infty $ $ infty $ SYM $ _ 16 compound _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 algebra algebra NOUN NN Number=Sing 17 compound _ _ 17 case case NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 7 punct _ _ 19 thus thus ADV RB _ 20 advmod _ _ 20 recovering recover VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 advcl _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 concept concept NOUN NN Number=Sing 20 dobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 homotopy homotopy NOUN NN Number=Sing 23 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 Baez Baez PROPN NNP Number=Sing 25 pobj _ _ 27 and and CCONJ CC ConjType=Cmp 26 cc _ _ 28 Crans Crans PROPN NNPS Number=Plur 26 conj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 20 punct _ _ 30 as as ADV RB _ 32 advmod _ _ 31 well well ADV RB Degree=Pos 32 advmod _ _ 32 as as ADP IN _ 20 cc _ _ 33 the the DET DT Definite=Def|PronType=Art 37 det _ _ 34 corresponding corresponding ADJ JJ Degree=Pos 37 amod _ _ 35 composition composition NOUN NN Number=Sing 36 compound _ _ 36 rule rule NOUN NN Number=Sing 37 compound _ _ 37 cite{SS07 cite{ss07 NOUN NN Number=Sing 20 dobj _ SpaceAfter=No 38 } } PUNCT -RRB- PunctSide=Fin|PunctType=Brck 2 punct _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 7 # text = We also answer a question of Shoikhet about composition of $ infty $ - homotopies of $ infty $ - algebras. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 answer answer VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 question question NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 Shoikhet Shoikhet PROPN NNP Number=Sing 6 pobj _ _ 8 about about ADP IN _ 5 prep _ _ 9 composition composition NOUN NN Number=Sing 8 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 $ infty $ $ infty $ SYM $ _ 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 homotopies homotopie NOUN NNS Number=Plur 10 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 $ infty $ $ infty $ SYM $ _ 17 compound _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 algebras algebra NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 499 # sent_id = 1 # text = The aim of this series of papers is to develop a self - dual categorical approach to some topics in non - abelian algebra, which is based on replacing the framework of a category with that of a category equipped with a functor to it. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 aim aim NOUN NN Number=Sing 8 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 series series NOUN NN Number=Sing 3 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 papers paper NOUN NNS Number=Plur 6 pobj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 to to PART TO _ 10 aux _ _ 10 develop develop VERB VB VerbForm=Inf 8 xcomp _ _ 11 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 12 self self NOUN NN Number=Sing 14 npadvmod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 dual dual ADJ JJ Degree=Pos 16 amod _ _ 15 categorical categorical ADJ JJ Degree=Pos 16 amod _ _ 16 approach approach NOUN NN Number=Sing 10 dobj _ _ 17 to to ADP IN _ 16 prep _ _ 18 some some DET DT _ 19 det _ _ 19 topics topic NOUN NNS Number=Plur 17 pobj _ _ 20 in in ADP IN _ 19 prep _ _ 21 non non ADJ JJ Degree=Pos 23 amod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 abelian abelian PROPN NNP Number=Sing 24 amod _ _ 24 algebra algebra PROPN NNP Number=Sing 20 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 which which PRON WDT _ 28 nsubjpass _ _ 27 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 28 auxpass _ _ 28 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 relcl _ _ 29 on on ADP IN _ 28 prep _ _ 30 replacing replace VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 29 pcomp _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 framework framework NOUN NN Number=Sing 30 dobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 35 category category NOUN NN Number=Sing 33 pobj _ _ 36 with with ADP IN _ 30 prep _ _ 37 that that PRON DT Number=Sing|PronType=Dem 36 pobj _ _ 38 of of ADP IN _ 37 prep _ _ 39 a a DET DT Definite=Ind|PronType=Art 40 det _ _ 40 category category NOUN NN Number=Sing 38 pobj _ _ 41 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 40 acl _ _ 42 with with ADP IN _ 41 prep _ _ 43 a a DET DT Definite=Ind|PronType=Art 44 det _ _ 44 functor functor NOUN NN Number=Sing 42 pobj _ _ 45 to to ADP IN _ 41 prep _ _ 46 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 45 pobj _ SpaceAfter=No 47 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 2 # text = The present paper gives some preliminary steps in this direction, where several known structures on a category, which arise in the categorical treatment of these topics, are viewed as such functors; as a result, we obtain some new conceptual links between these structures. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 present present ADJ JJ Degree=Pos 3 amod _ _ 3 paper paper NOUN NN Number=Sing 4 nsubj _ _ 4 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 41 ccomp _ _ 5 some some DET DT _ 7 det _ _ 6 preliminary preliminary ADJ JJ Degree=Pos 7 amod _ _ 7 steps step NOUN NNS Number=Plur 4 dobj _ _ 8 in in ADP IN _ 4 prep _ _ 9 this this DET DT Number=Sing|PronType=Dem 10 det _ _ 10 direction direction NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 where where SCONJ WRB _ 31 advmod _ _ 13 several several ADJ JJ Degree=Pos 15 amod _ _ 14 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 amod _ _ 15 structures structure NOUN NNS Number=Plur 31 nsubjpass _ _ 16 on on ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 category category NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 which which PRON WDT _ 21 nsubj _ _ 21 arise arise VERB VBP Tense=Pres|VerbForm=Fin 18 relcl _ _ 22 in in ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 categorical categorical ADJ JJ Degree=Pos 25 amod _ _ 25 treatment treatment NOUN NN Number=Sing 22 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 these these DET DT Number=Plur|PronType=Dem 28 det _ _ 28 topics topic NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 15 punct _ _ 30 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 31 auxpass _ _ 31 viewed view VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 relcl _ _ 32 as as ADP IN _ 31 prep _ _ 33 such such ADJ JJ Degree=Pos 34 amod _ _ 34 functors functor NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 35 ; ; PUNCT : _ 41 punct _ _ 36 as as ADP IN _ 41 prep _ _ 37 a a DET DT Definite=Ind|PronType=Art 38 det _ _ 38 result result NOUN NN Number=Sing 36 pobj _ SpaceAfter=No 39 , , PUNCT , PunctType=Comm 41 punct _ _ 40 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 41 nsubj _ _ 41 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 42 some some DET DT _ 45 det _ _ 43 new new ADJ JJ Degree=Pos 45 amod _ _ 44 conceptual conceptual ADJ JJ Degree=Pos 45 amod _ _ 45 links link NOUN NNS Number=Plur 41 dobj _ _ 46 between between ADP IN _ 45 prep _ _ 47 these these DET DT Number=Plur|PronType=Dem 48 det _ _ 48 structures structure NOUN NNS Number=Plur 46 pobj _ SpaceAfter=No 49 . . PUNCT . PunctType=Peri 41 punct _ SpaceAfter=No # doc_id = 500 # sent_id = 1 # text = The goal of this paper is to demystify the role played by the Reedy category axioms in homotopy theory. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 goal goal NOUN NN Number=Sing 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 paper paper NOUN NN Number=Sing 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 to to PART TO _ 8 aux _ _ 8 demystify demystify VERB VB VerbForm=Inf 6 xcomp _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 role role NOUN NN Number=Sing 8 dobj _ _ 11 played play VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 acl _ _ 12 by by ADP IN _ 11 agent _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 Reedy Reedy PROPN NNP Number=Sing 15 compound _ _ 15 category category NOUN NN Number=Sing 16 compound _ _ 16 axioms axiom NOUN NNS Number=Plur 12 pobj _ _ 17 in in ADP IN _ 16 prep _ _ 18 homotopy homotopy NOUN NN Number=Sing 19 compound _ _ 19 theory theory NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = With no assumed prerequisites beyond a healthy appetite for category theoretic arguments, we present streamlined proofs of a number of useful technical results, which are well known to folklore but difficult to find in the literature. 1 With with ADP IN _ 15 prep _ _ 2 no no DET DT _ 4 det _ _ 3 assumed assume VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 amod _ _ 4 prerequisites prerequisite NOUN NNS Number=Plur 1 pobj _ _ 5 beyond beyond ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 healthy healthy ADJ JJ Degree=Pos 8 amod _ _ 8 appetite appetite NOUN NN Number=Sing 5 pobj _ _ 9 for for ADP IN _ 8 prep _ _ 10 category category NOUN NN Number=Sing 11 npadvmod _ _ 11 theoretic theoretic ADJ JJ Degree=Pos 12 amod _ _ 12 arguments argument NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 15 punct _ _ 14 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 15 nsubj _ _ 15 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 16 streamlined streamlined ADJ JJ Degree=Pos 17 amod _ _ 17 proofs proof NOUN NNS Number=Plur 15 dobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 number number NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 useful useful ADJ JJ Degree=Pos 24 amod _ _ 23 technical technical ADJ JJ Degree=Pos 24 amod _ _ 24 results result NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 which which PRON WDT _ 29 nsubjpass _ _ 27 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 29 auxpass _ _ 28 well well ADV RB Degree=Pos 29 advmod _ _ 29 known known ADJ JJ Degree=Pos 24 relcl _ _ 30 to to PART TO _ 31 aux _ _ 31 folklore folklore VERB VB VerbForm=Inf 29 xcomp _ _ 32 but but CCONJ CC ConjType=Cmp 31 cc _ _ 33 difficult difficult ADJ JJ Degree=Pos 31 conj _ _ 34 to to PART TO _ 35 aux _ _ 35 find find VERB VB VerbForm=Inf 33 xcomp _ _ 36 in in ADP IN _ 35 prep _ _ 37 the the DET DT Definite=Def|PronType=Art 38 det _ _ 38 literature literature NOUN NN Number=Sing 36 pobj _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 3 # text = While the results presented here are not new, our approach to their proofs is somewhat novel. 1 While while SCONJ IN _ 6 mark _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 results result NOUN NNS Number=Plur 6 nsubj _ _ 4 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 acl _ _ 5 here here ADV RB PronType=Dem 4 advmod _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 advcl _ _ 7 not not PART RB Polarity=Neg 6 neg _ _ 8 new new ADJ JJ Degree=Pos 6 acomp _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 15 punct _ _ 10 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 11 poss _ _ 11 approach approach NOUN NN Number=Sing 15 nsubj _ _ 12 to to ADP IN _ 11 prep _ _ 13 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 14 poss _ _ 14 proofs proof NOUN NNS Number=Plur 12 pobj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 16 somewhat somewhat ADV RB _ 17 advmod _ _ 17 novel novel ADJ JJ Degree=Pos 15 acomp _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 4 # text = Specifically, we reduce much of the hard work involved to simpler computations involving weighted colimits and Leibniz (pushout - product) constructions. 1 Specifically specifically ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 reduce reduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 much much ADJ JJ Degree=Pos 4 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 hard hard ADJ JJ Degree=Pos 9 amod _ _ 9 work work NOUN NN Number=Sing 6 pobj _ _ 10 involved involve VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 acl _ _ 11 to to PART TO _ 12 aux _ _ 12 simpler simple ADJ JJR Degree=Cmp 10 advcl _ _ 13 computations computation NOUN NNS Number=Plur 12 dobj _ _ 14 involving involve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 acl _ _ 15 weighted weighted ADJ JJ Degree=Pos 16 amod _ _ 16 colimits colimit NOUN NNS Number=Plur 14 dobj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 Leibniz Leibniz PROPN NNP Number=Sing 16 conj _ _ 19 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 24 punct _ SpaceAfter=No 20 pushout pushout NOUN NN Number=Sing 22 compound _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 product product NOUN NN Number=Sing 24 nmod _ SpaceAfter=No 23 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 24 punct _ _ 24 constructions construction NOUN NNS Number=Plur 4 dobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = The general theory is developed in parallel with examples, which we use to prove that familiar formulae for homotopy limits and colimits indeed have the desired properties. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 general general ADJ JJ Degree=Pos 3 amod _ _ 3 theory theory NOUN NN Number=Sing 5 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 developed develop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 in in ADP IN _ 5 prep _ _ 7 parallel parallel NOUN NN Number=Sing 6 pobj _ _ 8 with with ADP IN _ 7 prep _ _ 9 examples example NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 which which PRON WDT _ 13 dobj _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 use use VERB VBP Tense=Pres|VerbForm=Fin 9 relcl _ _ 14 to to PART TO _ 15 aux _ _ 15 prove prove VERB VB VerbForm=Inf 13 xcomp _ _ 16 that that DET DT Number=Sing|PronType=Dem 18 det _ _ 17 familiar familiar ADJ JJ Degree=Pos 18 amod _ _ 18 formulae formulae NOUN NN Number=Sing 15 dobj _ _ 19 for for ADP IN _ 18 prep _ _ 20 homotopy homotopy NOUN NN Number=Sing 21 compound _ _ 21 limits limit NOUN NNS Number=Plur 19 pobj _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 colimits colimit NOUN NNS Number=Plur 21 conj _ _ 24 indeed indeed ADV RB _ 25 advmod _ _ 25 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 conj _ _ 26 the the DET DT Definite=Def|PronType=Art 28 det _ _ 27 desired desire VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 amod _ _ 28 properties property NOUN NNS Number=Plur 25 dobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 501 # sent_id = 1 # text = This paper introduces the construction of a weakly globular double category of fractions for a category and studies its universal properties. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 introduces introduce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 construction construction NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 8 weakly weakly ADJ JJ Degree=Pos 11 amod _ _ 9 globular globular ADJ JJ Degree=Pos 11 amod _ _ 10 double double ADJ JJ Degree=Pos 11 amod _ _ 11 category category NOUN NN Number=Sing 6 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 fractions fraction NOUN NNS Number=Plur 12 pobj _ _ 14 for for ADP IN _ 3 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 category category NOUN NN Number=Sing 14 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 3 cc _ _ 18 studies study VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 conj _ _ 19 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 21 poss _ _ 20 universal universal ADJ JJ Degree=Pos 21 amod _ _ 21 properties property NOUN NNS Number=Plur 18 dobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = It shows that this double category is locally small and considers a couple of concrete examples. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 shows show VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 7 mark _ _ 4 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 5 double double ADJ JJ Degree=Pos 6 amod _ _ 6 category category NOUN NN Number=Sing 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 8 locally locally ADV RB _ 9 advmod _ _ 9 small small ADJ JJ Degree=Pos 7 acomp _ _ 10 and and CCONJ CC ConjType=Cmp 7 cc _ _ 11 considers consider VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 conj _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 couple couple NOUN NN Number=Sing 11 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 concrete concrete ADJ JJ Degree=Pos 16 amod _ _ 16 examples example NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 502 # sent_id = 1 # text = We develop a theory of twisted actions of categorical groups using a notion of semidirect product of categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 develop develop VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 theory theory NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 twisted twisted ADJ JJ Degree=Pos 7 amod _ _ 7 actions action NOUN NNS Number=Plur 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 categorical categorical ADJ JJ Degree=Pos 10 amod _ _ 10 groups group NOUN NNS Number=Plur 8 pobj _ _ 11 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 acl _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 notion notion NOUN NN Number=Sing 11 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 semidirect semidirect NOUN NN Number=Sing 16 compound _ _ 16 product product NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 categories category NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We work through numerous examples to demonstrate the power of these notions. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 work work VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 through through ADP IN _ 2 prep _ _ 4 numerous numerous ADJ JJ Degree=Pos 5 amod _ _ 5 examples example NOUN NNS Number=Plur 3 pobj _ _ 6 to to PART TO _ 7 aux _ _ 7 demonstrate demonstrate VERB VB VerbForm=Inf 2 advcl _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 power power NOUN NN Number=Sing 7 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 these these DET DT Number=Plur|PronType=Dem 12 det _ _ 12 notions notion NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Turning to representations, which are actions that respect vector space structures, we establish an analog of Schur's lemma in this context. 1 Turning turn VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 advcl _ _ 2 to to ADP IN _ 1 prep _ _ 3 representations representation NOUN NNS Number=Plur 2 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 3 punct _ _ 5 which which PRON WDT _ 6 nsubj _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 relcl _ _ 7 actions action NOUN NNS Number=Plur 6 attr _ _ 8 that that PRON WDT PronType=Rel 9 nsubj _ _ 9 respect respect VERB VBP Tense=Pres|VerbForm=Fin 7 relcl _ _ 10 vector vector NOUN NN Number=Sing 12 compound _ _ 11 space space NOUN NN Number=Sing 12 compound _ _ 12 structures structure NOUN NNS Number=Plur 9 dobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 15 punct _ _ 14 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 15 nsubj _ _ 15 establish establish VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 16 an an DET DT Definite=Ind|PronType=Art 17 det _ _ 17 analog analog NOUN NN Number=Sing 15 dobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 Schur Schur PROPN NNP Number=Sing 21 poss _ SpaceAfter=No 20 's 's PART POS _ 19 case _ _ 21 lemma lemma NOUN NN Number=Sing 18 pobj _ _ 22 in in ADP IN _ 15 prep _ _ 23 this this DET DT Number=Sing|PronType=Dem 24 det _ _ 24 context context NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 4 # text = Keeping new terminology to a minimum, we concentrate on examples exploring the essential new notions introduced. 1 Keeping keep VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 advcl _ _ 2 new new ADJ JJ Degree=Pos 3 amod _ _ 3 terminology terminology NOUN NN Number=Sing 1 dobj _ _ 4 to to ADP IN _ 1 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 minimum minimum NOUN NN Number=Sing 4 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 9 punct _ _ 8 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 9 nsubj _ _ 9 concentrate concentrate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 on on ADP IN _ 9 prep _ _ 11 examples example NOUN NNS Number=Plur 10 pobj _ _ 12 exploring explore VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 11 acl _ _ 13 the the DET DT Definite=Def|PronType=Art 16 det _ _ 14 essential essential ADJ JJ Degree=Pos 16 amod _ _ 15 new new ADJ JJ Degree=Pos 16 amod _ _ 16 notions notion NOUN NNS Number=Plur 12 dobj _ _ 17 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 acl _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 503 # sent_id = 1 # text = We define the analytic spectrum of a rig category $ (A, oplus, otimes) $ , and equip it with a sheaf of categories of rational functions. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 analytic analytic ADJ JJ Degree=Pos 5 amod _ _ 5 spectrum spectrum NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 rig rig NOUN NN Number=Sing 9 compound _ _ 9 category category NOUN NN Number=Sing 6 pobj _ _ 10 $ (A, oplus, otimes) $ $ (a, oplus, otimes) $ X FW Foreign=Yes 2 dep _ _ 11 , , PUNCT , PunctType=Comm 2 punct _ _ 12 and and CCONJ CC ConjType=Cmp 2 cc _ _ 13 equip equip VERB VB VerbForm=Inf 2 conj _ _ 14 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 13 dobj _ _ 15 with with ADP IN _ 13 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 sheaf sheaf NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 categories category NOUN NNS Number=Plur 18 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 rational rational ADJ JJ Degree=Pos 22 amod _ _ 22 functions function NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = If the category is additive, we define a sheaf of categories of analytic functions. 1 If if SCONJ IN _ 4 mark _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 category category NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 advcl _ _ 5 additive additive ADJ JJ Degree=Pos 4 acomp _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 8 punct _ _ 7 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 8 nsubj _ _ 8 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 sheaf sheaf NOUN NN Number=Sing 8 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 categories category NOUN NNS Number=Plur 11 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 analytic analytic ADJ JJ Degree=Pos 15 amod _ _ 15 functions function NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 3 # text = We relate this construction to Berkovich's analytic spaces, to Durov's generalized schemes and to Haran's $ F $ - schemes. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 relate relate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 4 construction construction NOUN NN Number=Sing 2 dobj _ _ 5 to to ADP IN _ 2 prep _ _ 6 Berkovich Berkovich PROPN NNP Number=Sing 9 poss _ SpaceAfter=No 7 's 's PART POS _ 6 case _ _ 8 analytic analytic ADJ JJ Degree=Pos 9 amod _ _ 9 spaces space NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 to to ADP IN _ 2 prep _ _ 12 Durov Durov PROPN NNP Number=Sing 15 poss _ SpaceAfter=No 13 's 's PART POS _ 12 case _ _ 14 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 amod _ _ 15 schemes scheme NOUN NNS Number=Plur 11 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 11 cc _ _ 17 to to ADP IN _ 11 conj _ _ 18 Haran Haran PROPN NNP Number=Sing 22 poss _ SpaceAfter=No 19 's 's PART POS _ 18 case _ _ 20 $ F $ $ f $ SYM $ _ 22 compound _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 schemes scheme NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We use these relations to define analytic versions of Arakelov compactifications of affine arithmetic varieties. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 these these DET DT Number=Plur|PronType=Dem 4 det _ _ 4 relations relation NOUN NNS Number=Plur 2 dobj _ _ 5 to to PART TO _ 6 aux _ _ 6 define define VERB VB VerbForm=Inf 2 xcomp _ _ 7 analytic analytic ADJ JJ Degree=Pos 8 amod _ _ 8 versions version NOUN NNS Number=Plur 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 Arakelov Arakelov PROPN NNP Number=Sing 11 compound _ _ 11 compactifications compactification NOUN NNS Number=Plur 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 affine affine NOUN NN Number=Sing 15 nmod _ _ 14 arithmetic arithmetic ADJ JJ Degree=Pos 15 amod _ _ 15 varieties variety NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 504 # sent_id = 1 # text = We define a mapping space for Gray - enriched categories adapted to higher gauge theory. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 mapping mapping NOUN NN Number=Sing 5 compound _ _ 5 space space NOUN NN Number=Sing 2 dobj _ _ 6 for for ADP IN _ 5 prep _ _ 7 Gray Gray PROPN NNP Number=Sing 9 npadvmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 10 categories category NOUN NNS Number=Plur 6 pobj _ _ 11 adapted adapt VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 advcl _ _ 12 to to ADP IN _ 11 prep _ _ 13 higher high ADJ JJR Degree=Cmp 14 amod _ _ 14 gauge gauge NOUN NN Number=Sing 15 compound _ _ 15 theory theory NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Our construction differs significantly from the canonical mapping space of enriched categories in that it is much less rigid. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 construction construction NOUN NN Number=Sing 3 nsubj _ _ 3 differs differ VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 significantly significantly ADV RB _ 3 advmod _ _ 5 from from ADP IN _ 3 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 9 det _ _ 7 canonical canonical ADJ JJ Degree=Pos 8 amod _ _ 8 mapping mapping NOUN NN Number=Sing 9 compound _ _ 9 space space NOUN NN Number=Sing 5 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 12 categories category NOUN NNS Number=Plur 10 pobj _ _ 13 in in SCONJ IN _ 16 mark _ _ 14 that that SCONJ IN _ 16 mark _ _ 15 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 16 nsubj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 advcl _ _ 17 much much ADV RB _ 18 advmod _ _ 18 less less ADV RBR Degree=Cmp 19 advmod _ _ 19 rigid rigid ADJ JJ Degree=Pos 16 acomp _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = The two essential ingredients are a path space construction for Gray - categories and a kind of comonadic resolution of the 1 - dimensional structure of a given Gray - category obtained by lifting the resolution of ordinary categories along the canonical fibration of $ GrayCat $ over $ Cat $ . 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 two two NUM CD NumType=Card 4 nummod _ _ 3 essential essential ADJ JJ Degree=Pos 4 amod _ _ 4 ingredients ingredient NOUN NNS Number=Plur 5 nsubj _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 7 path path NOUN NN Number=Sing 9 compound _ _ 8 space space NOUN NN Number=Sing 9 compound _ _ 9 construction construction NOUN NN Number=Sing 5 attr _ _ 10 for for ADP IN _ 9 prep _ _ 11 Gray Gray PROPN NNP Number=Sing 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 categories category NOUN NNS Number=Plur 10 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 9 cc _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 kind kind NOUN NN Number=Sing 9 conj _ _ 17 of of ADP IN _ 16 prep _ _ 18 comonadic comonadic ADJ JJ Degree=Pos 19 amod _ _ 19 resolution resolution NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 25 det _ _ 22 1 1 NUM CD NumType=Card 24 advmod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 dimensional dimensional ADJ JJ Degree=Pos 25 amod _ _ 25 structure structure NOUN NN Number=Sing 20 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 28 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 31 amod _ _ 29 Gray Gray PROPN NNP Number=Sing 31 compound _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 category category NOUN NN Number=Sing 26 pobj _ _ 32 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 31 acl _ _ 33 by by ADP IN _ 32 agent _ _ 34 lifting lift VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 33 pcomp _ _ 35 the the DET DT Definite=Def|PronType=Art 36 det _ _ 36 resolution resolution NOUN NN Number=Sing 34 dobj _ _ 37 of of ADP IN _ 36 prep _ _ 38 ordinary ordinary ADJ JJ Degree=Pos 39 amod _ _ 39 categories category NOUN NNS Number=Plur 37 pobj _ _ 40 along along ADP IN _ 36 prep _ _ 41 the the DET DT Definite=Def|PronType=Art 43 det _ _ 42 canonical canonical ADJ JJ Degree=Pos 43 amod _ _ 43 fibration fibration NOUN NN Number=Sing 40 pobj _ _ 44 of of ADP IN _ 43 prep _ _ 45 $ GrayCat $ $ graycat $ SYM $ _ 47 nmod _ _ 46 over over ADP IN _ 47 advmod _ _ 47 $ Cat $ $ cat $ SYM $ _ 44 pobj _ _ 48 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 505 # sent_id = 1 # text = We show that the adjunction between monoids and groups obtained via the Grothendieck group construction is admissible, relatively to surjective homomorphisms, in the sense of categorical Galois theory. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 16 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 adjunction adjunction NOUN NN Number=Sing 16 nsubj _ _ 6 between between ADP IN _ 5 prep _ _ 7 monoids monoid NOUN NNS Number=Plur 6 pobj _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 groups group NOUN NNS Number=Plur 7 conj _ _ 10 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 acl _ _ 11 via via ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 15 det _ _ 13 Grothendieck Grothendieck PROPN NNP Number=Sing 15 compound _ _ 14 group group NOUN NN Number=Sing 15 compound _ _ 15 construction construction NOUN NN Number=Sing 11 pobj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 17 admissible admissible ADJ JJ Degree=Pos 16 acomp _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 16 punct _ _ 19 relatively relatively ADV RB _ 21 advmod _ _ 20 to to PART TO _ 21 aux _ _ 21 surjective surjective VERB VB VerbForm=Inf 16 acomp _ _ 22 homomorphisms homomorphism NOUN NNS Number=Plur 21 dobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 21 punct _ _ 24 in in ADP IN _ 16 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 sense sense NOUN NN Number=Sing 24 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 categorical categorical ADJ JJ Degree=Pos 30 amod _ _ 29 Galois Galois PROPN NNP Number=Sing 30 compound _ _ 30 theory theory NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The central extensions with respect to this Galois structure turn out to be the so - called special homogeneous surjections. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 central central ADJ JJ Degree=Pos 3 amod _ _ 3 extensions extension NOUN NNS Number=Plur 10 nsubj _ _ 4 with with ADP IN _ 3 prep _ _ 5 respect respect NOUN NN Number=Sing 4 pobj _ _ 6 to to ADP IN _ 5 prep _ _ 7 this this DET DT Number=Sing|PronType=Dem 9 det _ _ 8 Galois Galois PROPN NNP Number=Sing 9 compound _ _ 9 structure structure NOUN NN Number=Sing 6 pobj _ _ 10 turn turn VERB VB VerbForm=Inf 0 ROOT _ _ 11 out out ADP RP _ 10 prt _ _ 12 to to PART TO _ 13 aux _ _ 13 be be AUX VB VerbForm=Inf 10 xcomp _ _ 14 the the DET DT Definite=Def|PronType=Art 20 det _ _ 15 so so ADV RB _ 17 advmod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 amod _ _ 18 special special ADJ JJ Degree=Pos 20 amod _ _ 19 homogeneous homogeneous ADJ JJ Degree=Pos 20 amod _ _ 20 surjections surjection NOUN NNS Number=Plur 13 attr _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # doc_id = 506 # sent_id = 1 # text = In an earlier work, we constructed the almost strict Morse $ n $ - category $ mathcal X $ which extends Cohen and Jones and Segal's flow category. 1 In in ADP IN _ 7 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 4 det _ _ 3 earlier early ADJ JJR Degree=Cmp 4 amod _ _ 4 work work NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 constructed construct VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 8 the the DET DT Definite=Def|PronType=Art 14 det _ _ 9 almost almost ADV RB _ 10 advmod _ _ 10 strict strict ADJ JJ Degree=Pos 14 amod _ _ 11 Morse Morse PROPN NNP Number=Sing 14 nmod _ _ 12 $ n $ $ n $ SYM $ _ 14 nummod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 category category NOUN NN Number=Sing 7 dobj _ _ 15 $ mathcal X $ $ mathcal x $ SYM $ _ 14 appos _ _ 16 which which PRON WDT _ 17 nsubj _ _ 17 extends extend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 relcl _ _ 18 Cohen Cohen PROPN NNP Number=Sing 25 poss _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 Jones Jones PROPN NNP Number=Sing 18 conj _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 Segal Segal PROPN NNP Number=Sing 25 poss _ SpaceAfter=No 23 's 's PART POS _ 22 case _ _ 24 flow flow NOUN NN Number=Sing 25 compound _ _ 25 category category NOUN NN Number=Sing 17 dobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 2 # text = In this article, we define two other almost strict $ n $ - categories $ mathcal V $ and $ mathcal W $ where $ mathcal V $ is based on homomorphisms between real vector spaces and $ mathcal W $ consists of tuples of positive integers. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 article article NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 two two NUM CD NumType=Card 8 nummod _ _ 8 other other ADJ JJ Degree=Pos 6 dobj _ _ 9 almost almost ADV RB _ 10 advmod _ _ 10 strict strict ADJ JJ Degree=Pos 13 amod _ _ 11 $ n $ $ n $ SYM $ _ 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 categories category NOUN NNS Number=Plur 14 compound _ _ 14 $ mathcal V $ $ mathcal v $ SYM $ _ 6 dep _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 $ mathcal W $ $ mathcal w $ SYM $ _ 14 conj _ _ 17 where where SCONJ WRB _ 18 advmod _ _ 18 $ mathcal V $ $ mathcal v $ SYM $ _ 14 relcl _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 auxpass _ _ 20 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 conj _ _ 21 on on ADP IN _ 20 prep _ _ 22 homomorphisms homomorphism NOUN NNS Number=Plur 21 pobj _ _ 23 between between ADP IN _ 22 prep _ _ 24 real real ADJ JJ Degree=Pos 26 amod _ _ 25 vector vector NOUN NN Number=Sing 26 compound _ _ 26 spaces space NOUN NNS Number=Plur 23 pobj _ _ 27 and and CCONJ CC ConjType=Cmp 26 cc _ _ 28 $ mathcal W $ $ mathcal w $ SYM $ _ 29 nsubj _ _ 29 consists consist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 conj _ _ 30 of of ADP IN _ 29 prep _ _ 31 tuples tuple NOUN NNS Number=Plur 30 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 positive positive ADJ JJ Degree=Pos 34 amod _ _ 34 integers integer NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = The Morse index and the dimension of the Morse moduli spaces give rise to almost strict $ n $ - category functors $ mathcal F : mathcal X to mathcal V $ and $ mathcal G : mathcal X to mathcal W $ . 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 Morse Morse PROPN NNP Number=Sing 3 compound _ _ 3 index index NOUN NN Number=Sing 12 nsubj _ _ 4 and and CCONJ CC ConjType=Cmp 3 cc _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 dimension dimension NOUN NN Number=Sing 3 conj _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 11 det _ _ 9 Morse Morse PROPN NNP Number=Sing 10 compound _ _ 10 moduli moduli PROPN NNP Number=Sing 11 compound _ _ 11 spaces space NOUN NNS Number=Plur 7 pobj _ _ 12 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 rise rise NOUN NN Number=Sing 12 dobj _ _ 14 to to ADP IN _ 12 prep _ _ 15 almost almost ADV RB _ 16 advmod _ _ 16 strict strict ADJ JJ Degree=Pos 19 amod _ _ 17 $ n $ $ n $ SYM $ _ 19 nummod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 category category NOUN NN Number=Sing 20 compound _ _ 20 functors functor NOUN NNS Number=Plur 14 pobj _ _ 21 $ mathcal F : mathcal X to mathcal V $ $ mathcal f : mathcal x to mathcal v $ SYM $ _ 12 dobj _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 $ mathcal G : mathcal X to mathcal W $ $ mathcal g : mathcal x to mathcal w $ SYM $ _ 21 conj _ _ 24 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # doc_id = 507 # sent_id = 1 # text = We prove that a large class of natural transformations (consisting roughly of those constructed via composition from the ``functorial'' or ``base change'' transformations) between two functors of the form $ ... f^* g_* ... $ actually has only one element, and thus that any diagram of such maps necessarily commutes. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 40 mark _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 large large ADJ JJ Degree=Pos 6 amod _ _ 6 class class NOUN NN Number=Sing 40 nsubj _ _ 7 of of ADP IN _ 6 prep _ _ 8 natural natural ADJ JJ Degree=Pos 9 amod _ _ 9 transformations transformation NOUN NNS Number=Plur 7 pobj _ _ 10 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 6 punct _ SpaceAfter=No 11 consisting consist VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 acl _ _ 12 roughly roughly ADV RB _ 13 advmod _ _ 13 of of ADP IN _ 11 prep _ _ 14 those those PRON DT Number=Plur|PronType=Dem 13 pobj _ _ 15 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 acl _ _ 16 via via ADP IN _ 15 prep _ _ 17 composition composition NOUN NN Number=Sing 16 pobj _ _ 18 from from ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 22 det _ _ 20 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 22 punct _ SpaceAfter=No 21 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 22 punct _ SpaceAfter=No 22 functorial functorial NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 23 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 22 punct _ _ 24 or or CCONJ CC ConjType=Cmp 22 cc _ _ 25 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 28 punct _ SpaceAfter=No 26 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 28 punct _ SpaceAfter=No 27 base base NOUN NN Number=Sing 28 nmod _ _ 28 change change NOUN NN Number=Sing 30 nmod _ SpaceAfter=No 29 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 30 punct _ _ 30 transformations transformation NOUN NNS Number=Plur 22 conj _ SpaceAfter=No 31 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 30 punct _ _ 32 between between ADP IN _ 22 prep _ _ 33 two two NUM CD NumType=Card 34 nummod _ _ 34 functors functor NOUN NNS Number=Plur 32 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 37 det _ _ 37 form form NOUN NN Number=Sing 35 pobj _ _ 38 $ ... f^* g_* ... $ $ ... f^* g_* ... $ SYM $ _ 40 nsubj _ _ 39 actually actually ADV RB _ 40 advmod _ _ 40 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 41 only only ADV RB _ 42 advmod _ _ 42 one one NUM CD NumType=Card 43 nummod _ _ 43 element element NOUN NN Number=Sing 40 dobj _ SpaceAfter=No 44 , , PUNCT , PunctType=Comm 40 punct _ _ 45 and and CCONJ CC ConjType=Cmp 40 cc _ _ 46 thus thus ADV RB _ 54 advmod _ _ 47 that that SCONJ IN _ 54 mark _ _ 48 any any DET DT _ 49 det _ _ 49 diagram diagram NOUN NN Number=Sing 54 nsubj _ _ 50 of of ADP IN _ 49 prep _ _ 51 such such ADJ JJ Degree=Pos 52 amod _ _ 52 maps map NOUN NNS Number=Plur 50 pobj _ _ 53 necessarily necessarily ADV RB _ 54 advmod _ _ 54 commutes commute VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 40 conj _ SpaceAfter=No 55 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We identify the precise axioms defining what we call a ``geofibered category'' that ensure that such a coherence theorem exists. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 identify identify VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 precise precise ADJ JJ Degree=Pos 5 amod _ _ 5 axioms axiom NOUN NNS Number=Plur 2 dobj _ _ 6 defining define VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 acl _ _ 7 what what PRON WP _ 9 dobj _ _ 8 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 9 nsubj _ _ 9 call call VERB VBP Tense=Pres|VerbForm=Fin 6 ccomp _ _ 10 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 11 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 14 punct _ SpaceAfter=No 12 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 14 punct _ SpaceAfter=No 13 geofibered geofibere VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 14 category category NOUN NN Number=Sing 9 oprd _ SpaceAfter=No 15 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 14 punct _ _ 16 that that PRON WDT PronType=Rel 17 nsubj _ _ 17 ensure ensure VERB VBP Tense=Pres|VerbForm=Fin 14 relcl _ _ 18 that that SCONJ IN _ 23 mark _ _ 19 such such DET PDT _ 23 predet _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 coherence coherence NOUN NN Number=Sing 22 compound _ _ 22 theorem theorem ADJ JJ Degree=Pos 23 amod _ _ 23 exists exist NOUN NNS Number=Plur 17 ccomp _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Our results apply to all the usual sheaf - theoretic contexts of algebraic geometry. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 results result NOUN NNS Number=Plur 3 nsubj _ _ 3 apply apply VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 to to ADP IN _ 3 prep _ _ 5 all all DET PDT _ 11 predet _ _ 6 the the DET DT Definite=Def|PronType=Art 11 det _ _ 7 usual usual ADJ JJ Degree=Pos 11 amod _ _ 8 sheaf sheaf NOUN NN Number=Sing 10 npadvmod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 theoretic theoretic ADJ JJ Degree=Pos 11 amod _ _ 11 contexts context NOUN NNS Number=Plur 4 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 algebraic algebraic ADJ JJ Degree=Pos 14 amod _ _ 14 geometry geometry NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = The analogous result that would include any other of the six functors remains unknown. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 analogous analogous ADJ JJ Degree=Pos 3 amod _ _ 3 result result NOUN NN Number=Sing 13 nsubj _ _ 4 that that PRON WDT PronType=Rel 6 nsubj _ _ 5 would would AUX MD VerbForm=Fin 6 aux _ _ 6 include include VERB VB VerbForm=Inf 3 relcl _ _ 7 any any DET DT _ 8 det _ _ 8 other other ADJ JJ Degree=Pos 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 six six NUM CD NumType=Card 12 nummod _ _ 12 functors functor NOUN NNS Number=Plur 9 pobj _ _ 13 remains remain VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 unknown unknown ADJ JJ Degree=Pos 13 acomp _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # doc_id = 508 # sent_id = 1 # text = Counterexamples for two propositions in an article are given. 1 Counterexamples counterexample NOUN NNS Number=Plur 9 nsubjpass _ _ 2 for for ADP IN _ 1 prep _ _ 3 two two NUM CD NumType=Card 4 nummod _ _ 4 propositions proposition NOUN NNS Number=Plur 2 pobj _ _ 5 in in ADP IN _ 4 prep _ _ 6 an an DET DT Definite=Ind|PronType=Art 7 det _ _ 7 article article NOUN NN Number=Sing 5 pobj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 2 # text = They are used in the paper only to prove a corollary. 1 They they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 3 nsubjpass _ _ 2 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 in in ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 paper paper NOUN NN Number=Sing 4 pobj _ _ 7 only only ADV RB _ 9 advmod _ _ 8 to to PART TO _ 9 aux _ _ 9 prove prove VERB VB VerbForm=Inf 3 xcomp _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 corollary corollary NOUN NN Number=Sing 9 dobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = A proof of this corollary is given without them. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 proof proof NOUN NN Number=Sing 7 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 corollary corollary ADJ JJ Degree=Pos 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 7 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 without without ADP IN _ 7 prep _ _ 9 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 8 pobj _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = The proof of the fibrancy of some cubical transition systems is fixed. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 proof proof NOUN NN Number=Sing 12 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 fibrancy fibrancy NOUN NN Number=Sing 3 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 some some DET DT _ 10 det _ _ 8 cubical cubical ADJ JJ Degree=Pos 10 amod _ _ 9 transition transition NOUN NN Number=Sing 10 compound _ _ 10 systems system NOUN NNS Number=Plur 6 pobj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 12 fixed fix VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # doc_id = 509 # sent_id = 1 # text = It is proved that in any pointed category with pullbacks, coequalizers and regular epi - mono factorizations, the class of regular epimorphisms is stable under pullback along the so - called balanced effective descent morphisms. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 that that SCONJ IN _ 25 mark _ _ 5 in in ADP IN _ 25 prep _ _ 6 any any DET DT _ 8 det _ _ 7 pointed pointed ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 5 pobj _ _ 9 with with ADP IN _ 8 prep _ _ 10 pullbacks pullback NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 coequalizers coequalizer NOUN NNS Number=Plur 10 conj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 regular regular ADJ JJ Degree=Pos 18 amod _ _ 15 epi epi NOUN NN Number=Sing 17 compound _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 mono mono PROPN NNP Number=Sing 18 compound _ _ 18 factorizations factorization NOUN NNS Number=Plur 12 conj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 25 punct _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 class class NOUN NN Number=Sing 25 nsubj _ _ 22 of of ADP IN _ 21 prep _ _ 23 regular regular ADJ JJ Degree=Pos 24 amod _ _ 24 epimorphisms epimorphism NOUN NNS Number=Plur 22 pobj _ _ 25 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 26 stable stable ADJ JJ Degree=Pos 25 acomp _ _ 27 under under ADP IN _ 26 prep _ _ 28 pullback pullback NOUN NN Number=Sing 27 pobj _ _ 29 along along ADP IN _ 25 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 37 det _ _ 31 so so ADV RB _ 33 advmod _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 37 amod _ _ 34 balanced balanced ADJ JJ Degree=Pos 37 amod _ _ 35 effective effective ADJ JJ Degree=Pos 37 amod _ _ 36 descent descent NOUN NN Number=Sing 37 compound _ _ 37 morphisms morphism NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = Here ``balanced'' can be omitted if the category is additive. 1 Here here ADV RB PronType=Dem 8 advmod _ _ 2 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 4 punct _ SpaceAfter=No 3 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 4 punct _ SpaceAfter=No 4 balanced balanced NOUN NN Number=Sing 8 nsubjpass _ SpaceAfter=No 5 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 4 punct _ _ 6 can can AUX MD VerbForm=Fin 8 aux _ _ 7 be be AUX VB VerbForm=Inf 8 auxpass _ _ 8 omitted omit VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 if if SCONJ IN _ 12 mark _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 category category NOUN NN Number=Sing 12 nsubj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 advcl _ _ 13 additive additive ADJ JJ Degree=Pos 12 acomp _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 3 # text = A balanced effective descent morphism is defined as an effective descent morphism $ p:Erightarrow B $ such that any subobject of $ E $ is a pullback of some morphism along $ p $ . 1 A a DET DT Definite=Ind|PronType=Art 5 det _ _ 2 balanced balanced ADJ JJ Degree=Pos 5 amod _ _ 3 effective effective ADJ JJ Degree=Pos 5 amod _ _ 4 descent descent NOUN NN Number=Sing 5 compound _ _ 5 morphism morphism NOUN NN Number=Sing 7 nsubjpass _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 7 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 as as ADP IN _ 7 prep _ _ 9 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 10 effective effective ADJ JJ Degree=Pos 12 amod _ _ 11 descent descent NOUN NN Number=Sing 12 compound _ _ 12 morphism morphism NOUN NN Number=Sing 8 pobj _ _ 13 $ p:Erightarrow B $ $ p:erightarrow b $ SYM $ _ 14 nmod _ _ 14 such such ADJ JJ Degree=Pos 12 appos _ _ 15 that that SCONJ IN _ 20 mark _ _ 16 any any DET DT _ 17 det _ _ 17 subobject subobject NOUN NN Number=Sing 20 nsubj _ _ 18 of of ADP IN _ 17 prep _ _ 19 $ E $ $ e $ SYM $ _ 18 pobj _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 ccomp _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 pullback pullback NOUN NN Number=Sing 20 attr _ _ 23 of of ADP IN _ 22 prep _ _ 24 some some DET DT _ 25 det _ _ 25 morphism morphism NOUN NN Number=Sing 23 pobj _ _ 26 along along ADP IN _ 25 prep _ _ 27 $ p $ $ p $ SYM $ _ 26 pobj _ _ 28 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = It is shown that, in any category with pullbacks and coequalizers, the class of effective descent morphisms is stable under pushout if and only if any regular epimorphism is an effective descent morphism. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 that that SCONJ IN _ 20 mark _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 20 punct _ _ 6 in in ADP IN _ 20 prep _ _ 7 any any DET DT _ 8 det _ _ 8 category category NOUN NN Number=Sing 6 pobj _ _ 9 with with ADP IN _ 8 prep _ _ 10 pullbacks pullback NOUN NNS Number=Plur 9 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 coequalizers coequalizer NOUN NNS Number=Plur 10 conj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 20 punct _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 class class NOUN NN Number=Sing 20 nsubj _ _ 16 of of ADP IN _ 15 prep _ _ 17 effective effective ADJ JJ Degree=Pos 19 amod _ _ 18 descent descent NOUN NN Number=Sing 19 compound _ _ 19 morphisms morphism NOUN NNS Number=Plur 16 pobj _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 21 stable stable ADJ JJ Degree=Pos 20 acomp _ _ 22 under under ADP IN _ 20 prep _ _ 23 pushout pushout NOUN NN Number=Sing 22 pobj _ _ 24 if if SCONJ IN _ 31 mark _ _ 25 and and CCONJ CC ConjType=Cmp 31 cc _ _ 26 only only ADV RB _ 31 advmod _ _ 27 if if SCONJ IN _ 31 mark _ _ 28 any any DET DT _ 30 det _ _ 29 regular regular ADJ JJ Degree=Pos 30 amod _ _ 30 epimorphism epimorphism NOUN NN Number=Sing 31 nsubj _ _ 31 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 advcl _ _ 32 an an DET DT Definite=Ind|PronType=Art 35 det _ _ 33 effective effective ADJ JJ Degree=Pos 35 amod _ _ 34 descent descent NOUN NN Number=Sing 35 compound _ _ 35 morphism morphism NOUN NN Number=Sing 31 attr _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = Moreover, it is shown that the class of descent morphisms is stable under pushout if and only if the class of regular epimorphisms is stable under pullback. 1 Moreover moreover ADV RB _ 5 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 5 punct _ _ 3 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 5 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 that that SCONJ IN _ 12 mark _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 class class NOUN NN Number=Sing 12 nsubj _ _ 9 of of ADP IN _ 8 prep _ _ 10 descent descent NOUN NN Number=Sing 9 pobj _ _ 11 morphisms morphism NOUN NNS Number=Plur 9 pobj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 ccomp _ _ 13 stable stable ADJ JJ Degree=Pos 12 acomp _ _ 14 under under ADP IN _ 12 prep _ _ 15 pushout pushout NOUN NN Number=Sing 14 pobj _ _ 16 if if SCONJ IN _ 25 mark _ _ 17 and and CCONJ CC ConjType=Cmp 25 cc _ _ 18 only only ADV RB _ 25 advmod _ _ 19 if if SCONJ IN _ 25 mark _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 class class NOUN NN Number=Sing 25 nsubj _ _ 22 of of ADP IN _ 21 prep _ _ 23 regular regular ADJ JJ Degree=Pos 24 amod _ _ 24 epimorphisms epimorphism NOUN NNS Number=Plur 22 pobj _ _ 25 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 advcl _ _ 26 stable stable ADJ JJ Degree=Pos 25 acomp _ _ 27 under under ADP IN _ 26 prep _ _ 28 pullback pullback NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 510 # sent_id = 1 # text = To 2 - categorify the theory of group representations, we introduce the notions of the 3 - representation of a group in a strict 3 - category and the strict 2 - categorical action of a group on a strict 2 - category. 1 To to AUX IN _ 4 aux _ _ 2 2 2 NUM CD NumType=Card 4 nummod _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 categorify categorify VERB VB VerbForm=Inf 12 advcl _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 theory theory NOUN NN Number=Sing 4 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 group group NOUN NN Number=Sing 9 compound _ _ 9 representations representation NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 12 punct _ _ 11 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 12 nsubj _ _ 12 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 notions notion NOUN NNS Number=Plur 12 dobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 19 det _ _ 17 3 3 NUM CD NumType=Card 19 nummod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 representation representation NOUN NN Number=Sing 15 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 group group NOUN NN Number=Sing 20 pobj _ _ 23 in in ADP IN _ 12 prep _ _ 24 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 25 strict strict ADJ JJ Degree=Pos 28 amod _ _ 26 3 3 NUM CD NumType=Card 28 nummod _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 category category NOUN NN Number=Sing 23 pobj _ _ 29 and and CCONJ CC ConjType=Cmp 12 cc _ _ 30 the the DET DT Definite=Def|PronType=Art 35 det _ _ 31 strict strict ADJ JJ Degree=Pos 35 amod _ _ 32 2 2 NUM CD NumType=Card 34 nummod _ _ 33 - - PUNCT HYPH PunctType=Dash 34 punct _ _ 34 categorical categorical ADJ JJ Degree=Pos 35 amod _ _ 35 action action NOUN NN Number=Sing 12 conj _ _ 36 of of ADP IN _ 35 prep _ _ 37 a a DET DT Definite=Ind|PronType=Art 38 det _ _ 38 group group NOUN NN Number=Sing 36 pobj _ _ 39 on on ADP IN _ 35 prep _ _ 40 a a DET DT Definite=Ind|PronType=Art 44 det _ _ 41 strict strict ADJ JJ Degree=Pos 44 amod _ _ 42 2 2 NUM CD NumType=Card 44 nummod _ _ 43 - - PUNCT HYPH PunctType=Dash 44 punct _ _ 44 category category NOUN NN Number=Sing 39 pobj _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 2 # text = We also 2 - categorify the concept of the trace by introducing the 2 - categorical trace of a 1 - endomorphism in a strict 3 - category. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 2 also also ADV RB _ 5 advmod _ _ 3 2 2 NUM CD NumType=Card 5 nummod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 categorify categorify VERB VB VerbForm=Inf 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 concept concept NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 trace trace NOUN NN Number=Sing 8 pobj _ _ 11 by by ADP IN _ 5 prep _ _ 12 introducing introduce VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 11 pcomp _ _ 13 the the DET DT Definite=Def|PronType=Art 17 det _ _ 14 2 2 NUM CD NumType=Card 16 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 categorical categorical ADJ JJ Degree=Pos 17 amod _ _ 17 trace trace NOUN NN Number=Sing 12 dobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 20 1 1 NUM CD NumType=Card 22 nummod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 endomorphism endomorphism NOUN NN Number=Sing 18 pobj _ _ 23 in in ADP IN _ 12 prep _ _ 24 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 25 strict strict ADJ JJ Degree=Pos 28 amod _ _ 26 3 3 NUM CD NumType=Card 28 nummod _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 category category NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = For a 3 - representation $ rho $ of a group $ G $ and an element $ f $ of $ G $ , the 2 - categorical trace $ Tr_2rho_f $ is a category. 1 For for ADP IN _ 24 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 3 3 3 NUM CD NumType=Card 5 nummod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 representation representation NOUN NN Number=Sing 6 compound _ _ 6 $ rho $ $ rho $ SYM $ _ 1 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 group group NOUN NN Number=Sing 7 pobj _ _ 10 $ G $ $ g $ SYM $ _ 6 appos _ _ 11 and and CCONJ CC ConjType=Cmp 6 cc _ _ 12 an an DET DT Definite=Ind|PronType=Art 13 det _ _ 13 element element NOUN NN Number=Sing 6 conj _ _ 14 $ f $ $ f $ SYM $ _ 13 prep _ _ 15 of of ADP IN _ 14 prep _ _ 16 $ G $ $ g $ SYM $ _ 15 pobj _ _ 17 , , PUNCT , PunctType=Comm 24 punct _ _ 18 the the DET DT Definite=Def|PronType=Art 22 det _ _ 19 2 2 NUM CD NumType=Card 21 nummod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 categorical categorical ADJ JJ Degree=Pos 22 amod _ _ 22 trace trace NOUN NN Number=Sing 24 nsubj _ _ 23 $ Tr_2rho_f $ $ tr_2rho_f $ SYM $ _ 22 appos _ _ 24 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 25 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 26 category category NOUN NN Number=Sing 24 attr _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 24 punct _ SpaceAfter=No # sent_id = 4 # text = Moreover, the centralizer of $ f $ in $ G $ acts categorically on this 2 - categorical trace. 1 Moreover moreover ADV RB _ 9 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 9 punct _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 centralizer centralizer NOUN NN Number=Sing 9 nsubj _ _ 5 of of ADP IN _ 4 prep _ _ 6 $ f $ $ f $ SYM $ _ 5 pobj _ _ 7 in in ADP IN _ 4 prep _ _ 8 $ G $ $ g $ SYM $ _ 7 pobj _ _ 9 acts act VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 categorically categorically ADV RB _ 9 advmod _ _ 11 on on ADP IN _ 9 prep _ _ 12 this this DET DT Number=Sing|PronType=Dem 16 det _ _ 13 2 2 NUM CD NumType=Card 15 nummod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 categorical categorical ADJ JJ Degree=Pos 16 amod _ _ 16 trace trace NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 5 # text = We construct the induced strict 2 - categorical action of a finite group, and show that the 2 - categorical trace $ Tr_2 $ takes an induced strict 2 - categorical action into an induced categorical action of the initia groupoid. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 9 det _ _ 4 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 amod _ _ 5 strict strict ADJ JJ Degree=Pos 9 amod _ _ 6 2 2 NUM CD NumType=Card 8 nummod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 categorical categorical ADJ JJ Degree=Pos 9 amod _ _ 9 action action NOUN NN Number=Sing 2 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 finite finite ADJ JJ Degree=Pos 13 amod _ _ 13 group group NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 2 punct _ _ 15 and and CCONJ CC ConjType=Cmp 2 cc _ _ 16 show show VERB VBP Tense=Pres|VerbForm=Fin 2 conj _ _ 17 that that SCONJ IN _ 24 mark _ _ 18 the the DET DT Definite=Def|PronType=Art 22 det _ _ 19 2 2 NUM CD NumType=Card 21 nummod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 categorical categorical ADJ JJ Degree=Pos 22 amod _ _ 22 trace trace NOUN NN Number=Sing 24 nsubj _ _ 23 $ Tr_2 $ $ tr_2 $ SYM $ _ 22 appos _ _ 24 takes take VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 ccomp _ _ 25 an an DET DT Definite=Ind|PronType=Art 31 det _ _ 26 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 31 amod _ _ 27 strict strict ADJ JJ Degree=Pos 31 amod _ _ 28 2 2 NUM CD NumType=Card 30 nummod _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 categorical categorical ADJ JJ Degree=Pos 31 amod _ _ 31 action action NOUN NN Number=Sing 24 dobj _ _ 32 into into ADP IN _ 24 prep _ _ 33 an an DET DT Definite=Ind|PronType=Art 36 det _ _ 34 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 36 amod _ _ 35 categorical categorical ADJ JJ Degree=Pos 36 amod _ _ 36 action action NOUN NN Number=Sing 32 pobj _ _ 37 of of ADP IN _ 36 prep _ _ 38 the the DET DT Definite=Def|PronType=Art 40 det _ _ 39 initia initia NOUN NN Number=Sing 40 compound _ _ 40 groupoid groupoid NOUN NN Number=Sing 37 pobj _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = As a corollary, we get the 3 - character formula of the induced strict 2 - categorical action. 1 As as ADP IN _ 6 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 corollary corollary NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 get get VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 11 det _ _ 8 3 3 NUM CD NumType=Card 10 nummod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 character character NOUN NN Number=Sing 11 compound _ _ 11 formula formula NOUN NN Number=Sing 6 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 19 det _ _ 14 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 amod _ _ 15 strict strict ADJ JJ Degree=Pos 19 amod _ _ 16 2 2 NUM CD NumType=Card 18 nummod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 categorical categorical ADJ JJ Degree=Pos 19 amod _ _ 19 action action NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 511 # sent_id = 1 # text = It is well known that profinite $ T_0 $ - spaces are exactly the spectral spaces. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 well well ADV RB Degree=Pos 4 advmod _ _ 4 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 acomp _ _ 5 that that SCONJ IN _ 10 mark _ _ 6 profinite profinite VERB VBP Tense=Pres|VerbForm=Fin 10 csubj _ _ 7 $ T_0 $ $ t_0 $ SYM $ _ 9 compound _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 spaces space NOUN NNS Number=Plur 6 dobj _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 11 exactly exactly ADV RB _ 14 advmod _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 spectral spectral ADJ JJ Degree=Pos 14 amod _ _ 14 spaces space NOUN NNS Number=Plur 10 attr _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We generalize this result to the category of all topological spaces by showing that the following conditions are equivalent: (i) $ (X, tau) $ is a profinite topological space. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 generalize generalize VERB VBP Tense=Pres|VerbForm=Fin 25 ccomp _ _ 3 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 4 result result NOUN NN Number=Sing 2 dobj _ _ 5 to to ADP IN _ 2 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 category category NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 all all DET DT _ 11 det _ _ 10 topological topological ADJ JJ Degree=Pos 11 amod _ _ 11 spaces space NOUN NNS Number=Plur 8 pobj _ _ 12 by by ADP IN _ 2 prep _ _ 13 showing show VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 pcomp _ _ 14 that that SCONJ IN _ 18 mark _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 following follow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 17 amod _ _ 17 conditions condition NOUN NNS Number=Plur 18 nsubj _ _ 18 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 ccomp _ _ 19 equivalent equivalent ADJ JJ Degree=Pos 18 acomp _ SpaceAfter=No 20 : : PUNCT : _ 25 punct _ _ 21 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 25 punct _ SpaceAfter=No 22 i i NOUN NN Case=Nom|Number=Sing|Person=1|PronType=Prs 25 nsubj _ SpaceAfter=No 23 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 22 punct _ _ 24 $ (X, tau) $ $ (X, tau) $ PROPN NNP Number=Sing 25 nsubj _ _ 25 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 26 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 27 profinite profinite ADJ JJ Degree=Pos 29 amod _ _ 28 topological topological ADJ JJ Degree=Pos 29 amod _ _ 29 space space NOUN NN Number=Sing 25 attr _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 25 punct _ SpaceAfter=No # sent_id = 3 # text = (ii) The $ T_0 $ - reflection of $ (X, tau) $ is a profinite $ T_0 $ - space. 1 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 2 punct _ SpaceAfter=No 2 ii ii PROPN NNP Number=Sing 10 dep _ SpaceAfter=No 3 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 2 punct _ _ 4 The the DET DT Definite=Def|PronType=Art 7 det _ _ 5 $ T_0 $ $ t_0 $ SYM $ _ 7 nummod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 reflection reflection NOUN NN Number=Sing 10 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 $ (X, tau) $ $ (x, tau) $ SYM $ _ 8 pobj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 12 profinite profinite NOUN NN Number=Sing 15 amod _ _ 13 $ T_0 $ $ t_0 $ SYM $ _ 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 space space NOUN NN Number=Sing 10 attr _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 4 # text = (iii) $ (X, tau) $ is a quasi spectral space. 1 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 5 punct _ SpaceAfter=No 2 iii iii PROPN NNP Number=Sing 4 nmod _ SpaceAfter=No 3 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 4 punct _ _ 4 $ (X, tau) $ $ (X, tau) $ PROPN NNP Number=Sing 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 7 quasi quasi ADJ JJ Degree=Pos 9 amod _ _ 8 spectral spectral ADJ JJ Degree=Pos 9 amod _ _ 9 space space NOUN NN Number=Sing 5 attr _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 5 # text = (iv) $ (X, tau) $ admits a stronger Stone topology $ pi $ such that $ (X, tau, pi) $ is a bitopological quasi spectral space 1 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 5 punct _ SpaceAfter=No 2 iv iv PROPN NNP Number=Sing 5 meta _ SpaceAfter=No 3 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 5 punct _ _ 4 $ (X, tau) $ $ (X, tau) $ PROPN NNP Number=Sing 5 nsubj _ _ 5 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 7 stronger strong ADJ JJR Degree=Cmp 9 amod _ _ 8 Stone Stone PROPN NNP Number=Sing 9 compound _ _ 9 topology topology NOUN NN Number=Sing 5 dobj _ _ 10 $ pi $ $ pi $ SYM $ _ 9 appos _ _ 11 such such ADJ JJ Degree=Pos 10 amod _ _ 12 that that PRON DT Number=Sing|PronType=Dem 14 mark _ _ 13 $ (X, tau, pi) $ $ (X, tau, pi) $ PROPN NNP Number=Sing 14 nsubj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 ccomp _ _ 15 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 16 bitopological bitopological ADJ JJ Degree=Pos 19 amod _ _ 17 quasi quasi ADJ JJ Degree=Pos 19 amod _ _ 18 spectral spectral ADJ JJ Degree=Pos 19 amod _ _ 19 space space NOUN NN Number=Sing 14 attr _ SpaceAfter=No # doc_id = 512 # sent_id = 1 # text = We introduce the notion of mutation pairs in pseudo - triangulated categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 notion notion NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 mutation mutation NOUN NN Number=Sing 7 compound _ _ 7 pairs pair NOUN NNS Number=Plur 5 pobj _ _ 8 in in ADP IN _ 7 prep _ _ 9 pseudo pseudo NOUN NN Number=Sing 11 npadvmod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 triangulated triangulate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 12 categories category NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Given such a mutation pair, we prove that the corresponding quotient category carries a natural triangulated structure under certain conditions. 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 prep _ _ 2 such such DET PDT _ 5 predet _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 mutation mutation NOUN NN Number=Sing 5 compound _ _ 5 pair pair NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 8 punct _ _ 7 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 8 nsubj _ _ 8 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 that that SCONJ IN _ 14 mark _ _ 10 the the DET DT Definite=Def|PronType=Art 13 det _ _ 11 corresponding corresponding ADJ JJ Degree=Pos 13 amod _ _ 12 quotient quotient NOUN NN Number=Sing 13 compound _ _ 13 category category NOUN NN Number=Sing 14 nsubj _ _ 14 carries carry VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 ccomp _ _ 15 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 16 natural natural ADJ JJ Degree=Pos 17 advmod _ _ 17 triangulated triangulate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 amod _ _ 18 structure structure NOUN NN Number=Sing 14 dobj _ _ 19 under under ADP IN _ 14 prep _ _ 20 certain certain ADJ JJ Degree=Pos 21 amod _ _ 21 conditions condition NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 3 # text = This result unifies many previous constructions of quotient triangulated categories. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 result result NOUN NN Number=Sing 3 nsubj _ _ 3 unifies unify VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 many many ADJ JJ Degree=Pos 6 amod _ _ 5 previous previous ADJ JJ Degree=Pos 6 amod _ _ 6 constructions construction NOUN NNS Number=Plur 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 quotient quotient ADJ JJ Degree=Pos 10 amod _ _ 9 triangulated triangulate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 10 categories category NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 513 # sent_id = 1 # text = We survey the general theory of groupoids, groupoid actions, groupoid principal bundles, and various kinds of morphisms between groupoids in the framework of categories with pretopology. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 survey survey VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 general general ADJ JJ Degree=Pos 5 amod _ _ 5 theory theory NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 groupoids groupoid NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 5 punct _ _ 9 groupoid groupoid NOUN NN Number=Sing 10 compound _ _ 10 actions action NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 groupoid groupoid NOUN NN Number=Sing 10 acl _ _ 13 principal principal ADJ JJ Degree=Pos 14 amod _ _ 14 bundles bundle NOUN NNS Number=Plur 12 dobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 and and CCONJ CC ConjType=Cmp 14 cc _ _ 17 various various ADJ JJ Degree=Pos 18 amod _ _ 18 kinds kind NOUN NNS Number=Plur 14 conj _ _ 19 of of ADP IN _ 18 prep _ _ 20 morphisms morphism NOUN NNS Number=Plur 19 pobj _ _ 21 between between ADP IN _ 18 prep _ _ 22 groupoids groupoid NOUN NNS Number=Plur 21 pobj _ _ 23 in in ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 framework framework NOUN NN Number=Sing 23 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 categories category NOUN NNS Number=Plur 26 pobj _ _ 28 with with ADP IN _ 25 prep _ _ 29 pretopology pretopology NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The categories of topological spaces and finite or infinite dimensional manifolds are examples of such categories. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 categories category NOUN NNS Number=Plur 12 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 topological topological ADJ JJ Degree=Pos 5 amod _ _ 5 spaces space NOUN NNS Number=Plur 3 pobj _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 finite finite PROPN NNP Number=Sing 5 conj _ _ 8 or or CCONJ CC ConjType=Cmp 2 cc _ _ 9 infinite infinite VERB VB VerbForm=Inf 2 conj _ _ 10 dimensional dimensional ADJ JJ Degree=Pos 11 amod _ _ 11 manifolds manifold NOUN NNS Number=Plur 9 dobj _ _ 12 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 examples example NOUN NNS Number=Plur 12 attr _ _ 14 of of ADP IN _ 13 prep _ _ 15 such such ADJ JJ Degree=Pos 16 amod _ _ 16 categories category NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 3 # text = We study extra assumptions on pretopologies that are needed for this theory. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 extra extra ADJ JJ Degree=Pos 4 amod _ _ 4 assumptions assumption NOUN NNS Number=Plur 2 dobj _ _ 5 on on ADP IN _ 4 prep _ _ 6 pretopologies pretopologie NOUN NNS Number=Plur 5 pobj _ _ 7 that that PRON WDT PronType=Rel 9 nsubjpass _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 needed need VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 relcl _ _ 10 for for ADP IN _ 9 prep _ _ 11 this this DET DT Number=Sing|PronType=Dem 12 det _ _ 12 theory theory NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We check these extra assumptions in several categories with pretopologies. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 check check VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 these these DET DT Number=Plur|PronType=Dem 5 det _ _ 4 extra extra ADJ JJ Degree=Pos 5 amod _ _ 5 assumptions assumption NOUN NNS Number=Plur 2 dobj _ _ 6 in in ADP IN _ 5 prep _ _ 7 several several ADJ JJ Degree=Pos 8 amod _ _ 8 categories category NOUN NNS Number=Plur 6 pobj _ _ 9 with with ADP IN _ 8 prep _ _ 10 pretopologies pretopologie NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = Functors between groupoids may be localised at equivalences in two ways. 1 Functors functor NOUN NNS Number=Plur 6 nsubjpass _ _ 2 between between ADP IN _ 1 prep _ _ 3 groupoids groupoid NOUN NNS Number=Plur 2 pobj _ _ 4 may may AUX MD VerbForm=Fin 6 aux _ _ 5 be be AUX VB VerbForm=Inf 6 auxpass _ _ 6 localised localise VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 at at ADP IN _ 6 prep _ _ 8 equivalences equivalence NOUN NNS Number=Plur 7 pobj _ _ 9 in in ADP IN _ 6 prep _ _ 10 two two NUM CD NumType=Card 11 nummod _ _ 11 ways way NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 6 # text = One uses spans of functors, the other bibundles (commuting actions) of groupoids. 1 One one NUM CD NumType=Card 2 nsubj _ _ 2 uses use VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 spans span NOUN NNS Number=Plur 2 dobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 functors functor NOUN NNS Number=Plur 4 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 2 punct _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 other other ADJ JJ Degree=Pos 9 amod _ _ 9 bibundles bibundle NOUN NNS Number=Plur 2 dobj _ _ 10 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 9 punct _ SpaceAfter=No 11 commuting commute VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 amod _ _ 12 actions action NOUN NNS Number=Plur 9 appos _ SpaceAfter=No 13 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 12 punct _ _ 14 of of ADP IN _ 12 prep _ _ 15 groupoids groupoid NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 7 # text = We show that both approaches give equivalent bicategories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 6 mark _ _ 4 both both DET DT _ 5 det _ _ 5 approaches approach NOUN NNS Number=Plur 6 nsubj _ _ 6 give give VERB VBP Tense=Pres|VerbForm=Fin 2 ccomp _ _ 7 equivalent equivalent ADJ JJ Degree=Pos 8 amod _ _ 8 bicategories bicategorie NOUN NNS Number=Plur 6 dobj _ SpaceAfter=No 9 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 8 # text = Another type of groupoid morphism, called an actor, is closely related to functors between the categories of groupoid actions. 1 Another another DET DT _ 2 det _ _ 2 type type NOUN NN Number=Sing 11 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 groupoid groupoid NOUN NN Number=Sing 5 compound _ _ 5 morphism morphism NOUN NN Number=Sing 3 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 2 punct _ _ 7 called call VERB VBD Tense=Past|VerbForm=Fin 2 acl _ _ 8 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 9 actor actor NOUN NN Number=Sing 7 oprd _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 2 punct _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 closely closely ADV RB _ 13 advmod _ _ 13 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 acomp _ _ 14 to to ADP IN _ 13 prep _ _ 15 functors functor NOUN NNS Number=Plur 14 pobj _ _ 16 between between ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 categories category NOUN NNS Number=Plur 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 groupoid groupoid NOUN NN Number=Sing 21 compound _ _ 21 actions action NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 9 # text = We also generalise actors using bibundles, and show that this gives another bicategory of groupoids. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 generalise generalise VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 actors actor NOUN NNS Number=Plur 3 dobj _ _ 5 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 acl _ _ 6 bibundles bibundle NOUN NNS Number=Plur 5 dobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 3 punct _ _ 8 and and CCONJ CC ConjType=Cmp 3 cc _ _ 9 show show VERB VBP Tense=Pres|VerbForm=Fin 3 conj _ _ 10 that that SCONJ IN _ 12 mark _ _ 11 this this PRON DT Number=Sing|PronType=Dem 12 nsubj _ _ 12 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 ccomp _ _ 13 another another DET DT _ 14 det _ _ 14 bicategory bicategory NOUN NN Number=Sing 12 dobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 groupoids groupoid NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 514 # sent_id = 1 # text = We call a finitely complete category algebraically coherent if the change - of - base functors of its fibration of points are coherent, which means that they preserve finite limits and jointly strongly epimorphic pairs of arrows. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 call call VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 4 finitely finitely ADV RB _ 5 advmod _ _ 5 complete complete ADJ JJ Degree=Pos 6 amod _ _ 6 category category NOUN NN Number=Sing 2 dobj _ _ 7 algebraically algebraically ADV RB _ 8 advmod _ _ 8 coherent coherent ADJ JJ Degree=Pos 2 oprd _ _ 9 if if SCONJ IN _ 22 mark _ _ 10 the the DET DT Definite=Def|PronType=Art 16 det _ _ 11 change change NOUN NN Number=Sing 16 nmod _ _ 12 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 13 of of ADP IN _ 11 prep _ _ 14 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 15 base base NOUN NN Number=Sing 13 pobj _ _ 16 functors functor NOUN NNS Number=Plur 22 nsubj _ _ 17 of of ADP IN _ 16 prep _ _ 18 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 19 poss _ _ 19 fibration fibration NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 points point NOUN NNS Number=Plur 20 pobj _ _ 22 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 advcl _ _ 23 coherent coherent ADJ JJ Degree=Pos 22 acomp _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 22 punct _ _ 25 which which PRON WDT _ 26 nsubj _ _ 26 means mean VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 advcl _ _ 27 that that SCONJ IN _ 29 mark _ _ 28 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 29 nsubj _ _ 29 preserve preserve VERB VBP Tense=Pres|VerbForm=Fin 26 ccomp _ _ 30 finite finite ADJ JJ Degree=Pos 31 compound _ _ 31 limits limit NOUN NNS Number=Plur 29 dobj _ _ 32 and and CCONJ CC ConjType=Cmp 29 cc _ _ 33 jointly jointly ADV RB _ 35 advmod _ _ 34 strongly strongly ADV RB _ 35 advmod _ _ 35 epimorphic epimorphic ADJ JJ Degree=Pos 36 amod _ _ 36 pairs pair NOUN NNS Number=Plur 29 dobj _ _ 37 of of ADP IN _ 36 prep _ _ 38 arrows arrow NOUN NNS Number=Plur 37 pobj _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We give examples of categories satisfying this condition; for instance, coherent categories and categories of interest in the sense of Orzech. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 examples example NOUN NNS Number=Plur 2 dobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 categories category NOUN NNS Number=Plur 4 pobj _ _ 6 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 acl _ _ 7 this this DET DT Number=Sing|PronType=Dem 8 det _ _ 8 condition condition NOUN NN Number=Sing 6 dobj _ SpaceAfter=No 9 ; ; PUNCT : _ 2 punct _ _ 10 for for ADP IN _ 2 prep _ _ 11 instance instance NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 10 punct _ _ 13 coherent coherent ADJ JJ Degree=Pos 14 amod _ _ 14 categories category NOUN NNS Number=Plur 10 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 categories category NOUN NNS Number=Plur 14 conj _ _ 17 of of ADP IN _ 16 prep _ _ 18 interest interest NOUN NN Number=Sing 17 pobj _ _ 19 in in ADP IN _ 14 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 sense sense NOUN NN Number=Sing 19 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 Orzech Orzech PROPN NNP Number=Sing 22 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We study equivalent conditions in the context of semi - abelian categories, as well as some of its consequences: including amongst others, strong protomodularity, and normality of Higgins commutators for normal subobjects, and in the varietal case, fibre - wise algebraic cartesian closedness. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 equivalent equivalent ADJ JJ Degree=Pos 4 amod _ _ 4 conditions condition NOUN NNS Number=Plur 2 dobj _ _ 5 in in ADP IN _ 2 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 context context NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 semi semi ADJ JJ Degree=Pos 12 amod _ _ 10 - - ADJ JJ Degree=Pos 12 amod _ _ 11 abelian abelian ADJ JJ Degree=Pos 12 amod _ _ 12 categories category NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 2 punct _ _ 14 as as ADV RB _ 16 advmod _ _ 15 well well ADV RB Degree=Pos 16 advmod _ _ 16 as as ADP IN _ 2 cc _ _ 17 some some PRON DT _ 2 dobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 20 poss _ _ 20 consequences consequence NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 21 : : PUNCT : _ 17 punct _ _ 22 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 17 acl _ _ 23 amongst amongst ADP IN _ 22 prep _ _ 24 others other NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 strong strong ADJ JJ Degree=Pos 27 amod _ _ 27 protomodularity protomodularity NOUN NN Number=Sing 24 conj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 27 punct _ _ 29 and and CCONJ CC ConjType=Cmp 27 cc _ _ 30 normality normality NOUN NN Number=Sing 27 conj _ _ 31 of of ADP IN _ 30 prep _ _ 32 Higgins Higgins PROPN NNP Number=Sing 33 compound _ _ 33 commutators commutator NOUN NNS Number=Plur 31 pobj _ _ 34 for for ADP IN _ 30 prep _ _ 35 normal normal ADJ JJ Degree=Pos 36 amod _ _ 36 subobjects subobject NOUN NNS Number=Plur 34 pobj _ SpaceAfter=No 37 , , PUNCT , PunctType=Comm 22 punct _ _ 38 and and CCONJ CC ConjType=Cmp 22 cc _ _ 39 in in ADP IN _ 49 prep _ _ 40 the the DET DT Definite=Def|PronType=Art 42 det _ _ 41 varietal varietal ADJ JJ Degree=Pos 42 amod _ _ 42 case case NOUN NN Number=Sing 39 pobj _ SpaceAfter=No 43 , , PUNCT , PunctType=Comm 49 punct _ _ 44 fibre fibre NOUN NN Number=Sing 46 npadvmod _ _ 45 - - PUNCT HYPH PunctType=Dash 46 punct _ _ 46 wise wise ADJ JJ Degree=Pos 49 amod _ _ 47 algebraic algebraic ADJ JJ Degree=Pos 49 amod _ _ 48 cartesian cartesian NOUN NN Number=Sing 49 compound _ _ 49 closedness closedness NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 50 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 515 # sent_id = 1 # text = In this paper, we use the language of operads to study open dynamical systems. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 language language NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 operads operad NOUN NNS Number=Plur 9 pobj _ _ 11 to to PART TO _ 12 aux _ _ 12 study study VERB VB VerbForm=Inf 6 xcomp _ _ 13 open open ADJ JJ Degree=Pos 15 amod _ _ 14 dynamical dynamical ADJ JJ Degree=Pos 15 amod _ _ 15 systems system NOUN NNS Number=Plur 12 dobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = More specifically, we study the algebraic nature of assembling complex dynamical systems from an interconnection of simpler ones. 1 More more ADV RBR Degree=Cmp 2 advmod _ _ 2 specifically specifically ADV RB _ 5 advmod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 algebraic algebraic ADJ JJ Degree=Pos 8 amod _ _ 8 nature nature NOUN NN Number=Sing 5 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 assembling assemble VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 pcomp _ _ 11 complex complex ADJ JJ Degree=Pos 13 amod _ _ 12 dynamical dynamical ADJ JJ Degree=Pos 13 amod _ _ 13 systems system NOUN NNS Number=Plur 10 dobj _ _ 14 from from ADP IN _ 10 prep _ _ 15 an an DET DT Definite=Ind|PronType=Art 16 det _ _ 16 interconnection interconnection NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 simpler simple ADJ JJR Degree=Cmp 19 amod _ _ 19 ones one NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = The syntactic architecture of such interconnections is encoded using the visual language of wiring diagrams. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 syntactic syntactic ADJ JJ Degree=Pos 3 amod _ _ 3 architecture architecture NOUN NN Number=Sing 8 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 such such ADJ JJ Degree=Pos 6 amod _ _ 6 interconnections interconnection NOUN NNS Number=Plur 4 pobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 encoded encode VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 xcomp _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 visual visual ADJ JJ Degree=Pos 12 amod _ _ 12 language language NOUN NN Number=Sing 9 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 wiring wiring NOUN NN Number=Sing 15 compound _ _ 15 diagrams diagram NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 4 # text = We define the symmetric monoidal category $ W $ , from which we may construct an operad $ OW $ , whose objects are black boxes with input and output ports, and whose morphisms are wiring diagrams, thus prescribing the algebraic rules for interconnection. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 6 det _ _ 4 symmetric symmetric ADJ JJ Degree=Pos 6 amod _ _ 5 monoidal monoidal ADJ JJ Degree=Pos 6 amod _ _ 6 category category NOUN NN Number=Sing 2 dobj _ _ 7 $ W $ $ w $ SYM $ _ 6 appos _ _ 8 , , PUNCT , PunctType=Comm 6 punct _ _ 9 from from ADP IN _ 13 prep _ _ 10 which which PRON WDT _ 9 pobj _ _ 11 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 12 may may AUX MD VerbForm=Fin 13 aux _ _ 13 construct construct VERB VB VerbForm=Inf 6 relcl _ _ 14 an an DET DT Definite=Ind|PronType=Art 16 det _ _ 15 operad operad ADJ JJ Degree=Pos 16 amod _ _ 16 $ OW $ $ ow $ SYM $ _ 13 dobj _ _ 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 whose whose DET WP$ Poss=Yes 19 poss _ _ 19 objects object NOUN NNS Number=Plur 20 nsubj _ _ 20 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 16 relcl _ _ 21 black black ADJ JJ Degree=Pos 22 amod _ _ 22 boxes box NOUN NNS Number=Plur 20 attr _ _ 23 with with ADP IN _ 22 prep _ _ 24 input input NOUN NN Number=Sing 27 nmod _ _ 25 and and CCONJ CC ConjType=Cmp 24 cc _ _ 26 output output NOUN NN Number=Sing 24 conj _ _ 27 ports port NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 13 punct _ _ 29 and and CCONJ CC ConjType=Cmp 13 cc _ _ 30 whose whose DET WP$ Poss=Yes 31 poss _ _ 31 morphisms morphism NOUN NNS Number=Plur 33 nsubj _ _ 32 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 33 aux _ _ 33 wiring wiring NOUN NN Number=Sing 34 compound _ _ 34 diagrams diagram NOUN NNS Number=Plur 13 conj _ SpaceAfter=No 35 , , PUNCT , PunctType=Comm 13 punct _ _ 36 thus thus ADV RB _ 37 advmod _ _ 37 prescribing prescribe VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 advcl _ _ 38 the the DET DT Definite=Def|PronType=Art 40 det _ _ 39 algebraic algebraic ADJ JJ Degree=Pos 40 amod _ _ 40 rules rule NOUN NNS Number=Plur 37 dobj _ _ 41 for for ADP IN _ 40 prep _ _ 42 interconnection interconnection NOUN NN Number=Sing 41 pobj _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = We then define two $ W $ - algebras} $ G $ and $ L $ , which associate semantic content to the structures in $ W $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 two two NUM CD NumType=Card 7 nummod _ _ 5 $ W $ $ w $ SYM $ _ 7 nmod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 algebras algebra NOUN NNS Number=Plur 3 dobj _ SpaceAfter=No 8 } } PUNCT -RRB- PunctSide=Fin|PunctType=Brck 7 punct _ _ 9 $ G $ $ g $ SYM $ _ 7 appos _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 $ L $ $ l $ SYM $ _ 9 conj _ _ 12 , , PUNCT , PunctType=Comm 7 punct _ _ 13 which which PRON WDT _ 14 nsubj _ _ 14 associate associate VERB VBP Tense=Pres|VerbForm=Fin 7 relcl _ _ 15 semantic semantic ADJ JJ Degree=Pos 16 amod _ _ 16 content content NOUN NN Number=Sing 14 dobj _ _ 17 to to ADP IN _ 14 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 structures structure NOUN NNS Number=Plur 17 pobj _ _ 20 in in ADP IN _ 19 prep _ _ 21 $ W $ $ w $ SYM $ _ 20 pobj _ _ 22 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = Respectively, they correspond to general and to linear systems of differential equations, in which an internal state is controlled by inputs and produces outputs. 1 Respectively respectively ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 4 nsubj _ _ 4 correspond correspond VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 to to ADP IN _ 4 prep _ _ 6 general general ADJ JJ Degree=Pos 5 amod _ _ 7 and and CCONJ CC ConjType=Cmp 5 cc _ _ 8 to to ADP IN _ 5 conj _ _ 9 linear linear ADJ JJ Degree=Pos 10 compound _ _ 10 systems system NOUN NNS Number=Plur 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 differential differential ADJ JJ Degree=Pos 13 amod _ _ 13 equations equation NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 10 punct _ _ 15 in in ADP IN _ 21 prep _ _ 16 which which PRON WDT _ 15 pobj _ _ 17 an an DET DT Definite=Ind|PronType=Art 19 det _ _ 18 internal internal ADJ JJ Degree=Pos 19 amod _ _ 19 state state NOUN NN Number=Sing 21 nsubjpass _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 21 auxpass _ _ 21 controlled control VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 relcl _ _ 22 by by ADP IN _ 21 agent _ _ 23 inputs input NOUN NNS Number=Plur 22 pobj _ _ 24 and and CCONJ CC ConjType=Cmp 21 cc _ _ 25 produces produce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 21 conj _ _ 26 outputs output NOUN NNS Number=Plur 25 dobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 7 # text = As an example, we use these algebras to formalize the classical problem of systems of tanks interconnected by pipes, and hence make explicit the algebraic relationships among systems at different levels of granularity. 1 As as ADP IN _ 6 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 example example NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 these these DET DT Number=Plur|PronType=Dem 8 det _ _ 8 algebras algebra NOUN NNS Number=Plur 6 dobj _ _ 9 to to PART TO _ 10 aux _ _ 10 formalize formalize VERB VB VerbForm=Inf 6 xcomp _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 classical classical ADJ JJ Degree=Pos 13 amod _ _ 13 problem problem NOUN NN Number=Sing 10 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 systems system NOUN NNS Number=Plur 14 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 tanks tank NOUN NNS Number=Plur 16 pobj _ _ 18 interconnected interconnect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 acl _ _ 19 by by ADP IN _ 18 agent _ _ 20 pipes pipe NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 6 punct _ _ 22 and and CCONJ CC ConjType=Cmp 6 cc _ _ 23 hence hence ADV RB _ 24 advmod _ _ 24 make make VERB VBP Tense=Pres|VerbForm=Fin 6 conj _ _ 25 explicit explicit ADJ JJ Degree=Pos 24 ccomp _ _ 26 the the DET DT Definite=Def|PronType=Art 28 det _ _ 27 algebraic algebraic ADJ JJ Degree=Pos 28 amod _ _ 28 relationships relationship NOUN NNS Number=Plur 25 dobj _ _ 29 among among ADP IN _ 28 prep _ _ 30 systems system NOUN NNS Number=Plur 29 pobj _ _ 31 at at ADP IN _ 30 prep _ _ 32 different different ADJ JJ Degree=Pos 33 amod _ _ 33 levels level NOUN NNS Number=Plur 31 pobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 granularity granularity NOUN NN Number=Sing 34 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 516 # sent_id = 1 # text = Inspired by recent work of Batanin and Berger on the homotopy theory of operads, a general monad - theoretic context for speaking about structures within structures is presented, and the problem of constructing the universal ambient structure containing the prescribed internal structure is studied. 1 Inspired inspire VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 advcl _ _ 2 by by ADP IN _ 1 agent _ _ 3 recent recent ADJ JJ Degree=Pos 4 amod _ _ 4 work work NOUN NN Number=Sing 2 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 Batanin Batanin PROPN NNP Number=Sing 5 pobj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 Berger Berger PROPN NNP Number=Sing 6 conj _ _ 9 on on ADP IN _ 4 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 homotopy homotopy NOUN NN Number=Sing 12 compound _ _ 12 theory theory NOUN NN Number=Sing 9 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 operads operad NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 29 punct _ _ 16 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 17 general general ADJ JJ Degree=Pos 21 amod _ _ 18 monad monad NOUN NNS Number=Plur 20 npadvmod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 theoretic theoretic ADJ JJ Degree=Pos 21 amod _ _ 21 context context NOUN NN Number=Sing 29 nsubjpass _ _ 22 for for ADP IN _ 21 prep _ _ 23 speaking speak VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 pcomp _ _ 24 about about ADP IN _ 23 prep _ _ 25 structures structure NOUN NNS Number=Plur 29 nsubjpass _ _ 26 within within ADP IN _ 25 prep _ _ 27 structures structure NOUN NNS Number=Plur 26 pobj _ _ 28 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 29 auxpass _ _ 29 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 29 punct _ _ 31 and and CCONJ CC ConjType=Cmp 29 cc _ _ 32 the the DET DT Definite=Def|PronType=Art 33 det _ _ 33 problem problem NOUN NN Number=Sing 46 nsubjpass _ _ 34 of of ADP IN _ 33 prep _ _ 35 constructing construct VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 34 pcomp _ _ 36 the the DET DT Definite=Def|PronType=Art 39 det _ _ 37 universal universal ADJ JJ Degree=Pos 39 amod _ _ 38 ambient ambient ADJ JJ Degree=Pos 39 amod _ _ 39 structure structure NOUN NN Number=Sing 35 dobj _ _ 40 containing contain VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 39 acl _ _ 41 the the DET DT Definite=Def|PronType=Art 44 det _ _ 42 prescribed prescribed ADJ JJ Degree=Pos 44 amod _ _ 43 internal internal ADJ JJ Degree=Pos 44 amod _ _ 44 structure structure NOUN NN Number=Sing 40 dobj _ _ 45 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 46 auxpass _ _ 46 studied study VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 conj _ SpaceAfter=No 47 . . PUNCT . PunctType=Peri 46 punct _ SpaceAfter=No # sent_id = 2 # text = Following the work of Lack, these universal objects must be constructed from simplicial objects arising from our monad - theoretic framework, as certain 2 - categorical colimits called codescent objects. 1 Following follow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 work work NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 Lack Lack PROPN NNP Number=Sing 4 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 12 punct _ _ 7 these these DET DT Number=Plur|PronType=Dem 9 det _ _ 8 universal universal ADJ JJ Degree=Pos 9 amod _ _ 9 objects object NOUN NNS Number=Plur 12 nsubjpass _ _ 10 must must AUX MD VerbForm=Fin 12 aux _ _ 11 be be AUX VB VerbForm=Inf 12 auxpass _ _ 12 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 13 from from ADP IN _ 12 prep _ _ 14 simplicial simplicial ADJ JJ Degree=Pos 15 amod _ _ 15 objects object NOUN NNS Number=Plur 13 pobj _ _ 16 arising arise VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 acl _ _ 17 from from ADP IN _ 16 prep _ _ 18 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 22 poss _ _ 19 monad monad NOUN NNS Number=Plur 21 npadvmod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 theoretic theoretic NOUN NN Number=Sing 22 amod _ _ 22 framework framework NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 12 punct _ _ 24 as as SCONJ IN _ 30 mark _ _ 25 certain certain ADJ JJ Degree=Pos 29 amod _ _ 26 2 2 NUM CD NumType=Card 28 nummod _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 categorical categorical ADJ JJ Degree=Pos 29 amod _ _ 29 colimits colimit NOUN NNS Number=Plur 30 nsubj _ _ 30 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 advcl _ _ 31 codescent codescent NOUN NN Number=Sing 32 compound _ _ 32 objects object NOUN NNS Number=Plur 30 oprd _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 3 # text = We isolate the extra structure present on these simplicial objects which enable their codescent objects to be computed. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 isolate isolate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 extra extra ADJ JJ Degree=Pos 5 amod _ _ 5 structure structure NOUN NN Number=Sing 2 dobj _ _ 6 present present ADJ JJ Degree=Pos 5 amod _ _ 7 on on ADP IN _ 6 prep _ _ 8 these these DET DT Number=Plur|PronType=Dem 10 det _ _ 9 simplicial simplicial ADJ JJ Degree=Pos 10 amod _ _ 10 objects object NOUN NNS Number=Plur 7 pobj _ _ 11 which which PRON WDT _ 12 nsubj _ _ 12 enable enable VERB VBP Tense=Pres|VerbForm=Fin 10 relcl _ _ 13 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 15 poss _ _ 14 codescent codescent NOUN NN Number=Sing 15 compound _ _ 15 objects object NOUN NNS Number=Plur 12 dobj _ _ 16 to to PART TO _ 18 aux _ _ 17 be be AUX VB VerbForm=Inf 18 auxpass _ _ 18 computed compute VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 xcomp _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = These are the crossed internal categories of the title, and generalise the crossed simplicial groups of Loday and Fiedorowicz. 1 These these PRON DT Number=Plur|PronType=Dem 2 nsubj _ _ 2 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 6 det _ _ 4 crossed crossed ADJ JJ Degree=Pos 6 amod _ _ 5 internal internal ADJ JJ Degree=Pos 6 amod _ _ 6 categories category NOUN NNS Number=Plur 2 attr _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 title title NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 2 punct _ _ 11 and and CCONJ CC ConjType=Cmp 2 cc _ _ 12 generalise generalise VERB VB VerbForm=Inf 2 conj _ _ 13 the the DET DT Definite=Def|PronType=Art 16 det _ _ 14 crossed cross VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 15 simplicial simplicial ADJ JJ Degree=Pos 16 amod _ _ 16 groups group NOUN NNS Number=Plur 12 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 Loday Loday PROPN NNP Number=Sing 17 pobj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 Fiedorowicz Fiedorowicz PROPN NNP Number=Sing 18 conj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = The most general results of this article are concerned with how to compute such codescent objects in 2 - categories of internal categories, and on isolating conditions on the monad - theoretic situation which enable these results to apply. 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 most most ADV RBS Degree=Sup 3 advmod _ _ 3 general general ADJ JJ Degree=Pos 4 amod _ _ 4 results result NOUN NNS Number=Plur 9 nsubjpass _ _ 5 of of ADP IN _ 4 prep _ _ 6 this this DET DT Number=Sing|PronType=Dem 7 det _ _ 7 article article NOUN NN Number=Sing 5 pobj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 concerned concern VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 with with ADP IN _ 9 prep _ _ 11 how how SCONJ WRB _ 13 advmod _ _ 12 to to PART TO _ 13 aux _ _ 13 compute compute VERB VB VerbForm=Inf 10 pcomp _ _ 14 such such ADJ JJ Degree=Pos 16 amod _ _ 15 codescent codescent NOUN NN Number=Sing 16 compound _ _ 16 objects object NOUN NNS Number=Plur 13 dobj _ _ 17 in in ADP IN _ 13 prep _ _ 18 2 2 NUM CD NumType=Card 20 nummod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 categories category NOUN NNS Number=Plur 17 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 internal internal ADJ JJ Degree=Pos 23 amod _ _ 23 categories category NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 9 punct _ _ 25 and and CCONJ CC ConjType=Cmp 9 cc _ _ 26 on on ADP IN _ 9 conj _ _ 27 isolating isolate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 26 pcomp _ _ 28 conditions condition NOUN NNS Number=Plur 27 dobj _ _ 29 on on ADP IN _ 28 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 34 det _ _ 31 monad monad NOUN NNS Number=Plur 33 npadvmod _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 theoretic theoretic ADJ JJ Degree=Pos 34 amod _ _ 34 situation situation NOUN NN Number=Sing 29 pobj _ _ 35 which which PRON WDT _ 36 nsubj _ _ 36 enable enable VERB VBP Tense=Pres|VerbForm=Fin 34 relcl _ _ 37 these these DET DT Number=Plur|PronType=Dem 38 det _ _ 38 results result NOUN NNS Number=Plur 36 dobj _ _ 39 to to PART TO _ 40 aux _ _ 40 apply apply VERB VB VerbForm=Inf 36 xcomp _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 6 # text = Combined with earlier work of the author in which operads are seen as polynomial 2 - monads, our results are then applied to the theory of non - symmetric, symmetric and braided operads. 1 Combined combine VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 advcl _ _ 2 with with ADP IN _ 1 prep _ _ 3 earlier early ADJ JJR Degree=Cmp 4 amod _ _ 4 work work NOUN NN Number=Sing 2 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 author author NOUN NN Number=Sing 5 pobj _ _ 8 in in ADP IN _ 12 prep _ _ 9 which which PRON WDT _ 8 pobj _ _ 10 operads operad NOUN NNS Number=Plur 12 nsubjpass _ _ 11 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 12 seen see VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 relcl _ _ 13 as as ADP IN _ 12 prep _ _ 14 polynomial polynomial ADJ JJ Degree=Pos 17 amod _ _ 15 2 2 NUM CD NumType=Card 17 nummod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 monads monad NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 23 punct _ _ 19 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 20 poss _ _ 20 results result NOUN NNS Number=Plur 23 nsubjpass _ _ 21 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 23 auxpass _ _ 22 then then ADV RB PronType=Dem 23 advmod _ _ 23 applied apply VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 24 to to ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 theory theory NOUN NN Number=Sing 24 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 non non ADJ JJ Degree=Pos 30 amod _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 symmetric symmetric ADJ JJ Degree=Pos 35 amod _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 30 punct _ _ 32 symmetric symmetric ADJ JJ Degree=Pos 35 amod _ _ 33 and and CCONJ CC ConjType=Cmp 32 cc _ _ 34 braided braid VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 conj _ _ 35 operads operad NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 23 punct _ SpaceAfter=No # sent_id = 7 # text = In particular, the well - known construction of a PROP from an operad is recovered, as an illustration of our techniques. 1 In in ADP IN _ 16 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 16 punct _ _ 4 the the DET DT Definite=Def|PronType=Art 8 det _ _ 5 well well ADV RB Degree=Pos 7 advmod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 8 construction construction NOUN NN Number=Sing 16 nsubjpass _ _ 9 of of ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 PROP prop NOUN NN Number=Sing 9 pobj _ _ 12 from from ADP IN _ 8 prep _ _ 13 an an DET DT Definite=Ind|PronType=Art 14 det _ _ 14 operad operad NOUN NN Number=Sing 12 pobj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 auxpass _ _ 16 recovered recover VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 as as ADP IN _ 16 prep _ _ 19 an an DET DT Definite=Ind|PronType=Art 20 det _ _ 20 illustration illustration NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 23 poss _ _ 23 techniques technique NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # doc_id = 517 # sent_id = 1 # text = We show that the category of abstract elementary classes and concrete functors is closed under constructions of ``limit type, " which generalizes the approach of Mariano, Zambrano and Villaveces away from the syntactically oriented framework of institutions. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 14 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 14 nsubjpass _ _ 6 of of ADP IN _ 5 prep _ _ 7 abstract abstract ADJ JJ Degree=Pos 9 amod _ _ 8 elementary elementary ADJ JJ Degree=Pos 9 compound _ _ 9 classes class NOUN NNS Number=Plur 6 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 concrete concrete ADJ JJ Degree=Pos 12 amod _ _ 12 functors functor NOUN NNS Number=Plur 9 conj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 15 under under ADP IN _ 14 prep _ _ 16 constructions construction NOUN NNS Number=Plur 15 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 17 punct _ SpaceAfter=No 19 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 17 punct _ SpaceAfter=No 20 limit limit VERB VB VerbForm=Inf 21 compound _ _ 21 type type NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 " " PUNCT '' PunctSide=Fin|PunctType=Quot 21 punct _ _ 24 which which PRON WDT _ 25 nsubj _ _ 25 generalizes generalize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 21 relcl _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 approach approach NOUN NN Number=Sing 25 dobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 Mariano Mariano PROPN NNP Number=Sing 28 pobj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 29 punct _ _ 31 Zambrano Zambrano PROPN NNP Number=Sing 29 conj _ _ 32 and and CCONJ CC ConjType=Cmp 31 cc _ _ 33 Villaveces Villaveces PROPN NNPS Number=Plur 31 conj _ _ 34 away away ADV RB _ 25 advmod _ _ 35 from from ADP IN _ 34 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 39 det _ _ 37 syntactically syntactically ADV RB _ 38 advmod _ _ 38 oriented orient VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 39 amod _ _ 39 framework framework NOUN NN Number=Sing 35 pobj _ _ 40 of of ADP IN _ 39 prep _ _ 41 institutions institution NOUN NNS Number=Plur 40 pobj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Moreover, we provide a broader view of this closure phenomenon, considering a variety of categories of accessible categories with additional structure, and relaxing the assumption that the morphisms be concrete functors. 1 Moreover moreover ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 broader broad ADJ JJR Degree=Cmp 7 amod _ _ 7 view view NOUN NN Number=Sing 4 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 this this DET DT Number=Sing|PronType=Dem 11 det _ _ 10 closure closure NOUN NN Number=Sing 11 amod _ _ 11 phenomenon phenomenon NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 4 punct _ _ 13 considering consider VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 advcl _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 variety variety NOUN NN Number=Sing 13 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 categories category NOUN NNS Number=Plur 16 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 accessible accessible ADJ JJ Degree=Pos 20 amod _ _ 20 categories category NOUN NNS Number=Plur 18 pobj _ _ 21 with with ADP IN _ 15 prep _ _ 22 additional additional ADJ JJ Degree=Pos 23 amod _ _ 23 structure structure NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 13 punct _ _ 25 and and CCONJ CC ConjType=Cmp 13 cc _ _ 26 relaxing relax VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 conj _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 assumption assumption NOUN NN Number=Sing 26 dobj _ _ 29 that that SCONJ IN _ 32 mark _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 morphisms morphism NOUN NNS Number=Plur 32 nsubj _ _ 32 be be AUX VB VerbForm=Inf 28 acl _ _ 33 concrete concrete ADJ JJ Degree=Pos 34 amod _ _ 34 functors functor NOUN NNS Number=Plur 32 attr _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 518 # sent_id = 1 # text = In this article we give a construction of a polynomial 2 - monad from an operad and describe the algebras of the 2 - monads which then arise. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 article article NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 construction construction NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 10 polynomial polynomial ADJ JJ Degree=Pos 13 amod _ _ 11 2 2 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 monad monad NOUN NNS Number=Plur 8 pobj _ _ 14 from from ADP IN _ 5 prep _ _ 15 an an DET DT Definite=Ind|PronType=Art 16 det _ _ 16 operad operad NOUN NN Number=Sing 14 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 5 cc _ _ 18 describe describe VERB VB VerbForm=Inf 5 conj _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 algebras algebra NOUN NNS Number=Plur 18 dobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 25 det _ _ 23 2 2 NUM CD NumType=Card 25 nummod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 monads monad NOUN NNS Number=Plur 21 pobj _ _ 26 which which PRON WDT _ 28 nsubj _ _ 27 then then ADV RB PronType=Dem 28 advmod _ _ 28 arise arise VERB VBP Tense=Pres|VerbForm=Fin 25 relcl _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = This construction is different from the standard construction of a monad from an operad in that the algebras of our associated 2 - monad are the categorified algebras of the original operad. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 construction construction NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 different different ADJ JJ Degree=Pos 3 acomp _ _ 5 from from ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 standard standard ADJ JJ Degree=Pos 8 amod _ _ 8 construction construction NOUN NN Number=Sing 5 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 monad monad NOUN NNS Number=Plur 9 pobj _ _ 12 from from ADP IN _ 11 prep _ _ 13 an an DET DT Definite=Ind|PronType=Art 14 det _ _ 14 operad operad NOUN NN Number=Sing 12 pobj _ _ 15 in in SCONJ IN _ 25 mark _ _ 16 that that SCONJ IN _ 25 mark _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 algebras algebra NOUN NNS Number=Plur 25 nsubj _ _ 19 of of ADP IN _ 18 prep _ _ 20 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 24 poss _ _ 21 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 22 2 2 NUM CD NumType=Card 24 nummod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 monad monad NOUN NNS Number=Plur 19 pobj _ _ 25 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 advcl _ _ 26 the the DET DT Definite=Def|PronType=Art 28 det _ _ 27 categorified categorified ADJ JJ Degree=Pos 28 amod _ _ 28 algebras algebra NOUN NNS Number=Plur 25 attr _ _ 29 of of ADP IN _ 28 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 32 det _ _ 31 original original ADJ JJ Degree=Pos 32 amod _ _ 32 operad operad NOUN NN Number=Sing 29 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = Moreover it enables us to characterise operads as categorical polynomial monads in a canonical way. 1 Moreover moreover ADV RB _ 3 advmod _ _ 2 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubj _ _ 3 enables enable VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 3 dobj _ _ 5 to to PART TO _ 6 aux _ _ 6 characterise characterise VERB VB VerbForm=Inf 3 xcomp _ _ 7 operads operad NOUN NNS Number=Plur 6 dobj _ _ 8 as as ADP IN _ 6 prep _ _ 9 categorical categorical ADJ JJ Degree=Pos 11 amod _ _ 10 polynomial polynomial ADJ JJ Degree=Pos 11 amod _ _ 11 monads monad NOUN NNS Number=Plur 8 pobj _ _ 12 in in ADP IN _ 6 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 canonical canonical ADJ JJ Degree=Pos 15 amod _ _ 15 way way NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = This point of view reveals categorical polynomial monads as a unifying environment for operads, $ Cat $ - operads and clubs. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 point point NOUN NN Number=Sing 5 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 view view NOUN NN Number=Sing 3 pobj _ _ 5 reveals reveal VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 categorical categorical ADJ JJ Degree=Pos 8 amod _ _ 7 polynomial polynomial ADJ JJ Degree=Pos 8 amod _ _ 8 monads monad NOUN NNS Number=Plur 5 dobj _ _ 9 as as ADP IN _ 5 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 unifying unifying ADJ JJ Degree=Pos 12 amod _ _ 12 environment environment NOUN NN Number=Sing 9 pobj _ _ 13 for for ADP IN _ 12 prep _ _ 14 operads operad NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 12 punct _ _ 16 $ Cat $ $ cat $ SYM $ _ 18 compound _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 operads operad NOUN NNS Number=Plur 12 conj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 clubs club NOUN NNS Number=Plur 18 conj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 5 # text = We recover the standard construction of a monad from an operad in a 2 - categorical way from our associated 2 - monad as a coidentifier of 2 - monads, and understand the algebras of both as weak morphisms of operads into a $ Cat $ - operad of categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 recover recover VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 standard standard ADJ JJ Degree=Pos 5 amod _ _ 5 construction construction NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 monad monad NOUN NNS Number=Plur 6 pobj _ _ 9 from from ADP IN _ 8 prep _ _ 10 an an DET DT Definite=Ind|PronType=Art 11 det _ _ 11 operad operad NOUN NN Number=Sing 9 pobj _ _ 12 in in ADP IN _ 2 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 14 2 2 NUM CD NumType=Card 16 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 categorical categorical ADJ JJ Degree=Pos 17 amod _ _ 17 way way NOUN NN Number=Sing 12 pobj _ _ 18 from from ADP IN _ 17 prep _ _ 19 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 23 poss _ _ 20 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 amod _ _ 21 2 2 NUM CD NumType=Card 23 nummod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 monad monad NOUN NNS Number=Plur 18 pobj _ _ 24 as as ADP IN _ 2 prep _ _ 25 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 26 coidentifier coidentifier NOUN NN Number=Sing 24 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 2 2 NUM CD NumType=Card 30 nummod _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 monads monad NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 2 punct _ _ 32 and and CCONJ CC ConjType=Cmp 2 cc _ _ 33 understand understand VERB VB VerbForm=Inf 2 conj _ _ 34 the the DET DT Definite=Def|PronType=Art 35 det _ _ 35 algebras algebra NOUN NNS Number=Plur 33 dobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 both both PRON DT _ 36 pobj _ _ 38 as as ADP IN _ 33 prep _ _ 39 weak weak ADJ JJ Degree=Pos 40 amod _ _ 40 morphisms morphism NOUN NNS Number=Plur 38 pobj _ _ 41 of of ADP IN _ 40 prep _ _ 42 operads operad NOUN NNS Number=Plur 41 pobj _ _ 43 into into ADP IN _ 33 prep _ _ 44 a a DET DT Definite=Ind|PronType=Art 47 det _ _ 45 $ Cat $ $ cat $ SYM $ _ 47 nmod _ _ 46 - - PUNCT HYPH PunctType=Dash 47 punct _ _ 47 operad operad NOUN NN Number=Sing 43 pobj _ _ 48 of of ADP IN _ 47 prep _ _ 49 categories category NOUN NNS Number=Plur 48 pobj _ SpaceAfter=No 50 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = Algebras of operads within general symmetric monoidal categories arise from our new associated 2 - monad in a canonical way. 1 Algebras algebra NOUN NNS Number=Plur 9 nsubj _ _ 2 of of ADP IN _ 1 prep _ _ 3 operads operad NOUN NNS Number=Plur 2 pobj _ _ 4 within within ADP IN _ 3 prep _ _ 5 general general ADJ JJ Degree=Pos 8 amod _ _ 6 symmetric symmetric ADJ JJ Degree=Pos 8 amod _ _ 7 monoidal monoidal ADJ JJ Degree=Pos 8 amod _ _ 8 categories category NOUN NNS Number=Plur 4 pobj _ _ 9 arise arise VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 from from ADP IN _ 9 prep _ _ 11 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 16 poss _ _ 12 new new ADJ JJ Degree=Pos 16 amod _ _ 13 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 14 2 2 NUM CD NumType=Card 16 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 monad monad NOUN NNS Number=Plur 10 pobj _ _ 17 in in ADP IN _ 9 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 canonical canonical ADJ JJ Degree=Pos 20 amod _ _ 20 way way NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 7 # text = When the operad is sigma - free, we establish a Quillen equivalence, with respect to the model structures on algebras of 2 - monads found by Lack, between the strict algebras of our associated 2 - monad, and those of the standard one. 1 When when SCONJ WRB _ 4 advmod _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 operad operad NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 advcl _ _ 5 sigma sigma PROPN NNP Number=Sing 7 npadvmod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 free free ADJ JJ Degree=Pos 4 acomp _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 10 punct _ _ 9 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 10 nsubj _ _ 10 establish establish VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 Quillen quillen ADJ JJ Degree=Pos 13 amod _ _ 13 equivalence equivalence NOUN NN Number=Sing 10 dobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 10 punct _ _ 15 with with ADP IN _ 10 prep _ _ 16 respect respect NOUN NN Number=Sing 15 pobj _ _ 17 to to ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 model model NOUN NN Number=Sing 20 compound _ _ 20 structures structure NOUN NNS Number=Plur 17 pobj _ _ 21 on on ADP IN _ 20 prep _ _ 22 algebras algebra NOUN NNS Number=Plur 21 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 2 2 NUM CD NumType=Card 26 nummod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 monads monad NOUN NNS Number=Plur 23 pobj _ _ 27 found find VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 acl _ _ 28 by by ADP IN _ 27 agent _ _ 29 Lack Lack PROPN NNP Number=Sing 28 pobj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 26 punct _ _ 31 between between ADP IN _ 20 prep _ _ 32 the the DET DT Definite=Def|PronType=Art 34 det _ _ 33 strict strict ADJ JJ Degree=Pos 34 amod _ _ 34 algebras algebra NOUN NNS Number=Plur 31 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 40 poss _ _ 37 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 40 amod _ _ 38 2 2 NUM CD NumType=Card 40 nummod _ _ 39 - - PUNCT HYPH PunctType=Dash 40 punct _ _ 40 monad monad NOUN NNS Number=Plur 35 pobj _ SpaceAfter=No 41 , , PUNCT , PunctType=Comm 10 punct _ _ 42 and and CCONJ CC ConjType=Cmp 10 cc _ _ 43 those those PRON DT Number=Plur|PronType=Dem 10 conj _ _ 44 of of ADP IN _ 43 prep _ _ 45 the the DET DT Definite=Def|PronType=Art 47 det _ _ 46 standard standard ADJ JJ Degree=Pos 47 amod _ _ 47 one one NUM CD NumType=Card 44 pobj _ SpaceAfter=No 48 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # doc_id = 519 # sent_id = 1 # text = For any total category $ K $ , with defining adjunction $ sup ladj Y : K rightarrow set^{K^{op}} $ , the expression $ W(a)(k)= set^{set^{K^{op}}}(K(a, sup - ), [k, - ]) $ , where $ [k, - ] $ is evaluation at $ k $ , provides a well - defined functor $ W : K rightarrow hat{K} = set^{K^{op}} $ . 1 For for ADP IN _ 23 prep _ _ 2 any any DET DT _ 4 det _ _ 3 total total ADJ JJ Degree=Pos 4 amod _ _ 4 category category NOUN NN Number=Sing 1 pobj _ _ 5 $ K $ $ k $ SYM $ _ 1 pcomp _ _ 6 , , PUNCT , PunctType=Comm 23 punct _ _ 7 with with ADP IN _ 23 prep _ _ 8 defining define VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 pcomp _ _ 9 adjunction adjunction NOUN NN Number=Sing 8 dobj _ _ 10 $ sup ladj Y : K rightarrow set^{K^{op}} $ $ sup ladj y : k rightarrow set^{k^{op}} $ SYM $ _ 8 dobj _ _ 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 expression expression NOUN NN Number=Sing 10 appos _ _ 14 $ W(a)(k)= set^{set^{K^{op}}}(K(a, sup - ), [k, - ]) $ $ w(a)(k)= set^{set^{k^{op}}}(k(a, sup - ), [k, - ]) $ SYM $ _ 13 appos _ _ 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 where where SCONJ WRB _ 18 advmod _ _ 17 $ [k, - ] $ $ [k, - ] $ SYM $ _ 18 nsubj _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 relcl _ _ 19 evaluation evaluation NOUN NN Number=Sing 18 attr _ _ 20 at at ADP IN _ 19 prep _ _ 21 $ k $ $ k $ SYM $ _ 20 pobj _ _ 22 , , PUNCT , PunctType=Comm 23 punct _ _ 23 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 24 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 25 well well ADV RB Degree=Pos 27 advmod _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 amod _ _ 28 functor functor NOUN NN Number=Sing 23 dobj _ _ 29 $ W : K rightarrow hat{K} = set^{K^{op}} $ $ w : k rightarrow hat{k} = set^{k^{op}} $ SYM $ _ 23 dobj _ _ 30 . . PUNCT . PunctType=Peri 23 punct _ SpaceAfter=No # sent_id = 2 # text = Also, there are natural transformations $ beta : Wsup rightarrow 1_{hat{K}} $ and $ gamma : sup W rightarrow 1_K $ satisfying $ supbeta =gammasup $ and $ beta W =Wgamma $ . 1 Also also ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 there there PRON EX _ 4 expl _ _ 4 are be VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 natural natural ADJ JJ Degree=Pos 6 amod _ _ 6 transformations transformation NOUN NNS Number=Plur 4 attr _ _ 7 $ beta : Wsup rightarrow 1_{hat{K}} $ $ beta : wsup rightarrow 1_{hat{k}} $ SYM $ _ 6 appos _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 $ gamma : sup W rightarrow 1_K $ $ gamma : sup w rightarrow 1_k $ SYM $ _ 4 dep _ _ 10 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 advcl _ _ 11 $ supbeta =gammasup $ $ supbeta =gammasup $ SYM $ _ 10 dobj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 $ beta W =Wgamma $ $ beta w =wgamma $ SYM $ _ 11 conj _ _ 14 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = A total $ K $ is totally distributive if $ sup $ has a left adjoint. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 total total NOUN NN Number=Sing 3 amod _ _ 3 $ K $ $ k $ SYM $ _ 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 totally totally ADV RB _ 6 advmod _ _ 6 distributive distributive ADJ JJ Degree=Pos 4 acomp _ _ 7 if if SCONJ IN _ 9 mark _ _ 8 $ sup $ $ sup $ SYM $ _ 9 nsubj _ _ 9 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 advcl _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 left left ADJ JJ Degree=Pos 12 amod _ _ 12 adjoint adjoint NOUN NN Number=Sing 9 dobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = We show that $ K $ is totally distributive iff $ gamma $ is invertible iff $ W ladj sup $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 5 mark _ _ 4 $ K $ $ k $ SYM $ _ 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 6 totally totally ADV RB _ 7 advmod _ _ 7 distributive distributive ADJ JJ Degree=Pos 5 acomp _ _ 8 iff iff PROPN NNP Number=Sing 7 prep _ _ 9 $ gamma $ $ gamma $ X XX _ 10 nsubj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 conj _ _ 11 invertible invertible ADJ JJ Degree=Pos 10 acomp _ _ 12 iff iff PROPN NNP Number=Sing 10 npadvmod _ _ 13 $ W ladj sup $ $ w ladj sup $ SYM $ _ 10 attr _ _ 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = The elements of $ W(a)(k) $ are called waves from $ k $ to $ a $ . 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 elements element NOUN NNS Number=Plur 6 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 $ W(a)(k) $ $ w(a)(k) $ SYM $ _ 3 pobj _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 6 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 waves wave NOUN NNS Number=Plur 6 oprd _ _ 8 from from ADP IN _ 6 prep _ _ 9 $ k $ $ k $ SYM $ _ 8 pobj _ _ 10 to to PART TO _ 8 prep _ _ 11 $ a $ $ a $ SYM $ _ 10 pobj _ _ 12 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 6 # text = Write $ tilde{K}(k, a) $ for $ W(a)(k) $ . 1 Write write VERB VB VerbForm=Inf 0 ROOT _ _ 2 $ tilde{K}(k, a) $ $ tilde{k}(k, a) $ SYM $ _ 1 dobj _ _ 3 for for ADP IN _ 2 prep _ _ 4 $ W(a)(k) $ $ w(a)(k) $ SYM $ _ 3 pobj _ _ 5 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 7 # text = For any total $ K $ there is an associative composition of waves. 1 For for ADP IN _ 6 prep _ _ 2 any any DET DT _ 3 det _ _ 3 total total ADJ JJ Degree=Pos 1 pobj _ _ 4 $ K $ $ k $ SYM $ _ 3 prep _ _ 5 there there PRON EX _ 6 expl _ _ 6 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 8 associative associative ADJ JJ Degree=Pos 9 amod _ _ 9 composition composition NOUN NN Number=Sing 6 attr _ _ 10 of of ADP IN _ 9 prep _ _ 11 waves wave NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 8 # text = Composition becomes an arrow $ bullet : tilde{K}circ_{K}tilde{K} rightarrow tilde{K} $ . 1 Composition composition NOUN NN Number=Sing 2 nsubj _ _ 2 becomes become VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 4 det _ _ 4 arrow arrow NOUN NN Number=Sing 5 compound _ _ 5 $ bullet : tilde{K}circ_{K}tilde{K} rightarrow tilde{K} $ $ bullet : tilde{k}circ_{k}tilde{k} rightarrow tilde{k} $ SYM $ _ 2 attr _ _ 6 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 9 # text = Also, there is an augmentation $ tilde{K}( - , - ) rightarrow K( - , - ) $ corresponding to a natural $ delta : W rightarrow Y $ constructed via $ beta $ . 1 Also also ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 there there PRON EX _ 4 expl _ _ 4 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 an an DET DT Definite=Ind|PronType=Art 6 det _ _ 6 augmentation augmentation NOUN NN Number=Sing 4 attr _ _ 7 $ tilde{K}( - , - ) rightarrow K( - , - ) $ $ tilde{k}( - , - ) rightarrow k( - , - ) $ SYM $ _ 8 nsubj _ _ 8 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 conj _ _ 9 to to ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 natural natural ADJ JJ Degree=Pos 12 amod _ _ 12 $ delta : W rightarrow Y $ $ delta : w rightarrow y $ SYM $ _ 9 pobj _ _ 13 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 acl _ _ 14 via via ADP IN _ 13 prep _ _ 15 $ beta $ $ beta $ SYM $ _ 14 pobj _ _ 16 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 10 # text = We show that if $ K $ is totally distributive then $ bullet $ is invertible and then $ tilde{K} $ supports an idempotent comonad structure. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 11 mark _ _ 4 if if SCONJ IN _ 6 mark _ _ 5 $ K $ $ k $ SYM $ _ 6 nsubj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 advcl _ _ 7 totally totally ADV RB _ 8 advmod _ _ 8 distributive distributive ADJ JJ Degree=Pos 6 acomp _ _ 9 then then ADV RB PronType=Dem 10 advmod _ _ 10 $ bullet $ $ bullet $ SYM $ _ 11 nsubj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 12 invertible invertible ADJ JJ Degree=Pos 11 acomp _ _ 13 and and CCONJ CC ConjType=Cmp 11 cc _ _ 14 then then ADV RB PronType=Dem 16 advmod _ _ 15 $ tilde{K} $ $ tilde{k} $ SYM $ _ 16 nsubj _ _ 16 supports support VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 conj _ _ 17 an an DET DT Definite=Ind|PronType=Art 20 det _ _ 18 idempotent idempotent ADJ JJ Degree=Pos 20 amod _ _ 19 comonad comonad NOUN NNS Number=Plur 20 compound _ _ 20 structure structure NOUN NN Number=Sing 16 dobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 11 # text = In fact, $ tilde{K} circ_{K} tilde{K} = tilde{K} circ_{tilde{K}} tilde{K} $ so that $ bullet $ is the coequalizer of $ bullet K $ and $ K bullet $ , making $ tilde{K} $ a taxon in the sense of Koslowski. 1 In in ADP IN _ 8 prep _ _ 2 fact fact NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 8 punct _ _ 4 $ tilde{K} circ_{K} tilde{K} = tilde{K} circ_{tilde{K}} tilde{K} $ $ tilde{k} circ_{k} tilde{k} = tilde{k} circ_{tilde{k}} tilde{k} $ SYM $ _ 8 nsubj _ _ 5 so so SCONJ IN _ 8 mark _ _ 6 that that SCONJ IN _ 8 mark _ _ 7 $ bullet $ $ bullet $ SYM $ _ 8 nsubj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 coequalizer coequalizer NOUN NN Number=Sing 8 attr _ _ 11 of of ADP IN _ 10 prep _ _ 12 $ bullet K $ $ bullet k $ SYM $ _ 11 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 10 cc _ _ 14 $ K bullet $ $ k bullet $ SYM $ _ 10 conj _ _ 15 , , PUNCT , PunctType=Comm 8 punct _ _ 16 making make VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 advcl _ _ 17 $ tilde{K} $ $ tilde{k} $ SYM $ _ 19 predet _ _ 18 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 19 taxon taxon NOUN NN Number=Sing 16 ccomp _ _ 20 in in ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 sense sense NOUN NN Number=Sing 20 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 Koslowski Koslowski PROPN NNP Number=Sing 23 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 12 # text = For a small taxon $ T $ , the category of interpolative modules $ iMod(1, T) $ is totally distributive. 1 For for ADP IN _ 13 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 small small ADJ JJ Degree=Pos 4 amod _ _ 4 taxon taxon NOUN NN Number=Sing 1 pobj _ _ 5 $ T $ $ t $ SYM $ _ 1 pobj _ _ 6 , , PUNCT , PunctType=Comm 13 punct _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 category category NOUN NN Number=Sing 13 nsubj _ _ 9 of of ADP IN _ 8 prep _ _ 10 interpolative interpolative ADJ JJ Degree=Pos 11 amod _ _ 11 modules module NOUN NNS Number=Plur 9 pobj _ _ 12 $ iMod(1, T) $ $ imod(1, t) $ SYM $ _ 8 appos _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 totally totally ADV RB _ 15 advmod _ _ 15 distributive distributive ADJ JJ Degree=Pos 13 acomp _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 13 # text = Here we show, for any totally distributive $ K $ , that there is an equivalence $ K rightarrow iMod(1, tilde{K}) $ . 1 Here here ADV RB PronType=Dem 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 3 punct _ _ 5 for for ADP IN _ 3 prep _ _ 6 any any DET DT _ 9 det _ _ 7 totally totally ADV RB _ 8 advmod _ _ 8 distributive distributive ADJ JJ Degree=Pos 9 amod _ _ 9 $ K $ $ k $ SYM $ _ 5 pobj _ _ 10 , , PUNCT , PunctType=Comm 3 punct _ _ 11 that that SCONJ IN _ 13 mark _ _ 12 there there PRON EX _ 13 expl _ _ 13 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 14 an an DET DT Definite=Ind|PronType=Art 15 det _ _ 15 equivalence equivalence NOUN NN Number=Sing 13 attr _ _ 16 $ K rightarrow iMod(1, tilde{K}) $ $ k rightarrow imod(1, tilde{k}) $ SYM $ _ 15 appos _ _ 17 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 520 # sent_id = 1 # text = We show that morphisms from n homotopy unital $ A_infty $ - algebras to a single one are maps over an operad module with $ n+1 $ commuting actions of the operad $ A_infty^hu $ , whose algebras are homotopy unital $ A_infty $ - algebras. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 16 mark _ _ 4 morphisms morphism NOUN NNS Number=Plur 8 nsubj _ _ 5 from from ADP IN _ 4 prep _ _ 6 n n NOUN NN Number=Sing 5 pobj _ _ 7 homotopy homotopy PROPN NNP Number=Sing 5 pobj _ _ 8 unital unital PROPN NNP Number=Sing 3 nmod _ _ 9 $ A_infty $ $ a_infty $ SYM $ _ 11 compound _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 algebras algebra NOUN NNS Number=Plur 8 dobj _ _ 12 to to ADP IN _ 8 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 single single ADJ JJ Degree=Pos 15 amod _ _ 15 one one NUM CD NumType=Card 12 pobj _ _ 16 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 17 maps map NOUN NNS Number=Plur 16 attr _ _ 18 over over ADP IN _ 17 prep _ _ 19 an an DET DT Definite=Ind|PronType=Art 21 det _ _ 20 operad operad ADJ JJ Degree=Pos 21 amod _ _ 21 module module NOUN NN Number=Sing 18 pobj _ _ 22 with with ADP IN _ 21 prep _ _ 23 $ n+1 $ $ n+1 $ SYM $ _ 24 nsubj _ _ 24 commuting commute VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 25 compound _ _ 25 actions action NOUN NNS Number=Plur 22 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 29 det _ _ 28 operad operad ADJ JJ Degree=Pos 29 amod _ _ 29 $ A_infty^hu $ $ a_infty^hu $ SYM $ _ 26 pobj _ _ 30 , , PUNCT , PunctType=Comm 25 punct _ _ 31 whose whose DET WP$ Poss=Yes 32 poss _ _ 32 algebras algebra NOUN NNS Number=Plur 33 nsubj _ _ 33 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 25 relcl _ _ 34 homotopy homotopy PROPN NNP Number=Sing 33 attr _ _ 35 unital unital PROPN NNP Number=Sing 2 ccomp _ _ 36 $ A_infty $ $ a_infty $ SYM $ _ 38 compound _ _ 37 - - PUNCT HYPH PunctType=Dash 38 punct _ _ 38 algebras algebra NOUN NNS Number=Plur 35 dobj _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The operad $ A_infty $ and modules over it have two useful gradings related by isomorphisms which change the degree. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 operad operad ADJ JJ Degree=Pos 8 nsubj _ _ 3 $ A_infty $ $ a_infty $ SYM $ _ 2 prt _ _ 4 and and CCONJ CC ConjType=Cmp 2 cc _ _ 5 modules module NOUN NNS Number=Plur 2 conj _ _ 6 over over ADP IN _ 5 prep _ _ 7 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 6 pobj _ _ 8 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 two two NUM CD NumType=Card 11 nummod _ _ 10 useful useful ADJ JJ Degree=Pos 11 amod _ _ 11 gradings grading NOUN NNS Number=Plur 8 dobj _ _ 12 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 acl _ _ 13 by by ADP IN _ 12 agent _ _ 14 isomorphisms isomorphism NOUN NNS Number=Plur 13 pobj _ _ 15 which which PRON WDT _ 16 nsubj _ _ 16 change change VERB VBP Tense=Pres|VerbForm=Fin 14 relcl _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 degree degree NOUN NN Number=Sing 16 dobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 3 # text = The composition of $ A_infty^hu $ $ n $ - morphisms with several entries is presented as a convolution of a coalgebra - like and an algebra - like structures. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 composition composition NOUN NN Number=Sing 13 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 $ A_infty^hu $ $ a_infty^hu $ SYM $ _ 8 nmod _ _ 5 SPACE _SP _ 4 dep _ SpaceAfter=No 6 $ n $ $ n $ SYM $ _ 8 quantmod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 morphisms morphism NOUN NNS Number=Plur 3 pobj _ _ 9 with with ADP IN _ 2 prep _ _ 10 several several ADJ JJ Degree=Pos 11 amod _ _ 11 entries entry NOUN NNS Number=Plur 9 pobj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 14 as as ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 convolution convolution NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 19 coalgebra coalgebra NOUN NN Number=Sing 21 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 like like ADJ JJ Degree=Pos 17 pobj _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 an an DET DT Definite=Ind|PronType=Art 27 det _ _ 24 algebra algebra NOUN NN Number=Sing 26 npadvmod _ _ 25 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 26 like like ADJ JJ Degree=Pos 27 amod _ _ 27 structures structure NOUN NNS Number=Plur 21 conj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # doc_id = 521 # sent_id = 1 # text = We show that morphisms from n $ A_infty $ - algebras to a single one are maps over an operad module with $ n+1 $ commuting actions of the operad $ A_infty $ , whose algebras are conventional $ A_infty $ - algebras. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 14 mark _ _ 4 morphisms morphism NOUN NNS Number=Plur 14 nsubj _ _ 5 from from ADP IN _ 4 prep _ _ 6 n n ADP IN _ 9 nmod _ _ 7 $ A_infty $ $ a_infty $ SYM $ _ 9 compound _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 algebras algebra NOUN NNS Number=Plur 5 pobj _ _ 10 to to ADP IN _ 5 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 single single ADJ JJ Degree=Pos 13 amod _ _ 13 one one NUM CD NumType=Card 10 pobj _ _ 14 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 15 maps map NOUN NNS Number=Plur 14 attr _ _ 16 over over ADP IN _ 15 prep _ _ 17 an an DET DT Definite=Ind|PronType=Art 19 det _ _ 18 operad operad ADJ JJ Degree=Pos 19 amod _ _ 19 module module NOUN NN Number=Sing 16 pobj _ _ 20 with with ADP IN _ 19 prep _ _ 21 $ n+1 $ $ n+1 $ SYM $ _ 22 nsubj _ _ 22 commuting commute VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 23 compound _ _ 23 actions action NOUN NNS Number=Plur 20 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 27 det _ _ 26 operad operad ADJ JJ Degree=Pos 27 amod _ _ 27 $ A_infty $ $ a_infty $ SYM $ _ 24 pobj _ _ 28 , , PUNCT , PunctType=Comm 23 punct _ _ 29 whose whose DET WP$ Poss=Yes 30 poss _ _ 30 algebras algebra NOUN NNS Number=Plur 31 nsubj _ _ 31 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 23 relcl _ _ 32 conventional conventional ADJ JJ Degree=Pos 31 acomp _ _ 33 $ A_infty $ $ a_infty $ SYM $ _ 35 compound _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 algebras algebra NOUN NNS Number=Plur 31 npadvmod _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The composition of $ A_infty $ - morphisms with several entries is presented as a convolution of a coalgebra - like and an algebra - like structures. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 composition composition NOUN NN Number=Sing 11 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 $ A_infty $ $ a_infty $ SYM $ _ 6 compound _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 morphisms morphism NOUN NNS Number=Plur 3 pobj _ _ 7 with with ADP IN _ 2 prep _ _ 8 several several ADJ JJ Degree=Pos 9 amod _ _ 9 entries entry NOUN NNS Number=Plur 7 pobj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 11 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 12 as as ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 convolution convolution NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 17 coalgebra coalgebra NOUN NN Number=Sing 19 compound _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 like like ADJ JJ Degree=Pos 15 pobj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 an an DET DT Definite=Ind|PronType=Art 25 det _ _ 22 algebra algebra NOUN NN Number=Sing 24 npadvmod _ _ 23 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 24 like like ADJ JJ Degree=Pos 25 amod _ _ 25 structures structure NOUN NNS Number=Plur 19 conj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 3 # text = Under these notions lie two examples of $ Cat $ - operads: that of graded modules and of complexes. 1 Under under ADP IN _ 4 prep _ _ 2 these these DET DT Number=Plur|PronType=Dem 3 det _ _ 3 notions notion NOUN NNS Number=Plur 1 pobj _ _ 4 lie lie VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 two two NUM CD NumType=Card 6 nummod _ _ 6 examples example NOUN NNS Number=Plur 4 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 $ Cat $ $ cat $ SYM $ _ 10 nmod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 operads operad NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 11 : : PUNCT : _ 6 punct _ _ 12 that that PRON DT Number=Sing|PronType=Dem 6 appos _ _ 13 of of ADP IN _ 12 prep _ _ 14 graded grade VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 amod _ _ 15 modules module NOUN NNS Number=Plur 13 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 of of ADP IN _ 15 prep _ _ 18 complexes complex NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 522 # sent_id = 1 # text = We generalize the concept of a strong inclusion on a biframe to that of a proximity on a biframe, which is related to the concept of a strong bi - inclusion on a frame introduced by Picado and Pultr. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 generalize generalize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 concept concept NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 strong strong ADJ JJ Degree=Pos 8 amod _ _ 8 inclusion inclusion NOUN NN Number=Sing 5 pobj _ _ 9 on on ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 biframe biframe NOUN NN Number=Sing 9 pobj _ _ 12 to to ADP IN _ 8 prep _ _ 13 that that PRON DT Number=Sing|PronType=Dem 12 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 proximity proximity NOUN NN Number=Sing 14 pobj _ _ 17 on on ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 19 biframe biframe NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 19 punct _ _ 21 which which PRON WDT _ 23 nsubjpass _ _ 22 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 auxpass _ _ 23 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 relcl _ _ 24 to to ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 concept concept NOUN NN Number=Sing 24 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 29 strong strong ADJ JJ Degree=Pos 32 amod _ _ 30 bi bi NOUN NN Number=Sing 32 compound _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 inclusion inclusion NOUN NN Number=Sing 27 pobj _ _ 33 on on ADP IN _ 32 prep _ _ 34 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 35 frame frame NOUN NN Number=Sing 33 pobj _ _ 36 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 35 acl _ _ 37 by by ADP IN _ 36 agent _ _ 38 Picado Picado PROPN NNP Number=Sing 37 pobj _ _ 39 and and CCONJ CC ConjType=Cmp 38 cc _ _ 40 Pultr Pultr PROPN NNP Number=Sing 38 conj _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We also generalize the concept of a bi - compactification of a biframe to that of a compactification of a biframe, and prove that the poset of compactifications of a biframe $ L $ is isomorphic to the poset of proximities on $ L $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 generalize generalize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 concept concept NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 8 bi bi NOUN NN Number=Sing 10 compound _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 compactification compactification NOUN NN Number=Sing 6 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 biframe biframe NOUN NN Number=Sing 11 pobj _ _ 14 to to ADP IN _ 10 prep _ _ 15 that that PRON DT Number=Sing|PronType=Dem 14 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 compactification compactification NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 21 biframe biframe NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 3 punct _ _ 23 and and CCONJ CC ConjType=Cmp 3 cc _ _ 24 prove prove VERB VB VerbForm=Inf 3 conj _ _ 25 that that SCONJ IN _ 34 mark _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 poset poset NOUN NN Number=Sing 34 nsubj _ _ 28 of of ADP IN _ 27 prep _ _ 29 compactifications compactification NOUN NNS Number=Plur 28 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 32 biframe biframe NOUN NN Number=Sing 30 pobj _ _ 33 $ L $ $ l $ SYM $ _ 27 appos _ _ 34 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 ccomp _ _ 35 isomorphic isomorphic ADJ JJ Degree=Pos 34 acomp _ _ 36 to to ADP IN _ 35 prep _ _ 37 the the DET DT Definite=Def|PronType=Art 38 det _ _ 38 poset poset NOUN NN Number=Sing 36 pobj _ _ 39 of of ADP IN _ 38 prep _ _ 40 proximities proximity NOUN NNS Number=Plur 39 pobj _ _ 41 on on ADP IN _ 40 prep _ _ 42 $ L $ $ l $ SYM $ _ 41 pobj _ _ 43 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = As a corollary, we obtain Schauerte's characterization of bi - compactifications of a biframe. 1 As as ADP IN _ 6 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 corollary corollary NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 Schauerte Schauerte PROPN NNP Number=Sing 9 poss _ SpaceAfter=No 8 's 's PART POS _ 7 case _ _ 9 characterization characterization NOUN NN Number=Sing 6 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 bi bi NOUN NN Number=Sing 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 compactifications compactification NOUN NNS Number=Plur 10 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 biframe biframe NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = In the spatial case this yields Blatter and Seever's characterization of compactifications of completely regular ordered spaces and a characterization of bi - compactifications of completely regular bispaces. 1 In in ADP IN _ 6 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 spatial spatial ADJ JJ Degree=Pos 4 amod _ _ 4 case case NOUN NN Number=Sing 1 pobj _ _ 5 this this PRON DT Number=Sing|PronType=Dem 6 nsubj _ _ 6 yields yield VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 Blatter Blatter PROPN NNP Number=Sing 6 dobj _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 Seever Seever PROPN NNP Number=Sing 11 poss _ SpaceAfter=No 10 's 's PART POS _ 9 case _ _ 11 characterization characterization NOUN NN Number=Sing 7 conj _ _ 12 of of ADP IN _ 11 prep _ _ 13 compactifications compactification NOUN NNS Number=Plur 12 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 completely completely ADV RB _ 16 advmod _ _ 16 regular regular ADJ JJ Degree=Pos 18 amod _ _ 17 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 amod _ _ 18 spaces space NOUN NNS Number=Plur 14 pobj _ _ 19 and and CCONJ CC ConjType=Cmp 7 cc _ _ 20 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 21 characterization characterization NOUN NN Number=Sing 7 conj _ _ 22 of of ADP IN _ 21 prep _ _ 23 bi bi NOUN NN Number=Sing 25 compound _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 compactifications compactification NOUN NNS Number=Plur 22 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 completely completely ADV RB _ 28 advmod _ _ 28 regular regular ADJ JJ Degree=Pos 29 amod _ _ 29 bispaces bispace NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 523 # sent_id = 1 # text = Transformation groupoids associated to group actions capture the interplay between global and local symmetries of structures described in set - theoretic terms. 1 Transformation transformation NOUN NN Number=Sing 2 compound _ _ 2 groupoids groupoid NOUN NNS Number=Plur 7 nsubj _ _ 3 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 acl _ _ 4 to to ADP IN _ 3 prep _ _ 5 group group NOUN NN Number=Sing 6 compound _ _ 6 actions action NOUN NNS Number=Plur 4 pobj _ _ 7 capture capture VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 interplay interplay NOUN NN Number=Sing 7 dobj _ _ 10 between between ADP IN _ 9 prep _ _ 11 global global ADJ JJ Degree=Pos 14 amod _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 local local ADJ JJ Degree=Pos 11 conj _ _ 14 symmetries symmetry NOUN NNS Number=Plur 10 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 structures structure NOUN NNS Number=Plur 15 pobj _ _ 17 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 acl _ _ 18 in in ADP IN _ 17 prep _ _ 19 set set NOUN NN Number=Sing 21 amod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 theoretic theoretic ADJ JJ Degree=Pos 22 amod _ _ 22 terms term NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 2 # text = This paper examines the analogous situation for structures described in category - theoretic terms, where symmetry is expressed as the action of a 2 - group $ G $ (equivalently, a categorical group) on a category $ C $ . 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 examines examine VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 analogous analogous ADJ JJ Degree=Pos 6 amod _ _ 6 situation situation NOUN NN Number=Sing 3 dobj _ _ 7 for for ADP IN _ 6 prep _ _ 8 structures structure NOUN NNS Number=Plur 7 pobj _ _ 9 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 acl _ _ 10 in in ADP IN _ 9 prep _ _ 11 category category NOUN NN Number=Sing 13 npadvmod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 theoretic theoretic ADJ JJ Degree=Pos 14 amod _ _ 14 terms term NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 where where SCONJ WRB _ 19 advmod _ _ 17 symmetry symmetry NOUN NN Number=Sing 19 nsubjpass _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 auxpass _ _ 19 expressed express VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 relcl _ _ 20 as as ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 action action NOUN NN Number=Sing 20 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 25 2 2 NUM CD NumType=Card 27 nummod _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 group group NOUN NN Number=Sing 28 compound _ _ 28 $ G $ $ g $ SYM $ _ 23 pobj _ _ 29 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 28 punct _ SpaceAfter=No 30 equivalently equivalently ADV RB _ 34 advmod _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 34 punct _ _ 32 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 33 categorical categorical ADJ JJ Degree=Pos 34 amod _ _ 34 group group NOUN NN Number=Sing 19 npadvmod _ SpaceAfter=No 35 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 34 punct _ _ 36 on on ADP IN _ 34 prep _ _ 37 a a DET DT Definite=Ind|PronType=Art 38 det _ _ 38 category category NOUN NN Number=Sing 36 pobj _ _ 39 $ C $ $ c $ SYM $ _ 36 pobj _ _ 40 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = It describes the construction of a transformation groupoid in diagrammatic terms, and considers this construction internal to $ Cat $ , the category of categories. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 describes describe VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 construction construction NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 transformation transformation NOUN NN Number=Sing 8 compound _ _ 8 groupoid groupoid NOUN NN Number=Sing 5 pobj _ _ 9 in in ADP IN _ 8 prep _ _ 10 diagrammatic diagrammatic ADJ JJ Degree=Pos 11 amod _ _ 11 terms term NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 2 punct _ _ 13 and and CCONJ CC ConjType=Cmp 2 cc _ _ 14 considers consider VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 conj _ _ 15 this this DET DT Number=Sing|PronType=Dem 16 det _ _ 16 construction construction NOUN NN Number=Sing 17 nsubj _ _ 17 internal internal ADJ JJ Degree=Pos 14 ccomp _ _ 18 to to ADP IN _ 17 prep _ _ 19 $ Cat $ $ cat $ SYM $ _ 18 pobj _ _ 20 , , PUNCT , PunctType=Comm 14 punct _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 category category NOUN NN Number=Sing 14 dobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 categories category NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = The result is a double category $ C//G $ which describes the local symmetries of $ C $ . 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 result result NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 double double ADJ JJ Degree=Pos 6 amod _ _ 6 category category NOUN NN Number=Sing 3 attr _ _ 7 $ C//G $ $ c//g $ SYM $ _ 6 appos _ _ 8 which which PRON WDT _ 9 nsubj _ _ 9 describes describe VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 relcl _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 local local ADJ JJ Degree=Pos 12 amod _ _ 12 symmetries symmetry NOUN NNS Number=Plur 9 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 $ C $ $ c $ SYM $ _ 13 pobj _ _ 15 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = We define this and describe some of its structure, with the adjoint action of $ G $ on itself as a guiding example. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 this this PRON DT Number=Sing|PronType=Dem 2 dobj _ _ 4 and and CCONJ CC ConjType=Cmp 2 cc _ _ 5 describe describe VERB VB VerbForm=Inf 2 conj _ _ 6 some some PRON DT _ 5 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 9 poss _ _ 9 structure structure NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 5 punct _ _ 11 with with ADP IN _ 5 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 adjoint adjoint NOUN NN Number=Sing 14 compound _ _ 14 action action NOUN NN Number=Sing 11 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 $ G $ $ g $ SYM $ _ 15 pobj _ _ 17 on on ADP IN _ 14 prep _ _ 18 itself itself PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs|Reflex=Yes 17 pobj _ _ 19 as as ADP IN _ 14 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 guiding guide VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 amod _ _ 22 example example NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 524 # sent_id = 1 # text = There are few known computable examples of non - abelian surface holonomy. 1 There there PRON EX _ 2 expl _ _ 2 are be VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 few few ADJ JJ Degree=Pos 6 amod _ _ 4 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 amod _ _ 5 computable computable ADJ JJ Degree=Pos 6 amod _ _ 6 examples example NOUN NNS Number=Plur 2 attr _ _ 7 of of ADP IN _ 6 prep _ _ 8 non non ADJ JJ Degree=Pos 10 amod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 abelian abelian ADJ JJ Degree=Pos 12 amod _ _ 11 surface surface NOUN NN Number=Sing 12 compound _ _ 12 holonomy holonomy NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = In this paper, we give several examples whose structure 2 - groups are covering 2 - groups and show that the surface holonomies can be computed via a simple formula in terms of paths of 1 - dimensional holonomies inspired by earlier work of Chan Hong - Mo and Tsou Sheung Tsun on magnetic monopoles. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 several several ADJ JJ Degree=Pos 8 amod _ _ 8 examples example NOUN NNS Number=Plur 6 dobj _ _ 9 whose whose DET WP$ Poss=Yes 10 poss _ _ 10 structure structure NOUN NN Number=Sing 15 nsubj _ _ 11 2 2 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 groups group NOUN NNS Number=Plur 15 nsubj _ _ 14 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 aux _ _ 15 covering cover VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 relcl _ _ 16 2 2 NUM CD NumType=Card 18 nummod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 groups group NOUN NNS Number=Plur 15 dobj _ _ 19 and and CCONJ CC ConjType=Cmp 15 cc _ _ 20 show show VERB VB VerbForm=Inf 15 conj _ _ 21 that that SCONJ IN _ 27 mark _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 surface surface NOUN NN Number=Sing 24 compound _ _ 24 holonomies holonomie NOUN NNS Number=Plur 27 nsubjpass _ _ 25 can can AUX MD VerbForm=Fin 27 aux _ _ 26 be be AUX VB VerbForm=Inf 27 auxpass _ _ 27 computed compute VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 ccomp _ _ 28 via via ADP IN _ 27 prep _ _ 29 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 30 simple simple ADJ JJ Degree=Pos 31 amod _ _ 31 formula formula NOUN NN Number=Sing 28 pobj _ _ 32 in in ADP IN _ 31 prep _ _ 33 terms term NOUN NNS Number=Plur 32 pobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 paths path NOUN NNS Number=Plur 34 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 1 1 NUM CD NumType=Card 39 advmod _ _ 38 - - PUNCT HYPH PunctType=Dash 39 punct _ _ 39 dimensional dimensional ADJ JJ Degree=Pos 40 amod _ _ 40 holonomies holonomie NOUN NNS Number=Plur 36 pobj _ _ 41 inspired inspire VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 40 acl _ _ 42 by by ADP IN _ 41 agent _ _ 43 earlier early ADJ JJR Degree=Cmp 44 amod _ _ 44 work work NOUN NN Number=Sing 42 pobj _ _ 45 of of ADP IN _ 44 prep _ _ 46 Chan Chan PROPN NNP Number=Sing 49 compound _ _ 47 Hong Hong PROPN NNP Number=Sing 49 compound _ _ 48 - - PUNCT HYPH PunctType=Dash 49 punct _ _ 49 Mo Mo PROPN NNP Number=Sing 45 pobj _ _ 50 and and CCONJ CC ConjType=Cmp 49 cc _ _ 51 Tsou Tsou PROPN NNP Number=Sing 53 compound _ _ 52 Sheung Sheung PROPN NNP Number=Sing 53 compound _ _ 53 Tsun Tsun PROPN NNP Number=Sing 49 conj _ _ 54 on on ADP IN _ 44 prep _ _ 55 magnetic magnetic ADJ JJ Degree=Pos 56 amod _ _ 56 monopoles monopole NOUN NNS Number=Plur 54 pobj _ SpaceAfter=No 57 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = As a consequence of our work and that of Schreiber and Waldorf, this formula gives a rigorous meaning to non - abelian magnetic flux for magnetic monopoles. 1 As as ADP IN _ 16 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 consequence consequence NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 6 poss _ _ 6 work work NOUN NN Number=Sing 4 pobj _ _ 7 and and CCONJ CC ConjType=Cmp 3 cc _ _ 8 that that PRON DT Number=Sing|PronType=Dem 3 conj _ _ 9 of of ADP IN _ 8 prep _ _ 10 Schreiber Schreiber PROPN NNP Number=Sing 9 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 Waldorf Waldorf PROPN NNP Number=Sing 10 conj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 16 punct _ _ 14 this this DET DT Number=Sing|PronType=Dem 15 det _ _ 15 formula formula NOUN NN Number=Sing 16 nsubj _ _ 16 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 17 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 18 rigorous rigorous ADJ JJ Degree=Pos 19 amod _ _ 19 meaning meaning NOUN NN Number=Sing 16 dobj _ _ 20 to to ADP IN _ 16 dative _ _ 21 non non ADJ JJ Degree=Pos 25 amod _ _ 22 - - PUNCT HYPH PunctType=Dash 25 amod _ _ 23 abelian abelian ADJ JJ Degree=Pos 25 amod _ _ 24 magnetic magnetic ADJ JJ Degree=Pos 25 amod _ _ 25 flux flux PROPN NNP Number=Sing 20 pobj _ _ 26 for for ADP IN _ 25 prep _ _ 27 magnetic magnetic ADJ JJ Degree=Pos 28 amod _ _ 28 monopoles monopole NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 4 # text = In the process, we discuss gauge covariance of surface holonomies for spheres for any 2 - group, therefore generalizing the notion of the reduced group introduced by Schreiber and Waldorf. 1 In in ADP IN _ 6 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 process process NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 discuss discuss VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 gauge gauge NOUN NN Number=Sing 8 compound _ _ 8 covariance covariance NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 surface surface NOUN NN Number=Sing 11 compound _ _ 11 holonomies holonomie NOUN NNS Number=Plur 9 pobj _ _ 12 for for ADP IN _ 11 prep _ _ 13 spheres sphere NOUN NNS Number=Plur 12 pobj _ _ 14 for for ADP IN _ 13 prep _ _ 15 any any DET DT _ 18 det _ _ 16 2 2 NUM CD NumType=Card 18 nummod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 group group NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 6 punct _ _ 20 therefore therefore ADV RB _ 21 advmod _ _ 21 generalizing generalize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 advcl _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 notion notion NOUN NN Number=Sing 21 dobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 27 det _ _ 26 reduced reduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 amod _ _ 27 group group NOUN NN Number=Sing 24 pobj _ _ 28 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 acl _ _ 29 by by ADP IN _ 28 agent _ _ 30 Schreiber Schreiber PROPN NNP Number=Sing 29 pobj _ _ 31 and and CCONJ CC ConjType=Cmp 30 cc _ _ 32 Waldorf Waldorf PROPN NNP Number=Sing 30 conj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 5 # text = Using these ideas, we also prove that magnetic monopoles form an abelian group. 1 Using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 advcl _ _ 2 these these DET DT Number=Plur|PronType=Dem 3 det _ _ 3 ideas idea NOUN NNS Number=Plur 1 dobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 7 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 6 also also ADV RB _ 7 advmod _ _ 7 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 that that SCONJ IN _ 11 mark _ _ 9 magnetic magnetic ADJ JJ Degree=Pos 10 amod _ _ 10 monopoles monopole NOUN NNS Number=Plur 11 nsubj _ _ 11 form form VERB VBP Tense=Pres|VerbForm=Fin 7 ccomp _ _ 12 an an DET DT Definite=Ind|PronType=Art 14 det _ _ 13 abelian abelian ADJ JJ Degree=Pos 14 compound _ _ 14 group group NOUN NN Number=Sing 11 dobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # doc_id = 525 # sent_id = 1 # text = We introduce a 3 - dimensional categorical structure which we call intercategory. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 4 3 3 NUM CD NumType=Card 6 advmod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 dimensional dimensional ADJ JJ Degree=Pos 8 amod _ _ 7 categorical categorical ADJ JJ Degree=Pos 8 amod _ _ 8 structure structure NOUN NN Number=Sing 2 dobj _ _ 9 which which PRON WDT _ 11 dobj _ _ 10 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 11 nsubj _ _ 11 call call VERB VBP Tense=Pres|VerbForm=Fin 8 relcl _ _ 12 intercategory intercategory NOUN NN Number=Sing 11 oprd _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = This is a kind of weak triple category with three kinds of arrows, three kinds of 2 - dimensional cells and one kind of 3 - dimensional cells. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 kind kind NOUN NN Number=Sing 2 attr _ _ 5 of of ADP IN _ 4 prep _ _ 6 weak weak ADJ JJ Degree=Pos 8 amod _ _ 7 triple triple ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 5 pobj _ _ 9 with with ADP IN _ 4 prep _ _ 10 three three NUM CD NumType=Card 11 nummod _ _ 11 kinds kind NOUN NNS Number=Plur 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 arrows arrow NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 11 punct _ _ 15 three three NUM CD NumType=Card 16 nummod _ _ 16 kinds kind NOUN NNS Number=Plur 11 appos _ _ 17 of of ADP IN _ 16 prep _ _ 18 2 2 NUM CD NumType=Card 20 advmod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 dimensional dimensional ADJ JJ Degree=Pos 21 amod _ _ 21 cells cell NOUN NNS Number=Plur 17 pobj _ _ 22 and and CCONJ CC ConjType=Cmp 16 cc _ _ 23 one one NUM CD NumType=Card 24 nummod _ _ 24 kind kind NOUN NN Number=Sing 16 conj _ _ 25 of of ADP IN _ 24 prep _ _ 26 3 3 NUM CD NumType=Card 28 advmod _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 dimensional dimensional ADJ JJ Degree=Pos 29 amod _ _ 29 cells cell NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = In one dimension, the compositions are strictly associative and unitary, whereas in the other two, these laws only hold up to coherent isomorphism. 1 In in ADP IN _ 7 prep _ _ 2 one one NUM CD NumType=Card 3 nummod _ _ 3 dimension dimension NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 7 punct _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 compositions composition NOUN NNS Number=Plur 7 nsubj _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 strictly strictly ADV RB _ 7 advmod _ _ 9 associative associative ADJ JJ Degree=Pos 7 acomp _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 unitary unitary ADJ JJ Degree=Pos 9 conj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 7 punct _ _ 13 whereas whereas SCONJ IN _ 22 mark _ _ 14 in in ADP IN _ 22 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 other other ADJ JJ Degree=Pos 17 amod _ _ 17 two two NUM CD NumType=Card 14 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 22 punct _ _ 19 these these DET DT Number=Plur|PronType=Dem 20 det _ _ 20 laws law NOUN NNS Number=Plur 22 nsubj _ _ 21 only only ADV RB _ 22 advmod _ _ 22 hold hold VERB VBP Tense=Pres|VerbForm=Fin 7 advcl _ _ 23 up up ADP RP _ 22 prt _ _ 24 to to ADP IN _ 22 prep _ _ 25 coherent coherent ADJ JJ Degree=Pos 26 amod _ _ 26 isomorphism isomorphism NOUN NN Number=Sing 24 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = The main feature is that the interchange law between the second and third compositions does not hold, but rather there is a non - invertible comparison cell which satisfies some coherence conditions. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 feature feature NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 17 mark _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 interchange interchange ADJ JJ Degree=Pos 8 compound _ _ 8 law law NOUN NN Number=Sing 17 nsubj _ _ 9 between between ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 14 det _ _ 11 second second ADJ JJ Degree=Pos 14 amod _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 third third ADJ JJ Degree=Pos 11 conj _ _ 14 compositions composition NOUN NNS Number=Plur 9 pobj _ _ 15 does do AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 aux _ _ 16 not not PART RB Polarity=Neg 17 neg _ _ 17 hold hold VERB VB VerbForm=Inf 4 ccomp _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 but but CCONJ CC ConjType=Cmp 17 cc _ _ 20 rather rather ADV RB _ 17 cc _ _ 21 there there PRON EX _ 22 expl _ _ 22 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 conj _ _ 23 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 24 non non ADJ JJ Degree=Pos 26 npadvmod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 invertible invertible ADJ JJ Degree=Pos 28 amod _ _ 27 comparison comparison NOUN NN Number=Sing 28 compound _ _ 28 cell cell NOUN NN Number=Sing 22 attr _ _ 29 which which PRON WDT _ 30 nsubj _ _ 30 satisfies satisfy VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 28 relcl _ _ 31 some some DET DT _ 33 det _ _ 32 coherence coherence NOUN NN Number=Sing 33 compound _ _ 33 conditions condition NOUN NNS Number=Plur 30 dobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = We introduce appropriate morphisms of intercategory, of which there are three types, and cells relating these. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 appropriate appropriate ADJ JJ Degree=Pos 4 amod _ _ 4 morphisms morphism NOUN NNS Number=Plur 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 intercategory intercategory NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 4 punct _ _ 8 of of ADP IN _ 11 dep _ _ 9 which which PRON WDT _ 8 pobj _ _ 10 there there PRON EX _ 11 expl _ _ 11 are be VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 relcl _ _ 12 three three NUM CD NumType=Card 13 nummod _ _ 13 types type NOUN NNS Number=Plur 11 attr _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 11 punct _ _ 15 and and CCONJ CC ConjType=Cmp 11 cc _ _ 16 cells cell NOUN NNS Number=Plur 11 conj _ _ 17 relating relate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 acl _ _ 18 these these PRON DT Number=Plur|PronType=Dem 17 dobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = We show that these fit together to produce a strict triple category of intercategories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 5 mark _ _ 4 these these PRON DT Number=Plur|PronType=Dem 5 nsubj _ _ 5 fit fit VERB VBP Tense=Pres|VerbForm=Fin 2 ccomp _ _ 6 together together ADV RB _ 5 advmod _ _ 7 to to PART TO _ 8 aux _ _ 8 produce produce VERB VB VerbForm=Inf 5 advcl _ _ 9 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 10 strict strict ADJ JJ Degree=Pos 12 amod _ _ 11 triple triple ADJ JJ Degree=Pos 12 amod _ _ 12 category category NOUN NN Number=Sing 8 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 intercategories intercategorie NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 526 # sent_id = 1 # text = We show that ann - categories admit a presentation by crossed bimodules, and prove that morphisms between them can be expressed by special kinds spans between the presentations. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 7 mark _ _ 4 ann ann PROPN NNP Number=Sing 6 compound _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 categories category NOUN NNS Number=Plur 7 nsubj _ _ 7 admit admit VERB VBP Tense=Pres|VerbForm=Fin 2 ccomp _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 presentation presentation NOUN NN Number=Sing 7 dobj _ _ 10 by by ADP IN _ 9 prep _ _ 11 crossed crossed ADJ JJ Degree=Pos 12 amod _ _ 12 bimodules bimodule NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 7 punct _ _ 14 and and CCONJ CC ConjType=Cmp 7 cc _ _ 15 prove prove VERB VB VerbForm=Inf 7 conj _ _ 16 that that SCONJ IN _ 22 mark _ _ 17 morphisms morphism NOUN NNS Number=Plur 22 nsubjpass _ _ 18 between between ADP IN _ 17 prep _ _ 19 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 18 pobj _ _ 20 can can AUX MD VerbForm=Fin 22 aux _ _ 21 be be AUX VB VerbForm=Inf 22 auxpass _ _ 22 expressed express VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 ccomp _ _ 23 by by ADP IN _ 22 agent _ _ 24 special special ADJ JJ Degree=Pos 25 amod _ _ 25 kinds kind NOUN NNS Number=Plur 26 compound _ _ 26 spans span NOUN NNS Number=Plur 23 pobj _ _ 27 between between ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 presentations presentation NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = More precisely, we prove the groupoid of morphisms between two ann - categories is equivalent to that of bimodule butterflies between the presentations. 1 More more ADV RBR Degree=Cmp 2 advmod _ _ 2 precisely precisely ADV RB _ 5 advmod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 groupoid groupoid NOUN NN Number=Sing 15 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 morphisms morphism NOUN NNS Number=Plur 8 pobj _ _ 10 between between ADP IN _ 7 prep _ _ 11 two two NUM CD NumType=Card 14 nummod _ _ 12 ann ann PROPN NNP Number=Sing 14 compound _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 categories category NOUN NNS Number=Plur 10 pobj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 ccomp _ _ 16 equivalent equivalent ADJ JJ Degree=Pos 15 acomp _ _ 17 to to ADP IN _ 16 prep _ _ 18 that that PRON DT Number=Sing|PronType=Dem 17 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 bimodule bimodule NOUN NN Number=Sing 21 compound _ _ 21 butterflies butterfly NOUN NNS Number=Plur 19 pobj _ _ 22 between between ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 presentations presentation NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = A bimodule butterfly is a specialization of a butterfly, that is, a special kind of span or fraction, between the underlying complexes 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 bimodule bimodule NOUN NN Number=Sing 3 compound _ _ 3 butterfly butterfly NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 specialization specialization NOUN NN Number=Sing 4 attr _ _ 7 of of ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 butterfly butterfly NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 6 punct _ _ 11 that that ADV RB _ 12 advmod _ _ 12 is is ADV RB _ 16 advmod _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 special special ADJ JJ Degree=Pos 16 amod _ _ 16 kind kind NOUN NN Number=Sing 4 attr _ _ 17 of of ADP IN _ 16 prep _ _ 18 span span NOUN NN Number=Sing 17 pobj _ _ 19 or or CCONJ CC ConjType=Cmp 18 cc _ _ 20 fraction fraction NOUN NN Number=Sing 18 conj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 16 punct _ _ 22 between between ADP IN _ 16 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 underlying underlie VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 25 amod _ _ 25 complexes complex NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No # doc_id = 527 # sent_id = 1 # text = In this paper, we unify various approaches to generalized covering space theory by introducing a categorical framework in which coverings are defined purely in terms of unique lifting properties. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 unify unify VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 various various ADJ JJ Degree=Pos 8 amod _ _ 8 approaches approach NOUN NNS Number=Plur 6 dobj _ _ 9 to to ADP IN _ 8 prep _ _ 10 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 amod _ _ 11 covering cover VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 pobj _ _ 12 space space NOUN NN Number=Sing 13 compound _ _ 13 theory theory NOUN NN Number=Sing 11 dobj _ _ 14 by by ADP IN _ 6 prep _ _ 15 introducing introduce VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 pcomp _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 categorical categorical ADJ JJ Degree=Pos 18 amod _ _ 18 framework framework NOUN NN Number=Sing 15 dobj _ _ 19 in in ADP IN _ 23 prep _ _ 20 which which PRON WDT _ 19 pobj _ _ 21 coverings covering NOUN NNS Number=Plur 23 nsubjpass _ _ 22 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 23 auxpass _ _ 23 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 relcl _ _ 24 purely purely ADV RB _ 23 advmod _ _ 25 in in ADP IN _ 23 prep _ _ 26 terms term NOUN NNS Number=Plur 25 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 unique unique ADJ JJ Degree=Pos 30 amod _ _ 29 lifting lifting NOUN NN Number=Sing 30 compound _ _ 30 properties property NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = For each category $ C $ of path - connected spaces having the unit disk as an object, we construct a category of $ C $ - coverings over a given space $ X $ that embeds in the category of $ pi_1(X, x_0) $ - sets via the usual monodromy action on fibers. 1 For for ADP IN _ 19 prep _ _ 2 each each DET DT _ 3 det _ _ 3 category category NOUN NN Number=Sing 1 pobj _ _ 4 $ C $ $ c $ SYM $ _ 1 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 path path NOUN NN Number=Sing 8 npadvmod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 amod _ _ 9 spaces space NOUN NNS Number=Plur 5 pobj _ _ 10 having have VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 acl _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 unit unit NOUN NN Number=Sing 13 compound _ _ 13 disk disk NOUN NN Number=Sing 10 dobj _ _ 14 as as ADP IN _ 10 prep _ _ 15 an an DET DT Definite=Ind|PronType=Art 16 det _ _ 16 object object NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 19 punct _ _ 18 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 19 nsubj _ _ 19 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 20 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 21 category category NOUN NN Number=Sing 19 dobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 $ C $ $ c $ SYM $ _ 25 compound _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 coverings covering NOUN NNS Number=Plur 22 pobj _ _ 26 over over ADP IN _ 19 prep _ _ 27 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 28 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 amod _ _ 29 space space NOUN NN Number=Sing 26 pobj _ _ 30 $ X $ $ x $ SYM $ _ 29 appos _ _ 31 that that PRON WDT PronType=Rel 32 nsubj _ _ 32 embeds embed VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 relcl _ _ 33 in in ADP IN _ 32 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 35 det _ _ 35 category category NOUN NN Number=Sing 33 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 $ pi_1(X, x_0) $ $ pi_1(x, x_0) $ SYM $ _ 39 compound _ _ 38 - - PUNCT HYPH PunctType=Dash 39 punct _ _ 39 sets set NOUN NNS Number=Plur 36 pobj _ _ 40 via via ADP IN _ 32 prep _ _ 41 the the DET DT Definite=Def|PronType=Art 44 det _ _ 42 usual usual ADJ JJ Degree=Pos 44 amod _ _ 43 monodromy monodromy NOUN NN Number=Sing 44 compound _ _ 44 action action NOUN NN Number=Sing 40 pobj _ _ 45 on on ADP IN _ 44 prep _ _ 46 fibers fiber NOUN NNS Number=Plur 45 pobj _ SpaceAfter=No 47 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 3 # text = When $ C $ is extended to its coreflective hull $ H(C) $ , the resulting category of based $ H(C) $ - coverings is complete, has an initial object, and often characterizes more of the subgroup lattice of $ pi_1(X, x_0) $ than traditional covering spaces. 1 When when SCONJ WRB _ 4 advmod _ _ 2 $ C $ $ c $ SYM $ _ 4 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 extended extend VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 advcl _ _ 5 to to ADP IN _ 4 prep _ _ 6 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 8 poss _ _ 7 coreflective coreflective ADJ JJ Degree=Pos 8 amod _ _ 8 hull hull NOUN NN Number=Sing 5 pobj _ _ 9 $ H(C) $ $ h(c) $ SYM $ _ 8 appos _ _ 10 , , PUNCT , PunctType=Comm 19 punct _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 resulting result VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 amod _ _ 13 category category NOUN NN Number=Sing 19 nsubj _ _ 14 of of ADP IN _ 13 prep _ _ 15 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 amod _ _ 16 $ H(C) $ $ h(c) $ SYM $ _ 18 compound _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 coverings covering NOUN NNS Number=Plur 14 pobj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 20 complete complete ADJ JJ Degree=Pos 19 acomp _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 22 punct _ _ 22 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 conj _ _ 23 an an DET DT Definite=Ind|PronType=Art 25 det _ _ 24 initial initial ADJ JJ Degree=Pos 25 amod _ _ 25 object object NOUN NN Number=Sing 22 dobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 22 punct _ _ 27 and and CCONJ CC ConjType=Cmp 22 cc _ _ 28 often often ADV RB _ 29 advmod _ _ 29 characterizes characterize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 conj _ _ 30 more more ADJ JJR Degree=Cmp 29 dobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 the the DET DT Definite=Def|PronType=Art 34 det _ _ 33 subgroup subgroup NOUN NN Number=Sing 34 compound _ _ 34 lattice lattice NOUN NN Number=Sing 31 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 $ pi_1(X, x_0) $ $ pi_1(x, x_0) $ SYM $ _ 35 pobj _ _ 37 than than ADP IN _ 29 prep _ _ 38 traditional traditional ADJ JJ Degree=Pos 40 amod _ _ 39 covering covering NOUN NN Number=Sing 40 compound _ _ 40 spaces space NOUN NNS Number=Plur 37 pobj _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 4 # text = We apply our results to three special coreflective subcategories: (i) The category of $ Delta $ - coverings employs the convenient category of $ Delta $ - generated spaces and is universal in the sense that it contains every other generalized covering category as a subcategory. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 apply apply VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 4 poss _ _ 4 results result NOUN NNS Number=Plur 2 dobj _ _ 5 to to ADP IN _ 2 prep _ _ 6 three three NUM CD NumType=Card 9 nummod _ _ 7 special special ADJ JJ Degree=Pos 9 amod _ _ 8 coreflective coreflective ADJ JJ Degree=Pos 9 amod _ _ 9 subcategories subcategorie NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 10 : : PUNCT : _ 9 punct _ _ 11 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 12 punct _ SpaceAfter=No 12 i i NOUN NN Number=Sing 9 appos _ SpaceAfter=No 13 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 12 punct _ _ 14 The the DET DT Definite=Def|PronType=Art 15 det _ _ 15 category category NOUN NN Number=Sing 20 nsubj _ _ 16 of of ADP IN _ 15 prep _ _ 17 $ Delta $ $ delta $ SYM $ _ 19 nummod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 coverings covering NOUN NNS Number=Plur 16 pobj _ _ 20 employs employ VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 conj _ _ 21 the the DET DT Definite=Def|PronType=Art 23 det _ _ 22 convenient convenient ADJ JJ Degree=Pos 23 amod _ _ 23 category category NOUN NN Number=Sing 20 dobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 $ Delta $ $ delta $ SYM $ _ 27 advmod _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 amod _ _ 28 spaces space NOUN NNS Number=Plur 24 pobj _ _ 29 and and CCONJ CC ConjType=Cmp 20 cc _ _ 30 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 conj _ _ 31 universal universal ADJ JJ Degree=Pos 30 acomp _ _ 32 in in ADP IN _ 30 prep _ _ 33 the the DET DT Definite=Def|PronType=Art 34 det _ _ 34 sense sense NOUN NN Number=Sing 32 pobj _ _ 35 that that SCONJ IN _ 37 mark _ _ 36 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 37 nsubj _ _ 37 contains contain VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 ccomp _ _ 38 every every DET DT _ 42 det _ _ 39 other other ADJ JJ Degree=Pos 42 amod _ _ 40 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 42 amod _ _ 41 covering covering NOUN NN Number=Sing 42 compound _ _ 42 category category NOUN NN Number=Sing 37 dobj _ _ 43 as as ADP IN _ 42 prep _ _ 44 a a DET DT Definite=Ind|PronType=Art 45 det _ _ 45 subcategory subcategory NOUN NN Number=Sing 43 pobj _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # sent_id = 5 # text = (ii) In the locally path - connected category, we preserve notion of generalized covering due to Fischer and Zastrow and characterize the topology of such coverings using the standard whisker topology. 1 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 2 punct _ SpaceAfter=No 2 ii ii PROPN NNP Number=Sing 13 dep _ SpaceAfter=No 3 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 2 punct _ _ 4 In in ADP IN _ 13 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 10 det _ _ 6 locally locally ADV RB _ 10 amod _ _ 7 path path NOUN NN Number=Sing 9 npadvmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 10 category category NOUN NN Number=Sing 4 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 13 punct _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 preserve preserve VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 notion notion NOUN NN Number=Sing 13 dobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 17 covering covering NOUN NN Number=Sing 15 pobj _ _ 18 due due ADP IN _ 13 prep _ _ 19 to to ADP IN _ 18 pcomp _ _ 20 Fischer Fischer PROPN NNP Number=Sing 18 pobj _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 Zastrow Zastrow PROPN NNP Number=Sing 20 conj _ _ 23 and and CCONJ CC ConjType=Cmp 13 cc _ _ 24 characterize characterize VERB VB VerbForm=Inf 13 conj _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 topology topology NOUN NN Number=Sing 24 dobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 such such ADJ JJ Degree=Pos 29 amod _ _ 29 coverings covering NOUN NNS Number=Plur 27 pobj _ _ 30 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 24 advcl _ _ 31 the the DET DT Definite=Def|PronType=Art 34 det _ _ 32 standard standard ADJ JJ Degree=Pos 34 amod _ _ 33 whisker whisker NOUN NN Number=Sing 34 compound _ _ 34 topology topology NOUN NN Number=Sing 30 dobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 6 # text = (iii) By employing the coreflective hull Fan of the category of all contractible spaces, we characterize the notion of continuous lifting of paths and identify the topology of Fan - coverings as the natural quotient topology inherited from the path space. 1 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 2 punct _ SpaceAfter=No 2 iii iii NOUN NN Number=Sing 19 meta _ SpaceAfter=No 3 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 2 punct _ _ 4 By by ADP IN _ 19 prep _ _ 5 employing employ VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 pcomp _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 coreflective coreflective ADJ JJ Degree=Pos 8 amod _ _ 8 hull hull NOUN NN Number=Sing 5 dobj _ _ 9 Fan Fan PROPN NNP Number=Sing 5 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 category category NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 all all DET DT _ 16 det _ _ 15 contractible contractible ADJ JJ Degree=Pos 16 amod _ _ 16 spaces space NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 19 punct _ _ 18 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 19 nsubj _ _ 19 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 notion notion NOUN NN Number=Sing 19 dobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 continuous continuous ADJ JJ Degree=Pos 24 amod _ _ 24 lifting lifting NOUN NN Number=Sing 22 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 paths path NOUN NNS Number=Plur 25 pobj _ _ 27 and and CCONJ CC ConjType=Cmp 19 cc _ _ 28 identify identify VERB VB VerbForm=Inf 19 conj _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 topology topology NOUN NN Number=Sing 28 dobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 Fan Fan PROPN NNP Number=Sing 34 compound _ _ 33 - - PUNCT HYPH PunctType=Dash 34 punct _ _ 34 coverings covering NOUN NNS Number=Plur 31 pobj _ _ 35 as as ADP IN _ 28 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 39 det _ _ 37 natural natural ADJ JJ Degree=Pos 38 amod _ _ 38 quotient quotient NOUN NN Number=Sing 39 compound _ _ 39 topology topology NOUN NN Number=Sing 35 pobj _ _ 40 inherited inherit VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 39 acl _ _ 41 from from ADP IN _ 40 prep _ _ 42 the the DET DT Definite=Def|PronType=Art 44 det _ _ 43 path path NOUN NN Number=Sing 44 compound _ _ 44 space space NOUN NN Number=Sing 41 pobj _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # doc_id = 528 # sent_id = 1 # text = This is the third paper in a series. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 third third ADJ JJ Degree=Pos 5 amod _ _ 5 paper paper NOUN NN Number=Sing 2 attr _ _ 6 in in ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 series series NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 9 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = In it we construct a $ C $ - system $ CC(C, p) $ starting from a category $ C $ together with a morphism $ p:tilde{U} to U $ , a choice of pull - back squares based on $ p $ for all morphisms to $ U $ and a choice of a final object of $ C $ . 1 In in ADP IN _ 4 prep _ _ 2 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 1 pobj _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 6 $ C $ $ c $ SYM $ _ 8 nummod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 system system NOUN NN Number=Sing 4 dobj _ _ 9 $ CC(C, p) $ $ cc(c, p) $ SYM $ _ 10 nsubj _ _ 10 starting start VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 advcl _ _ 11 from from ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 category category NOUN NN Number=Sing 11 pobj _ _ 14 $ C $ $ c $ SYM $ _ 15 nmod _ _ 15 together together ADV RB _ 10 advmod _ _ 16 with with ADP IN _ 10 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 morphism morphism NOUN NN Number=Sing 16 pobj _ _ 19 $ p:tilde{U} to U $ $ p:tilde{u} to u $ SYM $ _ 18 appos _ _ 20 , , PUNCT , PunctType=Comm 18 punct _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 choice choice NOUN NN Number=Sing 18 appos _ _ 23 of of ADP IN _ 22 prep _ _ 24 pull pull VERB VB VerbForm=Inf 27 amod _ _ 25 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 26 back back NOUN NN Number=Sing 24 prt _ _ 27 squares square NOUN NNS Number=Plur 23 pobj _ _ 28 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 acl _ _ 29 on on ADP IN _ 28 prep _ _ 30 $ p $ $ p $ SYM $ _ 29 pobj _ _ 31 for for ADP IN _ 22 prep _ _ 32 all all DET DT _ 33 det _ _ 33 morphisms morphism NOUN NNS Number=Plur 31 pobj _ _ 34 to to ADP IN _ 22 prep _ _ 35 $ U $ $ u $ SYM $ _ 34 pobj _ _ 36 and and CCONJ CC ConjType=Cmp 22 cc _ _ 37 a a DET DT Definite=Ind|PronType=Art 38 det _ _ 38 choice choice NOUN NN Number=Sing 22 conj _ _ 39 of of ADP IN _ 38 prep _ _ 40 a a DET DT Definite=Ind|PronType=Art 42 det _ _ 41 final final ADJ JJ Degree=Pos 42 amod _ _ 42 object object NOUN NN Number=Sing 39 pobj _ _ 43 of of ADP IN _ 42 prep _ _ 44 $ C $ $ c $ SYM $ _ 43 pobj _ _ 45 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = Such a quadruple is called a universe category. 1 Such such DET PDT _ 3 predet _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 quadruple quadruple NOUN NN Number=Sing 5 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 universe universe ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 5 oprd _ SpaceAfter=No 9 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = We then define universe category functors and construct homomorphisms of $ C $ - systems $ CC(C, p) $ defined by universe category functors. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 universe universe ADJ JJ Degree=Pos 6 compound _ _ 5 category category NOUN NN Number=Sing 6 compound _ _ 6 functors functor NOUN NNS Number=Plur 3 dobj _ _ 7 and and CCONJ CC ConjType=Cmp 3 cc _ _ 8 construct construct VERB VB VerbForm=Inf 3 conj _ _ 9 homomorphisms homomorphism NOUN NNS Number=Plur 8 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 $ C $ $ c $ SYM $ _ 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 systems system NOUN NNS Number=Plur 10 pobj _ _ 14 $ CC(C, p) $ $ cc(c, p) $ SYM $ _ 8 dobj _ _ 15 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 advcl _ _ 16 by by ADP IN _ 15 agent _ _ 17 universe universe ADJ JJ Degree=Pos 19 compound _ _ 18 category category NOUN NN Number=Sing 19 compound _ _ 19 functors functor NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = In the sections before the last section we give, for any $ C $ - system $ CC $ , three different constructions of pairs $ ((C, p), H) $ where $ (C, p) $ is a universe category and $ H : CC to CC(C, p) $ is an isomorphism. 1 In in ADP IN _ 32 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 sections section NOUN NNS Number=Plur 1 pobj _ _ 4 before before ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 last last ADJ JJ Degree=Pos 7 amod _ _ 7 section section NOUN NN Number=Sing 4 pobj _ _ 8 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 9 nsubj _ _ 9 give give VERB VBP Tense=Pres|VerbForm=Fin 7 relcl _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 32 punct _ _ 11 for for ADP IN _ 32 prep _ _ 12 any any DET DT _ 15 det _ _ 13 $ C $ $ c $ SYM $ _ 15 nmod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 system system NOUN NN Number=Sing 11 pobj _ _ 16 $ CC $ $ cc $ SYM $ _ 15 nmod _ _ 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 three three NUM CD NumType=Card 20 nummod _ _ 19 different different ADJ JJ Degree=Pos 20 amod _ _ 20 constructions construction NOUN NNS Number=Plur 32 nsubj _ _ 21 of of ADP IN _ 20 prep _ _ 22 pairs pair NOUN NNS Number=Plur 21 pobj _ _ 23 $ ((C, p), H) $ $ ((C, p), H) $ PROPN NNP Number=Sing 20 appos _ _ 24 where where SCONJ WRB _ 26 advmod _ _ 25 $ (C, p) $ $ (c, p) $ SYM $ _ 26 nsubj _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 relcl _ _ 27 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 28 universe universe ADJ JJ Degree=Pos 29 amod _ _ 29 category category NOUN NN Number=Sing 26 attr _ _ 30 and and CCONJ CC ConjType=Cmp 26 cc _ _ 31 $ H : CC to CC(C, p) $ $ h : cc to cc(c, p) $ SYM $ _ 32 nsubj _ _ 32 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 33 an an DET DT Definite=Ind|PronType=Art 34 det _ _ 34 isomorphism isomorphism NOUN NN Number=Sing 32 attr _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 32 punct _ SpaceAfter=No # sent_id = 6 # text = In the last section we construct for any (set) category $ C $ with a choice of a final object and fiber products a $ C $ - system and an equivalence between $ C $ and the precategory underlying $ CC $ . 1 In in ADP IN _ 6 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 last last ADJ JJ Degree=Pos 4 amod _ _ 4 section section NOUN NN Number=Sing 1 pobj _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 for for ADP IN _ 6 prep _ _ 8 any any DET DT _ 12 det _ _ 9 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 10 punct _ SpaceAfter=No 10 set set NOUN NN Number=Sing 12 nmod _ SpaceAfter=No 11 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 12 punct _ _ 12 category category NOUN NN Number=Sing 7 pobj _ _ 13 $ C $ $ c $ SYM $ _ 6 dep _ _ 14 with with ADP IN _ 6 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 choice choice NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 19 final final ADJ JJ Degree=Pos 23 amod _ _ 20 object object NOUN NN Number=Sing 23 nmod _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 fiber fiber NOUN NN Number=Sing 20 conj _ _ 23 products product NOUN NNS Number=Plur 17 pobj _ _ 24 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 25 $ C $ $ c $ SYM $ _ 27 compound _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 system system NOUN NN Number=Sing 6 dobj _ _ 28 and and CCONJ CC ConjType=Cmp 27 cc _ _ 29 an an DET DT Definite=Ind|PronType=Art 30 det _ _ 30 equivalence equivalence NOUN NN Number=Sing 27 conj _ _ 31 between between ADP IN _ 30 prep _ _ 32 $ C $ $ c $ SYM $ _ 31 pobj _ _ 33 and and CCONJ CC ConjType=Cmp 30 cc _ _ 34 the the DET DT Definite=Def|PronType=Art 35 det _ _ 35 precategory precategory NOUN NN Number=Sing 30 conj _ _ 36 underlying underlie VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 35 acl _ _ 37 $ CC $ $ cc $ SYM $ _ 36 dobj _ _ 38 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 529 # sent_id = 1 # text = The purpose of this note is to understand the two out of three property of the model category in terms of the weak factorization systems. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 purpose purpose NOUN NN Number=Sing 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 note note NOUN NN Number=Sing 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 to to PART TO _ 8 aux _ _ 8 understand understand VERB VB VerbForm=Inf 6 xcomp _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 two two NUM CD NumType=Card 14 nummod _ _ 11 out out ADP IN _ 13 quantmod _ _ 12 of of ADP IN _ 13 quantmod _ _ 13 three three NUM CD NumType=Card 14 nummod _ _ 14 property property NOUN NN Number=Sing 8 dobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 model model NOUN NN Number=Sing 18 compound _ _ 18 category category NOUN NN Number=Sing 15 pobj _ _ 19 in in ADP IN _ 14 prep _ _ 20 terms term NOUN NNS Number=Plur 19 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 25 det _ _ 23 weak weak ADJ JJ Degree=Pos 25 amod _ _ 24 factorization factorization NOUN NN Number=Sing 25 compound _ _ 25 systems system NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = We will show that if a category with classes of trivial cofibrations, cofibrations, trivial fibrations, and fibrations is given a simplicial structure similar to that of the simplicial model category, then the full subcategory of cofibrant and fibrant objects has the two out of three property, and we will give a list of necessary and sufficient conditions in terms of the simplicial structure for the associated canonical "weak equivalence class" to have the two out of three property. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 will will AUX MD VerbForm=Fin 3 aux _ _ 3 show show VERB VB VerbForm=Inf 0 ROOT _ _ 4 that that SCONJ IN _ 44 mark _ _ 5 if if SCONJ IN _ 22 mark _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 category category NOUN NN Number=Sing 5 nmod _ _ 8 with with ADP IN _ 7 prep _ _ 9 classes class NOUN NNS Number=Plur 8 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 trivial trivial ADJ JJ Degree=Pos 12 amod _ _ 12 cofibrations cofibration NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 cofibrations cofibration NOUN NNS Number=Plur 12 conj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 trivial trivial ADJ JJ Degree=Pos 17 amod _ _ 17 fibrations fibration NOUN NNS Number=Plur 14 conj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 7 punct _ _ 19 and and CCONJ CC ConjType=Cmp 7 cc _ _ 20 fibrations fibration NOUN NNS Number=Plur 22 nsubjpass _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 auxpass _ _ 22 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 44 advcl _ _ 23 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 24 simplicial simplicial ADJ JJ Degree=Pos 25 amod _ _ 25 structure structure NOUN NN Number=Sing 22 dobj _ _ 26 similar similar ADJ JJ Degree=Pos 25 amod _ _ 27 to to ADP IN _ 26 prep _ _ 28 that that PRON DT Number=Sing|PronType=Dem 27 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 33 det _ _ 31 simplicial simplicial ADJ JJ Degree=Pos 32 amod _ _ 32 model model NOUN NN Number=Sing 33 compound _ _ 33 category category NOUN NN Number=Sing 29 pobj _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 44 punct _ _ 35 then then ADV RB PronType=Dem 44 advmod _ _ 36 the the DET DT Definite=Def|PronType=Art 38 det _ _ 37 full full ADJ JJ Degree=Pos 38 amod _ _ 38 subcategory subcategory NOUN NN Number=Sing 44 nsubj _ _ 39 of of ADP IN _ 38 prep _ _ 40 cofibrant cofibrant NOUN NN Number=Sing 43 nmod _ _ 41 and and CCONJ CC ConjType=Cmp 40 cc _ _ 42 fibrant fibrant ADJ JJ Degree=Pos 40 conj _ _ 43 objects object NOUN NNS Number=Plur 39 pobj _ _ 44 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 45 the the DET DT Definite=Def|PronType=Art 50 det _ _ 46 two two NUM CD NumType=Card 50 nummod _ _ 47 out out ADP IN _ 49 quantmod _ _ 48 of of ADP IN _ 49 quantmod _ _ 49 three three NUM CD NumType=Card 50 nummod _ _ 50 property property NOUN NN Number=Sing 44 dobj _ SpaceAfter=No 51 , , PUNCT , PunctType=Comm 3 punct _ _ 52 and and CCONJ CC ConjType=Cmp 3 cc _ _ 53 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 55 nsubj _ _ 54 will will AUX MD VerbForm=Fin 55 aux _ _ 55 give give VERB VB VerbForm=Inf 3 conj _ _ 56 a a DET DT Definite=Ind|PronType=Art 57 det _ _ 57 list list NOUN NN Number=Sing 55 dobj _ _ 58 of of ADP IN _ 57 prep _ _ 59 necessary necessary ADJ JJ Degree=Pos 62 amod _ _ 60 and and CCONJ CC ConjType=Cmp 59 cc _ _ 61 sufficient sufficient ADJ JJ Degree=Pos 59 conj _ _ 62 conditions condition NOUN NNS Number=Plur 58 pobj _ _ 63 in in ADP IN _ 62 prep _ _ 64 terms term NOUN NNS Number=Plur 63 pobj _ _ 65 of of ADP IN _ 64 prep _ _ 66 the the DET DT Definite=Def|PronType=Art 68 det _ _ 67 simplicial simplicial ADJ JJ Degree=Pos 68 amod _ _ 68 structure structure NOUN NN Number=Sing 65 pobj _ _ 69 for for ADP IN _ 68 prep _ _ 70 the the DET DT Definite=Def|PronType=Art 76 det _ _ 71 associated associated ADJ JJ Degree=Pos 72 amod _ _ 72 canonical canonical NOUN NN Number=Sing 76 amod _ _ 73 " " PUNCT `` PunctSide=Ini|PunctType=Quot 76 punct _ SpaceAfter=No 74 weak weak ADJ JJ Degree=Pos 76 amod _ _ 75 equivalence equivalence NOUN NN Number=Sing 76 compound _ _ 76 class class NOUN NN Number=Sing 69 pobj _ SpaceAfter=No 77 " " PUNCT '' PunctSide=Fin|PunctType=Quot 76 punct _ _ 78 to to PART TO _ 79 aux _ _ 79 have have VERB VB VerbForm=Inf 55 xcomp _ _ 80 the the DET DT Definite=Def|PronType=Art 81 det _ _ 81 two two NUM CD NumType=Card 85 nummod _ _ 82 out out ADP IN _ 84 quantmod _ _ 83 of of ADP IN _ 84 quantmod _ _ 84 three three NUM CD NumType=Card 85 nummod _ _ 85 property property NOUN NN Number=Sing 79 dobj _ SpaceAfter=No 86 . . PUNCT . PunctType=Peri 55 punct _ SpaceAfter=No # doc_id = 530 # sent_id = 1 # text = We study transport of algebraic structures and prove a theorem which subsumes results of Comfort and Ross on topological group structures on Stone - Cech compactifications, of Chevalley and of Gil de Lamadrid and Jans on topological group and ring structures on universal covering spaces, and of Gleason on topological group structures on universal locally connected refinements. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 transport transport NOUN NN Number=Sing 2 dobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 algebraic algebraic ADJ JJ Degree=Pos 6 amod _ _ 6 structures structure NOUN NNS Number=Plur 4 pobj _ _ 7 and and CCONJ CC ConjType=Cmp 2 cc _ _ 8 prove prove VERB VB VerbForm=Inf 2 conj _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 theorem theorem NOUN NN Number=Sing 8 dobj _ _ 11 which which PRON WDT _ 12 nsubj _ _ 12 subsumes subsume VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 relcl _ _ 13 results result NOUN NNS Number=Plur 12 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 Comfort Comfort PROPN NNP Number=Sing 14 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 Ross Ross PROPN NNP Number=Sing 15 conj _ _ 18 on on ADP IN _ 13 prep _ _ 19 topological topological ADJ JJ Degree=Pos 21 amod _ _ 20 group group NOUN NN Number=Sing 21 compound _ _ 21 structures structure NOUN NNS Number=Plur 18 pobj _ _ 22 on on ADP IN _ 21 prep _ _ 23 Stone Stone PROPN NNP Number=Sing 25 compound _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 Cech Cech PROPN NNP Number=Sing 26 compound _ _ 26 compactifications compactification NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 26 punct _ _ 28 of of ADP IN _ 26 prep _ _ 29 Chevalley Chevalley PROPN NNP Number=Sing 28 pobj _ _ 30 and and CCONJ CC ConjType=Cmp 29 cc _ _ 31 of of ADP IN _ 21 prep _ _ 32 Gil Gil PROPN NNP Number=Sing 34 compound _ _ 33 de de PROPN NNP Number=Sing 34 nmod _ _ 34 Lamadrid Lamadrid PROPN NNP Number=Sing 31 pobj _ _ 35 and and CCONJ CC ConjType=Cmp 34 cc _ _ 36 Jans Jans PROPN NNPS Number=Plur 34 conj _ _ 37 on on ADP IN _ 34 prep _ _ 38 topological topological ADJ JJ Degree=Pos 39 amod _ _ 39 group group NOUN NN Number=Sing 37 pobj _ _ 40 and and CCONJ CC ConjType=Cmp 12 cc _ _ 41 ring ring NOUN NN Number=Sing 12 conj _ _ 42 structures structure NOUN NNS Number=Plur 41 dobj _ _ 43 on on ADP IN _ 41 prep _ _ 44 universal universal ADJ JJ Degree=Pos 46 amod _ _ 45 covering covering NOUN NN Number=Sing 46 compound _ _ 46 spaces space NOUN NNS Number=Plur 43 pobj _ SpaceAfter=No 47 , , PUNCT , PunctType=Comm 8 punct _ _ 48 and and CCONJ CC ConjType=Cmp 8 cc _ _ 49 of of ADP IN _ 8 conj _ _ 50 Gleason Gleason PROPN NNP Number=Sing 49 pobj _ _ 51 on on ADP IN _ 50 prep _ _ 52 topological topological ADJ JJ Degree=Pos 54 amod _ _ 53 group group NOUN NN Number=Sing 54 compound _ _ 54 structures structure NOUN NNS Number=Plur 51 pobj _ _ 55 on on ADP IN _ 8 prep _ _ 56 universal universal ADJ JJ Degree=Pos 59 amod _ _ 57 locally locally ADV RB _ 58 advmod _ _ 58 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 59 amod _ _ 59 refinements refinement NOUN NNS Number=Plur 55 pobj _ SpaceAfter=No 60 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 531 # sent_id = 1 # text = Let $ C $ be a category with finite colimits, writing its coproduct $ + $ , and let $ (D, otimes) $ be a braided monoidal category. 1 Let let VERB VB VerbForm=Inf 0 ROOT _ _ 2 $ C $ $ c $ SYM $ _ 3 nsubj _ _ 3 be be AUX VB VerbForm=Inf 1 ccomp _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 3 attr _ _ 6 with with ADP IN _ 5 prep _ _ 7 finite finite ADJ JJ Degree=Pos 8 compound _ _ 8 colimits colimit NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 3 punct _ _ 10 writing write VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 advcl _ _ 11 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 12 poss _ _ 12 coproduct coproduct NOUN NN Number=Sing 10 dobj _ _ 13 $ + $ $ + $ SYM $ _ 10 dobj _ _ 14 , , PUNCT , PunctType=Comm 3 punct _ _ 15 and and CCONJ CC ConjType=Cmp 3 cc _ _ 16 let let VERB VB VerbForm=Inf 3 conj _ _ 17 $ (D, otimes) $ $ (d, otimes) $ SYM $ _ 18 nsubj _ _ 18 be be AUX VB VerbForm=Inf 16 ccomp _ _ 19 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 20 braided braid VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 amod _ _ 21 monoidal monoidal ADJ JJ Degree=Pos 22 amod _ _ 22 category category NOUN NN Number=Sing 18 attr _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = We describe a method of producing a symmetric monoidal category from a lax braided monoidal functor $ F : (C, +) to (D, otimes) $ , and of producing a strong monoidal functor between such categories from a monoidal natural transformation between such functors. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 method method NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 producing produce VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 pcomp _ _ 7 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 8 symmetric symmetric ADJ JJ Degree=Pos 10 amod _ _ 9 monoidal monoidal ADJ JJ Degree=Pos 10 amod _ _ 10 category category NOUN NN Number=Sing 6 dobj _ _ 11 from from ADP IN _ 6 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 13 lax lax ADJ JJ Degree=Pos 14 advmod _ _ 14 braided braid VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 15 monoidal monoidal ADJ JJ Degree=Pos 16 amod _ _ 16 functor functor NOUN NN Number=Sing 11 pobj _ _ 17 $ F : (C, +) to (D, otimes) $ $ f : (c, +) to (d, otimes) $ SYM $ _ 2 dep _ _ 18 , , PUNCT , PunctType=Comm 2 punct _ _ 19 and and CCONJ CC ConjType=Cmp 2 cc _ _ 20 of of ADP IN _ 2 prep _ _ 21 producing produce VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 20 pcomp _ _ 22 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 23 strong strong ADJ JJ Degree=Pos 25 amod _ _ 24 monoidal monoidal ADJ JJ Degree=Pos 25 amod _ _ 25 functor functor NOUN NN Number=Sing 21 dobj _ _ 26 between between ADP IN _ 25 prep _ _ 27 such such ADJ JJ Degree=Pos 28 amod _ _ 28 categories category NOUN NNS Number=Plur 26 pobj _ _ 29 from from ADP IN _ 28 prep _ _ 30 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 31 monoidal monoidal ADJ JJ Degree=Pos 33 amod _ _ 32 natural natural ADJ JJ Degree=Pos 33 amod _ _ 33 transformation transformation NOUN NN Number=Sing 29 pobj _ _ 34 between between ADP IN _ 33 prep _ _ 35 such such ADJ JJ Degree=Pos 36 amod _ _ 36 functors functor NOUN NNS Number=Plur 34 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = The objects of these categories, our so - called `decorated cospan categories', are simply the objects of $ C $ , while the morphisms are pairs comprising a cospan $ X rightarrow N leftarrow Y $ in $ C $ together with an element $ 1 to FN $ in $ D $ . 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 objects object NOUN NNS Number=Plur 17 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 these these DET DT Number=Plur|PronType=Dem 5 det _ _ 5 categories category NOUN NNS Number=Plur 3 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 2 punct _ _ 7 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 14 poss _ _ 8 so so ADV RB _ 10 advmod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 11 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 14 punct _ SpaceAfter=No 12 decorated decorate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 13 cospan cospan NOUN NN Number=Sing 14 compound _ _ 14 categories category NOUN NNS Number=Plur 2 appos _ SpaceAfter=No 15 ' ' PART POS _ 14 punct _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 2 punct _ _ 17 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 18 simply simply ADV RB _ 17 advmod _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 objects object NOUN NNS Number=Plur 17 attr _ _ 21 of of ADP IN _ 20 prep _ _ 22 $ C $ $ c $ SYM $ _ 21 pobj _ _ 23 , , PUNCT , PunctType=Comm 17 punct _ _ 24 while while SCONJ IN _ 27 mark _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 morphisms morphism NOUN NNS Number=Plur 27 nsubj _ _ 27 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 17 advcl _ _ 28 pairs pair NOUN NNS Number=Plur 27 attr _ _ 29 comprising comprise VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 28 acl _ _ 30 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 31 cospan cospan NOUN NN Number=Sing 29 dobj _ _ 32 $ X rightarrow N leftarrow Y $ $ x rightarrow n leftarrow y $ SYM $ _ 29 dep _ _ 33 in in ADP IN _ 29 prep _ _ 34 $ C $ $ c $ SYM $ _ 33 pobj _ _ 35 together together ADV RB _ 33 advmod _ _ 36 with with ADP IN _ 29 prep _ _ 37 an an DET DT Definite=Ind|PronType=Art 38 det _ _ 38 element element NOUN NN Number=Sing 36 pobj _ _ 39 $ 1 to FN $ $ 1 to fn $ SYM $ _ 38 appos _ _ 40 in in ADP IN _ 38 prep _ _ 41 $ D $ $ d $ SYM $ _ 40 pobj _ _ 42 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 4 # text = Moreover, decorated cospan categories are hypergraph categories—each object is equipped with a special commutative Frobenius monoid—and their functors preserve this structure. 1 Moreover moreover ADV RB _ 6 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 6 punct _ _ 3 decorated decorate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 amod _ _ 4 cospan cospan NOUN NN Number=Sing 5 compound _ _ 5 categories category NOUN NNS Number=Plur 6 nsubj _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 ccomp _ _ 7 hypergraph hypergraph ADJ JJ Degree=Pos 8 amod _ _ 8 categories category NOUN NNS Number=Plur 6 attr _ SpaceAfter=No 9 — — PUNCT : _ 13 punct _ SpaceAfter=No 10 each each DET DT _ 11 det _ _ 11 object object NOUN NN Number=Sing 13 nsubjpass _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 14 with with ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 16 special special ADJ JJ Degree=Pos 19 amod _ _ 17 commutative commutative ADJ JJ Degree=Pos 19 compound _ _ 18 Frobenius Frobenius PROPN NNP Number=Sing 19 compound _ _ 19 monoid monoid NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 20 — — PUNCT : _ 13 punct _ SpaceAfter=No 21 and and CCONJ CC ConjType=Cmp 13 cc _ _ 22 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 23 poss _ _ 23 functors functor NOUN NNS Number=Plur 24 nsubj _ _ 24 preserve preserve VERB VBP Tense=Pres|VerbForm=Fin 13 conj _ _ 25 this this DET DT Number=Sing|PronType=Dem 26 det _ _ 26 structure structure NOUN NN Number=Sing 24 dobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 24 punct _ SpaceAfter=No # doc_id = 532 # sent_id = 1 # text = Given a monad and a comonad, one obtains a distributive law between them from lifts of one through an adjunction for the other. 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 monad monad NOUN NNS Number=Plur 1 pobj _ _ 4 and and CCONJ CC ConjType=Cmp 3 cc _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 comonad comonad NOUN NNS Number=Plur 3 conj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 9 punct _ _ 8 one one PRON PRP PronType=Prs 9 nsubj _ _ 9 obtains obtain VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 distributive distributive ADJ JJ Degree=Pos 12 amod _ _ 12 law law NOUN NN Number=Sing 9 dobj _ _ 13 between between ADP IN _ 12 prep _ _ 14 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 13 pobj _ _ 15 from from ADP IN _ 9 prep _ _ 16 lifts lift NOUN NNS Number=Plur 15 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 one one NUM CD NumType=Card 17 pobj _ _ 19 through through ADP IN _ 9 prep _ _ 20 an an DET DT Definite=Ind|PronType=Art 21 det _ _ 21 adjunction adjunction NOUN NN Number=Sing 19 pobj _ _ 22 for for ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 other other ADJ JJ Degree=Pos 22 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 2 # text = In particular, this yields for any bialgebroid the Yetter - Drinfel'd distributive law between the comonad given by a module coalgebra and the monad given by a comodule algebra. 1 In in ADP IN _ 5 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 yields yield NOUN NNS Number=Plur 0 ROOT _ _ 6 for for ADP IN _ 5 prep _ _ 7 any any DET DT _ 8 det _ _ 8 bialgebroid bialgebroid NOUN NN Number=Sing 6 pobj _ _ 9 the the DET DT Definite=Def|PronType=Art 14 det _ _ 10 Yetter Yetter PROPN NNP Number=Sing 12 compound _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 Drinfel'd drinfel'd NOUN NN Number=Sing 14 nmod _ _ 13 distributive distributive ADJ JJ Degree=Pos 14 amod _ _ 14 law law NOUN NN Number=Sing 8 dobj _ _ 15 between between ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 comonad comonad NOUN NNS Number=Plur 15 pobj _ _ 18 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 acl _ _ 19 by by ADP IN _ 18 agent _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 module module NOUN NN Number=Sing 22 compound _ _ 22 coalgebra coalgebra NOUN NNS Number=Plur 19 pobj _ _ 23 and and CCONJ CC ConjType=Cmp 22 cc _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 monad monad NOUN NNS Number=Plur 22 conj _ _ 26 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 25 acl _ _ 27 by by ADP IN _ 26 agent _ _ 28 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 29 comodule comodule NOUN NN Number=Sing 30 compound _ _ 30 algebra algebra NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = It is this self - dual setting that reproduces the cyclic homology of associative and of Hopf algebras in the monadic framework of Böhm and Stefan. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 this this DET DT Number=Sing|PronType=Dem 7 det _ _ 4 self self NOUN NN Number=Sing 6 npadvmod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 dual dual ADJ JJ Degree=Pos 7 amod _ _ 7 setting setting NOUN NN Number=Sing 2 attr _ _ 8 that that PRON WDT PronType=Rel 9 nsubj _ _ 9 reproduces reproduce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 relcl _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 cyclic cyclic ADJ JJ Degree=Pos 12 amod _ _ 12 homology homology NOUN NN Number=Sing 9 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 associative associative NOUN NN Number=Sing 13 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 of of ADP IN _ 14 conj _ _ 17 Hopf Hopf PROPN NNP Number=Sing 18 compound _ _ 18 algebras algebra NOUN NNS Number=Plur 13 pobj _ _ 19 in in ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 monadic monadic ADJ JJ Degree=Pos 22 amod _ _ 22 framework framework NOUN NN Number=Sing 19 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 Böhm Böhm PROPN NNP Number=Sing 23 pobj _ _ 25 and and CCONJ CC ConjType=Cmp 24 cc _ _ 26 Stefan Stefan PROPN NNP Number=Sing 24 conj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = In fact, their approach generates two duplicial objects and morphisms between them which are mutual inverses if and only if the duplicial objects are cyclic. 1 In in ADP IN _ 6 prep _ _ 2 fact fact NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 6 punct _ _ 4 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 5 poss _ _ 5 approach approach NOUN NN Number=Sing 6 nsubj _ _ 6 generates generate VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 two two NUM CD NumType=Card 9 nummod _ _ 8 duplicial duplicial ADJ JJ Degree=Pos 9 amod _ _ 9 objects object NOUN NNS Number=Plur 6 dobj _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 morphisms morphism NOUN NNS Number=Plur 9 conj _ _ 12 between between ADP IN _ 9 prep _ _ 13 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 12 pobj _ _ 14 which which PRON WDT _ 15 nsubj _ _ 15 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 relcl _ _ 16 mutual mutual ADJ JJ Degree=Pos 17 amod _ _ 17 inverses inverse NOUN NNS Number=Plur 15 attr _ _ 18 if if SCONJ IN _ 25 mark _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 only only ADV RB _ 25 advmod _ _ 21 if if SCONJ IN _ 25 mark _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 duplicial duplicial ADJ JJ Degree=Pos 24 amod _ _ 24 objects object NOUN NNS Number=Plur 25 nsubj _ _ 25 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 advcl _ _ 26 cyclic cyclic ADJ JJ Degree=Pos 25 acomp _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 5 # text = A 2 - categorical perspective on the process of twisting coefficients is provided and the role of the two notions of bimonad studied in the literature is clarified. 1 A a DET DT Definite=Ind|PronType=Art 5 det _ _ 2 2 2 NUM CD NumType=Card 4 nummod _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 categorical categorical ADJ JJ Degree=Pos 5 amod _ _ 5 perspective perspective NOUN NN Number=Sing 13 nsubjpass _ _ 6 on on ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 process process NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 twisting twisting NOUN NN Number=Sing 11 compound _ _ 11 coefficients coefficient NOUN NNS Number=Plur 9 pobj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 provided provide VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 role role NOUN NN Number=Sing 28 nsubjpass _ _ 17 of of ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 two two NUM CD NumType=Card 20 nummod _ _ 20 notions notion NOUN NNS Number=Plur 17 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 bimonad bimonad NOUN NNS Number=Plur 21 pobj _ _ 23 studied study VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 acl _ _ 24 in in ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 literature literature NOUN NN Number=Sing 24 pobj _ _ 27 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 28 auxpass _ _ 28 clarified clarify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 conj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 28 punct _ SpaceAfter=No # doc_id = 533 # sent_id = 1 # text = An arbitrary Lie groupoid gives rise to a groupoid of germs of local diffeomorphisms over its base manifold, known as its effect. 1 An an DET DT Definite=Ind|PronType=Art 4 det _ _ 2 arbitrary arbitrary ADJ JJ Degree=Pos 4 amod _ _ 3 Lie lie NOUN NN Number=Sing 4 compound _ _ 4 groupoid groupoid NOUN NN Number=Sing 5 nsubj _ _ 5 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 rise rise VERB VB VerbForm=Inf 5 dobj _ _ 7 to to ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 groupoid groupoid NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 germs germ NOUN NNS Number=Plur 10 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 local local ADJ JJ Degree=Pos 14 amod _ _ 14 diffeomorphisms diffeomorphism NOUN NNS Number=Plur 12 pobj _ _ 15 over over ADP IN _ 11 prep _ _ 16 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 18 poss _ _ 17 base base NOUN NN Number=Sing 18 compound _ _ 18 manifold manifold NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 acl _ _ 21 as as ADP IN _ 20 prep _ _ 22 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 23 poss _ _ 23 effect effect NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = The effect of any bundle of Lie groups is trivial. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 effect effect NOUN NN Number=Sing 9 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 any any DET DT _ 5 det _ _ 5 bundle bundle NOUN NN Number=Sing 3 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 Lie lie NOUN NN Number=Sing 8 compound _ _ 8 groups group NOUN NNS Number=Plur 6 pobj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 trivial trivial ADJ JJ Degree=Pos 9 acomp _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 3 # text = All quotients of a given Lie groupoid determine the same effect. 1 All all DET DT _ 2 det _ _ 2 quotients quotient NOUN NNS Number=Plur 8 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 5 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 amod _ _ 6 Lie lie NOUN NN Number=Sing 7 compound _ _ 7 groupoid groupoid NOUN NN Number=Sing 3 pobj _ _ 8 determine determine VERB VB VerbForm=Inf 0 ROOT _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 same same ADJ JJ Degree=Pos 11 amod _ _ 11 effect effect NOUN NN Number=Sing 8 dobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 4 # text = It is natural to regard the effects of any two Morita equivalent Lie groupoids as being ``equivalent''. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 natural natural ADJ JJ Degree=Pos 2 acomp _ _ 4 to to PART TO _ 5 aux _ _ 5 regard regard VERB VB VerbForm=Inf 2 xcomp _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 effects effect NOUN NNS Number=Plur 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 any any DET DT _ 14 det _ _ 10 two two NUM CD NumType=Card 14 nummod _ _ 11 Morita Morita PROPN NNP Number=Sing 14 nmod _ _ 12 equivalent equivalent ADJ JJ Degree=Pos 14 amod _ _ 13 Lie lie NOUN NN Number=Sing 14 compound _ _ 14 groupoids groupoid NOUN NNS Number=Plur 8 pobj _ _ 15 as as ADP IN _ 5 prep _ _ 16 being be AUX VBG VerbForm=Ger 15 pcomp _ _ 17 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 16 punct _ SpaceAfter=No 18 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 16 punct _ SpaceAfter=No 19 equivalent equivalent ADJ JJ Degree=Pos 16 acomp _ SpaceAfter=No 20 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 2 punct _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = In this paper we shall describe a systematic way of comparing the effects of different Lie groupoids. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 5 shall shall AUX MD VerbType=Mod 6 aux _ _ 6 describe describe VERB VB VerbForm=Inf 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 systematic systematic ADJ JJ Degree=Pos 9 amod _ _ 9 way way NOUN NN Number=Sing 6 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 comparing compare VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 pcomp _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 effects effect NOUN NNS Number=Plur 11 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 different different ADJ JJ Degree=Pos 17 amod _ _ 16 Lie lie NOUN NN Number=Sing 17 compound _ _ 17 groupoids groupoid NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 6 # text = In particular, we shall rigorously define what it means for two arbitrary Lie groupoids to give rise to ``equivalent'' effects. 1 In in ADP IN _ 7 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 7 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 5 shall shall AUX MD VerbType=Mod 7 aux _ _ 6 rigorously rigorously ADV RB _ 7 advmod _ _ 7 define define VERB VB VerbForm=Inf 0 ROOT _ _ 8 what what PRON WP _ 10 dobj _ _ 9 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 10 nsubj _ _ 10 means mean VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 ccomp _ _ 11 for for SCONJ IN _ 17 mark _ _ 12 two two NUM CD NumType=Card 15 nummod _ _ 13 arbitrary arbitrary ADJ JJ Degree=Pos 15 amod _ _ 14 Lie lie NOUN NN Number=Sing 15 compound _ _ 15 groupoids groupoid NOUN NNS Number=Plur 17 nsubj _ _ 16 to to PART TO _ 17 aux _ _ 17 give give VERB VB VerbForm=Inf 10 advcl _ _ 18 rise rise NOUN NN Number=Sing 17 dobj _ _ 19 to to ADP IN _ 18 prep _ _ 20 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 24 punct _ SpaceAfter=No 21 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 24 punct _ SpaceAfter=No 22 equivalent equivalent ADJ JJ Degree=Pos 24 amod _ SpaceAfter=No 23 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 24 punct _ _ 24 effects effect NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 7 # text = For effective orbifold groupoids, the new notion of equivalence turns out to coincide with the traditional notion of Morita equivalence. 1 For for ADP IN _ 11 prep _ _ 2 effective effective ADJ JJ Degree=Pos 4 amod _ _ 3 orbifold orbifold ADJ JJ Degree=Pos 4 amod _ _ 4 groupoids groupoid NOUN NNS Number=Plur 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 11 punct _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 new new ADJ JJ Degree=Pos 8 amod _ _ 8 notion notion NOUN NN Number=Sing 11 nsubj _ _ 9 of of ADP IN _ 8 prep _ _ 10 equivalence equivalence NOUN NN Number=Sing 9 pobj _ _ 11 turns turn VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 out out ADP RP _ 11 prt _ _ 13 to to PART TO _ 14 aux _ _ 14 coincide coincide VERB VB VerbForm=Inf 11 xcomp _ _ 15 with with ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 traditional traditional ADJ JJ Degree=Pos 18 amod _ _ 18 notion notion NOUN NN Number=Sing 15 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 Morita Morita PROPN NNP Number=Sing 21 compound _ _ 21 equivalence equivalence NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 8 # text = Our analysis is relevant to the presentation theory of proper smooth stacks. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 analysis analysis NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 relevant relevant ADJ JJ Degree=Pos 3 acomp _ _ 5 to to ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 presentation presentation NOUN NN Number=Sing 8 compound _ _ 8 theory theory NOUN NN Number=Sing 5 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 proper proper ADJ JJ Degree=Pos 12 amod _ _ 11 smooth smooth ADJ JJ Degree=Pos 12 amod _ _ 12 stacks stack NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 534 # sent_id = 1 # text = This paper extends the Day Reflection Theorem to skew monoidal categories. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 extends extend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 Day Day PROPN NNP Number=Sing 6 compound _ _ 6 Reflection Reflection PROPN NNP Number=Sing 7 compound _ _ 7 Theorem Theorem PROPN NNP Number=Sing 3 dobj _ _ 8 to to PART TO _ 9 aux _ _ 9 skew skew VERB VB VerbForm=Inf 3 xcomp _ _ 10 monoidal monoidal ADJ JJ Degree=Pos 11 amod _ _ 11 categories category NOUN NNS Number=Plur 9 dobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = We also provide conditions under which a skew monoidal structure can be lifted to the category of Eilenberg - Moore coalgebras for a comonad. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 conditions condition NOUN NNS Number=Plur 3 dobj _ _ 5 under under ADP IN _ 13 prep _ _ 6 which which PRON WDT _ 5 pobj _ _ 7 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 8 skew skew NOUN NN Number=Sing 10 amod _ _ 9 monoidal monoidal ADJ JJ Degree=Pos 10 amod _ _ 10 structure structure NOUN NN Number=Sing 13 nsubjpass _ _ 11 can can AUX MD VerbForm=Fin 13 aux _ _ 12 be be AUX VB VerbForm=Inf 13 auxpass _ _ 13 lifted lift VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 relcl _ _ 14 to to ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 category category NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 Eilenberg Eilenberg PROPN NNP Number=Sing 20 compound _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 Moore Moore PROPN NNP Number=Sing 21 compound _ _ 21 coalgebras coalgebra NOUN NNS Number=Plur 17 pobj _ _ 22 for for ADP IN _ 13 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 24 comonad comonad NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 535 # sent_id = 1 # text = Let $ C $ be a finite category. 1 Let let VERB VB VerbForm=Inf 0 ROOT _ _ 2 $ C $ $ c $ SYM $ _ 1 ccomp _ _ 3 be be AUX VB VerbForm=Inf 1 ccomp _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 finite finite ADJ JJ Degree=Pos 6 amod _ _ 6 category category NOUN NN Number=Sing 3 attr _ SpaceAfter=No 7 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = For an object $ X $ of $ C $ one has the hom - functor $ Hom( - , X) $ of $ C $ to $ Set $ . 1 For for ADP IN _ 8 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 object object NOUN NN Number=Sing 1 pobj _ _ 4 $ X $ $ x $ SYM $ _ 3 prep _ _ 5 of of ADP IN _ 4 prep _ _ 6 $ C $ $ c $ SYM $ _ 7 nmod _ _ 7 one one NUM CD NumType=Card 5 pobj _ _ 8 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 hom hom NOUN NN Number=Sing 17 nsubj _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 functor functor PROPN NNP Number=Sing 10 prep _ _ 13 $ Hom( - , X) $ $ hom( - , x) $ SYM $ _ 10 appos _ _ 14 of of ADP IN _ 13 prep _ _ 15 $ C $ $ c $ SYM $ _ 14 pobj _ _ 16 to to PART TO _ 10 prep _ _ 17 $ Set $ $ set $ SYM $ _ 8 dobj _ _ 18 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 3 # text = If $ G $ is a subgroup of $ Aut(X) $ , one has the quotient functor $ Hom( - , X)/G $ . 1 If if SCONJ IN _ 3 mark _ _ 2 $ G $ $ g $ SYM $ _ 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 advcl _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 subgroup subgroup NOUN NN Number=Sing 3 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 $ Aut(X) $ $ aut(x) $ SYM $ _ 6 pobj _ _ 8 , , PUNCT , PunctType=Comm 10 punct _ _ 9 one one PRON PRP PronType=Prs 10 nsubj _ _ 10 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 quotient quotient ADJ JJ Degree=Pos 13 compound _ _ 13 functor functor NOUN NN Number=Sing 10 dobj _ _ 14 $ Hom( - , X)/G $ $ hom( - , x)/g $ SYM $ _ 13 appos _ _ 15 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 4 # text = We show that any finite product of hom - functors of $ C $ is a sum of hom - functors if and only if $ C $ has pushouts and coequalizers and that any finite product of hom - functors of $ C $ is a sum of functors of the form $ Hom( - , X)/G $ if and only if $ C $ has pushouts. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 13 mark _ _ 4 any any DET DT _ 6 det _ _ 5 finite finite ADJ JJ Degree=Pos 6 amod _ _ 6 product product NOUN NN Number=Sing 13 nsubj _ _ 7 of of ADP IN _ 6 prep _ _ 8 hom hom NOUN NN Number=Sing 10 amod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 functors functor NOUN NNS Number=Plur 7 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 $ C $ $ c $ SYM $ _ 11 pobj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 sum sum NOUN NN Number=Sing 13 attr _ _ 16 of of ADP IN _ 15 prep _ _ 17 hom hom NOUN NN Number=Sing 16 pobj _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 functors functor NOUN NNS Number=Plur 16 pobj _ _ 20 if if SCONJ IN _ 13 dep _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 only only ADV RB _ 25 advmod _ _ 23 if if SCONJ IN _ 25 mark _ _ 24 $ C $ $ c $ SYM $ _ 25 nsubj _ _ 25 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 advcl _ _ 26 pushouts pushout NOUN NNS Number=Plur 25 dobj _ _ 27 and and CCONJ CC ConjType=Cmp 26 cc _ _ 28 coequalizers coequalizer NOUN NNS Number=Plur 26 conj _ _ 29 and and CCONJ CC ConjType=Cmp 25 cc _ _ 30 that that SCONJ IN _ 40 mark _ _ 31 any any DET DT _ 33 det _ _ 32 finite finite ADJ JJ Degree=Pos 33 amod _ _ 33 product product NOUN NN Number=Sing 40 nsubj _ _ 34 of of ADP IN _ 33 prep _ _ 35 hom hom NOUN NN Number=Sing 37 amod _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 functors functor NOUN NNS Number=Plur 34 pobj _ _ 38 of of ADP IN _ 37 prep _ _ 39 $ C $ $ c $ SYM $ _ 38 pobj _ _ 40 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 25 conj _ _ 41 a a DET DT Definite=Ind|PronType=Art 42 det _ _ 42 sum sum NOUN NN Number=Sing 40 attr _ _ 43 of of ADP IN _ 42 prep _ _ 44 functors functor NOUN NNS Number=Plur 43 pobj _ _ 45 of of ADP IN _ 44 prep _ _ 46 the the DET DT Definite=Def|PronType=Art 47 det _ _ 47 form form NOUN NN Number=Sing 45 pobj _ _ 48 $ Hom( - , X)/G $ $ hom( - , x)/g $ SYM $ _ 47 appos _ _ 49 if if SCONJ IN _ 40 dep _ _ 50 and and CCONJ CC ConjType=Cmp 49 cc _ _ 51 only only ADV RB _ 54 advmod _ _ 52 if if SCONJ IN _ 54 mark _ _ 53 $ C $ $ c $ SYM $ _ 54 nsubj _ _ 54 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 40 advcl _ _ 55 pushouts pushout NOUN NNS Number=Plur 54 dobj _ SpaceAfter=No 56 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = These are variations of the fact that a finite category has products if and only if it has coproducts. 1 These these PRON DT Number=Plur|PronType=Dem 2 nsubj _ _ 2 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 variations variation NOUN NNS Number=Plur 2 attr _ _ 4 of of ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 fact fact NOUN NN Number=Sing 4 pobj _ _ 7 that that SCONJ IN _ 11 mark _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 finite finite ADJ JJ Degree=Pos 10 compound _ _ 10 category category NOUN NN Number=Sing 11 nsubj _ _ 11 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 acl _ _ 12 products product NOUN NNS Number=Plur 11 dobj _ _ 13 if if SCONJ IN _ 11 prep _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 only only ADV RB _ 18 advmod _ _ 16 if if SCONJ IN _ 18 mark _ _ 17 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 18 nsubj _ _ 18 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 advcl _ _ 19 coproducts coproduct NOUN NNS Number=Plur 18 dobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 536 # sent_id = 1 # text = We show that for a differential graded Lie algebra $ g $ whose components vanish in degrees below - 1 the nerve of the Deligne 2 - groupoid is homotopy equivalent to the simplicial set of $ g $ - valued differential forms introduced by Hinich. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 27 mark _ _ 4 for for ADP IN _ 27 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 6 differential differential ADJ JJ Degree=Pos 7 advmod _ _ 7 graded grade VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 amod _ _ 8 Lie lie NOUN NN Number=Sing 9 compound _ _ 9 algebra algebra NOUN NN Number=Sing 4 pobj _ _ 10 $ g $ $ g $ SYM $ _ 9 prep _ _ 11 whose whose DET WP$ Poss=Yes 12 poss _ _ 12 components component NOUN NNS Number=Plur 13 nsubj _ _ 13 vanish vanish VERB VBP Tense=Pres|VerbForm=Fin 10 relcl _ _ 14 in in ADP IN _ 13 prep _ _ 15 degrees degree NOUN NNS Number=Plur 14 pobj _ _ 16 below below ADP IN _ 9 prep _ _ 17 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 18 1 1 NUM CD NumType=Card 4 pobj _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 nerve nerve NOUN NN Number=Sing 27 nsubj _ _ 21 of of ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 26 det _ _ 23 Deligne Deligne PROPN NNP Number=Sing 26 compound _ _ 24 2 2 NUM CD NumType=Card 26 nummod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 groupoid groupoid NOUN NN Number=Sing 21 pobj _ _ 27 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 28 homotopy homotopy ADV RB _ 27 acomp _ _ 29 equivalent equivalent ADJ JJ Degree=Pos 28 oprd _ _ 30 to to ADP IN _ 29 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 33 det _ _ 32 simplicial simplicial ADJ JJ Degree=Pos 33 amod _ _ 33 set set NOUN NN Number=Sing 30 pobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 $ g $ $ g $ SYM $ _ 37 advmod _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 39 amod _ _ 38 differential differential ADJ JJ Degree=Pos 39 amod _ _ 39 forms form NOUN NNS Number=Plur 34 pobj _ _ 40 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 39 acl _ _ 41 by by ADP IN _ 40 agent _ _ 42 Hinich Hinich PROPN NNP Number=Sing 41 pobj _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 537 # sent_id = 1 # text = We introduce the second cohomology categorical group of a categorical group $ G $ with coefficients in a symmetric $ G $ - categorical group and we show that it classifies extensions of $ G $ with symmetric kernel and a functorial section. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 7 det _ _ 4 second second ADJ JJ Degree=Pos 7 amod _ _ 5 cohomology cohomology NOUN NN Number=Sing 7 nmod _ _ 6 categorical categorical ADJ JJ Degree=Pos 7 amod _ _ 7 group group NOUN NN Number=Sing 2 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 categorical categorical ADJ JJ Degree=Pos 11 amod _ _ 11 group group NOUN NN Number=Sing 8 pobj _ _ 12 $ G $ $ g $ SYM $ _ 2 dep _ _ 13 with with ADP IN _ 2 prep _ _ 14 coefficients coefficient NOUN NNS Number=Plur 13 pobj _ _ 15 in in ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 17 symmetric symmetric ADJ JJ Degree=Pos 21 amod _ _ 18 $ G $ $ g $ SYM $ _ 20 advmod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 categorical categorical ADJ JJ Degree=Pos 21 amod _ _ 21 group group NOUN NN Number=Sing 15 pobj _ _ 22 and and CCONJ CC ConjType=Cmp 2 cc _ _ 23 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 24 nsubj _ _ 24 show show VERB VBP Tense=Pres|VerbForm=Fin 2 conj _ _ 25 that that SCONJ IN _ 27 mark _ _ 26 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 27 nsubj _ _ 27 classifies classify VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 ccomp _ _ 28 extensions extension NOUN NNS Number=Plur 27 dobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 $ G $ $ g $ SYM $ _ 29 pobj _ _ 31 with with ADP IN _ 27 prep _ _ 32 symmetric symmetric ADJ JJ Degree=Pos 33 amod _ _ 33 kernel kernel NOUN NN Number=Sing 31 pobj _ _ 34 and and CCONJ CC ConjType=Cmp 33 cc _ _ 35 a a DET DT Definite=Ind|PronType=Art 37 det _ _ 36 functorial functorial ADJ JJ Degree=Pos 37 amod _ _ 37 section section NOUN NN Number=Sing 33 conj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 24 punct _ SpaceAfter=No # sent_id = 2 # text = Moreover, from an essentially surjective homomorphism of categorical groups we get 2 - exact sequences a la Hochschild - Serre connecting the categorical groups of derivations and the first and the second cohomology categorical groups. 1 Moreover moreover ADV RB _ 12 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 12 punct _ _ 3 from from ADP IN _ 12 prep _ _ 4 an an DET DT Definite=Ind|PronType=Art 7 det _ _ 5 essentially essentially ADV RB _ 6 advmod _ _ 6 surjective surjective ADJ JJ Degree=Pos 7 amod _ _ 7 homomorphism homomorphism NOUN NN Number=Sing 3 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 categorical categorical ADJ JJ Degree=Pos 10 amod _ _ 10 groups group NOUN NNS Number=Plur 8 pobj _ _ 11 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 12 nsubj _ _ 12 get get VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 2 2 NUM CD NumType=Card 15 nummod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 exact exact ADJ JJ Degree=Pos 16 amod _ _ 16 sequences sequence NOUN NNS Number=Plur 12 dobj _ _ 17 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 18 la la X FW Foreign=Yes 21 compound _ _ 19 Hochschild Hochschild PROPN NNP Number=Sing 21 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 Serre Serre PROPN NNP Number=Sing 12 dobj _ _ 22 connecting connect VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 21 acl _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 categorical categorical ADJ JJ Degree=Pos 25 amod _ _ 25 groups group NOUN NNS Number=Plur 22 dobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 derivations derivation NOUN NNS Number=Plur 26 pobj _ _ 28 and and CCONJ CC ConjType=Cmp 25 cc _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 first first ADJ JJ Degree=Pos 21 conj _ _ 31 and and CCONJ CC ConjType=Cmp 30 cc _ _ 32 the the DET DT Definite=Def|PronType=Art 36 det _ _ 33 second second ADJ JJ Degree=Pos 36 amod _ _ 34 cohomology cohomology NOUN NN Number=Sing 36 nmod _ _ 35 categorical categorical ADJ JJ Degree=Pos 36 amod _ _ 36 groups group NOUN NNS Number=Plur 30 conj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # doc_id = 538 # sent_id = 1 # text = The "linear dual" of a cocomplete linear category $ C $ is the category of all cocontinuous linear functors $ C to Vect $ . 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 " " PUNCT `` PunctSide=Ini|PunctType=Quot 4 punct _ SpaceAfter=No 3 linear linear ADJ JJ Degree=Pos 4 compound _ _ 4 dual dual ADJ JJ Degree=Pos 12 nsubj _ SpaceAfter=No 5 " " PUNCT '' PunctSide=Fin|PunctType=Quot 4 punct _ _ 6 of of ADP IN _ 4 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 8 cocomplete cocomplete ADJ JJ Degree=Pos 10 amod _ _ 9 linear linear ADJ JJ Degree=Pos 10 compound _ _ 10 category category NOUN NN Number=Sing 6 pobj _ _ 11 $ C $ $ c $ SYM $ _ 4 appos _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 category category NOUN NN Number=Sing 12 attr _ _ 15 of of ADP IN _ 14 prep _ _ 16 all all DET DT _ 19 det _ _ 17 cocontinuous cocontinuous ADJ JJ Degree=Pos 19 amod _ _ 18 linear linear ADJ JJ Degree=Pos 19 compound _ _ 19 functors functor NOUN NNS Number=Plur 15 pobj _ _ 20 $ C to Vect $ $ c to vect $ SYM $ _ 14 appos _ _ 21 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 2 # text = We study the questions of when a cocomplete linear category is reflexive (equivalent to its double dual) or dualizable (the pairing with its dual comes with a corresponding copairing). 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 questions question NOUN NNS Number=Plur 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 when when SCONJ WRB _ 11 advmod _ _ 7 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 8 cocomplete cocomplete ADJ JJ Degree=Pos 10 amod _ _ 9 linear linear ADJ JJ Degree=Pos 10 compound _ _ 10 category category NOUN NN Number=Sing 11 nsubj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 pcomp _ _ 12 reflexive reflexive ADJ JJ Degree=Pos 11 acomp _ _ 13 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 11 punct _ SpaceAfter=No 14 equivalent equivalent ADJ JJ Degree=Pos 11 acomp _ _ 15 to to ADP IN _ 14 prep _ _ 16 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 18 poss _ _ 17 double double ADJ JJ Degree=Pos 18 amod _ _ 18 dual dual ADJ JJ Degree=Pos 15 pobj _ SpaceAfter=No 19 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 14 punct _ _ 20 or or CCONJ CC ConjType=Cmp 11 cc _ _ 21 dualizable dualizable ADJ JJ Degree=Pos 11 conj _ _ 22 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 21 punct _ SpaceAfter=No 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 pairing pairing NOUN NN Number=Sing 28 nsubj _ _ 25 with with ADP IN _ 24 prep _ _ 26 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 27 poss _ _ 27 dual dual ADJ JJ Degree=Pos 25 pobj _ _ 28 comes come VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 conj _ _ 29 with with ADP IN _ 28 prep _ _ 30 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 31 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 32 amod _ _ 32 copairing copairing NOUN NN Number=Sing 29 pobj _ SpaceAfter=No 33 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 28 punct _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Our main results are that the category of comodules for a countable - dimensional coassociative coalgebra is always reflexive, but 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 3 poss _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 results result NOUN NNS Number=Plur 4 nsubj _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 17 mark _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 category category NOUN NN Number=Sing 17 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 comodules comodule NOUN NNS Number=Plur 8 pobj _ _ 10 for for ADP IN _ 7 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 12 countable countable ADJ JJ Degree=Pos 14 amod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 dimensional dimensional ADJ JJ Degree=Pos 16 amod _ _ 15 coassociative coassociative ADJ JJ Degree=Pos 16 amod _ _ 16 coalgebra coalgebra NOUN NNS Number=Plur 10 pobj _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 18 always always ADV RB _ 17 advmod _ _ 19 reflexive reflexive ADJ JJ Degree=Pos 17 acomp _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 17 punct _ _ 21 but but CCONJ CC ConjType=Cmp 4 cc _ SpaceAfter=No # sent_id = 4 # text = (without any dimension hypothesis) dualizable if and only if it has enough projectives, which rarely happens. 1 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 7 punct _ SpaceAfter=No 2 without without ADP IN _ 7 prep _ _ 3 any any DET DT _ 5 det _ _ 4 dimension dimension NOUN NN Number=Sing 5 compound _ _ 5 hypothesis hypothesis NOUN NN Number=Sing 2 pobj _ SpaceAfter=No 6 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 2 punct _ _ 7 dualizable dualizable ADJ JJ Degree=Pos 0 ROOT _ _ 8 if if SCONJ IN _ 7 prep _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 only only ADV RB _ 13 advmod _ _ 11 if if SCONJ IN _ 13 mark _ _ 12 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 13 nsubj _ _ 13 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 conj _ _ 14 enough enough ADJ JJ Degree=Pos 15 amod _ _ 15 projectives projective NOUN NNS Number=Plur 13 dobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 which which PRON WDT _ 19 nsubj _ _ 18 rarely rarely ADV RB _ 19 advmod _ _ 19 happens happen VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 relcl _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 5 # text = Along the way, we prove that the category $ QCoh(X) $ of quasi - coherent sheaves on a stack $ X $ is not dualizable if $ X $ is the classifying stack of a semisimple algebraic group in positive characteristic or if $ X $ is a scheme containing a closed projective subscheme of positive dimension, but is dualizable if $ X $ is the quotient of an affine scheme by a virtually linearly reductive group. 1 Along along ADP IN _ 6 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 way way NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 that that SCONJ IN _ 20 mark _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 category category NOUN NN Number=Sing 20 nsubj _ _ 10 $ QCoh(X) $ $ qcoh(x) $ SYM $ _ 9 appos _ _ 11 of of ADP IN _ 10 prep _ _ 12 quasi quasi ADJ JJ Degree=Pos 15 amod _ _ 13 - - ADJ JJ Degree=Pos 15 amod _ _ 14 coherent coherent ADJ JJ Degree=Pos 15 amod _ _ 15 sheaves sheaf NOUN NNS Number=Plur 11 pobj _ _ 16 on on ADP IN _ 9 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 stack stack NOUN NN Number=Sing 16 pobj _ _ 19 $ X $ $ x $ SYM $ _ 9 appos _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 21 not not PART RB Polarity=Neg 20 neg _ _ 22 dualizable dualizable ADJ JJ Degree=Pos 20 acomp _ _ 23 if if SCONJ IN _ 25 mark _ _ 24 $ X $ $ x $ SYM $ _ 25 nsubj _ _ 25 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 advcl _ _ 26 the the DET DT Definite=Def|PronType=Art 28 det _ _ 27 classifying classify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 28 amod _ _ 28 stack stack NOUN NN Number=Sing 25 attr _ _ 29 of of ADP IN _ 28 prep _ _ 30 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 31 semisimple semisimple ADJ JJ Degree=Pos 33 amod _ _ 32 algebraic algebraic ADJ JJ Degree=Pos 33 amod _ _ 33 group group NOUN NN Number=Sing 29 pobj _ _ 34 in in ADP IN _ 33 prep _ _ 35 positive positive ADJ JJ Degree=Pos 36 amod _ _ 36 characteristic characteristic NOUN NN Number=Sing 34 pobj _ _ 37 or or CCONJ CC ConjType=Cmp 34 cc _ _ 38 if if SCONJ IN _ 40 mark _ _ 39 $ X $ $ x $ SYM $ _ 40 nsubj _ _ 40 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 conj _ _ 41 a a DET DT Definite=Ind|PronType=Art 42 det _ _ 42 scheme scheme NOUN NN Number=Sing 40 attr _ _ 43 containing contain VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 42 acl _ _ 44 a a DET DT Definite=Ind|PronType=Art 47 det _ _ 45 closed closed ADJ JJ Degree=Pos 47 amod _ _ 46 projective projective ADJ JJ Degree=Pos 47 amod _ _ 47 subscheme subscheme NOUN NN Number=Sing 43 dobj _ _ 48 of of ADP IN _ 47 prep _ _ 49 positive positive ADJ JJ Degree=Pos 50 amod _ _ 50 dimension dimension NOUN NN Number=Sing 48 pobj _ SpaceAfter=No 51 , , PUNCT , PunctType=Comm 6 punct _ _ 52 but but CCONJ CC ConjType=Cmp 6 cc _ _ 53 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 conj _ _ 54 dualizable dualizable ADJ JJ Degree=Pos 53 acomp _ _ 55 if if SCONJ IN _ 57 mark _ _ 56 $ X $ $ x $ SYM $ _ 57 nsubj _ _ 57 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 53 advcl _ _ 58 the the DET DT Definite=Def|PronType=Art 59 det _ _ 59 quotient quotient NOUN NN Number=Sing 57 attr _ _ 60 of of ADP IN _ 59 prep _ _ 61 an an DET DT Definite=Ind|PronType=Art 63 det _ _ 62 affine affine NOUN NN Number=Sing 63 compound _ _ 63 scheme scheme NOUN NN Number=Sing 60 pobj _ _ 64 by by ADP IN _ 59 prep _ _ 65 a a DET DT Definite=Ind|PronType=Art 69 det _ _ 66 virtually virtually ADV RB _ 67 advmod _ _ 67 linearly linearly ADV RB _ 68 advmod _ _ 68 reductive reductive ADJ JJ Degree=Pos 69 amod _ _ 69 group group NOUN NN Number=Sing 64 pobj _ SpaceAfter=No 70 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 6 # text = Finally we prove tensoriality (a type of Tannakian duality) for affine ind - schemes with countable indexing poset. 1 Finally finally ADV RB _ 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 tensoriality tensoriality NOUN NN Number=Sing 3 dobj _ _ 5 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 4 punct _ SpaceAfter=No 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 type type NOUN NN Number=Sing 4 appos _ _ 8 of of ADP IN _ 7 prep _ _ 9 Tannakian tannakian ADJ JJ Degree=Pos 10 amod _ _ 10 duality duality NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 11 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 7 punct _ _ 12 for for ADP IN _ 7 prep _ _ 13 affine affine PROPN NNP Number=Sing 16 compound _ _ 14 ind ind NOUN NN Number=Sing 16 compound _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 schemes scheme NOUN NNS Number=Plur 12 pobj _ _ 17 with with ADP IN _ 16 prep _ _ 18 countable countable ADJ JJ Degree=Pos 20 amod _ _ 19 indexing indexing NOUN NN Number=Sing 20 compound _ _ 20 poset poset NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 539 # sent_id = 1 # text = We introduce an apparent strengthening of Sufficient Cohesion that we call stable connected codiscreteness and show that if $ p: E - - > S $ is cohesive and satisfies stable connected codiscreteness then the internal axiom of choice holds in $ S $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 4 apparent apparent ADJ JJ Degree=Pos 5 amod _ _ 5 strengthening strengthening NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 Sufficient Sufficient PROPN NNP Number=Sing 8 compound _ _ 8 Cohesion Cohesion PROPN NNP Number=Sing 6 pobj _ _ 9 that that PRON WDT PronType=Rel 11 dobj _ _ 10 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 11 nsubj _ _ 11 call call VERB VBP Tense=Pres|VerbForm=Fin 8 relcl _ _ 12 stable stable ADJ JJ Degree=Pos 14 amod _ _ 13 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 14 codiscreteness codiscreteness NOUN NN Number=Sing 11 dobj _ _ 15 and and CCONJ CC ConjType=Cmp 11 cc _ _ 16 show show VERB VB VerbForm=Inf 11 conj _ _ 17 that that SCONJ IN _ 33 mark _ _ 18 if if SCONJ IN _ 20 mark _ _ 19 $ p: E - - > S $ $ p: e - - > s $ SYM $ _ 20 nsubj _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 33 advcl _ _ 21 cohesive cohesive ADJ JJ Degree=Pos 20 acomp _ _ 22 and and CCONJ CC ConjType=Cmp 20 cc _ _ 23 satisfies satisfie NOUN NNS Number=Plur 20 conj _ _ 24 stable stable ADJ JJ Degree=Pos 26 amod _ _ 25 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 amod _ _ 26 codiscreteness codiscreteness NOUN NN Number=Sing 20 attr _ _ 27 then then ADV RB PronType=Dem 33 advmod _ _ 28 the the DET DT Definite=Def|PronType=Art 30 det _ _ 29 internal internal ADJ JJ Degree=Pos 30 amod _ _ 30 axiom axiom NOUN NN Number=Sing 33 nsubj _ _ 31 of of ADP IN _ 30 prep _ _ 32 choice choice NOUN NN Number=Sing 31 pobj _ _ 33 holds hold VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 ccomp _ _ 34 in in ADP IN _ 33 prep _ _ 35 $ S $ $ s $ SYM $ _ 34 pobj _ _ 36 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Moreover, in this case, $ p^clik: S - - > E $ is equivalent to the inclusion $ E_{negneg} - - > E $ . 1 Moreover moreover ADV RB _ 8 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 8 punct _ _ 3 in in ADP IN _ 8 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 case case NOUN NN Number=Sing 3 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 8 punct _ _ 7 $ p^clik: S - - > E $ $ p^clik: s - - > e $ SYM $ _ 8 nsubj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 equivalent equivalent ADJ JJ Degree=Pos 8 acomp _ _ 10 to to ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 inclusion inclusion NOUN NN Number=Sing 10 pobj _ _ 13 $ E_{negneg} - - > E $ $ e_{negneg} - - > e $ SYM $ _ 8 dep _ _ 14 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # doc_id = 540 # sent_id = 1 # text = The existence of the split extension classifier of a crossed module in the category of associative algebras is investigated. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 existence existence NOUN NN Number=Sing 19 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 split split NOUN NN Number=Sing 7 compound _ _ 6 extension extension NOUN NN Number=Sing 7 compound _ _ 7 classifier classifier NOUN NN Number=Sing 3 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 crossed crossed ADJ JJ Degree=Pos 11 amod _ _ 11 module module NOUN NN Number=Sing 8 pobj _ _ 12 in in ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 category category NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 associative associative ADJ JJ Degree=Pos 17 amod _ _ 17 algebras algebra NOUN NNS Number=Plur 15 pobj _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 auxpass _ _ 19 investigated investigate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 2 # text = According to the equivalence of categories $ XAss simeq Cat^1 - Ass $ we consider this problem in $ Cat^1 - Ass $ . 1 According accord VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 prep _ _ 2 to to ADP IN _ 1 prep _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 equivalence equivalence NOUN NN Number=Sing 2 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 categories category NOUN NNS Number=Plur 5 pobj _ _ 7 $ XAss simeq Cat^1 - Ass $ $ xass simeq cat^1 - ass $ SYM $ _ 9 dep _ _ 8 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 9 nsubj _ _ 9 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 this this DET DT Number=Sing|PronType=Dem 11 det _ _ 11 problem problem NOUN NN Number=Sing 9 dobj _ _ 12 in in ADP IN _ 11 prep _ _ 13 $ Cat^1 - Ass $ $ cat^1 - ass $ SYM $ _ 12 pobj _ _ 14 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 3 # text = This category is not a category of interest, it satisfies its all axioms except one. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 category category NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 ccomp _ _ 4 not not PART RB Polarity=Neg 3 neg _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 category category NOUN NN Number=Sing 3 attr _ _ 7 of of ADP IN _ 6 prep _ _ 8 interest interest NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 11 punct _ _ 10 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 11 nsubj _ _ 11 satisfies satisfy VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 14 poss _ _ 13 all all DET DT _ 14 det _ _ 14 axioms axiom NOUN NNS Number=Plur 11 dobj _ _ 15 except except SCONJ IN _ 14 prep _ _ 16 one one NUM CD NumType=Card 15 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 4 # text = The action theory developed in the category of interest is adapted to the new type of category, which will be called modified category of interest. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 action action NOUN NN Number=Sing 3 compound _ _ 3 theory theory NOUN NN Number=Sing 4 nsubj _ _ 4 developed develop VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 5 in in ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 category category NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 interest interest NOUN NN Number=Sing 8 pobj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 11 adapted adapt VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 conj _ _ 12 to to ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 new new ADJ JJ Degree=Pos 15 amod _ _ 15 type type NOUN NN Number=Sing 12 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 category category NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 15 punct _ _ 19 which which PRON WDT _ 22 nsubjpass _ _ 20 will will AUX MD VerbForm=Fin 22 aux _ _ 21 be be AUX VB VerbForm=Inf 22 auxpass _ _ 22 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 relcl _ _ 23 modified modified ADJ JJ Degree=Pos 24 amod _ _ 24 category category NOUN NN Number=Sing 22 oprd _ _ 25 of of ADP IN _ 24 prep _ _ 26 interest interest NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 5 # text = Applying the results obtained in this direction and the equivalence of categories we find a condition under which there exists the split extension classifier of a crossed module and give the corresponding construction. 1 Applying apply VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 advcl _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 results result NOUN NNS Number=Plur 1 dobj _ _ 4 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 acl _ _ 5 in in ADP IN _ 4 prep _ _ 6 this this DET DT Number=Sing|PronType=Dem 7 det _ _ 7 direction direction NOUN NN Number=Sing 5 pobj _ _ 8 and and CCONJ CC ConjType=Cmp 3 cc _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 equivalence equivalence NOUN NN Number=Sing 3 conj _ _ 11 of of ADP IN _ 10 prep _ _ 12 categories category NOUN NNS Number=Plur 11 pobj _ _ 13 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 14 nsubj _ _ 14 find find VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 condition condition NOUN NN Number=Sing 14 dobj _ _ 17 under under ADP IN _ 20 prep _ _ 18 which which PRON WDT _ 17 pobj _ _ 19 there there PRON EX _ 20 expl _ _ 20 exists exist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 relcl _ _ 21 the the DET DT Definite=Def|PronType=Art 24 det _ _ 22 split split NOUN NN Number=Sing 24 compound _ _ 23 extension extension NOUN NN Number=Sing 24 compound _ _ 24 classifier classifier NOUN NN Number=Sing 20 dobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 27 crossed crossed ADJ JJ Degree=Pos 28 amod _ _ 28 module module NOUN NN Number=Sing 25 pobj _ _ 29 and and CCONJ CC ConjType=Cmp 20 cc _ _ 30 give give VERB VB VerbForm=Inf 20 conj _ _ 31 the the DET DT Definite=Def|PronType=Art 33 det _ _ 32 corresponding corresponding ADJ JJ Degree=Pos 33 amod _ _ 33 construction construction NOUN NN Number=Sing 30 dobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # doc_id = 541 # sent_id = 1 # text = Control theory uses `signal - flow diagrams' to describe processes where real - valued functions of time are added, multiplied by scalars, differentiated and integrated, duplicated and deleted. 1 Control control NOUN NN Number=Sing 2 compound _ _ 2 theory theory NOUN NN Number=Sing 3 nsubj _ _ 3 uses use VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 8 punct _ SpaceAfter=No 5 signal signal NOUN NN Number=Sing 7 amod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 flow flow NOUN NN Number=Sing 8 compound _ _ 8 diagrams diagram NOUN NNS Number=Plur 3 dobj _ SpaceAfter=No 9 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 8 punct _ _ 10 to to PART TO _ 11 aux _ _ 11 describe describe VERB VB VerbForm=Inf 3 xcomp _ _ 12 processes process NOUN NNS Number=Plur 11 dobj _ _ 13 where where SCONJ WRB _ 21 advmod _ _ 14 real real ADV RB _ 16 advmod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 17 functions function NOUN NNS Number=Plur 21 nsubjpass _ _ 18 of of ADP IN _ 17 prep _ _ 19 time time NOUN NN Number=Sing 18 pobj _ _ 20 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 21 auxpass _ _ 21 added add VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 relcl _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 multiplied multiply VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 advcl _ _ 24 by by ADP IN _ 23 agent _ _ 25 scalars scalar NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 25 punct _ _ 27 differentiated differentiate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 25 acl _ _ 28 and and CCONJ CC ConjType=Cmp 27 cc _ _ 29 integrated integrate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 conj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 25 punct _ _ 31 duplicated duplicate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 25 acl _ _ 32 and and CCONJ CC ConjType=Cmp 31 cc _ _ 33 deleted delete VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 31 conj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = These diagrams can be seen as string diagrams for the symmetric monoidal category FinVectk of finite - dimensional vector spaces over the field of rational functions $ k = R(s) $ , where the variable $ s $ acts as differentiation and the monoidal structure is direct sum rather than the usual tensor product of vector spaces. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 diagrams diagram NOUN NNS Number=Plur 5 nsubjpass _ _ 3 can can AUX MD VerbForm=Fin 5 aux _ _ 4 be be AUX VB VerbForm=Inf 5 auxpass _ _ 5 seen see VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 as as ADP IN _ 5 prep _ _ 7 string string NOUN NN Number=Sing 8 compound _ _ 8 diagrams diagram NOUN NNS Number=Plur 6 pobj _ _ 9 for for ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 13 det _ _ 11 symmetric symmetric ADJ JJ Degree=Pos 13 amod _ _ 12 monoidal monoidal ADJ JJ Degree=Pos 13 amod _ _ 13 category category NOUN NN Number=Sing 9 pobj _ _ 14 FinVectk FinVectk PROPN NNP Number=Sing 13 appos _ _ 15 of of ADP IN _ 14 prep _ _ 16 finite finite ADJ JJ Degree=Pos 18 amod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 dimensional dimensional ADJ JJ Degree=Pos 20 amod _ _ 19 vector vector NOUN NN Number=Sing 20 compound _ _ 20 spaces space NOUN NNS Number=Plur 15 pobj _ _ 21 over over ADP IN _ 8 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 field field NOUN NN Number=Sing 21 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 rational rational ADJ JJ Degree=Pos 26 amod _ _ 26 functions function NOUN NNS Number=Plur 24 pobj _ _ 27 $ k = R(s) $ $ k = r(s) $ SYM $ _ 8 appos _ _ 28 , , PUNCT , PunctType=Comm 27 punct _ _ 29 where where SCONJ WRB _ 33 advmod _ _ 30 the the DET DT Definite=Def|PronType=Art 33 det _ _ 31 variable variable ADJ JJ Degree=Pos 32 amod _ _ 32 $ s $ $ s $ SYM $ _ 33 nmod _ _ 33 acts act NOUN NNS Number=Plur 27 relcl _ _ 34 as as ADP IN _ 33 prep _ _ 35 differentiation differentiation NOUN NN Number=Sing 34 pobj _ _ 36 and and CCONJ CC ConjType=Cmp 33 cc _ _ 37 the the DET DT Definite=Def|PronType=Art 39 det _ _ 38 monoidal monoidal ADJ JJ Degree=Pos 39 amod _ _ 39 structure structure NOUN NN Number=Sing 40 nsubj _ _ 40 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 conj _ _ 41 direct direct ADJ JJ Degree=Pos 42 amod _ _ 42 sum sum NOUN NN Number=Sing 40 attr _ _ 43 rather rather ADV RB _ 44 advmod _ _ 44 than than ADP IN _ 42 cc _ _ 45 the the DET DT Definite=Def|PronType=Art 48 det _ _ 46 usual usual ADJ JJ Degree=Pos 48 amod _ _ 47 tensor tensor NOUN NN Number=Sing 48 compound _ _ 48 product product NOUN NN Number=Sing 42 conj _ _ 49 of of ADP IN _ 48 prep _ _ 50 vector vector NOUN NN Number=Sing 51 compound _ _ 51 spaces space NOUN NNS Number=Plur 49 pobj _ SpaceAfter=No 52 . . PUNCT . PunctType=Peri 40 punct _ SpaceAfter=No # sent_id = 3 # text = For any field $ k $ we give a presentation of $ FinVectk $ in terms of the generators used in signal - flow diagrams. 1 For for ADP IN _ 6 prep _ _ 2 any any DET DT _ 3 det _ _ 3 field field NOUN NN Number=Sing 1 pobj _ _ 4 $ k $ $ k $ SYM $ _ 3 prep _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 presentation presentation NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 $ FinVectk $ $ finvectk $ SYM $ _ 9 pobj _ _ 11 in in ADP IN _ 6 prep _ _ 12 terms term NOUN NNS Number=Plur 11 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 generators generator NOUN NNS Number=Plur 13 pobj _ _ 16 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 acl _ _ 17 in in ADP IN _ 16 prep _ _ 18 signal signal ADJ JJ Degree=Pos 20 amod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 flow flow NOUN NN Number=Sing 21 compound _ _ 21 diagrams diagram NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = A broader class of signal - flow diagrams also includes `caps' and `cups' to model feedback. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 broader broad ADJ JJR Degree=Cmp 3 amod _ _ 3 class class NOUN NN Number=Sing 10 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 signal signal NOUN NN Number=Sing 7 amod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 flow flow NOUN NN Number=Sing 8 compound _ _ 8 diagrams diagram NOUN NNS Number=Plur 4 pobj _ _ 9 also also ADV RB _ 10 advmod _ _ 10 includes include VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 10 punct _ SpaceAfter=No 12 caps cap NOUN NNS Number=Plur 10 dobj _ SpaceAfter=No 13 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 12 punct _ _ 14 and and CCONJ CC ConjType=Cmp 12 cc _ _ 15 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 16 punct _ SpaceAfter=No 16 cups cup NOUN NNS Number=Plur 12 conj _ SpaceAfter=No 17 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 16 punct _ _ 18 to to PART TO _ 19 aux _ _ 19 model model VERB VB VerbForm=Inf 10 xcomp _ _ 20 feedback feedback NOUN NN Number=Sing 19 dobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 5 # text = We show these diagrams can be seen as string diagrams for the symmetric monoidal category $ FinRelk $ , where objects are still finite - dimensional vector spaces but the morphisms are linear relations. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 these these DET DT Number=Plur|PronType=Dem 4 det _ _ 4 diagrams diagram NOUN NNS Number=Plur 7 nsubjpass _ _ 5 can can AUX MD VerbForm=Fin 7 aux _ _ 6 be be AUX VB VerbForm=Inf 7 auxpass _ _ 7 seen see VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 8 as as ADP IN _ 7 prep _ _ 9 string string NOUN NN Number=Sing 10 compound _ _ 10 diagrams diagram NOUN NNS Number=Plur 8 pobj _ _ 11 for for ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 15 det _ _ 13 symmetric symmetric ADJ JJ Degree=Pos 15 amod _ _ 14 monoidal monoidal ADJ JJ Degree=Pos 15 amod _ _ 15 category category NOUN NN Number=Sing 11 pobj _ _ 16 $ FinRelk $ $ finrelk $ SYM $ _ 15 appos _ _ 17 , , PUNCT , PunctType=Comm 15 punct _ _ 18 where where SCONJ WRB _ 20 advmod _ _ 19 objects object NOUN NNS Number=Plur 20 nsubj _ _ 20 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 relcl _ _ 21 still still ADV RB _ 20 advmod _ _ 22 finite finite ADJ JJ Degree=Pos 24 npadvmod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 dimensional dimensional ADJ JJ Degree=Pos 26 amod _ _ 25 vector vector NOUN NN Number=Sing 26 compound _ _ 26 spaces space NOUN NNS Number=Plur 20 attr _ _ 27 but but CCONJ CC ConjType=Cmp 2 cc _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 morphisms morphism NOUN NNS Number=Plur 30 nsubj _ _ 30 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 conj _ _ 31 linear linear ADJ JJ Degree=Pos 32 compound _ _ 32 relations relation NOUN NNS Number=Plur 30 attr _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 30 punct _ SpaceAfter=No # sent_id = 6 # text = We also give a presentation for $ FinRelk $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 presentation presentation NOUN NN Number=Sing 3 dobj _ _ 6 for for ADP IN _ 5 prep _ _ 7 $ FinRelk $ $ finrelk $ SYM $ _ 6 pobj _ _ 8 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 7 # text = The relations say, among other things, that the 1 - dimensional vector space $ k $ has two special commutative dagger - Frobenius structures, such that the multiplication and unit of either one and the comultiplication and counit of the other fit together to form a bimonoid. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 relations relation NOUN NNS Number=Plur 3 nsubj _ _ 3 say say VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 3 punct _ _ 5 among among ADP IN _ 3 prep _ _ 6 other other ADJ JJ Degree=Pos 7 amod _ _ 7 things thing NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 3 punct _ _ 9 that that SCONJ IN _ 17 mark _ _ 10 the the DET DT Definite=Def|PronType=Art 15 det _ _ 11 1 1 NUM CD NumType=Card 13 advmod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 dimensional dimensional ADJ JJ Degree=Pos 15 amod _ _ 14 vector vector NOUN NN Number=Sing 15 compound _ _ 15 space space NOUN NN Number=Sing 17 nsubj _ _ 16 $ k $ $ k $ SYM $ _ 15 appos _ _ 17 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 18 two two NUM CD NumType=Card 24 nummod _ _ 19 special special ADJ JJ Degree=Pos 24 amod _ _ 20 commutative commutative ADJ JJ Degree=Pos 24 amod _ _ 21 dagger dagger PROPN NNP Number=Sing 23 compound _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 Frobenius Frobenius PROPN NNP Number=Sing 24 compound _ _ 24 structures structure NOUN NNS Number=Plur 17 dobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 such such ADJ JJ Degree=Pos 27 amod _ _ 27 that that SCONJ IN _ 17 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 multiplication multiplication NOUN NN Number=Sing 27 pobj _ _ 30 and and CCONJ CC ConjType=Cmp 29 cc _ _ 31 unit unit NOUN NN Number=Sing 29 conj _ _ 32 of of ADP IN _ 29 prep _ _ 33 either either PRON DT _ 34 preconj _ _ 34 one one NUM CD NumType=Card 32 pobj _ _ 35 and and CCONJ CC ConjType=Cmp 34 cc _ _ 36 the the DET DT Definite=Def|PronType=Art 37 det _ _ 37 comultiplication comultiplication NOUN NN Number=Sing 34 conj _ _ 38 and and CCONJ CC ConjType=Cmp 37 cc _ _ 39 counit counit NOUN NN Number=Sing 37 conj _ _ 40 of of ADP IN _ 37 prep _ _ 41 the the DET DT Definite=Def|PronType=Art 43 det _ _ 42 other other ADJ JJ Degree=Pos 43 amod _ _ 43 fit fit NOUN NN Number=Sing 40 pobj _ _ 44 together together ADV RB _ 43 advmod _ _ 45 to to PART TO _ 46 aux _ _ 46 form form VERB VB VerbForm=Inf 29 acl _ _ 47 a a DET DT Definite=Ind|PronType=Art 48 det _ _ 48 bimonoid bimonoid NOUN NN Number=Sing 46 dobj _ SpaceAfter=No 49 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 8 # text = This sort of structure, but with tensor product replacing direct sum, is familiar from the `ZX - calculus' obeyed by a finite - dimensional Hilbert space with two mutually unbiased bases. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 sort sort NOUN NN Number=Sing 14 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 structure structure NOUN NN Number=Sing 3 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 2 punct _ _ 6 but but CCONJ CC ConjType=Cmp 2 cc _ _ 7 with with ADP IN _ 14 prep _ _ 8 tensor tensor NOUN NN Number=Sing 9 compound _ _ 9 product product NOUN NN Number=Sing 10 nsubj _ _ 10 replacing replace VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 pcomp _ _ 11 direct direct ADJ JJ Degree=Pos 12 amod _ _ 12 sum sum NOUN NN Number=Sing 10 dobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 14 punct _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 familiar familiar ADJ JJ Degree=Pos 14 acomp _ _ 16 from from ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 21 det _ _ 18 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 21 punct _ SpaceAfter=No 19 ZX ZX PROPN NNP Number=Sing 21 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 calculus calculus NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 22 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 21 case _ _ 23 obeyed obey VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 advcl _ _ 24 by by ADP IN _ 23 agent _ _ 25 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 26 finite finite ADJ JJ Degree=Pos 28 npadvmod _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 dimensional dimensional ADJ JJ Degree=Pos 30 amod _ _ 29 Hilbert Hilbert PROPN NNP Number=Sing 30 compound _ _ 30 space space NOUN NN Number=Sing 24 pobj _ _ 31 with with ADP IN _ 30 prep _ _ 32 two two NUM CD NumType=Card 35 nummod _ _ 33 mutually mutually ADV RB _ 34 advmod _ _ 34 unbiased unbiased ADJ JJ Degree=Pos 35 amod _ _ 35 bases basis NOUN NNS Number=Plur 31 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # doc_id = 542 # sent_id = 1 # text = In this paper we define a sequence of monads $ T^{(infty, n)} (ninmathbb{N}) $ on the category $ infty - Gr $ of $ infty $ - graphs. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 sequence sequence NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 monads monad NOUN NNS Number=Plur 8 pobj _ _ 10 $ T^{(infty, n)} (ninmathbb{N}) $ $ t^{(infty, n)} (ninmathbb{n}) $ SYM $ _ 5 dep _ _ 11 on on ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 category category NOUN NN Number=Sing 11 pobj _ _ 14 $ infty - Gr $ $ infty - gr $ SYM $ _ 10 appos _ _ 15 of of ADP IN _ 14 prep _ _ 16 $ infty $ $ infty $ SYM $ _ 18 compound _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 graphs graph NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = We conjecture that algebras for $ T^{(infty, 0)} $ , which are defined in a purely algebraic setting, are models of $ infty $ - groupoids. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 conjecture conjecture VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 4 nsubj _ _ 4 algebras algebra VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 5 for for ADP IN _ 4 prep _ _ 6 $ T^{(infty, 0)} $ $ t^{(infty, 0)} $ SYM $ _ 5 pobj _ _ 7 , , PUNCT , PunctType=Comm 6 punct _ _ 8 which which PRON WDT _ 10 nsubjpass _ _ 9 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 10 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 relcl _ _ 11 in in ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 13 purely purely ADV RB _ 14 advmod _ _ 14 algebraic algebraic ADJ JJ Degree=Pos 15 amod _ _ 15 setting setting NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 4 punct _ _ 17 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 18 models model NOUN NNS Number=Plur 17 attr _ _ 19 of of ADP IN _ 18 prep _ _ 20 $ infty $ $ infty $ SYM $ _ 22 compound _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 groupoids groupoid NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = More generally, we conjecture that $ T^{(infty, n)} $ - algebras are models for $ (infty, n) $ - categories. 1 More more ADV RBR Degree=Cmp 2 advmod _ _ 2 generally generally ADV RB _ 5 advmod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 conjecture conjecture VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 that that SCONJ IN _ 10 mark _ _ 7 $ T^{(infty, n)} $ $ t^{(infty, n)} $ SYM $ _ 9 compound _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 algebras algebra NOUN NNS Number=Plur 10 nsubj _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 ccomp _ _ 11 models model NOUN NNS Number=Plur 10 attr _ _ 12 for for ADP IN _ 11 prep _ _ 13 $ (infty, n) $ $ (infty, n) $ SYM $ _ 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 categories category NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = We prove that our $ (infty, 0) $ - categories are bigroupoids when truncated at level 2. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 8 mark _ _ 4 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 7 poss _ _ 5 $ (infty, 0) $ $ (infty, 0) $ SYM $ _ 7 compound _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 categories category NOUN NNS Number=Plur 8 nsubj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 9 bigroupoids bigroupoid NOUN NNS Number=Plur 8 attr _ _ 10 when when SCONJ WRB _ 11 advmod _ _ 11 truncated truncate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 advcl _ _ 12 at at ADP IN _ 11 prep _ _ 13 level level NOUN NN Number=Sing 12 pobj _ _ 14 2 2 NUM CD NumType=Card 13 nummod _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 543 # sent_id = 1 # text = Are all subcategories of locally finitely presentable categories that are closed under limits and $ lambda $ - filtered colimits also locally presentable? 1 Are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 2 all all PRON DT _ 1 advmod _ _ 3 subcategories subcategorie NOUN NNS Number=Plur 1 attr _ _ 4 of of ADP IN _ 3 prep _ _ 5 locally locally ADV RB _ 6 advmod _ _ 6 finitely finitely ADV RB _ 8 amod _ _ 7 presentable presentable ADJ JJ Degree=Pos 8 amod _ _ 8 categories category NOUN NNS Number=Plur 4 pobj _ _ 9 that that PRON WDT PronType=Rel 11 nsubjpass _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 11 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 relcl _ _ 12 under under ADP IN _ 11 prep _ _ 13 limits limit NOUN NNS Number=Plur 12 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 $ lambda $ $ lambda $ SYM $ _ 17 advmod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 filtered filter VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 amod _ _ 18 colimits colimit NOUN NNS Number=Plur 13 conj _ _ 19 also also ADV RB _ 21 advmod _ _ 20 locally locally ADV RB _ 21 advmod _ _ 21 presentable presentable ADJ JJ Degree=Pos 1 acomp _ SpaceAfter=No 22 ? ? PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = For full subcategories the answer is affirmative. 1 For for ADP IN _ 6 prep _ _ 2 full full ADJ JJ Degree=Pos 3 amod _ _ 3 subcategories subcategorie NOUN NNS Number=Plur 1 pobj _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 answer answer NOUN NN Number=Sing 6 nsubj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 affirmative affirmative ADJ JJ Degree=Pos 6 acomp _ SpaceAfter=No 8 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = Makkai and Pitts proved that in the case $ lambda = aleph_0 $ the answer is affirmative also for all iso - full subcategories, that is, those containing with every pair of objects all isomorphisms between them. 1 Makkai Makkai PROPN NNP Number=Sing 4 nsubj _ _ 2 and and CCONJ CC ConjType=Cmp 1 cc _ _ 3 Pitts Pitts PROPN NNP Number=Sing 1 conj _ _ 4 proved prove VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 12 mark _ _ 6 in in ADP IN _ 12 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 case case NOUN NN Number=Sing 6 pobj _ _ 9 $ lambda = aleph_0 $ $ lambda = aleph_0 $ SYM $ _ 11 nmod _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 answer answer NOUN NN Number=Sing 12 nsubj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 13 affirmative affirmative ADJ JJ Degree=Pos 12 acomp _ _ 14 also also ADV RB _ 12 advmod _ _ 15 for for ADP IN _ 12 prep _ _ 16 all all DET DT _ 20 det _ _ 17 iso iso NOUN NN Number=Sing 19 npadvmod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 full full ADJ JJ Degree=Pos 20 amod _ _ 20 subcategories subcategorie NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 that that ADV RB _ 23 advmod _ _ 23 is is ADV RB _ 25 advmod _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 25 punct _ _ 25 those those PRON DT Number=Plur|PronType=Dem 12 attr _ _ 26 containing contain VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 25 acl _ _ 27 with with ADP IN _ 26 prep _ _ 28 every every DET DT _ 29 det _ _ 29 pair pair NOUN NN Number=Sing 27 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 objects object NOUN NNS Number=Plur 30 pobj _ _ 32 all all DET DT _ 33 det _ _ 33 isomorphisms isomorphism NOUN NNS Number=Plur 27 pobj _ _ 34 between between ADP IN _ 26 prep _ _ 35 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 34 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = We discuss a possible generalization of this from $ aleph_0 $ to an arbitrary $ lambda $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 discuss discuss VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 possible possible ADJ JJ Degree=Pos 5 amod _ _ 5 generalization generalization NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 this this PRON DT Number=Sing|PronType=Dem 6 pobj _ _ 8 from from ADP IN _ 2 prep _ _ 9 $ aleph_0 $ $ aleph_0 $ SYM $ _ 8 pobj _ _ 10 to to ADP IN _ 8 prep _ _ 11 an an DET DT Definite=Ind|PronType=Art 13 det _ _ 12 arbitrary arbitrary ADJ JJ Degree=Pos 13 amod _ _ 13 $ lambda $ $ lambda $ SYM $ _ 10 pobj _ _ 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 544 # sent_id = 1 # text = We define a model category structure on a slice category of simplicial spaces, called the "Segal group action" structure, whose fibrant - cofibrant objects may be viewed as representing spaces $ X $ with an action of a fixed Segal group (that is, a group - like, reduced Segal space). 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 4 model model NOUN NN Number=Sing 6 compound _ _ 5 category category NOUN NN Number=Sing 6 compound _ _ 6 structure structure NOUN NN Number=Sing 2 dobj _ _ 7 on on ADP IN _ 2 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 slice slice NOUN NN Number=Sing 10 compound _ _ 10 category category NOUN NN Number=Sing 7 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 simplicial simplicial ADJ JJ Degree=Pos 13 amod _ _ 13 spaces space NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 2 punct _ _ 15 called call VERB VBD Tense=Past|VerbForm=Fin 2 dep _ _ 16 the the DET DT Definite=Def|PronType=Art 22 det _ _ 17 " " PUNCT `` PunctSide=Ini|PunctType=Quot 22 punct _ SpaceAfter=No 18 Segal Segal PROPN NNP Number=Sing 20 nmod _ _ 19 group group NOUN NN Number=Sing 20 nmod _ _ 20 action action NOUN NN Number=Sing 22 nmod _ SpaceAfter=No 21 " " PUNCT '' PunctSide=Fin|PunctType=Quot 22 punct _ _ 22 structure structure NOUN NN Number=Sing 15 oprd _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 whose whose DET WP$ Poss=Yes 28 poss _ _ 25 fibrant fibrant NOUN NN Number=Sing 27 amod _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 cofibrant cofibrant NOUN NN Number=Sing 28 amod _ _ 28 objects object NOUN NNS Number=Plur 31 nsubjpass _ _ 29 may may AUX MD VerbForm=Fin 31 aux _ _ 30 be be AUX VB VerbForm=Inf 31 auxpass _ _ 31 viewed view VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 relcl _ _ 32 as as ADP IN _ 31 prep _ _ 33 representing represent VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 32 pcomp _ _ 34 spaces space NOUN NNS Number=Plur 33 dobj _ _ 35 $ X $ $ x $ SYM $ _ 34 appos _ _ 36 with with ADP IN _ 33 prep _ _ 37 an an DET DT Definite=Ind|PronType=Art 38 det _ _ 38 action action NOUN NN Number=Sing 36 pobj _ _ 39 of of ADP IN _ 38 prep _ _ 40 a a DET DT Definite=Ind|PronType=Art 43 det _ _ 41 fixed fix VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 43 amod _ _ 42 Segal Segal PROPN NNP Number=Sing 43 compound _ _ 43 group group NOUN NN Number=Sing 39 pobj _ _ 44 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 43 punct _ SpaceAfter=No 45 that that ADV RB _ 46 advmod _ _ 46 is is ADV RB _ 43 parataxis _ SpaceAfter=No 47 , , PUNCT , PunctType=Comm 46 punct _ _ 48 a a DET DT Definite=Ind|PronType=Art 55 det _ _ 49 group group NOUN NN Number=Sing 51 npadvmod _ _ 50 - - PUNCT HYPH PunctType=Dash 51 punct _ _ 51 like like ADJ JJ Degree=Pos 55 amod _ SpaceAfter=No 52 , , PUNCT , PunctType=Comm 55 punct _ _ 53 reduced reduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 55 amod _ _ 54 Segal segal ADJ JJ Degree=Pos 55 amod _ _ 55 space space NOUN NN Number=Sing 43 appos _ SpaceAfter=No 56 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 31 punct _ SpaceAfter=No 57 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We show that this model structure is Quillen equivalent to the projective model structure on $ G $ - spaces, $ S^BG} $ , where $ G $ is a simplicial group corresponding to the Segal group. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 7 mark _ _ 4 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 5 model model NOUN NN Number=Sing 6 compound _ _ 6 structure structure NOUN NN Number=Sing 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 8 Quillen quillen ADJ JJ Degree=Pos 7 acomp _ _ 9 equivalent equivalent ADJ JJ Degree=Pos 8 advmod _ _ 10 to to ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 14 det _ _ 12 projective projective ADJ JJ Degree=Pos 14 amod _ _ 13 model model NOUN NN Number=Sing 14 compound _ _ 14 structure structure NOUN NN Number=Sing 10 pobj _ _ 15 on on ADP IN _ 14 prep _ _ 16 $ G $ $ g $ SYM $ _ 18 nmod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 spaces space NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 $ S^BG} $ $ s^bg} $ SYM $ _ 18 appos _ _ 21 , , PUNCT , PunctType=Comm 18 punct _ _ 22 where where SCONJ WRB _ 23 advmod _ _ 23 $ G $ $ g $ SYM $ _ 18 relcl _ _ 24 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 25 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 26 simplicial simplicial ADJ JJ Degree=Pos 27 amod _ _ 27 group group NOUN NN Number=Sing 24 attr _ _ 28 corresponding corresponding NOUN NN Number=Sing 27 amod _ _ 29 to to ADP IN _ 28 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 32 det _ _ 31 Segal Segal PROPN NNP Number=Sing 32 compound _ _ 32 group group NOUN NN Number=Sing 29 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = One advantage of this model is that if we start with an ordinary group action $ Xin S^BG $ and apply a weakly monoidal functor of spaces $ L: S to S $ (such as localization or completion) on each simplicial degree of its associated Segal group action, we get a new Segal group action of $ LG $ on $ LX $ which can then be rigidified via the above - mentioned Quillen equivalence. 1 One one NUM CD NumType=Card 2 nummod _ _ 2 advantage advantage NOUN NN Number=Sing 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 model model NOUN NN Number=Sing 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 that that SCONJ IN _ 45 mark _ _ 8 if if SCONJ IN _ 10 mark _ _ 9 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 10 nsubj _ _ 10 start start VERB VBP Tense=Pres|VerbForm=Fin 45 advcl _ _ 11 with with ADP IN _ 10 prep _ _ 12 an an DET DT Definite=Ind|PronType=Art 15 det _ _ 13 ordinary ordinary ADJ JJ Degree=Pos 15 amod _ _ 14 group group NOUN NN Number=Sing 15 compound _ _ 15 action action NOUN NN Number=Sing 11 pobj _ _ 16 $ Xin S^BG $ $ xin s^bg $ X XX _ 10 advmod _ _ 17 and and CCONJ CC ConjType=Cmp 10 cc _ _ 18 apply apply VERB VB VerbForm=Inf 10 conj _ _ 19 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 20 weakly weakly ADJ JJ Degree=Pos 22 amod _ _ 21 monoidal monoidal ADJ JJ Degree=Pos 22 amod _ _ 22 functor functor NOUN NN Number=Sing 18 dobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 spaces space NOUN NNS Number=Plur 23 pobj _ _ 25 $ L: S to S $ $ l: s to s $ SYM $ _ 18 npadvmod _ _ 26 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 18 punct _ SpaceAfter=No 27 such such ADJ JJ Degree=Pos 28 amod _ _ 28 as as ADP IN _ 18 prep _ _ 29 localization localization NOUN NN Number=Sing 28 pobj _ _ 30 or or CCONJ CC ConjType=Cmp 29 cc _ _ 31 completion completion NOUN NN Number=Sing 29 conj _ SpaceAfter=No 32 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 18 punct _ _ 33 on on ADP IN _ 18 prep _ _ 34 each each DET DT _ 36 det _ _ 35 simplicial simplicial ADJ JJ Degree=Pos 36 amod _ _ 36 degree degree NOUN NN Number=Sing 33 pobj _ _ 37 of of ADP IN _ 36 prep _ _ 38 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 42 poss _ _ 39 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 42 amod _ _ 40 Segal Segal PROPN NNP Number=Sing 41 compound _ _ 41 group group NOUN NN Number=Sing 42 compound _ _ 42 action action NOUN NN Number=Sing 37 pobj _ SpaceAfter=No 43 , , PUNCT , PunctType=Comm 45 punct _ _ 44 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 45 nsubj _ _ 45 get get VERB VBP Tense=Pres|VerbForm=Fin 6 ccomp _ _ 46 a a DET DT Definite=Ind|PronType=Art 50 det _ _ 47 new new ADJ JJ Degree=Pos 50 amod _ _ 48 Segal Segal PROPN NNP Number=Sing 49 compound _ _ 49 group group NOUN NN Number=Sing 50 compound _ _ 50 action action NOUN NN Number=Sing 45 dobj _ _ 51 of of ADP IN _ 50 prep _ _ 52 $ LG $ $ lg $ SYM $ _ 51 pobj _ _ 53 on on ADP IN _ 50 prep _ _ 54 $ LX $ $ lx $ SYM $ _ 53 pobj _ _ 55 which which PRON WDT _ 59 nsubjpass _ _ 56 can can AUX MD VerbForm=Fin 59 aux _ _ 57 then then ADV RB PronType=Dem 59 advmod _ _ 58 be be AUX VB VerbForm=Inf 59 auxpass _ _ 59 rigidified rigidify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 50 relcl _ _ 60 via via ADP IN _ 59 prep _ _ 61 the the DET DT Definite=Def|PronType=Art 66 det _ _ 62 above above ADV RB _ 64 advmod _ _ 63 - - PUNCT HYPH PunctType=Dash 64 punct _ _ 64 mentioned mention VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 66 amod _ _ 65 Quillen quillen ADJ JJ Degree=Pos 66 amod _ _ 66 equivalence equivalence NOUN NN Number=Sing 60 pobj _ SpaceAfter=No 67 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 545 # sent_id = 1 # text = Given a small quantaloid $ Q $ with a set of objects $ Q_0 $ , it is proved that complete skeletal $ Q $ - categories, completely distributive skeletal $ Q $ - categories, and $ Q $ - powersets of $ Q $ - typed sets are all monadic over athe slice category of $ Set $ over $ Q_0 $ . 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 small small ADJ JJ Degree=Pos 4 amod _ _ 4 quantaloid quantaloid NOUN NN Number=Sing 1 pobj _ _ 5 $ Q $ $ q $ SYM $ _ 1 dep _ _ 6 with with ADP IN _ 1 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 set set NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 objects object NOUN NNS Number=Plur 9 pobj _ _ 11 $ Q_0 $ $ q_0 $ SYM $ _ 1 pobj _ _ 12 , , PUNCT , PunctType=Comm 15 punct _ _ 13 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 15 nsubjpass _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 auxpass _ _ 15 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 16 that that PRON DT Number=Sing|PronType=Dem 17 nsubj _ _ 17 complete complete ADJ JJ Degree=Pos 15 oprd _ _ 18 skeletal skeletal ADJ JJ Degree=Pos 21 amod _ _ 19 $ Q $ $ q $ SYM $ _ 21 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 categories category NOUN NNS Number=Plur 17 dobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 completely completely ADV RB _ 24 advmod _ _ 24 distributive distributive ADJ JJ Degree=Pos 28 amod _ _ 25 skeletal skeletal ADJ JJ Degree=Pos 28 amod _ _ 26 $ Q $ $ q $ SYM $ _ 28 nmod _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 categories category NOUN NNS Number=Plur 39 nsubj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 28 punct _ _ 30 and and CCONJ CC ConjType=Cmp 28 cc _ _ 31 $ Q $ $ q $ SYM $ _ 33 nummod _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 powersets powerset NOUN NNS Number=Plur 28 conj _ _ 34 of of ADP IN _ 33 prep _ _ 35 $ Q $ $ q $ SYM $ _ 37 advmod _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 typed type VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 38 amod _ _ 38 sets set NOUN NNS Number=Plur 34 pobj _ _ 39 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 conj _ _ 40 all all ADV RB _ 39 advmod _ _ 41 monadic monadic ADJ JJ Degree=Pos 39 acomp _ _ 42 over over ADP IN _ 41 prep _ _ 43 athe athe DET DT _ 45 det _ _ 44 slice slice NOUN NN Number=Sing 45 compound _ _ 45 category category NOUN NN Number=Sing 42 pobj _ _ 46 of of ADP IN _ 45 prep _ _ 47 $ Set $ $ set $ SYM $ _ 46 pobj _ _ 48 over over ADP IN _ 41 prep _ _ 49 $ Q_0 $ $ q_0 $ SYM $ _ 48 pobj _ _ 50 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # doc_id = 546 # sent_id = 1 # text = We put a model structure on the category of categories internal to simplicial sets. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 put put VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 model model NOUN NN Number=Sing 5 compound _ _ 5 structure structure NOUN NN Number=Sing 2 dobj _ _ 6 on on ADP IN _ 2 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 category category NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 categories category NOUN NNS Number=Plur 9 pobj _ _ 11 internal internal ADJ JJ Degree=Pos 10 amod _ _ 12 to to ADP IN _ 11 prep _ _ 13 simplicial simplicial ADJ JJ Degree=Pos 14 amod _ _ 14 sets set NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The weak equivalences in this model structure are preserved and reflected by the nerve functor to bisimplicial sets with the complete Segal space model structure. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 weak weak ADJ JJ Degree=Pos 3 amod _ _ 3 equivalences equivalence NOUN NNS Number=Plur 9 nsubjpass _ _ 4 in in ADP IN _ 3 prep _ _ 5 this this DET DT Number=Sing|PronType=Dem 7 det _ _ 6 model model NOUN NN Number=Sing 7 compound _ _ 7 structure structure NOUN NN Number=Sing 4 pobj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 preserved preserve VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 reflected reflect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 conj _ _ 12 by by ADP IN _ 11 agent _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 nerve nerve NOUN NN Number=Sing 15 compound _ _ 15 functor functor NOUN NN Number=Sing 12 pobj _ _ 16 to to ADP IN _ 11 prep _ _ 17 bisimplicial bisimplicial ADJ JJ Degree=Pos 18 amod _ _ 18 sets set NOUN NNS Number=Plur 16 pobj _ _ 19 with with ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 25 det _ _ 21 complete complete ADJ JJ Degree=Pos 25 amod _ _ 22 Segal Segal PROPN NNP Number=Sing 24 compound _ _ 23 space space NOUN NN Number=Sing 24 compound _ _ 24 model model NOUN NN Number=Sing 25 compound _ _ 25 structure structure NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 3 # text = This model structure is shown to be a model for the homotopy theory of infinity categories. 1 This this DET DT Number=Sing|PronType=Dem 3 det _ _ 2 model model NOUN NN Number=Sing 3 compound _ _ 3 structure structure NOUN NN Number=Sing 5 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 to to PART TO _ 7 aux _ _ 7 be be AUX VB VerbForm=Inf 5 xcomp _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 model model NOUN NN Number=Sing 7 attr _ _ 10 for for ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 homotopy homotopy NOUN NN Number=Sing 13 compound _ _ 13 theory theory NOUN NN Number=Sing 10 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 infinity infinity NOUN NN Number=Sing 16 compound _ _ 16 categories category NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = We also study the homotopy theory of internal presheaves over an internal category. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 homotopy homotopy NOUN NN Number=Sing 6 compound _ _ 6 theory theory NOUN NN Number=Sing 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 internal internal ADJ JJ Degree=Pos 9 amod _ _ 9 presheaves presheave NOUN NNS Number=Plur 7 pobj _ _ 10 over over ADP IN _ 3 prep _ _ 11 an an DET DT Definite=Ind|PronType=Art 13 det _ _ 12 internal internal ADJ JJ Degree=Pos 13 amod _ _ 13 category category NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 547 # sent_id = 1 # text = We study the accessibility properties of trivial cofibrations and weak equivalences in a combinatorial model category and prove an estimate for the accessibility rank of weak equivalences. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 accessibility accessibility NOUN NN Number=Sing 5 compound _ _ 5 properties property NOUN NNS Number=Plur 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 trivial trivial ADJ JJ Degree=Pos 8 amod _ _ 8 cofibrations cofibration NOUN NNS Number=Plur 6 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 weak weak ADJ JJ Degree=Pos 11 amod _ _ 11 equivalences equivalence NOUN NNS Number=Plur 8 conj _ _ 12 in in ADP IN _ 2 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 14 combinatorial combinatorial ADJ JJ Degree=Pos 16 amod _ _ 15 model model NOUN NN Number=Sing 16 compound _ _ 16 category category NOUN NN Number=Sing 12 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 2 cc _ _ 18 prove prove VERB VB VerbForm=Inf 2 conj _ _ 19 an an DET DT Definite=Ind|PronType=Art 20 det _ _ 20 estimate estimate NOUN NN Number=Sing 18 dobj _ _ 21 for for ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 accessibility accessibility NOUN NN Number=Sing 24 compound _ _ 24 rank rank NOUN NN Number=Sing 21 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 weak weak ADJ JJ Degree=Pos 27 amod _ _ 27 equivalences equivalence NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = In particular, we show that the class of weak equivalences between simplicial sets is finitely accessible. 1 In in ADP IN _ 5 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 that that SCONJ IN _ 15 mark _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 class class NOUN NN Number=Sing 15 nsubj _ _ 9 of of ADP IN _ 8 prep _ _ 10 weak weak ADJ JJ Degree=Pos 11 amod _ _ 11 equivalences equivalence NOUN NNS Number=Plur 9 pobj _ _ 12 between between ADP IN _ 11 prep _ _ 13 simplicial simplicial ADJ JJ Degree=Pos 14 amod _ _ 14 sets set NOUN NNS Number=Plur 12 pobj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 ccomp _ _ 16 finitely finitely ADV RB _ 17 advmod _ _ 17 accessible accessible ADJ JJ Degree=Pos 15 acomp _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 548 # sent_id = 1 # text = It is well known how to compute the number of orbits of a group action. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 well well ADV RB Degree=Pos 4 advmod _ _ 4 known known ADJ JJ Degree=Pos 2 acomp _ _ 5 how how SCONJ WRB _ 7 advmod _ _ 6 to to PART TO _ 7 aux _ _ 7 compute compute VERB VB VerbForm=Inf 4 xcomp _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 number number NOUN NN Number=Sing 7 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 orbits orbit NOUN NNS Number=Plur 10 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 group group NOUN NN Number=Sing 15 compound _ _ 15 action action NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = A related problem, apparently not in the literature, is to determine the number of elements in an orbit. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 related related ADJ JJ Degree=Pos 3 amod _ _ 3 problem problem NOUN NN Number=Sing 11 nsubj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 3 punct _ _ 5 apparently apparently ADV RB _ 7 advmod _ _ 6 not not PART RB Polarity=Neg 7 neg _ _ 7 in in ADP IN _ 3 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 literature literature NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 3 punct _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 to to PART TO _ 13 aux _ _ 13 determine determine VERB VB VerbForm=Inf 11 xcomp _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 number number NOUN NN Number=Sing 13 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 elements element NOUN NNS Number=Plur 16 pobj _ _ 18 in in ADP IN _ 15 prep _ _ 19 an an DET DT Definite=Ind|PronType=Art 20 det _ _ 20 orbit orbit NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 3 # text = The theory that addresses this question leads to orbital extensive categories and to combinatorial aspects of such categories. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 theory theory NOUN NN Number=Sing 7 nsubj _ _ 3 that that PRON WDT PronType=Rel 4 nsubj _ _ 4 addresses address VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 relcl _ _ 5 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 6 question question NOUN NN Number=Sing 4 dobj _ _ 7 leads lead VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 to to ADP IN _ 7 prep _ _ 9 orbital orbital ADJ JJ Degree=Pos 11 amod _ _ 10 extensive extensive ADJ JJ Degree=Pos 11 amod _ _ 11 categories category NOUN NNS Number=Plur 8 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 8 cc _ _ 13 to to ADP IN _ 8 conj _ _ 14 combinatorial combinatorial ADJ JJ Degree=Pos 15 amod _ _ 15 aspects aspect NOUN NNS Number=Plur 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 such such ADJ JJ Degree=Pos 18 amod _ _ 18 categories category NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # doc_id = 549 # sent_id = 1 # text = Monoidal differential categories provide the framework for categorical models of differential linear logic. 1 Monoidal monoidal ADJ JJ Degree=Pos 3 amod _ _ 2 differential differential ADJ JJ Degree=Pos 3 amod _ _ 3 categories category NOUN NNS Number=Plur 4 nsubj _ _ 4 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 framework framework NOUN NN Number=Sing 4 dobj _ _ 7 for for ADP IN _ 6 prep _ _ 8 categorical categorical ADJ JJ Degree=Pos 9 amod _ _ 9 models model NOUN NNS Number=Plur 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 differential differential ADJ JJ Degree=Pos 13 amod _ _ 12 linear linear ADJ JJ Degree=Pos 13 compound _ _ 13 logic logic NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = The coKleisli category of any monoidal differential category is always a Cartesian differential category. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 coKleisli cokleisli ADJ JJ Degree=Pos 3 amod _ _ 3 category category NOUN NN Number=Sing 9 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 any any DET DT _ 8 det _ _ 6 monoidal monoidal ADJ JJ Degree=Pos 8 amod _ _ 7 differential differential ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 4 pobj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 always always ADV RB _ 9 advmod _ _ 11 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 12 Cartesian cartesian ADJ JJ Degree=Pos 14 amod _ _ 13 differential differential ADJ JJ Degree=Pos 14 amod _ _ 14 category category NOUN NN Number=Sing 9 attr _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 3 # text = Cartesian differential categories, besides arising in this manner as coKleisli categories, occur in many different and quite independent ways. 1 Cartesian cartesian ADJ JJ Degree=Pos 3 amod _ _ 2 differential differential ADJ JJ Degree=Pos 3 amod _ _ 3 categories category NOUN NNS Number=Plur 14 nsubj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 3 punct _ _ 5 besides besides SCONJ IN _ 3 prep _ _ 6 arising arise VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 pcomp _ _ 7 in in ADP IN _ 6 prep _ _ 8 this this DET DT Number=Sing|PronType=Dem 9 det _ _ 9 manner manner NOUN NN Number=Sing 7 pobj _ _ 10 as as ADP IN _ 6 prep _ _ 11 coKleisli cokleisli ADJ JJ Degree=Pos 12 amod _ _ 12 categories category NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 14 punct _ _ 14 occur occur VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 in in ADP IN _ 14 prep _ _ 16 many many ADJ JJ Degree=Pos 21 amod _ _ 17 different different ADJ JJ Degree=Pos 21 amod _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 quite quite ADV RB _ 20 advmod _ _ 20 independent independent ADJ JJ Degree=Pos 17 conj _ _ 21 ways way NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 4 # text = Thus, it was not obvious how to pass from Cartesian differential categories back to monoidal differential categories. 1 Thus thus ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 4 nsubj _ _ 4 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 0 ROOT _ _ 5 not not PART RB Polarity=Neg 4 neg _ _ 6 obvious obvious ADJ JJ Degree=Pos 4 acomp _ _ 7 how how SCONJ WRB _ 9 advmod _ _ 8 to to PART TO _ 9 aux _ _ 9 pass pass VERB VB VerbForm=Inf 6 xcomp _ _ 10 from from ADP IN _ 9 prep _ _ 11 Cartesian cartesian ADJ JJ Degree=Pos 13 amod _ _ 12 differential differential ADJ JJ Degree=Pos 13 amod _ _ 13 categories category NOUN NNS Number=Plur 10 pobj _ _ 14 back back ADV RB _ 9 advmod _ _ 15 to to ADP IN _ 14 prep _ _ 16 monoidal monoidal ADJ JJ Degree=Pos 18 amod _ _ 17 differential differential ADJ JJ Degree=Pos 18 amod _ _ 18 categories category NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = This paper provides natural conditions under which the linear maps of a Cartesian differential category form a monoidal differential category. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 natural natural ADJ JJ Degree=Pos 5 amod _ _ 5 conditions condition NOUN NNS Number=Plur 3 dobj _ _ 6 under under ADP IN _ 16 prep _ _ 7 which which PRON WDT _ 6 pobj _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 linear linear ADJ JJ Degree=Pos 10 compound _ _ 10 maps map NOUN NNS Number=Plur 16 nsubj _ _ 11 of of ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 13 Cartesian cartesian ADJ JJ Degree=Pos 15 amod _ _ 14 differential differential ADJ JJ Degree=Pos 15 amod _ _ 15 category category NOUN NN Number=Sing 11 pobj _ _ 16 form form VERB VBP Tense=Pres|VerbForm=Fin 5 relcl _ _ 17 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 18 monoidal monoidal ADJ JJ Degree=Pos 20 amod _ _ 19 differential differential ADJ JJ Degree=Pos 20 amod _ _ 20 category category NOUN NN Number=Sing 16 dobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = This is a question of some practical importance as much of the machinery of modern differential geometry is based on models which implicitly allow such a passage, and thus the results and tools of the area tend to freely assume access to this structure. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 question question NOUN NN Number=Sing 2 attr _ _ 5 of of ADP IN _ 4 prep _ _ 6 some some DET DT _ 8 det _ _ 7 practical practical ADJ JJ Degree=Pos 8 amod _ _ 8 importance importance NOUN NN Number=Sing 5 pobj _ _ 9 as as ADP IN _ 10 advmod _ _ 10 much much ADJ JJ Degree=Pos 19 nsubjpass _ _ 11 of of ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 machinery machinery NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 modern modern ADJ JJ Degree=Pos 17 amod _ _ 16 differential differential ADJ JJ Degree=Pos 17 amod _ _ 17 geometry geometry NOUN NN Number=Sing 14 pobj _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 auxpass _ _ 19 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 conj _ _ 20 on on ADP IN _ 19 prep _ _ 21 models model NOUN NNS Number=Plur 20 pobj _ _ 22 which which PRON WDT _ 24 nsubj _ _ 23 implicitly implicitly ADV RB _ 24 advmod _ _ 24 allow allow VERB VBP Tense=Pres|VerbForm=Fin 21 relcl _ _ 25 such such DET PDT _ 27 predet _ _ 26 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 27 passage passage NOUN NN Number=Sing 24 dobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 19 punct _ _ 29 and and CCONJ CC ConjType=Cmp 19 cc _ _ 30 thus thus ADV RB _ 32 advmod _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 results result NOUN NNS Number=Plur 38 nsubj _ _ 33 and and CCONJ CC ConjType=Cmp 32 cc _ _ 34 tools tool NOUN NNS Number=Plur 32 conj _ _ 35 of of ADP IN _ 32 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 37 det _ _ 37 area area NOUN NN Number=Sing 35 pobj _ _ 38 tend tend VERB VBP Tense=Pres|VerbForm=Fin 19 conj _ _ 39 to to PART TO _ 41 aux _ _ 40 freely freely ADV RB _ 41 advmod _ _ 41 assume assume VERB VB VerbForm=Inf 38 xcomp _ _ 42 access access NOUN NN Number=Sing 41 dobj _ _ 43 to to ADP IN _ 42 prep _ _ 44 this this DET DT Number=Sing|PronType=Dem 45 det _ _ 45 structure structure NOUN NN Number=Sing 43 pobj _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 7 # text = The purpose of this paper is to make precise the connection between the two types of differential categories. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 purpose purpose NOUN NN Number=Sing 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 paper paper NOUN NN Number=Sing 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 to to PART TO _ 8 aux _ _ 8 make make VERB VB VerbForm=Inf 6 xcomp _ _ 9 precise precise ADJ JJ Degree=Pos 8 ccomp _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 connection connection NOUN NN Number=Sing 8 dobj _ _ 12 between between ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 two two NUM CD NumType=Card 15 nummod _ _ 15 types type NOUN NNS Number=Plur 12 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 differential differential ADJ JJ Degree=Pos 18 amod _ _ 18 categories category NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 8 # text = As a prelude to this, however, it is convenient to have available a general theory which relates the behaviour of "linear" maps in Cartesian categories to the structure of Seely categories. 1 As as ADP IN _ 10 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 prelude prelude NOUN NN Number=Sing 1 pobj _ _ 4 to to ADP IN _ 3 prep _ _ 5 this this PRON DT Number=Sing|PronType=Dem 4 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 10 punct _ _ 7 however however ADV RB _ 10 advmod _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 10 punct _ _ 9 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 10 nsubj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 convenient convenient ADJ JJ Degree=Pos 10 acomp _ _ 12 to to PART TO _ 13 aux _ _ 13 have have AUX VB VerbForm=Inf 14 aux _ _ 14 available available ADJ JJ Degree=Pos 10 xcomp _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 general general ADJ JJ Degree=Pos 17 amod _ _ 17 theory theory NOUN NN Number=Sing 14 dobj _ _ 18 which which PRON WDT _ 19 nsubj _ _ 19 relates relate VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 relcl _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 behaviour behaviour NOUN NN Number=Sing 19 dobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 " " PUNCT `` PunctSide=Ini|PunctType=Quot 26 punct _ SpaceAfter=No 24 linear linear ADJ JJ Degree=Pos 26 nmod _ SpaceAfter=No 25 " " PUNCT '' PunctSide=Fin|PunctType=Quot 26 punct _ _ 26 maps map NOUN NNS Number=Plur 22 pobj _ _ 27 in in ADP IN _ 26 prep _ _ 28 Cartesian cartesian ADJ JJ Degree=Pos 29 amod _ _ 29 categories category NOUN NNS Number=Plur 27 pobj _ _ 30 to to ADP IN _ 19 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 structure structure NOUN NN Number=Sing 30 pobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 Seely Seely PROPN NNP Number=Sing 35 amod _ _ 35 categories category NOUN NNS Number=Plur 33 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 9 # text = The latter were developed to provide the categorical semantics for (fragments of) linear logic which use a "storage" modality. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 latter latter ADJ JJ Degree=Pos 4 nsubjpass _ _ 3 were be AUX VBD Mood=Ind|Tense=Past|VerbForm=Fin 4 auxpass _ _ 4 developed develop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 to to PART TO _ 6 aux _ _ 6 provide provide VERB VB VerbForm=Inf 4 xcomp _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 categorical categorical ADJ JJ Degree=Pos 9 amod _ _ 9 semantics semantic NOUN NNS Number=Plur 6 dobj _ _ 10 for for ADP IN _ 6 prep _ _ 11 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 10 punct _ SpaceAfter=No 12 fragments fragment NOUN NNS Number=Plur 10 pobj _ _ 13 of of ADP IN _ 12 prep _ SpaceAfter=No 14 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 16 punct _ _ 15 linear linear ADJ JJ Degree=Pos 16 amod _ _ 16 logic logic NOUN NN Number=Sing 13 pobj _ _ 17 which which PRON WDT _ 18 nsubj _ _ 18 use use VERB VBP Tense=Pres|VerbForm=Fin 16 relcl _ _ 19 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 20 " " PUNCT `` PunctSide=Ini|PunctType=Quot 23 punct _ SpaceAfter=No 21 storage storage NOUN NN Number=Sing 23 nmod _ SpaceAfter=No 22 " " PUNCT '' PunctSide=Fin|PunctType=Quot 23 punct _ _ 23 modality modality NOUN NN Number=Sing 18 dobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 10 # text = The general theory of storage, which underlies the results mentioned above, is developed in the opening sections of the paper and is then applied to the case of differential categories. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 general general ADJ JJ Degree=Pos 3 amod _ _ 3 theory theory NOUN NN Number=Sing 15 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 storage storage NOUN NN Number=Sing 4 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 3 punct _ _ 7 which which PRON WDT _ 8 nsubj _ _ 8 underlies underlie VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 relcl _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 results result NOUN NNS Number=Plur 8 dobj _ _ 11 mentioned mention VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 acl _ _ 12 above above ADV RB _ 11 advmod _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 3 punct _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 auxpass _ _ 15 developed develop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 16 in in ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 opening opening NOUN NN Number=Sing 19 compound _ _ 19 sections section NOUN NNS Number=Plur 16 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 paper paper NOUN NN Number=Sing 20 pobj _ _ 23 and and CCONJ CC ConjType=Cmp 15 cc _ _ 24 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 26 auxpass _ _ 25 then then ADV RB PronType=Dem 26 advmod _ _ 26 applied apply VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 conj _ _ 27 to to ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 case case NOUN NN Number=Sing 27 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 differential differential ADJ JJ Degree=Pos 32 amod _ _ 32 categories category NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # doc_id = 550 # sent_id = 1 # text = The theory developed by Gambino and Kock, of polynomials over a locally cartesian closed category $ E $ , is generalised for $ E $ just having pullbacks. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 theory theory NOUN NN Number=Sing 20 nsubjpass _ _ 3 developed develop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 acl _ _ 4 by by ADP IN _ 3 agent _ _ 5 Gambino Gambino PROPN NNP Number=Sing 4 pobj _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 Kock Kock PROPN NNP Number=Sing 5 conj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 5 punct _ _ 9 of of ADP IN _ 5 prep _ _ 10 polynomials polynomial NOUN NNS Number=Plur 9 pobj _ _ 11 over over ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 13 locally locally ADV RB _ 14 advmod _ _ 14 cartesian cartesian ADJ JJ Degree=Pos 16 amod _ _ 15 closed closed ADJ JJ Degree=Pos 16 amod _ _ 16 category category NOUN NN Number=Sing 11 pobj _ _ 17 $ E $ $ e $ SYM $ _ 2 appos _ _ 18 , , PUNCT , PunctType=Comm 20 punct _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 auxpass _ _ 20 generalised generalise VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 21 for for ADP IN _ 20 prep _ _ 22 $ E $ $ e $ SYM $ _ 21 pobj _ _ 23 just just ADV RB _ 24 advmod _ _ 24 having have VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 20 advcl _ _ 25 pullbacks pullback NOUN NNS Number=Plur 24 dobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # sent_id = 2 # text = The 2 - categorical analogue of the theory of polynomials and polynomial functors is given, and its relationship with Street's theory of fibrations within 2 - categories is explored. 1 The the DET DT Definite=Def|PronType=Art 5 det _ _ 2 2 2 NUM CD NumType=Card 4 nummod _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 categorical categorical ADJ JJ Degree=Pos 5 amod _ _ 5 analogue analogue NOUN NN Number=Sing 15 nsubjpass _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 theory theory NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 polynomials polynomial NOUN NNS Number=Plur 9 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 polynomial polynomial ADJ JJ Degree=Pos 13 amod _ _ 13 functors functor NOUN NNS Number=Plur 10 conj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 auxpass _ _ 15 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 and and CCONJ CC ConjType=Cmp 15 cc _ _ 18 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 19 poss _ _ 19 relationship relationship NOUN NN Number=Sing 31 nsubjpass _ _ 20 with with ADP IN _ 19 prep _ _ 21 Street Street PROPN NNP Number=Sing 23 poss _ SpaceAfter=No 22 's 's PART POS _ 21 case _ _ 23 theory theory NOUN NN Number=Sing 20 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 fibrations fibration NOUN NNS Number=Plur 24 pobj _ _ 26 within within ADP IN _ 25 prep _ _ 27 2 2 NUM CD NumType=Card 29 nummod _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 categories category NOUN NNS Number=Plur 26 pobj _ _ 30 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 31 auxpass _ _ 31 explored explore VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 conj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 31 punct _ SpaceAfter=No # sent_id = 3 # text = Johnstone's notion of "bagdomain data" is adapted to the present framework to make it easier to completely exhibit examples of polynomial monads. 1 Johnstone Johnstone PROPN NNP Number=Sing 3 poss _ SpaceAfter=No 2 's 's PART POS _ 1 case _ _ 3 notion notion NOUN NN Number=Sing 10 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 " " PUNCT `` PunctSide=Ini|PunctType=Quot 4 punct _ SpaceAfter=No 6 bagdomain bagdomain NOUN NN Number=Sing 7 compound _ _ 7 data datum NOUN NNS Number=Plur 4 pobj _ SpaceAfter=No 8 " " PUNCT '' PunctSide=Fin|PunctType=Quot 3 punct _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 10 adapted adapt VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 11 to to ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 present present ADJ JJ Degree=Pos 14 amod _ _ 14 framework framework NOUN NN Number=Sing 11 pobj _ _ 15 to to PART TO _ 16 aux _ _ 16 make make VERB VB VerbForm=Inf 10 advcl _ _ 17 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 18 nsubj _ _ 18 easier easy ADJ JJR Degree=Cmp 16 ccomp _ _ 19 to to PART TO _ 21 aux _ _ 20 completely completely ADV RB _ 21 advmod _ _ 21 exhibit exhibit VERB VB VerbForm=Inf 18 xcomp _ _ 22 examples example NOUN NNS Number=Plur 21 dobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 polynomial polynomial ADJ JJ Degree=Pos 25 amod _ _ 25 monads monad NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # doc_id = 551 # sent_id = 1 # text = We show that there are infinitely many distinct closed classes of colimits (in the sense of the Galois connection induced by commutation of limits and colimits in $ Set $ ) which are intermediate between the class of pseudo - filtered colimits and that of all (small) colimits. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 5 mark _ _ 4 there there PRON EX _ 5 expl _ _ 5 are be VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 6 infinitely infinitely ADV RB _ 7 advmod _ _ 7 many many ADJ JJ Degree=Pos 10 amod _ _ 8 distinct distinct ADJ JJ Degree=Pos 10 amod _ _ 9 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 10 classes class NOUN NNS Number=Plur 5 attr _ _ 11 of of ADP IN _ 10 prep _ _ 12 colimits colimit NOUN NNS Number=Plur 11 pobj _ _ 13 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 10 punct _ SpaceAfter=No 14 in in ADP IN _ 5 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 sense sense NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 Galois Galois PROPN NNP Number=Sing 20 compound _ _ 20 connection connection NOUN NN Number=Sing 17 pobj _ _ 21 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 acl _ _ 22 by by ADP IN _ 21 agent _ _ 23 commutation commutation NOUN NN Number=Sing 22 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 limits limit NOUN NNS Number=Plur 24 pobj _ _ 26 and and CCONJ CC ConjType=Cmp 25 cc _ _ 27 colimits colimit NOUN NNS Number=Plur 25 conj _ _ 28 in in ADP IN _ 25 prep _ _ 29 $ Set $ $ set $ SYM $ _ 28 pobj _ _ 30 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 20 punct _ _ 31 which which PRON WDT _ 32 nsubj _ _ 32 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 20 relcl _ _ 33 intermediate intermediate ADJ JJ Degree=Pos 32 acomp _ _ 34 between between ADP IN _ 33 prep _ _ 35 the the DET DT Definite=Def|PronType=Art 36 det _ _ 36 class class NOUN NN Number=Sing 34 pobj _ _ 37 of of ADP IN _ 36 prep _ _ 38 pseudo pseudo NOUN NN Number=Sing 40 npadvmod _ _ 39 - - PUNCT HYPH PunctType=Dash 40 punct _ _ 40 filtered filter VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 41 amod _ _ 41 colimits colimit NOUN NNS Number=Plur 37 pobj _ _ 42 and and CCONJ CC ConjType=Cmp 36 cc _ _ 43 that that PRON DT Number=Sing|PronType=Dem 36 conj _ _ 44 of of ADP IN _ 43 prep _ _ 45 all all DET DT _ 49 det _ _ 46 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 49 punct _ SpaceAfter=No 47 small small ADJ JJ Degree=Pos 49 amod _ SpaceAfter=No 48 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 49 punct _ _ 49 colimits colimit NOUN NNS Number=Plur 44 pobj _ SpaceAfter=No 50 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = On the other hand, if the corresponding class of limits contains either pullbacks or equalizers, then the class of colimits is contained in that of pseudo - filtered colimits. 1 On on ADP IN _ 24 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 other other ADJ JJ Degree=Pos 4 amod _ _ 4 hand hand NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 24 punct _ _ 6 if if SCONJ IN _ 12 mark _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 amod _ _ 9 class class NOUN NN Number=Sing 12 nsubj _ _ 10 of of ADP IN _ 9 prep _ _ 11 limits limit NOUN NNS Number=Plur 10 pobj _ _ 12 contains contain VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 advcl _ _ 13 either either CCONJ CC ConjType=Cmp 14 preconj _ _ 14 pullbacks pullback NOUN NNS Number=Plur 12 dobj _ _ 15 or or CCONJ CC ConjType=Cmp 14 cc _ _ 16 equalizers equalizer NOUN NNS Number=Plur 14 conj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 24 punct _ _ 18 then then ADV RB PronType=Dem 24 advmod _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 class class NOUN NN Number=Sing 24 nsubjpass _ _ 21 of of ADP IN _ 20 prep _ _ 22 colimits colimit NOUN NNS Number=Plur 21 pobj _ _ 23 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 auxpass _ _ 24 contained contain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 25 in in ADP IN _ 24 prep _ _ 26 that that PRON DT Number=Sing|PronType=Dem 25 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 pseudo pseudo NOUN NN Number=Sing 30 npadvmod _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 filtered filter VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 31 amod _ _ 31 colimits colimit NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 24 punct _ SpaceAfter=No # doc_id = 552 # sent_id = 1 # text = A factorization system $ (E, M) $ on a category $ A $ gives rise to the covariant category - valued pseudofunctor $ P $ of $ A $ sending each object to its slice category over $ M $ . 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 factorization factorization NOUN NN Number=Sing 3 compound _ _ 3 system system NOUN NN Number=Sing 9 nsubj _ _ 4 $ (E, M) $ $ (e, m) $ SYM $ _ 3 appos _ _ 5 on on ADP IN _ 3 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 category category NOUN NN Number=Sing 5 pobj _ _ 8 $ A $ $ a $ SYM $ _ 3 appos _ _ 9 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 rise rise NOUN NN Number=Sing 9 dobj _ _ 11 to to ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 17 det _ _ 13 covariant covariant ADJ JJ Degree=Pos 17 amod _ _ 14 category category NOUN NN Number=Sing 16 npadvmod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 17 pseudofunctor pseudofunctor NOUN NN Number=Sing 11 pobj _ _ 18 $ P $ $ p $ SYM $ _ 17 appos _ _ 19 of of ADP IN _ 18 prep _ _ 20 $ A $ $ a $ SYM $ _ 19 pobj _ _ 21 sending send VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 advcl _ _ 22 each each DET DT _ 23 det _ _ 23 object object NOUN NN Number=Sing 21 dobj _ _ 24 to to ADP IN _ 21 prep _ _ 25 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 27 poss _ _ 26 slice slice NOUN NN Number=Sing 27 compound _ _ 27 category category NOUN NN Number=Sing 24 pobj _ _ 28 over over ADP IN _ 21 prep _ _ 29 $ M $ $ m $ SYM $ _ 28 pobj _ _ 30 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 2 # text = This article characterizes the $ P $ so obtained as follows: their object images have terminal objects, and they admit bicategorically cartesian liftings, up to equivalence, of slice - category projections. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 article article NOUN NN Number=Sing 3 nsubj _ _ 3 characterizes characterize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 ccomp _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 $ P $ $ p $ SYM $ _ 6 nmod _ _ 6 so so ADV RB _ 7 advmod _ _ 7 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 ccomp _ _ 8 as as SCONJ IN _ 9 mark _ _ 9 follows follow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 advcl _ SpaceAfter=No 10 : : PUNCT : _ 14 punct _ _ 11 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 13 poss _ _ 12 object object NOUN NN Number=Sing 13 compound _ _ 13 images image NOUN NNS Number=Plur 14 nsubj _ _ 14 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 terminal terminal ADJ JJ Degree=Pos 16 amod _ _ 16 objects object NOUN NNS Number=Plur 14 dobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 14 punct _ _ 18 and and CCONJ CC ConjType=Cmp 14 cc _ _ 19 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 20 nsubj _ _ 20 admit admit VERB VBP Tense=Pres|VerbForm=Fin 14 conj _ _ 21 bicategorically bicategorically ADV RB _ 22 advmod _ _ 22 cartesian cartesian ADJ JJ Degree=Pos 23 amod _ _ 23 liftings lifting NOUN NNS Number=Plur 20 dobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 23 punct _ _ 25 up up ADP IN _ 20 advmod _ _ 26 to to ADP IN _ 25 prep _ _ 27 equivalence equivalence NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 25 punct _ _ 29 of of ADP IN _ 25 prep _ _ 30 slice slice NOUN NN Number=Sing 32 compound _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 category category NOUN NN Number=Sing 33 compound _ _ 33 projections projection NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # sent_id = 3 # text = It is clear that, and how, $ (E, M) $ can be recovered from such a $ P $ . 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 clear clear ADJ JJ Degree=Pos 2 acomp _ _ 4 that that SCONJ IN _ 12 mark _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 12 punct _ _ 6 and and CCONJ CC ConjType=Cmp 12 cc _ _ 7 how how SCONJ WRB _ 12 advmod _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 12 punct _ _ 9 $ (E, M) $ $ (e, m) $ SYM $ _ 12 nsubjpass _ _ 10 can can AUX MD VerbForm=Fin 12 aux _ _ 11 be be AUX VB VerbForm=Inf 12 auxpass _ _ 12 recovered recover VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 13 from from ADP IN _ 12 prep _ _ 14 such such DET PDT _ 16 predet _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 $ P $ $ p $ SYM $ _ 13 pobj _ _ 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = The correspondence thus described is actually the second of three similar ones between certain $ (E, M) $ and certain $ P $ that the article presents. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 correspondence correspondence NOUN NN Number=Sing 4 nsubj _ _ 3 thus thus ADV RB _ 4 advmod _ _ 4 described describe VERB VBD Tense=Past|VerbForm=Fin 5 csubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 actually actually ADV RB _ 5 advmod _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 second second ADJ JJ Degree=Pos 5 attr _ _ 9 of of ADP IN _ 8 prep _ _ 10 three three NUM CD NumType=Card 12 nummod _ _ 11 similar similar ADJ JJ Degree=Pos 12 amod _ _ 12 ones one NOUN NNS Number=Plur 9 pobj _ _ 13 between between ADP IN _ 12 prep _ _ 14 certain certain ADJ JJ Degree=Pos 15 amod _ _ 15 $ (E, M) $ $ (e, m) $ SYM $ _ 13 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 certain certain ADJ JJ Degree=Pos 18 amod _ _ 18 $ P $ $ p $ SYM $ _ 15 conj _ _ 19 that that SCONJ IN _ 22 mark _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 article article NOUN NN Number=Sing 22 nsubj _ _ 22 presents present VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 relcl _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 5 # text = In the first one the characterization of the $ P $ has all ultimately bicategorical ingredients replaced with their categorical analogues. 1 In in ADP IN _ 10 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 first first ADJ JJ Degree=Pos 4 amod _ _ 4 one one NUM CD NumType=Card 1 pobj _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 characterization characterization NOUN NN Number=Sing 10 nsubj _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 $ P $ $ p $ SYM $ _ 7 pobj _ _ 10 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 all all DET DT _ 14 det _ _ 12 ultimately ultimately ADV RB _ 13 advmod _ _ 13 bicategorical bicategorical ADJ JJ Degree=Pos 14 amod _ _ 14 ingredients ingredient NOUN NNS Number=Plur 10 dobj _ _ 15 replaced replace VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 acl _ _ 16 with with ADP IN _ 15 prep _ _ 17 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 19 poss _ _ 18 categorical categorical ADJ JJ Degree=Pos 19 amod _ _ 19 analogues analogue NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 6 # text = A category $ A $ with such a $ P $ is precisely what the author has called a `slicing site'. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 category category NOUN NN Number=Sing 8 nsubj _ _ 3 $ A $ $ a $ SYM $ _ 2 appos _ _ 4 with with ADP IN _ 2 prep _ _ 5 such such DET PDT _ 7 predet _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 $ P $ $ p $ SYM $ _ 4 pobj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 precisely precisely ADV RB _ 10 advmod _ _ 10 what what PRON WP _ 14 dobj _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 author author NOUN NN Number=Sing 14 nsubj _ _ 13 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 aux _ _ 14 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 ccomp _ _ 15 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 16 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 18 punct _ SpaceAfter=No 17 slicing slicing NOUN NN Number=Sing 18 compound _ _ 18 site site NOUN NN Number=Sing 14 oprd _ SpaceAfter=No 19 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 8 punct _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 7 # text = In the article's terms the associated $ (E, M) $ are again factorization systems—but the concept conveyed extends the standard one by not obliging isomorphisms to belong to either factor class, namely those that are `right semireplete' (isomorphisms do belong to $ M $ and `left semistrict' (morphisms in $ M $ are monic relative to $ E $ ). 1 In in ADP IN _ 9 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 article article NOUN NN Number=Sing 5 poss _ SpaceAfter=No 4 's 's PART POS _ 3 case _ _ 5 terms term NOUN NNS Number=Plur 1 pobj _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 associated associated ADJ JJ Degree=Pos 8 amod _ _ 8 $ (E, M) $ $ (E, M) $ PROPN NNP Number=Sing 9 nsubj _ _ 9 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 again again ADV RB _ 9 advmod _ _ 11 factorization factorization NOUN NN Number=Sing 12 compound _ _ 12 systems system NOUN NNS Number=Plur 9 attr _ SpaceAfter=No 13 — — PUNCT : _ 9 punct _ SpaceAfter=No 14 but but CCONJ CC ConjType=Cmp 9 cc _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 concept concept NOUN NN Number=Sing 18 nsubj _ _ 17 conveyed convey VERB VBD Tense=Past|VerbForm=Fin 16 acl _ _ 18 extends extend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 44 ccomp _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 standard standard ADJ JJ Degree=Pos 21 amod _ _ 21 one one NUM CD NumType=Card 18 dobj _ _ 22 by by ADP IN _ 18 prep _ _ 23 not not PART RB Polarity=Neg 24 neg _ _ 24 obliging oblige VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 pcomp _ _ 25 isomorphisms isomorphism NOUN NNS Number=Plur 24 dobj _ _ 26 to to PART TO _ 27 aux _ _ 27 belong belong VERB VB VerbForm=Inf 18 xcomp _ _ 28 to to ADP IN _ 27 prep _ _ 29 either either CCONJ CC ConjType=Cmp 31 det _ _ 30 factor factor NOUN NN Number=Sing 31 compound _ _ 31 class class NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 31 punct _ _ 33 namely namely ADV RB _ 34 advmod _ _ 34 those those PRON DT Number=Plur|PronType=Dem 31 appos _ _ 35 that that PRON WDT PronType=Rel 36 nsubj _ _ 36 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 34 relcl _ _ 37 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 39 punct _ SpaceAfter=No 38 right right ADJ JJ Degree=Pos 39 amod _ _ 39 semireplete semireplete NOUN NN Number=Sing 36 attr _ SpaceAfter=No 40 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 39 punct _ _ 41 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 44 punct _ SpaceAfter=No 42 isomorphisms isomorphism NOUN NNS Number=Plur 44 nsubj _ _ 43 do do AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 44 aux _ _ 44 belong belong VERB VB VerbForm=Inf 9 conj _ _ 45 to to ADP IN _ 44 prep _ _ 46 $ M $ $ m $ SYM $ _ 45 pobj _ _ 47 and and CCONJ CC ConjType=Cmp 44 cc _ _ 48 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 49 punct _ SpaceAfter=No 49 left leave VERB VBD Tense=Past|VerbForm=Fin 44 conj _ _ 50 semistrict semistrict NOUN NN Number=Sing 49 dobj _ SpaceAfter=No 51 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 49 punct _ _ 52 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 56 punct _ SpaceAfter=No 53 morphisms morphism NOUN NNS Number=Plur 56 nsubj _ _ 54 in in ADP IN _ 53 prep _ _ 55 $ M $ $ m $ SYM $ _ 54 pobj _ _ 56 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 44 conj _ _ 57 monic monic ADJ JJ Degree=Pos 58 amod _ _ 58 relative relative NOUN NN Number=Sing 56 attr _ _ 59 to to ADP IN _ 58 prep _ _ 60 $ E $ $ e $ SYM $ _ 59 pobj _ _ 61 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 56 punct _ SpaceAfter=No 62 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 8 # text = The third correspondence subsumes the other two; here the $ (E, M) $ are all right - semireplete factorization systems. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 third third ADJ JJ Degree=Pos 3 amod _ _ 3 correspondence correspondence NOUN NN Number=Sing 4 nsubj _ _ 4 subsumes subsume VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 ccomp _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 other other ADJ JJ Degree=Pos 7 amod _ _ 7 two two NUM CD NumType=Card 4 dobj _ SpaceAfter=No 8 ; ; PUNCT : _ 12 punct _ _ 9 here here ADV RB PronType=Dem 12 advmod _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 $ (E, M) $ $ (e, m) $ SYM $ _ 12 nsubj _ _ 12 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 all all ADV RB _ 12 advmod _ _ 14 right right ADV RB _ 16 advmod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 semireplete semireplete NOUN NN Number=Sing 18 amod _ _ 17 factorization factorization NOUN NN Number=Sing 18 compound _ _ 18 systems system NOUN NNS Number=Plur 12 attr _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # doc_id = 553 # sent_id = 1 # text = This paper concerns the relationships between notions of weak $ n $ - category defined as algebras for $ n $ - globular operads, as well as their coherence properties. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 concerns concern VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 relationships relationship NOUN NNS Number=Plur 3 dobj _ _ 6 between between ADP IN _ 5 prep _ _ 7 notions notion NOUN NNS Number=Plur 6 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 weak weak ADJ JJ Degree=Pos 12 amod _ _ 10 $ n $ $ n $ SYM $ _ 12 nummod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 category category NOUN NN Number=Sing 8 pobj _ _ 13 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 acl _ _ 14 as as ADP IN _ 13 prep _ _ 15 algebras algebra NOUN NNS Number=Plur 14 pobj _ _ 16 for for ADP IN _ 15 prep _ _ 17 $ n $ $ n $ SYM $ _ 19 advmod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 globular globular ADJ JJ Degree=Pos 20 amod _ _ 20 operads operad NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 12 punct _ _ 22 as as ADV RB _ 24 advmod _ _ 23 well well ADV RB Degree=Pos 24 advmod _ _ 24 as as ADP IN _ 5 cc _ _ 25 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 27 poss _ _ 26 coherence coherence NOUN NN Number=Sing 27 compound _ _ 27 properties property NOUN NNS Number=Plur 5 conj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = We focus primarily on the definitions due to Batanin and Leinster. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 focus focus VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 primarily primarily ADV RB _ 2 advmod _ _ 4 on on ADP IN _ 2 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 definitions definition NOUN NNS Number=Plur 4 pobj _ _ 7 due due ADJ JJ Degree=Pos 2 prep _ _ 8 to to ADP IN _ 7 pcomp _ _ 9 Batanin Batanin PROPN NNP Number=Sing 7 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 Leinster Leinster PROPN NNP Number=Sing 9 conj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = A correspondence between the contractions and systems of compositions used in Batanin's definition, and the unbiased contractions used in Leinster's definition, has long been suspected, and we prove a conjecture of Leinster that shows that the two notions are in some sense equivalent. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 correspondence correspondence NOUN NN Number=Sing 29 nsubjpass _ _ 3 between between ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 contractions contraction NOUN NNS Number=Plur 3 pobj _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 systems system NOUN NNS Number=Plur 5 conj _ _ 8 of of ADP IN _ 5 prep _ _ 9 compositions composition NOUN NNS Number=Plur 8 pobj _ _ 10 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 acl _ _ 11 in in ADP IN _ 10 prep _ _ 12 Batanin Batanin PROPN NNP Number=Sing 14 poss _ SpaceAfter=No 13 's 's PART POS _ 12 case _ _ 14 definition definition NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 2 punct _ _ 16 and and CCONJ CC ConjType=Cmp 2 cc _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 unbiased unbiased ADJ JJ Degree=Pos 19 amod _ _ 19 contractions contraction NOUN NNS Number=Plur 2 conj _ _ 20 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 acl _ _ 21 in in ADP IN _ 20 prep _ _ 22 Leinster Leinster PROPN NNP Number=Sing 24 poss _ SpaceAfter=No 23 's 's PART POS _ 22 case _ _ 24 definition definition NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 2 punct _ _ 26 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 29 aux _ _ 27 long long ADV RB _ 29 advmod _ _ 28 been be AUX VBN Tense=Past|VerbForm=Part 29 auxpass _ _ 29 suspected suspect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 29 punct _ _ 31 and and CCONJ CC ConjType=Cmp 29 cc _ _ 32 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 33 nsubj _ _ 33 prove prove VERB VBP Tense=Pres|VerbForm=Fin 29 conj _ _ 34 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 35 conjecture conjecture NOUN NN Number=Sing 33 dobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 Leinster Leinster PROPN NNP Number=Sing 36 pobj _ _ 38 that that PRON WDT PronType=Rel 39 nsubj _ _ 39 shows show VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 35 relcl _ _ 40 that that SCONJ IN _ 44 mark _ _ 41 the the DET DT Definite=Def|PronType=Art 43 det _ _ 42 two two NUM CD NumType=Card 43 nummod _ _ 43 notions notion NOUN NNS Number=Plur 44 nsubj _ _ 44 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 39 ccomp _ _ 45 in in ADP IN _ 44 prep _ _ 46 some some DET DT _ 47 det _ _ 47 sense sense NOUN NN Number=Sing 45 pobj _ _ 48 equivalent equivalent ADJ JJ Degree=Pos 44 acomp _ SpaceAfter=No 49 . . PUNCT . PunctType=Peri 33 punct _ SpaceAfter=No # sent_id = 4 # text = We then prove several coherence theorems which apply to algebras for any operad with a contraction and system of compositions or with an unbiased contraction; these coherence theorems thus apply to weak $ n $ - categories in the senses of Batanin, Leinster, Penon and Trimble. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 prove prove VERB VBP Tense=Pres|VerbForm=Fin 31 ccomp _ _ 4 several several ADJ JJ Degree=Pos 6 amod _ _ 5 coherence coherence NOUN NN Number=Sing 6 compound _ _ 6 theorems theorem NOUN NNS Number=Plur 3 dobj _ _ 7 which which PRON WDT _ 8 nsubj _ _ 8 apply apply VERB VBP Tense=Pres|VerbForm=Fin 6 relcl _ _ 9 to to ADP IN _ 8 prep _ _ 10 algebras algebra NOUN NNS Number=Plur 9 pobj _ _ 11 for for ADP IN _ 8 prep _ _ 12 any any DET DT _ 13 det _ _ 13 operad operad NOUN NN Number=Sing 11 pobj _ _ 14 with with ADP IN _ 8 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 contraction contraction NOUN NN Number=Sing 14 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 system system NOUN NN Number=Sing 16 conj _ _ 19 of of ADP IN _ 16 prep _ _ 20 compositions composition NOUN NNS Number=Plur 19 pobj _ _ 21 or or CCONJ CC ConjType=Cmp 14 cc _ _ 22 with with ADP IN _ 14 conj _ _ 23 an an DET DT Definite=Ind|PronType=Art 25 det _ _ 24 unbiased unbiased ADJ JJ Degree=Pos 25 amod _ _ 25 contraction contraction NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 26 ; ; PUNCT : _ 31 punct _ _ 27 these these DET DT Number=Plur|PronType=Dem 29 det _ _ 28 coherence coherence NOUN NN Number=Sing 29 compound _ _ 29 theorems theorem NOUN NNS Number=Plur 31 nsubj _ _ 30 thus thus ADV RB _ 31 advmod _ _ 31 apply apply VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 32 to to ADP IN _ 31 prep _ _ 33 weak weak ADJ JJ Degree=Pos 36 amod _ _ 34 $ n $ $ n $ SYM $ _ 36 nummod _ _ 35 - - PUNCT HYPH PunctType=Dash 36 punct _ _ 36 categories category NOUN NNS Number=Plur 32 pobj _ _ 37 in in ADP IN _ 36 prep _ _ 38 the the DET DT Definite=Def|PronType=Art 39 det _ _ 39 senses sense NOUN NNS Number=Plur 37 pobj _ _ 40 of of ADP IN _ 39 prep _ _ 41 Batanin Batanin PROPN NNP Number=Sing 40 pobj _ SpaceAfter=No 42 , , PUNCT , PunctType=Comm 41 punct _ _ 43 Leinster Leinster PROPN NNP Number=Sing 41 conj _ SpaceAfter=No 44 , , PUNCT , PunctType=Comm 43 punct _ _ 45 Penon Penon PROPN NNP Number=Sing 43 conj _ _ 46 and and CCONJ CC ConjType=Cmp 45 cc _ _ 47 Trimble Trimble PROPN NNP Number=Sing 45 conj _ SpaceAfter=No 48 . . PUNCT . PunctType=Peri 31 punct _ SpaceAfter=No # sent_id = 5 # text = We then take some steps towards a comparison between Batanin weak $ n $ - categories and Leinster weak $ n $ - categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 take take VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 some some DET DT _ 5 det _ _ 5 steps step NOUN NNS Number=Plur 3 dobj _ _ 6 towards towards ADP IN _ 3 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 comparison comparison NOUN NN Number=Sing 6 pobj _ _ 9 between between ADP IN _ 8 prep _ _ 10 Batanin Batanin PROPN NNP Number=Sing 9 pobj _ _ 11 weak weak ADJ JJ Degree=Pos 14 amod _ _ 12 $ n $ $ n $ SYM $ _ 14 nummod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 categories category NOUN NNS Number=Plur 10 appos _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 Leinster leinster NOUN NN Number=Sing 14 conj _ _ 17 weak weak ADJ JJ Degree=Pos 20 amod _ _ 18 $ n $ $ n $ SYM $ _ 20 nummod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 categories category NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = We describe a canonical adjunction between the categories of these, giving a construction of the left adjoint, which is applicable in more generality to a class of functors induced by monad morphisms. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 canonical canonical ADJ JJ Degree=Pos 5 amod _ _ 5 adjunction adjunction NOUN NN Number=Sing 2 dobj _ _ 6 between between ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 categories category NOUN NNS Number=Plur 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 these these PRON DT Number=Plur|PronType=Dem 9 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 2 punct _ _ 12 giving give VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 construction construction NOUN NN Number=Sing 12 dobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 left left ADJ JJ Degree=Pos 18 amod _ _ 18 adjoint adjoint NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 which which PRON WDT _ 21 nsubj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 relcl _ _ 22 applicable applicable ADJ JJ Degree=Pos 21 acomp _ _ 23 in in ADP IN _ 22 prep _ _ 24 more more ADJ JJR Degree=Cmp 25 amod _ _ 25 generality generality NOUN NN Number=Sing 23 pobj _ _ 26 to to ADP IN _ 21 prep _ _ 27 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 28 class class NOUN NN Number=Sing 26 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 functors functor NOUN NNS Number=Plur 29 pobj _ _ 31 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 30 acl _ _ 32 by by ADP IN _ 31 agent _ _ 33 monad monad NOUN NNS Number=Plur 34 compound _ _ 34 morphisms morphism NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 7 # text = We conclude with some preliminary statements about a possible weak equivalence of some sort between these categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 conclude conclude VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 with with ADP IN _ 2 prep _ _ 4 some some DET DT _ 6 det _ _ 5 preliminary preliminary ADJ JJ Degree=Pos 6 amod _ _ 6 statements statement NOUN NNS Number=Plur 3 pobj _ _ 7 about about ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 9 possible possible ADJ JJ Degree=Pos 11 amod _ _ 10 weak weak ADJ JJ Degree=Pos 11 amod _ _ 11 equivalence equivalence NOUN NN Number=Sing 7 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 some some DET DT _ 14 det _ _ 14 sort sort NOUN NN Number=Sing 12 pobj _ _ 15 between between ADP IN _ 14 prep _ _ 16 these these DET DT Number=Plur|PronType=Dem 17 det _ _ 17 categories category NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 554 # sent_id = 1 # text = We give several reformulations of action accessibility in the sense of Bourn and Janelidze. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 several several ADJ JJ Degree=Pos 4 amod _ _ 4 reformulations reformulation NOUN NNS Number=Plur 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 action action NOUN NN Number=Sing 7 compound _ _ 7 accessibility accessibility NOUN NN Number=Sing 5 pobj _ _ 8 in in ADP IN _ 2 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 sense sense NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 Bourn Bourn PROPN NNP Number=Sing 11 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 Janelidze Janelidze PROPN NNP Number=Sing 12 conj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = In particular we prove that a pointed exact protomodular category is action accessible if and only if for each normal monomorphism $ kappa:Xto A $ the normalizer of $ < kappa, kappa>: Xto Atimes A $ exists. 1 In in ADP IN _ 4 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 11 mark _ _ 6 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 7 pointed pointed ADJ JJ Degree=Pos 10 amod _ _ 8 exact exact ADJ JJ Degree=Pos 10 amod _ _ 9 protomodular protomodular ADJ JJ Degree=Pos 10 amod _ _ 10 category category NOUN NN Number=Sing 11 nsubj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 12 action action NOUN NN Number=Sing 11 attr _ _ 13 accessible accessible ADJ JJ Degree=Pos 12 amod _ _ 14 if if SCONJ IN _ 4 prep _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 only only ADV RB _ 17 advmod _ _ 17 if if SCONJ IN _ 14 conj _ _ 18 for for ADP IN _ 17 prep _ _ 19 each each DET DT _ 21 det _ _ 20 normal normal ADJ JJ Degree=Pos 21 amod _ _ 21 monomorphism monomorphism NOUN NN Number=Sing 18 pobj _ _ 22 $ kappa:Xto A $ $ kappa:xto a $ SYM $ _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 normalizer normalizer NOUN NN Number=Sing 21 appos _ _ 25 of of ADP IN _ 24 prep _ _ 26 $ < kappa, kappa>: Xto Atimes A $ $ < kappa, kappa>: xto atimes a $ SYM $ _ 25 pobj _ _ 27 exists exist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 25 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = This clarifies the connection between normalizers and action accessible categories established in a joint paper of Bourn and the author, in which it is proved that for pointed exact protomodular categories the existence of normalizers implies action accessibility. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 clarifies clarify VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 connection connection NOUN NN Number=Sing 2 dobj _ _ 5 between between ADP IN _ 4 prep _ _ 6 normalizers normalizer NOUN NNS Number=Plur 5 pobj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 action action NOUN NN Number=Sing 10 nmod _ _ 9 accessible accessible ADJ JJ Degree=Pos 10 amod _ _ 10 categories category NOUN NNS Number=Plur 6 conj _ _ 11 established establish VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 acl _ _ 12 in in ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 joint joint ADJ JJ Degree=Pos 15 amod _ _ 15 paper paper NOUN NN Number=Sing 12 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 Bourn Bourn PROPN NNP Number=Sing 16 pobj _ _ 18 and and CCONJ CC ConjType=Cmp 15 cc _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 author author NOUN NN Number=Sing 15 conj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 in in ADP IN _ 26 prep _ _ 23 which which PRON WDT _ 22 pobj _ _ 24 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 26 nsubjpass _ _ 25 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 26 auxpass _ _ 26 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 relcl _ _ 27 that that SCONJ IN _ 37 mark _ _ 28 for for ADP IN _ 37 prep _ _ 29 pointed pointed ADJ JJ Degree=Pos 32 amod _ _ 30 exact exact ADJ JJ Degree=Pos 32 amod _ _ 31 protomodular protomodular ADJ JJ Degree=Pos 32 amod _ _ 32 categories category NOUN NNS Number=Plur 28 pobj _ _ 33 the the DET DT Definite=Def|PronType=Art 34 det _ _ 34 existence existence NOUN NN Number=Sing 37 nsubj _ _ 35 of of ADP IN _ 34 prep _ _ 36 normalizers normalizer NOUN NNS Number=Plur 35 pobj _ _ 37 implies imply VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 26 ccomp _ _ 38 action action NOUN NN Number=Sing 39 compound _ _ 39 accessibility accessibility NOUN NN Number=Sing 37 dobj _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = In addition we prove a pointed exact protomodular category with coequalizers is action accessible if centralizers of normal monomorphisms exist, and the normality of unions holds. 1 In in ADP IN _ 4 prep _ _ 2 addition addition NOUN NN Number=Sing 1 pobj _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 prove prove VERB VBP Tense=Pres|VerbForm=Fin 27 ccomp _ _ 5 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 6 pointed pointed ADJ JJ Degree=Pos 9 amod _ _ 7 exact exact ADJ JJ Degree=Pos 9 amod _ _ 8 protomodular protomodular ADJ JJ Degree=Pos 9 amod _ _ 9 category category NOUN NN Number=Sing 4 dobj _ _ 10 with with ADP IN _ 9 prep _ _ 11 coequalizers coequalizer NOUN NNS Number=Plur 10 pobj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 13 action action NOUN NN Number=Sing 12 attr _ _ 14 accessible accessible ADJ JJ Degree=Pos 13 amod _ _ 15 if if SCONJ IN _ 20 mark _ _ 16 centralizers centralizer NOUN NNS Number=Plur 20 nsubj _ _ 17 of of ADP IN _ 16 prep _ _ 18 normal normal ADJ JJ Degree=Pos 19 amod _ _ 19 monomorphisms monomorphism NOUN NNS Number=Plur 17 pobj _ _ 20 exist exist VERB VBP Tense=Pres|VerbForm=Fin 12 advcl _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 12 punct _ _ 22 and and CCONJ CC ConjType=Cmp 12 cc _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 normality normality NOUN NN Number=Sing 27 nsubj _ _ 25 of of ADP IN _ 24 prep _ _ 26 unions union NOUN NNS Number=Plur 25 pobj _ _ 27 holds hold VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 27 punct _ SpaceAfter=No # doc_id = 555 # sent_id = 1 # text = It was argued by Crans that it is too much to ask that the category of Gray - categories admit a well behaved monoidal biclosed structure. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 3 auxpass _ _ 3 argued argue VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 by by ADP IN _ 3 agent _ _ 5 Crans Crans PROPN NNPS Number=Plur 4 pobj _ _ 6 that that SCONJ IN _ 8 mark _ _ 7 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 8 nsubj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 9 too too ADV RB _ 10 advmod _ _ 10 much much ADJ JJ Degree=Pos 8 acomp _ _ 11 to to PART TO _ 12 aux _ _ 12 ask ask VERB VB VerbForm=Inf 8 xcomp _ _ 13 that that SCONJ IN _ 20 mark _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 category category NOUN NN Number=Sing 20 nsubj _ _ 16 of of ADP IN _ 15 prep _ _ 17 Gray Gray PROPN NNP Number=Sing 19 compound _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 categories category NOUN NNS Number=Plur 16 pobj _ _ 20 admit admit VERB VBP Tense=Pres|VerbForm=Fin 12 ccomp _ _ 21 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 22 well well ADV RB Degree=Pos 23 advmod _ _ 23 behaved behave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 amod _ _ 24 monoidal monoidal ADJ JJ Degree=Pos 25 amod _ _ 25 biclosed biclose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 amod _ _ 26 structure structure NOUN NN Number=Sing 20 dobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = We make this precise by establishing undesirable properties that any such monoidal biclosed structure must have. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 make make VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 this this PRON DT Number=Sing|PronType=Dem 4 nsubj _ _ 4 precise precise ADJ JJ Degree=Pos 2 ccomp _ _ 5 by by ADP IN _ 2 prep _ _ 6 establishing establish VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 pcomp _ _ 7 undesirable undesirable ADJ JJ Degree=Pos 8 amod _ _ 8 properties property NOUN NNS Number=Plur 6 dobj _ _ 9 that that SCONJ IN _ 16 dobj _ _ 10 any any DET DT _ 14 det _ _ 11 such such ADJ JJ Degree=Pos 14 amod _ _ 12 monoidal monoidal ADJ JJ Degree=Pos 14 amod _ _ 13 biclosed biclose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 14 structure structure NOUN NN Number=Sing 16 nsubj _ _ 15 must must AUX MD VerbForm=Fin 16 aux _ _ 16 have have VERB VB VerbForm=Inf 8 relcl _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = In particular we show that there does not exist any tensor product making the model category of Gray - categories into a monoidal model category. 1 In in ADP IN _ 4 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 9 mark _ _ 6 there there PRON EX _ 9 expl _ _ 7 does do AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 aux _ _ 8 not not PART RB Polarity=Neg 9 neg _ _ 9 exist exist VERB VB VerbForm=Inf 4 ccomp _ _ 10 any any DET DT _ 12 det _ _ 11 tensor tensor NOUN NN Number=Sing 12 compound _ _ 12 product product NOUN NN Number=Sing 9 dobj _ _ 13 making make VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 acl _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 model model NOUN NN Number=Sing 16 compound _ _ 16 category category NOUN NN Number=Sing 13 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 Gray Gray PROPN NNP Number=Sing 20 compound _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 categories category NOUN NNS Number=Plur 17 pobj _ _ 21 into into ADP IN _ 13 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 23 monoidal monoidal ADJ JJ Degree=Pos 25 amod _ _ 24 model model NOUN NN Number=Sing 25 compound _ _ 25 category category NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 556 # sent_id = 1 # text = Generalized operads, also called generalized multicategories and $ T $ - monoids, are defined as monads within a Kleisli bicategory. 1 Generalized generalized ADJ JJ Degree=Pos 2 amod _ _ 2 operads operad NOUN NNS Number=Plur 5 nsubj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 2 punct _ _ 4 also also ADV RB _ 5 advmod _ _ 5 called call VERB VBD Tense=Past|VerbForm=Fin 14 advcl _ _ 6 generalized generalized ADJ JJ Degree=Pos 7 amod _ _ 7 multicategories multicategorie NOUN NNS Number=Plur 5 dobj _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 $ T $ $ t $ SYM $ _ 11 compound _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 monoids monoid NOUN NNS Number=Plur 7 conj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 5 punct _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 15 as as ADP IN _ 14 prep _ _ 16 monads monad NOUN NNS Number=Plur 15 pobj _ _ 17 within within ADP IN _ 14 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 Kleisli Kleisli PROPN NNP Number=Sing 20 compound _ _ 20 bicategory bicategory NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 2 # text = With or without emphasizing their monoidal nature, generalized operads have been considered by numerous authors in different contexts, with examples including symmetric multicategories, topological spaces, globular operads and Lawvere theories. 1 With with ADP IN _ 13 prep _ _ 2 or or CCONJ CC ConjType=Cmp 1 cc _ _ 3 without without ADP IN _ 1 conj _ _ 4 emphasizing emphasize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 pcomp _ _ 5 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 7 poss _ _ 6 monoidal monoidal ADJ JJ Degree=Pos 7 amod _ _ 7 nature nature NOUN NN Number=Sing 4 dobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 13 punct _ _ 9 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 10 operads operad NOUN NNS Number=Plur 13 nsubjpass _ _ 11 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 aux _ _ 12 been be AUX VBN Tense=Past|VerbForm=Part 13 auxpass _ _ 13 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 14 by by ADP IN _ 13 agent _ _ 15 numerous numerous ADJ JJ Degree=Pos 16 amod _ _ 16 authors author NOUN NNS Number=Plur 14 pobj _ _ 17 in in ADP IN _ 13 prep _ _ 18 different different ADJ JJ Degree=Pos 19 amod _ _ 19 contexts context NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 13 punct _ _ 21 with with ADP IN _ 13 prep _ _ 22 examples example NOUN NNS Number=Plur 21 pobj _ _ 23 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 prep _ _ 24 symmetric symmetric ADJ JJ Degree=Pos 25 amod _ _ 25 multicategories multicategorie NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 25 punct _ _ 27 topological topological ADJ JJ Degree=Pos 28 amod _ _ 28 spaces space NOUN NNS Number=Plur 25 conj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 28 punct _ _ 30 globular globular ADJ JJ Degree=Pos 31 amod _ _ 31 operads operad NOUN NNS Number=Plur 28 conj _ _ 32 and and CCONJ CC ConjType=Cmp 31 cc _ _ 33 Lawvere Lawvere PROPN NNP Number=Sing 34 compound _ _ 34 theories theory NOUN NNS Number=Plur 31 conj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 3 # text = In this paper we study functoriality of the Kleisli construction, and correspondingly that of generalized operads. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 functoriality functoriality NOUN NN Number=Sing 5 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 Kleisli Kleisli PROPN NNP Number=Sing 10 compound _ _ 10 construction construction NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 5 punct _ _ 12 and and CCONJ CC ConjType=Cmp 5 cc _ _ 13 correspondingly correspondingly ADV RB _ 14 advmod _ _ 14 that that PRON DT Number=Sing|PronType=Dem 5 conj _ _ 15 of of ADP IN _ 14 prep _ _ 16 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 17 operads operad NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = Motivated by this problem we develop a lax version of the formal theory of monads, and study its connection to bicategorical structures. 1 Motivated motivate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 advcl _ _ 2 by by ADP IN _ 1 agent _ _ 3 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 4 problem problem NOUN NN Number=Sing 2 pobj _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 develop develop VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 lax lax ADJ JJ Degree=Pos 9 amod _ _ 9 version version NOUN NN Number=Sing 6 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 formal formal ADJ JJ Degree=Pos 13 amod _ _ 13 theory theory NOUN NN Number=Sing 10 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 monads monad NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 6 punct _ _ 17 and and CCONJ CC ConjType=Cmp 6 cc _ _ 18 study study VERB VB VerbForm=Inf 6 conj _ _ 19 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 20 poss _ _ 20 connection connection NOUN NN Number=Sing 18 dobj _ _ 21 to to ADP IN _ 18 prep _ _ 22 bicategorical bicategorical ADJ JJ Degree=Pos 23 amod _ _ 23 structures structure NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 557 # sent_id = 1 # text = We study and, in a number of cases, classify completely the limit closures in the category of commutative rings of subcategories of integral domains. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 2 punct _ _ 5 in in ADP IN _ 11 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 number number NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 cases case NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 11 punct _ _ 11 classify classify VERB VBP Tense=Pres|VerbForm=Fin 2 conj _ _ 12 completely completely ADV RB _ 11 advmod _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 limit limit NOUN NN Number=Sing 15 compound _ _ 15 closures closure NOUN NNS Number=Plur 11 dobj _ _ 16 in in ADP IN _ 11 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 category category NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 commutative commutative ADJ JJ Degree=Pos 21 amod _ _ 21 rings ring NOUN NNS Number=Plur 19 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 subcategories subcategorie NOUN NNS Number=Plur 22 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 integral integral ADJ JJ Degree=Pos 26 amod _ _ 26 domains domain NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # doc_id = 558 # sent_id = 1 # text = The study of sup lattices teaches us the important distinction between the algebraic part of the structure (in this case suprema) and the coincidental part of the structure (in this case infima). 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 study study NOUN NN Number=Sing 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 sup sup NOUN NN Number=Sing 5 compound _ _ 5 lattices lattice NOUN NNS Number=Plur 3 pobj _ _ 6 teaches teach VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 6 dative _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 important important ADJ JJ Degree=Pos 10 amod _ _ 10 distinction distinction NOUN NN Number=Sing 6 dobj _ _ 11 between between ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 algebraic algebraic ADJ JJ Degree=Pos 14 amod _ _ 14 part part NOUN NN Number=Sing 11 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 structure structure NOUN NN Number=Sing 15 pobj _ _ 18 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 10 punct _ SpaceAfter=No 19 in in ADP IN _ 22 prep _ _ 20 this this DET DT Number=Sing|PronType=Dem 21 det _ _ 21 case case NOUN NN Number=Sing 19 pobj _ _ 22 suprema suprema ADV RB _ 10 appos _ SpaceAfter=No 23 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 10 punct _ _ 24 and and CCONJ CC ConjType=Cmp 10 cc _ _ 25 the the DET DT Definite=Def|PronType=Art 27 det _ _ 26 coincidental coincidental ADJ JJ Degree=Pos 27 amod _ _ 27 part part NOUN NN Number=Sing 10 conj _ _ 28 of of ADP IN _ 27 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 structure structure NOUN NN Number=Sing 28 pobj _ _ 31 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 27 punct _ SpaceAfter=No 32 in in ADP IN _ 35 prep _ _ 33 this this DET DT Number=Sing|PronType=Dem 34 det _ _ 34 case case NOUN NN Number=Sing 32 pobj _ _ 35 infima infima PROPN NNP Number=Sing 27 appos _ SpaceAfter=No 36 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 27 punct _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = While a sup lattice happens to have all infima, only the suprema are part of the algebraic structure. 1 While while SCONJ IN _ 5 mark _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 sup sup NOUN NN Number=Sing 4 compound _ _ 4 lattice lattice NOUN NN Number=Sing 5 nsubj _ _ 5 happens happen VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 advcl _ _ 6 to to PART TO _ 7 aux _ _ 7 have have VERB VB VerbForm=Inf 5 xcomp _ _ 8 all all DET DT _ 9 det _ _ 9 infima infima PROPN NNP Number=Sing 7 dobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 14 punct _ _ 11 only only ADV RB _ 13 advmod _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 suprema suprema PROPN NNP Number=Sing 14 nsubj _ _ 14 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 part part NOUN NN Number=Sing 14 attr _ _ 16 of of ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 algebraic algebraic ADJ JJ Degree=Pos 19 amod _ _ 19 structure structure NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 3 # text = Extending this idea, we look at posets that happen to have all suprema (and therefore all infima), but we will only declare some of them to be part of the algebraic structure (which we will call joins). 1 Extending extend VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 advcl _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 idea idea NOUN NN Number=Sing 1 dobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 look look VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 at at ADP IN _ 6 prep _ _ 8 posets poset NOUN NNS Number=Plur 7 pobj _ _ 9 that that PRON WDT PronType=Rel 10 nsubj _ _ 10 happen happen VERB VBP Tense=Pres|VerbForm=Fin 8 relcl _ _ 11 to to PART TO _ 12 aux _ _ 12 have have VERB VB VerbForm=Inf 10 xcomp _ _ 13 all all DET DT _ 14 det _ _ 14 suprema suprema PROPN NNP Number=Sing 12 dobj _ _ 15 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 14 punct _ SpaceAfter=No 16 and and CCONJ CC ConjType=Cmp 14 cc _ _ 17 therefore therefore ADV RB _ 19 advmod _ _ 18 all all DET DT _ 19 det _ _ 19 infima infima PROPN NNP Number=Sing 14 conj _ SpaceAfter=No 20 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 14 punct _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 6 punct _ _ 22 but but CCONJ CC ConjType=Cmp 6 cc _ _ 23 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 26 nsubj _ _ 24 will will AUX MD VerbForm=Fin 26 aux _ _ 25 only only ADV RB _ 26 advmod _ _ 26 declare declare VERB VB VerbForm=Inf 6 conj _ _ 27 some some PRON DT _ 31 nsubj _ _ 28 of of ADP IN _ 27 prep _ _ 29 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 28 pobj _ _ 30 to to PART TO _ 31 aux _ _ 31 be be AUX VB VerbForm=Inf 26 ccomp _ _ 32 part part NOUN NN Number=Sing 31 attr _ _ 33 of of ADP IN _ 32 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 36 det _ _ 35 algebraic algebraic ADJ JJ Degree=Pos 36 amod _ _ 36 structure structure NOUN NN Number=Sing 33 pobj _ _ 37 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 36 punct _ SpaceAfter=No 38 which which PRON WDT _ 41 dobj _ _ 39 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 41 nsubj _ _ 40 will will AUX MD VerbForm=Fin 41 aux _ _ 41 call call VERB VB VerbForm=Inf 36 relcl _ _ 42 joins join NOUN NNS Number=Plur 41 oprd _ SpaceAfter=No 43 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 26 punct _ SpaceAfter=No 44 . . PUNCT . PunctType=Peri 26 punct _ SpaceAfter=No # sent_id = 4 # text = We find that a lot of the theory of complete distributivity for sup lattices can be extended to this context. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 find find VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 17 mark _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 lot lot NOUN NN Number=Sing 17 nsubjpass _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 theory theory NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 complete complete ADJ JJ Degree=Pos 11 amod _ _ 11 distributivity distributivity NOUN NN Number=Sing 9 pobj _ _ 12 for for ADP IN _ 11 prep _ _ 13 sup sup NOUN NN Number=Sing 14 compound _ _ 14 lattices lattice NOUN NNS Number=Plur 12 pobj _ _ 15 can can AUX MD VerbForm=Fin 17 aux _ _ 16 be be AUX VB VerbForm=Inf 17 auxpass _ _ 17 extended extend VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 18 to to ADP IN _ 17 prep _ _ 19 this this DET DT Number=Sing|PronType=Dem 20 det _ _ 20 context context NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = There are a lot of natural examples of completely join - distributive partial lattice complete partial orders, including for example, the lattice of all equivalence relations on a set $ X $ , and the lattice of all subgroups of a group $ G $ . 1 There there PRON EX _ 2 expl _ _ 2 are be VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 lot lot NOUN NN Number=Sing 2 attr _ _ 5 of of ADP IN _ 4 prep _ _ 6 natural natural ADJ JJ Degree=Pos 7 amod _ _ 7 examples example NOUN NNS Number=Plur 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 completely completely ADV RB _ 12 advmod _ _ 10 join join VERB VB VerbForm=Inf 12 amod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 distributive distributive ADJ JJ Degree=Pos 14 amod _ _ 13 partial partial ADJ JJ Degree=Pos 14 amod _ _ 14 lattice lattice NOUN NN Number=Sing 8 pobj _ _ 15 complete complete ADJ JJ Degree=Pos 17 amod _ _ 16 partial partial ADJ JJ Degree=Pos 17 amod _ _ 17 orders order NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 prep _ _ 20 for for ADP IN _ 19 prep _ _ 21 example example NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 4 punct _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 lattice lattice NOUN NN Number=Sing 4 appos _ _ 25 of of ADP IN _ 24 prep _ _ 26 all all DET DT _ 28 det _ _ 27 equivalence equivalence NOUN NN Number=Sing 28 compound _ _ 28 relations relation NOUN NNS Number=Plur 25 pobj _ _ 29 on on ADP IN _ 28 prep _ _ 30 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 31 set set NOUN NN Number=Sing 32 amod _ _ 32 $ X $ $ x $ SYM $ _ 29 pobj _ _ 33 , , PUNCT , PunctType=Comm 24 punct _ _ 34 and and CCONJ CC ConjType=Cmp 24 cc _ _ 35 the the DET DT Definite=Def|PronType=Art 36 det _ _ 36 lattice lattice NOUN NN Number=Sing 24 conj _ _ 37 of of ADP IN _ 36 prep _ _ 38 all all DET DT _ 39 det _ _ 39 subgroups subgroup NOUN NNS Number=Plur 37 pobj _ _ 40 of of ADP IN _ 39 prep _ _ 41 a a DET DT Definite=Ind|PronType=Art 42 det _ _ 42 group group NOUN NN Number=Sing 40 pobj _ _ 43 $ G $ $ g $ SYM $ _ 2 attr _ _ 44 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = In both cases we define the join operation as union. 1 In in ADP IN _ 5 prep _ _ 2 both both DET DT _ 3 det _ _ 3 cases case NOUN NNS Number=Plur 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 join join NOUN NN Number=Sing 8 compound _ _ 8 operation operation NOUN NN Number=Sing 5 dobj _ _ 9 as as ADP IN _ 5 prep _ _ 10 union union NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 7 # text = This is a partial operation, because for example, the union of subgroups of a group is not necessarily a subgroup. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 partial partial ADJ JJ Degree=Pos 5 amod _ _ 5 operation operation NOUN NN Number=Sing 2 attr _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 2 punct _ _ 7 because because SCONJ IN _ 18 mark _ _ 8 for for ADP IN _ 18 prep _ _ 9 example example NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 18 punct _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 union union NOUN NN Number=Sing 18 nsubj _ _ 13 of of ADP IN _ 12 prep _ _ 14 subgroups subgroup NOUN NNS Number=Plur 13 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 group group NOUN NN Number=Sing 15 pobj _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 advcl _ _ 19 not not PART RB Polarity=Neg 18 neg _ _ 20 necessarily necessarily ADV RB _ 18 advmod _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 subgroup subgroup NOUN NN Number=Sing 18 attr _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 8 # text = However, sometimes it is, and keeping track of this can help with topics such as the inclusion - exclusion principle. 1 However however ADV RB _ 5 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 5 punct _ _ 3 sometimes sometimes ADV RB _ 5 advmod _ _ 4 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 and and CCONJ CC ConjType=Cmp 5 cc _ _ 8 keeping keep VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 csubj _ _ 9 track track NOUN NN Number=Sing 8 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 this this PRON DT Number=Sing|PronType=Dem 10 pobj _ _ 12 can can AUX MD VerbForm=Fin 13 aux _ _ 13 help help VERB VB VerbForm=Inf 5 conj _ _ 14 with with ADP IN _ 13 prep _ _ 15 topics topic NOUN NNS Number=Plur 14 pobj _ _ 16 such such ADJ JJ Degree=Pos 17 amod _ _ 17 as as ADP IN _ 15 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 22 det _ _ 19 inclusion inclusion NOUN NN Number=Sing 21 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 exclusion exclusion NOUN NN Number=Sing 22 compound _ _ 22 principle principle NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 9 # text = Another motivation for the study of sup lattices is as a simplified model for the study of presheaf categories. 1 Another another DET DT _ 2 det _ _ 2 motivation motivation NOUN NN Number=Sing 9 nsubj _ _ 3 for for ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 study study NOUN NN Number=Sing 3 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 sup sup NOUN NN Number=Sing 8 compound _ _ 8 lattices lattice NOUN NNS Number=Plur 6 pobj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 as as ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 simplified simplified ADJ JJ Degree=Pos 13 amod _ _ 13 model model NOUN NN Number=Sing 10 pobj _ _ 14 for for ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 study study NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 presheaf presheaf ADJ JJ Degree=Pos 19 amod _ _ 19 categories category NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 10 # text = The construction of downsets is a form of the Yoneda embedding, and the study of downset lattices can be a useful guide for the study of presheaf categories. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 construction construction NOUN NN Number=Sing 5 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 downsets downset NOUN NNS Number=Plur 3 pobj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 form form NOUN NN Number=Sing 5 attr _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 Yoneda Yoneda PROPN NNP Number=Sing 11 compound _ _ 11 embedding embed VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 5 punct _ _ 13 and and CCONJ CC ConjType=Cmp 5 cc _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 study study NOUN NN Number=Sing 20 nsubj _ _ 16 of of ADP IN _ 15 prep _ _ 17 downset downset NOUN NN Number=Sing 18 compound _ _ 18 lattices lattice NOUN NNS Number=Plur 16 pobj _ _ 19 can can AUX MD VerbForm=Fin 20 aux _ _ 20 be be AUX VB VerbForm=Inf 5 conj _ _ 21 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 22 useful useful ADJ JJ Degree=Pos 23 amod _ _ 23 guide guide NOUN NN Number=Sing 20 attr _ _ 24 for for ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 study study NOUN NN Number=Sing 24 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 presheaf presheaf ADJ JJ Degree=Pos 29 amod _ _ 29 categories category NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # sent_id = 11 # text = In this context, partial lattices can be viewed as a simplified model for the study of sheaf categories. 1 In in ADP IN _ 9 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 context context NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 9 punct _ _ 5 partial partial ADJ JJ Degree=Pos 6 amod _ _ 6 lattices lattice NOUN NNS Number=Plur 9 nsubjpass _ _ 7 can can AUX MD VerbForm=Fin 9 aux _ _ 8 be be AUX VB VerbForm=Inf 9 auxpass _ _ 9 viewed view VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 as as ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 simplified simplified ADJ JJ Degree=Pos 13 amod _ _ 13 model model NOUN NN Number=Sing 10 pobj _ _ 14 for for ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 study study NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 sheaf sheaf NOUN NN Number=Sing 19 compound _ _ 19 categories category NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 559 # sent_id = 1 # text = The homotopy theory of higher categorical structures has become a relevant part of the machinery of algebraic topology and algebraic $ K $ - theory, and this paper contains contributions to the study of the relationship between Benabou's bicategories and the homotopy types of their classifying spaces. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 homotopy homotopy NOUN NN Number=Sing 3 compound _ _ 3 theory theory NOUN NN Number=Sing 9 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 higher high ADJ JJR Degree=Cmp 7 amod _ _ 6 categorical categorical ADJ JJ Degree=Pos 7 amod _ _ 7 structures structure NOUN NNS Number=Plur 4 pobj _ _ 8 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 aux _ _ 9 become become VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 relevant relevant ADJ JJ Degree=Pos 12 amod _ _ 12 part part NOUN NN Number=Sing 9 attr _ _ 13 of of ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 machinery machinery NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 algebraic algebraic ADJ JJ Degree=Pos 18 amod _ _ 18 topology topology NOUN NN Number=Sing 16 pobj _ _ 19 and and CCONJ CC ConjType=Cmp 15 cc _ _ 20 algebraic algebraic ADJ JJ Degree=Pos 23 amod _ _ 21 $ K $ $ k $ SYM $ _ 23 nmod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 theory theory NOUN NN Number=Sing 15 conj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 9 punct _ _ 25 and and CCONJ CC ConjType=Cmp 9 cc _ _ 26 this this DET DT Number=Sing|PronType=Dem 27 det _ _ 27 paper paper NOUN NN Number=Sing 28 nsubj _ _ 28 contains contain VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 conj _ _ 29 contributions contribution NOUN NNS Number=Plur 28 dobj _ _ 30 to to ADP IN _ 29 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 study study NOUN NN Number=Sing 30 pobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 35 det _ _ 35 relationship relationship NOUN NN Number=Sing 33 pobj _ _ 36 between between ADP IN _ 35 prep _ _ 37 Benabou Benabou PROPN NNP Number=Sing 39 poss _ SpaceAfter=No 38 's 's PART POS _ 37 case _ _ 39 bicategories bicategorie NOUN NNS Number=Plur 36 pobj _ _ 40 and and CCONJ CC ConjType=Cmp 39 cc _ _ 41 the the DET DT Definite=Def|PronType=Art 43 det _ _ 42 homotopy homotopy NOUN NN Number=Sing 43 compound _ _ 43 types type NOUN NNS Number=Plur 39 conj _ _ 44 of of ADP IN _ 43 prep _ _ 45 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 47 poss _ _ 46 classifying classify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 47 amod _ _ 47 spaces space NOUN NNS Number=Plur 44 pobj _ SpaceAfter=No 48 . . PUNCT . PunctType=Peri 28 punct _ SpaceAfter=No # sent_id = 2 # text = Mainly, we state and prove an extension of Quillen's Theorem B by showing, under reasonable necessary conditions, a bicategory - theoretical interpretation of the homotopy - fibre product of the continuous maps induced on classifying spaces by a diagram of bicategories $ Ato B leftarrow A' $ . 1 Mainly mainly ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 state state VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 prove prove VERB VB VerbForm=Inf 4 conj _ _ 7 an an DET DT Definite=Ind|PronType=Art 8 det _ _ 8 extension extension NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 Quillen Quillen PROPN NNP Number=Sing 13 poss _ SpaceAfter=No 11 's 's PART POS _ 10 case _ _ 12 Theorem Theorem PROPN NNP Number=Sing 13 compound _ _ 13 B B PROPN NNP Number=Sing 9 pobj _ _ 14 by by ADP IN _ 6 prep _ _ 15 showing show VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 pcomp _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 6 punct _ _ 17 under under ADP IN _ 6 prep _ _ 18 reasonable reasonable ADJ JJ Degree=Pos 20 amod _ _ 19 necessary necessary ADJ JJ Degree=Pos 20 amod _ _ 20 conditions condition NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 4 punct _ _ 22 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 23 bicategory bicategory ADJ JJ Degree=Pos 25 amod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 theoretical theoretical ADJ JJ Degree=Pos 26 amod _ _ 26 interpretation interpretation NOUN NN Number=Sing 4 dobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 32 det _ _ 29 homotopy homotopy NOUN NN Number=Sing 31 compound _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 fibre fibre NOUN NN Number=Sing 32 compound _ _ 32 product product NOUN NN Number=Sing 27 pobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 36 det _ _ 35 continuous continuous ADJ JJ Degree=Pos 36 amod _ _ 36 maps map NOUN NNS Number=Plur 33 pobj _ _ 37 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 36 acl _ _ 38 on on ADP IN _ 37 prep _ _ 39 classifying classify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 38 pcomp _ _ 40 spaces space NOUN NNS Number=Plur 39 dobj _ _ 41 by by ADP IN _ 39 prep _ _ 42 a a DET DT Definite=Ind|PronType=Art 43 det _ _ 43 diagram diagram NOUN NN Number=Sing 41 pobj _ _ 44 of of ADP IN _ 43 prep _ _ 45 bicategories bicategorie NOUN NNS Number=Plur 44 pobj _ _ 46 $ Ato B leftarrow A' $ $ ato b leftarrow a' $ SYM $ _ 38 pobj _ _ 47 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = Applications are given for the study of homotopy pullbacks of monoidal categories and of crossed modules. 1 Applications application NOUN NNS Number=Plur 3 nsubjpass _ _ 2 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 for for ADP IN _ 3 dative _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 study study NOUN NN Number=Sing 4 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 homotopy homotopy NOUN NN Number=Sing 9 compound _ _ 9 pullbacks pullback NOUN NNS Number=Plur 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 monoidal monoidal ADJ JJ Degree=Pos 12 amod _ _ 12 categories category NOUN NNS Number=Plur 10 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 10 cc _ _ 14 of of ADP IN _ 10 conj _ _ 15 crossed crossed ADJ JJ Degree=Pos 16 amod _ _ 16 modules module NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 560 # sent_id = 1 # text = We extend to semi - abelian categories the notion of characteristic subobject, which is widely used in group theory and in the theory of Lie algebras. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 extend extend VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 to to ADP IN _ 2 prep _ _ 4 semi semi ADJ JJ Degree=Pos 7 amod _ _ 5 - - ADJ JJ Degree=Pos 7 amod _ _ 6 abelian abelian ADJ JJ Degree=Pos 7 amod _ _ 7 categories category NOUN NNS Number=Plur 3 pobj _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 notion notion NOUN NN Number=Sing 2 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 characteristic characteristic ADJ JJ Degree=Pos 12 amod _ _ 12 subobject subobject NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 which which PRON WDT _ 17 nsubjpass _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 auxpass _ _ 16 widely widely ADV RB _ 17 advmod _ _ 17 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 relcl _ _ 18 in in ADP IN _ 17 prep _ _ 19 group group NOUN NN Number=Sing 20 compound _ _ 20 theory theory NOUN NN Number=Sing 18 pobj _ _ 21 and and CCONJ CC ConjType=Cmp 17 cc _ _ 22 in in ADP IN _ 9 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 theory theory NOUN NN Number=Sing 22 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 Lie Lie PROPN NNP Number=Sing 27 compound _ _ 27 algebras algebra NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Moreover, we show that many of the classical properties of characteristic subgroups of a group hold in the general semi - abelian context, or in stronger ones. 1 Moreover moreover ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 6 mark _ _ 6 many many ADJ JJ Degree=Pos 4 ccomp _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 classical classical ADJ JJ Degree=Pos 10 amod _ _ 10 properties property NOUN NNS Number=Plur 7 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 characteristic characteristic ADJ JJ Degree=Pos 13 amod _ _ 13 subgroups subgroup NOUN NNS Number=Plur 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 group group NOUN NN Number=Sing 17 compound _ _ 17 hold hold NOUN NN Number=Sing 14 pobj _ _ 18 in in ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 24 det _ _ 20 general general ADJ JJ Degree=Pos 24 amod _ _ 21 semi semi ADJ JJ Degree=Pos 24 amod _ _ 22 - - ADJ JJ Degree=Pos 24 amod _ _ 23 abelian abelian ADJ JJ Degree=Pos 24 amod _ _ 24 context context NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 6 punct _ _ 26 or or CCONJ CC ConjType=Cmp 6 cc _ _ 27 in in ADP IN _ 6 prep _ _ 28 stronger strong ADJ JJR Degree=Cmp 29 amod _ _ 29 ones one NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 561 # sent_id = 1 # text = We study Kan extensions in three weakenings of the Eilenberg - Moore double category associated to a double monad, that was introduced by Grandis and Paré. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 Kan Kan PROPN NNP Number=Sing 4 compound _ _ 4 extensions extension NOUN NNS Number=Plur 2 dobj _ _ 5 in in ADP IN _ 2 prep _ _ 6 three three NUM CD NumType=Card 7 nummod _ _ 7 weakenings weakening NOUN NNS Number=Plur 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 14 det _ _ 10 Eilenberg Eilenberg PROPN NNP Number=Sing 12 compound _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 Moore Moore PROPN NNP Number=Sing 14 nmod _ _ 13 double double ADJ JJ Degree=Pos 14 amod _ _ 14 category category NOUN NN Number=Sing 8 pobj _ _ 15 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 acl _ _ 16 to to ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 18 double double ADJ JJ Degree=Pos 19 amod _ _ 19 monad monad NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 7 punct _ _ 21 that that PRON WDT PronType=Rel 23 nsubjpass _ _ 22 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 23 auxpass _ _ 23 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 relcl _ _ 24 by by ADP IN _ 23 agent _ _ 25 Grandis Grandis PROPN NNP Number=Sing 24 pobj _ _ 26 and and CCONJ CC ConjType=Cmp 25 cc _ _ 27 Paré Paré PROPN NNP Number=Sing 25 conj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = To be precise, given a normal oplax double monad $ T $ on a double category $ K $ , we consider the double categories consisting of pseudo $ T $ - algebras, `weak' vertical $ T $ - morphisms, horizontal $ T $ - morphisms and $ T $ - cells, where `weak' means either `lax', `colax' or `pseudo'. 1 To to PART TO _ 2 aux _ _ 2 be be AUX VB VerbForm=Inf 19 advcl _ _ 3 precise precise ADJ JJ Degree=Pos 2 acomp _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 2 punct _ _ 5 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 normal normal ADJ JJ Degree=Pos 8 amod _ _ 8 oplax oplax NOUN NN Number=Sing 10 nmod _ _ 9 double double PROPN NNP Number=Sing 10 amod _ _ 10 monad monad NOUN NNS Number=Plur 5 pobj _ _ 11 $ T $ $ t $ SYM $ _ 5 pcomp _ _ 12 on on ADP IN _ 5 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 double double ADJ JJ Degree=Pos 15 amod _ _ 15 category category NOUN NN Number=Sing 12 pobj _ _ 16 $ K $ $ k $ SYM $ _ 5 pcomp _ _ 17 , , PUNCT , PunctType=Comm 19 punct _ _ 18 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 19 nsubj _ _ 19 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 double double ADJ JJ Degree=Pos 22 amod _ _ 22 categories category NOUN NNS Number=Plur 23 nsubj _ _ 23 consisting consist VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 19 ccomp _ _ 24 of of ADP IN _ 23 prep _ _ 25 pseudo pseudo NOUN NN Number=Sing 24 pobj _ _ 26 $ T $ $ t $ SYM $ _ 28 compound _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 algebras algebra NOUN NNS Number=Plur 23 dobj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 28 punct _ _ 30 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 28 punct _ SpaceAfter=No 31 weak weak ADJ JJ Degree=Pos 36 amod _ SpaceAfter=No 32 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 36 punct _ _ 33 vertical vertical ADJ JJ Degree=Pos 36 amod _ _ 34 $ T $ $ t $ SYM $ _ 36 nmod _ _ 35 - - PUNCT HYPH PunctType=Dash 36 punct _ _ 36 morphisms morphism NOUN NNS Number=Plur 28 appos _ SpaceAfter=No 37 , , PUNCT , PunctType=Comm 36 punct _ _ 38 horizontal horizontal ADJ JJ Degree=Pos 41 amod _ _ 39 $ T $ $ t $ SYM $ _ 41 nmod _ _ 40 - - PUNCT HYPH PunctType=Dash 41 punct _ _ 41 morphisms morphism NOUN NNS Number=Plur 36 conj _ _ 42 and and CCONJ CC ConjType=Cmp 41 cc _ _ 43 $ T $ $ t $ SYM $ _ 45 compound _ _ 44 - - PUNCT HYPH PunctType=Dash 45 punct _ _ 45 cells cell NOUN NNS Number=Plur 41 conj _ SpaceAfter=No 46 , , PUNCT , PunctType=Comm 45 punct _ _ 47 where where SCONJ WRB _ 51 advmod _ _ 48 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 51 punct _ SpaceAfter=No 49 weak weak ADJ JJ Degree=Pos 51 nsubj _ SpaceAfter=No 50 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 51 punct _ _ 51 means mean VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 28 relcl _ _ 52 either either CCONJ CC ConjType=Cmp 54 preconj _ _ 53 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 54 punct _ SpaceAfter=No 54 lax lax PROPN NNP Number=Sing 51 dobj _ SpaceAfter=No 55 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 51 punct _ SpaceAfter=No 56 , , PUNCT , PunctType=Comm 51 punct _ _ 57 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 58 punct _ SpaceAfter=No 58 colax colax PROPN NNP Number=Sing 51 dep _ SpaceAfter=No 59 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 58 punct _ _ 60 or or CCONJ CC ConjType=Cmp 58 cc _ _ 61 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 62 punct _ SpaceAfter=No 62 pseudo pseudo NOUN NN Number=Sing 58 conj _ SpaceAfter=No 63 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 19 punct _ SpaceAfter=No 64 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 3 # text = Denoting these double categories by $ Alg_w(T) $ , where $ w = l $ , $ c $ or $ ps $ accordingly, our main result gives, in each of these cases, conditions ensuring that (pointwise) Kan extensions can be lifted along the forgetful double functor $ Alg_w(T) - - > K $ . 1 Denoting denote VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 0 ROOT _ _ 2 these these DET DT Number=Plur|PronType=Dem 4 det _ _ 3 double double ADJ JJ Degree=Pos 4 amod _ _ 4 categories category NOUN NNS Number=Plur 1 dobj _ _ 5 by by ADP IN _ 1 prep _ _ 6 $ Alg_w(T) $ $ alg_w(t) $ SYM $ _ 5 pobj _ _ 7 , , PUNCT , PunctType=Comm 6 punct _ _ 8 where where SCONJ WRB _ 9 advmod _ _ 9 $ w = l $ $ w = l $ SYM $ _ 6 relcl _ _ 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 $ c $ $ c $ SYM $ _ 9 appos _ _ 12 or or CCONJ CC ConjType=Cmp 11 cc _ _ 13 $ ps $ $ ps $ SYM $ _ 11 conj _ _ 14 accordingly accordingly ADV RB _ 9 advmod _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 6 punct _ _ 16 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 18 poss _ _ 17 main main ADJ JJ Degree=Pos 18 amod _ _ 18 result result NOUN NN Number=Sing 19 nsubj _ _ 19 gives gives AUX VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 1 aux _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 19 punct _ _ 21 in in ADP IN _ 19 prep _ _ 22 each each PRON DT _ 21 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 these these DET DT Number=Plur|PronType=Dem 25 det _ _ 25 cases case NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 19 punct _ _ 27 conditions condition NOUN NNS Number=Plur 1 dobj _ _ 28 ensuring ensure VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 27 acl _ _ 29 that that SCONJ IN _ 37 mark _ _ 30 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 31 punct _ SpaceAfter=No 31 pointwise pointwise NOUN NN Number=Sing 34 nmod _ SpaceAfter=No 32 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 34 punct _ _ 33 Kan Kan PROPN NNP Number=Sing 34 compound _ _ 34 extensions extension NOUN NNS Number=Plur 37 nsubjpass _ _ 35 can can AUX MD VerbForm=Fin 37 aux _ _ 36 be be AUX VB VerbForm=Inf 37 auxpass _ _ 37 lifted lift VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 ccomp _ _ 38 along along ADP IN _ 37 prep _ _ 39 the the DET DT Definite=Def|PronType=Art 42 det _ _ 40 forgetful forgetful ADJ JJ Degree=Pos 42 amod _ _ 41 double double ADJ JJ Degree=Pos 42 amod _ _ 42 functor functor NOUN NN Number=Sing 38 pobj _ _ 43 $ Alg_w(T) - - > K $ $ alg_w(t) - - > k $ SYM $ _ 1 dep _ _ 44 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 4 # text = As an application we recover and generalise a result by Getzler, on the lifting of pointwise left Kan extensions along symmetric monoidal enriched functors. 1 As as SCONJ IN _ 18 mark _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 application application NOUN NN Number=Sing 18 nsubj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 recover recover VERB VBP Tense=Pres|VerbForm=Fin 3 relcl _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 generalise generalise VERB VB VerbForm=Inf 5 conj _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 result result NOUN NN Number=Sing 7 dobj _ _ 10 by by ADP IN _ 7 prep _ _ 11 Getzler Getzler PROPN NNP Number=Sing 10 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 7 punct _ _ 13 on on ADP IN _ 7 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 lifting lifting NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 pointwise pointwise NOUN NN Number=Sing 16 pobj _ _ 18 left leave VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 19 Kan Kan PROPN NNP Number=Sing 20 compound _ _ 20 extensions extension NOUN NNS Number=Plur 18 dobj _ _ 21 along along ADP IN _ 20 prep _ _ 22 symmetric symmetric ADJ JJ Degree=Pos 25 amod _ _ 23 monoidal monoidal ADJ JJ Degree=Pos 25 amod _ _ 24 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 25 amod _ _ 25 functors functor NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # sent_id = 5 # text = As an application of Getzler's result we prove, in suitable symmetric monoidal categories, the existence of bicommutative Hopf monoids that are freely generated by cocommutative comonoids. 1 As as ADP IN _ 9 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 application application NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 Getzler Getzler PROPN NNP Number=Sing 7 poss _ SpaceAfter=No 6 's 's PART POS _ 5 case _ _ 7 result result NOUN NN Number=Sing 4 pobj _ _ 8 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 9 nsubj _ _ 9 prove prove VERB VBP Tense=Pres|VerbForm=Fin 18 advcl _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 in in ADP IN _ 9 prep _ _ 12 suitable suitable ADJ JJ Degree=Pos 15 amod _ _ 13 symmetric symmetric ADJ JJ Degree=Pos 15 amod _ _ 14 monoidal monoidal ADJ JJ Degree=Pos 15 amod _ _ 15 categories category NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 18 punct _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 existence existence NOUN NN Number=Sing 0 ROOT _ _ 19 of of ADP IN _ 18 prep _ _ 20 bicommutative bicommutative ADJ JJ Degree=Pos 22 amod _ _ 21 Hopf hopf NOUN NN Number=Sing 22 compound _ _ 22 monoids monoid NOUN NNS Number=Plur 19 pobj _ _ 23 that that PRON WDT PronType=Rel 26 nsubjpass _ _ 24 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 26 auxpass _ _ 25 freely freely ADV RB _ 26 advmod _ _ 26 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 relcl _ _ 27 by by ADP IN _ 26 agent _ _ 28 cocommutative cocommutative ADJ JJ Degree=Pos 29 amod _ _ 29 comonoids comonoid NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # doc_id = 562 # sent_id = 1 # text = We generalize Quillen's Theorem A to triangles of lax 2 - functors which commute up to transformation. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 generalize generalize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 Quillen Quillen PROPN NNP Number=Sing 6 poss _ SpaceAfter=No 4 's 's PART POS _ 3 case _ _ 5 Theorem Theorem PROPN NNP Number=Sing 6 compound _ _ 6 A A PROPN NNP Number=Sing 2 dobj _ _ 7 to to ADP IN _ 2 prep _ _ 8 triangles triangle NOUN NNS Number=Plur 7 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 lax lax ADJ JJ Degree=Pos 13 amod _ _ 11 2 2 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 functors functor NOUN NNS Number=Plur 9 pobj _ _ 14 which which PRON WDT _ 15 nsubj _ _ 15 commute commute VERB VBP Tense=Pres|VerbForm=Fin 13 relcl _ _ 16 up up ADP RP _ 15 prt _ _ 17 to to ADP IN _ 15 prep _ _ 18 transformation transformation NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = It follows from a special case of this result that 2 - categories are models for homotopy types. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 follows follow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 from from ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 special special ADJ JJ Degree=Pos 6 amod _ _ 6 case case NOUN NN Number=Sing 3 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 this this DET DT Number=Sing|PronType=Dem 9 det _ _ 9 result result NOUN NN Number=Sing 7 pobj _ _ 10 that that SCONJ IN _ 14 mark _ _ 11 2 2 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 categories category NOUN NNS Number=Plur 14 nsubj _ _ 14 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 15 models model NOUN NNS Number=Plur 14 attr _ _ 16 for for ADP IN _ 15 prep _ _ 17 homotopy homotopy NOUN NN Number=Sing 18 compound _ _ 18 types type NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 563 # sent_id = 1 # text = We show that the homotopy colimit construction for diagrams of categories with an operad action, recently introduced by Fiedorowicz, Stelzer and Vogt, has the desired homotopy type for diagrams of weak braided monoidal categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 26 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 homotopy homotopy NOUN NN Number=Sing 6 compound _ _ 6 colimit colimit NOUN NN Number=Sing 7 compound _ _ 7 construction construction NOUN NN Number=Sing 26 nsubj _ _ 8 for for ADP IN _ 7 prep _ _ 9 diagrams diagram NOUN NNS Number=Plur 8 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 categories category NOUN NNS Number=Plur 10 pobj _ _ 12 with with ADP IN _ 7 prep _ _ 13 an an DET DT Definite=Ind|PronType=Art 15 det _ _ 14 operad operad ADJ JJ Degree=Pos 15 amod _ _ 15 action action NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 7 punct _ _ 17 recently recently ADV RB _ 18 advmod _ _ 18 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 acl _ _ 19 by by ADP IN _ 18 agent _ _ 20 Fiedorowicz Fiedorowicz PROPN NNP Number=Sing 19 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 Stelzer Stelzer PROPN NNP Number=Sing 20 conj _ _ 23 and and CCONJ CC ConjType=Cmp 22 cc _ _ 24 Vogt Vogt PROPN NNP Number=Sing 22 conj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 7 punct _ _ 26 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 27 the the DET DT Definite=Def|PronType=Art 30 det _ _ 28 desired desire VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 30 amod _ _ 29 homotopy homotopy NOUN NN Number=Sing 30 compound _ _ 30 type type NOUN NN Number=Sing 26 dobj _ _ 31 for for ADP IN _ 30 prep _ _ 32 diagrams diagram NOUN NNS Number=Plur 31 pobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 weak weak ADJ JJ Degree=Pos 37 amod _ _ 35 braided braid VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 37 amod _ _ 36 monoidal monoidal ADJ JJ Degree=Pos 37 amod _ _ 37 categories category NOUN NNS Number=Plur 33 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = This provides a more flexible way to realize $ E_2 $ spaces categorically. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 4 more more ADV RBR Degree=Cmp 5 advmod _ _ 5 flexible flexible ADJ JJ Degree=Pos 6 amod _ _ 6 way way NOUN NN Number=Sing 2 dobj _ _ 7 to to PART TO _ 8 aux _ _ 8 realize realize VERB VB VerbForm=Inf 6 relcl _ _ 9 $ E_2 $ $ e_2 $ SYM $ _ 10 nummod _ _ 10 spaces space NOUN NNS Number=Plur 8 dobj _ _ 11 categorically categorically ADV RB _ 8 advmod _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 564 # sent_id = 1 # text = In the present article we describe constructions of model structures on general bicomplete categories. 1 In in ADP IN _ 6 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 present present ADJ JJ Degree=Pos 4 amod _ _ 4 article article NOUN NN Number=Sing 1 pobj _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 constructions construction NOUN NNS Number=Plur 6 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 model model NOUN NN Number=Sing 10 compound _ _ 10 structures structure NOUN NNS Number=Plur 8 pobj _ _ 11 on on ADP IN _ 7 prep _ _ 12 general general ADJ JJ Degree=Pos 14 amod _ _ 13 bicomplete bicomplete ADJ JJ Degree=Pos 14 amod _ _ 14 categories category NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = We are motivated by the following question: given a category $ C $ with a suitable subcategory $ wC $ , when is there a model structure on $ C $ with $ wC $ as the subcategory of weak equivalences? 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubjpass _ _ 2 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 motivated motivate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 by by ADP IN _ 3 agent _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 following follow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 amod _ _ 7 question question NOUN NN Number=Sing 4 pobj _ SpaceAfter=No 8 : : PUNCT : _ 7 punct _ _ 9 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 category category NOUN NN Number=Sing 9 pobj _ _ 12 $ C $ $ c $ SYM $ _ 11 appos _ _ 13 with with ADP IN _ 9 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 15 suitable suitable ADJ JJ Degree=Pos 17 amod _ _ 16 subcategory subcategory NOUN NN Number=Sing 17 amod _ _ 17 $ wC $ $ wc $ SYM $ _ 13 pobj _ _ 18 , , PUNCT , PunctType=Comm 20 punct _ _ 19 when when SCONJ WRB _ 20 advmod _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 21 there there PRON EX _ 20 expl _ _ 22 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 23 model model NOUN NN Number=Sing 24 compound _ _ 24 structure structure NOUN NN Number=Sing 20 attr _ _ 25 on on ADP IN _ 24 prep _ _ 26 $ C $ $ c $ SYM $ _ 25 pobj _ _ 27 with with ADP IN _ 24 prep _ _ 28 $ wC $ $ wc $ SYM $ _ 27 pobj _ _ 29 as as ADP IN _ 28 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 subcategory subcategory NOUN NN Number=Sing 29 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 weak weak ADJ JJ Degree=Pos 34 amod _ _ 34 equivalences equivalence NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 35 ? ? PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # sent_id = 3 # text = We . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 0 ROOT _ _ 2 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # doc_id = 565 # sent_id = 1 # text = A quasi - schemoid is a small category with a particular partition of the set of morphisms. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 quasi quasi ADJ JJ Degree=Pos 4 amod _ _ 3 - - NOUN NN Number=Sing 4 amod _ _ 4 schemoid schemoid NOUN NN Number=Sing 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 small small ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 5 attr _ _ 9 with with ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 particular particular ADJ JJ Degree=Pos 12 amod _ _ 12 partition partition NOUN NN Number=Sing 9 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 set set NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 morphisms morphism NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = We define a homotopy relation on the category of quasi - schemoids and study its fundamental properties. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 homotopy homotopy NOUN NN Number=Sing 5 compound _ _ 5 relation relation NOUN NN Number=Sing 2 dobj _ _ 6 on on ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 category category NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 quasi quasi NOUN NNS Number=Plur 9 pobj _ _ 11 - - NOUN NNS Number=Plur 10 punct _ _ 12 schemoids schemoid NOUN NNS Number=Plur 10 conj _ _ 13 and and CCONJ CC ConjType=Cmp 2 cc _ _ 14 study study VERB VB VerbForm=Inf 2 conj _ _ 15 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 17 poss _ _ 16 fundamental fundamental ADJ JJ Degree=Pos 17 amod _ _ 17 properties property NOUN NNS Number=Plur 14 dobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = The homotopy set of self - homotopy equivalences on a quasi - schemoid is used as a homotopy invariant in the study. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 homotopy homotopy NOUN NN Number=Sing 15 nsubjpass _ _ 3 set set VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 acl _ _ 4 of of ADP IN _ 3 prep _ _ 5 self self NOUN NN Number=Sing 7 compound _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 homotopy homotopy NOUN NN Number=Sing 8 compound _ _ 8 equivalences equivalence NOUN NNS Number=Plur 4 pobj _ _ 9 on on ADP IN _ 3 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 quasi quasi NOUN NN Number=Sing 9 pobj _ _ 12 - - NOUN NNS Number=Plur 9 pobj _ _ 13 schemoid schemoid NOUN NN Number=Sing 15 nsubjpass _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 auxpass _ _ 15 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 16 as as ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 18 homotopy homotopy NOUN NN Number=Sing 19 compound _ _ 19 invariant invariant NOUN NN Number=Sing 16 pobj _ _ 20 in in ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 study study NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 4 # text = The main theorem enables us to deduce that the homotopy invariant for the quasi - schemoid induced by a finite group is isomorphic to the automorphism group of the given group. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 theorem theorem NOUN NN Number=Sing 4 nsubj _ _ 4 enables enable VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 4 dobj _ _ 6 to to PART TO _ 7 aux _ _ 7 deduce deduce VERB VB VerbForm=Inf 4 xcomp _ _ 8 that that SCONJ IN _ 22 mark _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 homotopy homotopy NOUN NN Number=Sing 11 compound _ _ 11 invariant invariant ADJ JJ Degree=Pos 22 nsubj _ _ 12 for for ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 16 det _ _ 14 quasi quasi ADJ JJ Degree=Pos 16 compound _ _ 15 - - ADJ JJ Degree=Pos 16 punct _ _ 16 schemoid schemoid NOUN NN Number=Sing 12 pobj _ _ 17 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 acl _ _ 18 by by ADP IN _ 17 agent _ _ 19 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 20 finite finite ADJ JJ Degree=Pos 21 compound _ _ 21 group group NOUN NN Number=Sing 18 pobj _ _ 22 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 ccomp _ _ 23 isomorphic isomorphic ADJ JJ Degree=Pos 22 acomp _ _ 24 to to ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 27 det _ _ 26 automorphism automorphism NOUN NN Number=Sing 27 compound _ _ 27 group group NOUN NN Number=Sing 24 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 31 det _ _ 30 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 31 amod _ _ 31 group group NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = These considerations are the first step to develop homotopy theory for quasi - schemoids. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 considerations consideration NOUN NNS Number=Plur 3 nsubj _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 first first ADJ JJ Degree=Pos 6 amod _ _ 6 step step NOUN NN Number=Sing 3 attr _ _ 7 to to PART TO _ 8 aux _ _ 8 develop develop VERB VB VerbForm=Inf 6 relcl _ _ 9 homotopy homotopy NOUN NN Number=Sing 10 compound _ _ 10 theory theory NOUN NN Number=Sing 8 dobj _ _ 11 for for ADP IN _ 10 prep _ _ 12 quasi quasi NOUN NNS Number=Plur 11 pobj _ _ 13 - - NOUN NNS Number=Plur 11 pobj _ _ 14 schemoids schemoid NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 566 # sent_id = 1 # text = It is proved that for any small Grothendieck site $ X $ , there exists a coreflection (called cosheafification) from the category of precosheaves on $ X $ with values in a category $ K $ , to the full subcategory of cosheaves, provided either $ K $ or $ K^{op} $ is locally presentable. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 that that SCONJ IN _ 13 mark _ _ 5 for for ADP IN _ 13 prep _ _ 6 any any DET DT _ 9 det _ _ 7 small small ADJ JJ Degree=Pos 8 amod _ _ 8 Grothendieck Grothendieck PROPN NNP Number=Sing 9 compound _ _ 9 site site NOUN NN Number=Sing 5 pobj _ _ 10 $ X $ $ x $ SYM $ _ 5 pobj _ _ 11 , , PUNCT , PunctType=Comm 13 punct _ _ 12 there there PRON EX _ 13 expl _ _ 13 exists exist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 coreflection coreflection NOUN NN Number=Sing 13 dobj _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 15 punct _ SpaceAfter=No 17 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 acl _ _ 18 cosheafification cosheafification NOUN NN Number=Sing 17 oprd _ SpaceAfter=No 19 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 15 punct _ _ 20 from from ADP IN _ 15 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 category category NOUN NN Number=Sing 20 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 precosheaves precosheave NOUN NNS Number=Plur 23 pobj _ _ 25 on on ADP IN _ 22 prep _ _ 26 $ X $ $ x $ SYM $ _ 25 pobj _ _ 27 with with ADP IN _ 22 prep _ _ 28 values value NOUN NNS Number=Plur 27 pobj _ _ 29 in in ADP IN _ 28 prep _ _ 30 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 31 category category NOUN NN Number=Sing 29 pobj _ _ 32 $ K $ $ k $ SYM $ _ 15 appos _ _ 33 , , PUNCT , PunctType=Comm 15 punct _ _ 34 to to ADP IN _ 15 prep _ _ 35 the the DET DT Definite=Def|PronType=Art 37 det _ _ 36 full full ADJ JJ Degree=Pos 37 amod _ _ 37 subcategory subcategory NOUN NN Number=Sing 34 pobj _ _ 38 of of ADP IN _ 37 prep _ _ 39 cosheaves cosheave NOUN NNS Number=Plur 38 pobj _ SpaceAfter=No 40 , , PUNCT , PunctType=Comm 15 punct _ _ 41 provided provide VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 acl _ _ 42 either either CCONJ CC ConjType=Cmp 43 preconj _ _ 43 $ K $ $ k $ SYM $ _ 45 nmod _ _ 44 or or CCONJ CC ConjType=Cmp 43 cc _ _ 45 $ K^{op} $ $ k^{op} $ SYM $ _ 41 dobj _ _ 46 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 conj _ _ 47 locally locally ADV RB _ 48 advmod _ _ 48 presentable presentable ADJ JJ Degree=Pos 46 acomp _ SpaceAfter=No 49 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = If $ K $ is cocomplete, such a coreflection is built explicitly for the (pre)cosheaves with values in the category $ Pro(K) $ of pro - objects in $ K $ . 1 If if SCONJ IN _ 3 mark _ _ 2 $ K $ $ k $ SYM $ _ 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 advcl _ _ 4 cocomplete cocomplete ADJ JJ Degree=Pos 3 acomp _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 10 punct _ _ 6 such such DET PDT _ 8 predet _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 coreflection coreflection NOUN NN Number=Sing 10 nsubjpass _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 10 built build VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 11 explicitly explicitly ADV RB _ 10 advmod _ _ 12 for for ADP IN _ 10 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 15 punct _ SpaceAfter=No 15 pre)cosheaves pre)cosheave NOUN NNS Number=Plur 12 pobj _ _ 16 with with ADP IN _ 15 prep _ _ 17 values value NOUN NNS Number=Plur 16 pobj _ _ 18 in in ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 category category NOUN NN Number=Sing 21 nmod _ _ 21 $ Pro(K) $ $ pro(k) $ SYM $ _ 18 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 pro pro ADJ JJ Degree=Pos 25 amod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 objects object NOUN NNS Number=Plur 22 pobj _ _ 26 in in ADP IN _ 25 prep _ _ 27 $ K $ $ k $ SYM $ _ 26 pobj _ _ 28 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 3 # text = In the case of precosheaves on topological spaces, it is proved that any precosheaf with values in $ Pro(K) $ is smooth, that is, is strongly locally isomorphic to a cosheaf. 1 In in ADP IN _ 12 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 case case NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 precosheaves precosheave NOUN NNS Number=Plur 4 pobj _ _ 6 on on ADP IN _ 3 prep _ _ 7 topological topological ADJ JJ Degree=Pos 8 amod _ _ 8 spaces space NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 12 punct _ _ 10 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 12 nsubjpass _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 12 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 13 that that SCONJ IN _ 20 mark _ _ 14 any any DET DT _ 15 det _ _ 15 precosheaf precosheaf NOUN NN Number=Sing 20 nsubj _ _ 16 with with ADP IN _ 15 prep _ _ 17 values value NOUN NNS Number=Plur 16 pobj _ _ 18 in in ADP IN _ 17 prep _ _ 19 $ Pro(K) $ $ pro(k) $ SYM $ _ 20 nsubj _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 ccomp _ _ 21 smooth smooth ADJ JJ Degree=Pos 20 acomp _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 26 punct _ _ 23 that that ADV RB _ 24 advmod _ _ 24 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 26 advmod _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 26 punct _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 conj _ _ 27 strongly strongly ADV RB _ 26 advmod _ _ 28 locally locally ADV RB _ 29 advmod _ _ 29 isomorphic isomorphic ADJ JJ Degree=Pos 26 acomp _ _ 30 to to ADP IN _ 29 prep _ _ 31 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 32 cosheaf cosheaf NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 4 # text = Constant cosheaves are constructed, and there are established connections with shape theory. 1 Constant constant ADJ JJ Degree=Pos 2 amod _ _ 2 cosheaves cosheave NOUN NNS Number=Plur 4 nsubjpass _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 4 punct _ _ 6 and and CCONJ CC ConjType=Cmp 4 cc _ _ 7 there there PRON EX _ 8 expl _ _ 8 are be VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 conj _ _ 9 established establish VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 10 connections connection NOUN NNS Number=Plur 8 attr _ _ 11 with with ADP IN _ 10 prep _ _ 12 shape shape NOUN NN Number=Sing 13 compound _ _ 13 theory theory NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # doc_id = 567 # sent_id = 1 # text = Unlike the uniform completion, the Dedekind completion of a vector lattice is not functorial. 1 Unlike unlike ADP IN _ 13 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 uniform uniform ADJ JJ Degree=Pos 4 compound _ _ 4 completion completion NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 13 punct _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 Dedekind Dedekind PROPN NNP Number=Sing 8 compound _ _ 8 completion completion NOUN NN Number=Sing 13 nsubj _ _ 9 of of ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 vector vector NOUN NN Number=Sing 12 compound _ _ 12 lattice lattice NOUN NN Number=Sing 9 pobj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 not not PART RB Polarity=Neg 13 neg _ _ 15 functorial functorial ADJ JJ Degree=Pos 13 acomp _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 2 # text = In order to repair the lack of functoriality of Dedekind completions, we enrich the signature of vector lattices with a proximity relation, thus arriving at the category $ pdv $ of proximity Dedekind vector lattices. 1 In in ADP IN _ 14 prep _ _ 2 order order NOUN NN Number=Sing 1 pobj _ _ 3 to to PART TO _ 4 aux _ _ 4 repair repair VERB VB VerbForm=Inf 2 acl _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 lack lack NOUN NN Number=Sing 4 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 functoriality functoriality NOUN NN Number=Sing 7 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 Dedekind Dedekind PROPN NNP Number=Sing 11 compound _ _ 11 completions completion NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 14 punct _ _ 13 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 14 nsubj _ _ 14 enrich enrich VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 signature signature NOUN NN Number=Sing 14 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 vector vector NOUN NN Number=Sing 19 compound _ _ 19 lattices lattice NOUN NNS Number=Plur 17 pobj _ _ 20 with with ADP IN _ 14 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 22 proximity proximity NOUN NN Number=Sing 23 compound _ _ 23 relation relation NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 14 punct _ _ 25 thus thus ADV RB _ 26 advmod _ _ 26 arriving arrive VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 advcl _ _ 27 at at ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 category category NOUN NN Number=Sing 27 pobj _ _ 30 $ pdv $ $ pdv $ SYM $ _ 29 appos _ _ 31 of of ADP IN _ 30 prep _ _ 32 proximity proximity NOUN NN Number=Sing 33 compound _ _ 33 Dedekind Dedekind PROPN NNP Number=Sing 35 compound _ _ 34 vector vector NOUN NN Number=Sing 35 compound _ _ 35 lattices lattice NOUN NNS Number=Plur 31 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 3 # text = We prove that the Dedekind completion induces a functor from the category $ bav $ of bounded archimedean vector lattices to $ pdv $ , which in fact is an equivalence. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 7 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 Dedekind Dedekind PROPN NNP Number=Sing 6 compound _ _ 6 completion completion NOUN NN Number=Sing 7 nsubj _ _ 7 induces induce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 functor functor NOUN NN Number=Sing 7 dobj _ _ 10 from from ADP IN _ 7 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 category category NOUN NN Number=Sing 10 pobj _ _ 13 $ bav $ $ bav $ SYM $ _ 12 appos _ _ 14 of of ADP IN _ 13 prep _ _ 15 bounded bound VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 amod _ _ 16 archimedean archimedean ADJ JJ Degree=Pos 17 compound _ _ 17 vector vector NOUN NN Number=Sing 18 compound _ _ 18 lattices lattice NOUN NNS Number=Plur 14 pobj _ _ 19 to to ADP IN _ 7 prep _ _ 20 $ pdv $ $ pdv $ SYM $ _ 19 pobj _ _ 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 which which PRON WDT _ 25 nsubj _ _ 23 in in ADP IN _ 25 prep _ _ 24 fact fact NOUN NN Number=Sing 23 pobj _ _ 25 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 advcl _ _ 26 an an DET DT Definite=Ind|PronType=Art 27 det _ _ 27 equivalence equivalence NOUN NN Number=Sing 25 attr _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We utilize the results of Dilworth to show that every proximity Dedekind vector lattice $ D $ is represented as the normal real - valued functions on the compact Hausdorff space associated with $ D $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 utilize utilize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 results result NOUN NNS Number=Plur 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 Dilworth Dilworth PROPN NNP Number=Sing 5 pobj _ _ 7 to to PART TO _ 8 aux _ _ 8 show show VERB VB VerbForm=Inf 2 xcomp _ _ 9 that that SCONJ IN _ 17 mark _ _ 10 every every DET DT _ 11 det _ _ 11 proximity proximity NOUN NN Number=Sing 17 nsubjpass _ _ 12 Dedekind Dedekind PROPN NNP Number=Sing 13 compound _ _ 13 vector vector NOUN NN Number=Sing 14 nsubj _ _ 14 lattice lattice VERB VBP Tense=Pres|VerbForm=Fin 11 appos _ _ 15 $ D $ $ d $ SYM $ _ 11 appos _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 auxpass _ _ 17 represented represent VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 ccomp _ _ 18 as as ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 24 det _ _ 20 normal normal ADJ JJ Degree=Pos 24 amod _ _ 21 real real ADV RB _ 23 advmod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 24 functions function NOUN NNS Number=Plur 18 pobj _ _ 25 on on ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 29 det _ _ 27 compact compact ADJ JJ Degree=Pos 29 amod _ _ 28 Hausdorff Hausdorff PROPN NNP Number=Sing 29 compound _ _ 29 space space NOUN NN Number=Sing 25 pobj _ _ 30 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 acl _ _ 31 with with ADP IN _ 30 prep _ _ 32 $ D $ $ d $ SYM $ _ 31 pobj _ _ 33 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = This yields a contravariant adjunction between $ pdv $ and the category $ KHaus $ of compact Hausdorff spaces, which restricts to a dual equivalence between $ KHaus $ and the proper subcategory of $ pdv $ consisting of those proximity Dedekind vector lattices in which the proximity is uniformly closed. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 yields yield VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 contravariant contravariant ADJ JJ Degree=Pos 5 amod _ _ 5 adjunction adjunction NOUN NN Number=Sing 2 dobj _ _ 6 between between ADP IN _ 5 prep _ _ 7 $ pdv $ $ pdv $ SYM $ _ 6 pobj _ _ 8 and and CCONJ CC ConjType=Cmp 5 cc _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 category category NOUN NN Number=Sing 5 conj _ _ 11 $ KHaus $ $ khaus $ SYM $ _ 10 appos _ _ 12 of of ADP IN _ 11 prep _ _ 13 compact compact ADJ JJ Degree=Pos 15 amod _ _ 14 Hausdorff Hausdorff PROPN NNP Number=Sing 15 compound _ _ 15 spaces space NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 which which PRON WDT _ 18 nsubj _ _ 18 restricts restrict VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 relcl _ _ 19 to to ADP IN _ 18 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 dual dual ADJ JJ Degree=Pos 22 amod _ _ 22 equivalence equivalence NOUN NN Number=Sing 19 pobj _ _ 23 between between ADP IN _ 22 prep _ _ 24 $ KHaus $ $ khaus $ SYM $ _ 23 pobj _ _ 25 and and CCONJ CC ConjType=Cmp 22 cc _ _ 26 the the DET DT Definite=Def|PronType=Art 28 det _ _ 27 proper proper ADJ JJ Degree=Pos 28 amod _ _ 28 subcategory subcategory NOUN NN Number=Sing 22 conj _ _ 29 of of ADP IN _ 28 prep _ _ 30 $ pdv $ $ pdv $ SYM $ _ 29 pobj _ _ 31 consisting consist VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 28 acl _ _ 32 of of ADP IN _ 31 prep _ _ 33 those those DET DT Number=Plur|PronType=Dem 34 det _ _ 34 proximity proximity NOUN NN Number=Sing 37 compound _ _ 35 Dedekind Dedekind PROPN NNP Number=Sing 37 compound _ _ 36 vector vector NOUN NN Number=Sing 37 compound _ _ 37 lattices lattice NOUN NNS Number=Plur 32 pobj _ _ 38 in in ADP IN _ 42 prep _ _ 39 which which PRON WDT _ 38 pobj _ _ 40 the the DET DT Definite=Def|PronType=Art 41 det _ _ 41 proximity proximity NOUN NN Number=Sing 42 nsubj _ _ 42 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 37 relcl _ _ 43 uniformly uniformly ADV RB _ 44 advmod _ _ 44 closed closed ADJ JJ Degree=Pos 42 acomp _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = We show how to derive the classic Yosida Representation, Kakutani - Krein Duality, Stone - Gelfand - Naimark Duality, and Stone - Nakano Theorem from our approach. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 how how SCONJ WRB _ 5 advmod _ _ 4 to to PART TO _ 5 aux _ _ 5 derive derive VERB VB VerbForm=Inf 2 xcomp _ _ 6 the the DET DT Definite=Def|PronType=Art 9 det _ _ 7 classic classic ADJ JJ Degree=Pos 9 amod _ _ 8 Yosida Yosida PROPN NNP Number=Sing 9 compound _ _ 9 Representation Representation PROPN NNP Number=Sing 5 dobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 Kakutani Kakutani PROPN NNP Number=Sing 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 Krein Krein PROPN NNP Number=Sing 14 compound _ _ 14 Duality Duality PROPN NNP Number=Sing 9 conj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 Stone Stone PROPN NNP Number=Sing 20 compound _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 Gelfand Gelfand PROPN NNP Number=Sing 20 compound _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 Naimark Naimark PROPN NNP Number=Sing 21 compound _ _ 21 Duality Duality PROPN NNP Number=Sing 14 conj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 and and CCONJ CC ConjType=Cmp 21 cc _ _ 24 Stone Stone PROPN NNP Number=Sing 26 compound _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 Nakano Nakano PROPN NNP Number=Sing 27 compound _ _ 27 Theorem Theorem PROPN NNP Number=Sing 21 conj _ _ 28 from from ADP IN _ 5 prep _ _ 29 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 30 poss _ _ 30 approach approach NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 568 # sent_id = 1 # text = In this paper we continue, following the pioneering works by Cartmell and Streicher, the study of the most important structures on $ C $ - systems, the structures that correspond, in the case of the syntactic $ C $ - systems, to the $ (Pi, lambda, app, beta, eta) $ - system of inference rules. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 continue continue VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 following follow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 pioneering pioneering ADJ JJ Degree=Pos 10 amod _ _ 10 works work NOUN NNS Number=Plur 7 pobj _ _ 11 by by ADP IN _ 10 prep _ _ 12 Cartmell Cartmell PROPN NNP Number=Sing 11 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 Streicher Streicher PROPN NNP Number=Sing 12 conj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 5 punct _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 study study NOUN NN Number=Sing 5 dobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 22 det _ _ 20 most most ADV RBS Degree=Sup 21 advmod _ _ 21 important important ADJ JJ Degree=Pos 22 amod _ _ 22 structures structure NOUN NNS Number=Plur 18 pobj _ _ 23 on on ADP IN _ 22 prep _ _ 24 $ C $ $ c $ SYM $ _ 26 compound _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 systems system NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 17 punct _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 structures structure NOUN NNS Number=Plur 17 appos _ _ 30 that that PRON WDT PronType=Rel 31 nsubj _ _ 31 correspond correspond VERB VBP Tense=Pres|VerbForm=Fin 29 relcl _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 29 punct _ _ 33 in in ADP IN _ 29 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 35 det _ _ 35 case case NOUN NN Number=Sing 33 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 the the DET DT Definite=Def|PronType=Art 41 det _ _ 38 syntactic syntactic ADJ JJ Degree=Pos 41 amod _ _ 39 $ C $ $ c $ SYM $ _ 41 compound _ _ 40 - - PUNCT HYPH PunctType=Dash 41 punct _ _ 41 systems system NOUN NNS Number=Plur 36 pobj _ SpaceAfter=No 42 , , PUNCT , PunctType=Comm 17 punct _ _ 43 to to ADP IN _ 17 prep _ _ 44 the the DET DT Definite=Def|PronType=Art 47 det _ _ 45 $ (Pi, lambda, app, beta, eta) $ $ (Pi, lambda, app, beta, eta) $ PROPN NNP Number=Sing 47 nmod _ _ 46 - - PUNCT HYPH PunctType=Dash 47 punct _ _ 47 system system NOUN NN Number=Sing 43 pobj _ _ 48 of of ADP IN _ 47 prep _ _ 49 inference inference NOUN NN Number=Sing 50 compound _ _ 50 rules rule NOUN NNS Number=Plur 48 pobj _ SpaceAfter=No 51 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = One such structure was introduced by Cartmell and later studied by Streicher under the name of the products of families of types. 1 One one NUM CD NumType=Card 3 nummod _ _ 2 such such ADJ JJ Degree=Pos 3 amod _ _ 3 structure structure NOUN NN Number=Sing 5 nsubjpass _ _ 4 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 5 auxpass _ _ 5 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 by by ADP IN _ 5 agent _ _ 7 Cartmell Cartmell PROPN NNP Number=Sing 6 pobj _ _ 8 and and CCONJ CC ConjType=Cmp 5 cc _ _ 9 later later ADV RB _ 10 advmod _ _ 10 studied study VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 conj _ _ 11 by by ADP IN _ 10 agent _ _ 12 Streicher Streicher PROPN NNP Number=Sing 11 pobj _ _ 13 under under ADP IN _ 10 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 name name NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 products product NOUN NNS Number=Plur 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 families family NOUN NNS Number=Plur 19 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 types type NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = We introduce the notion of a $ (Pi, lambda) $ - structure and construct a bijection, for a given $ C $ - system, between the set of $ (Pi, lambda) $ - structures and the set of Cartmell - Streicher structures. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 notion notion NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 7 $ (Pi, lambda) $ $ (pi, lambda) $ X LS NumType=Ord 9 compound _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 structure structure NOUN NN Number=Sing 5 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 2 cc _ _ 11 construct construct VERB VB VerbForm=Inf 2 conj _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 bijection bijection NOUN NN Number=Sing 11 dobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 11 punct _ _ 15 for for ADP IN _ 11 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 17 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 amod _ _ 18 $ C $ $ c $ SYM $ _ 20 compound _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 system system NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 between between ADP IN _ 20 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 set set NOUN NN Number=Sing 22 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 $ (Pi, lambda) $ $ (pi, lambda) $ SYM $ _ 28 compound _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 structures structure NOUN NNS Number=Plur 25 pobj _ _ 29 and and CCONJ CC ConjType=Cmp 28 cc _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 set set NOUN NN Number=Sing 28 conj _ _ 32 of of ADP IN _ 31 prep _ _ 33 Cartmell Cartmell PROPN NNP Number=Sing 35 compound _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 Streicher Streicher PROPN NNP Number=Sing 36 compound _ _ 36 structures structure NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = In the following paper we will show how to construct, and in some cases fully classify, the $ (Pi, lambda) $ - structures on the $ C $ - systems that correspond to universe categories. 1 In in ADP IN _ 7 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 following follow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 amod _ _ 4 paper paper NOUN NN Number=Sing 1 pobj _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 6 will will AUX MD VerbForm=Fin 7 aux _ _ 7 show show VERB VB VerbForm=Inf 0 ROOT _ _ 8 how how SCONJ WRB _ 10 advmod _ _ 9 to to PART TO _ 10 aux _ _ 10 construct construct VERB VB VerbForm=Inf 7 xcomp _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 7 punct _ _ 12 and and CCONJ CC ConjType=Cmp 7 cc _ _ 13 in in ADP IN _ 17 prep _ _ 14 some some DET DT _ 15 det _ _ 15 cases case NOUN NNS Number=Plur 13 pobj _ _ 16 fully fully ADV RB _ 17 advmod _ _ 17 classify classify VERB VBP Tense=Pres|VerbForm=Fin 7 conj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 the the DET DT Definite=Def|PronType=Art 22 det _ _ 20 $ (Pi, lambda) $ $ (pi, lambda) $ SYM $ _ 22 compound _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 structures structure NOUN NNS Number=Plur 17 npadvmod _ _ 23 on on ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 27 det _ _ 25 $ C $ $ c $ SYM $ _ 27 compound _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 systems system NOUN NNS Number=Plur 23 pobj _ _ 28 that that PRON WDT PronType=Rel 29 nsubj _ _ 29 correspond correspond VERB VBP Tense=Pres|VerbForm=Fin 27 relcl _ _ 30 to to PART TO _ 31 aux _ _ 31 universe universe VERB VB VerbForm=Inf 29 advcl _ _ 32 categories category NOUN NNS Number=Plur 31 dobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 5 # text = The first section of the paper provides careful proofs of many of the properties of general $ C $ - systems. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 first first ADJ JJ Degree=Pos 3 amod _ _ 3 section section NOUN NN Number=Sing 7 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 paper paper NOUN NN Number=Sing 4 pobj _ _ 7 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 careful careful ADJ JJ Degree=Pos 9 amod _ _ 9 proofs proof NOUN NNS Number=Plur 7 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 many many ADJ JJ Degree=Pos 10 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 properties property NOUN NNS Number=Plur 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 general general ADJ JJ Degree=Pos 19 amod _ _ 17 $ C $ $ c $ SYM $ _ 19 compound _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 systems system NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 6 # text = Methods of the paper are fully constructive, that is, neither the axiom of excluded middle nor the axiom of choice are used. 1 Methods method NOUN NNS Number=Plur 5 nsubj _ _ 2 of of ADP IN _ 1 prep _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 paper paper NOUN NN Number=Sing 2 pobj _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 24 ccomp _ _ 6 fully fully ADV RB _ 7 advmod _ _ 7 constructive constructive ADJ JJ Degree=Pos 5 acomp _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 24 punct _ _ 9 that that ADV RB _ 10 advmod _ _ 10 is is ADV RB _ 24 advmod _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 24 punct _ _ 12 neither neither CCONJ CC ConjType=Cmp 14 preconj _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 axiom axiom NOUN NN Number=Sing 24 nsubjpass _ _ 15 of of ADP IN _ 14 prep _ _ 16 excluded exclude VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 17 middle middle NOUN NN Number=Sing 15 pobj _ _ 18 nor nor CCONJ CC ConjType=Cmp 14 cc _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 axiom axiom NOUN NN Number=Sing 14 conj _ _ 21 of of ADP IN _ 20 prep _ _ 22 choice choice NOUN NN Number=Sing 21 pobj _ _ 23 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 24 auxpass _ _ 24 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 24 punct _ SpaceAfter=No # doc_id = 569 # sent_id = 1 # text = The theory of monads on categories equipped with a dagger (a contravariant identity - on - objects involutive endofunctor) works best when all structure respects the dagger: the monad and adjunctions should preserve the dagger, and the monad and its algebras should satisfy the so - called Frobenius law. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 theory theory NOUN NN Number=Sing 22 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 monads monad NOUN NNS Number=Plur 3 pobj _ _ 5 on on ADP IN _ 4 prep _ _ 6 categories category NOUN NNS Number=Plur 5 pobj _ _ 7 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 acl _ _ 8 with with ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 dagger dagger NOUN NN Number=Sing 8 pobj _ _ 11 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 10 punct _ SpaceAfter=No 12 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 13 contravariant contravariant ADJ JJ Degree=Pos 20 amod _ _ 14 identity identity NOUN NN Number=Sing 20 nmod _ _ 15 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 16 on on ADP IN _ 14 prep _ _ 17 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 18 objects object NOUN NNS Number=Plur 16 pobj _ _ 19 involutive involutive ADJ JJ Degree=Pos 20 amod _ _ 20 endofunctor endofunctor PROPN NNP Number=Sing 10 appos _ SpaceAfter=No 21 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 10 punct _ _ 22 works work VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 23 best well ADV RB _ 22 advmod _ _ 24 when when SCONJ WRB _ 27 advmod _ _ 25 all all DET DT _ 26 det _ _ 26 structure structure NOUN NN Number=Sing 27 nsubj _ _ 27 respects respect VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 advcl _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 dagger dagger NOUN NN Number=Sing 27 dobj _ SpaceAfter=No 30 : : PUNCT : _ 29 punct _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 monad monad NOUN NNS Number=Plur 36 nsubj _ _ 33 and and CCONJ CC ConjType=Cmp 32 cc _ _ 34 adjunctions adjunction NOUN NNS Number=Plur 32 conj _ _ 35 should should AUX MD VerbForm=Fin 36 aux _ _ 36 preserve preserve VERB VB VerbForm=Inf 22 conj _ _ 37 the the DET DT Definite=Def|PronType=Art 38 det _ _ 38 dagger dagger NOUN NN Number=Sing 36 dobj _ SpaceAfter=No 39 , , PUNCT , PunctType=Comm 36 punct _ _ 40 and and CCONJ CC ConjType=Cmp 36 cc _ _ 41 the the DET DT Definite=Def|PronType=Art 42 det _ _ 42 monad monad NOUN NNS Number=Plur 47 nsubj _ _ 43 and and CCONJ CC ConjType=Cmp 42 cc _ _ 44 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 45 poss _ _ 45 algebras algebra NOUN NNS Number=Plur 42 conj _ _ 46 should should AUX MD VerbForm=Fin 47 aux _ _ 47 satisfy satisfy VERB VB VerbForm=Inf 36 conj _ _ 48 the the DET DT Definite=Def|PronType=Art 53 det _ _ 49 so so ADV RB _ 51 advmod _ _ 50 - - PUNCT HYPH PunctType=Dash 51 punct _ _ 51 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 53 amod _ _ 52 Frobenius Frobenius PROPN NNP Number=Sing 53 compound _ _ 53 law law NOUN NN Number=Sing 47 dobj _ SpaceAfter=No 54 . . PUNCT . PunctType=Peri 22 punct _ SpaceAfter=No # sent_id = 2 # text = Then any monad resolves as an adjunction, with extremal solutions given by the categories of Kleisli and Frobenius - Eilenberg - Moore algebras, which again have a dagger. 1 Then then ADV RB PronType=Dem 4 advmod _ _ 2 any any DET DT _ 3 det _ _ 3 monad monad NOUN NNS Number=Plur 4 nsubj _ _ 4 resolves resolve NOUN NNS Number=Plur 0 ROOT _ _ 5 as as ADP IN _ 4 prep _ _ 6 an an DET DT Definite=Ind|PronType=Art 7 det _ _ 7 adjunction adjunction NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 4 punct _ _ 9 with with ADP IN _ 4 prep _ _ 10 extremal extremal ADJ JJ Degree=Pos 11 amod _ _ 11 solutions solution NOUN NNS Number=Plur 9 pobj _ _ 12 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 acl _ _ 13 by by ADP IN _ 12 agent _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 categories category NOUN NNS Number=Plur 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 Kleisli Kleisli PROPN NNP Number=Sing 24 nmod _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 Frobenius Frobenius PROPN NNP Number=Sing 23 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 21 Eilenberg Eilenberg PROPN NNP Number=Sing 23 compound _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 Moore Moore PROPN NNP Number=Sing 17 conj _ _ 24 algebras algebra NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 which which PRON WDT _ 28 nsubj _ _ 27 again again ADV RB _ 28 advmod _ _ 28 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 24 relcl _ _ 29 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 30 dagger dagger NOUN NN Number=Sing 28 dobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = We characterize the Frobenius law as a coherence property between dagger and closure, and characterize strong such monads as being induced by Frobenius monoids. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 Frobenius Frobenius PROPN NNP Number=Sing 5 compound _ _ 5 law law NOUN NN Number=Sing 2 dobj _ _ 6 as as ADP IN _ 2 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 coherence coherence NOUN NN Number=Sing 9 compound _ _ 9 property property NOUN NN Number=Sing 6 pobj _ _ 10 between between ADP IN _ 9 prep _ _ 11 dagger dagger NOUN NN Number=Sing 10 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 closure closure NOUN NN Number=Sing 11 conj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 2 punct _ _ 15 and and CCONJ CC ConjType=Cmp 2 cc _ _ 16 characterize characterize VERB VB VerbForm=Inf 2 conj _ _ 17 strong strong ADJ JJ Degree=Pos 19 amod _ _ 18 such such ADJ JJ Degree=Pos 19 amod _ _ 19 monads monad NOUN NNS Number=Plur 16 dobj _ _ 20 as as ADP IN _ 19 prep _ _ 21 being be AUX VBG VerbForm=Ger 22 auxpass _ _ 22 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 pcomp _ _ 23 by by ADP IN _ 22 agent _ _ 24 Frobenius Frobenius PROPN NNP Number=Sing 25 compound _ _ 25 monoids monoid NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 570 # sent_id = 1 # text = We provide a more economical refined version of Evrard's categorical cocylinder factorization of a functor. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 4 more more ADV RBR Degree=Cmp 5 advmod _ _ 5 economical economical ADJ JJ Degree=Pos 7 amod _ _ 6 refined refined ADJ JJ Degree=Pos 7 amod _ _ 7 version version NOUN NN Number=Sing 2 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 Evrard Evrard PROPN NNP Number=Sing 13 poss _ SpaceAfter=No 10 's 's PART POS _ 9 case _ _ 11 categorical categorical ADJ JJ Degree=Pos 12 amod _ _ 12 cocylinder cocylinder NOUN NN Number=Sing 13 compound _ _ 13 factorization factorization NOUN NN Number=Sing 8 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 functor functor NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We show that any functor between small categories can be factored into a homotopy equivalence followed by a (co)fibred functor which satisfies the (dual) assumption of Quillen's Theorem B. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 11 mark _ _ 4 any any DET DT _ 5 det _ _ 5 functor functor NOUN NN Number=Sing 11 nsubjpass _ _ 6 between between ADP IN _ 5 prep _ _ 7 small small ADJ JJ Degree=Pos 8 amod _ _ 8 categories category NOUN NNS Number=Plur 6 pobj _ _ 9 can can AUX MD VerbForm=Fin 11 aux _ _ 10 be be AUX VB VerbForm=Inf 11 auxpass _ _ 11 factored factor VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 12 into into ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 homotopy homotopy NOUN NN Number=Sing 15 compound _ _ 15 equivalence equivalence NOUN NN Number=Sing 12 pobj _ _ 16 followed follow VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 acl _ _ 17 by by ADP IN _ 16 agent _ _ 18 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 19 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 21 punct _ SpaceAfter=No 20 co)fibred co)fibred ADJ JJ Degree=Pos 21 amod _ _ 21 functor functor NOUN NN Number=Sing 17 pobj _ _ 22 which which PRON WDT _ 23 nsubj _ _ 23 satisfies satisfy VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 21 relcl _ _ 24 the the DET DT Definite=Def|PronType=Art 28 det _ _ 25 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 28 punct _ SpaceAfter=No 26 dual dual ADJ JJ Degree=Pos 28 amod _ SpaceAfter=No 27 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 28 punct _ _ 28 assumption assumption NOUN NN Number=Sing 23 dobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 Quillen Quillen PROPN NNP Number=Sing 33 poss _ SpaceAfter=No 31 's 's PART POS _ 30 case _ _ 32 Theorem Theorem PROPN NNP Number=Sing 33 compound _ _ 33 B. B. PROPN NNP Number=Sing 29 pobj _ SpaceAfter=No # doc_id = 571 # sent_id = 1 # text = Sheaves are objects of a local nature: a global section is determined by how it looks locally. 1 Sheaves sheaf NOUN NNS Number=Plur 2 nsubj _ _ 2 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 ccomp _ _ 3 objects object NOUN NNS Number=Plur 2 attr _ _ 4 of of ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 local local ADJ JJ Degree=Pos 7 amod _ _ 7 nature nature NOUN NN Number=Sing 4 pobj _ SpaceAfter=No 8 : : PUNCT : _ 13 punct _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 global global ADJ JJ Degree=Pos 11 amod _ _ 11 section section NOUN NN Number=Sing 13 nsubjpass _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 determined determine VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 14 by by ADP IN _ 13 agent _ _ 15 how how SCONJ WRB _ 17 advmod _ _ 16 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 17 nsubj _ _ 17 looks look VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 pcomp _ _ 18 locally locally ADV RB _ 17 advmod _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 2 # text = Hence, a sheaf cannot describe mathematical structures which contain global or nonlocal geometric information. 1 Hence hence ADV RB _ 7 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 7 punct _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 sheaf sheaf NOUN NN Number=Sing 7 nsubj _ _ 5 can can AUX MD VerbForm=Fin 7 aux _ SpaceAfter=No 6 not not PART RB Polarity=Neg 7 neg _ _ 7 describe describe VERB VB VerbForm=Inf 0 ROOT _ _ 8 mathematical mathematical ADJ JJ Degree=Pos 9 amod _ _ 9 structures structure NOUN NNS Number=Plur 7 dobj _ _ 10 which which PRON WDT _ 11 nsubj _ _ 11 contain contain VERB VBP Tense=Pres|VerbForm=Fin 9 relcl _ _ 12 global global ADJ JJ Degree=Pos 16 amod _ _ 13 or or CCONJ CC ConjType=Cmp 12 cc _ _ 14 nonlocal nonlocal ADJ JJ Degree=Pos 12 conj _ _ 15 geometric geometric ADJ JJ Degree=Pos 16 amod _ _ 16 information information NOUN NN Number=Sing 11 dobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = To fill this gap, we introduce the theory of ``gleaves'', which are presheaves equipped with an additional ``gluing operation'' of compatible pairs of local sections. 1 To to PART TO _ 2 aux _ _ 2 fill fill VERB VB VerbForm=Inf 7 advcl _ _ 3 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 4 gap gap NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 theory theory NOUN NN Number=Sing 7 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 13 punct _ SpaceAfter=No 12 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 13 punct _ SpaceAfter=No 13 gleaves gleave NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 14 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 13 punct _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 13 punct _ _ 16 which which PRON WDT _ 17 nsubj _ _ 17 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 relcl _ _ 18 presheaves presheave NOUN NNS Number=Plur 17 attr _ _ 19 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 acl _ _ 20 with with ADP IN _ 19 prep _ _ 21 an an DET DT Definite=Ind|PronType=Art 26 det _ _ 22 additional additional ADJ JJ Degree=Pos 26 amod _ _ 23 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 26 punct _ SpaceAfter=No 24 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 26 punct _ SpaceAfter=No 25 gluing glue VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 26 amod _ _ 26 operation operation NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 27 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 26 punct _ _ 28 of of ADP IN _ 26 prep _ _ 29 compatible compatible ADJ JJ Degree=Pos 30 amod _ _ 30 pairs pair NOUN NNS Number=Plur 28 pobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 local local ADJ JJ Degree=Pos 33 amod _ _ 33 sections section NOUN NNS Number=Plur 31 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = This generalizes the conditional product structures of Dawid and Studeny, which correspond to gleaves on distributive lattices. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 generalizes generalize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 6 det _ _ 4 conditional conditional ADJ JJ Degree=Pos 6 amod _ _ 5 product product NOUN NN Number=Sing 6 compound _ _ 6 structures structure NOUN NNS Number=Plur 2 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 Dawid Dawid PROPN NNP Number=Sing 7 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 Studeny Studeny PROPN NNP Number=Sing 8 conj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 6 punct _ _ 12 which which PRON WDT _ 13 nsubj _ _ 13 correspond correspond VERB VBP Tense=Pres|VerbForm=Fin 6 relcl _ _ 14 to to ADP IN _ 13 prep _ _ 15 gleaves gleave NOUN NNS Number=Plur 14 pobj _ _ 16 on on ADP IN _ 15 prep _ _ 17 distributive distributive ADJ JJ Degree=Pos 18 amod _ _ 18 lattices lattice NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = Our examples include the gleaf of metric spaces and the gleaf of joint probability distributions. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 examples example NOUN NNS Number=Plur 3 nsubj _ _ 3 include include VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 gleaf gleaf NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 metric metric ADJ JJ Degree=Pos 8 amod _ _ 8 spaces space NOUN NNS Number=Plur 6 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 5 cc _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 gleaf gleaf NOUN NN Number=Sing 5 conj _ _ 12 of of ADP IN _ 11 prep _ _ 13 joint joint ADJ JJ Degree=Pos 14 amod _ _ 14 probability probability NOUN NN Number=Sing 15 compound _ _ 15 distributions distribution NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = A result of Johnstone shows that a category of gleaves can have a subobject classifier despite not being cartesian closed. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 result result NOUN NN Number=Sing 5 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 Johnstone Johnstone PROPN NNP Number=Sing 3 pobj _ _ 5 shows show VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 that that SCONJ IN _ 12 mark _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 category category NOUN NN Number=Sing 12 nsubj _ _ 9 of of ADP IN _ 8 prep _ _ 10 gleaves gleave NOUN NNS Number=Plur 9 pobj _ _ 11 can can AUX MD VerbForm=Fin 12 aux _ _ 12 have have VERB VB VerbForm=Inf 5 ccomp _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 subobject subobject NOUN NN Number=Sing 15 compound _ _ 15 classifier classifier NOUN NN Number=Sing 12 dobj _ _ 16 despite despite SCONJ IN _ 12 prep _ _ 17 not not PART RB Polarity=Neg 18 neg _ _ 18 being be AUX VBG VerbForm=Ger 16 pcomp _ _ 19 cartesian cartesian ADJ JJ Degree=Pos 18 acomp _ _ 20 closed closed ADJ JJ Degree=Pos 18 acomp _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 7 # text = Gleaves over the simplex category $ Delta $ , which we call compositories, can be interpreted as a new kind of higher category in which the composition of an $ m $ - morphism and an $ n $ - morphism along a common $ k $ - morphism face results in an $ (m+n - k) $ - morphism. 1 Gleaves gleave NOUN NNS Number=Plur 15 nsubjpass _ _ 2 over over ADP IN _ 1 prep _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 simplex simplex NOUN NN Number=Sing 5 compound _ _ 5 category category NOUN NN Number=Sing 2 pobj _ _ 6 $ Delta $ $ delta $ SYM $ _ 5 appos _ _ 7 , , PUNCT , PunctType=Comm 5 punct _ _ 8 which which PRON WDT _ 10 dobj _ _ 9 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 10 nsubj _ _ 10 call call VERB VBP Tense=Pres|VerbForm=Fin 1 relcl _ _ 11 compositories compositorie NOUN NNS Number=Plur 10 dobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 15 punct _ _ 13 can can AUX MD VerbForm=Fin 15 aux _ _ 14 be be AUX VB VerbForm=Inf 15 auxpass _ _ 15 interpreted interpret VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 16 as as ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 18 new new ADJ JJ Degree=Pos 19 amod _ _ 19 kind kind NOUN NN Number=Sing 16 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 higher high ADJ JJR Degree=Cmp 22 amod _ _ 22 category category NOUN NN Number=Sing 20 pobj _ _ 23 in in ADP IN _ 43 prep _ _ 24 which which PRON WDT _ 23 pobj _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 composition composition NOUN NN Number=Sing 43 nsubj _ _ 27 of of ADP IN _ 26 prep _ _ 28 an an DET DT Definite=Ind|PronType=Art 31 det _ _ 29 $ m $ $ m $ SYM $ _ 31 compound _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 morphism morphism NOUN NN Number=Sing 27 pobj _ _ 32 and and CCONJ CC ConjType=Cmp 31 cc _ _ 33 an an DET DT Definite=Ind|PronType=Art 36 det _ _ 34 $ n $ $ n $ SYM $ _ 36 compound _ _ 35 - - PUNCT HYPH PunctType=Dash 36 punct _ _ 36 morphism morphism NOUN NN Number=Sing 31 conj _ _ 37 along along ADP IN _ 36 prep _ _ 38 a a DET DT Definite=Ind|PronType=Art 42 det _ _ 39 common common ADJ JJ Degree=Pos 42 amod _ _ 40 $ k $ $ k $ SYM $ _ 42 nummod _ _ 41 - - PUNCT HYPH PunctType=Dash 42 punct _ _ 42 morphism morphism NOUN NN Number=Sing 37 pobj _ _ 43 face face NOUN NN Number=Sing 22 relcl _ _ 44 results result NOUN NNS Number=Plur 43 dobj _ _ 45 in in ADP IN _ 43 prep _ _ 46 an an DET DT Definite=Ind|PronType=Art 49 det _ _ 47 $ (m+n - k) $ $ (m+n - k) $ SYM $ _ 49 compound _ _ 48 - - PUNCT HYPH PunctType=Dash 49 punct _ _ 49 morphism morphism NOUN NN Number=Sing 45 pobj _ SpaceAfter=No 50 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 8 # text = The distinctive feature of this composition operation is that the original morphisms can be recovered from the composite morphism as initial and final faces. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 distinctive distinctive ADJ JJ Degree=Pos 3 amod _ _ 3 feature feature NOUN NN Number=Sing 8 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 this this DET DT Number=Sing|PronType=Dem 7 det _ _ 6 composition composition NOUN NN Number=Sing 7 compound _ _ 7 operation operation NOUN NN Number=Sing 4 pobj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 that that SCONJ IN _ 15 mark _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 original original ADJ JJ Degree=Pos 12 amod _ _ 12 morphisms morphism NOUN NNS Number=Plur 15 nsubjpass _ _ 13 can can AUX MD VerbForm=Fin 15 aux _ _ 14 be be AUX VB VerbForm=Inf 15 auxpass _ _ 15 recovered recover VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 ccomp _ _ 16 from from ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 composite composite ADJ JJ Degree=Pos 19 amod _ _ 19 morphism morphism NOUN NN Number=Sing 16 pobj _ _ 20 as as ADP IN _ 15 prep _ _ 21 initial initial ADJ JJ Degree=Pos 24 amod _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 final final ADJ JJ Degree=Pos 21 conj _ _ 24 faces face NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 9 # text = Examples of compositories include nerves of categories and compositories of higher spans. 1 Examples example NOUN NNS Number=Plur 4 nsubj _ _ 2 of of ADP IN _ 1 prep _ _ 3 compositories compositorie NOUN NNS Number=Plur 2 pobj _ _ 4 include include VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 nerves nerve NOUN NNS Number=Plur 4 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 categories category NOUN NNS Number=Plur 6 pobj _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 compositories compositorie NOUN NNS Number=Plur 7 conj _ _ 10 of of ADP IN _ 7 prep _ _ 11 higher high ADJ JJR Degree=Cmp 12 amod _ _ 12 spans span NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 572 # sent_id = 1 # text = We study the theory of representations of a 2 - group $ G $ in Baez - Crans 2 - vector spaces over a field $ k $ of arbitrary characteristic, and the corresponding 2 - vector spaces of intertwiners. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 theory theory NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 representations representation NOUN NNS Number=Plur 5 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 9 2 2 NUM CD NumType=Card 11 nummod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 group group NOUN NN Number=Sing 12 compound _ _ 12 $ G $ $ g $ SYM $ _ 7 pobj _ _ 13 in in ADP IN _ 6 prep _ _ 14 Baez Baez PROPN NNP Number=Sing 16 nmod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 Crans Crans PROPN NNPS Number=Plur 20 nmod _ _ 17 2 2 NUM CD NumType=Card 19 nummod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 vector vector NOUN NN Number=Sing 20 compound _ _ 20 spaces space NOUN NNS Number=Plur 13 pobj _ _ 21 over over ADP IN _ 20 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 23 field field NOUN NN Number=Sing 21 pobj _ _ 24 $ k $ $ k $ SYM $ _ 23 appos _ _ 25 of of ADP IN _ 24 prep _ _ 26 arbitrary arbitrary ADJ JJ Degree=Pos 27 amod _ _ 27 characteristic characteristic NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 2 punct _ _ 29 and and CCONJ CC ConjType=Cmp 2 cc _ _ 30 the the DET DT Definite=Def|PronType=Art 35 det _ _ 31 corresponding corresponding ADJ JJ Degree=Pos 35 amod _ _ 32 2 2 NUM CD NumType=Card 34 nummod _ _ 33 - - PUNCT HYPH PunctType=Dash 34 punct _ _ 34 vector vector NOUN NN Number=Sing 35 compound _ _ 35 spaces space NOUN NNS Number=Plur 2 conj _ _ 36 of of ADP IN _ 35 prep _ _ 37 intertwiners intertwiner NOUN NNS Number=Plur 36 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We also characterize the irreducible and indecomposable representations. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 8 det _ _ 5 irreducible irreducible ADJ JJ Degree=Pos 8 amod _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 indecomposable indecomposable ADJ JJ Degree=Pos 5 conj _ _ 8 representations representation NOUN NNS Number=Plur 3 dobj _ SpaceAfter=No 9 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = Finally, it is shown that when the 2 - group is finite and the base field $ k $ is of characteristic zero or coprime to the orders of the homotopy groups of $ G $ , the theory essentially reduces to the theory of $ k $ - linear representations of the first homotopy group of $ G $ , the remaining homotopy invariants of $ G $ playing no role. 1 Finally finally ADV RB _ 5 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 5 punct _ _ 3 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 5 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 38 ccomp _ _ 6 that that SCONJ IN _ 19 mark _ _ 7 when when SCONJ WRB _ 12 advmod _ _ 8 the the DET DT Definite=Def|PronType=Art 11 det _ _ 9 2 2 NUM CD NumType=Card 11 nummod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 group group NOUN NN Number=Sing 12 nsubj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 advcl _ _ 13 finite finite ADJ JJ Degree=Pos 12 acomp _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 base base NOUN NN Number=Sing 17 compound _ _ 17 field field NOUN NN Number=Sing 19 nsubj _ _ 18 $ k $ $ k $ SYM $ _ 17 appos _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 ccomp _ _ 20 of of ADP IN _ 19 prep _ _ 21 characteristic characteristic ADJ JJ Degree=Pos 22 amod _ _ 22 zero zero NUM CD NumType=Card 20 pobj _ _ 23 or or CCONJ CC ConjType=Cmp 20 cc _ _ 24 coprime coprime ADV RB _ 20 conj _ _ 25 to to ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 orders order NOUN NNS Number=Plur 25 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 31 det _ _ 30 homotopy homotopy NOUN NN Number=Sing 31 compound _ _ 31 groups group NOUN NNS Number=Plur 28 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 $ G $ $ g $ SYM $ _ 32 pobj _ _ 34 , , PUNCT , PunctType=Comm 38 punct _ _ 35 the the DET DT Definite=Def|PronType=Art 36 det _ _ 36 theory theory NOUN NN Number=Sing 38 nsubj _ _ 37 essentially essentially ADV RB _ 38 advmod _ _ 38 reduces reduce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 39 to to ADP IN _ 38 prep _ _ 40 the the DET DT Definite=Def|PronType=Art 41 det _ _ 41 theory theory NOUN NN Number=Sing 39 pobj _ _ 42 of of ADP IN _ 41 prep _ _ 43 $ k $ $ k $ SYM $ _ 45 quantmod _ _ 44 - - PUNCT HYPH PunctType=Dash 45 punct _ _ 45 linear linear ADJ JJ Degree=Pos 46 amod _ _ 46 representations representation NOUN NNS Number=Plur 42 pobj _ _ 47 of of ADP IN _ 46 prep _ _ 48 the the DET DT Definite=Def|PronType=Art 51 det _ _ 49 first first ADJ JJ Degree=Pos 51 amod _ _ 50 homotopy homotopy NOUN NN Number=Sing 51 compound _ _ 51 group group NOUN NN Number=Sing 47 pobj _ _ 52 of of ADP IN _ 51 prep _ _ 53 $ G $ $ g $ SYM $ _ 52 pobj _ _ 54 , , PUNCT , PunctType=Comm 38 punct _ _ 55 the the DET DT Definite=Def|PronType=Art 58 det _ _ 56 remaining remain VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 58 amod _ _ 57 homotopy homotopy NOUN NN Number=Sing 58 compound _ _ 58 invariants invariant NOUN NNS Number=Plur 38 dobj _ _ 59 of of ADP IN _ 58 prep _ _ 60 $ G $ $ g $ SYM $ _ 59 pobj _ _ 61 playing play VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 58 acl _ _ 62 no no DET DT _ 63 det _ _ 63 role role NOUN NN Number=Sing 61 dobj _ SpaceAfter=No 64 . . PUNCT . PunctType=Peri 38 punct _ SpaceAfter=No # doc_id = 573 # sent_id = 1 # text = We consider locales $ B $ as algebras in the tensor category $ sl $ of sup - lattices. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 locales locale NOUN NNS Number=Plur 2 dobj _ _ 4 $ B $ $ b $ SYM $ _ 3 dep _ _ 5 as as ADP IN _ 3 prep _ _ 6 algebras algebra NOUN NNS Number=Plur 5 pobj _ _ 7 in in ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 tensor tensor NOUN NN Number=Sing 10 compound _ _ 10 category category NOUN NN Number=Sing 7 pobj _ _ 11 $ sl $ $ sl $ SYM $ _ 10 appos _ _ 12 of of ADP IN _ 11 prep _ _ 13 sup sup NOUN NN Number=Sing 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 lattices lattice NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We show the equivalence between the Joyal - Tierney descent theorem for open localic surjections $ q : shB - - > E $ in Galois theory and a Tannakian recognition theorem over $ sl $ for the $ sl $ - functor $ Rel (q^*) : Rel(E) - - > Rel(shB) cong (B - Mod)_0 $ into the sl - category of discrete $ B $ - modules. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 equivalence equivalence NOUN NN Number=Sing 11 nsubj _ _ 5 between between ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 10 det _ _ 7 Joyal Joyal PROPN NNP Number=Sing 9 compound _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 Tierney Tierney PROPN NNP Number=Sing 10 compound _ _ 10 descent descent NOUN NN Number=Sing 5 pobj _ _ 11 theorem theorem VERB VBD Tense=Past|VerbForm=Fin 2 ccomp _ _ 12 for for ADP IN _ 11 prep _ _ 13 open open ADJ JJ Degree=Pos 15 amod _ _ 14 localic localic ADJ JJ Degree=Pos 15 amod _ _ 15 surjections surjection NOUN NNS Number=Plur 12 pobj _ _ 16 $ q : shB - - > E $ $ q : shb - - > e $ SYM $ _ 11 dep _ _ 17 in in ADP IN _ 16 prep _ _ 18 Galois Galois PROPN NNP Number=Sing 19 compound _ _ 19 theory theory NOUN NN Number=Sing 17 pobj _ _ 20 and and CCONJ CC ConjType=Cmp 11 cc _ _ 21 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 22 Tannakian tannakian ADJ JJ Degree=Pos 23 amod _ _ 23 recognition recognition NOUN NN Number=Sing 24 nsubj _ _ 24 theorem theorem VERB VBD Tense=Past|VerbForm=Fin 11 conj _ _ 25 over over ADP IN _ 26 quantmod _ _ 26 $ sl $ $ sl $ SYM $ _ 24 dobj _ _ 27 for for ADP IN _ 24 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 31 det _ _ 29 $ sl $ $ sl $ SYM $ _ 31 compound _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 functor functor NOUN NN Number=Sing 27 pobj _ _ 32 $ Rel (q^*) : Rel(E) - - > Rel(shB) cong (B - Mod)_0 $ $ rel (q^*) : rel(e) - - > rel(shb) cong (b - mod)_0 $ SYM $ _ 27 dep _ _ 33 into into ADP IN _ 24 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 37 det _ _ 35 sl sl NOUN NN Number=Sing 37 compound _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 category category NOUN NN Number=Sing 33 pobj _ _ 38 of of ADP IN _ 37 prep _ _ 39 discrete discrete ADJ JJ Degree=Pos 42 amod _ _ 40 $ B $ $ b $ SYM $ _ 42 compound _ _ 41 - - PUNCT HYPH PunctType=Dash 42 punct _ _ 42 modules module NOUN NNS Number=Plur 38 pobj _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Thus, a new Tannaka recognition theorem is obtained, essentially different from those known so far. 1 Thus thus ADV RB _ 9 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 9 punct _ _ 3 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 4 new new ADJ JJ Degree=Pos 7 amod _ _ 5 Tannaka Tannaka PROPN NNP Number=Sing 6 compound _ _ 6 recognition recognition NOUN NN Number=Sing 7 compound _ _ 7 theorem theorem VERB VBD Tense=Past|VerbForm=Fin 9 nsubjpass _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 essentially essentially ADV RB _ 12 advmod _ _ 12 different different ADJ JJ Degree=Pos 9 advmod _ _ 13 from from ADP IN _ 12 prep _ _ 14 those those PRON DT Number=Plur|PronType=Dem 13 pobj _ _ 15 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 acl _ _ 16 so so ADV RB _ 17 advmod _ _ 17 far far ADV RB _ 12 advmod _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 4 # text = This equivalence follows from two independent results. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 equivalence equivalence NOUN NN Number=Sing 3 nsubj _ _ 3 follows follow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 from from ADP IN _ 3 prep _ _ 5 two two NUM CD NumType=Card 7 nummod _ _ 6 independent independent ADJ JJ Degree=Pos 7 amod _ _ 7 results result NOUN NNS Number=Plur 4 pobj _ SpaceAfter=No 8 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = We develop an explicit construction of the localic groupoid $ G $ associated by Joyal - Tierney to $ q $ , and do an exhaustive comparison with the Deligne Tannakian construction of the Hopf algebroid $ L $ associated to $ Rel(q^*) $ , and show they are isomorphic, that is, $ L cong O(G) $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 develop develop VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 4 explicit explicit ADJ JJ Degree=Pos 5 amod _ _ 5 construction construction NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 localic localic ADJ JJ Degree=Pos 9 amod _ _ 9 groupoid groupoid NOUN NN Number=Sing 6 pobj _ _ 10 $ G $ $ g $ SYM $ _ 9 appos _ _ 11 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 acl _ _ 12 by by ADP IN _ 11 agent _ _ 13 Joyal Joyal PROPN NNP Number=Sing 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 Tierney Tierney PROPN NNP Number=Sing 12 pobj _ _ 16 to to ADP IN _ 11 prep _ _ 17 $ q $ $ q $ SYM $ _ 16 pobj _ _ 18 , , PUNCT , PunctType=Comm 2 punct _ _ 19 and and CCONJ CC ConjType=Cmp 2 cc _ _ 20 do do VERB VB VerbForm=Inf 2 conj _ _ 21 an an DET DT Definite=Ind|PronType=Art 23 det _ _ 22 exhaustive exhaustive ADJ JJ Degree=Pos 23 amod _ _ 23 comparison comparison NOUN NN Number=Sing 20 dobj _ _ 24 with with ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 28 det _ _ 26 Deligne Deligne PROPN NNP Number=Sing 27 compound _ _ 27 Tannakian Tannakian PROPN NNP Number=Sing 28 compound _ _ 28 construction construction NOUN NN Number=Sing 24 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 32 det _ _ 31 Hopf Hopf PROPN NNP Number=Sing 32 compound _ _ 32 algebroid algebroid NOUN NN Number=Sing 29 pobj _ _ 33 $ L $ $ l $ SYM $ _ 32 appos _ _ 34 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 acl _ _ 35 to to ADP IN _ 34 prep _ _ 36 $ Rel(q^*) $ $ rel(q^*) $ SYM $ _ 35 pobj _ _ 37 , , PUNCT , PunctType=Comm 20 punct _ _ 38 and and CCONJ CC ConjType=Cmp 20 cc _ _ 39 show show VERB VB VerbForm=Inf 20 conj _ _ 40 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 41 nsubj _ _ 41 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 39 ccomp _ _ 42 isomorphic isomorphic ADJ JJ Degree=Pos 41 acomp _ SpaceAfter=No 43 , , PUNCT , PunctType=Comm 39 punct _ _ 44 that that ADV RB _ 45 advmod _ _ 45 is is ADV RB _ 47 advmod _ SpaceAfter=No 46 , , PUNCT , PunctType=Comm 47 punct _ _ 47 $ L cong O(G) $ $ l cong o(g) $ SYM $ _ 39 dobj _ _ 48 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = On the other hand, we show that the $ sl $ - category of relations of the classifying topos of any localic groupoid $ G $ , is equivalent to the $ sl $ - category of $ L $ - comodules with discrete subjacent $ B $ - module, where $ L = O(G) $ . 1 On on ADP IN _ 7 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 other other ADJ JJ Degree=Pos 4 amod _ _ 4 hand hand NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 that that SCONJ IN _ 25 mark _ _ 9 the the DET DT Definite=Def|PronType=Art 12 det _ _ 10 $ sl $ $ sl $ SYM $ _ 12 amod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 category category NOUN NN Number=Sing 25 nsubj _ _ 13 of of ADP IN _ 12 prep _ _ 14 relations relation NOUN NNS Number=Plur 13 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 classifying classify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 18 amod _ _ 18 topos topos NOUN NN Number=Sing 15 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 any any DET DT _ 22 det _ _ 21 localic localic ADJ JJ Degree=Pos 22 amod _ _ 22 groupoid groupoid NOUN NN Number=Sing 19 pobj _ _ 23 $ G $ $ g $ SYM $ _ 22 appos _ _ 24 , , PUNCT , PunctType=Comm 25 punct _ _ 25 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 ccomp _ _ 26 equivalent equivalent ADJ JJ Degree=Pos 25 acomp _ _ 27 to to ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 31 det _ _ 29 $ sl $ $ sl $ SYM $ _ 31 nummod _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 category category NOUN NN Number=Sing 27 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 $ L $ $ l $ SYM $ _ 35 nmod _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 comodules comodule NOUN NNS Number=Plur 32 pobj _ _ 36 with with ADP IN _ 31 prep _ _ 37 discrete discrete ADJ JJ Degree=Pos 38 amod _ _ 38 subjacent subjacent NOUN NN Number=Sing 36 pobj _ _ 39 $ B $ $ b $ SYM $ _ 41 nummod _ _ 40 - - PUNCT HYPH PunctType=Dash 41 punct _ _ 41 module module NOUN NN Number=Sing 31 appos _ SpaceAfter=No 42 , , PUNCT , PunctType=Comm 41 punct _ _ 43 where where SCONJ WRB _ 44 advmod _ _ 44 $ L = O(G) $ $ l = o(g) $ SYM $ _ 31 relcl _ _ 45 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 7 # text = We are forced to work over an arbitrary base topos because, contrary to the neutral case which can be developed completely over $ Sets $ , here change of base techniques are unavoidable. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubjpass _ _ 2 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 forced force VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 to to PART TO _ 5 aux _ _ 5 work work VERB VB VerbForm=Inf 3 xcomp _ _ 6 over over ADP IN _ 5 prep _ _ 7 an an DET DT Definite=Ind|PronType=Art 10 det _ _ 8 arbitrary arbitrary ADJ JJ Degree=Pos 10 amod _ _ 9 base base NOUN NN Number=Sing 10 compound _ _ 10 topos topos NOUN NN Number=Sing 6 pobj _ _ 11 because because SCONJ IN _ 31 mark _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 31 punct _ _ 13 contrary contrary ADV RB _ 31 advmod _ _ 14 to to ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 neutral neutral ADJ JJ Degree=Pos 17 amod _ _ 17 case case NOUN NN Number=Sing 14 pobj _ _ 18 which which PRON WDT _ 21 nsubjpass _ _ 19 can can AUX MD VerbForm=Fin 21 aux _ _ 20 be be AUX VB VerbForm=Inf 21 auxpass _ _ 21 developed develop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 relcl _ _ 22 completely completely ADV RB _ 21 advmod _ _ 23 over over ADP IN _ 21 prep _ _ 24 $ Sets $ $ sets $ SYM $ _ 23 pobj _ _ 25 , , PUNCT , PunctType=Comm 21 punct _ _ 26 here here ADV RB PronType=Dem 31 advmod _ _ 27 change change NOUN NN Number=Sing 31 nsubj _ _ 28 of of ADP IN _ 27 prep _ _ 29 base base NOUN NN Number=Sing 30 compound _ _ 30 techniques technique NOUN NNS Number=Plur 28 pobj _ _ 31 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 advcl _ _ 32 unavoidable unavoidable ADJ JJ Degree=Pos 31 acomp _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 574 # sent_id = 1 # text = Projectivity, continuity and adjointness: quantales, $ Q $ - posets and $ Q $ - modules In this paper, projective modules over a quantale are characterized by distributivity, continuity, and adjointness conditions. 1 Projectivity projectivity NOUN NN Number=Sing 26 nsubjpass _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 1 punct _ _ 3 continuity continuity NOUN NN Number=Sing 1 conj _ _ 4 and and CCONJ CC ConjType=Cmp 3 cc _ _ 5 adjointness adjointness NOUN NN Number=Sing 3 conj _ SpaceAfter=No 6 : : PUNCT : _ 1 punct _ _ 7 quantales quantale NOUN NNS Number=Plur 1 appos _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 $ Q $ $ q $ SYM $ _ 11 compound _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 posets poset NOUN NNS Number=Plur 7 appos _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 $ Q $ $ q $ SYM $ _ 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 modules module NOUN NNS Number=Plur 1 appos _ _ 16 In in ADP IN _ 1 prep _ _ 17 this this DET DT Number=Sing|PronType=Dem 18 det _ _ 18 paper paper NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 1 punct _ _ 20 projective projective ADJ JJ Degree=Pos 21 amod _ _ 21 modules module NOUN NNS Number=Plur 1 appos _ _ 22 over over ADP IN _ 21 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 24 quantale quantale NOUN NN Number=Sing 22 pobj _ _ 25 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 26 auxpass _ _ 26 characterized characterize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 27 by by ADP IN _ 26 agent _ _ 28 distributivity distributivity NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 28 punct _ _ 30 continuity continuity NOUN NN Number=Sing 28 conj _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 30 punct _ _ 32 and and CCONJ CC ConjType=Cmp 30 cc _ _ 33 adjointness adjointness NOUN NN Number=Sing 34 compound _ _ 34 conditions condition NOUN NNS Number=Plur 30 conj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 26 punct _ SpaceAfter=No # sent_id = 2 # text = It is then shown that a morphism $ Q - - > A $ of commutative quantales is coexponentiable if and only if the corresponding $ Q $ - module is projective, and hence, satisfies these equivalent conditions. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 4 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 3 then then ADV RB PronType=Dem 4 advmod _ _ 4 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 that that SCONJ IN _ 12 mark _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 morphism morphism NOUN NN Number=Sing 12 nsubj _ _ 8 $ Q - - > A $ $ q - - > a $ SYM $ _ 12 nsubj _ _ 9 of of ADP IN _ 8 prep _ _ 10 commutative commutative ADJ JJ Degree=Pos 11 amod _ _ 11 quantales quantale NOUN NNS Number=Plur 9 pobj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 13 coexponentiable coexponentiable ADJ JJ Degree=Pos 12 acomp _ _ 14 if if SCONJ IN _ 29 mark _ _ 15 and and CCONJ CC ConjType=Cmp 29 cc _ _ 16 only only ADV RB _ 23 advmod _ _ 17 if if SCONJ IN _ 23 mark _ _ 18 the the DET DT Definite=Def|PronType=Art 22 det _ _ 19 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 amod _ _ 20 $ Q $ $ q $ SYM $ _ 22 compound _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 module module NOUN NN Number=Sing 23 nsubj _ _ 23 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 29 advcl _ _ 24 projective projective ADJ JJ Degree=Pos 23 acomp _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 23 punct _ _ 26 and and CCONJ CC ConjType=Cmp 23 cc _ _ 27 hence hence ADV RB _ 23 conj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 29 punct _ _ 29 satisfies satisfy VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 advcl _ _ 30 these these DET DT Number=Plur|PronType=Dem 32 det _ _ 31 equivalent equivalent ADJ JJ Degree=Pos 32 amod _ _ 32 conditions condition NOUN NNS Number=Plur 29 dobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 575 # sent_id = 1 # text = We present a version of the enriched Yoneda lemma for conventional (not $ infty $ - ) categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 version version NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 9 det _ _ 7 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 amod _ _ 8 Yoneda Yoneda PROPN NNP Number=Sing 9 compound _ _ 9 lemma lemma NOUN NN Number=Sing 5 pobj _ _ 10 for for ADP IN _ 4 prep _ _ 11 conventional conventional ADJ JJ Degree=Pos 17 amod _ _ 12 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 17 punct _ SpaceAfter=No 13 not not PART RB Polarity=Neg 17 neg _ _ 14 $ infty $ $ infty $ SYM $ _ 17 nmod _ _ 15 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 16 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 17 punct _ _ 17 categories category NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We do not require the base monoidal category $ M $ to be closed or symmetric monoidal. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 2 do do AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 aux _ _ 3 not not PART RB Polarity=Neg 4 neg _ _ 4 require require VERB VB VerbForm=Inf 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 8 det _ _ 6 base base ADJ JJ Degree=Pos 8 amod _ _ 7 monoidal monoidal NOUN NN Number=Sing 8 amod _ _ 8 category category NOUN NN Number=Sing 4 dobj _ _ 9 $ M $ $ m $ SYM $ _ 8 appos _ _ 10 to to PART TO _ 11 aux _ _ 11 be be AUX VB VerbForm=Inf 4 xcomp _ _ 12 closed closed ADJ JJ Degree=Pos 11 acomp _ _ 13 or or CCONJ CC ConjType=Cmp 12 cc _ _ 14 symmetric symmetric ADJ JJ Degree=Pos 15 amod _ _ 15 monoidal monoidal NOUN NN Number=Sing 12 conj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = In the case $ M $ has colimits and the monoidal structure in $ M $ preserves colimits in each argument, we prove that the Yoneda embedding $ A $ to $ P_M(A) $ is a universal functor from $ A $ to a category with colimits, left - tensored over $ M $ . 1 In in ADP IN _ 5 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 case case NOUN NN Number=Sing 1 pobj _ _ 4 $ M $ $ m $ SYM $ _ 5 nsubj _ _ 5 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 advcl _ _ 6 colimits colimit NOUN NNS Number=Plur 5 dobj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 monoidal monoidal ADJ JJ Degree=Pos 10 amod _ _ 10 structure structure NOUN NN Number=Sing 6 conj _ _ 11 in in ADP IN _ 10 prep _ _ 12 $ M $ $ m $ SYM $ _ 11 pobj _ _ 13 preserves preserve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 conj _ _ 14 colimits colimit NOUN NNS Number=Plur 13 dobj _ _ 15 in in ADP IN _ 13 prep _ _ 16 each each DET DT _ 17 det _ _ 17 argument argument NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 20 punct _ _ 19 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 20 nsubj _ _ 20 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 21 that that SCONJ IN _ 28 mark _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 Yoneda Yoneda PROPN NNP Number=Sing 24 nsubj _ _ 24 embedding embed VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 28 csubj _ _ 25 $ A $ $ a $ SYM $ _ 24 dobj _ _ 26 to to PART TO _ 24 prep _ _ 27 $ P_M(A) $ $ p_m(a) $ SYM $ _ 26 pobj _ _ 28 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 ccomp _ _ 29 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 30 universal universal ADJ JJ Degree=Pos 31 amod _ _ 31 functor functor NOUN NN Number=Sing 28 attr _ _ 32 from from ADP IN _ 28 prep _ _ 33 $ A $ $ a $ SYM $ _ 32 pobj _ _ 34 to to ADP IN _ 32 prep _ _ 35 a a DET DT Definite=Ind|PronType=Art 36 det _ _ 36 category category NOUN NN Number=Sing 34 pobj _ _ 37 with with ADP IN _ 36 prep _ _ 38 colimits colimit NOUN NNS Number=Plur 37 pobj _ SpaceAfter=No 39 , , PUNCT , PunctType=Comm 28 punct _ _ 40 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 42 amod _ _ 41 - - PUNCT HYPH PunctType=Dash 42 punct _ _ 42 tensored tensore VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 44 amod _ _ 43 over over ADP IN _ 44 quantmod _ _ 44 $ M $ $ m $ SYM $ _ 28 dep _ _ 45 . . PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # doc_id = 576 # sent_id = 1 # text = In this paper, we use some basic quasi - topos theory to study two functors: one adding infinitesimals of Fermat reals to diffeological spaces (which generalize smooth manifolds including singular spaces and infinite - dimensional spaces), and the other deleting infinitesimals on Fermat spaces. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 some some DET DT _ 12 det _ _ 8 basic basic ADJ JJ Degree=Pos 12 amod _ _ 9 quasi quasi ADJ JJ Degree=Pos 12 amod _ _ 10 - - NOUN NNS Number=Plur 12 amod _ _ 11 topos topos ADJ JJ Degree=Pos 12 compound _ _ 12 theory theory NOUN NN Number=Sing 6 dobj _ _ 13 to to PART TO _ 14 aux _ _ 14 study study VERB VB VerbForm=Inf 6 xcomp _ _ 15 two two NUM CD NumType=Card 16 nummod _ _ 16 functors functor NOUN NNS Number=Plur 14 dobj _ SpaceAfter=No 17 : : PUNCT : _ 16 punct _ _ 18 one one NUM CD NumType=Card 19 nummod _ _ 19 adding add VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 conj _ _ 20 infinitesimals infinitesimal NOUN NNS Number=Plur 19 dobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 Fermat Fermat PROPN NNP Number=Sing 23 amod _ _ 23 reals real NOUN NNS Number=Plur 21 pobj _ _ 24 to to ADP IN _ 20 prep _ _ 25 diffeological diffeological ADJ JJ Degree=Pos 26 amod _ _ 26 spaces space NOUN NNS Number=Plur 24 pobj _ _ 27 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 26 punct _ SpaceAfter=No 28 which which PRON WDT _ 29 nsubj _ _ 29 generalize generalize VERB VBP Tense=Pres|VerbForm=Fin 26 relcl _ _ 30 smooth smooth ADJ JJ Degree=Pos 31 amod _ _ 31 manifolds manifold NOUN NNS Number=Plur 29 dobj _ _ 32 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 31 prep _ _ 33 singular singular ADJ JJ Degree=Pos 34 amod _ _ 34 spaces space NOUN NNS Number=Plur 32 pobj _ _ 35 and and CCONJ CC ConjType=Cmp 34 cc _ _ 36 infinite infinite ADJ JJ Degree=Pos 38 amod _ _ 37 - - PUNCT HYPH PunctType=Dash 38 punct _ _ 38 dimensional dimensional ADJ JJ Degree=Pos 39 amod _ _ 39 spaces space NOUN NNS Number=Plur 34 conj _ SpaceAfter=No 40 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 26 punct _ SpaceAfter=No 41 , , PUNCT , PunctType=Comm 19 punct _ _ 42 and and CCONJ CC ConjType=Cmp 19 cc _ _ 43 the the DET DT Definite=Def|PronType=Art 46 det _ _ 44 other other ADJ JJ Degree=Pos 46 amod _ _ 45 deleting delete VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 46 amod _ _ 46 infinitesimals infinitesimal NOUN NNS Number=Plur 19 conj _ _ 47 on on ADP IN _ 46 prep _ _ 48 Fermat Fermat PROPN NNP Number=Sing 49 compound _ _ 49 spaces space NOUN NNS Number=Plur 47 pobj _ SpaceAfter=No 50 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = We study the properties of these functors, and calculate some examples. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 properties property NOUN NNS Number=Plur 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 these these DET DT Number=Plur|PronType=Dem 7 det _ _ 7 functors functor NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 2 punct _ _ 9 and and CCONJ CC ConjType=Cmp 2 cc _ _ 10 calculate calculate VERB VB VerbForm=Inf 2 conj _ _ 11 some some DET DT _ 12 det _ _ 12 examples example NOUN NNS Number=Plur 10 dobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = These serve as fundamentals for developing differential geometry on diffeological spaces using infinitesimals in a future paper. 1 These these PRON DT Number=Plur|PronType=Dem 2 nsubj _ _ 2 serve serve VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 as as ADP IN _ 2 prep _ _ 4 fundamentals fundamental NOUN NNS Number=Plur 3 pobj _ _ 5 for for ADP IN _ 4 prep _ _ 6 developing develop VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 pcomp _ _ 7 differential differential ADJ JJ Degree=Pos 8 amod _ _ 8 geometry geometry NOUN NN Number=Sing 6 dobj _ _ 9 on on ADP IN _ 6 prep _ _ 10 diffeological diffeological ADJ JJ Degree=Pos 11 amod _ _ 11 spaces space NOUN NNS Number=Plur 9 pobj _ _ 12 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 11 acl _ _ 13 infinitesimals infinitesimal NOUN NNS Number=Plur 12 dobj _ _ 14 in in ADP IN _ 12 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 future future ADJ JJ Degree=Pos 17 amod _ _ 17 paper paper NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 577 # sent_id = 1 # text = We give a direct proof that the category of strict $ omega $ - categories is monadic over the category of polygraphs. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 direct direct ADJ JJ Degree=Pos 5 amod _ _ 5 proof proof NOUN NN Number=Sing 2 dobj _ _ 6 that that SCONJ IN _ 14 mark _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 category category NOUN NN Number=Sing 14 nsubj _ _ 9 of of ADP IN _ 8 prep _ _ 10 strict strict ADJ JJ Degree=Pos 13 amod _ _ 11 $ omega $ $ omega $ SYM $ _ 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 categories category NOUN NNS Number=Plur 9 pobj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 acl _ _ 15 monadic monadic ADJ JJ Degree=Pos 14 acomp _ _ 16 over over ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 category category NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 polygraphs polygraphs PROPN NNP Number=Sing 19 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 578 # sent_id = 1 # text = A compact closed bicategory is a symmetric monoidal bicategory where every object is equipped with a weak dual. 1 A a DET DT Definite=Ind|PronType=Art 4 det _ _ 2 compact compact ADJ JJ Degree=Pos 3 advmod _ _ 3 closed closed ADJ JJ Degree=Pos 4 amod _ _ 4 bicategory bicategory NOUN NN Number=Sing 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 7 symmetric symmetric ADJ JJ Degree=Pos 9 amod _ _ 8 monoidal monoidal ADJ JJ Degree=Pos 9 amod _ _ 9 bicategory bicategory NOUN NN Number=Sing 5 attr _ _ 10 where where SCONJ WRB _ 14 advmod _ _ 11 every every DET DT _ 12 det _ _ 12 object object NOUN NN Number=Sing 14 nsubjpass _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 relcl _ _ 15 with with ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 weak weak ADJ JJ Degree=Pos 18 amod _ _ 18 dual dual NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = The unit and counit satisfy the usual ``zig - zag'' identities of a compact closed category only up to natural isomorphism, and the isomorphism is subject to a coherence law. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 unit unit NOUN NN Number=Sing 5 nsubj _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 counit counit PROPN NNP Number=Sing 2 conj _ _ 5 satisfy satisfy PROPN NNP Number=Sing 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 14 det _ _ 7 usual usual ADJ JJ Degree=Pos 14 amod _ _ 8 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 12 punct _ SpaceAfter=No 9 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 12 punct _ SpaceAfter=No 10 zig zig VERB VB VerbForm=Inf 12 compound _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 zag zag NOUN NN Number=Sing 7 nmod _ SpaceAfter=No 13 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 14 punct _ _ 14 identities identity NOUN NNS Number=Plur 5 dobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 17 compact compact ADJ JJ Degree=Pos 18 advmod _ _ 18 closed closed ADJ JJ Degree=Pos 19 amod _ _ 19 category category NOUN NN Number=Sing 15 pobj _ _ 20 only only ADV RB _ 21 advmod _ _ 21 up up ADP IN _ 5 prep _ _ 22 to to ADP IN _ 21 prep _ _ 23 natural natural ADJ JJ Degree=Pos 24 amod _ _ 24 isomorphism isomorphism NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 5 punct _ _ 26 and and CCONJ CC ConjType=Cmp 5 cc _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 isomorphism isomorphism NOUN NN Number=Sing 29 nsubj _ _ 29 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 conj _ _ 30 subject subject ADJ JJ Degree=Pos 29 acomp _ _ 31 to to ADP IN _ 30 prep _ _ 32 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 33 coherence coherence NOUN NN Number=Sing 34 compound _ _ 34 law law NOUN NN Number=Sing 31 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 29 punct _ SpaceAfter=No # sent_id = 3 # text = We give several examples of compact closed bicategories, then review previous work. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 several several ADJ JJ Degree=Pos 4 amod _ _ 4 examples example NOUN NNS Number=Plur 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 compact compact ADJ JJ Degree=Pos 8 amod _ _ 7 closed closed ADJ JJ Degree=Pos 8 amod _ _ 8 bicategories bicategorie NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 2 punct _ _ 10 then then ADV RB PronType=Dem 11 advmod _ _ 11 review review VERB VB VerbForm=Inf 2 conj _ _ 12 previous previous ADJ JJ Degree=Pos 13 amod _ _ 13 work work NOUN NN Number=Sing 11 dobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = In particular, Day and Street defined compact closed bicategories indirectly via Gray monoids and then appealed to a coherence theorem to extend the concept to bicategories; we restate the definition directly. 1 In in ADP IN _ 7 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 7 punct _ _ 4 Day Day PROPN NNP Number=Sing 3 nmod _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 Street Street PROPN NNP Number=Sing 4 conj _ _ 7 defined define VERB VBD Tense=Past|VerbForm=Fin 30 ccomp _ _ 8 compact compact ADJ JJ Degree=Pos 10 amod _ _ 9 closed closed ADJ JJ Degree=Pos 10 amod _ _ 10 bicategories bicategorie NOUN NNS Number=Plur 7 dobj _ _ 11 indirectly indirectly ADV RB _ 7 advmod _ _ 12 via via ADP IN _ 7 prep _ _ 13 Gray Gray PROPN NNP Number=Sing 14 compound _ _ 14 monoids monoid NOUN NNS Number=Plur 12 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 7 cc _ _ 16 then then ADV RB PronType=Dem 17 advmod _ _ 17 appealed appeal VERB VBD Tense=Past|VerbForm=Fin 7 conj _ _ 18 to to ADP IN _ 17 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 coherence coherence NOUN NN Number=Sing 18 pobj _ _ 21 theorem theorem ADJ JJ Degree=Pos 17 ccomp _ _ 22 to to PART TO _ 23 aux _ _ 23 extend extend VERB VB VerbForm=Inf 21 xcomp _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 concept concept NOUN NN Number=Sing 23 dobj _ _ 26 to to ADP IN _ 23 prep _ _ 27 bicategories bicategorie NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 28 ; ; PUNCT : _ 30 punct _ _ 29 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 30 nsubj _ _ 30 restate restate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 definition definition NOUN NN Number=Sing 30 dobj _ _ 33 directly directly ADV RB _ 30 advmod _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 30 punct _ SpaceAfter=No # sent_id = 5 # text = We prove that given a 2 - category $ T $ with finite products and weak pullbacks, the bicategory of objects of $ C $ , spans, and isomorphism classes of maps of spans is compact closed. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 33 mark _ _ 4 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 33 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 6 2 2 NUM CD NumType=Card 8 nummod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 category category NOUN NN Number=Sing 9 compound _ _ 9 $ T $ $ t $ SYM $ _ 4 pobj _ _ 10 with with ADP IN _ 4 prep _ _ 11 finite finite ADJ JJ Degree=Pos 12 amod _ _ 12 products product NOUN NNS Number=Plur 10 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 weak weak ADJ JJ Degree=Pos 15 amod _ _ 15 pullbacks pullback NOUN NNS Number=Plur 12 conj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 33 punct _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 bicategory bicategory NOUN NN Number=Sing 33 nsubj _ _ 19 of of ADP IN _ 18 prep _ _ 20 objects object NOUN NNS Number=Plur 19 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 $ C $ $ c $ SYM $ _ 21 pobj _ _ 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 spans span NOUN NNS Number=Plur 22 conj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 and and CCONJ CC ConjType=Cmp 24 cc _ _ 27 isomorphism isomorphism NOUN NN Number=Sing 28 compound _ _ 28 classes class NOUN NNS Number=Plur 24 conj _ _ 29 of of ADP IN _ 28 prep _ _ 30 maps map NOUN NNS Number=Plur 29 pobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 spans span NOUN NNS Number=Plur 31 pobj _ _ 33 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 34 compact compact ADJ JJ Degree=Pos 35 advmod _ _ 35 closed closed ADJ JJ Degree=Pos 33 acomp _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = As corollaries, the bicategory of spans of sets and certain bicategories of ``resistor networks'' are compact closed. 1 As as ADP IN _ 19 prep _ _ 2 corollaries corollary NOUN NNS Number=Plur 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 19 punct _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 bicategory bicategory NOUN NN Number=Sing 19 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 spans span NOUN NNS Number=Plur 6 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 sets set NOUN NNS Number=Plur 8 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 7 cc _ _ 11 certain certain ADJ JJ Degree=Pos 12 amod _ _ 12 bicategories bicategorie NOUN NNS Number=Plur 5 conj _ _ 13 of of ADP IN _ 12 prep _ _ 14 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 17 punct _ SpaceAfter=No 15 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 17 punct _ SpaceAfter=No 16 resistor resistor NOUN NN Number=Sing 17 compound _ _ 17 networks network NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 18 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 17 punct _ _ 19 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 20 compact compact ADJ JJ Degree=Pos 21 advmod _ _ 21 closed closed ADJ JJ Degree=Pos 19 acomp _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # doc_id = 579 # sent_id = 1 # text = We develop a homotopy theory of categories enriched in a monoidal model category $ V $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 develop develop VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 homotopy homotopy NOUN NN Number=Sing 5 compound _ _ 5 theory theory NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 categories category NOUN NNS Number=Plur 6 pobj _ _ 8 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 acl _ _ 9 in in ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 monoidal monoidal ADJ JJ Degree=Pos 12 amod _ _ 12 model model NOUN NN Number=Sing 9 pobj _ _ 13 category category NOUN NN Number=Sing 2 prep _ _ 14 $ V $ $ v $ SYM $ _ 2 dep _ _ 15 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = In particular, we deal with homotopy weighted limits and colimits, and homotopy local presentability. 1 In in ADP IN _ 5 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 deal deal VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 with with ADP IN _ 5 prep _ _ 7 homotopy homotopy PROPN NNP Number=Sing 6 pobj _ _ 8 weighted weight VERB VBD Tense=Past|VerbForm=Fin 5 conj _ _ 9 limits limit NOUN NNS Number=Plur 8 dobj _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 colimits colimit NOUN NNS Number=Plur 9 conj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 8 punct _ _ 13 and and CCONJ CC ConjType=Cmp 8 cc _ _ 14 homotopy homotopy VERB VB VerbForm=Inf 8 conj _ _ 15 local local ADJ JJ Degree=Pos 16 amod _ _ 16 presentability presentability NOUN NN Number=Sing 14 dobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = The main result, which was known for simplicially - enriched categories, links homotopy locally presentable $ V $ - categories with combinatorial model $ V $ - categories, in the case where all objects of $ V $ are cofibrant. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 result result NOUN NN Number=Sing 15 nsubj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 3 punct _ _ 5 which which PRON WDT _ 7 nsubjpass _ _ 6 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 7 auxpass _ _ 7 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 relcl _ _ 8 for for ADP IN _ 7 prep _ _ 9 simplicially simplicially ADV RB _ 11 advmod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 12 categories category NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 15 punct _ _ 14 links link NOUN NNS Number=Plur 15 nsubj _ _ 15 homotopy homotopy VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 16 locally locally ADV RB _ 17 advmod _ _ 17 presentable presentable ADJ JJ Degree=Pos 20 amod _ _ 18 $ V $ $ v $ SYM $ _ 20 compound _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 categories category NOUN NNS Number=Plur 15 dobj _ _ 21 with with ADP IN _ 15 prep _ _ 22 combinatorial combinatorial ADJ JJ Degree=Pos 23 amod _ _ 23 model model NOUN NN Number=Sing 21 pobj _ _ 24 $ V $ $ v $ SYM $ _ 26 nummod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 categories category NOUN NNS Number=Plur 23 appos _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 15 punct _ _ 28 in in ADP IN _ 15 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 case case NOUN NN Number=Sing 28 pobj _ _ 31 where where SCONJ WRB _ 36 advmod _ _ 32 all all DET DT _ 33 det _ _ 33 objects object NOUN NNS Number=Plur 36 nsubj _ _ 34 of of ADP IN _ 33 prep _ _ 35 $ V $ $ v $ SYM $ _ 34 pobj _ _ 36 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 30 relcl _ _ 37 cofibrant cofibrant NOUN NN Number=Sing 36 attr _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # doc_id = 580 # sent_id = 1 # text = The Joyal model structure on simplicial sets is extended to a model structure on the simplicial presheaves on a small site, in which the cofibrations are monomorphisms and the weak equivalences are local (or stalkwise) Joyal equivalences. 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 Joyal Joyal PROPN NNP Number=Sing 4 amod _ _ 3 model model NOUN NN Number=Sing 4 compound _ _ 4 structure structure NOUN NN Number=Sing 9 nsubjpass _ _ 5 on on ADP IN _ 4 prep _ _ 6 simplicial simplicial ADJ JJ Degree=Pos 7 amod _ _ 7 sets set NOUN NNS Number=Plur 5 pobj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 extended extend VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 to to ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 model model NOUN NN Number=Sing 13 compound _ _ 13 structure structure NOUN NN Number=Sing 10 pobj _ _ 14 on on ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 simplicial simplicial ADJ JJ Degree=Pos 17 amod _ _ 17 presheaves presheave NOUN NNS Number=Plur 14 pobj _ _ 18 on on ADP IN _ 17 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 20 small small ADJ JJ Degree=Pos 21 amod _ _ 21 site site NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 in in ADP IN _ 27 prep _ _ 24 which which PRON WDT _ 23 pobj _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 cofibrations cofibration NOUN NNS Number=Plur 27 nsubj _ _ 27 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 21 relcl _ _ 28 monomorphisms monomorphism NOUN NNS Number=Plur 27 attr _ _ 29 and and CCONJ CC ConjType=Cmp 9 cc _ _ 30 the the DET DT Definite=Def|PronType=Art 32 det _ _ 31 weak weak ADJ JJ Degree=Pos 32 amod _ _ 32 equivalences equivalence NOUN NNS Number=Plur 33 nsubj _ _ 33 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 conj _ _ 34 local local ADJ JJ Degree=Pos 40 amod _ _ 35 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 34 punct _ SpaceAfter=No 36 or or CCONJ CC ConjType=Cmp 34 cc _ _ 37 stalkwise stalkwise ADJ JJ Degree=Pos 34 conj _ SpaceAfter=No 38 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 40 punct _ _ 39 Joyal joyal ADJ JJ Degree=Pos 40 amod _ _ 40 equivalences equivalence NOUN NNS Number=Plur 33 attr _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 33 punct _ SpaceAfter=No # sent_id = 2 # text = The model structure is shown to be left proper. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 model model NOUN NN Number=Sing 3 compound _ _ 3 structure structure NOUN NN Number=Sing 5 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 to to PART TO _ 8 aux _ _ 7 be be AUX VB VerbForm=Inf 8 auxpass _ _ 8 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 xcomp _ _ 9 proper proper ADJ JJ Degree=Pos 8 oprd _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 581 # sent_id = 1 # text = We show that in any symmetric monoidal category, if a weight for colimits is absolute, then the resulting colimit of any diagram of dualizable objects is again dualizable. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 28 mark _ _ 4 in in ADP IN _ 28 prep _ _ 5 any any DET DT _ 8 det _ _ 6 symmetric symmetric ADJ JJ Degree=Pos 8 amod _ _ 7 monoidal monoidal ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 4 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 28 punct _ _ 10 if if SCONJ IN _ 15 mark _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 weight weight NOUN NN Number=Sing 15 nsubj _ _ 13 for for ADP IN _ 12 prep _ _ 14 colimits colimit NOUN NNS Number=Plur 13 pobj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 28 advcl _ _ 16 absolute absolute ADJ JJ Degree=Pos 15 acomp _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 28 punct _ _ 18 then then ADV RB PronType=Dem 28 advmod _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 resulting result VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 21 amod _ _ 21 colimit colimit NOUN NN Number=Sing 28 nsubj _ _ 22 of of ADP IN _ 21 prep _ _ 23 any any DET DT _ 24 det _ _ 24 diagram diagram NOUN NN Number=Sing 22 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 dualizable dualizable ADJ JJ Degree=Pos 27 amod _ _ 27 objects object NOUN NNS Number=Plur 25 pobj _ _ 28 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 29 again again ADV RB _ 30 advmod _ _ 30 dualizable dualizable ADJ JJ Degree=Pos 28 acomp _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Moreover, in this case, if an endomorphism of the colimit is induced by an endomorphism of the diagram, then its trace can be calculated as a linear combination of traces on the objects in the diagram. 1 Moreover moreover ADV RB _ 27 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 27 punct _ _ 3 in in ADP IN _ 27 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 case case NOUN NN Number=Sing 3 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 27 punct _ _ 7 if if SCONJ IN _ 14 mark _ _ 8 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 9 endomorphism endomorphism NOUN NN Number=Sing 14 nsubjpass _ _ 10 of of ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 colimit colimit NOUN NN Number=Sing 10 pobj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 advcl _ _ 15 by by ADP IN _ 14 agent _ _ 16 an an DET DT Definite=Ind|PronType=Art 17 det _ _ 17 endomorphism endomorphism NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 diagram diagram NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 27 punct _ _ 22 then then ADV RB PronType=Dem 27 advmod _ _ 23 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 24 poss _ _ 24 trace trace NOUN NN Number=Sing 27 nsubjpass _ _ 25 can can AUX MD VerbForm=Fin 27 aux _ _ 26 be be AUX VB VerbForm=Inf 27 auxpass _ _ 27 calculated calculate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 28 as as ADP IN _ 27 prep _ _ 29 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 30 linear linear ADJ JJ Degree=Pos 31 amod _ _ 31 combination combination NOUN NN Number=Sing 28 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 traces trace NOUN NNS Number=Plur 32 pobj _ _ 34 on on ADP IN _ 33 prep _ _ 35 the the DET DT Definite=Def|PronType=Art 36 det _ _ 36 objects object NOUN NNS Number=Plur 34 pobj _ _ 37 in in ADP IN _ 36 prep _ _ 38 the the DET DT Definite=Def|PronType=Art 39 det _ _ 39 diagram diagram NOUN NN Number=Sing 37 pobj _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 27 punct _ SpaceAfter=No # sent_id = 3 # text = The formal nature of this result makes it easy to generalize to traces in homotopical contexts (using derivators) and traces in bicategories. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 formal formal ADJ JJ Degree=Pos 3 amod _ _ 3 nature nature NOUN NN Number=Sing 7 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 6 result result NOUN NN Number=Sing 4 pobj _ _ 7 makes make VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 9 nsubj _ _ 9 easy easy ADJ JJ Degree=Pos 7 ccomp _ _ 10 to to PART TO _ 11 aux _ _ 11 generalize generalize VERB VB VerbForm=Inf 9 xcomp _ _ 12 to to ADP IN _ 11 prep _ _ 13 traces trace NOUN NNS Number=Plur 12 pobj _ _ 14 in in ADP IN _ 13 prep _ _ 15 homotopical homotopical ADJ JJ Degree=Pos 16 amod _ _ 16 contexts context NOUN NNS Number=Plur 14 pobj _ _ 17 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 18 punct _ SpaceAfter=No 18 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 advcl _ _ 19 derivators derivator NOUN NNS Number=Plur 18 dobj _ SpaceAfter=No 20 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 18 punct _ _ 21 and and CCONJ CC ConjType=Cmp 18 cc _ _ 22 traces trace NOUN NNS Number=Plur 18 conj _ _ 23 in in ADP IN _ 22 prep _ _ 24 bicategories bicategorie NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = These generalizations include the familiar additivity of the Euler characteristic and Lefschetz number along cofiber sequences, as well as an analogous result for the Reidemeister trace, but also the orbit - counting theorem for sets with a group action, and a general formula for homotopy colimits over $ EI $ - categories. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 generalizations generalization NOUN NNS Number=Plur 3 nsubj _ _ 3 include include VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 familiar familiar ADJ JJ Degree=Pos 6 amod _ _ 6 additivity additivity NOUN NN Number=Sing 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 Euler Euler PROPN NNP Number=Sing 10 compound _ _ 10 characteristic characteristic ADJ JJ Degree=Pos 7 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 6 cc _ _ 12 Lefschetz lefschetz ADJ JJ Degree=Pos 13 amod _ _ 13 number number NOUN NN Number=Sing 6 conj _ _ 14 along along ADP IN _ 13 prep _ _ 15 cofiber cofiber NOUN NN Number=Sing 16 compound _ _ 16 sequences sequence NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 13 punct _ _ 18 as as ADV RB _ 20 advmod _ _ 19 well well ADV RB Degree=Pos 20 advmod _ _ 20 as as ADP IN _ 13 cc _ _ 21 an an DET DT Definite=Ind|PronType=Art 23 det _ _ 22 analogous analogous ADJ JJ Degree=Pos 23 amod _ _ 23 result result NOUN NN Number=Sing 13 conj _ _ 24 for for ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 27 det _ _ 26 Reidemeister Reidemeister PROPN NNP Number=Sing 27 compound _ _ 27 trace trace NOUN NN Number=Sing 24 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 13 punct _ _ 29 but but CCONJ CC ConjType=Cmp 13 cc _ _ 30 also also ADV RB _ 29 advmod _ _ 31 the the DET DT Definite=Def|PronType=Art 35 det _ _ 32 orbit orbit NOUN NN Number=Sing 34 compound _ _ 33 - - PUNCT HYPH PunctType=Dash 34 punct _ _ 34 counting counting NOUN NN Number=Sing 35 compound _ _ 35 theorem theorem NOUN NN Number=Sing 13 conj _ _ 36 for for ADP IN _ 35 prep _ _ 37 sets set NOUN NNS Number=Plur 36 pobj _ _ 38 with with ADP IN _ 37 prep _ _ 39 a a DET DT Definite=Ind|PronType=Art 41 det _ _ 40 group group NOUN NN Number=Sing 41 compound _ _ 41 action action NOUN NN Number=Sing 38 pobj _ SpaceAfter=No 42 , , PUNCT , PunctType=Comm 35 punct _ _ 43 and and CCONJ CC ConjType=Cmp 35 cc _ _ 44 a a DET DT Definite=Ind|PronType=Art 46 det _ _ 45 general general ADJ JJ Degree=Pos 46 amod _ _ 46 formula formula NOUN NN Number=Sing 35 conj _ _ 47 for for ADP IN _ 46 prep _ _ 48 homotopy homotopy NOUN NN Number=Sing 49 compound _ _ 49 colimits colimit NOUN NNS Number=Plur 47 pobj _ _ 50 over over ADP IN _ 49 prep _ _ 51 $ EI $ $ ei $ SYM $ _ 53 compound _ _ 52 - - PUNCT HYPH PunctType=Dash 53 punct _ _ 53 categories category NOUN NNS Number=Plur 50 pobj _ SpaceAfter=No 54 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 582 # sent_id = 1 # text = We show that every abstract Krivine structure in the sense of Streicher can be obtained, up to equivalence of the resulting tripos, from a filtered opca $ (A, A') $ and a subobject of 1 in the relative realizability topos $ RT(A', A) $ ; the topos is always a Boolean subtopos of $ RT(A', A) $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 44 ccomp _ _ 3 that that SCONJ IN _ 15 mark _ _ 4 every every DET DT _ 7 det _ _ 5 abstract abstract ADJ JJ Degree=Pos 7 amod _ _ 6 Krivine Krivine PROPN NNP Number=Sing 7 compound _ _ 7 structure structure NOUN NN Number=Sing 15 nsubjpass _ _ 8 in in ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 sense sense NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 Streicher Streicher PROPN NNP Number=Sing 11 pobj _ _ 13 can can AUX MD VerbForm=Fin 15 aux _ _ 14 be be AUX VB VerbForm=Inf 15 auxpass _ _ 15 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 up up ADP IN _ 15 prep _ _ 18 to to ADP IN _ 17 prep _ _ 19 equivalence equivalence NOUN NN Number=Sing 18 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 23 det _ _ 22 resulting result VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 23 amod _ _ 23 tripos tripo NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 15 punct _ _ 25 from from ADP IN _ 15 prep _ _ 26 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 27 filtered filter VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 amod _ _ 28 opca opca NOUN NN Number=Sing 25 pobj _ _ 29 $ (A, A') $ $ (a, a') $ SYM $ _ 28 appos _ _ 30 and and CCONJ CC ConjType=Cmp 29 cc _ _ 31 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 32 subobject subobject NOUN NN Number=Sing 29 conj _ _ 33 of of ADP IN _ 32 prep _ _ 34 1 1 NUM CD NumType=Card 33 pobj _ _ 35 in in ADP IN _ 29 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 38 det _ _ 37 relative relative ADJ JJ Degree=Pos 38 amod _ _ 38 realizability realizability NOUN NN Number=Sing 35 pobj _ _ 39 topos topos NOUN NN Number=Sing 29 appos _ _ 40 $ RT(A', A) $ $ rt(a', a) $ SYM $ _ 28 conj _ _ 41 ; ; PUNCT : _ 44 punct _ _ 42 the the DET DT Definite=Def|PronType=Art 43 det _ _ 43 topos topos NOUN NN Number=Sing 44 nsubj _ _ 44 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 45 always always ADV RB _ 44 advmod _ _ 46 a a DET DT Definite=Ind|PronType=Art 48 det _ _ 47 Boolean boolean ADJ JJ Degree=Pos 48 amod _ _ 48 subtopos subtopos NOUN NN Number=Sing 44 attr _ _ 49 of of ADP IN _ 48 prep _ _ 50 $ RT(A', A) $ $ rt(a', a) $ SYM $ _ 49 pobj _ _ 51 . . PUNCT . PunctType=Peri 44 punct _ SpaceAfter=No # sent_id = 2 # text = We exhibit a range of non - localic Boolean subtriposes of the Kleene - Vesley tripos. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 exhibit exhibit VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 range range NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 non non ADJ JJ Degree=Pos 10 amod _ _ 7 - - ADJ JJ Degree=Pos 10 amod _ _ 8 localic localic ADJ JJ Degree=Pos 10 amod _ _ 9 Boolean Boolean PROPN NNP Number=Sing 10 amod _ _ 10 subtriposes subtripose NOUN NNS Number=Plur 5 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 16 det _ _ 13 Kleene Kleene PROPN NNP Number=Sing 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 Vesley Vesley PROPN NNP Number=Sing 16 compound _ _ 16 tripos tripos NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 583 # sent_id = 1 # text = We study the gerbal representations of a finite group $ G $ or, equivalently, module categories over Ostrik's category $ Vec_G^alpha $ for a 3 - cocycle $ alpha $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 gerbal gerbal ADJ JJ Degree=Pos 5 amod _ _ 5 representations representation NOUN NNS Number=Plur 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 finite finite ADJ JJ Degree=Pos 9 compound _ _ 9 group group NOUN NN Number=Sing 6 pobj _ _ 10 $ G $ $ g $ SYM $ _ 9 appos _ _ 11 or or CCONJ CC ConjType=Cmp 5 cc _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 5 punct _ _ 13 equivalently equivalently ADV RB _ 2 advmod _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 16 punct _ _ 15 module module NOUN NN Number=Sing 16 compound _ _ 16 categories category NOUN NNS Number=Plur 2 dep _ _ 17 over over ADP IN _ 16 prep _ _ 18 Ostrik Ostrik PROPN NNP Number=Sing 20 poss _ SpaceAfter=No 19 's 's PART POS _ 18 case _ _ 20 category category NOUN NN Number=Sing 17 pobj _ _ 21 $ Vec_G^alpha $ $ vec_g^alpha $ SYM $ _ 16 appos _ _ 22 for for ADP IN _ 16 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 24 3 3 NUM CD NumType=Card 26 nummod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 cocycle cocycle NOUN NN Number=Sing 27 compound _ _ 27 $ alpha $ $ alpha $ SYM $ _ 22 pobj _ _ 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We adapt Bartlett's string diagram formalism to this situation to prove that the categorical character of a gerbal representation is a representation of the inertia groupoid of a categorical group. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 adapt adapt VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 Bartlett Bartlett PROPN NNP Number=Sing 7 poss _ SpaceAfter=No 4 's 's PART POS _ 3 case _ _ 5 string string NOUN NN Number=Sing 6 compound _ _ 6 diagram diagram NOUN NN Number=Sing 7 compound _ _ 7 formalism formalism NOUN NN Number=Sing 2 dobj _ _ 8 to to ADP IN _ 2 prep _ _ 9 this this DET DT Number=Sing|PronType=Dem 10 det _ _ 10 situation situation NOUN NN Number=Sing 8 pobj _ _ 11 to to PART TO _ 12 aux _ _ 12 prove prove VERB VB VerbForm=Inf 2 advcl _ _ 13 that that SCONJ IN _ 21 mark _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 categorical categorical ADJ JJ Degree=Pos 16 amod _ _ 16 character character NOUN NN Number=Sing 21 nsubj _ _ 17 of of ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 gerbal gerbal ADJ JJ Degree=Pos 20 amod _ _ 20 representation representation NOUN NN Number=Sing 17 pobj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 ccomp _ _ 22 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 23 representation representation NOUN NN Number=Sing 21 attr _ _ 24 of of ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 27 det _ _ 26 inertia inertia NOUN NN Number=Sing 27 compound _ _ 27 groupoid groupoid NOUN NN Number=Sing 24 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 30 categorical categorical ADJ JJ Degree=Pos 31 amod _ _ 31 group group NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We interpret such a representation as a module over the twisted Drinfeld double $ D^alpha(G) $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 interpret interpret VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 such such DET PDT _ 5 predet _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 representation representation NOUN NN Number=Sing 2 dobj _ _ 6 as as ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 module module NOUN NN Number=Sing 6 pobj _ _ 9 over over ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 twisted twisted ADJ JJ Degree=Pos 12 amod _ _ 12 Drinfeld Drinfeld PROPN NNP Number=Sing 9 pobj _ _ 13 double double DET PDT _ 14 amod _ _ 14 $ D^alpha(G) $ $ d^alpha(g) $ SYM $ _ 2 dobj _ _ 15 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 584 # sent_id = 1 # text = We define a notion of morphism for quotient vector bundles that yields both a category $ QVBun $ and a contravariant global sections functor $ C:QVBun^{op} to Vect $ whose restriction to trivial vector bundles with fiber $ F $ coincides with the contravariant functor $ Top^{op} to Vect $ of $ F $ - valued continuous functions. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 notion notion NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 morphism morphism NOUN NN Number=Sing 5 pobj _ _ 7 for for ADP IN _ 6 prep _ _ 8 quotient quotient ADJ JJ Degree=Pos 10 amod _ _ 9 vector vector NOUN NN Number=Sing 10 compound _ _ 10 bundles bundle NOUN NNS Number=Plur 7 pobj _ _ 11 that that PRON WDT PronType=Rel 12 nsubj _ _ 12 yields yield VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 relcl _ _ 13 both both CCONJ CC ConjType=Cmp 15 preconj _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 category category NOUN NN Number=Sing 12 dobj _ _ 16 $ QVBun $ $ qvbun $ SYM $ _ 15 appos _ _ 17 and and CCONJ CC ConjType=Cmp 15 cc _ _ 18 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 19 contravariant contravariant ADJ JJ Degree=Pos 21 amod _ _ 20 global global ADJ JJ Degree=Pos 21 amod _ _ 21 sections section NOUN NNS Number=Plur 15 conj _ _ 22 functor functor VERB VBP Tense=Pres|VerbForm=Fin 15 appos _ _ 23 $ C:QVBun^{op} to Vect $ $ c:qvbun^{op} to vect $ SYM $ _ 12 dep _ _ 24 whose whose DET WP$ Poss=Yes 25 poss _ _ 25 restriction restriction NOUN NN Number=Sing 12 dobj _ _ 26 to to ADP IN _ 25 prep _ _ 27 trivial trivial ADJ JJ Degree=Pos 29 amod _ _ 28 vector vector NOUN NN Number=Sing 29 compound _ _ 29 bundles bundle NOUN NNS Number=Plur 26 pobj _ _ 30 with with ADP IN _ 25 prep _ _ 31 fiber fiber NOUN NN Number=Sing 30 pobj _ _ 32 $ F $ $ f $ SYM $ _ 33 nmod _ _ 33 coincides coincide NOUN NNS Number=Plur 12 dobj _ _ 34 with with ADP IN _ 12 prep _ _ 35 the the DET DT Definite=Def|PronType=Art 37 det _ _ 36 contravariant contravariant ADJ JJ Degree=Pos 37 amod _ _ 37 functor functor NOUN NN Number=Sing 34 pobj _ _ 38 $ Top^{op} to Vect $ $ top^{op} to vect $ SYM $ _ 37 appos _ _ 39 of of ADP IN _ 38 prep _ _ 40 $ F $ $ f $ SYM $ _ 42 advmod _ _ 41 - - PUNCT HYPH PunctType=Dash 42 punct _ _ 42 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 44 amod _ _ 43 continuous continuous ADJ JJ Degree=Pos 44 amod _ _ 44 functions function NOUN NNS Number=Plur 39 pobj _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Based on this we obtain a linear extension of the adjunction between the categories of topological spaces and locales: (i) a linearized topological space is a spectral vector bundle, by which is meant a mildly restricted type of quotient vector bundle; (ii) a linearized locale is a locale $ Delta $ equipped with both a topological vector space $ A $ and a $ Delta $ - valued support map for the elements of $ A $ satisfying a continuity condition relative to the spectrum of $ Delta $ and the lower Vietoris topology on $ Sub A $ ; (iii) we obtain an adjunction between the full subcategory of spectral vector bundles $ QVBun_Sigma $ and the category of linearized locales $ LinLoc $ , which restricts to an equivalence of categories between sober spectral vector bundles and spatial linearized locales. 1 Based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 prep _ _ 2 on on ADP IN _ 1 prep _ _ 3 this this PRON DT Number=Sing|PronType=Dem 2 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 22 ccomp _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 linear linear ADJ JJ Degree=Pos 8 amod _ _ 8 extension extension NOUN NN Number=Sing 5 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 adjunction adjunction NOUN NN Number=Sing 9 pobj _ _ 12 between between ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 categories category NOUN NNS Number=Plur 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 topological topological ADJ JJ Degree=Pos 17 amod _ _ 17 spaces space NOUN NNS Number=Plur 15 pobj _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 locales locale NOUN NNS Number=Plur 17 conj _ SpaceAfter=No 20 : : PUNCT : _ 22 punct _ _ 21 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 22 punct _ SpaceAfter=No 22 i i NOUN NN Case=Nom|Number=Sing|Person=1|PronType=Prs 28 nsubj _ SpaceAfter=No 23 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 22 punct _ _ 24 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 25 linearized linearize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 amod _ _ 26 topological topological ADJ JJ Degree=Pos 27 amod _ _ 27 space space NOUN NN Number=Sing 28 nsubj _ _ 28 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 53 ccomp _ _ 29 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 30 spectral spectral ADJ JJ Degree=Pos 32 amod _ _ 31 vector vector NOUN NN Number=Sing 32 compound _ _ 32 bundle bundle NOUN NN Number=Sing 28 attr _ SpaceAfter=No 33 , , PUNCT , PunctType=Comm 32 punct _ _ 34 by by ADP IN _ 37 prep _ _ 35 which which PRON WDT _ 34 pobj _ _ 36 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 37 auxpass _ _ 37 meant mean VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 relcl _ _ 38 a a DET DT Definite=Ind|PronType=Art 41 det _ _ 39 mildly mildly ADV RB _ 40 advmod _ _ 40 restricted restrict VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 41 amod _ _ 41 type type NOUN NN Number=Sing 37 dobj _ _ 42 of of ADP IN _ 41 prep _ _ 43 quotient quotient ADJ JJ Degree=Pos 45 amod _ _ 44 vector vector NOUN NN Number=Sing 45 compound _ _ 45 bundle bundle NOUN NN Number=Sing 42 pobj _ SpaceAfter=No 46 ; ; PUNCT : _ 53 punct _ _ 47 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 48 punct _ SpaceAfter=No 48 ii ii PROPN NNP Number=Sing 53 dep _ SpaceAfter=No 49 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 48 punct _ _ 50 a a DET DT Definite=Ind|PronType=Art 52 det _ _ 51 linearized linearize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 52 amod _ _ 52 locale locale NOUN NN Number=Sing 53 nsubj _ _ 53 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 54 a a DET DT Definite=Ind|PronType=Art 55 det _ _ 55 locale locale NOUN NN Number=Sing 53 attr _ _ 56 $ Delta $ $ delta $ SYM $ _ 55 appos _ _ 57 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 56 acl _ _ 58 with with ADP IN _ 57 prep _ _ 59 both both CCONJ CC ConjType=Cmp 63 preconj _ _ 60 a a DET DT Definite=Ind|PronType=Art 63 det _ _ 61 topological topological ADJ JJ Degree=Pos 63 amod _ _ 62 vector vector NOUN NN Number=Sing 63 compound _ _ 63 space space NOUN NN Number=Sing 58 pobj _ _ 64 $ A $ $ a $ SYM $ _ 63 nummod _ _ 65 and and CCONJ CC ConjType=Cmp 63 cc _ _ 66 a a DET DT Definite=Ind|PronType=Art 71 det _ _ 67 $ Delta $ $ delta $ SYM $ _ 69 advmod _ _ 68 - - PUNCT HYPH PunctType=Dash 69 punct _ _ 69 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 71 amod _ _ 70 support support NOUN NN Number=Sing 71 compound _ _ 71 map map NOUN NN Number=Sing 63 conj _ _ 72 for for ADP IN _ 71 prep _ _ 73 the the DET DT Definite=Def|PronType=Art 74 det _ _ 74 elements element NOUN NNS Number=Plur 72 pobj _ _ 75 of of ADP IN _ 74 prep _ _ 76 $ A $ $ a $ SYM $ _ 75 pobj _ _ 77 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 53 advcl _ _ 78 a a DET DT Definite=Ind|PronType=Art 80 det _ _ 79 continuity continuity NOUN NN Number=Sing 80 compound _ _ 80 condition condition NOUN NN Number=Sing 77 dobj _ _ 81 relative relative ADJ JJ Degree=Pos 80 amod _ _ 82 to to ADP IN _ 81 prep _ _ 83 the the DET DT Definite=Def|PronType=Art 84 det _ _ 84 spectrum spectrum NOUN NN Number=Sing 82 pobj _ _ 85 of of ADP IN _ 84 prep _ _ 86 $ Delta $ $ delta $ SYM $ _ 85 pobj _ _ 87 and and CCONJ CC ConjType=Cmp 84 cc _ _ 88 the the DET DT Definite=Def|PronType=Art 91 det _ _ 89 lower low ADJ JJR Degree=Cmp 91 amod _ _ 90 Vietoris Vietoris PROPN NNP Number=Sing 91 compound _ _ 91 topology topology NOUN NN Number=Sing 84 conj _ _ 92 on on ADP IN _ 91 prep _ _ 93 $ Sub A $ $ sub a $ SYM $ _ 92 pobj _ _ 94 ; ; PUNCT : _ 99 punct _ _ 95 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 96 punct _ SpaceAfter=No 96 iii iii NOUN NN Number=Sing 99 meta _ SpaceAfter=No 97 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 96 punct _ _ 98 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 99 nsubj _ _ 99 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 53 conj _ _ 100 an an DET DT Definite=Ind|PronType=Art 101 det _ _ 101 adjunction adjunction NOUN NN Number=Sing 99 dobj _ _ 102 between between ADP IN _ 101 prep _ _ 103 the the DET DT Definite=Def|PronType=Art 105 det _ _ 104 full full ADJ JJ Degree=Pos 105 amod _ _ 105 subcategory subcategory NOUN NN Number=Sing 102 pobj _ _ 106 of of ADP IN _ 105 prep _ _ 107 spectral spectral ADJ JJ Degree=Pos 108 amod _ _ 108 vector vector NOUN NN Number=Sing 109 compound _ _ 109 bundles bundle NOUN NNS Number=Plur 106 pobj _ _ 110 $ QVBun_Sigma $ $ qvbun_sigma $ SYM $ _ 105 nmod _ _ 111 and and CCONJ CC ConjType=Cmp 105 cc _ _ 112 the the DET DT Definite=Def|PronType=Art 113 det _ _ 113 category category NOUN NN Number=Sing 105 conj _ _ 114 of of ADP IN _ 113 prep _ _ 115 linearized linearized ADJ JJ Degree=Pos 116 amod _ _ 116 locales locale NOUN NNS Number=Plur 114 pobj _ _ 117 $ LinLoc $ $ linloc $ SYM $ _ 116 appos _ _ 118 , , PUNCT , PunctType=Comm 116 punct _ _ 119 which which PRON WDT _ 120 nsubj _ _ 120 restricts restrict VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 116 relcl _ _ 121 to to ADP IN _ 120 prep _ _ 122 an an DET DT Definite=Ind|PronType=Art 123 det _ _ 123 equivalence equivalence NOUN NN Number=Sing 121 pobj _ _ 124 of of ADP IN _ 123 prep _ _ 125 categories category NOUN NNS Number=Plur 124 pobj _ _ 126 between between ADP IN _ 123 prep _ _ 127 sober sober ADJ JJ Degree=Pos 130 amod _ _ 128 spectral spectral ADJ JJ Degree=Pos 129 amod _ _ 129 vector vector NOUN NN Number=Sing 130 compound _ _ 130 bundles bundle NOUN NNS Number=Plur 126 pobj _ _ 131 and and CCONJ CC ConjType=Cmp 130 cc _ _ 132 spatial spatial ADJ JJ Degree=Pos 134 amod _ _ 133 linearized linearize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 134 amod _ _ 134 locales locale NOUN NNS Number=Plur 130 conj _ SpaceAfter=No 135 . . PUNCT . PunctType=Peri 99 punct _ SpaceAfter=No # sent_id = 3 # text = The spectral vector bundles are classified by a finer topology on $ Sub A $ , called the open support topology, but there is no notion of universal spectral vector bundle for an arbitrary topological vector space $ A $ . 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 spectral spectral ADJ JJ Degree=Pos 4 amod _ _ 3 vector vector NOUN NN Number=Sing 4 compound _ _ 4 bundles bundle NOUN NNS Number=Plur 6 nsubjpass _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 6 classified classify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 by by ADP IN _ 6 agent _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 finer finer ADJ JJ Degree=Pos 10 amod _ _ 10 topology topology NOUN NN Number=Sing 7 pobj _ _ 11 on on ADP IN _ 6 prep _ _ 12 $ Sub A $ $ sub a $ SYM $ _ 11 pobj _ _ 13 , , PUNCT , PunctType=Comm 6 punct _ _ 14 called call VERB VBD Tense=Past|VerbForm=Fin 6 advcl _ _ 15 the the DET DT Definite=Def|PronType=Art 18 det _ _ 16 open open ADJ JJ Degree=Pos 17 amod _ _ 17 support support NOUN NN Number=Sing 18 compound _ _ 18 topology topology NOUN NN Number=Sing 14 oprd _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 6 punct _ _ 20 but but CCONJ CC ConjType=Cmp 6 cc _ _ 21 there there PRON EX _ 22 expl _ _ 22 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 conj _ _ 23 no no DET DT _ 24 det _ _ 24 notion notion NOUN NN Number=Sing 22 attr _ _ 25 of of ADP IN _ 24 prep _ _ 26 universal universal ADJ JJ Degree=Pos 29 amod _ _ 27 spectral spectral ADJ JJ Degree=Pos 29 amod _ _ 28 vector vector NOUN NN Number=Sing 29 compound _ _ 29 bundle bundle NOUN NN Number=Sing 25 pobj _ _ 30 for for ADP IN _ 29 prep _ _ 31 an an DET DT Definite=Ind|PronType=Art 35 det _ _ 32 arbitrary arbitrary ADJ JJ Degree=Pos 35 amod _ _ 33 topological topological ADJ JJ Degree=Pos 34 amod _ _ 34 vector vector NOUN NN Number=Sing 35 compound _ _ 35 space space NOUN NN Number=Sing 30 pobj _ _ 36 $ A $ $ a $ SYM $ _ 25 pobj _ _ 37 . . PUNCT . PunctType=Peri 22 punct _ SpaceAfter=No # doc_id = 585 # sent_id = 1 # text = The classical snake lemma produces a six terms exact sequence starting from a commutative square with one of the edge being a regular epimorphism. 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 classical classical ADJ JJ Degree=Pos 4 amod _ _ 3 snake snake NOUN NN Number=Sing 4 compound _ _ 4 lemma lemma NOUN NN Number=Sing 5 nsubj _ _ 5 produces produce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 7 six six NUM CD NumType=Card 8 nummod _ _ 8 terms term NOUN NNS Number=Plur 10 nmod _ _ 9 exact exact ADJ JJ Degree=Pos 10 amod _ _ 10 sequence sequence NOUN NN Number=Sing 5 dobj _ _ 11 starting start VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 acl _ _ 12 from from ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 commutative commutative ADJ JJ Degree=Pos 15 amod _ _ 15 square square NOUN NN Number=Sing 12 pobj _ _ 16 with with ADP IN _ 15 prep _ _ 17 one one NUM CD NumType=Card 16 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 edge edge NOUN NN Number=Sing 18 pobj _ _ 21 being be AUX VBG VerbForm=Ger 10 acl _ _ 22 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 23 regular regular ADJ JJ Degree=Pos 24 amod _ _ 24 epimorphism epimorphism NOUN NN Number=Sing 21 attr _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = We establish a new diagram lemma, that we call snail lemma, removing such a condition. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 establish establish VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 4 new new ADJ JJ Degree=Pos 6 amod _ _ 5 diagram diagram NOUN NN Number=Sing 6 compound _ _ 6 lemma lemma NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 2 punct _ _ 8 that that SCONJ IN _ 10 mark _ _ 9 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 10 nsubj _ _ 10 call call VERB VBP Tense=Pres|VerbForm=Fin 2 advcl _ _ 11 snail snail NOUN NN Number=Sing 12 compound _ _ 12 lemma lemma NOUN NN Number=Sing 10 dobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 10 punct _ _ 14 removing remove VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 advcl _ _ 15 such such DET PDT _ 17 predet _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 condition condition NOUN NN Number=Sing 14 dobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We also show that the snail lemma subsumes the snake lemma and we give an interpretation of the snail lemma in terms of strong homotopy kernels. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 8 mark _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 snail snail NOUN NN Number=Sing 7 compound _ _ 7 lemma lemma NOUN NN Number=Sing 8 nsubj _ _ 8 subsumes subsume VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 snake snake NOUN NN Number=Sing 11 compound _ _ 11 lemma lemma NOUN NN Number=Sing 8 dobj _ _ 12 and and CCONJ CC ConjType=Cmp 8 cc _ _ 13 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 14 nsubj _ _ 14 give give VERB VBP Tense=Pres|VerbForm=Fin 8 conj _ _ 15 an an DET DT Definite=Ind|PronType=Art 16 det _ _ 16 interpretation interpretation NOUN NN Number=Sing 14 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 snail snail NOUN NN Number=Sing 20 compound _ _ 20 lemma lemma NOUN NN Number=Sing 17 pobj _ _ 21 in in ADP IN _ 14 prep _ _ 22 terms term NOUN NNS Number=Plur 21 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 strong strong ADJ JJ Degree=Pos 26 amod _ _ 25 homotopy homotopy NOUN NN Number=Sing 26 compound _ _ 26 kernels kernel NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = Our results hold in any pointed regular protomodular category. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 results result NOUN NNS Number=Plur 3 nsubj _ _ 3 hold hold VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 in in ADP RP _ 3 prep _ _ 5 any any DET DT _ 9 det _ _ 6 pointed point VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 amod _ _ 7 regular regular ADJ JJ Degree=Pos 9 amod _ _ 8 protomodular protomodular ADJ JJ Degree=Pos 9 amod _ _ 9 category category NOUN NN Number=Sing 4 pobj _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 586 # sent_id = 1 # text = We show that the morphism axiom for $ n $ - angulated categories is redundant. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 6 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 morphism morphism NOUN NN Number=Sing 6 nsubj _ _ 6 axiom axiom VERB VBP Tense=Pres|VerbForm=Fin 2 ccomp _ _ 7 for for ADP IN _ 6 prep _ _ 8 $ n $ $ n $ SYM $ _ 10 advmod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 angulated angulate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 amod _ _ 11 categories category NOUN NNS Number=Plur 7 pobj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 13 redundant redundant ADJ JJ Degree=Pos 12 acomp _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 587 # sent_id = 1 # text = Model categories have long been a useful tool in homotopy theory, allowing many generalizations of results in topological spaces to other categories. 1 Model Model PROPN NNP Number=Sing 2 compound _ _ 2 categories category NOUN NNS Number=Plur 5 nsubj _ _ 3 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 aux _ _ 4 long long ADV RB _ 5 advmod _ _ 5 been be AUX VBN Tense=Past|VerbForm=Part 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 useful useful ADJ JJ Degree=Pos 8 amod _ _ 8 tool tool NOUN NN Number=Sing 5 attr _ _ 9 in in ADP IN _ 8 prep _ _ 10 homotopy homotopy NOUN NN Number=Sing 11 compound _ _ 11 theory theory NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 5 punct _ _ 13 allowing allow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 advcl _ _ 14 many many ADJ JJ Degree=Pos 15 amod _ _ 15 generalizations generalization NOUN NNS Number=Plur 13 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 results result NOUN NNS Number=Plur 16 pobj _ _ 18 in in ADP IN _ 17 prep _ _ 19 topological topological ADJ JJ Degree=Pos 20 amod _ _ 20 spaces space NOUN NNS Number=Plur 18 pobj _ _ 21 to to ADP IN _ 20 prep _ _ 22 other other ADJ JJ Degree=Pos 23 amod _ _ 23 categories category NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = Giving a localization of a model category provides an additional model category structure on the same base category, which alters what objects are being considered equivalent by increasing the class of weak equivalences. 1 Giving give VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 csubj _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 localization localization NOUN NN Number=Sing 1 dobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 model model NOUN NN Number=Sing 7 compound _ _ 7 category category NOUN NN Number=Sing 4 pobj _ _ 8 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 an an DET DT Definite=Ind|PronType=Art 13 det _ _ 10 additional additional ADJ JJ Degree=Pos 13 amod _ _ 11 model model NOUN NN Number=Sing 13 compound _ _ 12 category category NOUN NN Number=Sing 13 compound _ _ 13 structure structure NOUN NN Number=Sing 8 dobj _ _ 14 on on ADP IN _ 8 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 18 det _ _ 16 same same ADJ JJ Degree=Pos 18 amod _ _ 17 base base NOUN NN Number=Sing 18 compound _ _ 18 category category NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 which which PRON WDT _ 21 nsubj _ _ 21 alters alter VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 relcl _ _ 22 what what PRON WP _ 23 det _ _ 23 objects object NOUN NNS Number=Plur 26 nsubjpass _ _ 24 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 26 aux _ _ 25 being be AUX VBG VerbForm=Ger 26 auxpass _ _ 26 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 ccomp _ _ 27 equivalent equivalent ADJ JJ Degree=Pos 26 oprd _ _ 28 by by ADP IN _ 27 prep _ _ 29 increasing increase VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 28 pcomp _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 class class NOUN NN Number=Sing 29 dobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 weak weak ADJ JJ Degree=Pos 34 amod _ _ 34 equivalences equivalence NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 3 # text = In some situations, a model category where the class of weak equivalences is restricted from the original one could be more desirable. 1 In in ADP IN _ 21 prep _ _ 2 some some DET DT _ 3 det _ _ 3 situations situation NOUN NNS Number=Plur 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 21 punct _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 model model NOUN NN Number=Sing 7 compound _ _ 7 category category NOUN NN Number=Sing 21 nsubj _ _ 8 where where SCONJ WRB _ 15 advmod _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 class class NOUN NN Number=Sing 15 nsubjpass _ _ 11 of of ADP IN _ 10 prep _ _ 12 weak weak ADJ JJ Degree=Pos 13 amod _ _ 13 equivalences equivalence NOUN NNS Number=Plur 11 pobj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 auxpass _ _ 15 restricted restrict VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 relcl _ _ 16 from from ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 original original ADJ JJ Degree=Pos 19 amod _ _ 19 one one NOUN NN Number=Sing 16 pobj _ _ 20 could could AUX MD VerbForm=Fin 21 aux _ _ 21 be be AUX VB VerbForm=Inf 0 ROOT _ _ 22 more more ADV RBR Degree=Cmp 23 advmod _ _ 23 desirable desirable ADJ JJ Degree=Pos 21 acomp _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 21 punct _ SpaceAfter=No # sent_id = 4 # text = In this situation we need the notion of a delocalization. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 situation situation NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 need need VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 notion notion NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 delocalization delocalization NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 5 # text = In this paper, right Bousfield delocalization is defined, we provide examples of right Bousfield delocalization as well as an existence theorem. 1 In in ADP IN _ 9 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 9 punct _ _ 5 right right INTJ UH _ 9 advmod _ _ 6 Bousfield Bousfield PROPN NNP Number=Sing 7 compound _ _ 7 delocalization delocalization NOUN NN Number=Sing 9 nsubjpass _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 advcl _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 12 punct _ _ 11 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 12 nsubj _ _ 12 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 examples example NOUN NNS Number=Plur 12 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 right right ADJ JJ Degree=Pos 17 amod _ _ 16 Bousfield Bousfield PROPN NNP Number=Sing 17 compound _ _ 17 delocalization delocalization NOUN NN Number=Sing 14 pobj _ _ 18 as as ADV RB _ 20 advmod _ _ 19 well well ADV RB Degree=Pos 20 advmod _ _ 20 as as ADP IN _ 13 cc _ _ 21 an an DET DT Definite=Ind|PronType=Art 22 det _ _ 22 existence existence NOUN NN Number=Sing 23 nsubj _ _ 23 theorem theorem ADJ JJ Degree=Pos 12 ccomp _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 6 # text = In particular, we show that given two model category structures $ MO $ and $ MT $ we can define an additional model category structure $ MO cap MT $ by defining the class of weak equivalences to be the intersection of the $ MO $ and $ MT $ weak equivalences. 1 In in ADP IN _ 5 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 that that SCONJ IN _ 17 mark _ _ 7 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 prep _ _ 8 two two NUM CD NumType=Card 10 nummod _ _ 9 model model NOUN NN Number=Sing 10 compound _ _ 10 category category NOUN NN Number=Sing 11 compound _ _ 11 structures structure VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 dative _ _ 12 $ MO $ $ mo $ SYM $ _ 11 dobj _ _ 13 and and CCONJ CC ConjType=Cmp 11 cc _ _ 14 $ MT $ $ mt $ SYM $ _ 11 conj _ _ 15 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 17 nsubj _ _ 16 can can AUX MD VerbForm=Fin 17 aux _ _ 17 define define VERB VB VerbForm=Inf 5 ccomp _ _ 18 an an DET DT Definite=Ind|PronType=Art 22 det _ _ 19 additional additional ADJ JJ Degree=Pos 22 amod _ _ 20 model model NOUN NN Number=Sing 22 compound _ _ 21 category category NOUN NN Number=Sing 22 compound _ _ 22 structure structure NOUN NN Number=Sing 17 dobj _ _ 23 $ MO cap MT $ $ mo cap mt $ SYM $ _ 17 dep _ _ 24 by by ADP IN _ 17 prep _ _ 25 defining define VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 24 pcomp _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 class class NOUN NN Number=Sing 25 dobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 weak weak ADJ JJ Degree=Pos 30 amod _ _ 30 equivalences equivalence NOUN NNS Number=Plur 28 pobj _ _ 31 to to PART TO _ 32 aux _ _ 32 be be AUX VB VerbForm=Inf 25 xcomp _ _ 33 the the DET DT Definite=Def|PronType=Art 34 det _ _ 34 intersection intersection NOUN NN Number=Sing 32 attr _ _ 35 of of ADP IN _ 34 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 37 det _ _ 37 $ MO $ $ mo $ SYM $ _ 35 pobj _ _ 38 and and CCONJ CC ConjType=Cmp 34 cc _ _ 39 $ MT $ $ mt $ SYM $ _ 41 poss _ _ 40 weak weak ADJ JJ Degree=Pos 41 amod _ _ 41 equivalences equivalence NOUN NNS Number=Plur 34 conj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 7 # text = In addition we consider the model category on diagram categories over a base category (which is endowed with a model category structure) and show that delocalization is often preserved by the diagram model category structure. 1 In in ADP IN _ 4 prep _ _ 2 addition addition NOUN NN Number=Sing 1 pobj _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 model model NOUN NN Number=Sing 7 compound _ _ 7 category category NOUN NN Number=Sing 4 dobj _ _ 8 on on ADP IN _ 7 prep _ _ 9 diagram diagram NOUN NN Number=Sing 10 compound _ _ 10 categories category NOUN NNS Number=Plur 8 pobj _ _ 11 over over ADP IN _ 7 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 base base NOUN NN Number=Sing 14 compound _ _ 14 category category NOUN NN Number=Sing 11 pobj _ _ 15 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 14 punct _ SpaceAfter=No 16 which which PRON WDT _ 18 nsubjpass _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 auxpass _ _ 18 endowed endow VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 relcl _ _ 19 with with ADP IN _ 18 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 21 model model NOUN NN Number=Sing 23 compound _ _ 22 category category NOUN NN Number=Sing 23 compound _ _ 23 structure structure NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 24 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 4 punct _ _ 25 and and CCONJ CC ConjType=Cmp 4 cc _ _ 26 show show VERB VB VerbForm=Inf 4 conj _ _ 27 that that SCONJ IN _ 31 mark _ _ 28 delocalization delocalization NOUN NN Number=Sing 31 nsubjpass _ _ 29 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 31 auxpass _ _ 30 often often ADV RB _ 31 advmod _ _ 31 preserved preserve VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 ccomp _ _ 32 by by ADP IN _ 31 agent _ _ 33 the the DET DT Definite=Def|PronType=Art 37 det _ _ 34 diagram diagram PROPN NNP Number=Sing 35 compound _ _ 35 model model NOUN NN Number=Sing 37 compound _ _ 36 category category NOUN NN Number=Sing 37 compound _ _ 37 structure structure NOUN NN Number=Sing 32 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 588 # sent_id = 1 # text = For a relative exact homological category $ (C, E) $ , we define relative points over an arbitrary object in $ C $ , and show that they form an exact homological category. 1 For for ADP IN _ 10 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 3 relative relative ADJ JJ Degree=Pos 6 amod _ _ 4 exact exact ADJ JJ Degree=Pos 6 amod _ _ 5 homological homological ADJ JJ Degree=Pos 6 amod _ _ 6 category category NOUN NN Number=Sing 1 pobj _ _ 7 $ (C, E) $ $ (c, e) $ X FW Foreign=Yes 6 appos _ _ 8 , , PUNCT , PunctType=Comm 10 punct _ _ 9 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 10 nsubj _ _ 10 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 relative relative ADJ JJ Degree=Pos 12 amod _ _ 12 points point NOUN NNS Number=Plur 10 dobj _ _ 13 over over ADP IN _ 10 prep _ _ 14 an an DET DT Definite=Ind|PronType=Art 16 det _ _ 15 arbitrary arbitrary ADJ JJ Degree=Pos 16 amod _ _ 16 object object NOUN NN Number=Sing 13 pobj _ _ 17 in in ADP IN _ 16 prep _ _ 18 $ C $ $ c $ SYM $ _ 17 pobj _ _ 19 , , PUNCT , PunctType=Comm 10 punct _ _ 20 and and CCONJ CC ConjType=Cmp 10 cc _ _ 21 show show VERB VB VerbForm=Inf 10 conj _ _ 22 that that SCONJ IN _ 24 mark _ _ 23 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 24 nsubj _ _ 24 form form VERB VBP Tense=Pres|VerbForm=Fin 21 ccomp _ _ 25 an an DET DT Definite=Ind|PronType=Art 28 det _ _ 26 exact exact ADJ JJ Degree=Pos 28 amod _ _ 27 homological homological ADJ JJ Degree=Pos 28 amod _ _ 28 category category NOUN NN Number=Sing 24 dobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = In particular, it follows that the full subcategory of nilpotent objects in an exact homological category is an exact homological category. 1 In in ADP IN _ 5 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 5 nsubj _ _ 5 follows follow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 that that SCONJ IN _ 18 mark _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 full full ADJ JJ Degree=Pos 9 amod _ _ 9 subcategory subcategory NOUN NN Number=Sing 18 nsubj _ _ 10 of of ADP IN _ 9 prep _ _ 11 nilpotent nilpotent ADJ JJ Degree=Pos 12 amod _ _ 12 objects object NOUN NNS Number=Plur 10 pobj _ _ 13 in in ADP IN _ 9 prep _ _ 14 an an DET DT Definite=Ind|PronType=Art 17 det _ _ 15 exact exact ADJ JJ Degree=Pos 17 amod _ _ 16 homological homological ADJ JJ Degree=Pos 17 amod _ _ 17 category category NOUN NN Number=Sing 13 pobj _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 ccomp _ _ 19 an an DET DT Definite=Ind|PronType=Art 22 det _ _ 20 exact exact ADJ JJ Degree=Pos 22 amod _ _ 21 homological homological ADJ JJ Degree=Pos 22 amod _ _ 22 category category NOUN NN Number=Sing 18 attr _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = These nilpotent objects are defined with respect to a Birkhoff subcategory in $ C $ as defined by Everaert and Van der Linden. 1 These these DET DT Number=Plur|PronType=Dem 3 det _ _ 2 nilpotent nilpotent ADJ JJ Degree=Pos 3 amod _ _ 3 objects object NOUN NNS Number=Plur 5 nsubjpass _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 with with ADP IN _ 5 prep _ _ 7 respect respect NOUN NN Number=Sing 6 pobj _ _ 8 to to ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 Birkhoff Birkhoff PROPN NNP Number=Sing 11 compound _ _ 11 subcategory subcategory NOUN NN Number=Sing 8 pobj _ _ 12 in in ADP IN _ 11 prep _ _ 13 $ C $ $ c $ SYM $ _ 12 pobj _ _ 14 as as SCONJ IN _ 15 mark _ _ 15 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 advcl _ _ 16 by by ADP IN _ 15 agent _ _ 17 Everaert Everaert PROPN NNP Number=Sing 20 nmod _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 Van Van PROPN NNP Number=Sing 17 conj _ _ 20 der der NOUN NN Number=Sing 21 compound _ _ 21 Linden Linden PROPN NNP Number=Sing 16 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = In addition, we introduce relative internal actions and show that, just as in the classical case, there is an equivalence of categories between the category of relative points over an object and the category of relative internal actions for the same object. 1 In in ADP IN _ 5 prep _ _ 2 addition addition NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 relative relative ADJ JJ Degree=Pos 8 amod _ _ 7 internal internal ADJ JJ Degree=Pos 8 amod _ _ 8 actions action NOUN NNS Number=Plur 5 dobj _ _ 9 and and CCONJ CC ConjType=Cmp 5 cc _ _ 10 show show VERB VB VerbForm=Inf 5 conj _ _ 11 that that SCONJ IN _ 21 mark _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 21 punct _ _ 13 just just ADV RB _ 14 advmod _ _ 14 as as ADP IN _ 21 prep _ _ 15 in in ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 classical classical ADJ JJ Degree=Pos 18 amod _ _ 18 case case NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 21 punct _ _ 20 there there PRON EX _ 21 expl _ _ 21 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 ccomp _ _ 22 an an DET DT Definite=Ind|PronType=Art 23 det _ _ 23 equivalence equivalence NOUN NN Number=Sing 21 attr _ _ 24 of of ADP IN _ 23 prep _ _ 25 categories category NOUN NNS Number=Plur 24 pobj _ _ 26 between between ADP IN _ 23 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 category category NOUN NN Number=Sing 26 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 relative relative ADJ JJ Degree=Pos 31 amod _ _ 31 points point NOUN NNS Number=Plur 29 pobj _ _ 32 over over ADP IN _ 23 prep _ _ 33 an an DET DT Definite=Ind|PronType=Art 34 det _ _ 34 object object NOUN NN Number=Sing 32 pobj _ _ 35 and and CCONJ CC ConjType=Cmp 34 cc _ _ 36 the the DET DT Definite=Def|PronType=Art 37 det _ _ 37 category category NOUN NN Number=Sing 34 conj _ _ 38 of of ADP IN _ 37 prep _ _ 39 relative relative ADJ JJ Degree=Pos 41 amod _ _ 40 internal internal ADJ JJ Degree=Pos 41 amod _ _ 41 actions action NOUN NNS Number=Plur 38 pobj _ _ 42 for for ADP IN _ 41 prep _ _ 43 the the DET DT Definite=Def|PronType=Art 45 det _ _ 44 same same ADJ JJ Degree=Pos 45 amod _ _ 45 object object NOUN NN Number=Sing 42 pobj _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 589 # sent_id = 1 # text = We introduced in a previous article a notion of Maltsevness relative to a specific class $ Sigma $ of split epimorphisms. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduced introduce VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 3 in in ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 previous previous ADJ JJ Degree=Pos 6 amod _ _ 6 article article NOUN NN Number=Sing 3 pobj _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 notion notion NOUN NN Number=Sing 2 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 Maltsevness Maltsevness PROPN NNP Number=Sing 9 pobj _ _ 11 relative relative ADJ JJ Degree=Pos 8 amod _ _ 12 to to ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 specific specific ADJ JJ Degree=Pos 15 amod _ _ 15 class class NOUN NN Number=Sing 12 pobj _ _ 16 $ Sigma $ $ sigma $ SYM $ _ 15 appos _ _ 17 of of ADP IN _ 16 prep _ _ 18 split split ADJ JJ Degree=Pos 19 amod _ _ 19 epimorphisms epimorphism NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We investigate here the induced relative notion of natural Maltsevness, with a special attention to the example of quandles. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 investigate investigate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 here here ADV RB PronType=Dem 2 advmod _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 amod _ _ 6 relative relative ADJ JJ Degree=Pos 7 amod _ _ 7 notion notion NOUN NN Number=Sing 2 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 natural natural ADJ JJ Degree=Pos 10 amod _ _ 10 Maltsevness Maltsevness PROPN NNP Number=Sing 8 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 7 punct _ _ 12 with with ADP IN _ 7 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 special special ADJ JJ Degree=Pos 15 amod _ _ 15 attention attention NOUN NN Number=Sing 12 pobj _ _ 16 to to ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 example example NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 quandles quandle NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 590 # sent_id = 1 # text = A categorical principal bundle is a structure comprised of categories that is analogous to a classical principal bundle; examples arise from geometric contexts involving bundles over path spaces. 1 A a DET DT Definite=Ind|PronType=Art 4 det _ _ 2 categorical categorical ADJ JJ Degree=Pos 4 amod _ _ 3 principal principal ADJ JJ Degree=Pos 4 amod _ _ 4 bundle bundle NOUN NN Number=Sing 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 21 ccomp _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 structure structure NOUN NN Number=Sing 5 attr _ _ 8 comprised comprise VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 acl _ _ 9 of of ADP IN _ 8 prep _ _ 10 categories category NOUN NNS Number=Plur 9 pobj _ _ 11 that that PRON WDT PronType=Rel 12 nsubj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 relcl _ _ 13 analogous analogous ADJ JJ Degree=Pos 12 acomp _ _ 14 to to ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 16 classical classical ADJ JJ Degree=Pos 18 amod _ _ 17 principal principal ADJ JJ Degree=Pos 18 amod _ _ 18 bundle bundle NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 19 ; ; PUNCT : _ 21 punct _ _ 20 examples example NOUN NNS Number=Plur 21 nsubj _ _ 21 arise arise VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 22 from from ADP IN _ 21 prep _ _ 23 geometric geometric ADJ JJ Degree=Pos 24 amod _ _ 24 contexts context NOUN NNS Number=Plur 22 pobj _ _ 25 involving involve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 21 advcl _ _ 26 bundles bundle NOUN NNS Number=Plur 25 dobj _ _ 27 over over ADP IN _ 26 prep _ _ 28 path path NOUN NN Number=Sing 29 compound _ _ 29 spaces space NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 21 punct _ SpaceAfter=No # sent_id = 2 # text = We show how a categorical principal bundle can be constructed from local data specified through transition functors and natural transformations. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 how how SCONJ WRB _ 10 advmod _ _ 4 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 5 categorical categorical ADJ JJ Degree=Pos 7 amod _ _ 6 principal principal ADJ JJ Degree=Pos 7 amod _ _ 7 bundle bundle NOUN NN Number=Sing 10 nsubjpass _ _ 8 can can AUX MD VerbForm=Fin 10 aux _ _ 9 be be AUX VB VerbForm=Inf 10 auxpass _ _ 10 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 11 from from ADP IN _ 10 prep _ _ 12 local local ADJ JJ Degree=Pos 13 amod _ _ 13 data datum NOUN NNS Number=Plur 11 pobj _ _ 14 specified specify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 acl _ _ 15 through through ADP IN _ 14 prep _ _ 16 transition transition NOUN NN Number=Sing 17 compound _ _ 17 functors functor NOUN NNS Number=Plur 15 pobj _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 natural natural ADJ JJ Degree=Pos 20 amod _ _ 20 transformations transformation NOUN NNS Number=Plur 17 conj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 591 # sent_id = 1 # text = We present a brief and simple cotriple description of the simplicial algebra used in Bloch's construction of the higher Chow groups. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 4 brief brief ADJ JJ Degree=Pos 8 amod _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 simple simple ADJ JJ Degree=Pos 4 conj _ _ 7 cotriple cotriple ADJ JJ Degree=Pos 8 amod _ _ 8 description description NOUN NN Number=Sing 2 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 simplicial simplicial ADJ JJ Degree=Pos 12 amod _ _ 12 algebra algebra NOUN NN Number=Sing 9 pobj _ _ 13 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 acl _ _ 14 in in ADP IN _ 13 prep _ _ 15 Bloch Bloch PROPN NNP Number=Sing 17 poss _ SpaceAfter=No 16 's 's PART POS _ 15 case _ _ 17 construction construction NOUN NN Number=Sing 14 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 22 det _ _ 20 higher high ADJ JJR Degree=Cmp 22 amod _ _ 21 Chow Chow PROPN NNP Number=Sing 22 compound _ _ 22 groups group NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 592 # sent_id = 1 # text = By Isbell duality, each compact regular frame $ L $ is isomorphic to the frame of opens of a compact Hausdorff space $ X $ . 1 By by ADP IN _ 10 prep _ _ 2 Isbell Isbell PROPN NNP Number=Sing 3 compound _ _ 3 duality duality NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 10 punct _ _ 5 each each DET DT _ 8 det _ _ 6 compact compact ADJ JJ Degree=Pos 8 amod _ _ 7 regular regular ADJ JJ Degree=Pos 8 amod _ _ 8 frame frame NOUN NN Number=Sing 10 nsubj _ _ 9 $ L $ $ l $ SYM $ _ 8 appos _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 isomorphic isomorphic ADJ JJ Degree=Pos 10 acomp _ _ 12 to to ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 frame frame NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 opens open NOUN NNS Number=Plur 15 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 19 compact compact ADJ JJ Degree=Pos 21 amod _ _ 20 Hausdorff Hausdorff PROPN NNP Number=Sing 21 compound _ _ 21 space space NOUN NN Number=Sing 17 pobj _ _ 22 $ X $ $ x $ SYM $ _ 15 pobj _ _ 23 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = In this note we study the spectrum $ Spec(L) $ of prime filters of a compact regular frame $ L $ . 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 note note NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 spectrum spectrum NOUN NN Number=Sing 5 dobj _ _ 8 $ Spec(L) $ $ spec(l) $ SYM $ _ 17 nsubj _ _ 9 of of ADP IN _ 8 prep _ _ 10 prime prime ADJ JJ Degree=Pos 11 amod _ _ 11 filters filter NOUN NNS Number=Plur 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 14 compact compact ADJ JJ Degree=Pos 16 amod _ _ 15 regular regular ADJ JJ Degree=Pos 16 amod _ _ 16 frame frame NOUN NN Number=Sing 12 pobj _ _ 17 $ L $ $ l $ SYM $ _ 5 advcl _ _ 18 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = We prove that $ X $ is realized as the minimum of $ Spec(L) $ and the Gleason cover of $ X $ as the maximum of $ Spec(L) $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 6 mark _ _ 4 $ X $ $ x $ SYM $ _ 6 nsubjpass _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 6 realized realize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 7 as as ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 minimum minimum NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 $ Spec(L) $ $ spec(l) $ SYM $ _ 10 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 Gleason Gleason PROPN NNP Number=Sing 15 compound _ _ 15 cover cover NOUN NN Number=Sing 11 conj _ _ 16 of of ADP IN _ 15 prep _ _ 17 $ X $ $ x $ SYM $ _ 16 pobj _ _ 18 as as ADP IN _ 9 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 maximum maximum NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 $ Spec(L) $ $ spec(l) $ SYM $ _ 21 pobj _ _ 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We also characterize zero - dimensional, extremally disconnected, and scattered compact regular frames by means of $ Spec(L) $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 zero zero NUM CD NumType=Card 6 npadvmod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 dimensional dimensional ADJ JJ Degree=Pos 9 amod _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 9 punct _ _ 8 extremally extremally ADV RB _ 9 advmod _ _ 9 disconnected disconnected ADJ JJ Degree=Pos 3 ccomp _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 and and CCONJ CC ConjType=Cmp 9 cc _ _ 12 scattered scatter VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 conj _ _ 13 compact compact ADJ JJ Degree=Pos 15 amod _ _ 14 regular regular ADJ JJ Degree=Pos 15 amod _ _ 15 frames frame NOUN NNS Number=Plur 12 dobj _ _ 16 by by ADP IN _ 12 prep _ _ 17 means mean NOUN NNS Number=Plur 16 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 $ Spec(L) $ $ spec(l) $ SYM $ _ 18 pobj _ _ 20 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 593 # sent_id = 1 # text = We revisit what we call the fibred topology on a fibred category over a site and we prove a few basic results concerning this topology. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 revisit revisit VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 what what PRON WP _ 5 dobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 call call VERB VBP Tense=Pres|VerbForm=Fin 2 ccomp _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 fibred fibred ADJ JJ Degree=Pos 8 amod _ _ 8 topology topology NOUN NN Number=Sing 5 oprd _ _ 9 on on ADP IN _ 5 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 fibred fibred ADJ JJ Degree=Pos 12 amod _ _ 12 category category NOUN NN Number=Sing 9 pobj _ _ 13 over over ADP IN _ 5 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 site site NOUN NN Number=Sing 13 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 2 cc _ _ 17 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 18 nsubj _ _ 18 prove prove VERB VBP Tense=Pres|VerbForm=Fin 2 conj _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 quantmod _ _ 20 few few ADJ JJ Degree=Pos 22 amod _ _ 21 basic basic ADJ JJ Degree=Pos 22 amod _ _ 22 results result NOUN NNS Number=Plur 18 dobj _ _ 23 concerning concern VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 acl _ _ 24 this this DET DT Number=Sing|PronType=Dem 25 det _ _ 25 topology topology NOUN NN Number=Sing 23 dobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # sent_id = 2 # text = We give a general result concerning the invariance of a 2 - category of stacks under change of base. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 general general ADJ JJ Degree=Pos 5 amod _ _ 5 result result NOUN NN Number=Sing 2 dobj _ _ 6 concerning concern VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 acl _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 invariance invariance NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 11 2 2 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 category category NOUN NN Number=Sing 9 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 stacks stack NOUN NNS Number=Plur 14 pobj _ _ 16 under under ADP IN _ 6 prep _ _ 17 change change NOUN NN Number=Sing 16 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 base base NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 594 # sent_id = 1 # text = In this paper we investigate the construction of bicategories of fractions originally described by Pronk: given any bicategory $ C $ together with a suitable class of morphisms $ W $ , one can construct a bicategory $ C[W^{ - 1}] $ , where all the morphisms of $ W $ are turned into internal equivalences, and that is universal with respect to this property. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 investigate investigate VERB VBP Tense=Pres|VerbForm=Fin 32 ccomp _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 construction construction NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 bicategories bicategorie NOUN NNS Number=Plur 8 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 fractions fraction NOUN NNS Number=Plur 10 pobj _ _ 12 originally originally ADV RB _ 13 advmod _ _ 13 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 acl _ _ 14 by by ADP IN _ 13 agent _ _ 15 Pronk Pronk PROPN NNP Number=Sing 14 pobj _ SpaceAfter=No 16 : : PUNCT : _ 5 punct _ _ 17 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 prep _ _ 18 any any DET DT _ 19 det _ _ 19 bicategory bicategory NOUN NN Number=Sing 17 pobj _ _ 20 $ C $ $ c $ SYM $ _ 21 nmod _ _ 21 together together ADV RB _ 17 advmod _ _ 22 with with ADP IN _ 17 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 24 suitable suitable ADJ JJ Degree=Pos 25 amod _ _ 25 class class NOUN NN Number=Sing 22 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 morphisms morphism NOUN NNS Number=Plur 26 pobj _ _ 28 $ W $ $ w $ SYM $ _ 25 appos _ _ 29 , , PUNCT , PunctType=Comm 32 punct _ _ 30 one one PRON PRP PronType=Prs 32 nsubj _ _ 31 can can AUX MD VerbForm=Fin 32 aux _ _ 32 construct construct VERB VB VerbForm=Inf 0 ROOT _ _ 33 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 34 bicategory bicategory NOUN NN Number=Sing 35 compound _ _ 35 $ C[W^{ - 1}] $ $ c[w^{ - 1}] $ SYM $ _ 32 dobj _ _ 36 , , PUNCT , PunctType=Comm 35 punct _ _ 37 where where SCONJ WRB _ 44 advmod _ _ 38 all all DET PDT _ 40 predet _ _ 39 the the DET DT Definite=Def|PronType=Art 40 det _ _ 40 morphisms morphism NOUN NNS Number=Plur 44 nsubjpass _ _ 41 of of ADP IN _ 40 prep _ _ 42 $ W $ $ w $ SYM $ _ 41 pobj _ _ 43 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 44 auxpass _ _ 44 turned turn VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 35 relcl _ _ 45 into into ADP IN _ 44 prep _ _ 46 internal internal ADJ JJ Degree=Pos 47 amod _ _ 47 equivalences equivalence NOUN NNS Number=Plur 45 pobj _ SpaceAfter=No 48 , , PUNCT , PunctType=Comm 32 punct _ _ 49 and and CCONJ CC ConjType=Cmp 32 cc _ _ 50 that that PRON DT Number=Sing|PronType=Dem 51 nsubj _ _ 51 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 32 conj _ _ 52 universal universal ADJ JJ Degree=Pos 51 acomp _ _ 53 with with ADP IN _ 52 prep _ _ 54 respect respect NOUN NN Number=Sing 53 pobj _ _ 55 to to ADP IN _ 54 prep _ _ 56 this this DET DT Number=Sing|PronType=Dem 57 det _ _ 57 property property NOUN NN Number=Sing 55 pobj _ SpaceAfter=No 58 . . PUNCT . PunctType=Peri 51 punct _ SpaceAfter=No # sent_id = 2 # text = Most of the descriptions leading to this construction were long and heavily based on the axiom of choice. 1 Most Most ADJ JJS Degree=Sup 9 nsubj _ _ 2 of of ADP IN _ 1 prep _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 descriptions description NOUN NNS Number=Plur 2 pobj _ _ 5 leading lead VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 acl _ _ 6 to to ADP IN _ 5 prep _ _ 7 this this DET DT Number=Sing|PronType=Dem 8 det _ _ 8 construction construction NOUN NN Number=Sing 6 pobj _ _ 9 were be AUX VBD Mood=Ind|Tense=Past|VerbForm=Fin 0 ROOT _ _ 10 long long ADJ JJ Degree=Pos 9 acomp _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 heavily heavily ADV RB _ 13 advmod _ _ 13 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 conj _ _ 14 on on ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 axiom axiom NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 choice choice NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 3 # text = In this paper we considerably simplify the description of the equivalence relation on 2 - morphisms and the constructions of associators, vertical and horizontal compositions in $ C[W^{ - 1}] $ , thus proving that the axiom of choice is not needed under certain conditions. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 5 considerably considerably ADV RB _ 6 advmod _ _ 6 simplify simplify VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 description description NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 equivalence equivalence NOUN NN Number=Sing 12 compound _ _ 12 relation relation NOUN NN Number=Sing 9 pobj _ _ 13 on on ADP IN _ 12 prep _ _ 14 2 2 NUM CD NumType=Card 16 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 morphisms morphism NOUN NNS Number=Plur 13 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 constructions construction NOUN NNS Number=Plur 16 conj _ _ 20 of of ADP IN _ 19 prep _ _ 21 associators associator NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 vertical vertical ADJ JJ Degree=Pos 26 amod _ _ 24 and and CCONJ CC ConjType=Cmp 23 cc _ _ 25 horizontal horizontal ADJ JJ Degree=Pos 23 conj _ _ 26 compositions composition NOUN NNS Number=Plur 13 pobj _ _ 27 in in ADP IN _ 26 prep _ _ 28 $ C[W^{ - 1}] $ $ c[w^{ - 1}] $ SYM $ _ 27 pobj _ _ 29 , , PUNCT , PunctType=Comm 6 punct _ _ 30 thus thus ADV RB _ 31 advmod _ _ 31 proving prove VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 advcl _ _ 32 that that SCONJ IN _ 39 mark _ _ 33 the the DET DT Definite=Def|PronType=Art 34 det _ _ 34 axiom axiom NOUN NN Number=Sing 39 nsubjpass _ _ 35 of of ADP IN _ 34 prep _ _ 36 choice choice NOUN NN Number=Sing 35 pobj _ _ 37 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 39 auxpass _ _ 38 not not PART RB Polarity=Neg 39 neg _ _ 39 needed need VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 31 ccomp _ _ 40 under under ADP IN _ 39 prep _ _ 41 certain certain ADJ JJ Degree=Pos 42 amod _ _ 42 conditions condition NOUN NNS Number=Plur 40 pobj _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = The simplified description of associators and compositions will also play a crucial role in two forthcoming papers about pseudofunctors and equivalences between bicategories of fractions. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 simplified simplified ADJ JJ Degree=Pos 3 amod _ _ 3 description description NOUN NN Number=Sing 10 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 associators associator NOUN NNS Number=Plur 4 pobj _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 compositions composition NOUN NNS Number=Plur 5 conj _ _ 8 will will AUX MD VerbForm=Fin 10 aux _ _ 9 also also ADV RB _ 10 advmod _ _ 10 play play VERB VB VerbForm=Inf 0 ROOT _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 crucial crucial ADJ JJ Degree=Pos 13 amod _ _ 13 role role NOUN NN Number=Sing 10 dobj _ _ 14 in in ADP IN _ 10 prep _ _ 15 two two NUM CD NumType=Card 17 nummod _ _ 16 forthcoming forthcoming ADJ JJ Degree=Pos 17 amod _ _ 17 papers paper NOUN NNS Number=Plur 14 pobj _ _ 18 about about ADP IN _ 17 prep _ _ 19 pseudofunctors pseudofunctor NOUN NNS Number=Plur 18 pobj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 equivalences equivalence NOUN NNS Number=Plur 19 conj _ _ 22 between between ADP IN _ 17 prep _ _ 23 bicategories bicategorie NOUN NNS Number=Plur 22 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 fractions fraction NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # doc_id = 595 # sent_id = 1 # text = We prove a biadjoint triangle theorem and its strict version, which are 2 - dimensional analogues of the adjoint triangle theorem of Dubuc. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 biadjoint biadjoint NOUN NN Number=Sing 5 compound _ _ 5 triangle triangle NOUN NN Number=Sing 2 dobj _ _ 6 theorem theorem ADJ JJ Degree=Pos 5 amod _ _ 7 and and CCONJ CC ConjType=Cmp 5 cc _ _ 8 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 10 poss _ _ 9 strict strict ADJ JJ Degree=Pos 10 amod _ _ 10 version version NOUN NN Number=Sing 5 conj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 which which PRON WDT _ 13 nsubj _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 10 relcl _ _ 14 2 2 NUM CD NumType=Card 16 advmod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 dimensional dimensional ADJ JJ Degree=Pos 17 amod _ _ 17 analogues analogue NOUN NNS Number=Plur 13 attr _ _ 18 of of ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 adjoint adjoint NOUN NN Number=Sing 21 compound _ _ 21 triangle triangle NOUN NN Number=Sing 18 pobj _ _ 22 theorem theorem ADJ JJ Degree=Pos 21 amod _ _ 23 of of ADP IN _ 22 prep _ _ 24 Dubuc Dubuc PROPN NNP Number=Sing 23 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Similarly to the 1 - dimensional case, we demonstrate how we can apply our results to get the pseudomonadicity characterization (due to Le Creurer, Marmolejo and Vitale). 1 Similarly similarly ADV RB _ 2 advmod _ _ 2 to to ADP IN _ 10 prep _ _ 3 the the DET DT Definite=Def|PronType=Art 7 det _ _ 4 1 1 NUM CD NumType=Card 6 advmod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 dimensional dimensional ADJ JJ Degree=Pos 7 amod _ _ 7 case case NOUN NN Number=Sing 2 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 10 punct _ _ 9 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 10 nsubj _ _ 10 demonstrate demonstrate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 how how SCONJ WRB _ 14 advmod _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 14 nsubj _ _ 13 can can AUX MD VerbForm=Fin 14 aux _ _ 14 apply apply VERB VB VerbForm=Inf 10 ccomp _ _ 15 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 16 poss _ _ 16 results result NOUN NNS Number=Plur 14 dobj _ _ 17 to to PART TO _ 18 aux _ _ 18 get get VERB VB VerbForm=Inf 14 advcl _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 pseudomonadicity pseudomonadicity NOUN NN Number=Sing 21 compound _ _ 21 characterization characterization NOUN NN Number=Sing 18 dobj _ _ 22 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 21 punct _ SpaceAfter=No 23 due due ADP IN _ 18 prep _ _ 24 to to ADP IN _ 23 pcomp _ _ 25 Le Le PROPN NNP Number=Sing 26 compound _ _ 26 Creurer Creurer PROPN NNP Number=Sing 23 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 26 punct _ _ 28 Marmolejo Marmolejo PROPN NNP Number=Sing 26 conj _ _ 29 and and CCONJ CC ConjType=Cmp 28 cc _ _ 30 Vitale Vitale PROPN NNP Number=Sing 28 conj _ SpaceAfter=No 31 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 10 punct _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 3 # text = Furthermore, we study applications of our main theorems in the context of the 2 - monadic approach to coherence. 1 Furthermore furthermore ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 applications application NOUN NNS Number=Plur 4 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 9 poss _ _ 8 main main ADJ JJ Degree=Pos 9 amod _ _ 9 theorems theorem NOUN NNS Number=Plur 6 pobj _ _ 10 in in ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 context context NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 18 det _ _ 15 2 2 NUM CD NumType=Card 17 nummod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 monadic monadic ADJ JJ Degree=Pos 18 amod _ _ 18 approach approach NOUN NN Number=Sing 13 pobj _ _ 19 to to ADP IN _ 18 prep _ _ 20 coherence coherence NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = As a direct consequence of our strict biadjoint triangle theorem, we give the construction (due to Lack) of the left 2 - adjoint to the inclusion of the strict algebras into the pseudoalgebras. 1 As as SCONJ IN _ 10 mark _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 direct direct ADJ JJ Degree=Pos 4 amod _ _ 4 consequence consequence NOUN NN Number=Sing 1 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 9 poss _ _ 7 strict strict ADJ JJ Degree=Pos 9 amod _ _ 8 biadjoint biadjoint NOUN NN Number=Sing 9 compound _ _ 9 triangle triangle NOUN NN Number=Sing 5 pobj _ _ 10 theorem theorem ADJ JJ Degree=Pos 13 advcl _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 13 punct _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 construction construction NOUN NN Number=Sing 13 dobj _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 13 punct _ SpaceAfter=No 17 due due ADP IN _ 13 prep _ _ 18 to to ADP IN _ 17 pcomp _ _ 19 Lack Lack PROPN NNP Number=Sing 17 pobj _ SpaceAfter=No 20 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 17 punct _ _ 21 of of ADP IN _ 13 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 26 det _ _ 23 left left ADJ JJ Degree=Pos 26 amod _ _ 24 2 2 NUM CD NumType=Card 26 nummod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 adjoint adjoint NOUN NN Number=Sing 21 pobj _ _ 27 to to ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 inclusion inclusion NOUN NN Number=Sing 27 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 33 det _ _ 32 strict strict ADJ JJ Degree=Pos 33 amod _ _ 33 algebras algebra NOUN NNS Number=Plur 30 pobj _ _ 34 into into ADP IN _ 29 prep _ _ 35 the the DET DT Definite=Def|PronType=Art 36 det _ _ 36 pseudoalgebras pseudoalgebra NOUN NNS Number=Plur 34 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 5 # text = In the last section, we give two brief applications on lifting biadjunctions and pseudo - Kan extensions. 1 In in ADP IN _ 7 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 last last ADJ JJ Degree=Pos 4 amod _ _ 4 section section NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 two two NUM CD NumType=Card 10 nummod _ _ 9 brief brief ADJ JJ Degree=Pos 10 amod _ _ 10 applications application NOUN NNS Number=Plur 7 dobj _ _ 11 on on ADP IN _ 10 prep _ _ 12 lifting lift VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 amod _ _ 13 biadjunctions biadjunction NOUN NNS Number=Plur 11 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 pseudo pseudo NOUN NN Number=Sing 17 compound _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 Kan Kan PROPN NNP Number=Sing 18 compound _ _ 18 extensions extension NOUN NNS Number=Plur 13 conj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # doc_id = 596 # sent_id = 1 # text = The category of symmetric quandles is a Maltsev variety whose subvariety of abelian symmetric quandles is the category of abelian algebras. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 category category NOUN NN Number=Sing 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 symmetric symmetric ADJ JJ Degree=Pos 5 amod _ _ 5 quandles quandle NOUN NNS Number=Plur 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 Maltsev Maltsev PROPN NNP Number=Sing 9 compound _ _ 9 variety variety NOUN NN Number=Sing 6 attr _ _ 10 whose whose DET WP$ Poss=Yes 11 poss _ _ 11 subvariety subvariety NOUN NN Number=Sing 16 nsubj _ _ 12 of of ADP IN _ 11 prep _ _ 13 abelian abelian ADJ JJ Degree=Pos 15 nmod _ _ 14 symmetric symmetric ADJ JJ Degree=Pos 15 amod _ _ 15 quandles quandle NOUN NNS Number=Plur 12 pobj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 relcl _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 category category NOUN NN Number=Sing 16 attr _ _ 19 of of ADP IN _ 18 prep _ _ 20 abelian abelian PROPN NNP Number=Sing 21 compound _ _ 21 algebras algebras PROPN NNP Number=Sing 19 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = We give an algebraic description of the quandle extensions that are central for the adjunction between the variety of quandles and its subvariety of abelian symmetric quandles. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 4 algebraic algebraic ADJ JJ Degree=Pos 5 amod _ _ 5 description description NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 quandle quandle NOUN NN Number=Sing 9 compound _ _ 9 extensions extension NOUN NNS Number=Plur 6 pobj _ _ 10 that that PRON WDT PronType=Rel 11 nsubj _ _ 11 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 relcl _ _ 12 central central ADJ JJ Degree=Pos 11 acomp _ _ 13 for for ADP IN _ 11 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 adjunction adjunction NOUN NN Number=Sing 13 pobj _ _ 16 between between ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 variety variety NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 quandles quandle NOUN NNS Number=Plur 19 pobj _ _ 21 and and CCONJ CC ConjType=Cmp 18 cc _ _ 22 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 23 poss _ _ 23 subvariety subvariety NOUN NN Number=Sing 18 conj _ _ 24 of of ADP IN _ 23 prep _ _ 25 abelian abelian ADJ JJ Degree=Pos 27 amod _ _ 26 symmetric symmetric ADJ JJ Degree=Pos 27 amod _ _ 27 quandles quandle NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 597 # sent_id = 1 # text = For a coherent site we construct a canonically associated enlarged coherent site, such that cohomology of bounded below complexes is preserved by the enlargement. 1 For for ADP IN _ 6 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 coherent coherent ADJ JJ Degree=Pos 4 amod _ _ 4 site site NOUN NN Number=Sing 1 pobj _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 8 canonically canonically ADV RB _ 9 advmod _ _ 9 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 10 enlarged enlarge VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 11 coherent coherent ADJ JJ Degree=Pos 12 amod _ _ 12 site site NOUN NN Number=Sing 6 dobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 such such ADJ JJ Degree=Pos 16 amod _ _ 15 that that DET DT Number=Sing|PronType=Dem 16 det _ _ 16 cohomology cohomology NOUN NN Number=Sing 22 nsubjpass _ _ 17 of of ADP IN _ 16 prep _ _ 18 bounded bound VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 pobj _ _ 19 below below ADP IN _ 18 prep _ _ 20 complexes complex NOUN NNS Number=Plur 19 pobj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 auxpass _ _ 22 preserved preserve VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 relcl _ _ 23 by by ADP IN _ 22 agent _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 enlargement enlargement NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = In the topos associated to the enlarged site transfinite compositions of epimorphisms are epimorphisms and a weak analog of the concept of the algebraic closure exists. 1 In in ADP IN _ 13 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 topos topos NOUN NN Number=Sing 1 pobj _ _ 4 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 acl _ _ 5 to to ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 10 det _ _ 7 enlarged enlarge VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 8 site site NOUN NN Number=Sing 9 compound _ _ 9 transfinite transfinite NOUN NN Number=Sing 10 compound _ _ 10 compositions composition NOUN NNS Number=Plur 5 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 epimorphisms epimorphism NOUN NNS Number=Plur 11 pobj _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 epimorphisms epimorphism NOUN NNS Number=Plur 26 nsubj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 weak weak ADJ JJ Degree=Pos 18 amod _ _ 18 analog analog NOUN NN Number=Sing 14 conj _ _ 19 of of ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 concept concept NOUN NN Number=Sing 19 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 algebraic algebraic ADJ JJ Degree=Pos 25 amod _ _ 25 closure closure NOUN NN Number=Sing 22 pobj _ _ 26 exists exist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 attr _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 3 # text = The construction is a variant of the work of Bhatt and Scholze on the pro - etale topology. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 construction construction NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 variant variant NOUN NN Number=Sing 3 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 work work NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 Bhatt Bhatt PROPN NNP Number=Sing 9 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 Scholze Scholze PROPN NNP Number=Sing 10 conj _ _ 13 on on ADP IN _ 5 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 18 det _ _ 15 pro pro ADJ JJ Degree=Pos 17 amod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 etale etale ADJ JJ Degree=Pos 18 amod _ _ 18 topology topology NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 598 # sent_id = 1 # text = There is a general notion of the magnitude of an enriched category, defined subject to hypotheses. 1 There there PRON EX _ 2 expl _ _ 2 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 general general ADJ JJ Degree=Pos 5 amod _ _ 5 notion notion NOUN NN Number=Sing 2 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 magnitude magnitude NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 11 enriched enriched ADJ JJ Degree=Pos 12 amod _ _ 12 category category NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 5 punct _ _ 14 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 amod _ _ 15 subject subject NOUN NN Number=Sing 5 appos _ _ 16 to to ADP IN _ 15 prep _ _ 17 hypotheses hypothesis NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = In topological and geometric contexts, magnitude is already known to be closely related to classical invariants such as Euler characteristic and dimension. 1 In in ADP IN _ 10 prep _ _ 2 topological topological ADJ JJ Degree=Pos 5 amod _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 geometric geometric ADJ JJ Degree=Pos 2 conj _ _ 5 contexts context NOUN NNS Number=Plur 1 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 10 punct _ _ 7 magnitude magnitude NOUN NN Number=Sing 10 nsubjpass _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 9 already already ADV RB _ 10 advmod _ _ 10 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 11 to to PART TO _ 14 aux _ _ 12 be be AUX VB VerbForm=Inf 14 auxpass _ _ 13 closely closely ADV RB _ 14 advmod _ _ 14 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 xcomp _ _ 15 to to ADP IN _ 14 prep _ _ 16 classical classical ADJ JJ Degree=Pos 17 amod _ _ 17 invariants invariant NOUN NNS Number=Plur 15 pobj _ _ 18 such such ADJ JJ Degree=Pos 19 amod _ _ 19 as as ADP IN _ 17 prep _ _ 20 Euler Euler PROPN NNP Number=Sing 19 pobj _ _ 21 characteristic characteristic ADJ JJ Degree=Pos 20 amod _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 dimension dimension NOUN NN Number=Sing 21 conj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 3 # text = Here we establish its significance in an algebraic context. 1 Here here ADV RB PronType=Dem 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 establish establish VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 5 poss _ _ 5 significance significance NOUN NN Number=Sing 3 dobj _ _ 6 in in ADP IN _ 3 prep _ _ 7 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 8 algebraic algebraic ADJ JJ Degree=Pos 9 amod _ _ 9 context context NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = Specifically, in the representation theory of an associative algebra $ A $ , a central role is played by the indecomposable projective $ A $ - modules, which form a category enriched in vector spaces. 1 Specifically specifically ADV RB _ 17 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 17 punct _ _ 3 in in ADP IN _ 17 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 representation representation NOUN NN Number=Sing 6 compound _ _ 6 theory theory NOUN NN Number=Sing 3 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 an an DET DT Definite=Ind|PronType=Art 10 det _ _ 9 associative associative ADJ JJ Degree=Pos 10 amod _ _ 10 algebra algebra NOUN NN Number=Sing 7 pobj _ _ 11 $ A $ $ a $ SYM $ _ 10 appos _ _ 12 , , PUNCT , PunctType=Comm 17 punct _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 central central ADJ JJ Degree=Pos 15 amod _ _ 15 role role NOUN NN Number=Sing 17 nsubjpass _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 auxpass _ _ 17 played play VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 18 by by ADP IN _ 17 agent _ _ 19 the the DET DT Definite=Def|PronType=Art 24 det _ _ 20 indecomposable indecomposable ADJ JJ Degree=Pos 24 amod _ _ 21 projective projective NOUN NN Number=Sing 24 amod _ _ 22 $ A $ $ a $ SYM $ _ 24 compound _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 modules module NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 which which PRON WDT _ 27 nsubj _ _ 27 form form VERB VBP Tense=Pres|VerbForm=Fin 24 relcl _ _ 28 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 29 category category NOUN NN Number=Sing 27 dobj _ _ 30 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 acl _ _ 31 in in ADP IN _ 30 prep _ _ 32 vector vector NOUN NN Number=Sing 33 compound _ _ 33 spaces space NOUN NNS Number=Plur 31 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 5 # text = We show that the magnitude of that category is a known homological invariant of the algebra: writing $ chi_A $ for the Euler form of $ A $ and $ S $ for the direct sum of the simple $ A $ - modules, it is $ chi_A(S, S) $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 9 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 magnitude magnitude NOUN NN Number=Sing 9 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 that that DET DT Number=Sing|PronType=Dem 8 det _ _ 8 category category NOUN NN Number=Sing 6 pobj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 10 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 11 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 amod _ _ 12 homological homological ADJ JJ Degree=Pos 13 amod _ _ 13 invariant invariant NOUN NN Number=Sing 9 attr _ _ 14 of of ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 algebra algebra PROPN NNP Number=Sing 14 pobj _ SpaceAfter=No 17 : : PUNCT : _ 9 punct _ _ 18 writing write VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 advcl _ _ 19 $ chi_A $ $ chi_a $ SYM $ _ 18 dobj _ _ 20 for for ADP IN _ 18 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 23 det _ _ 22 Euler Euler PROPN NNP Number=Sing 23 compound _ _ 23 form form NOUN NN Number=Sing 20 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 $ A $ $ a $ SYM $ _ 24 pobj _ _ 26 and and CCONJ CC ConjType=Cmp 25 cc _ _ 27 $ S $ $ s $ SYM $ _ 24 pobj _ _ 28 for for ADP IN _ 18 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 31 det _ _ 30 direct direct ADJ JJ Degree=Pos 31 amod _ _ 31 sum sum NOUN NN Number=Sing 28 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 the the DET DT Definite=Def|PronType=Art 37 det _ _ 34 simple simple ADJ JJ Degree=Pos 37 amod _ _ 35 $ A $ $ a $ SYM $ _ 37 compound _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 modules module NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 38 , , PUNCT , PunctType=Comm 40 punct _ _ 39 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 40 nsubj _ _ 40 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 41 $ chi_A(S, S) $ $ chi_a(s, s) $ SYM $ _ 40 attr _ _ 42 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 599 # sent_id = 1 # text = Symmetric monoidal closed categories may be related to one another not only by the functors between them but also by enrichment of one in another, and it was known to Kelly in the 1960s that there is a very close connection between these phenomena. 1 Symmetric symmetric ADJ JJ Degree=Pos 2 amod _ _ 2 monoidal monoidal NOUN NN Number=Sing 3 nsubj _ _ 3 closed close VERB VBD Tense=Past|VerbForm=Fin 4 amod _ _ 4 categories category NOUN NNS Number=Plur 7 nsubjpass _ _ 5 may may AUX MD VerbForm=Fin 7 aux _ _ 6 be be AUX VB VerbForm=Inf 7 auxpass _ _ 7 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 to to ADP IN _ 7 prep _ _ 9 one one NUM CD NumType=Card 8 pobj _ _ 10 another another DET DT _ 9 det _ _ 11 not not PART RB Polarity=Neg 13 preconj _ _ 12 only only ADV RB _ 11 advmod _ _ 13 by by ADP IN _ 7 agent _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 functors functor NOUN NNS Number=Plur 13 pobj _ _ 16 between between ADP IN _ 15 prep _ _ 17 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 16 pobj _ _ 18 but but CCONJ CC ConjType=Cmp 16 cc _ _ 19 also also ADV RB _ 18 advmod _ _ 20 by by ADP IN _ 7 prep _ _ 21 enrichment enrichment NOUN NN Number=Sing 20 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 one one NUM CD NumType=Card 22 pobj _ _ 24 in in ADP IN _ 23 prep _ _ 25 another another PRON DT _ 24 pobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 7 punct _ _ 27 and and CCONJ CC ConjType=Cmp 7 cc _ _ 28 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 30 nsubjpass _ _ 29 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 30 auxpass _ _ 30 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 conj _ _ 31 to to ADP IN _ 30 prep _ _ 32 Kelly Kelly PROPN NNP Number=Sing 31 pobj _ _ 33 in in ADP IN _ 30 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 35 det _ _ 35 1960s 1960 NOUN NNS Number=Plur 33 pobj _ _ 36 that that SCONJ IN _ 38 mark _ _ 37 there there PRON EX _ 38 expl _ _ 38 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 ccomp _ _ 39 a a DET DT Definite=Ind|PronType=Art 42 det _ _ 40 very very ADV RB _ 41 advmod _ _ 41 close close ADJ JJ Degree=Pos 42 amod _ _ 42 connection connection NOUN NN Number=Sing 38 attr _ _ 43 between between ADP IN _ 42 prep _ _ 44 these these DET DT Number=Plur|PronType=Dem 45 det _ _ 45 phenomena phenomenon NOUN NNS Number=Plur 43 pobj _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 30 punct _ SpaceAfter=No # sent_id = 2 # text = In this first part of a two - part series on this subject, we show that the assignment to each symmetric monoidal closed category $ V $ its associated $ V $ - enriched category $ underline{V} $ extends to a 2 - functor valued in an op - 2 - fibred 2 - category of symmetric monoidal closed categories enriched over various bases. 1 In in ADP IN _ 16 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 3 first first ADJ JJ Degree=Pos 4 amod _ _ 4 part part NOUN NN Number=Sing 1 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 7 two two NUM CD NumType=Card 9 nummod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 part part NOUN NN Number=Sing 10 compound _ _ 10 series series NOUN NN Number=Sing 5 pobj _ _ 11 on on ADP IN _ 10 prep _ _ 12 this this DET DT Number=Sing|PronType=Dem 13 det _ _ 13 subject subject NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 16 punct _ _ 15 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 16 nsubj _ _ 16 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 17 that that SCONJ IN _ 24 mark _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 assignment assignment NOUN NN Number=Sing 24 nsubj _ _ 20 to to ADP IN _ 19 prep _ _ 21 each each DET DT _ 23 det _ _ 22 symmetric symmetric ADJ JJ Degree=Pos 23 amod _ _ 23 monoidal monoidal NOUN NN Number=Sing 20 pobj _ _ 24 closed close VERB VBD Tense=Past|VerbForm=Fin 16 ccomp _ _ 25 category category NOUN NN Number=Sing 24 dobj _ _ 26 $ V $ $ v $ SYM $ _ 25 nummod _ _ 27 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 32 poss _ _ 28 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 amod _ _ 29 $ V $ $ v $ SYM $ _ 31 advmod _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 amod _ _ 32 category category NOUN NN Number=Sing 34 nsubj _ _ 33 $ underline{V} $ $ underline{v} $ SYM $ _ 34 nsubj _ _ 34 extends extend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 ccomp _ _ 35 to to ADP IN _ 34 prep _ _ 36 a a DET DT Definite=Ind|PronType=Art 39 det _ _ 37 2 2 NUM CD NumType=Card 39 nummod _ _ 38 - - PUNCT HYPH PunctType=Dash 39 punct _ _ 39 functor functor NOUN NN Number=Sing 35 pobj _ _ 40 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 39 acl _ _ 41 in in ADP IN _ 40 prep _ _ 42 an an DET DT Definite=Ind|PronType=Art 50 det _ _ 43 op op NOUN NN Number=Sing 47 npadvmod _ _ 44 - - PUNCT HYPH PunctType=Dash 43 punct _ _ 45 2 2 NUM CD NumType=Card 43 nummod _ _ 46 - - PUNCT HYPH PunctType=Dash 47 punct _ _ 47 fibred fibre VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 50 amod _ _ 48 2 2 NUM CD NumType=Card 50 nummod _ _ 49 - - PUNCT HYPH PunctType=Dash 50 punct _ _ 50 category category NOUN NN Number=Sing 41 pobj _ _ 51 of of ADP IN _ 50 prep _ _ 52 symmetric symmetric ADJ JJ Degree=Pos 53 amod _ _ 53 monoidal monoidal NOUN NN Number=Sing 51 pobj _ _ 54 closed close VERB VBD Tense=Past|VerbForm=Fin 55 amod _ _ 55 categories category NOUN NNS Number=Plur 34 dobj _ _ 56 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 55 acl _ _ 57 over over ADP IN _ 56 prep _ _ 58 various various ADJ JJ Degree=Pos 59 amod _ _ 59 bases basis NOUN NNS Number=Plur 57 pobj _ SpaceAfter=No 60 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 3 # text = For a fixed $ V $ , we show that this induces a 2 - functorial passage from symmetric monoidal closed categories over $ V $ (that is, equipped with a morphism to $ V $ ) to symmetric monoidal closed $ V $ - categories over $ underline{V} $ . 1 For for ADP IN _ 7 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 fixed fix VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 amod _ _ 4 $ V $ $ v $ SYM $ _ 1 pobj _ _ 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 that that SCONJ IN _ 10 mark _ _ 9 this this PRON DT Number=Sing|PronType=Dem 10 nsubj _ _ 10 induces induce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 ccomp _ _ 11 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 12 2 2 NUM CD NumType=Card 14 nummod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 functorial functorial NOUN NN Number=Sing 15 compound _ _ 15 passage passage NOUN NN Number=Sing 19 nsubj _ _ 16 from from ADP IN _ 15 prep _ _ 17 symmetric symmetric ADJ JJ Degree=Pos 18 amod _ _ 18 monoidal monoidal NOUN NN Number=Sing 16 pobj _ _ 19 closed close VERB VBD Tense=Past|VerbForm=Fin 10 ccomp _ _ 20 categories category NOUN NNS Number=Plur 19 dobj _ _ 21 over over ADP IN _ 19 prep _ _ 22 $ V $ $ v $ SYM $ _ 21 pobj _ _ 23 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 27 punct _ SpaceAfter=No 24 that that ADV RB _ 25 advmod _ _ 25 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 27 auxpass _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 27 punct _ _ 27 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 parataxis _ _ 28 with with ADP IN _ 27 prep _ _ 29 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 30 morphism morphism NOUN NN Number=Sing 28 pobj _ _ 31 to to ADP IN _ 27 prep _ _ 32 $ V $ $ v $ SYM $ _ 31 pobj _ _ 33 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 27 punct _ _ 34 to to AUX IN _ 37 aux _ _ 35 symmetric symmetric ADJ JJ Degree=Pos 36 amod _ _ 36 monoidal monoidal NOUN NN Number=Sing 37 nsubj _ _ 37 closed close VERB VBD Tense=Past|VerbForm=Fin 10 advcl _ _ 38 $ V $ $ v $ SYM $ _ 40 compound _ _ 39 - - PUNCT HYPH PunctType=Dash 40 punct _ _ 40 categories category NOUN NNS Number=Plur 37 dobj _ _ 41 over over ADP IN _ 37 prep _ _ 42 $ underline{V} $ $ underline{v} $ SYM $ _ 41 pobj _ _ 43 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = As a consequence, we find that the enriched adjunction determined a symmetric monoidal closed adjunction can be obtained by applying a 2 - functor and, consequently, is an adjunction in the 2 - category of symmetric monoidal closed $ V $ - categories. 1 As as ADP IN _ 6 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 consequence consequence NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 find find VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 that that SCONJ IN _ 11 mark _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 10 adjunction adjunction NOUN NN Number=Sing 11 nsubj _ _ 11 determined determine VERB VBD Tense=Past|VerbForm=Fin 6 ccomp _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 symmetric symmetric ADJ JJ Degree=Pos 14 amod _ _ 14 monoidal monoidal NOUN NN Number=Sing 15 nsubj _ _ 15 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 16 adjunction adjunction NOUN NN Number=Sing 19 nsubjpass _ _ 17 can can AUX MD VerbForm=Fin 19 aux _ _ 18 be be AUX VB VerbForm=Inf 19 auxpass _ _ 19 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 ccomp _ _ 20 by by ADP IN _ 19 prep _ _ 21 applying apply VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 20 pcomp _ _ 22 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 23 2 2 NUM CD NumType=Card 25 nummod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 functor functor NOUN NN Number=Sing 21 dobj _ _ 26 and and CCONJ CC ConjType=Cmp 19 cc _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 30 punct _ _ 28 consequently consequently ADV RB _ 30 advmod _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 30 punct _ _ 30 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 conj _ _ 31 an an DET DT Definite=Ind|PronType=Art 32 det _ _ 32 adjunction adjunction NOUN NN Number=Sing 30 attr _ _ 33 in in ADP IN _ 32 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 37 det _ _ 35 2 2 NUM CD NumType=Card 37 nummod _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 category category NOUN NN Number=Sing 33 pobj _ _ 38 of of ADP IN _ 37 prep _ _ 39 symmetric symmetric ADJ JJ Degree=Pos 40 amod _ _ 40 monoidal monoidal NOUN NN Number=Sing 38 pobj _ _ 41 closed close VERB VBD Tense=Past|VerbForm=Fin 6 ccomp _ _ 42 $ V $ $ v $ SYM $ _ 44 nmod _ _ 43 - - PUNCT HYPH PunctType=Dash 44 punct _ _ 44 categories category NOUN NNS Number=Plur 41 dobj _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 600 # sent_id = 1 # text = Under a minimum of assumptions, we develop in generality the basic theory of universal algebra in a symmetric monoidal closed category $ V $ with respect to a specified system of arities $ j:J hookrightarrow V $ . 1 Under under ADP IN _ 8 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 minimum minimum NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 assumptions assumption NOUN NNS Number=Plur 4 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 8 punct _ _ 7 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 8 nsubj _ _ 8 develop develop VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 in in ADP IN _ 8 prep _ _ 10 generality generality NOUN NN Number=Sing 9 pobj _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 basic basic ADJ JJ Degree=Pos 13 amod _ _ 13 theory theory NOUN NN Number=Sing 21 nsubj _ _ 14 of of ADP IN _ 13 prep _ _ 15 universal universal ADJ JJ Degree=Pos 16 amod _ _ 16 algebra algebra NOUN NN Number=Sing 14 pobj _ _ 17 in in ADP IN _ 13 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 symmetric symmetric ADJ JJ Degree=Pos 20 amod _ _ 20 monoidal monoidal NOUN NN Number=Sing 17 pobj _ _ 21 closed close VERB VBD Tense=Past|VerbForm=Fin 8 conj _ _ 22 category category NOUN NN Number=Sing 21 dobj _ _ 23 $ V $ $ v $ SYM $ _ 21 dep _ _ 24 with with ADP IN _ 21 prep _ _ 25 respect respect NOUN NN Number=Sing 24 pobj _ _ 26 to to ADP IN _ 25 prep _ _ 27 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 28 specified specify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 amod _ _ 29 system system NOUN NN Number=Sing 26 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 arities arity NOUN NNS Number=Plur 30 pobj _ _ 32 $ j:J hookrightarrow V $ $ j:j hookrightarrow v $ SYM $ _ 29 appos _ _ 33 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 2 # text = Lawvere's notion of algebraic theory generalizes to this context, resulting in the notion of single - sorted $ V $ - enriched $ J $ - cotensor theory, or $ J $ - theory for short. 1 Lawvere Lawvere PROPN NNP Number=Sing 3 poss _ SpaceAfter=No 2 's 's PART POS _ 1 case _ _ 3 notion notion NOUN NN Number=Sing 7 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 algebraic algebraic ADJ JJ Degree=Pos 6 amod _ _ 6 theory theory NOUN NN Number=Sing 4 pobj _ _ 7 generalizes generalize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 to to ADP IN _ 7 prep _ _ 9 this this DET DT Number=Sing|PronType=Dem 10 det _ _ 10 context context NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 7 punct _ _ 12 resulting result VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 advcl _ _ 13 in in ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 notion notion NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 single single ADJ JJ Degree=Pos 19 advmod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 sorted sorted ADJ JJ Degree=Pos 26 amod _ _ 20 $ V $ $ v $ SYM $ _ 22 advmod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 amod _ _ 23 $ J $ $ j $ SYM $ _ 25 det _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 cotensor cotensor NOUN NN Number=Sing 26 compound _ _ 26 theory theory NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 26 punct _ _ 28 or or CCONJ CC ConjType=Cmp 26 cc _ _ 29 $ J $ $ j $ SYM $ _ 31 compound _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 theory theory NOUN NN Number=Sing 26 conj _ _ 32 for for ADP IN _ 31 prep _ _ 33 short short ADJ JJ Degree=Pos 32 amod _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = For suitable choices of $ V $ and $ J $ , such $ J $ - theories include the enriched algebraic theories of Borceux and Day, the enriched Lawvere theories of Power, the equational theories of Linton's 1965 work, and the $ V $ - theories of Dubuc, which are recovered by taking $ J = V $ and correspond to arbitrary $ V $ - monads on $ V $ . 1 For for ADP IN _ 13 prep _ _ 2 suitable suitable ADJ JJ Degree=Pos 3 amod _ _ 3 choices choice NOUN NNS Number=Plur 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 $ V $ $ v $ SYM $ _ 4 pobj _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 $ J $ $ j $ SYM $ _ 5 conj _ _ 8 , , PUNCT , PunctType=Comm 13 punct _ _ 9 such such ADJ JJ Degree=Pos 12 amod _ _ 10 $ J $ $ j $ SYM $ _ 12 compound _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 theories theory NOUN NNS Number=Plur 13 nsubj _ _ 13 include include VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 the the DET DT Definite=Def|PronType=Art 17 det _ _ 15 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 16 algebraic algebraic ADJ JJ Degree=Pos 17 amod _ _ 17 theories theory NOUN NNS Number=Plur 13 dobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 Borceux Borceux PROPN NNP Number=Sing 18 pobj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 Day Day PROPN NNP Number=Sing 19 conj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 17 punct _ _ 23 the the DET DT Definite=Def|PronType=Art 26 det _ _ 24 enriched enriched ADJ JJ Degree=Pos 26 amod _ _ 25 Lawvere Lawvere PROPN NNP Number=Sing 26 compound _ _ 26 theories theory NOUN NNS Number=Plur 17 appos _ _ 27 of of ADP IN _ 26 prep _ _ 28 Power Power PROPN NNP Number=Sing 27 pobj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 26 punct _ _ 30 the the DET DT Definite=Def|PronType=Art 32 det _ _ 31 equational equational ADJ JJ Degree=Pos 32 amod _ _ 32 theories theory NOUN NNS Number=Plur 26 conj _ _ 33 of of ADP IN _ 32 prep _ _ 34 Linton Linton PROPN NNP Number=Sing 37 poss _ SpaceAfter=No 35 's 's PART POS _ 34 case _ _ 36 1965 1965 NUM CD NumType=Card 37 nummod _ _ 37 work work NOUN NN Number=Sing 33 pobj _ SpaceAfter=No 38 , , PUNCT , PunctType=Comm 32 punct _ _ 39 and and CCONJ CC ConjType=Cmp 32 cc _ _ 40 the the DET DT Definite=Def|PronType=Art 43 det _ _ 41 $ V $ $ v $ SYM $ _ 43 compound _ _ 42 - - PUNCT HYPH PunctType=Dash 43 punct _ _ 43 theories theory NOUN NNS Number=Plur 32 conj _ _ 44 of of ADP IN _ 43 prep _ _ 45 Dubuc Dubuc PROPN NNP Number=Sing 44 pobj _ SpaceAfter=No 46 , , PUNCT , PunctType=Comm 45 punct _ _ 47 which which PRON WDT _ 49 nsubjpass _ _ 48 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 49 auxpass _ _ 49 recovered recover VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 45 relcl _ _ 50 by by ADP IN _ 49 prep _ _ 51 taking take VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 50 pcomp _ _ 52 $ J = V $ $ j = v $ SYM $ _ 51 dobj _ _ 53 and and CCONJ CC ConjType=Cmp 51 cc _ _ 54 correspond correspond VERB VB VerbForm=Inf 51 conj _ _ 55 to to ADP IN _ 54 prep _ _ 56 arbitrary arbitrary ADJ JJ Degree=Pos 59 amod _ _ 57 $ V $ $ v $ SYM $ _ 59 compound _ _ 58 - - PUNCT HYPH PunctType=Dash 59 punct _ _ 59 monads monad NOUN NNS Number=Plur 55 pobj _ _ 60 on on ADP IN _ 59 prep _ _ 61 $ V $ $ v $ SYM $ _ 60 pobj _ _ 62 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 4 # text = We identify a modest condition on $ j $ that entails that the $ V $ - category of $ T $ - algebras exists and is monadic over $ V $ for every $ J $ - theory $ T $ , even when $ T $ is not small and $ V $ is neither complete nor cocomplete. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 identify identify VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 modest modest ADJ JJ Degree=Pos 5 amod _ _ 5 condition condition NOUN NN Number=Sing 2 dobj _ _ 6 on on ADP IN _ 5 prep _ _ 7 $ j $ $ j $ SYM $ _ 6 pobj _ _ 8 that that PRON WDT PronType=Rel 9 nsubj _ _ 9 entails entail VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 relcl _ _ 10 that that SCONJ IN _ 19 mark _ _ 11 the the DET DT Definite=Def|PronType=Art 14 det _ _ 12 $ V $ $ v $ SYM $ _ 14 nmod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 category category NOUN NN Number=Sing 19 nsubj _ _ 15 of of ADP IN _ 14 prep _ _ 16 $ T $ $ t $ SYM $ _ 18 compound _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 algebras algebras PROPN NNP Number=Sing 15 pobj _ _ 19 exists exist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 ccomp _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 conj _ _ 22 monadic monadic ADJ JJ Degree=Pos 21 acomp _ _ 23 over over ADP IN _ 22 prep _ _ 24 $ V $ $ v $ SYM $ _ 23 pobj _ _ 25 for for ADP IN _ 21 prep _ _ 26 every every DET DT _ 29 det _ _ 27 $ J $ $ j $ SYM $ _ 29 compound _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 theory theory NOUN NN Number=Sing 25 pobj _ _ 30 $ T $ $ t $ SYM $ _ 29 appos _ _ 31 , , PUNCT , PunctType=Comm 21 punct _ _ 32 even even ADV RB _ 33 advmod _ _ 33 when when SCONJ WRB _ 35 advmod _ _ 34 $ T $ $ t $ SYM $ _ 35 nsubj _ _ 35 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 21 advcl _ _ 36 not not PART RB Polarity=Neg 35 neg _ _ 37 small small ADJ JJ Degree=Pos 35 acomp _ _ 38 and and CCONJ CC ConjType=Cmp 37 cc _ _ 39 $ V $ $ v $ SYM $ _ 40 nsubj _ _ 40 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 41 neither neither ADV RB _ 42 preconj _ _ 42 complete complete ADJ JJ Degree=Pos 40 acomp _ _ 43 nor nor CCONJ CC ConjType=Cmp 42 cc _ _ 44 cocomplete cocomplete ADJ JJ Degree=Pos 42 conj _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = We show that $ j $ satisfies this condition if and only if $ j $ presents $ V $ as a free cocompletion of $ J $ with respect to the weights for left Kan extensions along $ j $ , and so we call such systems of arities eleutheric. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 5 mark _ _ 4 $ j $ $ j $ SYM $ _ 5 nmod _ _ 5 satisfies satisfie NOUN NNS Number=Plur 2 ccomp _ _ 6 this this DET DT Number=Sing|PronType=Dem 7 det _ _ 7 condition condition NOUN NN Number=Sing 5 npadvmod _ _ 8 if if SCONJ IN _ 2 prep _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 only only ADV RB _ 13 advmod _ _ 11 if if SCONJ IN _ 13 mark _ _ 12 $ j $ $ j $ SYM $ _ 13 nsubj _ _ 13 presents present VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 advcl _ _ 14 $ V $ $ v $ SYM $ _ 13 dep _ _ 15 as as ADP IN _ 13 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 free free ADJ JJ Degree=Pos 18 amod _ _ 18 cocompletion cocompletion NOUN NN Number=Sing 15 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 $ J $ $ j $ SYM $ _ 19 pobj _ _ 21 with with ADP IN _ 13 prep _ _ 22 respect respect NOUN NN Number=Sing 21 pobj _ _ 23 to to ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 weights weight NOUN NNS Number=Plur 23 pobj _ _ 26 for for ADP IN _ 25 prep _ _ 27 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 amod _ _ 28 Kan Kan PROPN NNP Number=Sing 29 compound _ _ 29 extensions extension NOUN NNS Number=Plur 26 pobj _ _ 30 along along ADP IN _ 29 prep _ _ 31 $ j $ $ j $ SYM $ _ 30 pobj _ _ 32 , , PUNCT , PunctType=Comm 13 punct _ _ 33 and and CCONJ CC ConjType=Cmp 13 cc _ _ 34 so so ADV RB _ 36 advmod _ _ 35 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 36 nsubj _ _ 36 call call VERB VBP Tense=Pres|VerbForm=Fin 13 conj _ _ 37 such such ADJ JJ Degree=Pos 38 amod _ _ 38 systems system NOUN NNS Number=Plur 36 dobj _ _ 39 of of ADP IN _ 38 prep _ _ 40 arities arity NOUN NNS Number=Plur 39 pobj _ _ 41 eleutheric eleutheric ADJ JJ Degree=Pos 40 amod _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 36 punct _ SpaceAfter=No # sent_id = 6 # text = We show that $ J $ - theories for an eleutheric system may be equivalently described as (i) monads in a certain one - object bicategory of profunctors on $ J $ , and (ii) $ V $ - monads on $ V $ satisfying a certain condition. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 14 mark _ _ 4 $ J $ $ j $ SYM $ _ 6 compound _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 theories theory NOUN NNS Number=Plur 14 nsubjpass _ _ 7 for for ADP IN _ 6 prep _ _ 8 an an DET DT Definite=Ind|PronType=Art 10 det _ _ 9 eleutheric eleutheric ADJ JJ Degree=Pos 10 amod _ _ 10 system system NOUN NN Number=Sing 7 pobj _ _ 11 may may AUX MD VerbForm=Fin 14 aux _ _ 12 be be AUX VB VerbForm=Inf 14 auxpass _ _ 13 equivalently equivalently ADV RB _ 14 advmod _ _ 14 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 15 as as ADP IN _ 14 prep _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 15 punct _ SpaceAfter=No 17 i i NOUN NN Case=Acc|Number=Sing|Person=1|PronType=Prs 15 pobj _ SpaceAfter=No 18 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 15 punct _ _ 19 monads monad VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 pobj _ _ 20 in in ADP IN _ 19 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 22 certain certain ADJ JJ Degree=Pos 26 amod _ _ 23 one one NUM CD NumType=Card 25 nummod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 object object NOUN NN Number=Sing 26 compound _ _ 26 bicategory bicategory NOUN NN Number=Sing 20 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 profunctors profunctor NOUN NNS Number=Plur 27 pobj _ _ 29 on on ADP IN _ 26 prep _ _ 30 $ J $ $ j $ SYM $ _ 29 pobj _ _ 31 , , PUNCT , PunctType=Comm 14 punct _ _ 32 and and CCONJ CC ConjType=Cmp 14 cc _ _ 33 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 34 punct _ SpaceAfter=No 34 ii ii PROPN NNP Number=Sing 38 dep _ SpaceAfter=No 35 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 38 punct _ _ 36 $ V $ $ v $ SYM $ _ 38 nummod _ _ 37 - - PUNCT HYPH PunctType=Dash 38 punct _ _ 38 monads monad NOUN NNS Number=Plur 14 conj _ _ 39 on on ADP IN _ 38 prep _ _ 40 $ V $ $ v $ SYM $ _ 39 pobj _ _ 41 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 advcl _ _ 42 a a DET DT Definite=Ind|PronType=Art 44 det _ _ 43 certain certain ADJ JJ Degree=Pos 44 amod _ _ 44 condition condition NOUN NN Number=Sing 41 dobj _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 7 # text = We prove a characterization theorem for the categories of algebras of $ J $ - theories, considered as $ V $ - categories $ A $ equipped with a specified $ V $ - functor $ A rightarrow V $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 characterization characterization NOUN NN Number=Sing 5 nsubj _ _ 5 theorem theorem ADJ JJ Degree=Pos 2 ccomp _ _ 6 for for ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 categories category NOUN NNS Number=Plur 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 algebras algebra NOUN NNS Number=Plur 9 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 $ J $ $ j $ SYM $ _ 14 compound _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 theories theory NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 2 punct _ _ 16 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 advcl _ _ 17 as as ADP IN _ 16 prep _ _ 18 $ V $ $ v $ SYM $ _ 20 compound _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 categories category NOUN NNS Number=Plur 17 pobj _ _ 21 $ A $ $ a $ SYM $ _ 16 npadvmod _ _ 22 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 advcl _ _ 23 with with ADP IN _ 22 prep _ _ 24 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 25 specified specify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 amod _ _ 26 $ V $ $ v $ SYM $ _ 28 compound _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 functor functor NOUN NN Number=Sing 29 compound _ _ 29 $ A rightarrow V $ $ a rightarrow v $ SYM $ _ 23 pobj _ _ 30 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 601 # sent_id = 1 # text = Birkhoff's variety theorem from universal algebra characterises equational subcategories of varieties. 1 Birkhoff Birkhoff PROPN NNP Number=Sing 3 poss _ SpaceAfter=No 2 's 's PART POS _ 1 case _ _ 3 variety variety NOUN NN Number=Sing 4 nsubj _ _ 4 theorem theorem VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 5 from from ADP IN _ 4 prep _ _ 6 universal universal ADJ JJ Degree=Pos 7 amod _ _ 7 algebra algebra NOUN NN Number=Sing 5 pobj _ _ 8 characterises characterise VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 conj _ _ 9 equational equational ADJ JJ Degree=Pos 10 amod _ _ 10 subcategories subcategorie NOUN NNS Number=Plur 8 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 varieties variety NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = We give an analogue of Birkhoff's theorem in the setting of enrichment in categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 4 det _ _ 4 analogue analogue NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 Birkhoff Birkhoff PROPN NNP Number=Sing 8 poss _ SpaceAfter=No 7 's 's PART POS _ 6 case _ _ 8 theorem theorem ADJ JJ Degree=Pos 5 pobj _ _ 9 in in ADP IN _ 2 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 setting setting NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 enrichment enrichment NOUN NN Number=Sing 12 pobj _ _ 14 in in ADP IN _ 11 prep _ _ 15 categories category NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = For a suitable notion of an equational subcategory we characterise these subcategories by their closure properties in the ambient algebraic category. 1 For for ADP IN _ 0 ROOT _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 suitable suitable ADJ JJ Degree=Pos 4 amod _ _ 4 notion notion NOUN NN Number=Sing 1 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 an an DET DT Definite=Ind|PronType=Art 8 det _ _ 7 equational equational ADJ JJ Degree=Pos 8 amod _ _ 8 subcategory subcategory NOUN NN Number=Sing 5 pobj _ _ 9 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 10 nsubj _ _ 10 characterise characterise VERB VBP Tense=Pres|VerbForm=Fin 8 relcl _ _ 11 these these DET DT Number=Plur|PronType=Dem 12 det _ _ 12 subcategories subcategorie NOUN NNS Number=Plur 10 dobj _ _ 13 by by ADP IN _ 10 prep _ _ 14 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 16 poss _ _ 15 closure closure NOUN NN Number=Sing 16 compound _ _ 16 properties property NOUN NNS Number=Plur 13 pobj _ _ 17 in in ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 21 det _ _ 19 ambient ambient ADJ JJ Degree=Pos 21 amod _ _ 20 algebraic algebraic ADJ JJ Degree=Pos 21 amod _ _ 21 category category NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # doc_id = 602 # sent_id = 1 # text = We show that every small model category that satisfies certain size conditions can be completed to yield a combinatorial model category, and conversely, every combinatorial model category arises in this way. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 15 mark _ _ 4 every every DET DT _ 7 det _ _ 5 small small ADJ JJ Degree=Pos 6 amod _ _ 6 model model NOUN NN Number=Sing 7 compound _ _ 7 category category NOUN NN Number=Sing 15 nsubjpass _ _ 8 that that PRON WDT PronType=Rel 9 nsubj _ _ 9 satisfies satisfy VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 relcl _ _ 10 certain certain ADJ JJ Degree=Pos 12 amod _ _ 11 size size NOUN NN Number=Sing 12 compound _ _ 12 conditions condition NOUN NNS Number=Plur 15 nsubjpass _ _ 13 can can AUX MD VerbForm=Fin 15 aux _ _ 14 be be AUX VB VerbForm=Inf 15 auxpass _ _ 15 completed complete VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 16 to to PART TO _ 17 aux _ _ 17 yield yield VERB VB VerbForm=Inf 15 xcomp _ _ 18 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 19 combinatorial combinatorial ADJ JJ Degree=Pos 21 amod _ _ 20 model model NOUN NN Number=Sing 21 compound _ _ 21 category category NOUN NN Number=Sing 17 dobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 15 punct _ _ 23 and and CCONJ CC ConjType=Cmp 15 cc _ _ 24 conversely conversely ADV RB _ 30 advmod _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 30 punct _ _ 26 every every DET DT _ 29 det _ _ 27 combinatorial combinatorial ADJ JJ Degree=Pos 28 amod _ _ 28 model model NOUN NN Number=Sing 29 compound _ _ 29 category category NOUN NN Number=Sing 30 nsubj _ _ 30 arises arise VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 conj _ _ 31 in in ADP IN _ 30 prep _ _ 32 this this DET DT Number=Sing|PronType=Dem 33 det _ _ 33 way way NOUN NN Number=Sing 31 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We will also see that these constructions preserve right properness and compatibility with simplicial enrichment. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 2 will will AUX MD VerbForm=Fin 4 aux _ _ 3 also also ADV RB _ 4 advmod _ _ 4 see see VERB VB VerbForm=Inf 0 ROOT _ _ 5 that that SCONJ IN _ 8 mark _ _ 6 these these DET DT Number=Plur|PronType=Dem 7 det _ _ 7 constructions construction NOUN NNS Number=Plur 8 nsubj _ _ 8 preserve preserve VERB VBP Tense=Pres|VerbForm=Fin 4 ccomp _ _ 9 right right ADJ JJ Degree=Pos 10 amod _ _ 10 properness properness NOUN NN Number=Sing 8 dobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 compatibility compatibility NOUN NN Number=Sing 10 conj _ _ 13 with with ADP IN _ 10 prep _ _ 14 simplicial simplicial ADJ JJ Degree=Pos 15 amod _ _ 15 enrichment enrichment NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = Along the way, we establish some technical results on the index of accessibility of various constructions on accessible categories, which may be of independent interest. 1 Along along ADP IN _ 6 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 way way NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 establish establish VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 some some DET DT _ 9 det _ _ 8 technical technical ADJ JJ Degree=Pos 9 amod _ _ 9 results result NOUN NNS Number=Plur 6 dobj _ _ 10 on on ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 index index NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 accessibility accessibility NOUN NN Number=Sing 13 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 various various ADJ JJ Degree=Pos 17 amod _ _ 17 constructions construction NOUN NNS Number=Plur 15 pobj _ _ 18 on on ADP IN _ 17 prep _ _ 19 accessible accessible ADJ JJ Degree=Pos 20 amod _ _ 20 categories category NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 which which PRON WDT _ 24 nsubj _ _ 23 may may AUX MD VerbForm=Fin 24 aux _ _ 24 be be AUX VB VerbForm=Inf 20 relcl _ _ 25 of of ADP IN _ 24 prep _ _ 26 independent independent ADJ JJ Degree=Pos 27 amod _ _ 27 interest interest NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 603 # sent_id = 1 # text = We develop the homotopy theory of Euler characteristic (magnitude) of a category enriched in a monoidal model category. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 develop develop VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 homotopy homotopy NOUN NN Number=Sing 5 compound _ _ 5 theory theory NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 Euler Euler PROPN NNP Number=Sing 8 compound _ _ 8 characteristic characteristic ADJ JJ Degree=Pos 6 pobj _ _ 9 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 10 punct _ SpaceAfter=No 10 magnitude magnitude NOUN NN Number=Sing 8 parataxis _ SpaceAfter=No 11 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 10 punct _ _ 12 of of ADP IN _ 10 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 category category NOUN NN Number=Sing 12 pobj _ _ 15 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 acl _ _ 16 in in ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 18 monoidal monoidal ADJ JJ Degree=Pos 20 amod _ _ 19 model model NOUN NN Number=Sing 20 compound _ _ 20 category category NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = If a monoidal model category $ V $ is equipped with an Euler characteristic that is compatible with weak equivalences and fibrations in $ V $ , then our Euler characteristic of $ V $ - enriched categories is also compatible with weak equivalences and fibrations in the canonical model structure on the category of $ V $ - enriched categories. 1 If if SCONJ IN _ 8 mark _ _ 2 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 3 monoidal monoidal ADJ JJ Degree=Pos 4 amod _ _ 4 model model NOUN NN Number=Sing 5 compound _ _ 5 category category NOUN NN Number=Sing 8 nsubjpass _ _ 6 $ V $ $ v $ SYM $ _ 5 appos _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 advcl _ _ 9 with with ADP IN _ 8 prep _ _ 10 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 11 Euler Euler PROPN NNP Number=Sing 12 compound _ _ 12 characteristic characteristic NOUN NN Number=Sing 9 pobj _ _ 13 that that PRON WDT PronType=Rel 14 nsubj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 relcl _ _ 15 compatible compatible ADJ JJ Degree=Pos 14 acomp _ _ 16 with with ADP IN _ 15 prep _ _ 17 weak weak ADJ JJ Degree=Pos 18 amod _ _ 18 equivalences equivalence NOUN NNS Number=Plur 16 pobj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 fibrations fibration NOUN NNS Number=Plur 18 conj _ _ 21 in in ADP IN _ 20 prep _ _ 22 $ V $ $ v $ SYM $ _ 21 pobj _ _ 23 , , PUNCT , PunctType=Comm 27 punct _ _ 24 then then ADV RB PronType=Dem 27 advmod _ _ 25 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 26 poss _ _ 26 Euler Euler PROPN NNP Number=Sing 27 compound _ _ 27 characteristic characteristic NOUN NN Number=Sing 33 nsubj _ _ 28 of of ADP IN _ 27 prep _ _ 29 $ V $ $ v $ SYM $ _ 31 advmod _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 amod _ _ 32 categories category NOUN NNS Number=Plur 28 pobj _ _ 33 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 34 also also ADV RB _ 33 advmod _ _ 35 compatible compatible ADJ JJ Degree=Pos 33 acomp _ _ 36 with with ADP IN _ 35 prep _ _ 37 weak weak ADJ JJ Degree=Pos 38 amod _ _ 38 equivalences equivalence NOUN NNS Number=Plur 36 pobj _ _ 39 and and CCONJ CC ConjType=Cmp 38 cc _ _ 40 fibrations fibration NOUN NNS Number=Plur 38 conj _ _ 41 in in ADP IN _ 40 prep _ _ 42 the the DET DT Definite=Def|PronType=Art 45 det _ _ 43 canonical canonical ADJ JJ Degree=Pos 44 amod _ _ 44 model model NOUN NN Number=Sing 45 compound _ _ 45 structure structure NOUN NN Number=Sing 41 pobj _ _ 46 on on ADP IN _ 45 prep _ _ 47 the the DET DT Definite=Def|PronType=Art 48 det _ _ 48 category category NOUN NN Number=Sing 46 pobj _ _ 49 of of ADP IN _ 48 prep _ _ 50 $ V $ $ v $ SYM $ _ 52 advmod _ _ 51 - - PUNCT HYPH PunctType=Dash 52 punct _ _ 52 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 53 amod _ _ 53 categories category NOUN NNS Number=Plur 49 pobj _ SpaceAfter=No 54 . . PUNCT . PunctType=Peri 33 punct _ SpaceAfter=No # sent_id = 3 # text = In particular, we focus on the case of topological categories; that is, categories enriched in the category of topological spaces. 1 In in ADP IN _ 5 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 focus focus VERB VBP Tense=Pres|VerbForm=Fin 14 ccomp _ _ 6 on on ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 case case NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 topological topological ADJ JJ Degree=Pos 11 amod _ _ 11 categories category NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 12 ; ; PUNCT : _ 14 punct _ _ 13 that that PRON DT Number=Sing|PronType=Dem 14 advmod _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 categories category NOUN NNS Number=Plur 14 attr _ _ 17 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 acl _ _ 18 in in ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 category category NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 topological topological ADJ JJ Degree=Pos 23 amod _ _ 23 spaces space NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 4 # text = As its application, we obtain the ordinary Euler characteristic of a cellular stratified space $ X $ by computing the Euler characteristic of the face category $ C(X) $ . 1 As as ADP IN _ 6 prep _ _ 2 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 3 poss _ _ 3 application application NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 10 det _ _ 8 ordinary ordinary ADJ JJ Degree=Pos 10 amod _ _ 9 Euler Euler PROPN NNP Number=Sing 10 compound _ _ 10 characteristic characteristic ADJ JJ Degree=Pos 6 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 13 cellular cellular ADJ JJ Degree=Pos 15 amod _ _ 14 stratified stratify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 amod _ _ 15 space space NOUN NN Number=Sing 11 pobj _ _ 16 $ X $ $ x $ SYM $ _ 15 appos _ _ 17 by by ADP IN _ 6 prep _ _ 18 computing compute VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 17 pcomp _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 Euler Euler PROPN NNP Number=Sing 21 compound _ _ 21 characteristic characteristic NOUN NN Number=Sing 18 dobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 face face NOUN NN Number=Sing 25 compound _ _ 25 category category NOUN NN Number=Sing 22 pobj _ _ 26 $ C(X) $ $ c(x) $ SYM $ _ 18 dobj _ _ 27 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 604 # sent_id = 1 # text = We study a categorical commutator, introduced by Huq, defined for a pair of coterminal morphisms. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 categorical categorical ADJ JJ Degree=Pos 5 amod _ _ 5 commutator commutator NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 acl _ _ 8 by by ADP IN _ 7 agent _ _ 9 Huq Huq PROPN NNP Number=Sing 8 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 5 punct _ _ 11 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 acl _ _ 12 for for ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 pair pair NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 coterminal coterminal ADJ JJ Degree=Pos 17 amod _ _ 17 morphisms morphism NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We show that in a normal unital category $ C $ with finite colimits, the normal closure of the regular image of the Huq commutator of a pair of subobjects under an arbitrary morphism is the same as the Huq commutator of their respective regular images. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 34 mark _ _ 4 in in ADP IN _ 34 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 6 normal normal ADJ JJ Degree=Pos 8 amod _ _ 7 unital unital ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 4 pobj _ _ 9 $ C $ $ c $ SYM $ _ 4 dep _ _ 10 with with ADP IN _ 9 prep _ _ 11 finite finite ADJ JJ Degree=Pos 12 amod _ _ 12 colimits colimit NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 34 punct _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 normal normal ADJ JJ Degree=Pos 16 amod _ _ 16 closure closure NOUN NN Number=Sing 34 nsubj _ _ 17 of of ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 regular regular ADJ JJ Degree=Pos 20 amod _ _ 20 image image NOUN NN Number=Sing 17 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 Huq Huq PROPN NNP Number=Sing 24 compound _ _ 24 commutator commutator NOUN NN Number=Sing 21 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 27 pair pair NOUN NN Number=Sing 25 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 subobjects subobject NOUN NNS Number=Plur 28 pobj _ _ 30 under under ADP IN _ 27 prep _ _ 31 an an DET DT Definite=Ind|PronType=Art 33 det _ _ 32 arbitrary arbitrary ADJ JJ Degree=Pos 33 amod _ _ 33 morphism morphism NOUN NN Number=Sing 30 pobj _ _ 34 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 35 the the DET DT Definite=Def|PronType=Art 36 det _ _ 36 same same ADJ JJ Degree=Pos 34 attr _ _ 37 as as ADP IN _ 36 prep _ _ 38 the the DET DT Definite=Def|PronType=Art 40 det _ _ 39 Huq Huq PROPN NNP Number=Sing 40 compound _ _ 40 commutator commutator NOUN NN Number=Sing 37 pobj _ _ 41 of of ADP IN _ 40 prep _ _ 42 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 45 poss _ _ 43 respective respective ADJ JJ Degree=Pos 45 amod _ _ 44 regular regular ADJ JJ Degree=Pos 45 amod _ _ 45 images image NOUN NNS Number=Plur 41 pobj _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Then we use this property to characterize the Huq commutator as the largest commutator satisfying certain properties. 1 Then then ADV RB PronType=Dem 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 property property NOUN NN Number=Sing 3 dobj _ _ 6 to to PART TO _ 7 aux _ _ 7 characterize characterize VERB VB VerbForm=Inf 3 xcomp _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 Huq Huq PROPN NNP Number=Sing 10 compound _ _ 10 commutator commutator NOUN NN Number=Sing 7 dobj _ _ 11 as as ADP IN _ 7 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 largest large ADJ JJS Degree=Sup 14 amod _ _ 14 commutator commutator NOUN NN Number=Sing 11 pobj _ _ 15 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 acl _ _ 16 certain certain ADJ JJ Degree=Pos 17 amod _ _ 17 properties property NOUN NNS Number=Plur 15 dobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 605 # sent_id = 1 # text = The purpose of this paper is two - fold. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 purpose purpose NOUN NN Number=Sing 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 paper paper NOUN NN Number=Sing 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 two two NUM CD NumType=Card 9 nummod _ _ 8 - - ADJ JJ Degree=Pos 9 punct _ _ 9 fold fold ADJ JJ Degree=Pos 6 acomp _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = A first and more concrete aim is to characterise $ n $ - permutable categories through certain stability properties of regular epimorphisms. 1 A a DET DT Definite=Ind|PronType=Art 6 det _ _ 2 first first ADJ JJ Degree=Pos 6 amod _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 more more ADV RBR Degree=Cmp 2 conj _ _ 5 concrete concrete ADJ JJ Degree=Pos 2 conj _ _ 6 aim aim NOUN NN Number=Sing 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 to to PART TO _ 9 aux _ _ 9 characterise characterise VERB VB VerbForm=Inf 7 xcomp _ _ 10 $ n $ $ n $ SYM $ _ 12 advmod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 permutable permutable ADJ JJ Degree=Pos 13 amod _ _ 13 categories category NOUN NNS Number=Plur 9 dobj _ _ 14 through through ADP IN _ 9 prep _ _ 15 certain certain ADJ JJ Degree=Pos 17 amod _ _ 16 stability stability NOUN NN Number=Sing 17 compound _ _ 17 properties property NOUN NNS Number=Plur 14 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 regular regular ADJ JJ Degree=Pos 20 amod _ _ 20 epimorphisms epimorphism NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = These characterisations allow us to recover the ternary terms and the $ (n+1) $ - ary terms describing $ n $ - permutable varieties of universal algebras. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 characterisations characterisation NOUN NNS Number=Plur 3 nsubj _ _ 3 allow allow VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 5 to to PART TO _ 6 aux _ _ 6 recover recover VERB VB VerbForm=Inf 3 ccomp _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 ternary ternary NOUN NN Number=Sing 9 compound _ _ 9 terms term NOUN NNS Number=Plur 6 dobj _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 the the DET DT Definite=Def|PronType=Art 15 det _ _ 12 $ (n+1) $ $ (n+1) $ SYM $ _ 14 nmod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 ary ary ADJ JJ Degree=Pos 15 amod _ _ 15 terms term NOUN NNS Number=Plur 9 conj _ _ 16 describing describe VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 acl _ _ 17 $ n $ $ n $ SYM $ _ 19 advmod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 permutable permutable ADJ JJ Degree=Pos 20 amod _ _ 20 varieties variety NOUN NNS Number=Plur 16 dobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 universal universal ADJ JJ Degree=Pos 23 amod _ _ 23 algebras algebra NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = A second and more abstract aim is to explain two proof techniques, by using the above characterisation as an opportunity to provide explicit new examples of their use: (i) an embedding theorem for $ n $ - permutable categories which allows us to follow the varietal proof to show that an $ n $ - permutable category has certain properties; (ii) the theory of unconditional exactness properties which allows us to remove the assumption of the existence of colimits, in particular when we use the approximate co - operations approach to show that a regular category is $ n $ - permutable. 1 A a DET DT Definite=Ind|PronType=Art 6 det _ _ 2 second second ADJ JJ Degree=Pos 6 amod _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 more more ADV RBR Degree=Cmp 2 conj _ _ 5 abstract abstract ADJ JJ Degree=Pos 2 conj _ _ 6 aim aim NOUN NN Number=Sing 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 to to PART TO _ 9 aux _ _ 9 explain explain VERB VB VerbForm=Inf 7 xcomp _ _ 10 two two NUM CD NumType=Card 12 nummod _ _ 11 proof proof NOUN NN Number=Sing 12 compound _ _ 12 techniques technique NOUN NNS Number=Plur 9 dobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 9 punct _ _ 14 by by ADP IN _ 9 prep _ _ 15 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 pcomp _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 above above ADJ JJ Degree=Pos 18 amod _ _ 18 characterisation characterisation NOUN NN Number=Sing 15 dobj _ _ 19 as as ADP IN _ 15 prep _ _ 20 an an DET DT Definite=Ind|PronType=Art 21 det _ _ 21 opportunity opportunity NOUN NN Number=Sing 19 pobj _ _ 22 to to PART TO _ 23 aux _ _ 23 provide provide VERB VB VerbForm=Inf 21 acl _ _ 24 explicit explicit ADJ JJ Degree=Pos 26 amod _ _ 25 new new ADJ JJ Degree=Pos 26 amod _ _ 26 examples example NOUN NNS Number=Plur 23 dobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 29 poss _ _ 29 use use NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 30 : : PUNCT : _ 32 punct _ _ 31 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 32 punct _ SpaceAfter=No 32 i i NOUN NN Number=Sing 6 appos _ SpaceAfter=No 33 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 32 punct _ _ 34 an an DET DT Definite=Ind|PronType=Art 36 det _ _ 35 embedding embed VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 36 amod _ _ 36 theorem theorem NOUN NN Number=Sing 32 appos _ _ 37 for for ADP IN _ 36 prep _ _ 38 $ n $ $ n $ SYM $ _ 40 advmod _ _ 39 - - PUNCT HYPH PunctType=Dash 40 punct _ _ 40 permutable permutable ADJ JJ Degree=Pos 41 amod _ _ 41 categories category NOUN NNS Number=Plur 37 pobj _ _ 42 which which PRON WDT _ 43 nsubj _ _ 43 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 41 relcl _ _ 44 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 46 nsubj _ _ 45 to to PART TO _ 46 aux _ _ 46 follow follow VERB VB VerbForm=Inf 43 ccomp _ _ 47 the the DET DT Definite=Def|PronType=Art 49 det _ _ 48 varietal varietal ADJ JJ Degree=Pos 49 amod _ _ 49 proof proof NOUN NN Number=Sing 46 dobj _ _ 50 to to PART TO _ 51 aux _ _ 51 show show VERB VB VerbForm=Inf 49 acl _ _ 52 that that SCONJ IN _ 58 mark _ _ 53 an an DET DT Definite=Ind|PronType=Art 57 det _ _ 54 $ n $ $ n $ SYM $ _ 56 advmod _ _ 55 - - PUNCT HYPH PunctType=Dash 56 punct _ _ 56 permutable permutable ADJ JJ Degree=Pos 57 amod _ _ 57 category category NOUN NN Number=Sing 58 nsubj _ _ 58 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 51 ccomp _ _ 59 certain certain ADJ JJ Degree=Pos 60 amod _ _ 60 properties property NOUN NNS Number=Plur 58 dobj _ SpaceAfter=No 61 ; ; PUNCT : _ 32 punct _ _ 62 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 63 punct _ SpaceAfter=No 63 ii ii PROPN NNP Number=Sing 32 appos _ SpaceAfter=No 64 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 63 punct _ _ 65 the the DET DT Definite=Def|PronType=Art 66 det _ _ 66 theory theory NOUN NN Number=Sing 32 appos _ _ 67 of of ADP IN _ 66 prep _ _ 68 unconditional unconditional ADJ JJ Degree=Pos 70 amod _ _ 69 exactness exactness NOUN NN Number=Sing 70 compound _ _ 70 properties property NOUN NNS Number=Plur 67 pobj _ _ 71 which which PRON WDT _ 72 nsubj _ _ 72 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 70 relcl _ _ 73 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 75 nsubj _ _ 74 to to PART TO _ 75 aux _ _ 75 remove remove VERB VB VerbForm=Inf 72 ccomp _ _ 76 the the DET DT Definite=Def|PronType=Art 77 det _ _ 77 assumption assumption NOUN NN Number=Sing 75 dobj _ _ 78 of of ADP IN _ 77 prep _ _ 79 the the DET DT Definite=Def|PronType=Art 80 det _ _ 80 existence existence NOUN NN Number=Sing 78 pobj _ _ 81 of of ADP IN _ 80 prep _ _ 82 colimits colimit NOUN NNS Number=Plur 81 pobj _ SpaceAfter=No 83 , , PUNCT , PunctType=Comm 75 punct _ _ 84 in in ADP IN _ 75 prep _ _ 85 particular particular ADJ JJ Degree=Pos 84 amod _ _ 86 when when SCONJ WRB _ 88 advmod _ _ 87 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 88 nsubj _ _ 88 use use VERB VBP Tense=Pres|VerbForm=Fin 75 advcl _ _ 89 the the DET DT Definite=Def|PronType=Art 94 det _ _ 90 approximate approximate ADJ JJ Degree=Pos 93 amod _ _ 91 co co NOUN NN Number=Sing 93 compound _ _ 92 - - PUNCT HYPH PunctType=Dash 93 punct _ _ 93 operations operation NOUN NNS Number=Plur 94 compound _ _ 94 approach approach VERB VBP Tense=Pres|VerbForm=Fin 88 dobj _ _ 95 to to PART TO _ 96 aux _ _ 96 show show VERB VB VerbForm=Inf 88 xcomp _ _ 97 that that SCONJ IN _ 101 mark _ _ 98 a a DET DT Definite=Ind|PronType=Art 100 det _ _ 99 regular regular ADJ JJ Degree=Pos 100 amod _ _ 100 category category NOUN NN Number=Sing 101 nsubj _ _ 101 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 96 ccomp _ _ 102 $ n $ $ n $ SYM $ _ 104 advmod _ _ 103 - - PUNCT HYPH PunctType=Dash 104 punct _ _ 104 permutable permutable ADJ JJ Degree=Pos 101 acomp _ SpaceAfter=No 105 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # doc_id = 606 # sent_id = 1 # text = In this paper we introduce a notion of Maltsev object, and the dual notion of co - Maltsev object, in a general category. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 notion notion NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 Maltsev Maltsev PROPN NNP Number=Sing 10 compound _ _ 10 object object NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 5 punct _ _ 12 and and CCONJ CC ConjType=Cmp 5 cc _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 dual dual ADJ JJ Degree=Pos 15 amod _ _ 15 notion notion NOUN NN Number=Sing 5 conj _ _ 16 of of ADP IN _ 15 prep _ _ 17 co co PROPN NNP Number=Sing 19 compound _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 Maltsev Maltsev PROPN NNP Number=Sing 20 compound _ _ 20 object object NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 15 punct _ _ 22 in in ADP IN _ 15 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 24 general general ADJ JJ Degree=Pos 25 amod _ _ 25 category category NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = In particular, a category $ C $ is a Maltsev category if and only if every object in $ C $ is a Maltsev object. 1 In in ADP IN _ 7 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 7 punct _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 7 nsubj _ _ 6 $ C $ $ c $ SYM $ _ 5 appos _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 Maltsev Maltsev PROPN NNP Number=Sing 10 compound _ _ 10 category category NOUN NN Number=Sing 7 attr _ _ 11 if if SCONJ IN _ 7 dep _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 only only ADV RB _ 19 advmod _ _ 14 if if SCONJ IN _ 19 mark _ _ 15 every every DET DT _ 16 det _ _ 16 object object NOUN NN Number=Sing 19 nsubj _ _ 17 in in ADP IN _ 16 prep _ _ 18 $ C $ $ c $ SYM $ _ 17 pobj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 advcl _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 Maltsev Maltsev PROPN NNP Number=Sing 22 compound _ _ 22 object object NOUN NN Number=Sing 19 attr _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = We show that for a well - powered regular category $ C $ which admits coproducts, the full subcategory of Maltsev objects is coreflective in $ C $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 22 mark _ _ 4 for for ADP IN _ 22 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 6 well well ADV RB Degree=Pos 8 advmod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 powered power VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 9 regular regular ADJ JJ Degree=Pos 10 amod _ _ 10 category category NOUN NN Number=Sing 4 pobj _ _ 11 $ C $ $ c $ SYM $ _ 4 dep _ _ 12 which which PRON WDT _ 13 nsubj _ _ 13 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 pcomp _ _ 14 coproducts coproduct NOUN NNS Number=Plur 13 dobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 22 punct _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 full full ADJ JJ Degree=Pos 18 amod _ _ 18 subcategory subcategory NOUN NN Number=Sing 22 nsubj _ _ 19 of of ADP IN _ 18 prep _ _ 20 Maltsev Maltsev PROPN NNP Number=Sing 21 amod _ _ 21 objects object NOUN NNS Number=Plur 19 pobj _ _ 22 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 23 coreflective coreflective ADJ JJ Degree=Pos 22 acomp _ _ 24 in in ADP IN _ 23 prep _ _ 25 $ C $ $ c $ SYM $ _ 24 pobj _ _ 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We show that the co - Maltsev objects in the category of topological spaces and continuous maps are precisely the $ R_1 $ - spaces, and that the co - Maltsev objects in the category of metric spaces and short maps are precisely the ultrametric spaces. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 18 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 8 det _ _ 5 co co ADJ JJ Degree=Pos 7 compound _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 Maltsev Maltsev PROPN NNP Number=Sing 8 amod _ _ 8 objects object NOUN NNS Number=Plur 18 nsubj _ _ 9 in in ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 category category NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 topological topological ADJ JJ Degree=Pos 14 amod _ _ 14 spaces space NOUN NNS Number=Plur 12 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 continuous continuous ADJ JJ Degree=Pos 17 amod _ _ 17 maps map NOUN NNS Number=Plur 14 conj _ _ 18 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 19 precisely precisely ADV RB _ 23 advmod _ _ 20 the the DET DT Definite=Def|PronType=Art 23 det _ _ 21 $ R_1 $ $ r_1 $ SYM $ _ 23 compound _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 spaces space NOUN NNS Number=Plur 18 attr _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 18 punct _ _ 25 and and CCONJ CC ConjType=Cmp 18 cc _ _ 26 that that SCONJ IN _ 41 mark _ _ 27 the the DET DT Definite=Def|PronType=Art 31 det _ _ 28 co co ADJ JJ Degree=Pos 30 compound _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 Maltsev Maltsev PROPN NNP Number=Sing 31 amod _ _ 31 objects object NOUN NNS Number=Plur 41 nsubj _ _ 32 in in ADP IN _ 31 prep _ _ 33 the the DET DT Definite=Def|PronType=Art 34 det _ _ 34 category category NOUN NN Number=Sing 32 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 metric metric ADJ JJ Degree=Pos 37 amod _ _ 37 spaces space NOUN NNS Number=Plur 35 pobj _ _ 38 and and CCONJ CC ConjType=Cmp 37 cc _ _ 39 short short ADJ JJ Degree=Pos 40 amod _ _ 40 maps map NOUN NNS Number=Plur 37 conj _ _ 41 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 18 conj _ _ 42 precisely precisely ADV RB _ 41 advmod _ _ 43 the the DET DT Definite=Def|PronType=Art 45 det _ _ 44 ultrametric ultrametric ADJ JJ Degree=Pos 45 amod _ _ 45 spaces space NOUN NNS Number=Plur 41 attr _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 607 # sent_id = 1 # text = We consider notions of metrized categories, and then approximate categorical structures defined by a function of three variables generalizing the notion of 2 - metric space. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 notions notion NOUN NNS Number=Plur 2 dobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 metrized metrize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 amod _ _ 6 categories category NOUN NNS Number=Plur 4 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 2 punct _ _ 8 and and CCONJ CC ConjType=Cmp 2 cc _ _ 9 then then ADV RB PronType=Dem 10 advmod _ _ 10 approximate approximate ADJ JJ Degree=Pos 2 conj _ _ 11 categorical categorical ADJ JJ Degree=Pos 12 amod _ _ 12 structures structure NOUN NNS Number=Plur 10 dobj _ _ 13 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 acl _ _ 14 by by ADP IN _ 13 agent _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 function function NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 three three NUM CD NumType=Card 19 nummod _ _ 19 variables variable NOUN NNS Number=Plur 17 pobj _ _ 20 generalizing generalize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 19 acl _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 notion notion NOUN NN Number=Sing 20 dobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 2 2 NUM CD NumType=Card 26 nummod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 metric metric ADJ JJ Degree=Pos 27 amod _ _ 27 space space NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We prove an embedding theorem giving sufficient conditions for an approximate categorical structure to come from an inclusion into a metrized category. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 4 embedding embed VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 amod _ _ 5 theorem theorem ADJ JJ Degree=Pos 2 dobj _ _ 6 giving give VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 acl _ _ 7 sufficient sufficient ADJ JJ Degree=Pos 8 amod _ _ 8 conditions condition NOUN NNS Number=Plur 6 dobj _ _ 9 for for SCONJ IN _ 15 mark _ _ 10 an an DET DT Definite=Ind|PronType=Art 13 det _ _ 11 approximate approximate ADJ JJ Degree=Pos 13 amod _ _ 12 categorical categorical ADJ JJ Degree=Pos 13 amod _ _ 13 structure structure NOUN NN Number=Sing 15 nsubj _ _ 14 to to PART TO _ 15 aux _ _ 15 come come VERB VB VerbForm=Inf 6 advcl _ _ 16 from from ADP IN _ 15 prep _ _ 17 an an DET DT Definite=Ind|PronType=Art 18 det _ _ 18 inclusion inclusion NOUN NN Number=Sing 16 pobj _ _ 19 into into ADP IN _ 18 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 metrized metrize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 amod _ _ 22 category category NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 608 # sent_id = 1 # text = We give several reformulations of action representability of a category as well as action representability of its category of morphisms. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 several several ADJ JJ Degree=Pos 4 amod _ _ 4 reformulations reformulation NOUN NNS Number=Plur 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 action action NOUN NN Number=Sing 7 compound _ _ 7 representability representability NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 category category NOUN NN Number=Sing 8 pobj _ _ 11 as as ADV RB _ 13 advmod _ _ 12 well well ADV RB Degree=Pos 13 advmod _ _ 13 as as ADP IN _ 4 cc _ _ 14 action action NOUN NN Number=Sing 15 compound _ _ 15 representability representability NOUN NN Number=Sing 4 conj _ _ 16 of of ADP IN _ 15 prep _ _ 17 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 18 poss _ _ 18 category category NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 morphisms morphism NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = In particular we show that for a semi - abelian category $ C $ , its category of morphisms is action representable if and only if the functor from the category of split extensions in $ C $ to $ C $ , sending a split extension to its kernel, is a prefibration. 1 In in ADP IN _ 4 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 18 mark _ _ 6 for for ADP IN _ 18 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 8 semi semi ADJ JJ Degree=Pos 11 amod _ _ 9 - - ADJ JJ Degree=Pos 11 amod _ _ 10 abelian abelian ADJ JJ Degree=Pos 11 amod _ _ 11 category category NOUN NN Number=Sing 6 pobj _ _ 12 $ C $ $ c $ SYM $ _ 11 nummod _ _ 13 , , PUNCT , PunctType=Comm 18 punct _ _ 14 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 15 poss _ _ 15 category category NOUN NN Number=Sing 18 nsubj _ _ 16 of of ADP IN _ 15 prep _ _ 17 morphisms morphism NOUN NNS Number=Plur 16 pobj _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 19 action action NOUN NN Number=Sing 20 npadvmod _ _ 20 representable representable ADJ JJ Degree=Pos 18 acomp _ _ 21 if if SCONJ IN _ 46 mark _ _ 22 and and CCONJ CC ConjType=Cmp 46 cc _ _ 23 only only ADV RB _ 46 advmod _ _ 24 if if SCONJ IN _ 46 mark _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 functor functor NOUN NN Number=Sing 46 nsubj _ _ 27 from from ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 category category NOUN NN Number=Sing 27 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 split split ADJ JJ Degree=Pos 32 amod _ _ 32 extensions extension NOUN NNS Number=Plur 30 pobj _ _ 33 in in ADP IN _ 32 prep _ _ 34 $ C $ $ c $ SYM $ _ 33 pobj _ _ 35 to to ADP IN _ 27 prep _ _ 36 $ C $ $ c $ SYM $ _ 35 pobj _ _ 37 , , PUNCT , PunctType=Comm 26 punct _ _ 38 sending send VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 26 acl _ _ 39 a a DET DT Definite=Ind|PronType=Art 41 det _ _ 40 split split ADJ JJ Degree=Pos 41 amod _ _ 41 extension extension NOUN NN Number=Sing 38 dobj _ _ 42 to to ADP IN _ 41 prep _ _ 43 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 44 poss _ _ 44 kernel kernel NOUN NN Number=Sing 42 pobj _ SpaceAfter=No 45 , , PUNCT , PunctType=Comm 46 punct _ _ 46 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 advcl _ _ 47 a a DET DT Definite=Ind|PronType=Art 48 det _ _ 48 prefibration prefibration NOUN NN Number=Sing 46 attr _ SpaceAfter=No 49 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = To obtain these reformulations we show that certain conditions are equivalent for right regular spans of categories. 1 To to PART TO _ 2 aux _ _ 2 obtain obtain VERB VB VerbForm=Inf 6 advcl _ _ 3 these these DET DT Number=Plur|PronType=Dem 4 det _ _ 4 reformulations reformulation NOUN NNS Number=Plur 2 dobj _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 that that SCONJ IN _ 10 mark _ _ 8 certain certain ADJ JJ Degree=Pos 9 amod _ _ 9 conditions condition NOUN NNS Number=Plur 10 nsubj _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 11 equivalent equivalent ADJ JJ Degree=Pos 10 acomp _ _ 12 for for ADP IN _ 11 prep _ _ 13 right right ADJ JJ Degree=Pos 14 advmod _ _ 14 regular regular ADJ JJ Degree=Pos 15 amod _ _ 15 spans span NOUN NNS Number=Plur 12 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 categories category NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 609 # sent_id = 1 # text = We construct an operad Phyl whose operations are the edge - labelled trees used in phylogenetics. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 4 operad operad ADJ JJ Degree=Pos 5 amod _ _ 5 Phyl Phyl PROPN NNP Number=Sing 2 dobj _ _ 6 whose whose DET WP$ Poss=Yes 7 poss _ _ 7 operations operation NOUN NNS Number=Plur 8 nsubj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 relcl _ _ 9 the the DET DT Definite=Def|PronType=Art 13 det _ _ 10 edge edge NOUN NN Number=Sing 12 npadvmod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 labelled label VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 amod _ _ 13 trees tree NOUN NNS Number=Plur 8 attr _ _ 14 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 acl _ _ 15 in in ADP IN _ 14 prep _ _ 16 phylogenetics phylogenetic NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = This operad is the coproduct of $ Com $ , the operad for commutative semigroups, and $ [0, infty) $ , the operad with unary operations corresponding to nonnegative real numbers, where composition is addition. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 operad operad ADV RB _ 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 coproduct coproduct NOUN NN Number=Sing 3 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 $ Com $ $ com $ SYM $ _ 6 pobj _ _ 8 , , PUNCT , PunctType=Comm 5 punct _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 operad operad NOUN NN Number=Sing 5 appos _ _ 11 for for ADP IN _ 10 prep _ _ 12 commutative commutative ADJ JJ Degree=Pos 13 amod _ _ 13 semigroups semigroup NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 10 punct _ _ 15 and and CCONJ CC ConjType=Cmp 10 cc _ _ 16 $ [0, infty) $ $ [0, infty) $ SYM $ _ 10 conj _ _ 17 , , PUNCT , PunctType=Comm 10 punct _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 operad operad NOUN NN Number=Sing 10 appos _ _ 20 with with ADP IN _ 19 prep _ _ 21 unary unary ADJ JJ Degree=Pos 22 amod _ _ 22 operations operation NOUN NNS Number=Plur 23 nsubj _ _ 23 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 19 acl _ _ 24 to to ADP IN _ 23 prep _ _ 25 nonnegative nonnegative ADJ JJ Degree=Pos 27 amod _ _ 26 real real ADJ JJ Degree=Pos 27 amod _ _ 27 numbers number NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 27 punct _ _ 29 where where SCONJ WRB _ 31 advmod _ _ 30 composition composition NOUN NN Number=Sing 31 nsubj _ _ 31 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 27 relcl _ _ 32 addition addition NOUN NN Number=Sing 31 attr _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = We show that there is a homeomorphism between the space of $ n $ - ary operations of $ Phyl $ and $ T_ntimes [0, infty)^{n+1} $ , where $ T_n $ is the space of metric $ n $ - trees introduced by Billera, Holmes and Vogtmann. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 5 mark _ _ 4 there there PRON EX _ 5 expl _ _ 5 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 homeomorphism homeomorphism NOUN NN Number=Sing 5 attr _ _ 8 between between ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 space space NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 $ n $ $ n $ SYM $ _ 14 quantmod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 ary ary ADJ JJ Degree=Pos 15 amod _ _ 15 operations operation NOUN NNS Number=Plur 11 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 $ Phyl $ $ phyl $ SYM $ _ 16 pobj _ _ 18 and and CCONJ CC ConjType=Cmp 15 cc _ _ 19 $ T_ntimes [0, infty)^{n+1} $ $ t_ntimes [0, infty)^{n+1} $ SYM $ _ 15 conj _ _ 20 , , PUNCT , PunctType=Comm 19 punct _ _ 21 where where SCONJ WRB _ 23 advmod _ _ 22 $ T_n $ $ t_n $ SYM $ _ 23 nsubj _ _ 23 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 relcl _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 space space NOUN NN Number=Sing 23 attr _ _ 26 of of ADP IN _ 25 prep _ _ 27 metric metric ADJ JJ Degree=Pos 30 amod _ _ 28 $ n $ $ n $ SYM $ _ 30 compound _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 trees tree NOUN NNS Number=Plur 26 pobj _ _ 31 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 30 acl _ _ 32 by by ADP IN _ 31 agent _ _ 33 Billera Billera PROPN NNP Number=Sing 32 pobj _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 33 punct _ _ 35 Holmes Holmes PROPN NNP Number=Sing 33 conj _ _ 36 and and CCONJ CC ConjType=Cmp 35 cc _ _ 37 Vogtmann Vogtmann PROPN NNP Number=Sing 35 conj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = Furthermore, we show that the Markov models used to reconstruct phylogenetic trees from genome data give coalgebras of $ Phyl $ . 1 Furthermore furthermore ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 17 mark _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 Markov Markov PROPN NNP Number=Sing 8 compound _ _ 8 models model NOUN NNS Number=Plur 17 nsubj _ _ 9 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 acl _ _ 10 to to PART TO _ 11 aux _ _ 11 reconstruct reconstruct VERB VB VerbForm=Inf 9 xcomp _ _ 12 phylogenetic phylogenetic ADJ JJ Degree=Pos 13 amod _ _ 13 trees tree NOUN NNS Number=Plur 11 dobj _ _ 14 from from ADP IN _ 11 prep _ _ 15 genome genome ADJ JJ Degree=Pos 16 amod _ _ 16 data datum NOUN NNS Number=Plur 14 pobj _ _ 17 give give VERB VBP Tense=Pres|VerbForm=Fin 4 ccomp _ _ 18 coalgebras coalgebra NOUN NNS Number=Plur 17 dobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 $ Phyl $ $ phyl $ SYM $ _ 19 pobj _ _ 21 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = These always extend to coalgebras of the larger operad $ Com + [0, infty] $ , since Markov processes on finite sets converge to an equilibrium as time approaches infinity. 1 These these PRON DT Number=Plur|PronType=Dem 3 nsubj _ _ 2 always always ADV RB _ 3 advmod _ _ 3 extend extend VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 to to ADP IN _ 3 prep _ _ 5 coalgebras coalgebra NOUN NNS Number=Plur 4 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 10 det _ _ 8 larger large ADJ JJR Degree=Cmp 10 amod _ _ 9 operad operad NOUN NN Number=Sing 10 amod _ _ 10 $ Com + [0, infty] $ $ com + [0, infty] $ SYM $ _ 6 pobj _ _ 11 , , PUNCT , PunctType=Comm 3 punct _ _ 12 since since SCONJ IN _ 18 mark _ _ 13 Markov Markov PROPN NNP Number=Sing 14 nsubj _ _ 14 processes process NOUN NNS Number=Plur 18 nsubj _ _ 15 on on ADP IN _ 14 prep _ _ 16 finite finite ADJ JJ Degree=Pos 17 compound _ _ 17 sets set NOUN NNS Number=Plur 15 pobj _ _ 18 converge converge VERB VBP Tense=Pres|VerbForm=Fin 3 advcl _ _ 19 to to ADP IN _ 18 prep _ _ 20 an an DET DT Definite=Ind|PronType=Art 21 det _ _ 21 equilibrium equilibrium NOUN NN Number=Sing 19 pobj _ _ 22 as as ADP IN _ 21 prep _ _ 23 time time NOUN NN Number=Sing 24 compound _ _ 24 approaches approach NOUN NNS Number=Plur 25 compound _ _ 25 infinity infinity NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = We show that for any operad O, its coproduct with $ [0, infty] $ contains the operad $ W(O) $ constructed by Boardman and Vogt. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 13 mark _ _ 4 for for ADP IN _ 13 prep _ _ 5 any any DET DT _ 7 det _ _ 6 operad operad ADJ JJ Degree=Pos 7 amod _ _ 7 O o INTJ UH _ 4 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 13 punct _ _ 9 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 10 poss _ _ 10 coproduct coproduct NOUN NN Number=Sing 13 nsubj _ _ 11 with with ADP IN _ 10 prep _ _ 12 $ [0, infty] $ $ [0, infty] $ SYM $ _ 13 nsubj _ _ 13 contains contain VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 operad operad ADJ JJ Degree=Pos 16 amod _ _ 16 $ W(O) $ $ w(o) $ SYM $ _ 13 dobj _ _ 17 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 acl _ _ 18 by by ADP IN _ 17 agent _ _ 19 Boardman Boardman PROPN NNP Number=Sing 18 pobj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 Vogt Vogt PROPN NNP Number=Sing 19 conj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 7 # text = To prove these results, we explicitly describe the coproduct of operads in terms of labelled trees. 1 To to PART TO _ 2 aux _ _ 2 prove prove VERB VB VerbForm=Inf 8 advcl _ _ 3 these these DET DT Number=Plur|PronType=Dem 4 det _ _ 4 results result NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 8 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 8 nsubj _ _ 7 explicitly explicitly ADV RB _ 8 advmod _ _ 8 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 coproduct coproduct NOUN NN Number=Sing 8 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 operads operad NOUN NNS Number=Plur 11 pobj _ _ 13 in in ADP IN _ 8 prep _ _ 14 terms term NOUN NNS Number=Plur 13 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 labelled label VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 17 trees tree NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # doc_id = 610 # sent_id = 1 # text = We define a right Cartan - Eilenberg structure on the category of Kan's combinatorial spectra, and the category of sheaves of such spectra, assuming some conditions. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 4 right right ADJ JJ Degree=Pos 8 amod _ _ 5 Cartan Cartan PROPN NNP Number=Sing 7 compound _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 Eilenberg Eilenberg PROPN NNP Number=Sing 8 compound _ _ 8 structure structure NOUN NN Number=Sing 2 dobj _ _ 9 on on ADP IN _ 2 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 category category NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 Kan Kan PROPN NNP Number=Sing 16 poss _ SpaceAfter=No 14 's 's PART POS _ 13 case _ _ 15 combinatorial combinatorial ADJ JJ Degree=Pos 16 amod _ _ 16 spectra spectra NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 2 punct _ _ 18 and and CCONJ CC ConjType=Cmp 2 cc _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 category category NOUN NN Number=Sing 2 conj _ _ 21 of of ADP IN _ 20 prep _ _ 22 sheaves sheaf NOUN NNS Number=Plur 21 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 such such ADJ JJ Degree=Pos 25 amod _ _ 25 spectra spectra NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 20 punct _ _ 27 assuming assume VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 20 acl _ _ 28 some some DET DT _ 29 det _ _ 29 conditions condition NOUN NNS Number=Plur 27 dobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = In both structures, we use the geometric concept of homotopy equivalence as the strong equivalence. 1 In in ADP IN _ 6 prep _ _ 2 both both DET DT _ 3 det _ _ 3 structures structure NOUN NNS Number=Plur 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 geometric geometric ADJ JJ Degree=Pos 9 amod _ _ 9 concept concept NOUN NN Number=Sing 6 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 homotopy homotopy NOUN NN Number=Sing 12 compound _ _ 12 equivalence equivalence NOUN NN Number=Sing 10 pobj _ _ 13 as as ADP IN _ 9 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 strong strong ADJ JJ Degree=Pos 16 amod _ _ 16 equivalence equivalence NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = In the case of sheaves, we use local equivalence as the weak equivalence. 1 In in ADP IN _ 8 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 case case NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 sheaves sheaf NOUN NNS Number=Plur 4 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 8 punct _ _ 7 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 8 nsubj _ _ 8 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 local local ADJ JJ Degree=Pos 10 amod _ _ 10 equivalence equivalence NOUN NN Number=Sing 8 dobj _ _ 11 as as ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 weak weak ADJ JJ Degree=Pos 14 amod _ _ 14 equivalence equivalence NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 4 # text = This paper is the first step in a larger - scale program of investigating sheaves of spectra from a geometric viewpoint. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 first first ADJ JJ Degree=Pos 6 amod _ _ 6 step step NOUN NN Number=Sing 3 attr _ _ 7 in in ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 9 larger large ADJ JJR Degree=Cmp 11 amod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 scale scale NOUN NN Number=Sing 12 compound _ _ 12 program program NOUN NN Number=Sing 7 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 investigating investigate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 pcomp _ _ 15 sheaves sheaf NOUN NNS Number=Plur 14 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 spectra spectra PROPN NNP Number=Sing 16 pobj _ _ 18 from from ADP IN _ 14 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 20 geometric geometric ADJ JJ Degree=Pos 21 amod _ _ 21 viewpoint viewpoint NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 611 # sent_id = 1 # text = The theory of derivators enhances and simplifies the theory of triangulated categories. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 theory theory NOUN NN Number=Sing 7 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 derivators derivator NOUN NNS Number=Plur 5 compound _ _ 5 enhances enhance NOUN NNS Number=Plur 3 pobj _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 simplifies simplify VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 theory theory NOUN NN Number=Sing 7 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 triangulated triangulate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 12 categories category NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 2 # text = In this article a notion of fibered (multi)derivator is developed, which similarly enhances fibrations of (monoidal) triangulated categories. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 article article NOUN NN Number=Sing 1 pobj _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 notion notion NOUN NN Number=Sing 0 ROOT _ _ 6 of of ADP IN _ 5 prep _ _ 7 fibered fibere VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 pobj _ _ 8 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 11 punct _ SpaceAfter=No 9 multi)derivator multi)derivator NOUN NN Number=Sing 11 nsubjpass _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 11 developed develop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 acl _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 which which PRON WDT _ 15 nsubj _ _ 14 similarly similarly ADV RB _ 15 advmod _ _ 15 enhances enhance VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 relcl _ _ 16 fibrations fibration NOUN NNS Number=Plur 15 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 17 punct _ SpaceAfter=No 19 monoidal monoidal NOUN NN Number=Sing 22 amod _ SpaceAfter=No 20 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 22 punct _ _ 21 triangulated triangulate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 amod _ _ 22 categories category NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = We present a theory of cohomological as well as homological descent in this language. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 theory theory NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 cohomological cohomological ADJ JJ Degree=Pos 11 amod _ _ 7 as as ADV RB _ 9 advmod _ _ 8 well well ADV RB Degree=Pos 9 advmod _ _ 9 as as ADP IN _ 6 cc _ _ 10 homological homological ADJ JJ Degree=Pos 11 amod _ _ 11 descent descent NOUN NN Number=Sing 5 pobj _ _ 12 in in ADP IN _ 11 prep _ _ 13 this this DET DT Number=Sing|PronType=Dem 14 det _ _ 14 language language NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = The main motivation is a descent theory for Grothendieck's six operations. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 motivation motivation NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 descent descent NOUN NN Number=Sing 7 compound _ _ 7 theory theory NOUN NN Number=Sing 4 attr _ _ 8 for for ADP IN _ 7 prep _ _ 9 Grothendieck Grothendieck PROPN NNP Number=Sing 12 poss _ SpaceAfter=No 10 's 's PART POS _ 9 case _ _ 11 six six NUM CD NumType=Card 12 nummod _ _ 12 operations operation NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 612 # sent_id = 1 # text = We associate, in a functorial way, a monoidal bicategory $ Span|V $ to any monoidal bicategory $ V $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 associate associate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 2 punct _ _ 4 in in ADP IN _ 17 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 functorial functorial ADJ JJ Degree=Pos 7 amod _ _ 7 way way NOUN NN Number=Sing 4 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 17 punct _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 monoidal monoidal ADJ JJ Degree=Pos 11 amod _ _ 11 bicategory bicategory NOUN NN Number=Sing 17 nsubj _ _ 12 $ Span|V $ $ span|v $ SYM $ _ 11 appos _ _ 13 to to ADP IN _ 11 prep _ _ 14 any any DET DT _ 16 det _ _ 15 monoidal monoidal ADJ JJ Degree=Pos 16 amod _ _ 16 bicategory bicategory NOUN NN Number=Sing 13 pobj _ _ 17 $ V $ $ v $ SYM $ _ 2 dep _ _ 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Two examples of this construction are of particular interest: Hopf polyads of Bruguieres can be seen as Hopf monads in $ Span|Cat $ while Hopf group monoids in the spirit of Zunino and Turaev in a braided monoidal category $ V $ , and Hopf categories of Batista - Caenepeel - Vercruysse over $ V $ both turn out to be Hopf monads in $ Span|V $ . 1 Two two NUM CD NumType=Card 2 nummod _ _ 2 examples example NOUN NNS Number=Plur 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 construction construction NOUN NN Number=Sing 3 pobj _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 17 ccomp _ _ 7 of of ADP IN _ 6 prep _ _ 8 particular particular ADJ JJ Degree=Pos 9 amod _ _ 9 interest interest NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 10 : : PUNCT : _ 17 punct _ _ 11 Hopf hopf NOUN NN Number=Sing 12 compound _ _ 12 polyads polyad NOUN NNS Number=Plur 17 nsubjpass _ _ 13 of of ADP IN _ 12 prep _ _ 14 Bruguieres Bruguieres PROPN NNPS Number=Plur 13 pobj _ _ 15 can can AUX MD VerbForm=Fin 17 aux _ _ 16 be be AUX VB VerbForm=Inf 17 auxpass _ _ 17 seen see VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 18 as as SCONJ IN _ 20 mark _ _ 19 Hopf hopf NOUN NN Number=Sing 20 nsubj _ _ 20 monads monad NOUN NNS Number=Plur 17 advcl _ _ 21 in in ADP IN _ 20 prep _ _ 22 $ Span|Cat $ $ span|cat $ SYM $ _ 21 pobj _ _ 23 while while SCONJ IN _ 26 mark _ _ 24 Hopf hopf NOUN NN Number=Sing 25 compound _ _ 25 group group NOUN NN Number=Sing 26 nsubj _ _ 26 monoids monoid NOUN NNS Number=Plur 17 advcl _ _ 27 in in ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 spirit spirit NOUN NN Number=Sing 27 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 Zunino Zunino PROPN NNP Number=Sing 30 pobj _ _ 32 and and CCONJ CC ConjType=Cmp 31 cc _ _ 33 Turaev Turaev PROPN NNP Number=Sing 31 conj _ _ 34 in in ADP IN _ 26 prep _ _ 35 a a DET DT Definite=Ind|PronType=Art 38 det _ _ 36 braided braid VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 38 amod _ _ 37 monoidal monoidal NOUN NN Number=Sing 38 amod _ _ 38 category category NOUN NN Number=Sing 34 pobj _ _ 39 $ V $ $ v $ SYM $ _ 17 dep _ _ 40 , , PUNCT , PunctType=Comm 17 punct _ _ 41 and and CCONJ CC ConjType=Cmp 17 cc _ _ 42 Hopf Hopf PROPN NNP Number=Sing 43 compound _ _ 43 categories category NOUN NNS Number=Plur 53 nsubj _ _ 44 of of ADP IN _ 43 prep _ _ 45 Batista Batista PROPN NNP Number=Sing 49 compound _ _ 46 - - PUNCT HYPH PunctType=Dash 49 punct _ _ 47 Caenepeel Caenepeel PROPN NNP Number=Sing 49 compound _ _ 48 - - PUNCT HYPH PunctType=Dash 49 punct _ _ 49 Vercruysse Vercruysse PROPN NNP Number=Sing 44 pobj _ _ 50 over over ADP IN _ 51 advmod _ _ 51 $ V $ $ v $ SYM $ _ 52 nmod _ _ 52 both both PRON DT _ 43 appos _ _ 53 turn turn VERB VBP Tense=Pres|VerbForm=Fin 17 conj _ _ 54 out out ADP RP _ 53 prt _ _ 55 to to PART TO _ 56 aux _ _ 56 be be AUX VB VerbForm=Inf 53 xcomp _ _ 57 Hopf hopf NOUN NN Number=Sing 58 compound _ _ 58 monads monad NOUN NNS Number=Plur 56 attr _ _ 59 in in ADP IN _ 58 prep _ _ 60 $ Span|V $ $ span|v $ SYM $ _ 59 pobj _ _ 61 . . PUNCT . PunctType=Peri 53 punct _ SpaceAfter=No # sent_id = 3 # text = Hopf group monoids and Hopf categories are Hopf monads on a distinguished type of monoidales fitting the framework of Bohm - Lack. 1 Hopf hopf NOUN NN Number=Sing 2 compound _ _ 2 group group NOUN NN Number=Sing 3 compound _ _ 3 monoids monoid NOUN NNS Number=Plur 7 nsubj _ _ 4 and and CCONJ CC ConjType=Cmp 3 cc _ _ 5 Hopf hopf NOUN NN Number=Sing 6 compound _ _ 6 categories category NOUN NNS Number=Plur 3 conj _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 Hopf hopf NOUN NN Number=Sing 9 compound _ _ 9 monads monad NOUN NNS Number=Plur 7 attr _ _ 10 on on ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 distinguished distinguished ADJ JJ Degree=Pos 13 amod _ _ 13 type type NOUN NN Number=Sing 10 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 monoidales monoidale NOUN NNS Number=Plur 14 pobj _ _ 16 fitting fit VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 acl _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 framework framework NOUN NN Number=Sing 16 dobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 Bohm Bohm PROPN NNP Number=Sing 22 compound _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 Lack Lack PROPN NNP Number=Sing 19 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = These examples are related by a monoidal pseudofunctor $ V - > Cat $ . 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 examples example NOUN NNS Number=Plur 4 nsubjpass _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 by by ADP IN _ 4 agent _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 monoidal monoidal ADJ JJ Degree=Pos 8 amod _ _ 8 pseudofunctor pseudofunctor NOUN NN Number=Sing 5 pobj _ _ 9 $ V - > Cat $ $ v - > cat $ SYM $ _ 4 dep _ _ 10 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 613 # sent_id = 1 # text = The invertibility hypothesis for a monoidal model category $ S $ asks that localizing an $ S $ - enriched category with respect to an equivalence results in an weakly equivalent enriched category. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 invertibility invertibility NOUN NN Number=Sing 3 compound _ _ 3 hypothesis hypothesis NOUN NN Number=Sing 10 nsubj _ _ 4 for for ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 6 monoidal monoidal ADJ JJ Degree=Pos 7 amod _ _ 7 model model NOUN NN Number=Sing 8 compound _ _ 8 category category NOUN NN Number=Sing 4 pobj _ _ 9 $ S $ $ s $ SYM $ _ 3 appos _ _ 10 asks ask VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 that that SCONJ IN _ 12 mark _ _ 12 localizing localize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 ccomp _ _ 13 an an DET DT Definite=Ind|PronType=Art 17 det _ _ 14 $ S $ $ s $ SYM $ _ 16 advmod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 17 category category NOUN NN Number=Sing 12 dobj _ _ 18 with with ADP IN _ 12 prep _ _ 19 respect respect NOUN NN Number=Sing 18 pobj _ _ 20 to to ADP IN _ 19 prep _ _ 21 an an DET DT Definite=Ind|PronType=Art 22 det _ _ 22 equivalence equivalence NOUN NN Number=Sing 23 compound _ _ 23 results result VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 pobj _ _ 24 in in ADP IN _ 23 prep _ _ 25 an an DET DT Definite=Ind|PronType=Art 29 det _ _ 26 weakly weakly ADJ JJ Degree=Pos 29 amod _ _ 27 equivalent equivalent ADJ JJ Degree=Pos 29 amod _ _ 28 enriched enriched ADJ JJ Degree=Pos 29 amod _ _ 29 category category NOUN NN Number=Sing 24 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = This is the most technical among the axioms for $ S $ to be an excellent model category in the sense of Lurie, who showed that the category $ Cat_S $ of $ S $ - enriched categories then has a model structure with characterizable fibrant objects. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 most most ADV RBS Degree=Sup 5 advmod _ _ 5 technical technical ADJ JJ Degree=Pos 2 attr _ _ 6 among among ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 axioms axiom NOUN NNS Number=Plur 6 pobj _ _ 9 for for ADP IN _ 8 prep _ _ 10 $ S $ $ s $ SYM $ _ 9 pobj _ _ 11 to to PART TO _ 12 aux _ _ 12 be be AUX VB VerbForm=Inf 2 xcomp _ _ 13 an an DET DT Definite=Ind|PronType=Art 16 det _ _ 14 excellent excellent ADJ JJ Degree=Pos 16 amod _ _ 15 model model NOUN NN Number=Sing 16 compound _ _ 16 category category NOUN NN Number=Sing 12 attr _ _ 17 in in ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 sense sense NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 Lurie Lurie PROPN NNP Number=Sing 20 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 who who PRON WP _ 24 nsubj _ _ 24 showed show VERB VBD Tense=Past|VerbForm=Fin 21 relcl _ _ 25 that that SCONJ IN _ 35 mark _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 category category NOUN NN Number=Sing 35 nsubj _ _ 28 $ Cat_S $ $ cat_s $ SYM $ _ 27 appos _ _ 29 of of ADP IN _ 28 prep _ _ 30 $ S $ $ s $ SYM $ _ 32 advmod _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 33 amod _ _ 33 categories category NOUN NNS Number=Plur 29 pobj _ _ 34 then then ADV RB PronType=Dem 35 advmod _ _ 35 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 ccomp _ _ 36 a a DET DT Definite=Ind|PronType=Art 38 det _ _ 37 model model NOUN NN Number=Sing 38 compound _ _ 38 structure structure NOUN NN Number=Sing 35 dobj _ _ 39 with with ADP IN _ 38 prep _ _ 40 characterizable characterizable ADJ JJ Degree=Pos 42 amod _ _ 41 fibrant fibrant NOUN NN Number=Sing 42 amod _ _ 42 objects object NOUN NNS Number=Plur 39 pobj _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We use a universal property of cubical sets, as a monoidal model category, to show that the invertibility hypothesis is a consequence of the other axioms. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 universal universal ADJ JJ Degree=Pos 5 amod _ _ 5 property property NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 cubical cubical ADJ JJ Degree=Pos 8 amod _ _ 8 sets set NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 2 punct _ _ 10 as as ADP IN _ 2 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 12 monoidal monoidal ADJ JJ Degree=Pos 14 amod _ _ 13 model model NOUN NN Number=Sing 14 compound _ _ 14 category category NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 2 punct _ _ 16 to to PART TO _ 17 aux _ _ 17 show show VERB VB VerbForm=Inf 2 xcomp _ _ 18 that that SCONJ IN _ 22 mark _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 invertibility invertibility NOUN NN Number=Sing 21 compound _ _ 21 hypothesis hypothesis NOUN NN Number=Sing 22 nsubj _ _ 22 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 ccomp _ _ 23 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 24 consequence consequence NOUN NN Number=Sing 22 attr _ _ 25 of of ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 28 det _ _ 27 other other ADJ JJ Degree=Pos 28 amod _ _ 28 axioms axiom NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 614 # sent_id = 1 # text = We introduce and study hypercrossed complexes of Lie algebras, that is, non - negatively graded chain complexes of Lie algebras $ L=(L_n, partial_n) $ endowed with an additional structure by means of a suitable set of bilinear maps $ L_rtimes L_srightarrow L_n $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 study study NOUN NN Number=Sing 2 conj _ _ 5 hypercrossed hypercrosse VERB VBD Tense=Past|VerbForm=Fin 6 amod _ _ 6 complexes complex NOUN NNS Number=Plur 4 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 Lie Lie PROPN NNP Number=Sing 9 compound _ _ 9 algebras algebra NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 that that ADV RB _ 12 advmod _ _ 12 is is ADV RB _ 17 advmod _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 17 punct _ _ 14 non non ADV RB _ 17 nsubj _ _ 15 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 16 negatively negatively ADV RB _ 17 advmod _ _ 17 graded grade VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 amod _ _ 18 chain chain NOUN NN Number=Sing 19 compound _ _ 19 complexes complex NOUN NNS Number=Plur 22 nsubj _ _ 20 of of ADP IN _ 19 prep _ _ 21 Lie Lie PROPN NNP Number=Sing 20 pobj _ _ 22 algebras algebra VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 conj _ _ 23 $ L=(L_n, partial_n) $ $ l=(l_n, partial_n) $ SYM $ _ 22 dobj _ _ 24 endowed endow VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 acl _ _ 25 with with ADP IN _ 24 prep _ _ 26 an an DET DT Definite=Ind|PronType=Art 28 det _ _ 27 additional additional ADJ JJ Degree=Pos 28 amod _ _ 28 structure structure NOUN NN Number=Sing 25 pobj _ _ 29 by by ADP IN _ 24 agent _ _ 30 means mean NOUN NNS Number=Plur 29 pobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 33 suitable suitable ADJ JJ Degree=Pos 34 amod _ _ 34 set set NOUN NN Number=Sing 31 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 bilinear bilinear NOUN NN Number=Sing 37 compound _ _ 37 maps map NOUN NNS Number=Plur 35 pobj _ _ 38 $ L_rtimes L_srightarrow L_n $ $ l_rtimes l_srightarrow l_n $ SYM $ _ 34 appos _ _ 39 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The Moore complex of any simplicial Lie algebra acquires such a structure and, in this way, we prove a Dold - Kan type equivalence between the category of simplicial Lie algebras and the category of hypercrossed complexes of Lie algebras. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 Moore Moore PROPN NNP Number=Sing 3 compound _ _ 3 complex complex NOUN NN Number=Sing 9 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 any any DET DT _ 8 det _ _ 6 simplicial simplicial ADJ JJ Degree=Pos 8 amod _ _ 7 Lie lie NOUN NN Number=Sing 8 compound _ _ 8 algebra algebra NOUN NN Number=Sing 4 pobj _ _ 9 acquires acquire VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 such such DET PDT _ 12 predet _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 structure structure NOUN NN Number=Sing 9 dobj _ _ 13 and and CCONJ CC ConjType=Cmp 9 cc _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 9 punct _ _ 15 in in ADP IN _ 20 prep _ _ 16 this this DET DT Number=Sing|PronType=Dem 17 det _ _ 17 way way NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 20 punct _ _ 19 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 20 nsubj _ _ 20 prove prove VERB VBP Tense=Pres|VerbForm=Fin 9 conj _ _ 21 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 22 Dold Dold PROPN NNP Number=Sing 24 compound _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 Kan Kan PROPN NNP Number=Sing 26 compound _ _ 25 type type NOUN NN Number=Sing 26 compound _ _ 26 equivalence equivalence NOUN NN Number=Sing 20 dobj _ _ 27 between between ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 category category NOUN NN Number=Sing 27 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 simplicial simplicial ADJ JJ Degree=Pos 32 amod _ _ 32 Lie lie NOUN NN Number=Sing 33 compound _ _ 33 algebras algebra NOUN NNS Number=Plur 30 pobj _ _ 34 and and CCONJ CC ConjType=Cmp 29 cc _ _ 35 the the DET DT Definite=Def|PronType=Art 36 det _ _ 36 category category NOUN NN Number=Sing 29 conj _ _ 37 of of ADP IN _ 36 prep _ _ 38 hypercrossed hypercrossed ADJ JJ Degree=Pos 39 amod _ _ 39 complexes complex NOUN NNS Number=Plur 37 pobj _ _ 40 of of ADP IN _ 39 prep _ _ 41 Lie Lie PROPN NNP Number=Sing 42 compound _ _ 42 algebras algebra NOUN NNS Number=Plur 40 pobj _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # sent_id = 3 # text = Several consequences of examining particular classes of hypercrossed complexes of Lie algebras are presented. 1 Several several ADJ JJ Degree=Pos 2 amod _ _ 2 consequences consequence NOUN NNS Number=Plur 14 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 examining examine VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 pcomp _ _ 5 particular particular ADJ JJ Degree=Pos 6 amod _ _ 6 classes class NOUN NNS Number=Plur 4 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 hypercrossed hypercrossed ADJ JJ Degree=Pos 9 amod _ _ 9 complexes complex NOUN NNS Number=Plur 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 Lie Lie PROPN NNP Number=Sing 12 compound _ _ 12 algebras algebra NOUN NNS Number=Plur 10 pobj _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # doc_id = 615 # sent_id = 1 # text = We show that a commutative monoid $ A $ is coexponentiable in $ CMon(V) $ if and only if $ - otimes A : V to V $ has a left adjoint, when $ V $ is a cocomplete symmetric monoidal closed category with finite biproducts and in which every object is a quotient of a free object. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 8 mark _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 commutative commutative ADJ JJ Degree=Pos 6 amod _ _ 6 monoid monoid NOUN NN Number=Sing 7 compound _ _ 7 $ A $ $ a $ SYM $ _ 8 nsubj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 9 coexponentiable coexponentiable ADJ JJ Degree=Pos 8 acomp _ _ 10 in in ADP IN _ 9 prep _ _ 11 $ CMon(V) $ $ cmon(v) $ SYM $ _ 10 pobj _ _ 12 if if SCONJ IN _ 24 mark _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 only only ADV RB _ 17 advmod _ _ 15 if if SCONJ IN _ 17 mark _ _ 16 $ - otimes A : V to V $ $ - otimes a : v to v $ SYM $ _ 17 nsubj _ _ 17 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 conj _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 left left ADJ JJ Degree=Pos 20 amod _ _ 20 adjoint adjoint NOUN NN Number=Sing 17 dobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 when when SCONJ WRB _ 24 advmod _ _ 23 $ V $ $ v $ SYM $ _ 24 nsubj _ _ 24 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 advcl _ _ 25 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 26 cocomplete cocomplete ADJ JJ Degree=Pos 28 amod _ _ 27 symmetric symmetric ADJ JJ Degree=Pos 28 amod _ _ 28 monoidal monoidal NOUN NN Number=Sing 29 nsubj _ _ 29 closed close VERB VBD Tense=Past|VerbForm=Fin 24 ccomp _ _ 30 category category NOUN NN Number=Sing 29 dobj _ _ 31 with with ADP IN _ 29 prep _ _ 32 finite finite ADJ JJ Degree=Pos 33 compound _ _ 33 biproducts biproduct NOUN NNS Number=Plur 31 pobj _ _ 34 and and CCONJ CC ConjType=Cmp 29 cc _ _ 35 in in ADP IN _ 39 prep _ _ 36 which which PRON WDT _ 35 pobj _ _ 37 every every DET DT _ 38 det _ _ 38 object object NOUN NN Number=Sing 39 nsubj _ _ 39 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 29 conj _ _ 40 a a DET DT Definite=Ind|PronType=Art 41 det _ _ 41 quotient quotient NOUN NN Number=Sing 39 attr _ _ 42 of of ADP IN _ 41 prep _ _ 43 a a DET DT Definite=Ind|PronType=Art 45 det _ _ 44 free free ADJ JJ Degree=Pos 45 amod _ _ 45 object object NOUN NN Number=Sing 42 pobj _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Using a general characterization of the latter, we show that an algebra over a rig or ring $ R $ is coexponentiable if and only if it is finitely generated and projective as an $ R $ - module. 1 Using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 advcl _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 general general ADJ JJ Degree=Pos 4 amod _ _ 4 characterization characterization NOUN NN Number=Sing 1 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 latter latter ADJ JJ Degree=Pos 5 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 10 punct _ _ 9 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 10 nsubj _ _ 10 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 that that SCONJ IN _ 20 mark _ _ 12 an an DET DT Definite=Ind|PronType=Art 13 det _ _ 13 algebra algebra NOUN NN Number=Sing 20 nsubj _ _ 14 over over ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 rig rig NOUN NN Number=Sing 14 pobj _ _ 17 or or CCONJ CC ConjType=Cmp 13 cc _ _ 18 ring ring VERB VB VerbForm=Inf 13 conj _ _ 19 $ R $ $ r $ SYM $ _ 18 dobj _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 ccomp _ _ 21 coexponentiable coexponentiable ADJ JJ Degree=Pos 20 acomp _ _ 22 if if SCONJ IN _ 20 prep _ _ 23 and and CCONJ CC ConjType=Cmp 22 cc _ _ 24 only only ADV RB _ 29 advmod _ _ 25 if if SCONJ IN _ 29 mark _ _ 26 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 29 nsubjpass _ _ 27 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 29 auxpass _ _ 28 finitely finitely ADV RB _ 29 advmod _ _ 29 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 advcl _ _ 30 and and CCONJ CC ConjType=Cmp 29 cc _ _ 31 projective projective ADJ JJ Degree=Pos 29 conj _ _ 32 as as ADP IN _ 31 prep _ _ 33 an an DET DT Definite=Ind|PronType=Art 36 det _ _ 34 $ R $ $ r $ SYM $ _ 36 compound _ _ 35 - - PUNCT HYPH PunctType=Dash 36 punct _ _ 36 module module NOUN NN Number=Sing 32 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 3 # text = Omitting the finiteness condition, the same result (and proof) is obtained for algebras over a quantale. 1 Omitting omit VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 advcl _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 finiteness finiteness NOUN NN Number=Sing 4 compound _ _ 4 condition condition NOUN NN Number=Sing 1 dobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 14 punct _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 same same ADJ JJ Degree=Pos 8 amod _ _ 8 result result NOUN NN Number=Sing 14 nsubjpass _ _ 9 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 8 punct _ SpaceAfter=No 10 and and CCONJ CC ConjType=Cmp 8 cc _ _ 11 proof proof NOUN NN Number=Sing 8 conj _ SpaceAfter=No 12 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 8 punct _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 15 for for ADP IN _ 14 prep _ _ 16 algebras algebra NOUN NNS Number=Plur 15 pobj _ _ 17 over over ADP IN _ 14 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 19 quantale quantale NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # doc_id = 616 # sent_id = 1 # text = The key notion to understand the left determined Olschok model category of star - shaped Cattani - Sassone transition systems is past - similarity. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 key key ADJ JJ Degree=Pos 3 amod _ _ 3 notion notion NOUN NN Number=Sing 21 nsubj _ _ 4 to to PART TO _ 5 aux _ _ 5 understand understand VERB VB VerbForm=Inf 3 acl _ _ 6 the the DET DT Definite=Def|PronType=Art 11 det _ _ 7 left left ADJ JJ Degree=Pos 8 advmod _ _ 8 determined determine VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 amod _ _ 9 Olschok Olschok PROPN NNP Number=Sing 10 compound _ _ 10 model model NOUN NN Number=Sing 11 compound _ _ 11 category category NOUN NN Number=Sing 5 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 star star NOUN NN Number=Sing 15 npadvmod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 shaped shape VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 amod _ _ 16 Cattani Cattani PROPN NNP Number=Sing 18 compound _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 Sassone Sassone PROPN NNP Number=Sing 20 compound _ _ 19 transition transition NOUN NN Number=Sing 20 compound _ _ 20 systems system NOUN NNS Number=Plur 12 pobj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 22 past past NOUN NN Number=Sing 24 compound _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 similarity similarity NOUN NN Number=Sing 21 attr _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 21 punct _ SpaceAfter=No # sent_id = 2 # text = Two states are past - similar if they have homotopic pasts. 1 Two two NUM CD NumType=Card 2 nummod _ _ 2 states state NOUN NNS Number=Plur 3 nsubj _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 past past NOUN NN Number=Sing 6 advmod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 similar similar ADJ JJ Degree=Pos 3 acomp _ _ 7 if if SCONJ IN _ 9 mark _ _ 8 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 9 nsubj _ _ 9 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 advcl _ _ 10 homotopic homotopic NOUN NN Number=Sing 11 compound _ _ 11 pasts past NOUN NNS Number=Plur 9 dobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = An object is fibrant if and only if the set of transitions is closed under past - similarity. 1 An an DET DT Definite=Ind|PronType=Art 2 det _ _ 2 object object NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 fibrant fibrant ADJ JJ Degree=Pos 3 acomp _ _ 5 if if SCONJ IN _ 14 mark _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 only only ADV RB _ 14 advmod _ _ 8 if if SCONJ IN _ 14 mark _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 set set NOUN NN Number=Sing 13 nsubj _ _ 11 of of ADP IN _ 10 prep _ _ 12 transitions transition NOUN NNS Number=Plur 11 pobj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 advcl _ _ 15 under under ADP IN _ 14 prep _ _ 16 past past ADJ JJ Degree=Pos 18 amod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 similarity similarity NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = A map is a weak equivalence if and only if it induces an isomorphism after the identification of all past - similar states. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 map map NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 weak weak ADJ JJ Degree=Pos 6 amod _ _ 6 equivalence equivalence NOUN NN Number=Sing 3 attr _ _ 7 if if SCONJ IN _ 6 prep _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 only only ADV RB _ 12 advmod _ _ 10 if if SCONJ IN _ 12 mark _ _ 11 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 12 nsubj _ _ 12 induces induce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 conj _ _ 13 an an DET DT Definite=Ind|PronType=Art 14 det _ _ 14 isomorphism isomorphism NOUN NN Number=Sing 12 dobj _ _ 15 after after ADP IN _ 12 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 identification identification NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 all all DET DT _ 23 det _ _ 20 past past ADJ JJ Degree=Pos 22 advmod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 similar similar ADJ JJ Degree=Pos 23 amod _ _ 23 states state NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = The last part of this paper is a discussion about the link between causality and homotopy. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 last last ADJ JJ Degree=Pos 3 amod _ _ 3 part part NOUN NN Number=Sing 7 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 6 paper paper NOUN NN Number=Sing 4 pobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 discussion discussion NOUN NN Number=Sing 7 attr _ _ 10 about about ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 link link NOUN NN Number=Sing 10 pobj _ _ 13 between between ADP IN _ 12 prep _ _ 14 causality causality NOUN NN Number=Sing 13 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 homotopy homotopy NOUN NN Number=Sing 14 conj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # doc_id = 617 # sent_id = 1 # text = As we all know, the complete lattice $ I_D(S) $ of all $ D $ - ideals of a meet - semilattice $ S $ is precisely the injective hull of $ S $ in the category of meet - semilattices. 1 As as SCONJ IN _ 4 mark _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 3 all all PRON DT _ 2 appos _ _ 4 know know VERB VBP Tense=Pres|VerbForm=Fin 21 advcl _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 4 punct _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 complete complete ADJ JJ Degree=Pos 8 amod _ _ 8 lattice lattice NOUN NN Number=Sing 21 nsubj _ _ 9 $ I_D(S) $ $ i_d(s) $ SYM $ _ 21 nsubj _ _ 10 of of ADP IN _ 9 prep _ _ 11 all all DET DT _ 14 det _ _ 12 $ D $ $ d $ SYM $ _ 14 compound _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 ideals ideal NOUN NNS Number=Plur 10 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 17 meet meet NOUN NN Number=Sing 19 compound _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 semilattice semilattice NOUN NN Number=Sing 20 compound _ _ 20 $ S $ $ s $ SYM $ _ 15 pobj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 22 precisely precisely ADV RB _ 25 advmod _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 injective injective ADJ JJ Degree=Pos 25 amod _ _ 25 hull hull NOUN NN Number=Sing 21 attr _ _ 26 of of ADP IN _ 25 prep _ _ 27 $ S $ $ s $ SYM $ _ 26 pobj _ _ 28 in in ADP IN _ 25 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 category category NOUN NN Number=Sing 28 pobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 meet meet NOUN NN Number=Sing 34 compound _ _ 33 - - PUNCT HYPH PunctType=Dash 34 punct _ _ 34 semilattices semilattice NOUN NNS Number=Plur 31 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 21 punct _ SpaceAfter=No # sent_id = 2 # text = In this paper, we consider $ sm $ - ideals of posemigroups which can be regarded as a generalization of $ D $ - ideals of meet - semilattices. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 $ sm $ $ sm $ SYM $ _ 9 compound _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 ideals ideal NOUN NNS Number=Plur 6 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 posemigroups posemigroup NOUN NNS Number=Plur 10 pobj _ _ 12 which which PRON WDT _ 15 nsubjpass _ _ 13 can can AUX MD VerbForm=Fin 15 aux _ _ 14 be be AUX VB VerbForm=Inf 15 auxpass _ _ 15 regarded regard VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 relcl _ _ 16 as as ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 generalization generalization NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 $ D $ $ d $ SYM $ _ 22 compound _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 ideals ideal NOUN NNS Number=Plur 19 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 meet meet NOUN NN Number=Sing 26 compound _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 semilattices semilattice NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = Unfortunately, the quantale $ R(S) $ of all $ sm $ - ideals of a posemigroup $ S $ is in general not an injective hull of $ S $ . 1 Unfortunately unfortunately ADV RB _ 15 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 15 punct _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 quantale quantale NOUN NN Number=Sing 15 nsubj _ _ 5 $ R(S) $ $ r(s) $ SYM $ _ 4 appos _ _ 6 of of ADP IN _ 5 prep _ _ 7 all all DET DT _ 10 det _ _ 8 $ sm $ $ sm $ SYM $ _ 10 compound _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 ideals ideal NOUN NNS Number=Plur 6 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 posemigroup posemigroup NOUN NN Number=Sing 11 pobj _ _ 14 $ S $ $ s $ SYM $ _ 4 appos _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 16 in in ADP IN _ 15 prep _ _ 17 general general ADJ JJ Degree=Pos 16 amod _ _ 18 not not PART RB Polarity=Neg 21 neg _ _ 19 an an DET DT Definite=Ind|PronType=Art 21 det _ _ 20 injective injective ADJ JJ Degree=Pos 21 amod _ _ 21 hull hull NOUN NN Number=Sing 15 attr _ _ 22 of of ADP IN _ 21 prep _ _ 23 $ S $ $ s $ SYM $ _ 22 pobj _ _ 24 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 4 # text = However, $ R(S) $ can be seen as a new type of quantale completions of $ S $ . 1 However however ADV RB _ 6 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 6 punct _ _ 3 $ R(S) $ $ r(s) $ SYM $ _ 6 nsubjpass _ _ 4 can can AUX MD VerbForm=Fin 6 aux _ _ 5 be be AUX VB VerbForm=Inf 6 auxpass _ _ 6 seen see VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 as as ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 new new ADJ JJ Degree=Pos 10 amod _ _ 10 type type NOUN NN Number=Sing 7 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 quantale quantale ADJ JJ Degree=Pos 13 compound _ _ 13 completions completion NOUN NNS Number=Plur 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 $ S $ $ s $ SYM $ _ 14 pobj _ _ 16 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 5 # text = Further, we can see that $ R(S) $ is also a free object over $ S $ in the category $ PoSgr_v $ of posemigroups with $ sm $ - distributive join homomorphisms. 1 Further far ADV RB _ 5 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 5 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 4 can can AUX MD VerbForm=Fin 5 aux _ _ 5 see see VERB VB VerbForm=Inf 0 ROOT _ _ 6 that that SCONJ IN _ 8 mark _ _ 7 $ R(S) $ $ r(s) $ SYM $ _ 8 nsubj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 ccomp _ _ 9 also also ADV RB _ 8 advmod _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 free free ADJ JJ Degree=Pos 12 amod _ _ 12 object object NOUN NN Number=Sing 8 attr _ _ 13 over over ADP IN _ 12 prep _ _ 14 $ S $ $ s $ SYM $ _ 13 pobj _ _ 15 in in ADP IN _ 12 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 category category NOUN NN Number=Sing 15 pobj _ _ 18 $ PoSgr_v $ $ posgr_v $ SYM $ _ 17 appos _ _ 19 of of ADP IN _ 18 prep _ _ 20 posemigroups posemigroup NOUN NNS Number=Plur 19 pobj _ _ 21 with with ADP IN _ 12 prep _ _ 22 $ sm $ $ sm $ SYM $ _ 24 advmod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 distributive distributive ADJ JJ Degree=Pos 26 amod _ _ 25 join join NOUN NN Number=Sing 26 compound _ _ 26 homomorphisms homomorphism NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 618 # sent_id = 1 # text = We provide an explicit model for the free 2 - category containing n composable adjunction morphisms, comparable to the Schanuel and Street model for the free adjunction. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 4 explicit explicit ADJ JJ Degree=Pos 5 amod _ _ 5 model model NOUN NN Number=Sing 2 dobj _ _ 6 for for ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 11 det _ _ 8 free free ADJ JJ Degree=Pos 11 amod _ _ 9 2 2 NUM CD NumType=Card 11 nummod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 category category NOUN NN Number=Sing 6 pobj _ _ 12 containing contain VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 11 acl _ _ 13 n n CCONJ CC ConjType=Cmp 14 advmod _ _ 14 composable composable ADJ JJ Degree=Pos 16 amod _ _ 15 adjunction adjunction NOUN NN Number=Sing 16 compound _ _ 16 morphisms morphism NOUN NNS Number=Plur 12 dobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 comparable comparable ADJ JJ Degree=Pos 16 amod _ _ 19 to to ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 24 det _ _ 21 Schanuel Schanuel PROPN NNP Number=Sing 24 nmod _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 Street Street PROPN NNP Number=Sing 21 conj _ _ 24 model model NOUN NN Number=Sing 19 pobj _ _ 25 for for ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 28 det _ _ 27 free free ADJ JJ Degree=Pos 28 amod _ _ 28 adjunction adjunction NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We can extract from it an explicit model for the free 2 - category containing n composable lax monad morphisms. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 can can AUX MD VerbForm=Fin 3 aux _ _ 3 extract extract VERB VB VerbForm=Inf 0 ROOT _ _ 4 from from ADP IN _ 3 prep _ _ 5 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 4 pobj _ _ 6 an an DET DT Definite=Ind|PronType=Art 8 det _ _ 7 explicit explicit ADJ JJ Degree=Pos 8 amod _ _ 8 model model NOUN NN Number=Sing 3 dobj _ _ 9 for for ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 14 det _ _ 11 free free ADJ JJ Degree=Pos 14 amod _ _ 12 2 2 NUM CD NumType=Card 14 nummod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 category category NOUN NN Number=Sing 9 pobj _ _ 15 containing contain VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 acl _ _ 16 n n ADV RB _ 17 advmod _ _ 17 composable composable ADJ JJ Degree=Pos 20 amod _ _ 18 lax lax ADJ JJ Degree=Pos 19 amod _ _ 19 monad monad NOUN NNS Number=Plur 20 compound _ _ 20 morphisms morphism NOUN NNS Number=Plur 15 dobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = A careful proof is given, which goes through presentations of the hom - categories of our model. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 careful careful ADJ JJ Degree=Pos 3 amod _ _ 3 proof proof NOUN NN Number=Sing 5 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 which which PRON WDT _ 8 nsubj _ _ 8 goes go VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 relcl _ _ 9 through through ADP IN _ 8 prep _ _ 10 presentations presentation NOUN NNS Number=Plur 9 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 15 det _ _ 13 hom hom NOUN NN Number=Sing 15 amod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 categories category NOUN NNS Number=Plur 11 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 18 poss _ _ 18 model model NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = We use one of these hom - categories as an indexing category to construct an extended Artin - Mazur codiagonal, whose underlying bisimplicial set has the classical Artin - Mazur codiagonal as its first column. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 one one NUM CD NumType=Card 2 dobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 these these DET DT Number=Plur|PronType=Dem 8 det _ _ 6 hom hom NOUN NN Number=Sing 8 amod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 categories category NOUN NNS Number=Plur 4 pobj _ _ 9 as as ADP IN _ 2 prep _ _ 10 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 11 indexing indexing NOUN NN Number=Sing 12 compound _ _ 12 category category NOUN NN Number=Sing 9 pobj _ _ 13 to to PART TO _ 14 aux _ _ 14 construct construct VERB VB VerbForm=Inf 2 xcomp _ _ 15 an an DET DT Definite=Ind|PronType=Art 20 det _ _ 16 extended extended ADJ JJ Degree=Pos 20 amod _ _ 17 Artin Artin PROPN NNP Number=Sing 19 compound _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 Mazur Mazur PROPN NNP Number=Sing 20 compound _ _ 20 codiagonal codiagonal NOUN NN Number=Sing 14 dobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 whose whose DET WP$ Poss=Yes 25 poss _ _ 23 underlying underlie VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 25 amod _ _ 24 bisimplicial bisimplicial ADJ JJ Degree=Pos 25 amod _ _ 25 set set NOUN NN Number=Sing 26 nsubj _ _ 26 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 relcl _ _ 27 the the DET DT Definite=Def|PronType=Art 32 det _ _ 28 classical classical ADJ JJ Degree=Pos 32 amod _ _ 29 Artin Artin PROPN NNP Number=Sing 31 compound _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 Mazur Mazur PROPN NNP Number=Sing 32 compound _ _ 32 codiagonal codiagonal ADJ JJ Degree=Pos 26 dobj _ _ 33 as as ADP IN _ 32 prep _ _ 34 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 36 poss _ _ 35 first first ADJ JJ Degree=Pos 36 amod _ _ 36 column column NOUN NN Number=Sing 33 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 619 # sent_id = 1 # text = For each holomorphic vector bundle we construct a holomorphic bundle 2 - gerbe that geometrically represents its second Beilinson - Chern class. 1 For for ADP IN _ 7 prep _ _ 2 each each DET DT _ 5 det _ _ 3 holomorphic holomorphic ADJ JJ Degree=Pos 5 compound _ _ 4 vector vector NOUN NN Number=Sing 5 compound _ _ 5 bundle bundle NOUN NN Number=Sing 1 pobj _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 holomorphic holomorphic ADJ JJ Degree=Pos 10 amod _ _ 10 bundle bundle NOUN NN Number=Sing 7 dobj _ _ 11 2 2 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 gerbe gerbe NOUN NN Number=Sing 10 appos _ _ 14 that that PRON WDT PronType=Rel 16 nsubj _ _ 15 geometrically geometrically ADV RB _ 16 advmod _ _ 16 represents represent VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 relcl _ _ 17 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 22 poss _ _ 18 second second ADJ JJ Degree=Pos 22 amod _ _ 19 Beilinson Beilinson PROPN NNP Number=Sing 21 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 Chern Chern PROPN NNP Number=Sing 22 compound _ _ 22 class class NOUN NN Number=Sing 16 dobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 2 # text = Applied to the cotangent bundle, this may be regarded as a higher analogue of the canonical line bundle in complex geometry. 1 Applied apply VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 advcl _ _ 2 to to ADP IN _ 1 prep _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 cotangent cotangent NOUN NN Number=Sing 5 compound _ _ 5 bundle bundle NOUN NN Number=Sing 2 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 10 punct _ _ 7 this this PRON DT Number=Sing|PronType=Dem 10 nsubjpass _ _ 8 may may AUX MD VerbForm=Fin 10 aux _ _ 9 be be AUX VB VerbForm=Inf 10 auxpass _ _ 10 regarded regard VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 11 as as ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 higher high ADJ JJR Degree=Cmp 14 amod _ _ 14 analogue analogue NOUN NN Number=Sing 11 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 19 det _ _ 17 canonical canonical ADJ JJ Degree=Pos 18 amod _ _ 18 line line NOUN NN Number=Sing 19 compound _ _ 19 bundle bundle NOUN NN Number=Sing 15 pobj _ _ 20 in in ADP IN _ 19 prep _ _ 21 complex complex ADJ JJ Degree=Pos 22 amod _ _ 22 geometry geometry NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 3 # text = Moreover, we exhibit the precise relationship between holomorphic and smooth gerbes. 1 Moreover moreover ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 exhibit exhibit VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 precise precise ADJ JJ Degree=Pos 7 amod _ _ 7 relationship relationship NOUN NN Number=Sing 4 dobj _ _ 8 between between ADP IN _ 7 prep _ _ 9 holomorphic holomorphic PROPN NNP Number=Sing 12 nmod _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 smooth smooth ADJ JJ Degree=Pos 9 conj _ _ 12 gerbes gerbes PROPN NNP Number=Sing 8 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = For example, we introduce an Atiyah class for gerbes and prove a Koszul - Malgrange type theorem. 1 For for ADP IN _ 5 prep _ _ 2 example example NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 an an DET DT Definite=Ind|PronType=Art 8 det _ _ 7 Atiyah Atiyah PROPN NNP Number=Sing 8 compound _ _ 8 class class NOUN NN Number=Sing 5 dobj _ _ 9 for for ADP IN _ 8 prep _ _ 10 gerbes gerbes PROPN NNP Number=Sing 9 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 5 cc _ _ 12 prove prove VERB VB VerbForm=Inf 5 conj _ _ 13 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 14 Koszul Koszul PROPN NNP Number=Sing 16 compound _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 Malgrange Malgrange PROPN NNP Number=Sing 17 compound _ _ 17 type type NOUN NN Number=Sing 18 compound _ _ 18 theorem theorem ADJ JJ Degree=Pos 12 oprd _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 620 # sent_id = 1 # text = If $ C $ is a category with pullbacks then there is a bicategory with the same objects as $ C $ , spans as morphisms, and maps of spans as 2 - morphisms, as shown by Benabou. 1 If if SCONJ IN _ 3 mark _ _ 2 $ C $ $ c $ SYM $ _ 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 advcl _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 3 attr _ _ 6 with with ADP IN _ 5 prep _ _ 7 pullbacks pullback NOUN NNS Number=Plur 6 pobj _ _ 8 then then ADV RB PronType=Dem 10 advmod _ _ 9 there there PRON EX _ 10 expl _ _ 10 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 bicategory bicategory NOUN NN Number=Sing 10 attr _ _ 13 with with ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 same same ADJ JJ Degree=Pos 16 amod _ _ 16 objects object NOUN NNS Number=Plur 13 pobj _ _ 17 as as ADP IN _ 16 prep _ _ 18 $ C $ $ c $ SYM $ _ 17 pobj _ _ 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 spans span NOUN NNS Number=Plur 18 conj _ _ 21 as as ADP IN _ 20 prep _ _ 22 morphisms morphism NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 20 punct _ _ 24 and and CCONJ CC ConjType=Cmp 20 cc _ _ 25 maps map NOUN NNS Number=Plur 20 conj _ _ 26 of of ADP IN _ 25 prep _ _ 27 spans span NOUN NNS Number=Plur 26 pobj _ _ 28 as as ADP IN _ 16 prep _ _ 29 2 2 NUM CD NumType=Card 31 nummod _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 morphisms morphism NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 10 punct _ _ 33 as as SCONJ IN _ 34 mark _ _ 34 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 advcl _ _ 35 by by ADP IN _ 34 agent _ _ 36 Benabou Benabou PROPN NNP Number=Sing 35 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = Fong has developed a theory of `decorated cospans', which are cospans in $ C $ equipped with extra structure. 1 Fong Fong PROPN NNP Number=Sing 3 nsubj _ _ 2 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 aux _ _ 3 developed develop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 theory theory NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 6 punct _ SpaceAfter=No 8 decorated decorate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 amod _ _ 9 cospans cospan NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 10 ' ' PROPN NNP Number=Sing 6 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 5 punct _ _ 12 which which PRON WDT _ 13 nsubj _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 relcl _ _ 14 cospans cospan NOUN NNS Number=Plur 13 attr _ _ 15 in in ADP IN _ 14 prep _ _ 16 $ C $ $ c $ SYM $ _ 15 pobj _ _ 17 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 acl _ _ 18 with with ADP IN _ 17 prep _ _ 19 extra extra ADJ JJ Degree=Pos 20 amod _ _ 20 structure structure NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = This extra structure arises from a symmetric lax monoidal functor $ F : C - - > D $ ; we use this functor to `decorate' each cospan with apex $ N $ in $ C $ with an element of $ F(N) $ . 1 This this DET DT Number=Sing|PronType=Dem 3 det _ _ 2 extra extra ADJ JJ Degree=Pos 3 amod _ _ 3 structure structure NOUN NN Number=Sing 4 nsubj _ _ 4 arises arise VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 ccomp _ _ 5 from from ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 7 symmetric symmetric ADJ JJ Degree=Pos 10 amod _ _ 8 lax lax ADJ JJ Degree=Pos 10 amod _ _ 9 monoidal monoidal NOUN NN Number=Sing 10 compound _ _ 10 functor functor NOUN NN Number=Sing 5 pobj _ _ 11 $ F : C - - > D $ $ f : c - - > d $ SYM $ _ 4 advmod _ _ 12 ; ; PUNCT : _ 14 punct _ _ 13 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 14 nsubj _ _ 14 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 this this DET DT Number=Sing|PronType=Dem 16 det _ _ 16 functor functor NOUN NN Number=Sing 14 dobj _ _ 17 to to PART TO _ 19 aux _ _ 18 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 19 punct _ SpaceAfter=No 19 decorate decorate VERB VB VerbForm=Inf 14 xcomp _ SpaceAfter=No 20 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 19 punct _ _ 21 each each DET DT _ 22 det _ _ 22 cospan cospan NOUN NN Number=Sing 19 dobj _ _ 23 with with ADP IN _ 19 prep _ _ 24 apex apex PROPN NNP Number=Sing 23 pobj _ _ 25 $ N $ $ n $ SYM $ _ 24 appos _ _ 26 in in ADP IN _ 19 prep _ _ 27 $ C $ $ c $ SYM $ _ 26 pobj _ _ 28 with with ADP IN _ 19 prep _ _ 29 an an DET DT Definite=Ind|PronType=Art 30 det _ _ 30 element element NOUN NN Number=Sing 28 pobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 $ F(N) $ $ f(n) $ SYM $ _ 31 pobj _ _ 33 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 4 # text = Using a result of Shulman, we show that when $ C $ has finite colimits, decorated cospans are morphisms in a symmetric monoidal bicategory. 1 Using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 advcl _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 result result NOUN NN Number=Sing 1 dobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 Shulman Shulman PROPN NNP Number=Sing 4 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 8 punct _ _ 7 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 8 nsubj _ _ 8 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 that that SCONJ IN _ 18 mark _ _ 10 when when SCONJ WRB _ 12 advmod _ _ 11 $ C $ $ c $ SYM $ _ 12 nsubj _ _ 12 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 advcl _ _ 13 finite finite ADJ JJ Degree=Pos 14 amod _ _ 14 colimits colimit NOUN NNS Number=Plur 12 dobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 18 punct _ _ 16 decorated decorate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 17 cospans cospan NOUN NNS Number=Plur 18 nsubj _ _ 18 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 ccomp _ _ 19 morphisms morphism NOUN NNS Number=Plur 18 attr _ _ 20 in in ADP IN _ 18 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 22 symmetric symmetric ADJ JJ Degree=Pos 24 amod _ _ 23 monoidal monoidal ADJ JJ Degree=Pos 24 amod _ _ 24 bicategory bicategory NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 5 # text = We illustrate our construction with examples from electrical engineering and the theory of chemical reaction networks. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 illustrate illustrate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 4 poss _ _ 4 construction construction NOUN NN Number=Sing 2 dobj _ _ 5 with with ADP IN _ 2 prep _ _ 6 examples example NOUN NNS Number=Plur 5 pobj _ _ 7 from from ADP IN _ 6 prep _ _ 8 electrical electrical ADJ JJ Degree=Pos 9 amod _ _ 9 engineering engineering NOUN NN Number=Sing 7 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 theory theory NOUN NN Number=Sing 9 conj _ _ 13 of of ADP IN _ 12 prep _ _ 14 chemical chemical ADJ JJ Degree=Pos 15 amod _ _ 15 reaction reaction NOUN NN Number=Sing 16 compound _ _ 16 networks network NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 621 # sent_id = 1 # text = We associate to a bimonoidal functor, that is, a bifunctor which is monoidal in each variable, a nonabelian version of a biextension. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 associate associate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 to to ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 bimonoidal bimonoidal NOUN NN Number=Sing 6 compound _ _ 6 functor functor NOUN NN Number=Sing 3 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 6 punct _ _ 8 that that ADV RB _ 9 advmod _ _ 9 is is ADV RB _ 6 relcl _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 bifunctor bifunctor NOUN NN Number=Sing 6 appos _ _ 13 which which PRON WDT _ 14 nsubj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 relcl _ _ 15 monoidal monoidal ADJ JJ Degree=Pos 14 acomp _ _ 16 in in ADP IN _ 15 prep _ _ 17 each each DET DT _ 18 det _ _ 18 variable variable NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 6 punct _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 nonabelian nonabelian ADJ JJ Degree=Pos 22 amod _ _ 22 version version NOUN NN Number=Sing 6 appos _ _ 23 of of ADP IN _ 22 prep _ _ 24 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 25 biextension biextension NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We show that such a biextension satisfies additional triviality conditions which make it a bilinear analog of the kind of spans known as butterflies and, conversely, these data determine a bimonoidal functor. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 31 mark _ _ 4 such such DET PDT _ 7 predet _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 biextension biextension NOUN NN Number=Sing 7 compound _ _ 7 satisfies satisfie NOUN NNS Number=Plur 31 nsubj _ _ 8 additional additional ADJ JJ Degree=Pos 10 amod _ _ 9 triviality triviality NOUN NN Number=Sing 10 compound _ _ 10 conditions condition NOUN NNS Number=Plur 7 appos _ _ 11 which which PRON WDT _ 12 nsubj _ _ 12 make make VERB VBP Tense=Pres|VerbForm=Fin 10 relcl _ _ 13 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 16 nsubj _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 bilinear bilinear ADJ JJ Degree=Pos 16 amod _ _ 16 analog analog NOUN NN Number=Sing 12 ccomp _ _ 17 of of ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 kind kind NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 spans span NOUN NNS Number=Plur 20 pobj _ _ 22 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 acl _ _ 23 as as ADP IN _ 22 prep _ _ 24 butterflies butterfly NOUN NNS Number=Plur 23 pobj _ _ 25 and and CCONJ CC ConjType=Cmp 16 cc _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 31 punct _ _ 27 conversely conversely ADV RB _ 31 advmod _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 31 punct _ _ 29 these these DET DT Number=Plur|PronType=Dem 30 det _ _ 30 data datum NOUN NNS Number=Plur 31 nsubj _ _ 31 determine determine VERB VBP Tense=Pres|VerbForm=Fin 2 ccomp _ _ 32 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 33 bimonoidal bimonoidal NOUN NN Number=Sing 34 compound _ _ 34 functor functor NOUN NN Number=Sing 31 dobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We extend this result to $ n $ - variables, and prove that, in a manner analogous to that of butterflies, these multi - extensions can be composed. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 extend extend VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 4 result result NOUN NN Number=Sing 2 dobj _ _ 5 to to ADP IN _ 2 prep _ _ 6 $ n $ $ n $ SYM $ _ 8 nummod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 variables variable NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 2 punct _ _ 10 and and CCONJ CC ConjType=Cmp 2 cc _ _ 11 prove prove VERB VB VerbForm=Inf 2 conj _ _ 12 that that SCONJ IN _ 29 mark _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 29 punct _ _ 14 in in ADP IN _ 29 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 manner manner NOUN NN Number=Sing 14 pobj _ _ 17 analogous analogous ADJ JJ Degree=Pos 16 amod _ _ 18 to to ADP IN _ 17 prep _ _ 19 that that PRON DT Number=Sing|PronType=Dem 18 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 butterflies butterfly NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 29 punct _ _ 23 these these DET DT Number=Plur|PronType=Dem 24 det _ _ 24 multi multi NOUN NN Number=Sing 26 compound _ _ 25 - - NOUN NNS Number=Plur 26 punct _ _ 26 extensions extension NOUN NNS Number=Plur 29 nsubjpass _ _ 27 can can AUX MD VerbForm=Fin 29 aux _ _ 28 be be AUX VB VerbForm=Inf 29 auxpass _ _ 29 composed compose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 ccomp _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = This is phrased in terms of a multilinear functor calculus in a bicategory. 1 This this PRON DT Number=Sing|PronType=Dem 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 phrased phrase VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 in in ADP IN _ 3 prep _ _ 5 terms term NOUN NNS Number=Plur 4 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 8 multilinear multilinear ADJ JJ Degree=Pos 10 amod _ _ 9 functor functor NOUN NN Number=Sing 10 compound _ _ 10 calculus calculus NOUN NN Number=Sing 6 pobj _ _ 11 in in ADP IN _ 3 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 bicategory bicategory NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = As an application, we study a bimonoidal category or stack, treating the multiplicative structure as a bimonoidal functor with respect to the additive one. 1 As as ADP IN _ 6 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 application application NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 bimonoidal bimonoidal NOUN NN Number=Sing 9 compound _ _ 9 category category NOUN NN Number=Sing 6 dobj _ _ 10 or or CCONJ CC ConjType=Cmp 9 cc _ _ 11 stack stack VERB VB VerbForm=Inf 9 conj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 6 punct _ _ 13 treating treat VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 advcl _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 multiplicative multiplicative ADJ JJ Degree=Pos 16 amod _ _ 16 structure structure NOUN NN Number=Sing 13 dobj _ _ 17 as as ADP IN _ 13 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 bimonoidal bimonoidal NOUN NN Number=Sing 20 compound _ _ 20 functor functor NOUN NN Number=Sing 17 pobj _ _ 21 with with ADP IN _ 20 prep _ _ 22 respect respect NOUN NN Number=Sing 21 pobj _ _ 23 to to ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 26 det _ _ 25 additive additive ADJ JJ Degree=Pos 26 amod _ _ 26 one one NUM CD NumType=Card 23 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 6 # text = In the context of the multilinear functor calculus, we view the bimonoidal structure as an instance of the general notion of pseudo - monoid. 1 In in ADP IN _ 11 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 context context NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 8 det _ _ 6 multilinear multilinear NOUN NN Number=Sing 8 compound _ _ 7 functor functor PROPN NNP Number=Sing 8 compound _ _ 8 calculus calculus NOUN NN Number=Sing 4 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 11 punct _ _ 10 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 11 nsubj _ _ 11 view view VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 bimonoidal bimonoidal NOUN NN Number=Sing 14 compound _ _ 14 structure structure NOUN NN Number=Sing 11 dobj _ _ 15 as as ADP IN _ 11 prep _ _ 16 an an DET DT Definite=Ind|PronType=Art 17 det _ _ 17 instance instance NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 general general ADJ JJ Degree=Pos 21 amod _ _ 21 notion notion NOUN NN Number=Sing 18 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 pseudo pseudo NOUN NN Number=Sing 25 compound _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 monoid monoid NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 7 # text = We show that when the structure is ring - like, that is the pseudo - monoid is a stack whose fibers are categorical rings, we can recover the classification by the third Mac~Lane cohomology of a ring with values in a bimodule. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 13 mark _ _ 4 when when SCONJ WRB _ 7 advmod _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 structure structure NOUN NN Number=Sing 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 advcl _ _ 8 ring ring NOUN NN Number=Sing 10 npadvmod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 like like INTJ UH _ 7 acomp _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 13 punct _ _ 12 that that PRON DT Number=Sing|PronType=Dem 13 nsubj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 29 advcl _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 pseudo pseudo NOUN NN Number=Sing 17 compound _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 monoid monoid NOUN NN Number=Sing 18 nsubj _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 ccomp _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 stack stack NOUN NN Number=Sing 18 attr _ _ 21 whose whose DET WP$ Poss=Yes 22 poss _ _ 22 fibers fiber NOUN NNS Number=Plur 23 nsubj _ _ 23 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 20 relcl _ _ 24 categorical categorical ADJ JJ Degree=Pos 25 amod _ _ 25 rings ring NOUN NNS Number=Plur 23 attr _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 29 punct _ _ 27 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 29 nsubj _ _ 28 can can AUX MD VerbForm=Fin 29 aux _ _ 29 recover recover VERB VB VerbForm=Inf 2 ccomp _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 classification classification NOUN NN Number=Sing 29 dobj _ _ 32 by by ADP IN _ 29 prep _ _ 33 the the DET DT Definite=Def|PronType=Art 35 det _ _ 34 third third ADJ JJ Degree=Pos 35 amod _ _ 35 Mac Mac PROPN NNP Number=Sing 32 pobj _ SpaceAfter=No 36 ~ ~ PUNCT : _ 35 punct _ SpaceAfter=No 37 Lane Lane PROPN NNP Number=Sing 38 compound _ _ 38 cohomology cohomology NOUN NN Number=Sing 35 appos _ _ 39 of of ADP IN _ 38 prep _ _ 40 a a DET DT Definite=Ind|PronType=Art 41 det _ _ 41 ring ring NOUN NN Number=Sing 39 pobj _ _ 42 with with ADP IN _ 41 prep _ _ 43 values value NOUN NNS Number=Plur 42 pobj _ _ 44 in in ADP IN _ 43 prep _ _ 45 a a DET DT Definite=Ind|PronType=Art 46 det _ _ 46 bimodule bimodule NOUN NN Number=Sing 44 pobj _ SpaceAfter=No 47 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 622 # sent_id = 1 # text = Starting from the observation that through groupoids we can express in a unified way the notions of fundamental system of entourages of a uniform structure on a space $ X $ , respectively the system of neighborhoods of the unity of a topological group that determines its topology, we introduce in this paper a notion of $ G $ - uniformity for a groupoid $ G $ . 1 Starting start VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 49 advcl _ _ 2 from from ADP IN _ 1 prep _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 observation observation NOUN NN Number=Sing 2 pobj _ _ 5 that that SCONJ IN _ 10 mark _ _ 6 through through ADP IN _ 10 prep _ _ 7 groupoids groupoid NOUN NNS Number=Plur 6 pobj _ _ 8 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 10 nsubj _ _ 9 can can AUX MD VerbForm=Fin 10 aux _ _ 10 express express VERB VB VerbForm=Inf 4 acl _ _ 11 in in ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 unified unified ADJ JJ Degree=Pos 14 amod _ _ 14 way way NOUN NN Number=Sing 11 pobj _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 notions notion NOUN NNS Number=Plur 10 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 fundamental fundamental ADJ JJ Degree=Pos 19 amod _ _ 19 system system NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 entourages entourage NOUN NNS Number=Plur 20 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 24 uniform uniform ADJ JJ Degree=Pos 25 amod _ _ 25 structure structure NOUN NN Number=Sing 22 pobj _ _ 26 on on ADP IN _ 16 prep _ _ 27 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 28 space space NOUN NN Number=Sing 26 pobj _ _ 29 $ X $ $ x $ SYM $ _ 28 appos _ _ 30 , , PUNCT , PunctType=Comm 16 punct _ _ 31 respectively respectively ADV RB _ 33 advmod _ _ 32 the the DET DT Definite=Def|PronType=Art 33 det _ _ 33 system system NOUN NN Number=Sing 16 appos _ _ 34 of of ADP IN _ 33 prep _ _ 35 neighborhoods neighborhood NOUN NNS Number=Plur 34 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 the the DET DT Definite=Def|PronType=Art 38 det _ _ 38 unity unity NOUN NN Number=Sing 36 pobj _ _ 39 of of ADP IN _ 38 prep _ _ 40 a a DET DT Definite=Ind|PronType=Art 42 det _ _ 41 topological topological ADJ JJ Degree=Pos 42 amod _ _ 42 group group NOUN NN Number=Sing 39 pobj _ _ 43 that that PRON WDT PronType=Rel 44 nsubj _ _ 44 determines determine VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 42 relcl _ _ 45 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 46 poss _ _ 46 topology topology NOUN NN Number=Sing 44 dobj _ SpaceAfter=No 47 , , PUNCT , PunctType=Comm 49 punct _ _ 48 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 49 nsubj _ _ 49 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 50 in in ADP IN _ 49 prep _ _ 51 this this DET DT Number=Sing|PronType=Dem 52 det _ _ 52 paper paper NOUN NN Number=Sing 50 pobj _ _ 53 a a DET DT Definite=Ind|PronType=Art 54 det _ _ 54 notion notion NOUN NN Number=Sing 49 dobj _ _ 55 of of ADP IN _ 54 prep _ _ 56 $ G $ $ g $ SYM $ _ 58 compound _ _ 57 - - PUNCT HYPH PunctType=Dash 58 punct _ _ 58 uniformity uniformity NOUN NN Number=Sing 55 pobj _ _ 59 for for ADP IN _ 54 prep _ _ 60 a a DET DT Definite=Ind|PronType=Art 61 det _ _ 61 groupoid groupoid NOUN NN Number=Sing 62 compound _ _ 62 $ G $ $ g $ SYM $ _ 59 pobj _ _ 63 . . PUNCT . PunctType=Peri 49 punct _ SpaceAfter=No # sent_id = 2 # text = The topology induced by a $ G $ - uniformity turns $ G $ into a topological locally transitive groupoid. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 topology topology NOUN NN Number=Sing 9 nsubj _ _ 3 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 acl _ _ 4 by by ADP IN _ 3 agent _ _ 5 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 6 $ G $ $ g $ SYM $ _ 8 compound _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 uniformity uniformity NOUN NN Number=Sing 4 pobj _ _ 9 turns turn VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 $ G $ $ g $ SYM $ _ 9 dobj _ _ 11 into into ADP IN _ 9 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 13 topological topological ADJ JJ Degree=Pos 16 amod _ _ 14 locally locally ADV RB _ 15 advmod _ _ 15 transitive transitive ADJ JJ Degree=Pos 16 amod _ _ 16 groupoid groupoid NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 3 # text = We also prove a Urysohn type lemma for groupoids and obtain metrization theorems for groupoids unifying in two ways the Alexandroff - Urysohn Theorem and Birkhoff - Kakutani Theorem. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 5 Urysohn Urysohn PROPN NNP Number=Sing 7 compound _ _ 6 type type NOUN NN Number=Sing 7 compound _ _ 7 lemma lemma NOUN NN Number=Sing 3 dobj _ _ 8 for for ADP IN _ 7 prep _ _ 9 groupoids groupoid NOUN NNS Number=Plur 8 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 3 cc _ _ 11 obtain obtain VERB VB VerbForm=Inf 3 conj _ _ 12 metrization metrization NOUN NN Number=Sing 13 compound _ _ 13 theorems theorem NOUN NNS Number=Plur 11 dobj _ _ 14 for for ADP IN _ 13 prep _ _ 15 groupoids groupoid NOUN NNS Number=Plur 14 pobj _ _ 16 unifying unify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 acl _ _ 17 in in ADP IN _ 16 prep _ _ 18 two two NUM CD NumType=Card 19 nummod _ _ 19 ways way NOUN NNS Number=Plur 17 pobj _ _ 20 the the DET DT Definite=Def|PronType=Art 24 det _ _ 21 Alexandroff Alexandroff PROPN NNP Number=Sing 23 compound _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 Urysohn Urysohn PROPN NNP Number=Sing 24 compound _ _ 24 Theorem Theorem PROPN NNP Number=Sing 11 dobj _ _ 25 and and CCONJ CC ConjType=Cmp 24 cc _ _ 26 Birkhoff Birkhoff PROPN NNP Number=Sing 28 compound _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 Kakutani Kakutani PROPN NNP Number=Sing 29 compound _ _ 29 Theorem Theorem PROPN NNP Number=Sing 24 conj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 623 # sent_id = 1 # text = Connections are an important tool of differential geometry. 1 Connections connection NOUN NNS Number=Plur 2 nsubj _ _ 2 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 4 important important ADJ JJ Degree=Pos 5 amod _ _ 5 tool tool NOUN NN Number=Sing 2 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 differential differential ADJ JJ Degree=Pos 8 amod _ _ 8 geometry geometry NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 9 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = This paper investigates their definition and structure in the abstract setting of tangent categories. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 investigates investigate VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 5 poss _ _ 5 definition definition NOUN NN Number=Sing 3 dobj _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 structure structure NOUN NN Number=Sing 5 conj _ _ 8 in in ADP IN _ 3 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 abstract abstract ADJ JJ Degree=Pos 11 amod _ _ 11 setting setting NOUN NN Number=Sing 8 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 tangent tangent ADJ JJ Degree=Pos 14 amod _ _ 14 categories category NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = At this level of abstraction we derive several classically important results about connections, including the Bianchi identities, identities for curvature and torsion, almost complex structure, and parallel transport. 1 At at ADP IN _ 7 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 level level NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 abstraction abstraction NOUN NN Number=Sing 4 pobj _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 derive derive VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 several several ADJ JJ Degree=Pos 11 amod _ _ 9 classically classically ADV RB _ 10 advmod _ _ 10 important important ADJ JJ Degree=Pos 11 amod _ _ 11 results result NOUN NNS Number=Plur 7 dobj _ _ 12 about about ADP IN _ 11 prep _ _ 13 connections connection NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 13 punct _ _ 15 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 Bianchi Bianchi PROPN NNP Number=Sing 18 compound _ _ 18 identities identity NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 13 punct _ _ 20 identities identity NOUN NNS Number=Plur 7 dobj _ _ 21 for for ADP IN _ 20 prep _ _ 22 curvature curvature NOUN NN Number=Sing 21 pobj _ _ 23 and and CCONJ CC ConjType=Cmp 22 cc _ _ 24 torsion torsion NOUN NN Number=Sing 22 conj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 20 punct _ _ 26 almost almost ADV RB _ 27 advmod _ _ 27 complex complex ADJ JJ Degree=Pos 28 amod _ _ 28 structure structure NOUN NN Number=Sing 20 conj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 28 punct _ _ 30 and and CCONJ CC ConjType=Cmp 28 cc _ _ 31 parallel parallel ADJ JJ Degree=Pos 32 amod _ _ 32 transport transport NOUN NN Number=Sing 28 conj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # doc_id = 624 # sent_id = 1 # text = In this paper we give an isomorphic description of the category of non - Archimedian approach spaces as a category of lax algebras for the ultrafilter monad and an appropriate quantale. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 an an DET DT Definite=Ind|PronType=Art 8 det _ _ 7 isomorphic isomorphic ADJ JJ Degree=Pos 8 amod _ _ 8 description description NOUN NN Number=Sing 5 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 category category NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 non non ADJ JJ Degree=Pos 15 amod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 Archimedian archimedian ADJ JJ Degree=Pos 17 amod _ _ 16 approach approach NOUN NN Number=Sing 17 compound _ _ 17 spaces space VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 pobj _ _ 18 as as ADP IN _ 5 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 category category NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 lax lax ADJ JJ Degree=Pos 23 amod _ _ 23 algebras algebra NOUN NNS Number=Plur 21 pobj _ _ 24 for for ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 27 det _ _ 26 ultrafilter ultrafilter NOUN NN Number=Sing 27 compound _ _ 27 monad monad NOUN NNS Number=Plur 24 pobj _ _ 28 and and CCONJ CC ConjType=Cmp 27 cc _ _ 29 an an DET DT Definite=Ind|PronType=Art 31 det _ _ 30 appropriate appropriate ADJ JJ Degree=Pos 31 amod _ _ 31 quantale quantale NOUN NN Number=Sing 27 conj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = Non - Archimedean approach spaces are characterised as those approach spaces having a tower consisting of topologies. 1 Non non ADJ JJ Degree=Pos 3 amod _ _ 2 - - PUNCT HYPH PunctType=Dash 3 punct _ _ 3 Archimedean archimedean ADJ JJ Degree=Pos 5 amod _ _ 4 approach approach NOUN NN Number=Sing 5 compound _ _ 5 spaces space NOUN NNS Number=Plur 7 nsubjpass _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 7 characterised characterise VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 as as ADP IN _ 7 prep _ _ 9 those those DET DT Number=Plur|PronType=Dem 11 det _ _ 10 approach approach NOUN NN Number=Sing 11 compound _ _ 11 spaces space NOUN NNS Number=Plur 8 pobj _ _ 12 having have VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 11 acl _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 tower tower NOUN NN Number=Sing 12 dobj _ _ 15 consisting consist VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 acl _ _ 16 of of ADP IN _ 15 prep _ _ 17 topologies topology NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = We study topological properties $ p $ , for $ p $ compactness and Hausdorff separation along with low - separation properties, regularity, normality and extremal disconnectedness and link these properties to the condition that all or some of the level topologies in the tower have $ p $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 topological topological ADJ JJ Degree=Pos 4 amod _ _ 4 properties property NOUN NNS Number=Plur 2 dobj _ _ 5 $ p $ $ p $ SYM $ _ 2 dobj _ _ 6 , , PUNCT , PunctType=Comm 2 punct _ _ 7 for for ADP IN _ 2 prep _ _ 8 $ p $ $ p $ SYM $ _ 12 nmod _ _ 9 compactness compactness ADJ JJ Degree=Pos 8 nmod _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 Hausdorff Hausdorff PROPN NNP Number=Sing 9 conj _ _ 12 separation separation NOUN NN Number=Sing 7 pobj _ _ 13 along along ADP IN _ 2 prep _ _ 14 with with ADP IN _ 13 prep _ _ 15 low low ADJ JJ Degree=Pos 17 amod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 separation separation NOUN NN Number=Sing 18 compound _ _ 18 properties property NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 regularity regularity NOUN NN Number=Sing 18 conj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 normality normality NOUN NN Number=Sing 20 conj _ _ 23 and and CCONJ CC ConjType=Cmp 22 cc _ _ 24 extremal extremal ADJ JJ Degree=Pos 25 amod _ _ 25 disconnectedness disconnectedness NOUN NN Number=Sing 22 conj _ _ 26 and and CCONJ CC ConjType=Cmp 2 cc _ _ 27 link link VERB VB VerbForm=Inf 2 conj _ _ 28 these these DET DT Number=Plur|PronType=Dem 29 det _ _ 29 properties property NOUN NNS Number=Plur 27 dobj _ _ 30 to to ADP IN _ 27 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 condition condition NOUN NN Number=Sing 30 pobj _ _ 33 that that SCONJ IN _ 44 mark _ _ 34 all all PRON DT _ 44 nsubj _ _ 35 or or CCONJ CC ConjType=Cmp 34 cc _ _ 36 some some PRON DT _ 34 conj _ _ 37 of of ADP IN _ 36 prep _ _ 38 the the DET DT Definite=Def|PronType=Art 40 det _ _ 39 level level NOUN NN Number=Sing 40 compound _ _ 40 topologies topology NOUN NNS Number=Plur 37 pobj _ _ 41 in in ADP IN _ 40 prep _ _ 42 the the DET DT Definite=Def|PronType=Art 43 det _ _ 43 tower tower NOUN NN Number=Sing 41 pobj _ _ 44 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 32 acl _ _ 45 $ p $ $ p $ SYM $ _ 44 dobj _ _ 46 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = A compactification technique is developed based on Shanin's method. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 compactification compactification NOUN NN Number=Sing 3 compound _ _ 3 technique technique NOUN NN Number=Sing 5 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 developed develop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 prep _ _ 7 on on ADP IN _ 6 prep _ _ 8 Shanin Shanin PROPN NNP Number=Sing 10 poss _ SpaceAfter=No 9 's 's PART POS _ 8 case _ _ 10 method method NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 625 # sent_id = 1 # text = We prove a fundamental lemma of homological algebra and show how it sets a framework for many different lifting (or comparison) theorems of homological algebra and algebraic topology. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 fundamental fundamental ADJ JJ Degree=Pos 5 amod _ _ 5 lemma lemma NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 homological homological ADJ JJ Degree=Pos 8 amod _ _ 8 algebra algebra NOUN NN Number=Sing 6 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 2 cc _ _ 10 show show VERB VB VerbForm=Inf 2 conj _ _ 11 how how SCONJ WRB _ 13 advmod _ _ 12 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 13 nsubj _ _ 13 sets set VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 ccomp _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 framework framework NOUN NN Number=Sing 13 dobj _ _ 16 for for ADP IN _ 15 prep _ _ 17 many many ADJ JJ Degree=Pos 19 amod _ _ 18 different different ADJ JJ Degree=Pos 19 amod _ _ 19 lifting lifting NOUN NN Number=Sing 16 pobj _ _ 20 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 19 punct _ SpaceAfter=No 21 or or CCONJ CC ConjType=Cmp 19 cc _ _ 22 comparison comparison NOUN NN Number=Sing 19 conj _ SpaceAfter=No 23 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 24 punct _ _ 24 theorems theorem NOUN NNS Number=Plur 2 conj _ _ 25 of of ADP IN _ 24 prep _ _ 26 homological homological ADJ JJ Degree=Pos 27 amod _ _ 27 algebra algebra NOUN NN Number=Sing 25 pobj _ _ 28 and and CCONJ CC ConjType=Cmp 27 cc _ _ 29 algebraic algebraic ADJ JJ Degree=Pos 30 amod _ _ 30 topology topology NOUN NN Number=Sing 27 conj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Among these are different versions of the acyclic models method. 1 Among among ADP IN _ 3 prep _ _ 2 these these PRON DT Number=Plur|PronType=Dem 1 pobj _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 different different ADJ JJ Degree=Pos 5 amod _ _ 5 versions version NOUN NNS Number=Plur 3 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 acyclic acyclic ADJ JJ Degree=Pos 9 compound _ _ 9 models model NOUN NNS Number=Plur 6 pobj _ _ 10 method method ADJ JJ Degree=Pos 3 advcl _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 626 # sent_id = 1 # text = We present an axiomatic theory, based on the notions of metric space and space with a (first order) neighbour relation. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 4 axiomatic axiomatic ADJ JJ Degree=Pos 5 amod _ _ 5 theory theory NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 prep _ _ 8 on on ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 notions notion NOUN NNS Number=Plur 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 metric metric ADJ JJ Degree=Pos 13 amod _ _ 13 space space NOUN NN Number=Sing 11 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 space space NOUN NN Number=Sing 13 conj _ _ 16 with with ADP IN _ 10 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 18 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 20 punct _ SpaceAfter=No 19 first first ADJ JJ Degree=Pos 20 amod _ _ 20 order order NOUN NN Number=Sing 23 nmod _ SpaceAfter=No 21 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 20 punct _ _ 22 neighbour neighbour ADJ JJ Degree=Pos 23 amod _ _ 23 relation relation NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The axiomatics implies a synthetic proof of Huygens' principle of wave fronts, as envelopes of a family of spheres. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 axiomatics axiomatic NOUN NNS Number=Plur 3 nsubj _ _ 3 implies imply VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 synthetic synthetic ADJ JJ Degree=Pos 6 amod _ _ 6 proof proof NOUN NN Number=Sing 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 Huygens Huygens PROPN NNP Number=Sing 10 poss _ SpaceAfter=No 9 ' ' PART POS _ 8 case _ _ 10 principle principle NOUN NN Number=Sing 7 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 wave wave NOUN NN Number=Sing 13 compound _ _ 13 fronts front NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 3 punct _ _ 15 as as ADP IN _ 3 prep _ _ 16 envelopes envelope NOUN NNS Number=Plur 15 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 19 family family NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 spheres sphere NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = A model of the axiomatics is presented in terms of synthetic differential geometry. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 model model NOUN NN Number=Sing 7 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 axiomatics axiomatic NOUN NNS Number=Plur 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 7 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 in in ADP IN _ 7 prep _ _ 9 terms term NOUN NNS Number=Plur 8 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 synthetic synthetic ADJ JJ Degree=Pos 13 amod _ _ 12 differential differential ADJ JJ Degree=Pos 13 amod _ _ 13 geometry geometry NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # doc_id = 627 # sent_id = 1 # text = We define a Levi category to be a weakly orthogonal category equipped with a suitable length functor and prove two main theorems about them. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 Levi Levi PROPN NNP Number=Sing 5 compound _ _ 5 category category NOUN NN Number=Sing 2 dobj _ _ 6 to to PART TO _ 7 aux _ _ 7 be be AUX VB VerbForm=Inf 2 xcomp _ _ 8 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 9 weakly weakly ADJ JJ Degree=Pos 11 amod _ _ 10 orthogonal orthogonal ADJ JJ Degree=Pos 11 amod _ _ 11 category category NOUN NN Number=Sing 7 attr _ _ 12 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 acl _ _ 13 with with ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 15 suitable suitable ADJ JJ Degree=Pos 17 amod _ _ 16 length length NOUN NN Number=Sing 17 compound _ _ 17 functor functor NOUN NN Number=Sing 13 pobj _ _ 18 and and CCONJ CC ConjType=Cmp 12 cc _ _ 19 prove prove VERB VB VerbForm=Inf 12 conj _ _ 20 two two NUM CD NumType=Card 22 nummod _ _ 21 main main ADJ JJ Degree=Pos 22 amod _ _ 22 theorems theorem NOUN NNS Number=Plur 19 dobj _ _ 23 about about ADP IN _ 22 prep _ _ 24 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 23 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = First, skeletal cancellative Levi categories are precisely the categorical versions of graphs of groups with a given orientation. 1 First first ADV RB _ 7 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 7 punct _ _ 3 skeletal skeletal ADJ JJ Degree=Pos 6 amod _ _ 4 cancellative cancellative ADJ JJ Degree=Pos 6 amod _ _ 5 Levi Levi PROPN NNP Number=Sing 6 compound _ _ 6 categories category NOUN NNS Number=Plur 7 nsubj _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 precisely precisely ADV RB _ 7 advmod _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 categorical categorical ADJ JJ Degree=Pos 11 amod _ _ 11 versions version NOUN NNS Number=Plur 7 attr _ _ 12 of of ADP IN _ 11 prep _ _ 13 graphs graph NOUN NNS Number=Plur 12 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 groups group NOUN NNS Number=Plur 14 pobj _ _ 16 with with ADP IN _ 11 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 18 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 amod _ _ 19 orientation orientation NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = Second, the universal groupoid of a skeletal cancellative Levi category is the fundamental groupoid of the corresponding graph of groups. 1 Second second ADV RB _ 12 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 12 punct _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 universal universal ADJ JJ Degree=Pos 5 amod _ _ 5 groupoid groupoid NOUN NN Number=Sing 12 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 8 skeletal skeletal ADJ JJ Degree=Pos 11 amod _ _ 9 cancellative cancellative ADJ JJ Degree=Pos 11 amod _ _ 10 Levi Levi PROPN NNP Number=Sing 11 compound _ _ 11 category category NOUN NN Number=Sing 6 pobj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 fundamental fundamental ADJ JJ Degree=Pos 15 amod _ _ 15 groupoid groupoid NOUN NN Number=Sing 12 attr _ _ 16 of of ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 corresponding corresponding ADJ JJ Degree=Pos 19 amod _ _ 19 graph graph NOUN NN Number=Sing 16 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 groups group NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 4 # text = These two results can be viewed as a co - ordinate - free refinement of a classical theorem of Philip Higgins. 1 These these DET DT Number=Plur|PronType=Dem 3 det _ _ 2 two two NUM CD NumType=Card 3 nummod _ _ 3 results result NOUN NNS Number=Plur 6 nsubjpass _ _ 4 can can AUX MD VerbForm=Fin 6 aux _ _ 5 be be AUX VB VerbForm=Inf 6 auxpass _ _ 6 viewed view VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 as as ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 9 co co NOUN NN Number=Sing 13 npadvmod _ _ 10 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 11 ordinate ordinate NOUN NN Number=Sing 13 amod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 free free ADJ JJ Degree=Pos 14 amod _ _ 14 refinement refinement NOUN NN Number=Sing 7 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 classical classical ADJ JJ Degree=Pos 18 amod _ _ 18 theorem theorem NOUN NN Number=Sing 15 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 Philip Philip PROPN NNP Number=Sing 21 compound _ _ 21 Higgins Higgins PROPN NNP Number=Sing 19 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 628 # sent_id = 1 # text = We show that a fully faithful and covering regular functor between regular categories induces a fully faithful (and covering) functor between their respective effectivizations. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 14 mark _ _ 4 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 5 fully fully ADV RB _ 6 advmod _ _ 6 faithful faithful ADJ JJ Degree=Pos 14 amod _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 covering cover VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 conj _ _ 9 regular regular ADJ JJ Degree=Pos 10 amod _ _ 10 functor functor NOUN NN Number=Sing 8 dobj _ _ 11 between between ADP IN _ 10 prep _ _ 12 regular regular ADJ JJ Degree=Pos 13 amod _ _ 13 categories category NOUN NNS Number=Plur 11 pobj _ _ 14 induces induce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 15 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 16 fully fully ADV RB _ 17 advmod _ _ 17 faithful faithful ADJ JJ Degree=Pos 22 amod _ _ 18 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 17 punct _ SpaceAfter=No 19 and and CCONJ CC ConjType=Cmp 17 cc _ _ 20 covering cover VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 17 conj _ SpaceAfter=No 21 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 22 punct _ _ 22 functor functor NOUN NN Number=Sing 14 dobj _ _ 23 between between ADP IN _ 22 prep _ _ 24 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 26 poss _ _ 25 respective respective ADJ JJ Degree=Pos 26 amod _ _ 26 effectivizations effectivization NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Such a functor between effective categories is known to be an equivalence. 1 Such such DET PDT _ 3 predet _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 functor functor NOUN NN Number=Sing 8 nsubjpass _ _ 4 between between ADP IN _ 3 prep _ _ 5 effective effective ADJ JJ Degree=Pos 6 amod _ _ 6 categories category NOUN NNS Number=Plur 4 pobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 to to PART TO _ 10 aux _ _ 10 be be AUX VB VerbForm=Inf 8 xcomp _ _ 11 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 12 equivalence equivalence NOUN NN Number=Sing 10 attr _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 3 # text = We exploit this result in order to give a constructive proof of conceptual completeness for regular logic. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 exploit exploit VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 4 result result NOUN NN Number=Sing 2 dobj _ _ 5 in in ADP IN _ 2 prep _ _ 6 order order NOUN NN Number=Sing 5 pobj _ _ 7 to to PART TO _ 8 aux _ _ 8 give give VERB VB VerbForm=Inf 6 acl _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 constructive constructive ADJ JJ Degree=Pos 11 amod _ _ 11 proof proof NOUN NN Number=Sing 8 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 conceptual conceptual ADJ JJ Degree=Pos 14 amod _ _ 14 completeness completeness NOUN NN Number=Sing 12 pobj _ _ 15 for for ADP IN _ 14 prep _ _ 16 regular regular ADJ JJ Degree=Pos 17 amod _ _ 17 logic logic NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We also use it in analyzing what it means for a morphism between effective categories to be a quotient in the 2 - category of effective categories and regular functors between them. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 dobj _ _ 5 in in ADP IN _ 3 prep _ _ 6 analyzing analyze VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 pcomp _ _ 7 what what PRON WP _ 9 dobj _ _ 8 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 9 nsubj _ _ 9 means mean VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 10 for for SCONJ IN _ 17 mark _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 morphism morphism NOUN NN Number=Sing 17 nsubj _ _ 13 between between ADP IN _ 12 prep _ _ 14 effective effective ADJ JJ Degree=Pos 15 amod _ _ 15 categories category NOUN NNS Number=Plur 13 pobj _ _ 16 to to PART TO _ 17 aux _ _ 17 be be AUX VB VerbForm=Inf 9 advcl _ _ 18 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 19 quotient quotient NOUN NN Number=Sing 17 attr _ _ 20 in in ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 24 det _ _ 22 2 2 NUM CD NumType=Card 24 nummod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 category category NOUN NN Number=Sing 20 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 effective effective ADJ JJ Degree=Pos 27 amod _ _ 27 categories category NOUN NNS Number=Plur 25 pobj _ _ 28 and and CCONJ CC ConjType=Cmp 27 cc _ _ 29 regular regular ADJ JJ Degree=Pos 30 amod _ _ 30 functors functor NOUN NNS Number=Plur 27 conj _ _ 31 between between ADP IN _ 27 prep _ _ 32 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 31 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 629 # sent_id = 1 # text = For a small quantaloid $ Q $ we consider four fundamental 2 - monads $ T $ on $ Q $ - Cat, given by the presheaf 2 - monad $ P $ and the copresheaf 2 - monad $ P^{dagger} $ , as well as by their two composite 2 - monads, and establish that they all laxly distribute over $ P $ . 1 For for ADP IN _ 7 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 small small ADJ JJ Degree=Pos 4 amod _ _ 4 quantaloid quantaloid NOUN NN Number=Sing 1 pobj _ _ 5 $ Q $ $ q $ SYM $ _ 4 nmod _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 four four NUM CD NumType=Card 12 nummod _ _ 9 fundamental fundamental ADJ JJ Degree=Pos 12 amod _ _ 10 2 2 NUM CD NumType=Card 12 nummod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 monads monad NOUN NNS Number=Plur 7 dobj _ _ 13 $ T $ $ t $ SYM $ _ 12 appos _ _ 14 on on ADP IN _ 12 prep _ _ 15 $ Q $ $ q $ SYM $ _ 17 compound _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 Cat cat NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 12 punct _ _ 19 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 prep _ _ 20 by by ADP IN _ 19 agent _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 presheaf presheaf ADJ JJ Degree=Pos 20 pobj _ _ 23 2 2 NUM CD NumType=Card 25 nummod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 monad monad NOUN NNS Number=Plur 26 compound _ _ 26 $ P $ $ p $ SYM $ _ 19 pobj _ _ 27 and and CCONJ CC ConjType=Cmp 19 cc _ _ 28 the the DET DT Definite=Def|PronType=Art 33 det _ _ 29 copresheaf copresheaf ADJ JJ Degree=Pos 33 amod _ _ 30 2 2 NUM CD NumType=Card 32 nummod _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 monad monad NOUN NNS Number=Plur 33 compound _ _ 33 $ P^{dagger} $ $ p^{dagger} $ SYM $ _ 19 conj _ _ 34 , , PUNCT , PunctType=Comm 33 punct _ _ 35 as as ADV RB _ 37 advmod _ _ 36 well well ADV RB Degree=Pos 37 advmod _ _ 37 as as ADP IN _ 19 cc _ _ 38 by by ADP IN _ 19 agent _ _ 39 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 44 poss _ _ 40 two two NUM CD NumType=Card 44 nummod _ _ 41 composite composite ADJ JJ Degree=Pos 44 amod _ _ 42 2 2 NUM CD NumType=Card 44 nummod _ _ 43 - - PUNCT HYPH PunctType=Dash 44 punct _ _ 44 monads monad NOUN NNS Number=Plur 38 pobj _ SpaceAfter=No 45 , , PUNCT , PunctType=Comm 7 punct _ _ 46 and and CCONJ CC ConjType=Cmp 7 cc _ _ 47 establish establish VERB VB VerbForm=Inf 7 conj _ _ 48 that that SCONJ IN _ 52 mark _ _ 49 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 52 nsubj _ _ 50 all all DET DT _ 51 det _ _ 51 laxly laxly ADJ JJ Degree=Pos 49 appos _ _ 52 distribute distribute VERB VBP Tense=Pres|VerbForm=Fin 47 ccomp _ _ 53 over over ADP IN _ 52 prt _ _ 54 $ P $ $ p $ SYM $ _ 52 dep _ _ 55 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 2 # text = These four 2 - monads therefore admit lax extensions to the category $ Q $ - Dist of $ Q $ - categories and their distributors. 1 These these DET DT Number=Plur|PronType=Dem 5 det _ _ 2 four four NUM CD NumType=Card 5 nummod _ _ 3 2 2 NUM CD NumType=Card 5 nummod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 monads monad NOUN NNS Number=Plur 7 nsubj _ _ 6 therefore therefore ADV RB _ 7 advmod _ _ 7 admit admit VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 lax lax ADJ JJ Degree=Pos 9 amod _ _ 9 extensions extension NOUN NNS Number=Plur 7 dobj _ _ 10 to to ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 category category NOUN NN Number=Sing 10 pobj _ _ 13 $ Q $ $ q $ SYM $ _ 12 nmod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 Dist dist NOUN NN Number=Sing 12 appos _ _ 16 of of ADP IN _ 15 prep _ _ 17 $ Q $ $ q $ SYM $ _ 19 compound _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 categories category NOUN NNS Number=Plur 16 pobj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 22 poss _ _ 22 distributors distributor NOUN NNS Number=Plur 19 conj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = We characterize the corresponding $ (T, Q) $ - categories in each of the four cases, leading us to both known and novel categorical structures. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 7 det _ _ 4 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 amod _ _ 5 $ (T, Q) $ $ (t, q) $ SYM $ _ 7 compound _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 categories category NOUN NNS Number=Plur 2 dobj _ _ 8 in in ADP IN _ 7 prep _ _ 9 each each PRON DT _ 8 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 four four NUM CD NumType=Card 13 nummod _ _ 13 cases case NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 2 punct _ _ 15 leading lead VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 16 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 15 dobj _ _ 17 to to ADP IN _ 15 prep _ _ 18 both both PRON DT _ 19 preconj _ _ 19 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 amod _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 novel novel ADJ JJ Degree=Pos 19 conj _ _ 22 categorical categorical ADJ JJ Degree=Pos 23 amod _ _ 23 structures structure NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 630 # sent_id = 1 # text = We give several new ways of constructing spectral spaces starting with objects in abelian categories satisfying certain conditions which apply, in particular, to Grothendieck categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 several several ADJ JJ Degree=Pos 5 amod _ _ 4 new new ADJ JJ Degree=Pos 5 amod _ _ 5 ways way NOUN NNS Number=Plur 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 constructing construct VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 pcomp _ _ 8 spectral spectral ADJ JJ Degree=Pos 9 amod _ _ 9 spaces space NOUN NNS Number=Plur 7 dobj _ _ 10 starting start VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 11 with with ADP IN _ 10 prep _ _ 12 objects object NOUN NNS Number=Plur 11 pobj _ _ 13 in in ADP IN _ 12 prep _ _ 14 abelian abelian ADJ JJ Degree=Pos 15 amod _ _ 15 categories category NOUN NNS Number=Plur 13 pobj _ _ 16 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 acl _ _ 17 certain certain ADJ JJ Degree=Pos 18 amod _ _ 18 conditions condition NOUN NNS Number=Plur 16 dobj _ _ 19 which which PRON WDT _ 20 nsubj _ _ 20 apply apply VERB VBP Tense=Pres|VerbForm=Fin 18 relcl _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 in in ADP IN _ 20 prep _ _ 23 particular particular ADJ JJ Degree=Pos 22 amod _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 20 punct _ _ 25 to to ADP IN _ 20 prep _ _ 26 Grothendieck Grothendieck PROPN NNP Number=Sing 27 compound _ _ 27 categories category NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = For this, we consider the spaces of invariants of closure operators acting on subobjects of a given object. 1 For for ADP IN _ 5 prep _ _ 2 this this PRON DT Number=Sing|PronType=Dem 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 spaces space NOUN NNS Number=Plur 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 invariants invariant NOUN NNS Number=Plur 8 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 closure closure NOUN NN Number=Sing 12 compound _ _ 12 operators operator NOUN NNS Number=Plur 10 pobj _ _ 13 acting act VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 acl _ _ 14 on on ADP IN _ 13 prep _ _ 15 subobjects subobject NOUN NNS Number=Plur 14 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 18 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 amod _ _ 19 object object NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = The key to our results is a newly discovered criterion of Finocchiaro that uses ultrafilters to identify spectral spaces along with subbases of quasi - compact open sets. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 key key NOUN NN Number=Sing 6 nsubj _ _ 3 to to ADP IN _ 2 prep _ _ 4 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 5 poss _ _ 5 results result NOUN NNS Number=Plur 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 8 newly newly ADV RB _ 9 advmod _ _ 9 discovered discover VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 10 criterion criterion NOUN NN Number=Sing 6 attr _ _ 11 of of ADP IN _ 10 prep _ _ 12 Finocchiaro Finocchiaro PROPN NNP Number=Sing 11 pobj _ _ 13 that that PRON WDT PronType=Rel 14 nsubj _ _ 14 uses use VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 relcl _ _ 15 ultrafilters ultrafilter NOUN NNS Number=Plur 14 dobj _ _ 16 to to PART TO _ 17 aux _ _ 17 identify identify VERB VB VerbForm=Inf 14 xcomp _ _ 18 spectral spectral ADJ JJ Degree=Pos 19 amod _ _ 19 spaces space NOUN NNS Number=Plur 17 dobj _ _ 20 along along ADP IN _ 17 prep _ _ 21 with with ADP IN _ 20 prep _ _ 22 subbases subbase NOUN NNS Number=Plur 21 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 quasi quasi ADJ JJ Degree=Pos 28 amod _ _ 25 - - ADJ JJ Degree=Pos 28 amod _ _ 26 compact compact ADJ JJ Degree=Pos 28 amod _ _ 27 open open ADJ JJ Degree=Pos 28 amod _ _ 28 sets set NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 631 # sent_id = 1 # text = Finitary monads on a locally finitely presentable category $ A $ are well - known to possess a presentation by signatures and equations. 1 Finitary finitary NOUN NN Number=Sing 2 nsubj _ _ 2 monads monad VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 nsubj _ _ 3 on on ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 5 locally locally ADV RB _ 6 advmod _ _ 6 finitely finitely ADV RB _ 7 advmod _ _ 7 presentable presentable ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 3 pobj _ _ 9 $ A $ $ a $ SYM $ _ 2 dobj _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 well well ADV RB Degree=Pos 13 advmod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 acomp _ _ 14 to to PART TO _ 15 aux _ _ 15 possess possess VERB VB VerbForm=Inf 10 xcomp _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 presentation presentation NOUN NN Number=Sing 15 dobj _ _ 18 by by ADP IN _ 17 prep _ _ 19 signatures signature NOUN NNS Number=Plur 18 pobj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 equations equation NOUN NNS Number=Plur 19 conj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = Here we prove that, analogously, bases on $ A $ , that is, finitary functors from $ A $ to the category of finitary monads on $ A $ , possess a presentation by parametrized signatures and equations. 1 Here here ADV RB PronType=Dem 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 8 mark _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 8 punct _ _ 6 analogously analogously ADV RB _ 8 advmod _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 8 punct _ _ 8 bases basis NOUN NNS Number=Plur 3 ccomp _ _ 9 on on ADP IN _ 8 prep _ _ 10 $ A $ $ a $ SYM $ _ 9 pobj _ _ 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 that that ADV RB _ 13 advmod _ _ 13 is is ADV RB _ 16 advmod _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 16 punct _ _ 15 finitary finitary ADJ JJ Degree=Pos 16 amod _ _ 16 functors functor NOUN NNS Number=Plur 8 dobj _ _ 17 from from ADP IN _ 16 prep _ _ 18 $ A $ $ a $ SYM $ _ 17 pobj _ _ 19 to to ADP IN _ 17 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 category category NOUN NN Number=Sing 19 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 finitary finitary ADJ JJ Degree=Pos 24 amod _ _ 24 monads monad NOUN NNS Number=Plur 22 pobj _ _ 25 on on ADP IN _ 24 prep _ _ 26 $ A $ $ a $ SYM $ _ 25 pobj _ _ 27 , , PUNCT , PunctType=Comm 8 punct _ _ 28 possess possess VERB VB VerbForm=Inf 3 ccomp _ _ 29 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 30 presentation presentation NOUN NN Number=Sing 28 dobj _ _ 31 by by ADP IN _ 30 prep _ _ 32 parametrized parametrized ADJ JJ Degree=Pos 33 amod _ _ 33 signatures signature NOUN NNS Number=Plur 31 pobj _ _ 34 and and CCONJ CC ConjType=Cmp 33 cc _ _ 35 equations equation NOUN NNS Number=Plur 33 conj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 632 # sent_id = 1 # text = We explicitly show that symmetric Frobenius structures on a finite - dimensional, semi - simple algebra stand in bijection to homotopy fixed points of the trivial $ SO(2) $ - action on the bicategory of finite - dimensional, semi - simple algebras, bimodules and intertwiners. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 explicitly explicitly ADV RB _ 3 advmod _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 7 mark _ _ 5 symmetric symmetric ADJ JJ Degree=Pos 7 amod _ _ 6 Frobenius Frobenius PROPN NNP Number=Sing 7 compound _ _ 7 structures structure NOUN NNS Number=Plur 3 ccomp _ _ 8 on on ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 10 finite finite ADJ JJ Degree=Pos 12 npadvmod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 dimensional dimensional ADJ JJ Degree=Pos 17 amod _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 17 punct _ _ 14 semi semi ADJ JJ Degree=Pos 17 amod _ _ 15 - - ADJ JJ Degree=Pos 16 punct _ _ 16 simple simple ADJ JJ Degree=Pos 17 amod _ _ 17 algebra algebra NOUN NN Number=Sing 18 compound _ _ 18 stand stand VERB VBP Tense=Pres|VerbForm=Fin 8 pobj _ _ 19 in in ADP IN _ 18 prep _ _ 20 bijection bijection NOUN NN Number=Sing 19 pobj _ _ 21 to to PART TO _ 22 aux _ _ 22 homotopy homotopy VERB VB VerbForm=Inf 18 advcl _ _ 23 fixed fix VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 24 points point NOUN NNS Number=Plur 22 dobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 30 det _ _ 27 trivial trivial ADJ JJ Degree=Pos 30 amod _ _ 28 $ SO(2) $ $ so(2) $ SYM $ _ 30 compound _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 action action NOUN NN Number=Sing 25 pobj _ _ 31 on on ADP IN _ 30 prep _ _ 32 the the DET DT Definite=Def|PronType=Art 33 det _ _ 33 bicategory bicategory NOUN NN Number=Sing 31 pobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 finite finite PROPN NNP Number=Sing 37 npadvmod _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 dimensional dimensional ADJ JJ Degree=Pos 42 amod _ SpaceAfter=No 38 , , PUNCT , PunctType=Comm 42 punct _ _ 39 semi semi ADJ JJ Degree=Pos 42 amod _ _ 40 - - ADJ JJ Degree=Pos 41 punct _ _ 41 simple simple ADJ JJ Degree=Pos 42 amod _ _ 42 algebras algebra NOUN NNS Number=Plur 34 pobj _ SpaceAfter=No 43 , , PUNCT , PunctType=Comm 42 punct _ _ 44 bimodules bimodule NOUN NNS Number=Plur 42 conj _ _ 45 and and CCONJ CC ConjType=Cmp 44 cc _ _ 46 intertwiners intertwiner NOUN NNS Number=Plur 44 conj _ SpaceAfter=No 47 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = The results are motivated by the 2 - dimensional Cobordism Hypothesis for oriented manifolds, and can hence be interpreted in the realm of Topological Quantum Field Theory. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 results result NOUN NNS Number=Plur 4 nsubjpass _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 motivated motivate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 by by ADP IN _ 4 agent _ _ 6 the the DET DT Definite=Def|PronType=Art 11 det _ _ 7 2 2 NUM CD NumType=Card 9 advmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 dimensional dimensional ADJ JJ Degree=Pos 11 amod _ _ 10 Cobordism Cobordism PROPN NNP Number=Sing 11 compound _ _ 11 Hypothesis Hypothesis PROPN NNP Number=Sing 5 pobj _ _ 12 for for ADP IN _ 11 prep _ _ 13 oriented oriented ADJ JJ Degree=Pos 14 amod _ _ 14 manifolds manifold NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 4 punct _ _ 16 and and CCONJ CC ConjType=Cmp 4 cc _ _ 17 can can AUX MD VerbForm=Fin 20 aux _ _ 18 hence hence ADV RB _ 20 advmod _ _ 19 be be AUX VB VerbForm=Inf 20 auxpass _ _ 20 interpreted interpret VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 conj _ _ 21 in in ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 realm realm NOUN NN Number=Sing 21 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 Topological Topological PROPN NNP Number=Sing 27 compound _ _ 26 Quantum Quantum PROPN NNP Number=Sing 27 compound _ _ 27 Field Field PROPN NNP Number=Sing 28 compound _ _ 28 Theory Theory PROPN NNP Number=Sing 24 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 633 # sent_id = 1 # text = Databases have been studied category - theoretically for decades. 1 Databases database NOUN NNS Number=Plur 4 nsubjpass _ _ 2 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 aux _ _ 3 been be AUX VBN Tense=Past|VerbForm=Part 4 auxpass _ _ 4 studied study VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 category category NOUN NN Number=Sing 4 npadvmod _ _ 6 - - PUNCT : _ 4 punct _ _ 7 theoretically theoretically ADV RB _ 8 advmod _ _ 8 for for ADP IN _ 4 prep _ _ 9 decades decade NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = While mathematically elegant, previous categorical models have typically struggled withrepresenting concrete data such as integers or strings. 1 While while SCONJ IN _ 10 mark _ _ 2 mathematically mathematically ADV RB _ 3 advmod _ _ 3 elegant elegant ADJ JJ Degree=Pos 7 amod _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 7 punct _ _ 5 previous previous ADJ JJ Degree=Pos 7 amod _ _ 6 categorical categorical ADJ JJ Degree=Pos 7 amod _ _ 7 models model NOUN NNS Number=Plur 10 nsubj _ _ 8 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 10 aux _ _ 9 typically typically ADV RB _ 10 advmod _ _ 10 struggled struggle VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 11 withrepresenting withrepresente VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 xcomp _ _ 12 concrete concrete ADJ JJ Degree=Pos 13 amod _ _ 13 data datum NOUN NNS Number=Plur 11 dobj _ _ 14 such such ADJ JJ Degree=Pos 15 amod _ _ 15 as as ADP IN _ 13 prep _ _ 16 integers integer NOUN NNS Number=Plur 15 pobj _ _ 17 or or CCONJ CC ConjType=Cmp 16 cc _ _ 18 strings string NOUN NNS Number=Plur 16 conj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 3 # text = In the present work, we propose an extension of the earlier set - valued functor model, making use of multi - sorted algebraic theories (also known as Lawvere theories) to incorporate concrete data in a principled way. 1 In in ADP IN _ 7 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 present present ADJ JJ Degree=Pos 4 amod _ _ 4 work work NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 propose propose VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 9 extension extension NOUN NN Number=Sing 7 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 17 det _ _ 12 earlier early ADV RBR Degree=Cmp 17 amod _ _ 13 set set NOUN NN Number=Sing 15 npadvmod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 16 functor functor NOUN NN Number=Sing 17 compound _ _ 17 model model NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 7 punct _ _ 19 making make VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 advcl _ _ 20 use use NOUN NN Number=Sing 19 dobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 multi multi ADJ JJ Degree=Pos 24 advmod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 sorted sorted ADJ JJ Degree=Pos 26 amod _ _ 25 algebraic algebraic ADJ JJ Degree=Pos 26 amod _ _ 26 theories theory NOUN NNS Number=Plur 21 pobj _ _ 27 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 26 punct _ SpaceAfter=No 28 also also ADV RB _ 29 advmod _ _ 29 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 acl _ _ 30 as as ADP IN _ 29 prep _ _ 31 Lawvere Lawvere PROPN NNP Number=Sing 32 compound _ _ 32 theories theory NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 33 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 26 punct _ _ 34 to to PART TO _ 35 aux _ _ 35 incorporate incorporate VERB VB VerbForm=Inf 19 advcl _ _ 36 concrete concrete ADJ JJ Degree=Pos 37 amod _ _ 37 data datum NOUN NNS Number=Plur 35 dobj _ _ 38 in in ADP IN _ 35 prep _ _ 39 a a DET DT Definite=Ind|PronType=Art 41 det _ _ 40 principled principled ADJ JJ Degree=Pos 41 amod _ _ 41 way way NOUN NN Number=Sing 38 pobj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = This approach easily handles missing information (null values), and also allows constraints and queries to make use of operations on data, such as multiplication or comparison of numbers, helping to bridge the gap between traditional databases and programming languages. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 approach approach NOUN NN Number=Sing 4 nsubj _ _ 3 easily easily ADV RB _ 4 advmod _ _ 4 handles handle VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 missing miss VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 xcomp _ _ 6 information information NOUN NN Number=Sing 5 dobj _ _ 7 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 6 punct _ SpaceAfter=No 8 null null ADJ JJ Degree=Pos 9 amod _ _ 9 values value NOUN NNS Number=Plur 6 appos _ SpaceAfter=No 10 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 6 punct _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 4 punct _ _ 12 and and CCONJ CC ConjType=Cmp 4 cc _ _ 13 also also ADV RB _ 14 advmod _ _ 14 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 conj _ _ 15 constraints constraint NOUN NNS Number=Plur 19 nsubj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 queries query NOUN NNS Number=Plur 15 conj _ _ 18 to to PART TO _ 19 aux _ _ 19 make make VERB VB VerbForm=Inf 14 ccomp _ _ 20 use use NOUN NN Number=Sing 19 dobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 operations operation NOUN NNS Number=Plur 21 pobj _ _ 23 on on ADP IN _ 19 prep _ _ 24 data datum NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 such such ADJ JJ Degree=Pos 27 amod _ _ 27 as as ADP IN _ 24 prep _ _ 28 multiplication multiplication NOUN NN Number=Sing 27 pobj _ _ 29 or or CCONJ CC ConjType=Cmp 28 cc _ _ 30 comparison comparison NOUN NN Number=Sing 28 conj _ _ 31 of of ADP IN _ 30 prep _ _ 32 numbers number NOUN NNS Number=Plur 31 pobj _ SpaceAfter=No 33 , , PUNCT , PunctType=Comm 19 punct _ _ 34 helping help VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 19 advcl _ _ 35 to to PART TO _ 36 aux _ _ 36 bridge bridge VERB VB VerbForm=Inf 34 xcomp _ _ 37 the the DET DT Definite=Def|PronType=Art 38 det _ _ 38 gap gap NOUN NN Number=Sing 36 dobj _ _ 39 between between ADP IN _ 38 prep _ _ 40 traditional traditional ADJ JJ Degree=Pos 41 amod _ _ 41 databases database NOUN NNS Number=Plur 39 pobj _ _ 42 and and CCONJ CC ConjType=Cmp 41 cc _ _ 43 programming programming NOUN NN Number=Sing 44 compound _ _ 44 languages language NOUN NNS Number=Plur 41 conj _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = We also show how all of the components of our model—including schemas, instances, change - of - schema functors, and queries fit into a single double categorical structure called a proarrow equipment (also known as framed bicategory). 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 how how SCONJ WRB _ 5 advmod _ _ 5 all all PRON DT _ 3 ccomp _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 components component NOUN NNS Number=Plur 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 11 poss _ _ 11 model model NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 12 — — PUNCT : _ 11 punct _ SpaceAfter=No 13 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 11 prep _ _ 14 schemas schema NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 instances instance NOUN NNS Number=Plur 14 conj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 change change NOUN NN Number=Sing 23 nmod _ _ 19 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 20 of of ADP IN _ 18 prep _ _ 21 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 22 schema schema PROPN NNP Number=Sing 20 pobj _ _ 23 functors functor NOUN NNS Number=Plur 16 conj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 3 punct _ _ 25 and and CCONJ CC ConjType=Cmp 3 cc _ _ 26 queries query VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 conj _ _ 27 fit fit ADJ JJ Degree=Pos 26 acomp _ _ 28 into into ADP IN _ 27 prep _ _ 29 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 30 single single ADJ JJ Degree=Pos 33 amod _ _ 31 double double ADJ JJ Degree=Pos 33 amod _ _ 32 categorical categorical ADJ JJ Degree=Pos 33 amod _ _ 33 structure structure NOUN NN Number=Sing 28 pobj _ _ 34 called call VERB VBD Tense=Past|VerbForm=Fin 33 acl _ _ 35 a a DET DT Definite=Ind|PronType=Art 37 det _ _ 36 proarrow proarrow NOUN NN Number=Sing 37 compound _ _ 37 equipment equipment NOUN NN Number=Sing 34 oprd _ _ 38 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 26 punct _ SpaceAfter=No 39 also also ADV RB _ 40 advmod _ _ 40 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 acl _ _ 41 as as ADP IN _ 40 prep _ _ 42 framed framed ADJ JJ Degree=Pos 43 amod _ _ 43 bicategory bicategory NOUN NN Number=Sing 41 pobj _ SpaceAfter=No 44 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 26 punct _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 634 # sent_id = 1 # text = The author and Tomer Schlank studied a much weaker homotopical structure than a model category, which we called a "weak cofibration category". 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 author author NOUN NN Number=Sing 6 nsubj _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 Tomer Tomer PROPN NNP Number=Sing 5 compound _ _ 5 Schlank Schlank PROPN NNP Number=Sing 2 conj _ _ 6 studied study VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 8 much much ADV RB _ 9 advmod _ _ 9 weaker weak ADJ JJR Degree=Cmp 11 amod _ _ 10 homotopical homotopical ADJ JJ Degree=Pos 11 amod _ _ 11 structure structure NOUN NN Number=Sing 6 dobj _ _ 12 than than ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 model model NOUN NN Number=Sing 15 compound _ _ 15 category category NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 which which PRON WDT _ 19 dobj _ _ 18 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 19 nsubj _ _ 19 called call VERB VBD Tense=Past|VerbForm=Fin 15 relcl _ _ 20 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 21 " " PUNCT `` PunctSide=Ini|PunctType=Quot 24 punct _ SpaceAfter=No 22 weak weak ADJ JJ Degree=Pos 24 amod _ _ 23 cofibration cofibration NOUN NN Number=Sing 24 compound _ _ 24 category category NOUN NN Number=Sing 19 oprd _ SpaceAfter=No 25 " " PUNCT '' PunctSide=Fin|PunctType=Quot 6 punct _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = We showed that a small weak cofibration category induces in a natural way a model category structure on its ind - category, provided the ind - category satisfies a certain two out of three property. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 showed show VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 9 mark _ _ 4 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 5 small small ADJ JJ Degree=Pos 8 amod _ _ 6 weak weak ADJ JJ Degree=Pos 8 amod _ _ 7 cofibration cofibration NOUN NN Number=Sing 8 compound _ _ 8 category category NOUN NN Number=Sing 9 nsubj _ _ 9 induces induce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 10 in in ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 natural natural ADJ JJ Degree=Pos 13 amod _ _ 13 way way NOUN NN Number=Sing 10 pobj _ _ 14 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 15 model model NOUN NN Number=Sing 17 compound _ _ 16 category category NOUN NN Number=Sing 17 compound _ _ 17 structure structure NOUN NN Number=Sing 9 dobj _ _ 18 on on ADP IN _ 17 prep _ _ 19 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 22 poss _ _ 20 ind ind ADJ JJ Degree=Pos 22 compound _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 category category NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 9 punct _ _ 24 provided provide VERB VBD Tense=Past|VerbForm=Fin 2 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 29 det _ _ 26 ind ind ADJ JJ Degree=Pos 28 compound _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 category category NOUN NN Number=Sing 29 compound _ _ 29 satisfies satisfie NOUN NNS Number=Plur 24 dative _ _ 30 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 31 certain certain ADJ JJ Degree=Pos 32 amod _ _ 32 two two NUM CD NumType=Card 36 nummod _ _ 33 out out ADP IN _ 35 quantmod _ _ 34 of of ADP IN _ 35 quantmod _ _ 35 three three NUM CD NumType=Card 36 nummod _ _ 36 property property NOUN NN Number=Sing 29 dobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = The main purpose of this paper is to give sufficient intrinsic conditions on a weak cofibration category for this two out of three property to hold. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 purpose purpose NOUN NN Number=Sing 7 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 6 paper paper NOUN NN Number=Sing 4 pobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 to to PART TO _ 9 aux _ _ 9 give give VERB VB VerbForm=Inf 7 xcomp _ _ 10 sufficient sufficient ADJ JJ Degree=Pos 12 amod _ _ 11 intrinsic intrinsic ADJ JJ Degree=Pos 12 amod _ _ 12 conditions condition NOUN NNS Number=Plur 9 dobj _ _ 13 on on ADP IN _ 9 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 15 weak weak ADJ JJ Degree=Pos 17 amod _ _ 16 cofibration cofibration NOUN NN Number=Sing 17 compound _ _ 17 category category NOUN NN Number=Sing 13 pobj _ _ 18 for for ADP IN _ 17 prep _ _ 19 this this DET DT Number=Sing|PronType=Dem 24 det _ _ 20 two two NUM CD NumType=Card 24 nummod _ _ 21 out out ADP IN _ 23 quantmod _ _ 22 of of ADP IN _ 23 quantmod _ _ 23 three three NUM CD NumType=Card 24 nummod _ _ 24 property property NOUN NN Number=Sing 18 pobj _ _ 25 to to PART TO _ 26 aux _ _ 26 hold hold VERB VB VerbForm=Inf 24 relcl _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = We consider an application to the category of compact metrizable spaces, and thus obtain a model structure on its ind - category. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 4 det _ _ 4 application application NOUN NN Number=Sing 2 dobj _ _ 5 to to ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 category category NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 compact compact ADJ JJ Degree=Pos 11 amod _ _ 10 metrizable metrizable ADJ JJ Degree=Pos 11 amod _ _ 11 spaces space NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 2 punct _ _ 13 and and CCONJ CC ConjType=Cmp 2 cc _ _ 14 thus thus ADV RB _ 15 advmod _ _ 15 obtain obtain VERB VB VerbForm=Inf 2 conj _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 model model NOUN NN Number=Sing 18 compound _ _ 18 structure structure NOUN NN Number=Sing 15 dobj _ _ 19 on on ADP IN _ 15 prep _ _ 20 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 23 poss _ _ 21 ind ind NOUN NN Number=Sing 23 compound _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 category category NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = This model structure is defined on a category that is closely related to a category of topological spaces and has many convenient formal properties. 1 This this DET DT Number=Sing|PronType=Dem 3 det _ _ 2 model model NOUN NN Number=Sing 3 compound _ _ 3 structure structure NOUN NN Number=Sing 5 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 on on ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 category category NOUN NN Number=Sing 6 pobj _ _ 9 that that PRON WDT PronType=Rel 12 nsubjpass _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 11 closely closely ADV RB _ 12 advmod _ _ 12 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 relcl _ _ 13 to to ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 category category NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 topological topological ADJ JJ Degree=Pos 18 amod _ _ 18 spaces space NOUN NNS Number=Plur 16 pobj _ _ 19 and and CCONJ CC ConjType=Cmp 12 cc _ _ 20 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 conj _ _ 21 many many ADJ JJ Degree=Pos 24 amod _ _ 22 convenient convenient ADJ JJ Degree=Pos 24 amod _ _ 23 formal formal ADJ JJ Degree=Pos 24 amod _ _ 24 properties property NOUN NNS Number=Plur 20 dobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 6 # text = A more general application of these results, to the (opposite) category of separable $ C^* $ - algebras, appears in a paper by the author, Michael Joachim and Snigdhayan Mahanta. 1 A a DET DT Definite=Ind|PronType=Art 4 det _ _ 2 more more ADV RBR Degree=Cmp 3 advmod _ _ 3 general general ADJ JJ Degree=Pos 4 amod _ _ 4 application application NOUN NN Number=Sing 21 nsubj _ _ 5 of of ADP IN _ 4 prep _ _ 6 these these DET DT Number=Plur|PronType=Dem 7 det _ _ 7 results result NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 4 punct _ _ 9 to to ADP IN _ 4 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 14 det _ _ 11 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 14 punct _ SpaceAfter=No 12 opposite opposite ADJ JJ Degree=Pos 14 amod _ SpaceAfter=No 13 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 14 punct _ _ 14 category category NOUN NN Number=Sing 9 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 separable separable ADJ JJ Degree=Pos 19 amod _ _ 17 $ C^* $ $ c^* $ SYM $ _ 19 compound _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 algebras algebra NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 4 punct _ _ 21 appears appear VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 22 in in ADP IN _ 21 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 24 paper paper NOUN NN Number=Sing 22 pobj _ _ 25 by by ADP IN _ 21 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 author author NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 21 punct _ _ 29 Michael Michael PROPN NNP Number=Sing 30 compound _ _ 30 Joachim Joachim PROPN NNP Number=Sing 4 appos _ _ 31 and and CCONJ CC ConjType=Cmp 30 cc _ _ 32 Snigdhayan Snigdhayan PROPN NNP Number=Sing 33 compound _ _ 33 Mahanta Mahanta PROPN NNP Number=Sing 30 conj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 21 punct _ SpaceAfter=No # doc_id = 635 # sent_id = 1 # text = We will construct a Quillen model structure out of the multiplier ideal sheaves on a smooth quasi - projective variety using earlier works of Isaksen and Barnea and Schlank. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 will will AUX MD VerbForm=Fin 3 aux _ _ 3 construct construct VERB VB VerbForm=Inf 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 5 Quillen quillen ADJ JJ Degree=Pos 7 amod _ _ 6 model model NOUN NN Number=Sing 7 compound _ _ 7 structure structure NOUN NN Number=Sing 3 dobj _ _ 8 out out ADP IN _ 3 prep _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 13 det _ _ 11 multiplier multipli ADJ JJR Degree=Cmp 13 amod _ _ 12 ideal ideal ADJ JJ Degree=Pos 13 amod _ _ 13 sheaves sheaf NOUN NNS Number=Plur 9 pobj _ _ 14 on on ADP IN _ 3 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 16 smooth smooth ADJ JJ Degree=Pos 20 amod _ _ 17 quasi quasi ADJ JJ Degree=Pos 20 amod _ _ 18 - - ADJ JJ Degree=Pos 20 amod _ _ 19 projective projective ADJ JJ Degree=Pos 20 amod _ _ 20 variety variety NOUN NN Number=Sing 14 pobj _ _ 21 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 20 acl _ _ 22 earlier early ADJ JJR Degree=Cmp 23 amod _ _ 23 works work NOUN NNS Number=Plur 21 dobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 Isaksen Isaksen PROPN NNP Number=Sing 24 pobj _ _ 26 and and CCONJ CC ConjType=Cmp 25 cc _ _ 27 Barnea Barnea PROPN NNP Number=Sing 25 conj _ _ 28 and and CCONJ CC ConjType=Cmp 27 cc _ _ 29 Schlank Schlank PROPN NNP Number=Sing 27 conj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = We also show that fibrant objects of this model category are made of kawamata log terminal pairs in birational geometry. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 12 mark _ _ 5 fibrant fibrant ADJ JJ Degree=Pos 6 amod _ _ 6 objects object NOUN NNS Number=Plur 12 nsubjpass _ _ 7 of of ADP IN _ 6 prep _ _ 8 this this DET DT Number=Sing|PronType=Dem 10 det _ _ 9 model model NOUN NN Number=Sing 10 compound _ _ 10 category category NOUN NN Number=Sing 7 pobj _ _ 11 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 12 made make VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 ccomp _ _ 13 of of ADP IN _ 12 prep _ _ 14 kawamata kawamata PROPN NNP Number=Sing 15 compound _ _ 15 log log NOUN NN Number=Sing 17 nmod _ _ 16 terminal terminal ADJ JJ Degree=Pos 17 amod _ _ 17 pairs pair NOUN NNS Number=Plur 13 pobj _ _ 18 in in ADP IN _ 17 prep _ _ 19 birational birational ADJ JJ Degree=Pos 20 amod _ _ 20 geometry geometry NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 636 # sent_id = 1 # text = Picard - Vessiot rings are present in many settings like differential Galois theory, difference Galois theory and Galois theory of Artinian simple module algebras. 1 Picard Picard PROPN NNP Number=Sing 3 compound _ _ 2 - - PUNCT HYPH PunctType=Dash 3 punct _ _ 3 Vessiot Vessiot PROPN NNP Number=Sing 4 compound _ _ 4 rings ring NOUN NNS Number=Plur 5 nsubj _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 present present ADJ JJ Degree=Pos 5 acomp _ _ 7 in in ADP IN _ 6 prep _ _ 8 many many ADJ JJ Degree=Pos 9 amod _ _ 9 settings setting NOUN NNS Number=Plur 7 pobj _ _ 10 like like ADP IN _ 9 prep _ _ 11 differential differential ADJ JJ Degree=Pos 13 amod _ _ 12 Galois Galois PROPN NNP Number=Sing 13 compound _ _ 13 theory theory NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 5 punct _ _ 15 difference difference NOUN NN Number=Sing 17 compound _ _ 16 Galois Galois PROPN NNP Number=Sing 17 compound _ _ 17 theory theory NOUN NN Number=Sing 5 dep _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 Galois Galois PROPN NNP Number=Sing 20 compound _ _ 20 theory theory NOUN NN Number=Sing 17 conj _ _ 21 of of ADP IN _ 20 prep _ _ 22 Artinian artinian ADJ JJ Degree=Pos 25 amod _ _ 23 simple simple ADJ JJ Degree=Pos 25 amod _ _ 24 module module NOUN NN Number=Sing 25 compound _ _ 25 algebras algebra NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = In this article we set up an abstract framework in which we can prove theorems on existence and uniqueness of Picard - Vessiot rings, as well as on Galois groups corresponding to the Picard - Vessiot rings. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 article article NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 set set VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 up up ADP RP _ 5 prt _ _ 7 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 8 abstract abstract ADJ JJ Degree=Pos 9 amod _ _ 9 framework framework NOUN NN Number=Sing 5 dobj _ _ 10 in in ADP IN _ 14 prep _ _ 11 which which PRON WDT _ 10 pobj _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 14 nsubj _ _ 13 can can AUX MD VerbForm=Fin 14 aux _ _ 14 prove prove VERB VB VerbForm=Inf 9 relcl _ _ 15 theorems theorem NOUN NNS Number=Plur 14 dobj _ _ 16 on on ADP IN _ 14 prep _ _ 17 existence existence NOUN NN Number=Sing 16 pobj _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 uniqueness uniqueness NOUN NN Number=Sing 17 conj _ _ 20 of of ADP IN _ 17 prep _ _ 21 Picard Picard PROPN NNP Number=Sing 23 compound _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 Vessiot Vessiot PROPN NNP Number=Sing 24 compound _ _ 24 rings ring NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 14 punct _ _ 26 as as ADV RB _ 28 advmod _ _ 27 well well ADV RB Degree=Pos 28 advmod _ _ 28 as as ADP IN _ 14 cc _ _ 29 on on ADP IN _ 28 prep _ _ 30 Galois Galois PROPN NNP Number=Sing 31 compound _ _ 31 groups group NOUN NNS Number=Plur 29 pobj _ _ 32 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 31 acl _ _ 33 to to ADP IN _ 32 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 38 det _ _ 35 Picard Picard PROPN NNP Number=Sing 37 compound _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 Vessiot Vessiot PROPN NNP Number=Sing 38 compound _ _ 38 rings ring NOUN NNS Number=Plur 33 pobj _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = As the present approach restricts to the categorical properties which all the categories of differential modules (respectively, difference modules, et cetera) share, it gives unified proofs for all these Galois theories (and maybe more general ones). 1 As as SCONJ IN _ 5 mark _ _ 2 the the DET DT Definite=Def|PronType=Art 5 det _ _ 3 present present ADJ JJ Degree=Pos 5 amod _ _ 4 approach approach NOUN NN Number=Sing 5 compound _ _ 5 restricts restrict NOUN NNS Number=Plur 29 advcl _ _ 6 to to ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 categorical categorical ADJ JJ Degree=Pos 9 amod _ _ 9 properties property NOUN NNS Number=Plur 6 pobj _ _ 10 which which PRON WDT _ 26 dobj _ _ 11 all all DET PDT _ 13 predet _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 categories category NOUN NNS Number=Plur 26 nmod _ _ 14 of of ADP IN _ 13 prep _ _ 15 differential differential ADJ JJ Degree=Pos 16 amod _ _ 16 modules module NOUN NNS Number=Plur 14 pobj _ _ 17 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 16 punct _ SpaceAfter=No 18 respectively respectively ADV RB _ 21 advmod _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 21 punct _ _ 20 difference difference NOUN NN Number=Sing 21 compound _ _ 21 modules module NOUN NNS Number=Plur 13 conj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 et et NOUN NN Number=Sing 24 nmod _ _ 24 cetera cetera PROPN NNP Number=Sing 26 nmod _ SpaceAfter=No 25 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 26 punct _ _ 26 share share NOUN NN Number=Sing 9 relcl _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 29 punct _ _ 28 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 29 nsubj _ _ 29 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 30 unified unified ADJ JJ Degree=Pos 31 amod _ _ 31 proofs proof NOUN NNS Number=Plur 29 dobj _ _ 32 for for ADP IN _ 31 prep _ _ 33 all all DET PDT _ 36 predet _ _ 34 these these DET DT Number=Plur|PronType=Dem 36 det _ _ 35 Galois Galois PROPN NNP Number=Sing 36 compound _ _ 36 theories theory NOUN NNS Number=Plur 32 pobj _ _ 37 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 36 punct _ SpaceAfter=No 38 and and CCONJ CC ConjType=Cmp 36 cc _ _ 39 maybe maybe ADV RB _ 40 advmod _ _ 40 more more ADV RBR Degree=Cmp 42 amod _ _ 41 general general ADJ JJ Degree=Pos 42 amod _ _ 42 ones one NOUN NNS Number=Plur 36 conj _ SpaceAfter=No 43 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 36 punct _ SpaceAfter=No 44 . . PUNCT . PunctType=Peri 29 punct _ SpaceAfter=No # doc_id = 637 # sent_id = 1 # text = On a category $ mathscr{C} $ with a designated (well - behaved) class $ mathcal{M} $ of monomorphisms, a closure operator in the sense of Dikranjan and Giuli is a pointed endofunctor of $ mathcal{M} $ , seen as a full subcategory of the arrow - category $ mathscr{C}^mathbf{2} $ whose objects are morphisms from the class $ mathcal{M} $ , which ``commutes'' with the codomain functor $ mathsf{cod}colon mathcal{M}to mathscr{C} $ . 1 On on ADP IN _ 28 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 category category NOUN NN Number=Sing 1 pobj _ _ 4 $ mathscr{C} $ $ mathscr{c} $ SYM $ _ 1 pobj _ _ 5 with with ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 7 designated designate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 amod _ _ 8 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 13 punct _ SpaceAfter=No 9 well well ADV RB Degree=Pos 11 advmod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 behaved behave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 amod _ SpaceAfter=No 12 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 13 punct _ _ 13 class class NOUN NN Number=Sing 14 compound _ _ 14 $ mathcal{M} $ $ mathcal{m} $ SYM $ _ 5 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 monomorphisms monomorphism NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 14 punct _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 closure closure NOUN NN Number=Sing 20 compound _ _ 20 operator operator NOUN NN Number=Sing 28 nsubj _ _ 21 in in ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 sense sense NOUN NN Number=Sing 21 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 Dikranjan Dikranjan PROPN NNP Number=Sing 24 pobj _ _ 26 and and CCONJ CC ConjType=Cmp 25 cc _ _ 27 Giuli Giuli PROPN NNP Number=Sing 25 conj _ _ 28 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 29 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 30 pointed pointed ADJ JJ Degree=Pos 31 amod _ _ 31 endofunctor endofunctor NOUN NN Number=Sing 28 attr _ _ 32 of of ADP IN _ 31 prep _ _ 33 $ mathcal{M} $ $ mathcal{m} $ SYM $ _ 32 pobj _ _ 34 , , PUNCT , PunctType=Comm 31 punct _ _ 35 seen see VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 31 acl _ _ 36 as as ADP IN _ 35 prep _ _ 37 a a DET DT Definite=Ind|PronType=Art 39 det _ _ 38 full full ADJ JJ Degree=Pos 39 amod _ _ 39 subcategory subcategory NOUN NN Number=Sing 36 pobj _ _ 40 of of ADP IN _ 39 prep _ _ 41 the the DET DT Definite=Def|PronType=Art 45 det _ _ 42 arrow arrow NOUN NN Number=Sing 44 compound _ _ 43 - - PUNCT HYPH PunctType=Dash 44 punct _ _ 44 category category NOUN NN Number=Sing 45 compound _ _ 45 $ mathscr{C}^mathbf{2} $ $ mathscr{c}^mathbf{2} $ SYM $ _ 40 pobj _ _ 46 whose whose DET WP$ Poss=Yes 47 poss _ _ 47 objects object NOUN NNS Number=Plur 48 nsubj _ _ 48 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 45 relcl _ _ 49 morphisms morphism NOUN NNS Number=Plur 48 attr _ _ 50 from from ADP IN _ 49 prep _ _ 51 the the DET DT Definite=Def|PronType=Art 52 det _ _ 52 class class NOUN NN Number=Sing 53 nmod _ _ 53 $ mathcal{M} $ $ mathcal{m} $ SYM $ _ 50 pobj _ _ 54 , , PUNCT , PunctType=Comm 53 punct _ _ 55 which which DET WDT _ 58 det _ _ 56 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 58 punct _ SpaceAfter=No 57 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 58 punct _ SpaceAfter=No 58 commutes commute NOUN NNS Number=Plur 31 relcl _ SpaceAfter=No 59 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 58 punct _ _ 60 with with ADP IN _ 58 prep _ _ 61 the the DET DT Definite=Def|PronType=Art 63 det _ _ 62 codomain codomain ADJ JJ Degree=Pos 63 amod _ _ 63 functor functor NOUN NN Number=Sing 60 pobj _ _ 64 $ mathsf{cod}colon mathcal{M}to mathscr{C} $ $ mathsf{cod}colon mathcal{m}to mathscr{c} $ SYM $ _ 63 appos _ _ 65 . . PUNCT . PunctType=Peri 28 punct _ SpaceAfter=No # sent_id = 2 # text = In other words, a closure operator consists of a functor $ Ccolon mathcal{M}tomathcal{M} $ and a natural transformation $ ccolon 1_mathcal{M}to C $ such that $ mathsf{cod} cdot C=C $ and $ mathsf{cod}cdot c=1_mathsf{cod} $ . 1 In in ADP IN _ 8 prep _ _ 2 other other ADJ JJ Degree=Pos 3 amod _ _ 3 words word NOUN NNS Number=Plur 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 8 punct _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 closure closure NOUN NN Number=Sing 7 compound _ _ 7 operator operator NOUN NN Number=Sing 8 nsubj _ _ 8 consists consist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 of of ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 functor functor NOUN NN Number=Sing 12 compound _ _ 12 $ Ccolon mathcal{M}tomathcal{M} $ $ ccolon mathcal{m}tomathcal{m} $ SYM $ _ 9 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 natural natural ADJ JJ Degree=Pos 16 amod _ _ 16 transformation transformation NOUN NN Number=Sing 12 conj _ _ 17 $ ccolon 1_mathcal{M}to C $ $ ccolon 1_mathcal{m}to c $ SYM $ _ 18 nmod _ _ 18 such such ADJ JJ Degree=Pos 22 dobj _ _ 19 that that SCONJ IN _ 22 det _ _ 20 $ mathsf{cod} cdot C=C $ $ mathsf{cod} cdot c=c $ SYM $ _ 22 nmod _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 $ mathsf{cod}cdot c=1_mathsf{cod} $ $ mathsf{cod}cdot c=1_mathsf{cod} $ SYM $ _ 7 appos _ _ 23 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 3 # text = In this paper we adapt this notion to the domain functor $ mathsf{dom}colon mathcal{E}tomathscr{C} $ , where $ mathcal{E} $ is a class of epimorphisms in $ mathscr{C} $ , and show that such closure operators can be used to classify $ mathcal{E} $ - epireflective subcategories of $ mathscr{C} $ , provided $ mathcal{E} $ is closed under composition and contains isomorphisms. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 adapt adapt VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 this this DET DT Number=Sing|PronType=Dem 7 det _ _ 7 notion notion NOUN NN Number=Sing 5 dobj _ _ 8 to to ADP IN _ 5 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 domain domain NOUN NN Number=Sing 11 compound _ _ 11 functor functor NOUN NN Number=Sing 8 pobj _ _ 12 $ mathsf{dom}colon mathcal{E}tomathscr{C} $ $ mathsf{dom}colon mathcal{e}tomathscr{c} $ SYM $ _ 11 appos _ _ 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 where where SCONJ WRB _ 16 advmod _ _ 15 $ mathcal{E} $ $ mathcal{e} $ SYM $ _ 16 nsubj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 relcl _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 class class NOUN NN Number=Sing 16 attr _ _ 19 of of ADP IN _ 18 prep _ _ 20 epimorphisms epimorphism NOUN NNS Number=Plur 19 pobj _ _ 21 in in ADP IN _ 18 prep _ _ 22 $ mathscr{C} $ $ mathscr{c} $ SYM $ _ 21 pobj _ _ 23 , , PUNCT , PunctType=Comm 5 punct _ _ 24 and and CCONJ CC ConjType=Cmp 5 cc _ _ 25 show show VERB VB VerbForm=Inf 5 conj _ _ 26 that that SCONJ IN _ 32 mark _ _ 27 such such ADJ JJ Degree=Pos 28 amod _ _ 28 closure closure NOUN NN Number=Sing 29 compound _ _ 29 operators operator NOUN NNS Number=Plur 32 nsubjpass _ _ 30 can can AUX MD VerbForm=Fin 32 aux _ _ 31 be be AUX VB VerbForm=Inf 32 auxpass _ _ 32 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 25 ccomp _ _ 33 to to PART TO _ 34 aux _ _ 34 classify classify VERB VB VerbForm=Inf 32 xcomp _ _ 35 $ mathcal{E} $ $ mathcal{e} $ SYM $ _ 37 quantmod _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 epireflective epireflective ADJ JJ Degree=Pos 38 amod _ _ 38 subcategories subcategorie NOUN NNS Number=Plur 34 dobj _ _ 39 of of ADP IN _ 38 prep _ _ 40 $ mathscr{C} $ $ mathscr{c} $ SYM $ _ 39 pobj _ _ 41 , , PUNCT , PunctType=Comm 34 punct _ _ 42 provided provide VERB VBD Tense=Past|VerbForm=Fin 25 conj _ _ 43 $ mathcal{E} $ $ mathcal{e} $ SYM $ _ 42 dobj _ _ 44 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 45 auxpass _ _ 45 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 25 ccomp _ _ 46 under under ADP IN _ 45 prep _ _ 47 composition composition NOUN NN Number=Sing 46 pobj _ _ 48 and and CCONJ CC ConjType=Cmp 45 cc _ _ 49 contains contain VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 45 conj _ _ 50 isomorphisms isomorphism NOUN NNS Number=Plur 49 dobj _ SpaceAfter=No 51 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 638 # sent_id = 1 # text = Guided by the microcosm principle of Baez - Dolan and by the algebraic definitions of operads of Kelly and Fiore, we introduce two ``monoid - like'' definitions of cyclic operads, one for the original, ``exchangable - output'' characterisation of Getzler - Kapranov, and the other for the alternative ``entries - only'' characterisation, both within the category of Joyal's species of structures. 1 Guided guide VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 advcl _ _ 2 by by ADP IN _ 1 agent _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 microcosm microcosm PROPN NNP Number=Sing 5 amod _ _ 5 principle principle NOUN NN Number=Sing 2 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 Baez Baez PROPN NNP Number=Sing 9 compound _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 Dolan Dolan PROPN NNP Number=Sing 6 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 2 cc _ _ 11 by by ADP IN _ 2 conj _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 algebraic algebraic ADJ JJ Degree=Pos 14 amod _ _ 14 definitions definition NOUN NNS Number=Plur 11 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 operads operad NOUN NNS Number=Plur 15 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 Kelly Kelly PROPN NNP Number=Sing 17 pobj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 Fiore Fiore PROPN NNP Number=Sing 18 conj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 23 punct _ _ 22 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 23 nsubj _ _ 23 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 24 two two NUM CD NumType=Card 31 nummod _ _ 25 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 31 punct _ SpaceAfter=No 26 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 31 punct _ SpaceAfter=No 27 monoid monoid NOUN NN Number=Sing 29 npadvmod _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 like like ADJ JJ Degree=Pos 31 amod _ SpaceAfter=No 30 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 31 punct _ _ 31 definitions definition NOUN NNS Number=Plur 23 dobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 cyclic cyclic ADJ JJ Degree=Pos 34 amod _ _ 34 operads operad NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 35 , , PUNCT , PunctType=Comm 31 punct _ _ 36 one one NUM CD NumType=Card 31 appos _ _ 37 for for ADP IN _ 36 prep _ _ 38 the the DET DT Definite=Def|PronType=Art 47 det _ _ 39 original original ADJ JJ Degree=Pos 47 amod _ SpaceAfter=No 40 , , PUNCT , PunctType=Comm 47 punct _ _ 41 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 47 punct _ SpaceAfter=No 42 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 47 punct _ SpaceAfter=No 43 exchangable exchangable ADJ JJ Degree=Pos 45 amod _ _ 44 - - PUNCT HYPH PunctType=Dash 45 punct _ _ 45 output output NOUN NN Number=Sing 47 nmod _ SpaceAfter=No 46 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 47 punct _ _ 47 characterisation characterisation NOUN NN Number=Sing 37 pobj _ _ 48 of of ADP IN _ 47 prep _ _ 49 Getzler Getzler PROPN NNP Number=Sing 51 compound _ _ 50 - - PUNCT HYPH PunctType=Dash 51 punct _ _ 51 Kapranov Kapranov PROPN NNP Number=Sing 48 pobj _ SpaceAfter=No 52 , , PUNCT , PunctType=Comm 51 punct _ _ 53 and and CCONJ CC ConjType=Cmp 36 cc _ _ 54 the the DET DT Definite=Def|PronType=Art 55 det _ _ 55 other other ADJ JJ Degree=Pos 36 conj _ _ 56 for for ADP IN _ 55 prep _ _ 57 the the DET DT Definite=Def|PronType=Art 65 det _ _ 58 alternative alternative ADJ JJ Degree=Pos 65 amod _ _ 59 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 61 punct _ SpaceAfter=No 60 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 61 punct _ SpaceAfter=No 61 entries entry NOUN NNS Number=Plur 65 nmod _ _ 62 - - PUNCT : _ 61 punct _ _ 63 only only ADV RB _ 61 advmod _ SpaceAfter=No 64 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 65 punct _ _ 65 characterisation characterisation NOUN NN Number=Sing 56 pobj _ SpaceAfter=No 66 , , PUNCT , PunctType=Comm 55 punct _ _ 67 both both PRON DT _ 68 preconj _ _ 68 within within ADP IN _ 55 prep _ _ 69 the the DET DT Definite=Def|PronType=Art 70 det _ _ 70 category category NOUN NN Number=Sing 68 pobj _ _ 71 of of ADP IN _ 70 prep _ _ 72 Joyal Joyal PROPN NNP Number=Sing 74 poss _ SpaceAfter=No 73 's 's PART POS _ 72 case _ _ 74 species specie NOUN NNS Number=Plur 71 pobj _ _ 75 of of ADP IN _ 74 prep _ _ 76 structures structure NOUN NNS Number=Plur 75 pobj _ SpaceAfter=No 77 . . PUNCT . PunctType=Peri 23 punct _ SpaceAfter=No # sent_id = 2 # text = Relying on a result of Lamarche on descent for species, we use these "monoid - like" definitions to prove the equivalence between the ``exchangable - output'' and ``entries - only'' points of view on cyclic operads. 1 Relying rely VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 advcl _ _ 2 on on ADP IN _ 1 prep _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 result result NOUN NN Number=Sing 2 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 Lamarche Lamarche PROPN NNP Number=Sing 5 pobj _ _ 7 on on ADP IN _ 1 prep _ _ 8 descent descent NOUN NN Number=Sing 7 pobj _ _ 9 for for ADP IN _ 8 prep _ _ 10 species specie NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 13 punct _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 these these DET DT Number=Plur|PronType=Dem 20 det _ _ 15 " " PUNCT `` PunctSide=Ini|PunctType=Quot 20 punct _ SpaceAfter=No 16 monoid monoid NOUN NN Number=Sing 18 npadvmod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 like like ADJ JJ Degree=Pos 20 amod _ SpaceAfter=No 19 " " PUNCT '' PunctSide=Fin|PunctType=Quot 20 punct _ _ 20 definitions definition NOUN NNS Number=Plur 13 dobj _ _ 21 to to PART TO _ 22 aux _ _ 22 prove prove VERB VB VerbForm=Inf 13 xcomp _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 equivalence equivalence NOUN NN Number=Sing 22 dobj _ _ 25 between between ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 31 det _ _ 27 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 31 punct _ SpaceAfter=No 28 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 31 punct _ SpaceAfter=No 29 exchangable exchangable ADJ JJ Degree=Pos 31 amod _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 output output NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 32 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 31 punct _ _ 33 and and CCONJ CC ConjType=Cmp 31 cc _ _ 34 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 36 punct _ SpaceAfter=No 35 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 36 punct _ SpaceAfter=No 36 entries entry NOUN NNS Number=Plur 40 nmod _ _ 37 - - PUNCT : _ 36 punct _ _ 38 only only ADV RB _ 36 advmod _ SpaceAfter=No 39 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 40 punct _ _ 40 points point NOUN NNS Number=Plur 31 conj _ _ 41 of of ADP IN _ 40 prep _ _ 42 view view NOUN NN Number=Sing 41 pobj _ _ 43 on on ADP IN _ 42 prep _ _ 44 cyclic cyclic ADJ JJ Degree=Pos 45 amod _ _ 45 operads operad NOUN NNS Number=Plur 43 pobj _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # doc_id = 639 # sent_id = 1 # text = At the heart of differential geometry is the construction of the tangent bundle of a manifold. 1 At at ADP IN _ 7 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 heart heart NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 differential differential ADJ JJ Degree=Pos 6 amod _ _ 6 geometry geometry NOUN NN Number=Sing 4 pobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 construction construction NOUN NN Number=Sing 7 nsubj _ _ 10 of of ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 tangent tangent ADJ JJ Degree=Pos 13 compound _ _ 13 bundle bundle NOUN NN Number=Sing 10 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 manifold manifold ADJ JJ Degree=Pos 14 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 2 # text = There are various abstractions of this construction, and of particular interest here is that of Tangent Structures. 1 There there PRON EX _ 2 expl _ _ 2 are be VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 various various ADJ JJ Degree=Pos 4 amod _ _ 4 abstractions abstraction NOUN NNS Number=Plur 2 attr _ _ 5 of of ADP IN _ 4 prep _ _ 6 this this DET DT Number=Sing|PronType=Dem 7 det _ _ 7 construction construction NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 4 punct _ _ 9 and and CCONJ CC ConjType=Cmp 4 cc _ _ 10 of of ADP IN _ 4 prep _ _ 11 particular particular ADJ JJ Degree=Pos 12 amod _ _ 12 interest interest NOUN NN Number=Sing 10 pobj _ _ 13 here here ADV RB PronType=Dem 12 advmod _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 conj _ _ 15 that that PRON DT Number=Sing|PronType=Dem 14 nsubj _ _ 16 of of ADP IN _ 15 prep _ _ 17 Tangent Tangent PROPN NNP Number=Sing 18 compound _ _ 18 Structures Structures PROPN NNPS Number=Plur 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Tangent Structure is defined via giving an underlying category $ M $ and a tangent functor $ T $ along with a list of natural transformations satisfying a set of axioms, then detailing the behaviour of $ T $ in the category $ End(M) $ . 1 Tangent Tangent PROPN NNP Number=Sing 2 compound _ _ 2 Structure Structure PROPN NNP Number=Sing 4 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 via via ADP IN _ 4 prep _ _ 6 giving give VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 pcomp _ _ 7 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 8 underlying underlying ADJ JJ Degree=Pos 9 amod _ _ 9 category category NOUN NN Number=Sing 6 dobj _ _ 10 $ M $ $ m $ SYM $ _ 9 nummod _ _ 11 and and CCONJ CC ConjType=Cmp 9 cc _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 tangent tangent NOUN NN Number=Sing 14 compound _ _ 14 functor functor NOUN NN Number=Sing 6 dobj _ _ 15 $ T $ $ t $ SYM $ _ 14 dobj _ _ 16 along along ADP IN _ 6 prep _ _ 17 with with ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 19 list list NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 natural natural ADJ JJ Degree=Pos 22 amod _ _ 22 transformations transformation NOUN NNS Number=Plur 20 pobj _ _ 23 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 advcl _ _ 24 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 25 set set NOUN NN Number=Sing 23 dobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 axioms axiom NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 4 punct _ _ 29 then then ADV RB PronType=Dem 30 advmod _ _ 30 detailing detail VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 advcl _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 behaviour behaviour NOUN NN Number=Sing 30 dobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 $ T $ $ t $ SYM $ _ 33 pobj _ _ 35 in in ADP IN _ 32 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 37 det _ _ 37 category category NOUN NN Number=Sing 35 pobj _ _ 38 $ End(M) $ $ end(m) $ SYM $ _ 30 dobj _ _ 39 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = However, this axiomatic definition at first seems somewhat disjoint from other approaches in differential geometry. 1 However however ADV RB _ 8 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 8 punct _ _ 3 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 4 axiomatic axiomatic ADJ JJ Degree=Pos 5 amod _ _ 5 definition definition NOUN NN Number=Sing 8 nsubj _ _ 6 at at ADP IN _ 5 prep _ _ 7 first first ADV RB _ 6 pobj _ _ 8 seems seem VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 somewhat somewhat ADV RB _ 10 advmod _ _ 10 disjoint disjoint NOUN NN Number=Sing 8 oprd _ _ 11 from from ADP IN _ 10 prep _ _ 12 other other ADJ JJ Degree=Pos 13 amod _ _ 13 approaches approach NOUN NNS Number=Plur 11 pobj _ _ 14 in in ADP IN _ 13 prep _ _ 15 differential differential ADJ JJ Degree=Pos 16 amod _ _ 16 geometry geometry NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 5 # text = The aim of this paper is to present a perspective that addresses this issue. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 aim aim NOUN NN Number=Sing 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 paper paper NOUN NN Number=Sing 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 to to PART TO _ 8 aux _ _ 8 present present VERB VB VerbForm=Inf 6 xcomp _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 perspective perspective NOUN NN Number=Sing 8 dobj _ _ 11 that that PRON WDT PronType=Rel 12 nsubj _ _ 12 addresses address VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 relcl _ _ 13 this this DET DT Number=Sing|PronType=Dem 14 det _ _ 14 issue issue NOUN NN Number=Sing 12 dobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 6 # text = More specifically, this paper highlights a very explicit relationship between the axiomatic definition of Tangent Structure and the Weil algebras (which have a well established place in differential geometry). 1 More more ADV RBR Degree=Cmp 2 advmod _ _ 2 specifically specifically ADV RB _ 6 advmod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 6 punct _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 paper paper NOUN NN Number=Sing 6 nsubj _ _ 6 highlights highlight VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 8 very very ADV RB _ 9 advmod _ _ 9 explicit explicit ADJ JJ Degree=Pos 10 amod _ _ 10 relationship relationship NOUN NN Number=Sing 6 dobj _ _ 11 between between ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 axiomatic axiomatic ADJ JJ Degree=Pos 14 amod _ _ 14 definition definition NOUN NN Number=Sing 11 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 Tangent Tangent PROPN NNP Number=Sing 17 compound _ _ 17 Structure Structure PROPN NNP Number=Sing 15 pobj _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 Weil Weil PROPN NNP Number=Sing 21 compound _ _ 21 algebras algebra NOUN NNS Number=Plur 17 conj _ _ 22 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 21 punct _ SpaceAfter=No 23 which which PRON WDT _ 24 nsubj _ _ 24 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 10 relcl _ _ 25 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 26 well well ADV RB Degree=Pos 27 advmod _ _ 27 established establish VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 amod _ _ 28 place place NOUN NN Number=Sing 24 dobj _ _ 29 in in ADP IN _ 28 prep _ _ 30 differential differential ADJ JJ Degree=Pos 31 amod _ _ 31 geometry geometry NOUN NN Number=Sing 29 pobj _ SpaceAfter=No 32 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 6 punct _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 640 # sent_id = 1 # text = Just as binary relations between sets may be understood as jointly monic spans, so too may equivalence relations on the disjoint union of sets be understood as jointly epic cospans. 1 Just just ADV RB _ 9 advmod _ _ 2 as as SCONJ IN _ 9 mark _ _ 3 binary binary ADJ JJ Degree=Pos 4 amod _ _ 4 relations relation NOUN NNS Number=Plur 9 nsubjpass _ _ 5 between between ADP IN _ 4 prep _ _ 6 sets set NOUN NNS Number=Plur 5 pobj _ _ 7 may may AUX MD VerbForm=Fin 9 aux _ _ 8 be be AUX VB VerbForm=Inf 9 auxpass _ _ 9 understood understand VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 advcl _ _ 10 as as ADP IN _ 9 prep _ _ 11 jointly jointly ADV RB _ 13 advmod _ _ 12 monic monic ADJ JJ Degree=Pos 13 amod _ _ 13 spans span NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 18 punct _ _ 15 so so ADV RB _ 16 advmod _ _ 16 too too ADV RB _ 18 advmod _ _ 17 may may AUX MD VerbForm=Fin 18 aux _ _ 18 equivalence equivalence VERB VB VerbForm=Inf 0 ROOT _ _ 19 relations relation NOUN NNS Number=Plur 27 nsubjpass _ _ 20 on on ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 23 det _ _ 22 disjoint disjoint NOUN NN Number=Sing 23 compound _ _ 23 union union NOUN NN Number=Sing 20 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 sets set NOUN NNS Number=Plur 24 pobj _ _ 26 be be AUX VB VerbForm=Inf 27 auxpass _ _ 27 understood understand VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 ccomp _ _ 28 as as ADP IN _ 27 prep _ _ 29 jointly jointly ADV RB _ 30 advmod _ _ 30 epic epic ADJ JJ Degree=Pos 31 amod _ _ 31 cospans cospan NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 27 punct _ SpaceAfter=No # sent_id = 2 # text = With the ensuing notion of composition inherited from the pushout of cospans, we call these equivalence relations corelations. 1 With with ADP IN _ 15 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 ensuing ensue VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 amod _ _ 4 notion notion NOUN NN Number=Sing 1 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 composition composition NOUN NN Number=Sing 5 pobj _ _ 7 inherited inherit VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 acl _ _ 8 from from ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 pushout pushout NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 cospans cospan NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 15 punct _ _ 14 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 15 nsubj _ _ 15 call call VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 16 these these DET DT Number=Plur|PronType=Dem 19 det _ _ 17 equivalence equivalence NOUN NN Number=Sing 18 compound _ _ 18 relations relation NOUN NNS Number=Plur 19 compound _ _ 19 corelations corelation NOUN NNS Number=Plur 15 dobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 3 # text = We define the category of corelations between finite sets and prove that it is equivalent to the prop for extraspecial commutative Frobenius monoids. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 category category NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 corelations corelation NOUN NNS Number=Plur 5 pobj _ _ 7 between between ADP IN _ 6 prep _ _ 8 finite finite ADJ JJ Degree=Pos 9 compound _ _ 9 sets set NOUN NNS Number=Plur 7 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 2 cc _ _ 11 prove prove VERB VB VerbForm=Inf 2 conj _ _ 12 that that SCONJ IN _ 14 mark _ _ 13 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 14 nsubj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 ccomp _ _ 15 equivalent equivalent ADJ JJ Degree=Pos 14 acomp _ _ 16 to to ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 prop prop NOUN NN Number=Sing 16 pobj _ _ 19 for for ADP IN _ 14 prep _ _ 20 extraspecial extraspecial ADJ JJ Degree=Pos 23 amod _ _ 21 commutative commutative ADJ JJ Degree=Pos 23 amod _ _ 22 Frobenius Frobenius PROPN NNP Number=Sing 23 compound _ _ 23 monoids monoid NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = Dually, we show that the category of relations is equivalent to the prop for special commutative bimonoids. 1 Dually Dually PROPN NNP Number=Sing 4 npadvmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 10 mark _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 category category NOUN NN Number=Sing 10 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 relations relation NOUN NNS Number=Plur 8 pobj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 11 equivalent equivalent ADJ JJ Degree=Pos 10 acomp _ _ 12 to to ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 prop prop NOUN NN Number=Sing 12 pobj _ _ 15 for for ADP IN _ 10 prep _ _ 16 special special ADJ JJ Degree=Pos 18 amod _ _ 17 commutative commutative ADJ JJ Degree=Pos 18 amod _ _ 18 bimonoids bimonoids PROPN NNP Number=Sing 15 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = Throughout, we emphasise how corelations model interconnection. 1 Throughout throughout ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 emphasise emphasise VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 how how SCONJ WRB _ 8 advmod _ _ 6 corelations corelation NOUN NNS Number=Plur 8 compound _ _ 7 model model NOUN NN Number=Sing 8 compound _ _ 8 interconnection interconnection NOUN NN Number=Sing 4 dobj _ SpaceAfter=No 9 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 641 # sent_id = 1 # text = Given an order - enriched category, it is known that all its KZ - monadic subcategories can be described by Kan - injectivity with respect to a collection of morphisms. 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 6 det _ _ 3 order order NOUN NN Number=Sing 5 npadvmod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 amod _ _ 6 category category NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 10 punct _ _ 8 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 10 nsubjpass _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 10 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 11 that that SCONJ IN _ 20 mark _ _ 12 all all DET PDT _ 17 predet _ _ 13 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 17 poss _ _ 14 KZ KZ PROPN NNP Number=Sing 16 npadvmod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 monadic monadic ADJ JJ Degree=Pos 17 amod _ _ 17 subcategories subcategorie NOUN NNS Number=Plur 20 nsubjpass _ _ 18 can can AUX MD VerbForm=Fin 20 aux _ _ 19 be be AUX VB VerbForm=Inf 20 auxpass _ _ 20 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 ccomp _ _ 21 by by ADP IN _ 20 agent _ _ 22 Kan Kan PROPN NNP Number=Sing 24 compound _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 injectivity injectivity NOUN NN Number=Sing 21 pobj _ _ 25 with with ADP IN _ 20 prep _ _ 26 respect respect NOUN NN Number=Sing 25 pobj _ _ 27 to to ADP IN _ 26 prep _ _ 28 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 29 collection collection NOUN NN Number=Sing 27 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 morphisms morphism NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 2 # text = We prove the analogous result for Kan - injectivity with respect to a collection $ H $ of commutative squares. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 analogous analogous ADJ JJ Degree=Pos 5 amod _ _ 5 result result NOUN NN Number=Sing 2 dobj _ _ 6 for for ADP IN _ 5 prep _ _ 7 Kan Kan PROPN NNP Number=Sing 9 compound _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 injectivity injectivity NOUN NN Number=Sing 6 pobj _ _ 10 with with ADP IN _ 9 prep _ _ 11 respect respect NOUN NN Number=Sing 10 pobj _ _ 12 to to ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 collection collection NOUN NN Number=Sing 12 pobj _ _ 15 $ H $ $ h $ SYM $ _ 14 appos _ _ 16 of of ADP IN _ 15 prep _ _ 17 commutative commutative ADJ JJ Degree=Pos 18 amod _ _ 18 squares square NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = A square is called a Kan - injective consequence of $ H $ if by adding it to $ H $ Kan - injectivity is not changed. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 square square NOUN NN Number=Sing 4 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 6 Kan Kan PROPN NNP Number=Sing 8 npadvmod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 injective injective ADJ JJ Degree=Pos 9 amod _ _ 9 consequence consequence NOUN NN Number=Sing 4 oprd _ _ 10 of of ADP IN _ 9 prep _ _ 11 $ H $ $ h $ SYM $ _ 10 pobj _ _ 12 if if SCONJ IN _ 4 dep _ _ 13 by by ADP IN _ 4 prep _ _ 14 adding add VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 pcomp _ _ 15 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 14 dobj _ _ 16 to to ADP IN _ 14 prep _ _ 17 $ H $ $ h $ SYM $ _ 20 nmod _ _ 18 Kan Kan PROPN NNP Number=Sing 20 compound _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 injectivity injectivity NOUN NN Number=Sing 16 pobj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 auxpass _ _ 22 not not PART RB Polarity=Neg 23 neg _ _ 23 changed change VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 conj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = We present a sound logic for Kan - injectivity consequences and prove that in ``reasonable" categories (such as $ Pos $ or $ Top_0 $ ) it is also complete for every set $ H $ of squares. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 sound sound ADJ JJ Degree=Pos 5 amod _ _ 5 logic logic NOUN NN Number=Sing 2 dobj _ _ 6 for for ADP IN _ 5 prep _ _ 7 Kan Kan PROPN NNP Number=Sing 9 compound _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 injectivity injectivity NOUN NN Number=Sing 10 compound _ _ 10 consequences consequence NOUN NNS Number=Plur 6 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 2 cc _ _ 12 prove prove VERB VB VerbForm=Inf 2 conj _ _ 13 that that SCONJ IN _ 28 mark _ _ 14 in in ADP IN _ 28 prep _ _ 15 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 19 punct _ SpaceAfter=No 16 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 19 punct _ SpaceAfter=No 17 reasonable reasonable ADJ JJ Degree=Pos 19 amod _ SpaceAfter=No 18 " " PUNCT '' PunctSide=Fin|PunctType=Quot 19 punct _ _ 19 categories category NOUN NNS Number=Plur 14 pobj _ _ 20 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 19 punct _ SpaceAfter=No 21 such such ADJ JJ Degree=Pos 22 amod _ _ 22 as as ADP IN _ 19 prep _ _ 23 $ Pos $ $ pos $ SYM $ _ 22 nmod _ _ 24 or or CCONJ CC ConjType=Cmp 23 cc _ _ 25 $ Top_0 $ $ top_0 $ SYM $ _ 22 pobj _ _ 26 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 19 punct _ _ 27 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 28 nsubj _ _ 28 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 ccomp _ _ 29 also also ADV RB _ 28 advmod _ _ 30 complete complete ADJ JJ Degree=Pos 28 acomp _ _ 31 for for ADP IN _ 30 prep _ _ 32 every every DET DT _ 33 det _ _ 33 set set NOUN NN Number=Sing 31 pobj _ _ 34 $ H $ $ h $ SYM $ _ 33 appos _ _ 35 of of ADP IN _ 34 prep _ _ 36 squares square NOUN NNS Number=Plur 35 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 642 # sent_id = 1 # text = One way to define Witt vectors starts with a truncation set $ S subset N $ . 1 One one NUM CD NumType=Card 2 nummod _ _ 2 way way NOUN NN Number=Sing 7 nsubj _ _ 3 to to PART TO _ 4 aux _ _ 4 define define VERB VB VerbForm=Inf 2 relcl _ _ 5 Witt Witt PROPN NNP Number=Sing 6 compound _ _ 6 vectors vector NOUN NNS Number=Plur 4 dobj _ _ 7 starts start VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 with with ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 truncation truncation NOUN NN Number=Sing 8 pobj _ _ 11 set set VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 acl _ _ 12 $ S subset N $ $ s subset n $ SYM $ _ 11 dep _ _ 13 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 2 # text = We generalize Witt vectors to truncation posets, and show how three types of maps of truncation posets can be used to encode the following six structure maps on Witt vectors: addition, multiplication, restriction, Frobenius, Verschiebung and norm. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 generalize generalize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 Witt Witt PROPN NNP Number=Sing 4 compound _ _ 4 vectors vector NOUN NNS Number=Plur 2 dobj _ _ 5 to to PART TO _ 2 prep _ _ 6 truncation truncation NOUN NN Number=Sing 7 compound _ _ 7 posets poset NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 2 punct _ _ 9 and and CCONJ CC ConjType=Cmp 2 cc _ _ 10 show show VERB VB VerbForm=Inf 2 conj _ _ 11 how how SCONJ WRB _ 21 advmod _ _ 12 three three NUM CD NumType=Card 13 nummod _ _ 13 types type NOUN NNS Number=Plur 21 nsubjpass _ _ 14 of of ADP IN _ 13 prep _ _ 15 maps map NOUN NNS Number=Plur 14 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 truncation truncation NOUN NN Number=Sing 18 compound _ _ 18 posets poset NOUN NNS Number=Plur 16 pobj _ _ 19 can can AUX MD VerbForm=Fin 21 aux _ _ 20 be be AUX VB VerbForm=Inf 21 auxpass _ _ 21 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 ccomp _ _ 22 to to PART TO _ 23 aux _ _ 23 encode encode VERB VB VerbForm=Inf 21 xcomp _ _ 24 the the DET DT Definite=Def|PronType=Art 28 det _ _ 25 following follow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 28 amod _ _ 26 six six NUM CD NumType=Card 28 nummod _ _ 27 structure structure NOUN NN Number=Sing 28 compound _ _ 28 maps map NOUN NNS Number=Plur 23 dobj _ _ 29 on on ADP IN _ 28 prep _ _ 30 Witt Witt PROPN NNP Number=Sing 31 compound _ _ 31 vectors vector NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 32 : : PUNCT : _ 28 punct _ _ 33 addition addition NOUN NN Number=Sing 28 appos _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 33 punct _ _ 35 multiplication multiplication NOUN NN Number=Sing 33 conj _ SpaceAfter=No 36 , , PUNCT , PunctType=Comm 35 punct _ _ 37 restriction restriction NOUN NN Number=Sing 35 conj _ SpaceAfter=No 38 , , PUNCT , PunctType=Comm 37 punct _ _ 39 Frobenius Frobenius PROPN NNP Number=Sing 37 conj _ SpaceAfter=No 40 , , PUNCT , PunctType=Comm 39 punct _ _ 41 Verschiebung Verschiebung PROPN NNP Number=Sing 39 conj _ _ 42 and and CCONJ CC ConjType=Cmp 41 cc _ _ 43 norm norm NOUN NN Number=Sing 41 conj _ SpaceAfter=No 44 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 643 # sent_id = 1 # text = In this note, we prove the existence of $ E_leq $ - injective hulls in the category $ PoSgr_leq $ of posemigroups and their submultiplicative order - preserving maps; here $ E_leq $ denotes the class of those morphisms $ h : A to B $ for which $ h(a_1)...h(a_n)leq h(a) $ always implies $ a_1...a_nleq a $ . 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 note note NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 prove prove VERB VBP Tense=Pres|VerbForm=Fin 30 ccomp _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 existence existence NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 $ E_leq $ $ e_leq $ SYM $ _ 12 quantmod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 injective injective ADJ JJ Degree=Pos 13 amod _ _ 13 hulls hull NOUN NNS Number=Plur 9 pobj _ _ 14 in in ADP IN _ 8 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 category category NOUN NN Number=Sing 14 pobj _ _ 17 $ PoSgr_leq $ $ posgr_leq $ SYM $ _ 16 appos _ _ 18 of of ADP IN _ 17 prep _ _ 19 posemigroups posemigroup NOUN NNS Number=Plur 18 pobj _ _ 20 and and CCONJ CC ConjType=Cmp 16 cc _ _ 21 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 26 poss _ _ 22 submultiplicative submultiplicative ADJ JJ Degree=Pos 26 amod _ _ 23 order order NOUN NN Number=Sing 25 npadvmod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 preserving preserve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 26 amod _ _ 26 maps map NOUN NNS Number=Plur 16 conj _ SpaceAfter=No 27 ; ; PUNCT : _ 30 punct _ _ 28 here here ADV RB PronType=Dem 30 advmod _ _ 29 $ E_leq $ $ e_leq $ SYM $ _ 30 nsubj _ _ 30 denotes denote VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 class class NOUN NN Number=Sing 30 dobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 those those DET DT Number=Plur|PronType=Dem 35 det _ _ 35 morphisms morphism NOUN NNS Number=Plur 33 pobj _ _ 36 $ h : A to B $ $ h : a to b $ SYM $ _ 32 appos _ _ 37 for for ADP IN _ 41 prep _ _ 38 which which PRON WDT _ 37 pobj _ _ 39 $ h(a_1)...h(a_n)leq h(a) $ $ h(a_1)...h(a_n)leq h(a) $ SYM $ _ 41 nsubj _ _ 40 always always ADV RB _ 41 advmod _ _ 41 implies imply VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 36 relcl _ _ 42 $ a_1...a_nleq a $ $ a_1...a_nleq a $ SYM $ _ 41 dobj _ _ 43 . . PUNCT . PunctType=Peri 30 punct _ SpaceAfter=No # sent_id = 2 # text = The result of this note subsumes the results given by Lambek and by Zhang and Laan. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 result result NOUN NN Number=Sing 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 note note NOUN NN Number=Sing 3 pobj _ _ 6 subsumes subsume VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 results result NOUN NNS Number=Plur 6 dobj _ _ 9 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 acl _ _ 10 by by ADP IN _ 9 agent _ _ 11 Lambek Lambek PROPN NNP Number=Sing 10 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 10 cc _ _ 13 by by ADP IN _ 10 conj _ _ 14 Zhang Zhang PROPN NNP Number=Sing 13 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 Laan Laan PROPN NNP Number=Sing 14 conj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 644 # sent_id = 1 # text = Normal monomorphisms in the sense of Bourn describe the equivalence classes of an internal equivalence relation. 1 Normal normal ADJ JJ Degree=Pos 2 amod _ _ 2 monomorphisms monomorphism NOUN NNS Number=Plur 8 nsubj _ _ 3 in in ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 sense sense NOUN NN Number=Sing 3 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 Bourn Bourn PROPN NNP Number=Sing 6 pobj _ _ 8 describe describe VERB VB VerbForm=Inf 0 ROOT _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 equivalence equivalence NOUN NN Number=Sing 11 compound _ _ 11 classes class NOUN NNS Number=Plur 8 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 an an DET DT Definite=Ind|PronType=Art 16 det _ _ 14 internal internal ADJ JJ Degree=Pos 15 amod _ _ 15 equivalence equivalence NOUN NN Number=Sing 16 compound _ _ 16 relation relation NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 2 # text = Although the definition is given in the fairly general setting of a category with finite limits, later investigations on this subject often focus on protomodular settings, where normality becomes a property. 1 Although although SCONJ IN _ 5 mark _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 definition definition NOUN NN Number=Sing 5 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 advcl _ _ 6 in in ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 10 det _ _ 8 fairly fairly ADV RB _ 9 advmod _ _ 9 general general ADJ JJ Degree=Pos 10 amod _ _ 10 setting setting NOUN NN Number=Sing 6 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 category category NOUN NN Number=Sing 11 pobj _ _ 14 with with ADP IN _ 13 prep _ _ 15 finite finite ADJ JJ Degree=Pos 16 compound _ _ 16 limits limit NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 24 punct _ _ 18 later later ADJ JJ Degree=Pos 19 amod _ _ 19 investigations investigation NOUN NNS Number=Plur 24 nsubj _ _ 20 on on ADP IN _ 19 prep _ _ 21 this this DET DT Number=Sing|PronType=Dem 22 det _ _ 22 subject subject NOUN NN Number=Sing 20 pobj _ _ 23 often often ADV RB _ 24 advmod _ _ 24 focus focus VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 25 on on ADP IN _ 24 prep _ _ 26 protomodular protomodular ADJ JJ Degree=Pos 27 amod _ _ 27 settings setting NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 27 punct _ _ 29 where where SCONJ WRB _ 31 advmod _ _ 30 normality normality NOUN NN Number=Sing 31 nsubj _ _ 31 becomes become VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 27 relcl _ _ 32 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 33 property property NOUN NN Number=Sing 31 attr _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 24 punct _ SpaceAfter=No # sent_id = 3 # text = This paper clarifies the connections between internal equivalence relations and Bourn - normal monomorphisms in regular Maltsev categories with pushouts of split monomorphisms along arbitrary morphisms, whereas a full description is achieved for quasi - pointed regular Maltsev categories with pushouts of split monomorphisms along arbitrary morphisms. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 clarifies clarify VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 connections connection NOUN NNS Number=Plur 3 dobj _ _ 6 between between ADP IN _ 5 prep _ _ 7 internal internal ADJ JJ Degree=Pos 9 amod _ _ 8 equivalence equivalence NOUN NN Number=Sing 9 compound _ _ 9 relations relation NOUN NNS Number=Plur 6 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 Bourn Bourn PROPN NNP Number=Sing 13 npadvmod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 normal normal ADJ JJ Degree=Pos 14 amod _ _ 14 monomorphisms monomorphism NOUN NNS Number=Plur 9 conj _ _ 15 in in ADP IN _ 9 prep _ _ 16 regular regular ADJ JJ Degree=Pos 18 amod _ _ 17 Maltsev Maltsev PROPN NNP Number=Sing 18 compound _ _ 18 categories category NOUN NNS Number=Plur 15 pobj _ _ 19 with with ADP IN _ 5 prep _ _ 20 pushouts pushout NOUN NNS Number=Plur 19 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 split split NOUN NN Number=Sing 23 compound _ _ 23 monomorphisms monomorphism NOUN NNS Number=Plur 21 pobj _ _ 24 along along ADP IN _ 20 prep _ _ 25 arbitrary arbitrary ADJ JJ Degree=Pos 26 amod _ _ 26 morphisms morphism NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 3 punct _ _ 28 whereas whereas SCONJ IN _ 33 mark _ _ 29 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 30 full full ADJ JJ Degree=Pos 31 amod _ _ 31 description description NOUN NN Number=Sing 33 nsubjpass _ _ 32 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 33 auxpass _ _ 33 achieved achieve VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 advcl _ _ 34 for for ADP IN _ 33 prep _ _ 35 quasi quasi ADJ JJ Degree=Pos 37 advmod _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 pointed point VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 40 amod _ _ 38 regular regular ADJ JJ Degree=Pos 40 amod _ _ 39 Maltsev Maltsev PROPN NNP Number=Sing 40 compound _ _ 40 categories category NOUN NNS Number=Plur 34 pobj _ _ 41 with with ADP IN _ 40 prep _ _ 42 pushouts pushout NOUN NNS Number=Plur 41 pobj _ _ 43 of of ADP IN _ 42 prep _ _ 44 split split NOUN NN Number=Sing 45 compound _ _ 45 monomorphisms monomorphism NOUN NNS Number=Plur 43 pobj _ _ 46 along along ADP IN _ 42 prep _ _ 47 arbitrary arbitrary ADJ JJ Degree=Pos 48 amod _ _ 48 morphisms morphism NOUN NNS Number=Plur 46 pobj _ SpaceAfter=No 49 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 645 # sent_id = 1 # text = We study the existence and left properness of transferred model structures for ``monoid - like'' objects in monoidal model categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 existence existence NOUN NN Number=Sing 2 dobj _ _ 5 and and CCONJ CC ConjType=Cmp 2 cc _ _ 6 left leave VERB VBD Tense=Past|VerbForm=Fin 2 conj _ _ 7 properness properness NOUN NN Number=Sing 6 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 transferred transfer VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 amod _ _ 10 model model NOUN NN Number=Sing 11 compound _ _ 11 structures structure NOUN NNS Number=Plur 8 pobj _ _ 12 for for ADP IN _ 6 prep _ _ 13 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 19 punct _ SpaceAfter=No 14 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 19 punct _ SpaceAfter=No 15 monoid monoid NOUN NN Number=Sing 17 npadvmod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 like like ADJ JJ Degree=Pos 19 amod _ SpaceAfter=No 18 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 19 punct _ _ 19 objects object NOUN NNS Number=Plur 12 pobj _ _ 20 in in ADP IN _ 19 prep _ _ 21 monoidal monoidal ADJ JJ Degree=Pos 23 amod _ _ 22 model model NOUN NN Number=Sing 23 compound _ _ 23 categories category NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = These include genuine monoids, but also all kinds of operads as for instance symmetric, cyclic, modular, higher operads, properads and PROP's. 1 These these PRON DT Number=Plur|PronType=Dem 2 nsubj _ _ 2 include include VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 genuine genuine ADJ JJ Degree=Pos 4 amod _ _ 4 monoids monoid NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 2 punct _ _ 6 but but CCONJ CC ConjType=Cmp 2 cc _ _ 7 also also ADV RB _ 6 advmod _ _ 8 all all DET DT _ 9 det _ _ 9 kinds kind NOUN NNS Number=Plur 2 conj _ _ 10 of of ADP IN _ 9 prep _ _ 11 operads operad NOUN NNS Number=Plur 10 pobj _ _ 12 as as ADP IN _ 9 prep _ _ 13 for for ADP IN _ 12 prep _ _ 14 instance instance NOUN NN Number=Sing 22 nmod _ _ 15 symmetric symmetric ADJ JJ Degree=Pos 22 amod _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 cyclic cyclic PROPN NNP Number=Sing 15 conj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 modular modular ADJ JJ Degree=Pos 22 amod _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 22 punct _ _ 21 higher high ADJ JJR Degree=Cmp 22 amod _ _ 22 operads operad NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 properads properad NOUN NNS Number=Plur 22 conj _ _ 25 and and CCONJ CC ConjType=Cmp 24 cc _ _ 26 PROP PROP PROPN NNP Number=Sing 24 conj _ SpaceAfter=No 27 's 's PART POS _ 26 case _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = All these structures can be realised as algebras over polynomial monads. 1 All all DET PDT _ 3 predet _ _ 2 these these DET DT Number=Plur|PronType=Dem 3 det _ _ 3 structures structure NOUN NNS Number=Plur 6 nsubjpass _ _ 4 can can AUX MD VerbForm=Fin 6 aux _ _ 5 be be AUX VB VerbForm=Inf 6 auxpass _ _ 6 realised realise VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 as as ADP IN _ 6 prep _ _ 8 algebras algebra NOUN NNS Number=Plur 7 pobj _ _ 9 over over ADP IN _ 6 prep _ _ 10 polynomial polynomial ADJ JJ Degree=Pos 11 amod _ _ 11 monads monad NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = We give a general condition for a polynomial monad which ensures the existence and (relative) left properness of a transferred model structure for its algebras. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 general general ADJ JJ Degree=Pos 5 amod _ _ 5 condition condition NOUN NN Number=Sing 2 dobj _ _ 6 for for ADP IN _ 2 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 polynomial polynomial ADJ JJ Degree=Pos 9 amod _ _ 9 monad monad NOUN NNS Number=Plur 6 pobj _ _ 10 which which PRON WDT _ 11 nsubj _ _ 11 ensures ensure VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 relcl _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 existence existence NOUN NN Number=Sing 11 dobj _ _ 14 and and CCONJ CC ConjType=Cmp 11 cc _ _ 15 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 16 punct _ SpaceAfter=No 16 relative relative NOUN NN Number=Sing 11 conj _ SpaceAfter=No 17 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 16 punct _ _ 18 left leave VERB VBD Tense=Past|VerbForm=Fin 2 conj _ _ 19 properness properness NOUN NN Number=Sing 18 dobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 22 transferred transfer VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 23 model model NOUN NN Number=Sing 24 compound _ _ 24 structure structure NOUN NN Number=Sing 20 pobj _ _ 25 for for ADP IN _ 24 prep _ _ 26 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 27 poss _ _ 27 algebras algebra NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = This condition is of a combinatorial nature and singles out a special class of polynomial monads which we call tame polynomial. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 condition condition NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 of of ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 combinatorial combinatorial ADJ JJ Degree=Pos 7 amod _ _ 7 nature nature NOUN NN Number=Sing 4 pobj _ _ 8 and and CCONJ CC ConjType=Cmp 3 cc _ _ 9 singles single VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 conj _ _ 10 out out ADP RP _ 9 prt _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 special special ADJ JJ Degree=Pos 13 amod _ _ 13 class class NOUN NN Number=Sing 9 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 polynomial polynomial ADJ JJ Degree=Pos 16 amod _ _ 16 monads monad NOUN NNS Number=Plur 14 pobj _ _ 17 which which PRON WDT _ 19 dobj _ _ 18 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 19 nsubj _ _ 19 call call VERB VBP Tense=Pres|VerbForm=Fin 13 relcl _ _ 20 tame tame ADJ JJ Degree=Pos 21 amod _ _ 21 polynomial polynomial NOUN NN Number=Sing 19 oprd _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = Many important monads are shown to be tame polynomial. 1 Many many ADJ JJ Degree=Pos 3 amod _ _ 2 important important ADJ JJ Degree=Pos 3 amod _ _ 3 monads monad NOUN NNS Number=Plur 5 nsubjpass _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 to to PART TO _ 7 aux _ _ 7 be be AUX VB VerbForm=Inf 5 xcomp _ _ 8 tame tame ADJ JJ Degree=Pos 9 amod _ _ 9 polynomial polynomial NOUN NN Number=Sing 7 attr _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 646 # sent_id = 1 # text = We define the notion of a $ (P, tilde{P}) $ - structure on a universe $ p $ in a locally cartesian closed category category with a binary product structure and construct a $ (Pi, lambda) $ - structure on the $ C $ - systems $ CC(C, p) $ from a $ (P, tilde{P}) $ - structure on $ p $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 notion notion NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 7 $ (P, tilde{P}) $ $ (p, tilde{p}) $ SYM $ _ 9 compound _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 structure structure NOUN NN Number=Sing 5 pobj _ _ 10 on on ADP IN _ 2 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 universe universe NOUN NN Number=Sing 10 pobj _ _ 13 $ p $ $ p $ SYM $ _ 12 appos _ _ 14 in in ADP IN _ 2 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 16 locally locally ADV RB _ 17 advmod _ _ 17 cartesian cartesian ADJ JJ Degree=Pos 20 amod _ _ 18 closed closed ADJ JJ Degree=Pos 20 amod _ _ 19 category category NOUN NN Number=Sing 20 compound _ _ 20 category category NOUN NN Number=Sing 14 pobj _ _ 21 with with ADP IN _ 20 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 23 binary binary ADJ JJ Degree=Pos 25 amod _ _ 24 product product NOUN NN Number=Sing 25 compound _ _ 25 structure structure NOUN NN Number=Sing 21 pobj _ _ 26 and and CCONJ CC ConjType=Cmp 2 cc _ _ 27 construct construct VERB VB VerbForm=Inf 2 conj _ _ 28 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 29 $ (Pi, lambda) $ $ (pi, lambda) $ NUM CD NumType=Card 31 compound _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 structure structure NOUN NN Number=Sing 27 dobj _ _ 32 on on ADP IN _ 27 prep _ _ 33 the the DET DT Definite=Def|PronType=Art 36 det _ _ 34 $ C $ $ c $ SYM $ _ 36 compound _ _ 35 - - PUNCT HYPH PunctType=Dash 36 punct _ _ 36 systems system NOUN NNS Number=Plur 32 pobj _ _ 37 $ CC(C, p) $ $ cc(c, p) $ SYM $ _ 27 dep _ _ 38 from from ADP IN _ 27 prep _ _ 39 a a DET DT Definite=Ind|PronType=Art 42 det _ _ 40 $ (P, tilde{P}) $ $ (p, tilde{p}) $ SYM $ _ 42 compound _ _ 41 - - PUNCT HYPH PunctType=Dash 42 punct _ _ 42 structure structure NOUN NN Number=Sing 38 pobj _ _ 43 on on ADP IN _ 42 prep _ _ 44 $ p $ $ p $ SYM $ _ 43 pobj _ _ 45 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We then define homomorphisms of $ C $ - systems with $ (Pi, lambda) $ - structures and functors of universe categories with $ (P, tilde{P}) $ - structures and show that our construction is functorial relative to these definitions. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 homomorphisms homomorphism NOUN NNS Number=Plur 3 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 $ C $ $ c $ SYM $ _ 8 compound _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 systems system NOUN NNS Number=Plur 5 pobj _ _ 9 with with ADP IN _ 3 prep _ _ 10 $ (Pi, lambda) $ $ (pi, lambda) $ SYM $ _ 12 compound _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 structures structure NOUN NNS Number=Plur 9 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 functors functor NOUN NNS Number=Plur 12 conj _ _ 15 of of ADP IN _ 14 prep _ _ 16 universe universe ADJ JJ Degree=Pos 17 amod _ _ 17 categories category NOUN NNS Number=Plur 15 pobj _ _ 18 with with ADP IN _ 17 prep _ _ 19 $ (P, tilde{P}) $ $ (p, tilde{p}) $ SYM $ _ 21 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 structures structure NOUN NNS Number=Plur 18 pobj _ _ 22 and and CCONJ CC ConjType=Cmp 3 cc _ _ 23 show show VERB VBP Tense=Pres|VerbForm=Fin 3 conj _ _ 24 that that SCONJ IN _ 27 mark _ _ 25 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 26 poss _ _ 26 construction construction NOUN NN Number=Sing 27 nsubj _ _ 27 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 ccomp _ _ 28 functorial functorial ADJ JJ Degree=Pos 29 amod _ _ 29 relative relative ADJ JJ Degree=Pos 27 acomp _ _ 30 to to ADP IN _ 29 prep _ _ 31 these these DET DT Number=Plur|PronType=Dem 32 det _ _ 32 definitions definition NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 647 # sent_id = 1 # text = The main result of this paper may be stated as a construction of "almost representations" $ mu_n $ and $ tilde{mu}_n $ for the presheaves $ Ob_n $ and $ tilde{Ob}_n $ on the $ C $ - systems defined by locally cartesian closed universe categories with binary product structures and the study of the behavior of these "almost representations" with respect to the universe category functors. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 result result NOUN NN Number=Sing 9 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 6 paper paper NOUN NN Number=Sing 4 pobj _ _ 7 may may AUX MD VerbForm=Fin 9 aux _ _ 8 be be AUX VB VerbForm=Inf 9 auxpass _ _ 9 stated state VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 10 as as ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 construction construction NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 " " PUNCT `` PunctSide=Ini|PunctType=Quot 16 punct _ SpaceAfter=No 15 almost almost ADV RB _ 16 advmod _ _ 16 representations representation VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 pobj _ SpaceAfter=No 17 " " PUNCT '' PunctSide=Fin|PunctType=Quot 16 punct _ _ 18 $ mu_n $ $ mu_n $ SYM $ _ 16 appos _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 $ tilde{mu}_n $ $ tilde{mu}_n $ SYM $ _ 18 conj _ _ 21 for for ADP IN _ 16 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 presheaves presheave NOUN NNS Number=Plur 21 pobj _ _ 24 $ Ob_n $ $ ob_n $ SYM $ _ 23 appos _ _ 25 and and CCONJ CC ConjType=Cmp 24 cc _ _ 26 $ tilde{Ob}_n $ $ tilde{ob}_n $ SYM $ _ 24 conj _ _ 27 on on ADP IN _ 16 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 31 det _ _ 29 $ C $ $ c $ SYM $ _ 31 compound _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 systems system NOUN NNS Number=Plur 27 pobj _ _ 32 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 31 acl _ _ 33 by by ADP IN _ 32 agent _ _ 34 locally locally ADV RB _ 35 advmod _ _ 35 cartesian cartesian ADJ JJ Degree=Pos 38 amod _ _ 36 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 38 amod _ _ 37 universe universe ADJ JJ Degree=Pos 38 amod _ _ 38 categories category NOUN NNS Number=Plur 33 pobj _ _ 39 with with ADP IN _ 38 prep _ _ 40 binary binary ADJ JJ Degree=Pos 42 amod _ _ 41 product product NOUN NN Number=Sing 42 compound _ _ 42 structures structure NOUN NNS Number=Plur 39 pobj _ _ 43 and and CCONJ CC ConjType=Cmp 42 cc _ _ 44 the the DET DT Definite=Def|PronType=Art 45 det _ _ 45 study study NOUN NN Number=Sing 42 conj _ _ 46 of of ADP IN _ 45 prep _ _ 47 the the DET DT Definite=Def|PronType=Art 48 det _ _ 48 behavior behavior NOUN NN Number=Sing 46 pobj _ _ 49 of of ADP IN _ 48 prep _ _ 50 these these DET DT Number=Plur|PronType=Dem 53 det _ _ 51 " " PUNCT `` PunctSide=Ini|PunctType=Quot 53 punct _ SpaceAfter=No 52 almost almost ADV RB _ 53 advmod _ _ 53 representations representation VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 49 pobj _ SpaceAfter=No 54 " " PUNCT '' PunctSide=Fin|PunctType=Quot 53 punct _ _ 55 with with ADP IN _ 53 prep _ _ 56 respect respect NOUN NN Number=Sing 55 pobj _ _ 57 to to ADP IN _ 56 prep _ _ 58 the the DET DT Definite=Def|PronType=Art 61 det _ _ 59 universe universe ADJ JJ Degree=Pos 61 compound _ _ 60 category category NOUN NN Number=Sing 61 compound _ _ 61 functors functor NOUN NNS Number=Plur 57 pobj _ SpaceAfter=No 62 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 2 # text = In addition, we study a number of constructions on presheaves on $ C $ - systems and on universe categories that are used in the proofs of our main results, but are expected to have other applications as well. 1 In in ADP IN _ 5 prep _ _ 2 addition addition NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 number number NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 constructions construction NOUN NNS Number=Plur 8 pobj _ _ 10 on on ADP IN _ 5 prep _ _ 11 presheaves presheave NOUN NNS Number=Plur 10 pobj _ _ 12 on on ADP IN _ 11 prep _ _ 13 $ C $ $ c $ SYM $ _ 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 systems system NOUN NNS Number=Plur 12 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 12 cc _ _ 17 on on ADP IN _ 5 prep _ _ 18 universe universe ADJ JJ Degree=Pos 19 amod _ _ 19 categories category NOUN NNS Number=Plur 17 pobj _ _ 20 that that PRON WDT PronType=Rel 22 nsubjpass _ _ 21 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 22 auxpass _ _ 22 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 relcl _ _ 23 in in ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 proofs proof NOUN NNS Number=Plur 23 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 29 poss _ _ 28 main main ADJ JJ Degree=Pos 29 amod _ _ 29 results result NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 5 punct _ _ 31 but but CCONJ CC ConjType=Cmp 5 cc _ _ 32 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 33 auxpass _ _ 33 expected expect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 conj _ _ 34 to to PART TO _ 35 aux _ _ 35 have have VERB VB VerbForm=Inf 33 xcomp _ _ 36 other other ADJ JJ Degree=Pos 37 amod _ _ 37 applications application NOUN NNS Number=Plur 35 dobj _ _ 38 as as ADV RB _ 39 advmod _ _ 39 well well ADV RB Degree=Pos 35 advmod _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 648 # sent_id = 1 # text = We introduce a functor called the simplicial nerve of an $ A_infty $ - category defined on the category of $ A_infty $ - categories with values in simplicial sets. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 functor functor NOUN NN Number=Sing 2 dobj _ _ 5 called call VERB VBD Tense=Past|VerbForm=Fin 4 acl _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 simplicial simplicial ADJ JJ Degree=Pos 8 amod _ _ 8 nerve nerve NOUN NN Number=Sing 5 oprd _ _ 9 of of ADP IN _ 8 prep _ _ 10 an an DET DT Definite=Ind|PronType=Art 13 det _ _ 11 $ A_infty $ $ a_infty $ SYM $ _ 13 amod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 category category NOUN NN Number=Sing 9 pobj _ _ 14 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 acl _ _ 15 on on ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 category category NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 $ A_infty $ $ a_infty $ SYM $ _ 21 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 categories category NOUN NNS Number=Plur 18 pobj _ _ 22 with with ADP IN _ 17 prep _ _ 23 values value NOUN NNS Number=Plur 22 pobj _ _ 24 in in ADP IN _ 23 prep _ _ 25 simplicial simplicial ADJ JJ Degree=Pos 26 amod _ _ 26 sets set NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We show that the nerve of an $ A_infty $ - category is an $ (infty, 1) $ - category in the sense of Lurie. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 11 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 nerve nerve NOUN NN Number=Sing 11 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 an an DET DT Definite=Ind|PronType=Art 10 det _ _ 8 $ A_infty $ $ a_infty $ SYM $ _ 10 compound _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 category category NOUN NN Number=Sing 6 pobj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 12 an an DET DT Definite=Ind|PronType=Art 15 det _ _ 13 $ (infty, 1) $ $ (infty, 1) $ SYM $ _ 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 category category NOUN NN Number=Sing 11 attr _ _ 16 in in ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 sense sense NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 Lurie Lurie PROPN NNP Number=Sing 19 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = This construction generalizes the nerve construction for differential graded categories given by Lurie. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 construction construction NOUN NN Number=Sing 3 nsubj _ _ 3 generalizes generalize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 nerve nerve NOUN NN Number=Sing 6 compound _ _ 6 construction construction NOUN NN Number=Sing 3 dobj _ _ 7 for for ADP IN _ 6 prep _ _ 8 differential differential ADJ JJ Degree=Pos 10 amod _ _ 9 graded grade VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 10 categories category NOUN NNS Number=Plur 7 pobj _ _ 11 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 acl _ _ 12 by by ADP IN _ 11 agent _ _ 13 Lurie Lurie PROPN NNP Number=Sing 12 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = We prove that if a differential graded category is pretriangulated in the sense of Bondal and Kapranov then its nerve is a stable $ (infty, 1) $ - category in the sense of Lurie. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 21 mark _ _ 4 if if SCONJ IN _ 10 mark _ _ 5 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 6 differential differential ADJ JJ Degree=Pos 7 advmod _ _ 7 graded grade VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 8 category category NOUN NN Number=Sing 10 nsubjpass _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 10 pretriangulated pretriangulate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 advcl _ _ 11 in in ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 sense sense NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 Bondal Bondal PROPN NNP Number=Sing 14 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 Kapranov Kapranov PROPN NNP Number=Sing 15 conj _ _ 18 then then ADV RB PronType=Dem 21 advmod _ _ 19 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 20 poss _ _ 20 nerve nerve NOUN NN Number=Sing 21 nsubj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 22 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 23 stable stable ADJ JJ Degree=Pos 26 amod _ _ 24 $ (infty, 1) $ $ (infty, 1) $ SYM $ _ 26 compound _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 category category NOUN NN Number=Sing 21 attr _ _ 27 in in ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 29 det _ _ 29 sense sense NOUN NN Number=Sing 27 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 Lurie Lurie PROPN NNP Number=Sing 30 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 649 # sent_id = 1 # text = We consider Toeplitz and Cuntz - Krieger $ C^* $ - algebras associated with finitely aligned left cancellative small categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 Toeplitz Toeplitz PROPN NNP Number=Sing 2 dobj _ _ 4 and and CCONJ CC ConjType=Cmp 3 cc _ _ 5 Cuntz Cuntz PROPN NNP Number=Sing 7 compound _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 Krieger Krieger PROPN NNP Number=Sing 3 conj _ _ 8 $ C^* $ $ c^* $ SYM $ _ 10 compound _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 algebras algebra NOUN NNS Number=Plur 3 conj _ _ 11 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 acl _ _ 12 with with ADP IN _ 11 prep _ _ 13 finitely finitely ADV RB _ 14 advmod _ _ 14 aligned align VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 amod _ _ 15 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 amod _ _ 16 cancellative cancellative ADJ JJ Degree=Pos 18 amod _ _ 17 small small ADJ JJ Degree=Pos 18 amod _ _ 18 categories category NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We pay special attention to the case where such a category arises as the Zappa - Szep product of a category and a group linked by a one - cocycle. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 pay pay VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 special special ADJ JJ Degree=Pos 4 amod _ _ 4 attention attention NOUN NN Number=Sing 2 dobj _ _ 5 to to ADP IN _ 2 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 case case NOUN NN Number=Sing 5 pobj _ _ 8 where where SCONJ WRB _ 12 advmod _ _ 9 such such DET PDT _ 11 predet _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 category category NOUN NN Number=Sing 12 nsubj _ _ 12 arises arise VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 relcl _ _ 13 as as ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 18 det _ _ 15 Zappa Zappa PROPN NNP Number=Sing 17 compound _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 Szep Szep PROPN NNP Number=Sing 18 compound _ _ 18 product product NOUN NN Number=Sing 13 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 21 category category NOUN NN Number=Sing 19 pobj _ _ 22 and and CCONJ CC ConjType=Cmp 18 cc _ _ 23 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 24 group group NOUN NN Number=Sing 18 conj _ _ 25 linked link VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 acl _ _ 26 by by ADP IN _ 25 agent _ _ 27 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 28 one one NUM CD NumType=Card 30 nummod _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 cocycle cocycle NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = As our main application, we obtain a new approach to Exel - Pardo algebras in the case of row - finite graphs. 1 As as ADP IN _ 7 prep _ _ 2 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 4 poss _ _ 3 main main ADJ JJ Degree=Pos 4 amod _ _ 4 application application NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 new new ADJ JJ Degree=Pos 10 amod _ _ 10 approach approach NOUN NN Number=Sing 7 dobj _ _ 11 to to ADP IN _ 10 prep _ _ 12 Exel Exel PROPN NNP Number=Sing 14 compound _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 Pardo Pardo PROPN NNP Number=Sing 15 compound _ _ 15 algebras algebra NOUN NNS Number=Plur 11 pobj _ _ 16 in in ADP IN _ 7 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 case case NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 row row NOUN NN Number=Sing 22 compound _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 finite finite ADJ JJ Degree=Pos 23 amod _ _ 23 graphs graph NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = We also present some other ways of constructing $ C^* $ - algebras from left cancellative small categories and discuss their relationship. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 some some DET DT _ 6 det _ _ 5 other other ADJ JJ Degree=Pos 6 amod _ _ 6 ways way NOUN NNS Number=Plur 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 constructing construct VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 pcomp _ _ 9 $ C^* $ $ c^* $ SYM $ _ 11 compound _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 algebras algebra NOUN NNS Number=Plur 8 dobj _ _ 12 from from ADP IN _ 11 prep _ _ 13 left left ADJ JJ Degree=Pos 16 amod _ _ 14 cancellative cancellative ADJ JJ Degree=Pos 16 amod _ _ 15 small small ADJ JJ Degree=Pos 16 amod _ _ 16 categories category NOUN NNS Number=Plur 12 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 8 cc _ _ 18 discuss discuss VERB VB VerbForm=Inf 8 conj _ _ 19 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 20 poss _ _ 20 relationship relationship NOUN NN Number=Sing 18 dobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 650 # sent_id = 1 # text = Coarse - graining is a standard method of extracting a simpler Markov process from a more complicated one by identifying states. 1 Coarse coarse ADV RB _ 3 amod _ _ 2 - - PUNCT HYPH PunctType=Dash 3 punct _ _ 3 graining graining NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 standard standard ADJ JJ Degree=Pos 7 amod _ _ 7 method method NOUN NN Number=Sing 4 attr _ _ 8 of of ADP IN _ 7 prep _ _ 9 extracting extract VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 pcomp _ _ 10 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 11 simpler simple ADJ JJR Degree=Cmp 13 amod _ _ 12 Markov Markov PROPN NNP Number=Sing 13 compound _ _ 13 process process NOUN NN Number=Sing 9 dobj _ _ 14 from from ADP IN _ 9 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 16 more more ADV RBR Degree=Cmp 17 advmod _ _ 17 complicated complicated ADJ JJ Degree=Pos 18 amod _ _ 18 one one NUM CD NumType=Card 14 pobj _ _ 19 by by ADP IN _ 9 prep _ _ 20 identifying identify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 19 pcomp _ _ 21 states state NOUN NNS Number=Plur 20 dobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = Here we extend coarse - graining to `open' Markov processes: that is, those where probability can flow in or out of certain states called `inputs' and `outputs'. 1 Here here ADV RB PronType=Dem 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 extend extend VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 coarse coarse ADV RB _ 6 advmod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 graining grain VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 amod _ _ 7 to to PART TO _ 9 aux _ _ 8 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 9 punct _ SpaceAfter=No 9 open open VERB VB VerbForm=Inf 12 amod _ SpaceAfter=No 10 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 12 punct _ _ 11 Markov Markov PROPN NNP Number=Sing 12 compound _ _ 12 processes process NOUN NNS Number=Plur 3 dobj _ SpaceAfter=No 13 : : PUNCT : _ 12 punct _ _ 14 that that PRON DT Number=Sing|PronType=Dem 15 advmod _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 advmod _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 those those PRON DT Number=Plur|PronType=Dem 15 attr _ _ 18 where where SCONJ WRB _ 21 advmod _ _ 19 probability probability NOUN NN Number=Sing 21 nsubj _ _ 20 can can AUX MD VerbForm=Fin 21 aux _ _ 21 flow flow VERB VB VerbForm=Inf 17 relcl _ _ 22 in in ADP IN _ 21 prep _ _ 23 or or CCONJ CC ConjType=Cmp 22 cc _ _ 24 out out ADP IN _ 22 conj _ _ 25 of of ADP IN _ 24 prep _ _ 26 certain certain ADJ JJ Degree=Pos 27 amod _ _ 27 states state NOUN NNS Number=Plur 25 pobj _ _ 28 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 acl _ _ 29 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 30 punct _ SpaceAfter=No 30 inputs input NOUN NNS Number=Plur 28 oprd _ SpaceAfter=No 31 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 30 punct _ _ 32 and and CCONJ CC ConjType=Cmp 30 cc _ _ 33 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 34 punct _ SpaceAfter=No 34 outputs output NOUN NNS Number=Plur 30 conj _ SpaceAfter=No 35 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 15 punct _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 3 # text = One can build up an ordinary Markov process from smaller open pieces in two basic ways: composition, where we identify the outputs of one open Markov process with the inputs of another, and tensoring, where we set two open Markov processes side by side. 1 One one PRON PRP PronType=Prs 3 nsubj _ _ 2 can can AUX MD VerbForm=Fin 3 aux _ _ 3 build build VERB VB VerbForm=Inf 0 ROOT _ _ 4 up up ADP RP _ 3 prt _ _ 5 an an DET DT Definite=Ind|PronType=Art 8 det _ _ 6 ordinary ordinary ADJ JJ Degree=Pos 8 amod _ _ 7 Markov Markov PROPN NNP Number=Sing 8 compound _ _ 8 process process NOUN NN Number=Sing 3 dobj _ _ 9 from from ADP IN _ 3 prep _ _ 10 smaller small ADJ JJR Degree=Cmp 12 amod _ _ 11 open open ADJ JJ Degree=Pos 12 amod _ _ 12 pieces piece NOUN NNS Number=Plur 9 pobj _ _ 13 in in ADP IN _ 3 prep _ _ 14 two two NUM CD NumType=Card 16 nummod _ _ 15 basic basic ADJ JJ Degree=Pos 16 amod _ _ 16 ways way NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 17 : : PUNCT : _ 16 punct _ _ 18 composition composition NOUN NN Number=Sing 16 appos _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 where where SCONJ WRB _ 22 advmod _ _ 21 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 22 nsubj _ _ 22 identify identify VERB VBP Tense=Pres|VerbForm=Fin 18 relcl _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 outputs output NOUN NNS Number=Plur 22 dobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 one one NUM CD NumType=Card 29 nummod _ _ 27 open open ADJ JJ Degree=Pos 29 amod _ _ 28 Markov Markov PROPN NNP Number=Sing 29 compound _ _ 29 process process NOUN NN Number=Sing 25 pobj _ _ 30 with with ADP IN _ 29 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 inputs input NOUN NNS Number=Plur 30 pobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 another another PRON DT _ 33 pobj _ SpaceAfter=No 35 , , PUNCT , PunctType=Comm 18 punct _ _ 36 and and CCONJ CC ConjType=Cmp 18 cc _ _ 37 tensoring tensoring NOUN NN Number=Sing 18 conj _ SpaceAfter=No 38 , , PUNCT , PunctType=Comm 37 punct _ _ 39 where where SCONJ WRB _ 41 advmod _ _ 40 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 41 nsubj _ _ 41 set set VERB VBD Tense=Past|VerbForm=Fin 18 relcl _ _ 42 two two NUM CD NumType=Card 45 nummod _ _ 43 open open ADJ JJ Degree=Pos 45 amod _ _ 44 Markov Markov PROPN NNP Number=Sing 45 compound _ _ 45 processes process NOUN NNS Number=Plur 41 dobj _ _ 46 side side NOUN NN Number=Sing 41 dobj _ _ 47 by by ADP IN _ 41 prep _ _ 48 side side NOUN NN Number=Sing 47 pobj _ SpaceAfter=No 49 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = In previous work, Fong, Pollard and the first author showed that these constructions make open Markov processes into the morphisms of a symmetric monoidal category. 1 In in ADP IN _ 12 prep _ _ 2 previous previous ADJ JJ Degree=Pos 3 amod _ _ 3 work work NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 12 punct _ _ 5 Fong Fong PROPN NNP Number=Sing 12 nsubj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 Pollard Pollard PROPN NNP Number=Sing 5 conj _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 first first ADJ JJ Degree=Pos 11 amod _ _ 11 author author NOUN NN Number=Sing 7 conj _ _ 12 showed show VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 13 that that SCONJ IN _ 16 mark _ _ 14 these these DET DT Number=Plur|PronType=Dem 15 det _ _ 15 constructions construction NOUN NNS Number=Plur 16 nsubj _ _ 16 make make VERB VBP Tense=Pres|VerbForm=Fin 12 ccomp _ _ 17 open open ADJ JJ Degree=Pos 19 amod _ _ 18 Markov Markov PROPN NNP Number=Sing 19 compound _ _ 19 processes process NOUN NNS Number=Plur 16 dobj _ _ 20 into into ADP IN _ 16 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 morphisms morphism NOUN NNS Number=Plur 20 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 25 symmetric symmetric ADJ JJ Degree=Pos 27 amod _ _ 26 monoidal monoidal ADJ JJ Degree=Pos 27 amod _ _ 27 category category NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 5 # text = Here we go further by constructing a symmetric monoidal double category where the 2 - morphisms include ways of coarse - graining open Markov processes. 1 Here here ADV RB PronType=Dem 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 go go VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 further far ADV RB _ 3 advmod _ _ 5 by by ADP IN _ 3 prep _ _ 6 constructing construct VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 pcomp _ _ 7 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 8 symmetric symmetric ADJ JJ Degree=Pos 9 amod _ _ 9 monoidal monoidal ADJ JJ Degree=Pos 11 amod _ _ 10 double double ADJ JJ Degree=Pos 11 amod _ _ 11 category category NOUN NN Number=Sing 6 dobj _ _ 12 where where SCONJ WRB _ 17 advmod _ _ 13 the the DET DT Definite=Def|PronType=Art 16 det _ _ 14 2 2 NUM CD NumType=Card 16 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 morphisms morphism NOUN NNS Number=Plur 17 nsubj _ _ 17 include include VERB VBP Tense=Pres|VerbForm=Fin 11 relcl _ _ 18 ways way NOUN NNS Number=Plur 17 dobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 coarse coarse ADV RB _ 22 advmod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 graining grain VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 25 amod _ _ 23 open open ADJ JJ Degree=Pos 25 amod _ _ 24 Markov Markov PROPN NNP Number=Sing 25 compound _ _ 25 processes process NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = We also extend the already known `black - boxing' functor from the category of open Markov processes to our double category. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 extend extend VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 10 det _ _ 5 already already ADV RB _ 6 advmod _ _ 6 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 7 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 10 punct _ SpaceAfter=No 8 black black ADJ JJ Degree=Pos 10 amod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 boxing box VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 poss _ SpaceAfter=No 11 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 12 punct _ _ 12 functor functor NOUN NN Number=Sing 3 dobj _ _ 13 from from ADP IN _ 3 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 category category NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 open open ADJ JJ Degree=Pos 19 amod _ _ 18 Markov Markov PROPN NNP Number=Sing 19 compound _ _ 19 processes process NOUN NNS Number=Plur 16 pobj _ _ 20 to to ADP IN _ 3 prep _ _ 21 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 23 poss _ _ 22 double double ADJ JJ Degree=Pos 23 amod _ _ 23 category category NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 7 # text = Black - boxing sends any open Markov process to the linear relation between input and output data that holds in steady states, including nonequilibrium steady states where there is a nonzero flow of probability through the process. 1 Black black ADJ JJ Degree=Pos 3 compound _ _ 2 - - PUNCT HYPH PunctType=Dash 3 punct _ _ 3 boxing boxing NOUN NN Number=Sing 4 nsubj _ _ 4 sends send VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 any any DET DT _ 8 det _ _ 6 open open ADJ JJ Degree=Pos 8 amod _ _ 7 Markov Markov PROPN NNP Number=Sing 8 compound _ _ 8 process process NOUN NN Number=Sing 4 dobj _ _ 9 to to ADP IN _ 4 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 linear linear PROPN NNP Number=Sing 12 compound _ _ 12 relation relation NOUN NN Number=Sing 9 pobj _ _ 13 between between ADP IN _ 12 prep _ _ 14 input input NOUN NN Number=Sing 13 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 output output NOUN NN Number=Sing 14 conj _ _ 17 data datum NOUN NNS Number=Plur 14 conj _ _ 18 that that PRON WDT PronType=Rel 19 nsubj _ _ 19 holds hold VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 relcl _ _ 20 in in ADP IN _ 19 prep _ _ 21 steady steady ADJ JJ Degree=Pos 22 amod _ _ 22 states state NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 prep _ _ 25 nonequilibrium nonequilibrium NOUN NN Number=Sing 27 nmod _ _ 26 steady steady ADJ JJ Degree=Pos 27 amod _ _ 27 states state NOUN NNS Number=Plur 24 pobj _ _ 28 where where SCONJ WRB _ 30 advmod _ _ 29 there there PRON EX _ 30 expl _ _ 30 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 27 relcl _ _ 31 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 32 nonzero nonzero NOUN NN Number=Sing 33 compound _ _ 33 flow flow NOUN NN Number=Sing 30 attr _ _ 34 of of ADP IN _ 33 prep _ _ 35 probability probability NOUN NN Number=Sing 34 pobj _ _ 36 through through ADP IN _ 33 prep _ _ 37 the the DET DT Definite=Def|PronType=Art 38 det _ _ 38 process process NOUN NN Number=Sing 36 pobj _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 8 # text = To extend black - boxing to a functor between double categories, we need to prove that black - boxing is compatible with coarse - graining. 1 To to PART TO _ 2 aux _ _ 2 extend extend VERB VB VerbForm=Inf 14 advcl _ _ 3 black black ADJ JJ Degree=Pos 5 amod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 boxing boxing NOUN NN Number=Sing 2 dobj _ _ 6 to to ADP IN _ 2 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 functor functor NOUN NN Number=Sing 6 pobj _ _ 9 between between ADP IN _ 8 prep _ _ 10 double double ADJ JJ Degree=Pos 11 amod _ _ 11 categories category NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 14 punct _ _ 13 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 14 nsubj _ _ 14 need need VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 to to PART TO _ 16 aux _ _ 16 prove prove VERB VB VerbForm=Inf 14 xcomp _ _ 17 that that SCONJ IN _ 21 mark _ _ 18 black black NOUN NN Number=Sing 20 amod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 boxing boxing NOUN NN Number=Sing 21 nsubj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 ccomp _ _ 22 compatible compatible ADJ JJ Degree=Pos 21 acomp _ _ 23 with with ADP IN _ 22 prep _ _ 24 coarse coarse ADV RB _ 26 advmod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 graining graining NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # doc_id = 651 # sent_id = 1 # text = It has been shown by Funk, Hofstra and Steinberg that any Grothendieck topos $ T $ is endowed with a canonical group object, called its isotropy group, which acts functorially on every object of the topos. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 4 nsubjpass _ _ 2 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 aux _ _ 3 been be AUX VBN Tense=Past|VerbForm=Part 4 auxpass _ _ 4 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 by by ADP IN _ 4 agent _ _ 6 Funk Funk PROPN NNP Number=Sing 5 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 6 punct _ _ 8 Hofstra Hofstra PROPN NNP Number=Sing 6 conj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 Steinberg Steinberg PROPN NNP Number=Sing 8 conj _ _ 11 that that SCONJ IN _ 17 mark _ _ 12 any any DET DT _ 13 det _ _ 13 Grothendieck Grothendieck PROPN NNP Number=Sing 17 nsubjpass _ _ 14 topos topos PUNCT -RRB- PunctSide=Fin|PunctType=Brck 13 nmod _ _ 15 $ T $ $ t $ SYM $ _ 14 dobj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 auxpass _ _ 17 endowed endow VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 relcl _ _ 18 with with ADP IN _ 17 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 20 canonical canonical ADJ JJ Degree=Pos 22 amod _ _ 21 group group NOUN NN Number=Sing 22 compound _ _ 22 object object NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 4 punct _ _ 24 called call VERB VBD Tense=Past|VerbForm=Fin 4 conj _ _ 25 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 27 poss _ _ 26 isotropy isotropy ADJ JJ Degree=Pos 27 amod _ _ 27 group group NOUN NN Number=Sing 24 dobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 27 punct _ _ 29 which which PRON WDT _ 30 nsubj _ _ 30 acts act VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 27 relcl _ _ 31 functorially functorially ADV RB _ 30 advmod _ _ 32 on on ADP IN _ 30 prep _ _ 33 every every DET DT _ 34 det _ _ 34 object object NOUN NN Number=Sing 32 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 37 det _ _ 37 topos topos NOUN NN Number=Sing 35 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = We show that this group is in fact the group of points of a localic group object, called the localic isotropy group, which also acts on every object, and in fact also on every internal locale and on every $ T $ - topos. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 6 mark _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 group group NOUN NN Number=Sing 6 nsubj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 7 in in ADP IN _ 6 prep _ _ 8 fact fact NOUN NN Number=Sing 7 pobj _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 group group NOUN NN Number=Sing 19 nsubj _ _ 11 of of ADP IN _ 10 prep _ _ 12 points point NOUN NNS Number=Plur 11 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 15 localic localic ADJ JJ Degree=Pos 17 amod _ _ 16 group group NOUN NN Number=Sing 17 compound _ _ 17 object object NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 10 punct _ _ 19 called call VERB VBD Tense=Past|VerbForm=Fin 6 ccomp _ _ 20 the the DET DT Definite=Def|PronType=Art 23 det _ _ 21 localic localic ADJ JJ Degree=Pos 23 amod _ _ 22 isotropy isotropy PROPN NNP Number=Sing 23 compound _ _ 23 group group NOUN NN Number=Sing 19 oprd _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 23 punct _ _ 25 which which PRON WDT _ 27 nsubj _ _ 26 also also ADV RB _ 27 advmod _ _ 27 acts act VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 relcl _ _ 28 on on ADP IN _ 27 prep _ _ 29 every every DET DT _ 30 det _ _ 30 object object NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 19 punct _ _ 32 and and CCONJ CC ConjType=Cmp 19 cc _ _ 33 in in ADP IN _ 36 prep _ _ 34 fact fact NOUN NN Number=Sing 33 pobj _ _ 35 also also ADV RB _ 36 advmod _ _ 36 on on ADP IN _ 19 prep _ _ 37 every every DET DT _ 39 det _ _ 38 internal internal ADJ JJ Degree=Pos 39 amod _ _ 39 locale locale NOUN NN Number=Sing 36 pobj _ _ 40 and and CCONJ CC ConjType=Cmp 36 cc _ _ 41 on on ADP IN _ 36 conj _ _ 42 every every DET DT _ 45 det _ _ 43 $ T $ $ t $ SYM $ _ 45 compound _ _ 44 - - PUNCT HYPH PunctType=Dash 45 punct _ _ 45 topos topos NOUN NN Number=Sing 41 pobj _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = This new localic isotropy group has better functoriality and stability property than the original version and sheds some light on the phenomenon of higher isotropy observed for the ordinary isotropy group. 1 This this DET DT Number=Sing|PronType=Dem 5 det _ _ 2 new new ADJ JJ Degree=Pos 5 amod _ _ 3 localic localic ADJ JJ Degree=Pos 5 amod _ _ 4 isotropy isotropy PROPN NNP Number=Sing 5 compound _ _ 5 group group PROPN NNP Number=Sing 6 nsubj _ _ 6 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 better well ADJ JJR Degree=Cmp 8 amod _ _ 8 functoriality functoriality NOUN NN Number=Sing 6 dobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 stability stability NOUN NN Number=Sing 11 compound _ _ 11 property property NOUN NN Number=Sing 8 conj _ _ 12 than than ADP IN _ 8 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 original original ADJ JJ Degree=Pos 15 amod _ _ 15 version version NOUN NN Number=Sing 12 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 6 cc _ _ 17 sheds shed VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 conj _ _ 18 some some DET DT _ 19 det _ _ 19 light light NOUN NN Number=Sing 17 dobj _ _ 20 on on ADP IN _ 17 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 phenomenon phenomenon NOUN NN Number=Sing 20 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 higher high ADJ JJR Degree=Cmp 25 amod _ _ 25 isotropy isotropy NOUN NN Number=Sing 23 pobj _ _ 26 observed observe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 25 acl _ _ 27 for for ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 31 det _ _ 29 ordinary ordinary ADJ JJ Degree=Pos 31 amod _ _ 30 isotropy isotropy ADJ JJ Degree=Pos 31 compound _ _ 31 group group NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = We prove in particular using a localic version of the isotropy quotient that any geometric morphism can be factored uniquely as a connected atomic geometric morphism followed by a so called ``essentially anisotropic'' geometric morphism, and that connected atomic morphisms are exactly the quotients by open isotropy actions, hence providing a form of Galois theory for general (unpointed) connected atomic geometric morphisms. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 in in ADP IN _ 2 prep _ _ 4 particular particular ADJ JJ Degree=Pos 3 amod _ _ 5 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 localic localic ADJ JJ Degree=Pos 8 amod _ _ 8 version version NOUN NN Number=Sing 5 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 isotropy isotropy NOUN NN Number=Sing 12 amod _ _ 12 quotient quotient NOUN NN Number=Sing 9 pobj _ _ 13 that that SCONJ IN _ 19 mark _ _ 14 any any DET DT _ 16 det _ _ 15 geometric geometric ADJ JJ Degree=Pos 16 amod _ _ 16 morphism morphism NOUN NN Number=Sing 19 nsubjpass _ _ 17 can can AUX MD VerbForm=Fin 19 aux _ _ 18 be be AUX VB VerbForm=Inf 19 auxpass _ _ 19 factored factor VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 20 uniquely uniquely ADV RB _ 19 advmod _ _ 21 as as ADP IN _ 19 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 23 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 amod _ _ 24 atomic atomic ADJ JJ Degree=Pos 26 amod _ _ 25 geometric geometric ADJ JJ Degree=Pos 26 amod _ _ 26 morphism morphism NOUN NN Number=Sing 21 pobj _ _ 27 followed follow VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 acl _ _ 28 by by ADP IN _ 27 agent _ _ 29 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 30 so so ADV RB _ 31 advmod _ _ 31 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 35 amod _ _ 32 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 35 punct _ SpaceAfter=No 33 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 35 punct _ SpaceAfter=No 34 essentially essentially ADV RB _ 35 advmod _ _ 35 anisotropic anisotropic NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 36 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 35 punct _ _ 37 geometric geometric ADJ JJ Degree=Pos 38 amod _ _ 38 morphism morphism NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 39 , , PUNCT , PunctType=Comm 19 punct _ _ 40 and and CCONJ CC ConjType=Cmp 19 cc _ _ 41 that that SCONJ IN _ 45 mark _ _ 42 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 44 amod _ _ 43 atomic atomic ADJ JJ Degree=Pos 44 amod _ _ 44 morphisms morphism NOUN NNS Number=Plur 45 nsubj _ _ 45 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 19 conj _ _ 46 exactly exactly ADV RB _ 48 advmod _ _ 47 the the DET DT Definite=Def|PronType=Art 48 det _ _ 48 quotients quotient NOUN NNS Number=Plur 45 attr _ _ 49 by by ADP IN _ 48 prep _ _ 50 open open ADJ JJ Degree=Pos 52 amod _ _ 51 isotropy isotropy PROPN NNP Number=Sing 52 compound _ _ 52 actions action NOUN NNS Number=Plur 49 pobj _ SpaceAfter=No 53 , , PUNCT , PunctType=Comm 45 punct _ _ 54 hence hence ADV RB _ 55 advmod _ _ 55 providing provide VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 45 advcl _ _ 56 a a DET DT Definite=Ind|PronType=Art 57 det _ _ 57 form form NOUN NN Number=Sing 55 dobj _ _ 58 of of ADP IN _ 57 prep _ _ 59 Galois Galois PROPN NNP Number=Sing 60 compound _ _ 60 theory theory NOUN NN Number=Sing 58 pobj _ _ 61 for for ADP IN _ 60 prep _ _ 62 general general ADJ JJ Degree=Pos 69 amod _ _ 63 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 69 punct _ SpaceAfter=No 64 unpointed unpointed ADJ JJ Degree=Pos 69 amod _ SpaceAfter=No 65 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 69 punct _ _ 66 connected connect VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 69 amod _ _ 67 atomic atomic ADJ JJ Degree=Pos 69 amod _ _ 68 geometric geometric ADJ JJ Degree=Pos 69 amod _ _ 69 morphisms morphism NOUN NNS Number=Plur 61 pobj _ SpaceAfter=No 70 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 652 # sent_id = 1 # text = The present article is the first of a series whose goal is to define a logical formalism in which it is possible to reason about genetics. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 present present ADJ JJ Degree=Pos 3 amod _ _ 3 article article NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 first first ADJ JJ Degree=Pos 4 attr _ _ 7 of of ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 series series NOUN NN Number=Sing 7 pobj _ _ 10 whose whose DET WP$ Poss=Yes 11 poss _ _ 11 goal goal NOUN NN Number=Sing 12 nsubj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 relcl _ _ 13 to to PART TO _ 14 aux _ _ 14 define define VERB VB VerbForm=Inf 12 xcomp _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 logical logical ADJ JJ Degree=Pos 17 amod _ _ 17 formalism formalism NOUN NN Number=Sing 14 dobj _ _ 18 in in ADP IN _ 21 prep _ _ 19 which which PRON WDT _ 18 pobj _ _ 20 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 21 nsubj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 relcl _ _ 22 possible possible ADJ JJ Degree=Pos 21 acomp _ _ 23 to to PART TO _ 24 aux _ _ 24 reason reason VERB VB VerbForm=Inf 21 xcomp _ _ 25 about about ADP IN _ 24 prep _ _ 26 genetics genetic NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = In this paper, we introduce the main concepts of our language whose domain of discourse consists of a class of limit - sketches and their associated models. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 main main ADJ JJ Degree=Pos 9 amod _ _ 9 concepts concept NOUN NNS Number=Plur 6 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 12 poss _ _ 12 language language NOUN NN Number=Sing 10 pobj _ _ 13 whose whose DET WP$ Poss=Yes 14 poss _ _ 14 domain domain NOUN NN Number=Sing 17 nsubj _ _ 15 of of ADP IN _ 14 prep _ _ 16 discourse discourse NOUN NN Number=Sing 15 pobj _ _ 17 consists consist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 relcl _ _ 18 of of ADP IN _ 17 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 class class NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 limit limit NOUN NN Number=Sing 24 compound _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 sketches sketch NOUN NNS Number=Plur 21 pobj _ _ 25 and and CCONJ CC ConjType=Cmp 24 cc _ _ 26 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 28 poss _ _ 27 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 amod _ _ 28 models model NOUN NNS Number=Plur 24 conj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = While our program will aim to show that different phenomena of genetics can be modeled by changing the category in which the models take their values, in this paper, we study models in the category of sets to capture mutation mechanisms such as insertions, deletions, substitutions, duplications and inversions. 1 While while SCONJ IN _ 5 mark _ _ 2 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 3 poss _ _ 3 program program NOUN NN Number=Sing 5 nsubj _ _ 4 will will AUX MD VerbForm=Fin 5 aux _ _ 5 aim aim VERB VB VerbForm=Inf 33 advcl _ _ 6 to to PART TO _ 7 aux _ _ 7 show show VERB VB VerbForm=Inf 5 xcomp _ _ 8 that that SCONJ IN _ 15 mark _ _ 9 different different ADJ JJ Degree=Pos 10 amod _ _ 10 phenomena phenomenon NOUN NNS Number=Plur 15 nsubjpass _ _ 11 of of ADP IN _ 10 prep _ _ 12 genetics genetic NOUN NNS Number=Plur 11 pobj _ _ 13 can can AUX MD VerbForm=Fin 15 aux _ _ 14 be be AUX VB VerbForm=Inf 15 auxpass _ _ 15 modeled model VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 ccomp _ _ 16 by by ADP IN _ 15 prep _ _ 17 changing change VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 pcomp _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 category category NOUN NN Number=Sing 17 dobj _ _ 20 in in ADP IN _ 24 prep _ _ 21 which which PRON WDT _ 20 pobj _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 models model NOUN NNS Number=Plur 24 nsubj _ _ 24 take take VERB VBP Tense=Pres|VerbForm=Fin 19 relcl _ _ 25 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 26 poss _ _ 26 values value NOUN NNS Number=Plur 24 dobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 17 punct _ _ 28 in in ADP IN _ 17 prep _ _ 29 this this DET DT Number=Sing|PronType=Dem 30 det _ _ 30 paper paper NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 33 punct _ _ 32 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 33 nsubj _ _ 33 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 34 models model NOUN NNS Number=Plur 33 dobj _ _ 35 in in ADP IN _ 33 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 37 det _ _ 37 category category NOUN NN Number=Sing 35 pobj _ _ 38 of of ADP IN _ 37 prep _ _ 39 sets set NOUN NNS Number=Plur 38 pobj _ _ 40 to to PART TO _ 41 aux _ _ 41 capture capture VERB VB VerbForm=Inf 33 advcl _ _ 42 mutation mutation NOUN NN Number=Sing 43 compound _ _ 43 mechanisms mechanism NOUN NNS Number=Plur 41 dobj _ _ 44 such such ADJ JJ Degree=Pos 45 amod _ _ 45 as as ADP IN _ 43 prep _ _ 46 insertions insertion NOUN NNS Number=Plur 45 pobj _ SpaceAfter=No 47 , , PUNCT , PunctType=Comm 46 punct _ _ 48 deletions deletion NOUN NNS Number=Plur 46 conj _ SpaceAfter=No 49 , , PUNCT , PunctType=Comm 48 punct _ _ 50 substitutions substitution NOUN NNS Number=Plur 48 conj _ SpaceAfter=No 51 , , PUNCT , PunctType=Comm 50 punct _ _ 52 duplications duplication NOUN NNS Number=Plur 50 conj _ _ 53 and and CCONJ CC ConjType=Cmp 52 cc _ _ 54 inversions inversion NOUN NNS Number=Plur 52 conj _ SpaceAfter=No 55 . . PUNCT . PunctType=Peri 33 punct _ SpaceAfter=No # sent_id = 4 # text = We show how the proposed formalism can be used for constructing multiple sequence alignments with an emphasis on mutation mechanisms. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 how how SCONJ WRB _ 9 advmod _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 proposed propose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 amod _ _ 6 formalism formalism NOUN NN Number=Sing 9 nsubjpass _ _ 7 can can AUX MD VerbForm=Fin 9 aux _ _ 8 be be AUX VB VerbForm=Inf 9 auxpass _ _ 9 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 10 for for ADP IN _ 9 prep _ _ 11 constructing construct VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 pcomp _ _ 12 multiple multiple ADJ JJ Degree=Pos 14 amod _ _ 13 sequence sequence NOUN NN Number=Sing 14 compound _ _ 14 alignments alignment NOUN NNS Number=Plur 11 dobj _ _ 15 with with ADP IN _ 11 prep _ _ 16 an an DET DT Definite=Ind|PronType=Art 17 det _ _ 17 emphasis emphasis NOUN NN Number=Sing 15 pobj _ _ 18 on on ADP IN _ 17 prep _ _ 19 mutation mutation NOUN NN Number=Sing 20 compound _ _ 20 mechanisms mechanism NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 653 # sent_id = 1 # text = We show that a Hopf monad on a $ * $ - autonomous category lifts $ * $ - autonomous structure to the category of algebras precisely when there is an algebra structure on the dualizing object. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 6 mark _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 Hopf Hopf PROPN NNP Number=Sing 6 compound _ _ 6 monad monad VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 7 on on ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 9 $ * $ $ * $ SYM $ _ 11 advmod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 autonomous autonomous ADJ JJ Degree=Pos 12 amod _ _ 12 category category NOUN NN Number=Sing 13 compound _ _ 13 lifts lift VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 pobj _ _ 14 $ * $ $ * $ SYM $ _ 16 advmod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 autonomous autonomous ADJ JJ Degree=Pos 17 amod _ _ 17 structure structure NOUN NN Number=Sing 13 dobj _ _ 18 to to ADP IN _ 13 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 category category NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 algebras algebra NOUN NNS Number=Plur 21 pobj _ _ 23 precisely precisely ADV RB _ 24 advmod _ _ 24 when when SCONJ WRB _ 26 advmod _ _ 25 there there PRON EX _ 26 expl _ _ 26 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 advcl _ _ 27 an an DET DT Definite=Ind|PronType=Art 29 det _ _ 28 algebra algebra NOUN NN Number=Sing 29 compound _ _ 29 structure structure NOUN NN Number=Sing 26 attr _ _ 30 on on ADP IN _ 29 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 33 det _ _ 32 dualizing dualize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 33 amod _ _ 33 object object NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Our proof is based on Pastro's characterization of $ * $ - autonomous (co)monads as linearly distributive (co)monads with negation. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 proof proof NOUN NN Number=Sing 4 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 on on ADP IN _ 4 prep _ _ 6 Pastro Pastro PROPN NNP Number=Sing 8 poss _ SpaceAfter=No 7 's 's PART POS _ 6 case _ _ 8 characterization characterization NOUN NN Number=Sing 5 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 $ * $ $ * $ SYM $ _ 12 advmod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 autonomous autonomous ADJ JJ Degree=Pos 14 amod _ _ 13 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 14 punct _ SpaceAfter=No 14 co)monads co)monad NOUN NNS Number=Plur 9 pobj _ _ 15 as as ADP IN _ 14 prep _ _ 16 linearly linearly ADV RB _ 17 advmod _ _ 17 distributive distributive ADJ JJ Degree=Pos 15 amod _ _ 18 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 19 punct _ SpaceAfter=No 19 co)monads co)monad NOUN NNS Number=Plur 8 appos _ _ 20 with with ADP IN _ 19 prep _ _ 21 negation negation NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 654 # sent_id = 1 # text = We study the structure of the category of polynomials in a locally cartesian closed category. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 structure structure NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 category category NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 polynomials polynomial NOUN NNS Number=Plur 8 pobj _ _ 10 in in ADP IN _ 2 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 12 locally locally ADV RB _ 13 advmod _ _ 13 cartesian cartesian ADJ JJ Degree=Pos 15 amod _ _ 14 closed closed ADJ JJ Degree=Pos 15 amod _ _ 15 category category NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Formalizing the conceptual view that polynomials are constructed from sums and products, we characterize this category in terms of the composite of the pseudomonads which freely add fibred sums and products to fibrations. 1 Formalizing formalizing ADJ JJ Degree=Pos 15 advcl _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 conceptual conceptual ADJ JJ Degree=Pos 4 amod _ _ 4 view view NOUN NN Number=Sing 1 dobj _ _ 5 that that SCONJ IN _ 8 mark _ _ 6 polynomials polynomial NOUN NNS Number=Plur 8 nsubjpass _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 acl _ _ 9 from from ADP IN _ 8 prep _ _ 10 sums sum NOUN NNS Number=Plur 9 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 products product NOUN NNS Number=Plur 10 conj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 15 punct _ _ 14 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 15 nsubj _ _ 15 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 16 this this DET DT Number=Sing|PronType=Dem 17 det _ _ 17 category category NOUN NN Number=Sing 15 dobj _ _ 18 in in ADP IN _ 15 prep _ _ 19 terms term NOUN NNS Number=Plur 18 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 composite composite NOUN NN Number=Sing 20 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 pseudomonads pseudomonad NOUN NNS Number=Plur 23 pobj _ _ 26 which which PRON WDT _ 28 nsubj _ _ 27 freely freely ADV RB _ 28 advmod _ _ 28 add add VERB VBP Tense=Pres|VerbForm=Fin 25 relcl _ _ 29 fibred fibred ADJ JJ Degree=Pos 30 amod _ _ 30 sums sum NOUN NNS Number=Plur 28 dobj _ _ 31 and and CCONJ CC ConjType=Cmp 30 cc _ _ 32 products product NOUN NNS Number=Plur 30 conj _ _ 33 to to ADP IN _ 28 prep _ _ 34 fibrations fibration NOUN NNS Number=Plur 33 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 3 # text = The composite pseudomonad structure corresponds to a pseudo - distributive law between these two pseudomonads, which exists if and only if the base category is locally cartesian closed. 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 composite composite ADJ JJ Degree=Pos 3 amod _ _ 3 pseudomonad pseudomonad NOUN NNS Number=Plur 4 compound _ _ 4 structure structure NOUN NN Number=Sing 5 nsubj _ _ 5 corresponds correspond VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 to to ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 8 pseudo pseudo NOUN NN Number=Sing 10 npadvmod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 distributive distributive ADJ JJ Degree=Pos 11 amod _ _ 11 law law NOUN NN Number=Sing 6 pobj _ _ 12 between between ADP IN _ 11 prep _ _ 13 these these DET DT Number=Plur|PronType=Dem 15 det _ _ 14 two two NUM CD NumType=Card 15 nummod _ _ 15 pseudomonads pseudomonad NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 which which PRON WDT _ 18 nsubj _ _ 18 exists exist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 relcl _ _ 19 if if SCONJ IN _ 18 prep _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 only only ADV RB _ 26 advmod _ _ 22 if if SCONJ IN _ 26 mark _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 base base NOUN NN Number=Sing 25 compound _ _ 25 category category NOUN NN Number=Sing 26 nsubj _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 advcl _ _ 27 locally locally ADV RB _ 28 advmod _ _ 28 cartesian cartesian ADJ JJ Degree=Pos 29 amod _ _ 29 closed closed ADJ JJ Degree=Pos 26 acomp _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 655 # sent_id = 1 # text = The Faa di Bruno construction, introduced by Cockett and Seely, constructs a comonad Faa whose coalgebras are precisely Cartesian differential categories. 1 The the DET DT Definite=Def|PronType=Art 5 det _ _ 2 Faa Faa PROPN NNP Number=Sing 4 compound _ _ 3 di di PROPN NNP Number=Sing 4 compound _ _ 4 Bruno Bruno PROPN NNP Number=Sing 5 compound _ _ 5 construction construction NOUN NN Number=Sing 13 nsubj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 acl _ _ 8 by by ADP IN _ 7 agent _ _ 9 Cockett Cockett PROPN NNP Number=Sing 8 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 Seely Seely PROPN NNP Number=Sing 9 conj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 5 punct _ _ 13 constructs construct VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 comonad comonad NOUN NNS Number=Plur 13 dobj _ _ 16 Faa Faa PROPN NNP Number=Sing 13 npadvmod _ _ 17 whose whose DET WP$ Poss=Yes 18 poss _ _ 18 coalgebras coalgebra NOUN NNS Number=Plur 19 nsubj _ _ 19 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 16 relcl _ _ 20 precisely precisely ADV RB _ 21 advmod _ _ 21 Cartesian cartesian ADJ JJ Degree=Pos 23 amod _ _ 22 differential differential ADJ JJ Degree=Pos 23 amod _ _ 23 categories category NOUN NNS Number=Plur 19 attr _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 2 # text = In other words, for a Cartesian left additive category $ X $ , $ Faa(X) $ is the cofree Cartesian differential category over X. Composition in these cofree Cartesian differential categories is based on the Faa di Bruno formula, and corresponds to composition of differential forms. 1 In in ADP IN _ 8 prep _ _ 2 other other ADJ JJ Degree=Pos 3 amod _ _ 3 words word NOUN NNS Number=Plur 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 8 punct _ _ 5 for for SCONJ IN _ 8 mark _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 Cartesian Cartesian PROPN NNP Number=Sing 8 nsubj _ _ 8 left leave VERB VBD Tense=Past|VerbForm=Fin 14 advcl _ _ 9 additive additive ADJ JJ Degree=Pos 10 amod _ _ 10 category category NOUN NN Number=Sing 8 dobj _ _ 11 $ X $ $ x $ SYM $ _ 8 oprd _ _ 12 , , PUNCT , PunctType=Comm 14 punct _ _ 13 $ Faa(X) $ $ faa(x) $ SYM $ _ 14 nsubj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 the the DET DT Definite=Def|PronType=Art 19 det _ _ 16 cofree cofree ADJ JJ Degree=Pos 19 amod _ _ 17 Cartesian cartesian ADJ JJ Degree=Pos 19 amod _ _ 18 differential differential ADJ JJ Degree=Pos 19 amod _ _ 19 category category NOUN NN Number=Sing 30 nsubjpass _ _ 20 over over ADP IN _ 19 prep _ _ 21 X. X. PROPN NNP Number=Sing 22 compound _ _ 22 Composition Composition PROPN NNP Number=Sing 20 pobj _ _ 23 in in ADP IN _ 19 prep _ _ 24 these these DET DT Number=Plur|PronType=Dem 28 det _ _ 25 cofree cofree ADJ JJ Degree=Pos 28 amod _ _ 26 Cartesian cartesian ADJ JJ Degree=Pos 28 amod _ _ 27 differential differential ADJ JJ Degree=Pos 28 amod _ _ 28 categories category NOUN NNS Number=Plur 23 pobj _ _ 29 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 auxpass _ _ 30 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 prep _ _ 31 on on ADP IN _ 30 prep _ _ 32 the the DET DT Definite=Def|PronType=Art 36 det _ _ 33 Faa Faa PROPN NNP Number=Sing 35 compound _ _ 34 di di PROPN NNP Number=Sing 35 compound _ _ 35 Bruno Bruno PROPN NNP Number=Sing 36 compound _ _ 36 formula formula NOUN NN Number=Sing 31 pobj _ SpaceAfter=No 37 , , PUNCT , PunctType=Comm 30 punct _ _ 38 and and CCONJ CC ConjType=Cmp 30 cc _ _ 39 corresponds correspond VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 conj _ _ 40 to to ADP IN _ 39 prep _ _ 41 composition composition NOUN NN Number=Sing 40 pobj _ _ 42 of of ADP IN _ 41 prep _ _ 43 differential differential ADJ JJ Degree=Pos 44 amod _ _ 44 forms form NOUN NNS Number=Plur 42 pobj _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 3 # text = This composition, however, is somewhat complex and difficult to work with. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 composition composition NOUN NN Number=Sing 6 nsubj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 6 punct _ _ 4 however however ADV RB _ 6 advmod _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 6 punct _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 somewhat somewhat ADV RB _ 8 advmod _ _ 8 complex complex ADJ JJ Degree=Pos 6 acomp _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 difficult difficult ADJ JJ Degree=Pos 8 conj _ _ 11 to to PART TO _ 12 aux _ _ 12 work work VERB VB VerbForm=Inf 6 xcomp _ _ 13 with with ADP IN _ 12 prep _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = In this paper we provide an alternative construction of cofree Cartesian differential categories inspired by tangent categories. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 an an DET DT Definite=Ind|PronType=Art 8 det _ _ 7 alternative alternative ADJ JJ Degree=Pos 8 amod _ _ 8 construction construction NOUN NN Number=Sing 5 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 cofree cofree ADJ JJ Degree=Pos 13 amod _ _ 11 Cartesian cartesian ADJ JJ Degree=Pos 13 amod _ _ 12 differential differential ADJ JJ Degree=Pos 13 amod _ _ 13 categories category NOUN NNS Number=Plur 9 pobj _ _ 14 inspired inspire VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 acl _ _ 15 by by ADP IN _ 14 agent _ _ 16 tangent tangent ADJ JJ Degree=Pos 17 amod _ _ 17 categories category NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 5 # text = In particular, composition defined here is based on the fact that the chain rule for Cartesian differential categories can be expressed using the tangent functor, which simplifies the formulation of the higher order chain rule. 1 In in ADP IN _ 8 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 8 punct _ _ 4 composition composition NOUN NN Number=Sing 8 nsubjpass _ _ 5 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 acl _ _ 6 here here ADV RB PronType=Dem 5 advmod _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 on on ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 fact fact NOUN NN Number=Sing 9 pobj _ _ 12 that that SCONJ IN _ 22 mark _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 chain chain NOUN NN Number=Sing 15 compound _ _ 15 rule rule NOUN NN Number=Sing 22 nsubjpass _ _ 16 for for ADP IN _ 15 prep _ _ 17 Cartesian cartesian ADJ JJ Degree=Pos 19 amod _ _ 18 differential differential ADJ JJ Degree=Pos 19 amod _ _ 19 categories category NOUN NNS Number=Plur 16 pobj _ _ 20 can can AUX MD VerbForm=Fin 22 aux _ _ 21 be be AUX VB VerbForm=Inf 22 auxpass _ _ 22 expressed express VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 acl _ _ 23 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 xcomp _ _ 24 the the DET DT Definite=Def|PronType=Art 26 det _ _ 25 tangent tangent NOUN NN Number=Sing 26 compound _ _ 26 functor functor NOUN NN Number=Sing 23 dobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 26 punct _ _ 28 which which PRON WDT _ 29 nsubj _ _ 29 simplifies simplify VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 26 relcl _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 formulation formulation NOUN NN Number=Sing 29 dobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 the the DET DT Definite=Def|PronType=Art 37 det _ _ 34 higher high ADJ JJR Degree=Cmp 35 amod _ _ 35 order order NOUN NN Number=Sing 36 compound _ _ 36 chain chain NOUN NN Number=Sing 37 compound _ _ 37 rule rule NOUN NN Number=Sing 32 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # doc_id = 656 # sent_id = 1 # text = In this paper, we introduce the concept of a topological space in the topos $ M - Set $ of $ M $ - sets, for a monoid $ M $ . 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 concept concept NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 topological topological ADJ JJ Degree=Pos 12 amod _ _ 12 space space NOUN NN Number=Sing 9 pobj _ _ 13 in in ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 topos topos NOUN NN Number=Sing 13 pobj _ _ 16 $ M - Set $ $ m - set $ SYM $ _ 15 appos _ _ 17 of of ADP IN _ 16 prep _ _ 18 $ M $ $ m $ SYM $ _ 20 compound _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 sets set NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 6 punct _ _ 22 for for ADP IN _ 6 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 24 monoid monoid NOUN NN Number=Sing 22 pobj _ _ 25 $ M $ $ m $ SYM $ _ 22 pobj _ _ 26 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = We do this by replacing the notion of open "subset" by open "subobject" in the definition of a topology. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 do do VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 this this PRON DT Number=Sing|PronType=Dem 2 dobj _ _ 4 by by ADP IN _ 2 prep _ _ 5 replacing replace VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 pcomp _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 notion notion NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 open open ADJ JJ Degree=Pos 11 amod _ _ 10 " " PUNCT `` PunctSide=Ini|PunctType=Quot 11 punct _ SpaceAfter=No 11 subset subset NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 12 " " PUNCT '' PunctSide=Fin|PunctType=Quot 11 punct _ _ 13 by by ADP IN _ 7 prep _ _ 14 open open ADJ JJ Degree=Pos 16 amod _ _ 15 " " PUNCT `` PunctSide=Ini|PunctType=Quot 16 punct _ SpaceAfter=No 16 subobject subobject NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 17 " " PUNCT '' PunctSide=Fin|PunctType=Quot 16 punct _ _ 18 in in ADP IN _ 16 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 definition definition NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 23 topology topology NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We prove that the resulting category has an open subobject classifier, which is the counterpart of the Sierpinski space in this topos. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 7 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 resulting result VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 amod _ _ 6 category category NOUN NN Number=Sing 7 nsubj _ _ 7 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 8 an an DET DT Definite=Ind|PronType=Art 11 det _ _ 9 open open ADJ JJ Degree=Pos 11 amod _ _ 10 subobject subobject NOUN NN Number=Sing 11 compound _ _ 11 classifier classifier NOUN NN Number=Sing 7 dobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 which which PRON WDT _ 14 nsubj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 relcl _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 counterpart counterpart NOUN NN Number=Sing 14 attr _ _ 17 of of ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 Sierpinski Sierpinski PROPN NNP Number=Sing 20 compound _ _ 20 space space NOUN NN Number=Sing 17 pobj _ _ 21 in in ADP IN _ 16 prep _ _ 22 this this DET DT Number=Sing|PronType=Dem 23 det _ _ 23 topos topos NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We also study the relation between the given notion of topology and the notion of a poset in this universe. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 relation relation NOUN NN Number=Sing 3 dobj _ _ 6 between between ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 amod _ _ 9 notion notion NOUN NN Number=Sing 6 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 topology topology NOUN NN Number=Sing 10 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 9 cc _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 notion notion NOUN NN Number=Sing 9 conj _ _ 15 of of ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 poset poset NOUN NN Number=Sing 15 pobj _ _ 18 in in ADP IN _ 17 prep _ _ 19 this this DET DT Number=Sing|PronType=Dem 20 det _ _ 20 universe universe NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = In fact, the counterpart of the specialization pre - order is given for topological spaces in $ M - Set $ , and it is shown that, similar to the classic case, for a special kind of topological spaces in $ M - Set $ , namely $ T_0 $ ones, it is a partial order. 1 In in ADP IN _ 13 prep _ _ 2 fact fact NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 13 punct _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 counterpart counterpart NOUN NN Number=Sing 13 nsubjpass _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 specialization specialization NOUN NN Number=Sing 6 pobj _ _ 9 pre pre NOUN NN Number=Sing 5 nmod _ _ 10 - - PUNCT : _ 13 punct _ _ 11 order order NOUN NN Number=Sing 13 nsubjpass _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 14 for for ADP IN _ 13 prep _ _ 15 topological topological ADJ JJ Degree=Pos 16 amod _ _ 16 spaces space NOUN NNS Number=Plur 14 pobj _ _ 17 in in ADP IN _ 16 prep _ _ 18 $ M - Set $ $ m - set $ SYM $ _ 17 pobj _ _ 19 , , PUNCT , PunctType=Comm 13 punct _ _ 20 and and CCONJ CC ConjType=Cmp 13 cc _ _ 21 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 23 nsubjpass _ _ 22 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 auxpass _ _ 23 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 conj _ _ 24 that that SCONJ IN _ 47 mark _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 47 punct _ _ 26 similar similar ADJ JJ Degree=Pos 47 advcl _ _ 27 to to ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 30 det _ _ 29 classic classic ADJ JJ Degree=Pos 30 amod _ _ 30 case case NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 47 punct _ _ 32 for for ADP IN _ 47 prep _ _ 33 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 34 special special ADJ JJ Degree=Pos 35 amod _ _ 35 kind kind NOUN NN Number=Sing 32 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 topological topological ADJ JJ Degree=Pos 38 amod _ _ 38 spaces space NOUN NNS Number=Plur 36 pobj _ _ 39 in in ADP IN _ 38 prep _ _ 40 $ M - Set $ $ m - set $ SYM $ _ 39 pobj _ _ 41 , , PUNCT , PunctType=Comm 32 punct _ _ 42 namely namely ADV RB _ 43 advmod _ _ 43 $ T_0 $ $ t_0 $ SYM $ _ 44 nummod _ _ 44 ones one NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 45 , , PUNCT , PunctType=Comm 47 punct _ _ 46 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 47 nsubj _ _ 47 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 ccomp _ _ 48 a a DET DT Definite=Ind|PronType=Art 50 det _ _ 49 partial partial ADJ JJ Degree=Pos 50 amod _ _ 50 order order NOUN NN Number=Sing 47 attr _ SpaceAfter=No 51 . . PUNCT . PunctType=Peri 23 punct _ SpaceAfter=No # sent_id = 6 # text = Furthermore, we obtain the universal $ T_0 $ space, and give the adjunction between topological spaces and $ T_0 $ posets, in $ M - Set $ . 1 Furthermore furthermore ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 8 det _ _ 6 universal universal ADJ JJ Degree=Pos 8 amod _ _ 7 $ T_0 $ $ t_0 $ SYM $ _ 8 nmod _ _ 8 space space NOUN NN Number=Sing 4 dobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 4 punct _ _ 10 and and CCONJ CC ConjType=Cmp 4 cc _ _ 11 give give VERB VB VerbForm=Inf 4 conj _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 adjunction adjunction NOUN NN Number=Sing 11 dobj _ _ 14 between between ADP IN _ 13 prep _ _ 15 topological topological ADJ JJ Degree=Pos 16 amod _ _ 16 spaces space NOUN NNS Number=Plur 14 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 $ T_0 $ $ t_0 $ SYM $ _ 19 nmod _ _ 19 posets poset NOUN NNS Number=Plur 16 conj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 11 punct _ _ 21 in in ADP IN _ 11 prep _ _ 22 $ M - Set $ $ m - set $ SYM $ _ 21 pobj _ _ 23 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 657 # sent_id = 1 # text = In this paper, we prove that there is a canonical homotopy $ (n+1) $ - algebra structure on the shifted operadic deformation complex $ Def(e_ntomathcal{P})[ - n] $ for any operad $ mathcal{P} $ and a map of operads $ fcolon e_ntomathcal{P} $ . 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 that that SCONJ IN _ 9 mark _ _ 8 there there PRON EX _ 9 expl _ _ 9 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 canonical canonical ADJ JJ Degree=Pos 12 amod _ _ 12 homotopy homotopy NOUN NN Number=Sing 9 attr _ _ 13 $ (n+1) $ $ (n+1) $ PROPN NNP Number=Sing 15 nummod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 algebra algebra NOUN NN Number=Sing 16 compound _ _ 16 structure structure NOUN NN Number=Sing 12 appos _ _ 17 on on ADP IN _ 12 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 22 det _ _ 19 shifted shifted ADJ JJ Degree=Pos 22 amod _ _ 20 operadic operadic ADJ JJ Degree=Pos 22 amod _ _ 21 deformation deformation NOUN NN Number=Sing 22 compound _ _ 22 complex complex NOUN NN Number=Sing 17 pobj _ _ 23 $ Def(e_ntomathcal{P})[ - n] $ $ def(e_ntomathcal{p})[ - n] $ SYM $ _ 12 appos _ _ 24 for for ADP IN _ 12 prep _ _ 25 any any DET DT _ 27 det _ _ 26 operad operad ADJ JJ Degree=Pos 27 amod _ _ 27 $ mathcal{P} $ $ mathcal{p} $ SYM $ _ 24 pobj _ _ 28 and and CCONJ CC ConjType=Cmp 27 cc _ _ 29 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 30 map map NOUN NN Number=Sing 27 conj _ _ 31 of of ADP IN _ 30 prep _ _ 32 operads operad NOUN NNS Number=Plur 31 pobj _ _ 33 $ fcolon e_ntomathcal{P} $ $ fcolon e_ntomathcal{p} $ SYM $ _ 12 appos _ _ 34 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = This result generalizes a result of Tamarkin, who considered the case $ mathcal{P}=End_Op(X) $ . 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 result result NOUN NN Number=Sing 3 nsubj _ _ 3 generalizes generalize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 result result NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 Tamarkin Tamarkin PROPN NNP Number=Sing 6 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 who who PRON WP _ 10 nsubj _ _ 10 considered consider VERB VBD Tense=Past|VerbForm=Fin 7 relcl _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 case case NOUN NN Number=Sing 13 nsubj _ _ 13 $ mathcal{P}=End_Op(X) $ $ mathcal{p}=end_op(x) $ SYM $ _ 10 ccomp _ _ 14 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = Another more computational proof of the same result was recently sketched by Calaque and Willwacher. 1 Another another DET DT _ 4 det _ _ 2 more more ADV RBR Degree=Cmp 3 advmod _ _ 3 computational computational ADJ JJ Degree=Pos 4 amod _ _ 4 proof proof NOUN NN Number=Sing 11 nsubjpass _ _ 5 of of ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 same same ADJ JJ Degree=Pos 8 amod _ _ 8 result result NOUN NN Number=Sing 5 pobj _ _ 9 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 11 auxpass _ _ 10 recently recently ADV RB _ 11 advmod _ _ 11 sketched sketch VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 12 by by ADP IN _ 11 agent _ _ 13 Calaque Calaque PROPN NNP Number=Sing 12 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 Willwacher Willwacher PROPN NNP Number=Sing 13 conj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 4 # text = Our method combines the one of Tamarkin, with the categorical algebra on the category of symmetric sequences, introduced by Rezk and further developed by Kapranov - Manin and Fresse. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 method method NOUN NN Number=Sing 3 nsubj _ _ 3 combines combine VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 one one NUM CD NumType=Card 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 Tamarkin Tamarkin PROPN NNP Number=Sing 6 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 3 punct _ _ 9 with with ADP IN _ 3 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 categorical categorical ADJ JJ Degree=Pos 12 amod _ _ 12 algebra algebra NOUN NNS Number=Plur 9 pobj _ _ 13 on on ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 category category NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 symmetric symmetric ADJ JJ Degree=Pos 18 amod _ _ 18 sequences sequence NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 12 punct _ _ 20 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 acl _ _ 21 by by ADP IN _ 20 agent _ _ 22 Rezk Rezk PROPN NNP Number=Sing 21 pobj _ _ 23 and and CCONJ CC ConjType=Cmp 20 cc _ _ 24 further far ADV RB _ 25 advmod _ _ 25 developed develop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 conj _ _ 26 by by ADP IN _ 25 agent _ _ 27 Kapranov Kapranov PROPN NNP Number=Sing 29 compound _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 Manin Manin PROPN NNP Number=Sing 26 pobj _ _ 30 and and CCONJ CC ConjType=Cmp 29 cc _ _ 31 Fresse Fresse PROPN NNP Number=Sing 29 conj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = We define suitable deformation functors on $ n $ - coalgebras, which are considered as the "non - commutative" base of deformation, prove their representability, and translate properties of the functors to the corresponding properties of the representing objects. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 suitable suitable ADJ JJ Degree=Pos 5 amod _ _ 4 deformation deformation NOUN NN Number=Sing 5 compound _ _ 5 functors functor NOUN NNS Number=Plur 2 dobj _ _ 6 on on ADP IN _ 5 prep _ _ 7 $ n $ $ n $ SYM $ _ 9 compound _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 coalgebras coalgebras PROPN NNP Number=Sing 6 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 which which PRON WDT _ 13 nsubjpass _ _ 12 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 auxpass _ _ 13 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 relcl _ _ 14 as as ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 21 det _ _ 16 " " PUNCT `` PunctSide=Ini|PunctType=Quot 21 punct _ SpaceAfter=No 17 non non ADJ JJ Degree=Pos 19 amod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 commutative commutative ADJ JJ Degree=Pos 21 amod _ SpaceAfter=No 20 " " PUNCT '' PunctSide=Fin|PunctType=Quot 21 punct _ _ 21 base base NOUN NN Number=Sing 14 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 deformation deformation NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 2 punct _ _ 25 prove prove VERB VBP Tense=Pres|VerbForm=Fin 2 conj _ _ 26 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 27 poss _ _ 27 representability representability NOUN NN Number=Sing 25 dobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 25 punct _ _ 29 and and CCONJ CC ConjType=Cmp 25 cc _ _ 30 translate translate VERB VB VerbForm=Inf 25 conj _ _ 31 properties property NOUN NNS Number=Plur 30 dobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 the the DET DT Definite=Def|PronType=Art 34 det _ _ 34 functors functor NOUN NNS Number=Plur 32 pobj _ _ 35 to to ADP IN _ 30 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 38 det _ _ 37 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 38 amod _ _ 38 properties property NOUN NNS Number=Plur 35 pobj _ _ 39 of of ADP IN _ 38 prep _ _ 40 the the DET DT Definite=Def|PronType=Art 42 det _ _ 41 representing represent VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 42 amod _ _ 42 objects object NOUN NNS Number=Plur 39 pobj _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = A new point, which makes the method more powerful, is to consider the argument of our deformation theory as an object of the category of symmetric sequences of dg vector spaces, not as just a single dg vector space . 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 new new ADJ JJ Degree=Pos 3 amod _ _ 3 point point NOUN NN Number=Sing 12 nsubj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 3 punct _ _ 5 which which PRON WDT _ 6 nsubj _ _ 6 makes make VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 relcl _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 method method NOUN NN Number=Sing 10 nsubj _ _ 9 more more ADV RBR Degree=Cmp 10 advmod _ _ 10 powerful powerful ADJ JJ Degree=Pos 6 ccomp _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 12 punct _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 to to PART TO _ 14 aux _ _ 14 consider consider VERB VB VerbForm=Inf 12 xcomp _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 argument argument NOUN NN Number=Sing 14 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 20 poss _ _ 19 deformation deformation NOUN NN Number=Sing 20 compound _ _ 20 theory theory NOUN NN Number=Sing 17 pobj _ _ 21 as as ADP IN _ 14 prep _ _ 22 an an DET DT Definite=Ind|PronType=Art 23 det _ _ 23 object object NOUN NN Number=Sing 21 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 category category NOUN NN Number=Sing 24 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 symmetric symmetric ADJ JJ Degree=Pos 29 amod _ _ 29 sequences sequence NOUN NNS Number=Plur 27 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 dg dg PROPN NNP Number=Sing 32 compound _ _ 32 vector vector NOUN NN Number=Sing 33 compound _ _ 33 spaces space NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 14 punct _ _ 35 not not PART RB Polarity=Neg 36 neg _ _ 36 as as ADP IN _ 14 prep _ _ 37 just just ADV RB _ 42 advmod _ _ 38 a a DET DT Definite=Ind|PronType=Art 42 det _ _ 39 single single ADJ JJ Degree=Pos 42 amod _ _ 40 dg dg PROPN NNP Number=Sing 42 compound _ _ 41 vector vector NOUN NN Number=Sing 42 compound _ _ 42 space space NOUN NN Number=Sing 36 pobj _ _ 43 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # doc_id = 658 # sent_id = 1 # text = Quantum categories have been recently studied because of their relation to bialgebroids, small categories, and skew monoidales. 1 Quantum quantum NOUN NN Number=Sing 2 compound _ _ 2 categories category NOUN NNS Number=Plur 6 nsubjpass _ _ 3 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 aux _ _ 4 been be AUX VBN Tense=Past|VerbForm=Part 6 auxpass _ _ 5 recently recently ADV RB _ 6 advmod _ _ 6 studied study VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 because because SCONJ IN _ 6 prep _ _ 8 of of ADP IN _ 7 pcomp _ _ 9 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 10 poss _ _ 10 relation relation NOUN NN Number=Sing 7 pobj _ _ 11 to to ADP IN _ 10 prep _ _ 12 bialgebroids bialgebroid NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 small small ADJ JJ Degree=Pos 15 amod _ _ 15 categories category NOUN NNS Number=Plur 12 conj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 and and CCONJ CC ConjType=Cmp 15 cc _ _ 18 skew skew NOUN NN Number=Sing 19 compound _ _ 19 monoidales monoidale NOUN NNS Number=Plur 15 conj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = This is the first of a series of papers based on the author's PhD thesis in which we examine the theory of quantum categories developed by Day, Lack, and Street. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 first first ADJ JJ Degree=Pos 2 attr _ _ 5 of of ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 series series NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 papers paper NOUN NNS Number=Plur 8 pobj _ _ 10 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 acl _ _ 11 on on ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 author author NOUN NN Number=Sing 16 poss _ SpaceAfter=No 14 's 's PART POS _ 13 case _ _ 15 PhD phd NOUN NN Number=Sing 16 compound _ _ 16 thesis thesis NOUN NN Number=Sing 11 pobj _ _ 17 in in ADP IN _ 20 prep _ _ 18 which which PRON WDT _ 17 pobj _ _ 19 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 20 nsubj _ _ 20 examine examine VERB VBP Tense=Pres|VerbForm=Fin 9 relcl _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 theory theory NOUN NN Number=Sing 20 dobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 quantum quantum ADJ JJ Degree=Pos 25 amod _ _ 25 categories category NOUN NNS Number=Plur 23 pobj _ _ 26 developed develop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 25 acl _ _ 27 by by ADP IN _ 26 agent _ _ 28 Day Day PROPN NNP Number=Sing 27 pobj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 28 punct _ _ 30 Lack Lack PROPN NNP Number=Sing 28 conj _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 30 punct _ _ 32 and and CCONJ CC ConjType=Cmp 30 cc _ _ 33 Street Street PROPN NNP Number=Sing 30 conj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = A quantum category is an opmonoidal monad on the monoidale associated to a biduality $ Rdashv R^{o} $ , or enveloping monoidale, in a monoidal bicategory of modules $ Mod(V}) $ for a monoidal category $ V $ . 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 quantum quantum ADJ JJ Degree=Pos 3 amod _ _ 3 category category NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 an an DET DT Definite=Ind|PronType=Art 7 det _ _ 6 opmonoidal opmonoidal ADJ JJ Degree=Pos 7 amod _ _ 7 monad monad NOUN NNS Number=Plur 4 attr _ _ 8 on on ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 monoidale monoidale NOUN NN Number=Sing 8 pobj _ _ 11 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 acl _ _ 12 to to ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 biduality biduality NOUN NN Number=Sing 12 pobj _ _ 15 $ Rdashv R^{o} $ $ rdashv r^{o} $ SYM $ _ 14 appos _ _ 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 or or CCONJ CC ConjType=Cmp 15 cc _ _ 18 enveloping envelop VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 conj _ _ 19 monoidale monoidale NOUN NN Number=Sing 18 dobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 7 punct _ _ 21 in in ADP IN _ 7 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 23 monoidal monoidal ADJ JJ Degree=Pos 24 amod _ _ 24 bicategory bicategory NOUN NN Number=Sing 21 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 modules module NOUN NNS Number=Plur 25 pobj _ _ 27 $ Mod(V}) $ $ mod(v}) $ SYM $ _ 4 dep _ _ 28 for for ADP IN _ 27 prep _ _ 29 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 30 monoidal monoidal ADJ JJ Degree=Pos 31 amod _ _ 31 category category NOUN NN Number=Sing 28 pobj _ _ 32 $ V $ $ v $ SYM $ _ 4 dep _ _ 33 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = Lack and Street proved that quantum categories are in equivalence with right skew monoidales whose unit has a right adjoint in $ Mod(V) $ . 1 Lack lack NOUN NN Number=Sing 4 nsubj _ _ 2 and and CCONJ CC ConjType=Cmp 1 cc _ _ 3 Street Street PROPN NNP Number=Sing 1 conj _ _ 4 proved prove VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 8 mark _ _ 6 quantum quantum ADJ JJ Degree=Pos 7 compound _ _ 7 categories category NOUN NNS Number=Plur 8 nsubj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 9 in in ADP IN _ 8 prep _ _ 10 equivalence equivalence NOUN NN Number=Sing 9 pobj _ _ 11 with with ADP IN _ 10 prep _ _ 12 right right ADJ JJ Degree=Pos 14 amod _ _ 13 skew skew NOUN NN Number=Sing 14 compound _ _ 14 monoidales monoidale NOUN NNS Number=Plur 11 pobj _ _ 15 whose whose DET WP$ Poss=Yes 16 poss _ _ 16 unit unit NOUN NN Number=Sing 17 nsubj _ _ 17 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 relcl _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 right right ADJ JJ Degree=Pos 20 amod _ _ 20 adjoint adjoint NOUN NN Number=Sing 17 dobj _ _ 21 in in ADP IN _ 20 prep _ _ 22 $ Mod(V) $ $ mod(v) $ SYM $ _ 21 pobj _ _ 23 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = Our first important result is similar to that of Lack and Street. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 4 poss _ _ 2 first first ADJ JJ Degree=Pos 4 amod _ _ 3 important important ADJ JJ Degree=Pos 4 amod _ _ 4 result result NOUN NN Number=Sing 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 similar similar ADJ JJ Degree=Pos 5 acomp _ _ 7 to to ADP IN _ 6 prep _ _ 8 that that PRON DT Number=Sing|PronType=Dem 7 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 Lack Lack PROPN NNP Number=Sing 9 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 Street Street PROPN NNP Number=Sing 10 conj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 6 # text = It is a characterisation of opmonoidal arrows on enveloping monoidales in terms of a new structure named oplax action. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 characterisation characterisation NOUN NN Number=Sing 2 attr _ _ 5 of of ADP IN _ 4 prep _ _ 6 opmonoidal opmonoidal ADJ JJ Degree=Pos 7 amod _ _ 7 arrows arrow NOUN NNS Number=Plur 5 pobj _ _ 8 on on ADP IN _ 4 prep _ _ 9 enveloping envelop VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 pcomp _ _ 10 monoidales monoidale NOUN NNS Number=Plur 9 dobj _ _ 11 in in ADP IN _ 4 prep _ _ 12 terms term NOUN NNS Number=Plur 11 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 new new ADJ JJ Degree=Pos 16 amod _ _ 16 structure structure NOUN NN Number=Sing 13 pobj _ _ 17 named name VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 acl _ _ 18 oplax oplax PROPN NNP Number=Sing 19 compound _ _ 19 action action NOUN NN Number=Sing 17 oprd _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 7 # text = We then provide three different notions of comodule for an opmonoidal arrow, and using a similar technique we prove that they are equivalent. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 three three NUM CD NumType=Card 6 nummod _ _ 5 different different ADJ JJ Degree=Pos 6 amod _ _ 6 notions notion NOUN NNS Number=Plur 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 comodule comodule NOUN NN Number=Sing 7 pobj _ _ 9 for for ADP IN _ 3 prep _ _ 10 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 11 opmonoidal opmonoidal ADJ JJ Degree=Pos 12 amod _ _ 12 arrow arrow NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 3 punct _ _ 14 and and CCONJ CC ConjType=Cmp 3 cc _ _ 15 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 conj _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 similar similar ADJ JJ Degree=Pos 18 amod _ _ 18 technique technique NOUN NN Number=Sing 15 dobj _ _ 19 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 20 nsubj _ _ 20 prove prove VERB VBP Tense=Pres|VerbForm=Fin 18 relcl _ _ 21 that that SCONJ IN _ 23 mark _ _ 22 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 23 nsubj _ _ 23 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 20 ccomp _ _ 24 equivalent equivalent ADJ JJ Degree=Pos 23 acomp _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 8 # text = Finally, when the opmonoidal arrow is an opmonoidal monad, we are able to provide the category of comodules for a quantum category with a monoidal structure such that the forgetful functor is monoidal. 1 Finally finally ADV RB _ 13 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 13 punct _ _ 3 when when SCONJ WRB _ 7 advmod _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 opmonoidal opmonoidal ADJ JJ Degree=Pos 6 amod _ _ 6 arrow arrow NOUN NN Number=Sing 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 advcl _ _ 8 an an DET DT Definite=Ind|PronType=Art 10 det _ _ 9 opmonoidal opmonoidal ADJ JJ Degree=Pos 10 amod _ _ 10 monad monad NOUN NNS Number=Plur 7 attr _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 13 punct _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 able able ADJ JJ Degree=Pos 13 acomp _ _ 15 to to PART TO _ 16 aux _ _ 16 provide provide VERB VB VerbForm=Inf 14 xcomp _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 category category NOUN NN Number=Sing 16 dobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 comodules comodule NOUN NNS Number=Plur 19 pobj _ _ 21 for for ADP IN _ 16 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 23 quantum quantum ADJ JJ Degree=Pos 24 amod _ _ 24 category category NOUN NN Number=Sing 21 pobj _ _ 25 with with ADP IN _ 24 prep _ _ 26 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 27 monoidal monoidal ADJ JJ Degree=Pos 28 amod _ _ 28 structure structure NOUN NN Number=Sing 25 pobj _ _ 29 such such ADJ JJ Degree=Pos 34 mark _ _ 30 that that SCONJ IN _ 34 mark _ _ 31 the the DET DT Definite=Def|PronType=Art 33 det _ _ 32 forgetful forgetful ADJ JJ Degree=Pos 33 amod _ _ 33 functor functor NOUN NN Number=Sing 34 nsubj _ _ 34 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 advcl _ _ 35 monoidal monoidal ADJ JJ Degree=Pos 34 acomp _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # doc_id = 659 # sent_id = 1 # text = We study deformation of tube algebra under twisting of graded monoidal categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 deformation deformation NOUN NN Number=Sing 2 dobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 tube tube NOUN NN Number=Sing 6 compound _ _ 6 algebra algebra NOUN NNS Number=Plur 4 pobj _ _ 7 under under ADP IN _ 2 prep _ _ 8 twisting twisting NOUN NN Number=Sing 7 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 graded grade VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 11 monoidal monoidal ADJ JJ Degree=Pos 12 amod _ _ 12 categories category NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = When a tensor category $ C $ is graded over a group $ Gammaa $ , a torus - valued 3 - cocycle on $ Gamma $ can be used to deform the associator of $ C $ . 1 When when SCONJ WRB _ 7 advmod _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 tensor tensor NOUN NN Number=Sing 4 compound _ _ 4 category category NOUN NN Number=Sing 7 nsubjpass _ _ 5 $ C $ $ c $ SYM $ _ 4 appos _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 7 graded grade VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 advcl _ _ 8 over over ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 group group NOUN NN Number=Sing 8 pobj _ _ 11 $ Gammaa $ $ gammaa $ SYM $ _ 10 appos _ _ 12 , , PUNCT , PunctType=Comm 10 punct _ _ 13 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 14 torus torus NOUN NN Number=Sing 16 npadvmod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 amod _ _ 17 3 3 NUM CD NumType=Card 19 nummod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 cocycle cocycle NOUN NN Number=Sing 24 nsubjpass _ _ 20 on on ADP IN _ 19 prep _ _ 21 $ Gamma $ $ gamma $ SYM $ _ 20 pobj _ _ 22 can can AUX MD VerbForm=Fin 24 aux _ _ 23 be be AUX VB VerbForm=Inf 24 auxpass _ _ 24 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 25 to to PART TO _ 26 aux _ _ 26 deform deform VERB VB VerbForm=Inf 24 xcomp _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 associator associator NOUN NN Number=Sing 26 dobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 $ C $ $ c $ SYM $ _ 29 pobj _ _ 31 . . PUNCT . PunctType=Peri 24 punct _ SpaceAfter=No # sent_id = 3 # text = We show that it induces a 2 - cocycle on the groupoid of the adjoint action of $ Gammaa $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 5 mark _ _ 4 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 5 nsubj _ _ 5 induces induce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 6 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 7 2 2 NUM CD NumType=Card 9 nummod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 cocycle cocycle NOUN NN Number=Sing 5 dobj _ _ 10 on on ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 groupoid groupoid NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 adjoint adjoint NOUN NN Number=Sing 16 compound _ _ 16 action action NOUN NN Number=Sing 13 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 $ Gammaa $ $ gammaa $ SYM $ _ 17 pobj _ _ 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = Combined with the natural Fell bundle structure of tube algebra over this groupoid, we show that the tube algebra of the twisted category is a 2 - cocycle twisting of the original one. 1 Combined combine VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 advcl _ _ 2 with with ADP IN _ 1 prep _ _ 3 the the DET DT Definite=Def|PronType=Art 7 det _ _ 4 natural natural ADJ JJ Degree=Pos 7 amod _ _ 5 Fell Fell PROPN NNP Number=Sing 6 compound _ _ 6 bundle bundle NOUN NN Number=Sing 7 compound _ _ 7 structure structure NOUN NN Number=Sing 2 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 tube tube NOUN NN Number=Sing 10 compound _ _ 10 algebra algebra NOUN NNS Number=Plur 8 pobj _ _ 11 over over ADP IN _ 7 prep _ _ 12 this this DET DT Number=Sing|PronType=Dem 13 det _ _ 13 groupoid groupoid NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 16 punct _ _ 15 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 16 nsubj _ _ 16 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 17 that that SCONJ IN _ 25 mark _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 tube tube NOUN NN Number=Sing 20 compound _ _ 20 algebra algebra NOUN NN Number=Sing 25 nsubj _ _ 21 of of ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 twisted twisted ADJ JJ Degree=Pos 24 amod _ _ 24 category category NOUN NN Number=Sing 21 pobj _ _ 25 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 ccomp _ _ 26 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 27 2 2 NUM CD NumType=Card 29 nummod _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 cocycle cocycle NOUN NN Number=Sing 30 compound _ _ 30 twisting twisting NOUN NN Number=Sing 25 attr _ _ 31 of of ADP IN _ 30 prep _ _ 32 the the DET DT Definite=Def|PronType=Art 34 det _ _ 33 original original ADJ JJ Degree=Pos 34 amod _ _ 34 one one NOUN NN Number=Sing 31 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # doc_id = 660 # sent_id = 1 # text = In this paper we consider a crossed product of two crossed modules of Hopf monoids in a strict symmetric monoidal category $ {mathcal C} $ and give necessary and sufficient conditions to get a new crossed module of Hopf monoids in $ {mathcal C} $ . 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 crossed crossed ADJ JJ Degree=Pos 8 amod _ _ 8 product product NOUN NN Number=Sing 5 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 two two NUM CD NumType=Card 12 nummod _ _ 11 crossed crossed ADJ JJ Degree=Pos 12 amod _ _ 12 modules module NOUN NNS Number=Plur 9 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 Hopf hopf NOUN NN Number=Sing 15 compound _ _ 15 monoids monoid NOUN NNS Number=Plur 13 pobj _ _ 16 in in ADP IN _ 5 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 18 strict strict ADJ JJ Degree=Pos 21 amod _ _ 19 symmetric symmetric ADJ JJ Degree=Pos 21 amod _ _ 20 monoidal monoidal ADJ JJ Degree=Pos 21 amod _ _ 21 category category NOUN NN Number=Sing 16 pobj _ _ 22 $ {mathcal C} $ $ {mathcal c} $ SYM $ _ 5 dobj _ _ 23 and and CCONJ CC ConjType=Cmp 5 cc _ _ 24 give give VERB VB VerbForm=Inf 5 conj _ _ 25 necessary necessary ADJ JJ Degree=Pos 28 amod _ _ 26 and and CCONJ CC ConjType=Cmp 25 cc _ _ 27 sufficient sufficient ADJ JJ Degree=Pos 25 conj _ _ 28 conditions condition NOUN NNS Number=Plur 24 dobj _ _ 29 to to PART TO _ 30 aux _ _ 30 get get VERB VB VerbForm=Inf 24 advcl _ _ 31 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 32 new new ADJ JJ Degree=Pos 34 amod _ _ 33 crossed crossed ADJ JJ Degree=Pos 34 amod _ _ 34 module module NOUN NN Number=Sing 30 dobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 Hopf Hopf PROPN NNP Number=Sing 37 compound _ _ 37 monoids monoid NOUN NNS Number=Plur 35 pobj _ _ 38 in in ADP IN _ 37 prep _ _ 39 $ {mathcal C} $ $ {mathcal c} $ SYM $ _ 38 pobj _ _ 40 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = Moreover we introduce the notion of projection of crossed modules of Hopf monoids and show that with additional hypotheses, any of these projections defines a new crossed module of Hopf monoids and allows us to construct an example of this kind of crossed product. 1 Moreover moreover ADV RB _ 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 notion notion NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 projection projection NOUN NN Number=Sing 6 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 crossed crossed ADJ JJ Degree=Pos 10 amod _ _ 10 modules module NOUN NNS Number=Plur 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 Hopf hopf NOUN NN Number=Sing 13 compound _ _ 13 monoids monoid NOUN NNS Number=Plur 11 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 3 cc _ _ 15 show show VERB VB VerbForm=Inf 3 conj _ _ 16 that that SCONJ IN _ 25 mark _ _ 17 with with ADP IN _ 25 prep _ _ 18 additional additional ADJ JJ Degree=Pos 19 amod _ _ 19 hypotheses hypothesis NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 25 punct _ _ 21 any any PRON DT _ 25 nsubj _ _ 22 of of ADP IN _ 21 prep _ _ 23 these these DET DT Number=Plur|PronType=Dem 24 det _ _ 24 projections projection NOUN NNS Number=Plur 22 pobj _ _ 25 defines define VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 ccomp _ _ 26 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 27 new new ADJ JJ Degree=Pos 29 amod _ _ 28 crossed crossed ADJ JJ Degree=Pos 29 amod _ _ 29 module module NOUN NN Number=Sing 25 dobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 Hopf hopf NOUN NN Number=Sing 32 compound _ _ 32 monoids monoid NOUN NNS Number=Plur 30 pobj _ _ 33 and and CCONJ CC ConjType=Cmp 25 cc _ _ 34 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 25 conj _ _ 35 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 37 nsubj _ _ 36 to to PART TO _ 37 aux _ _ 37 construct construct VERB VB VerbForm=Inf 34 ccomp _ _ 38 an an DET DT Definite=Ind|PronType=Art 39 det _ _ 39 example example NOUN NN Number=Sing 37 dobj _ _ 40 of of ADP IN _ 39 prep _ _ 41 this this DET DT Number=Sing|PronType=Dem 42 det _ _ 42 kind kind NOUN NN Number=Sing 40 pobj _ _ 43 of of ADP IN _ 42 prep _ _ 44 crossed crossed ADJ JJ Degree=Pos 45 amod _ _ 45 product product NOUN NN Number=Sing 43 pobj _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = Finally, we develop the explicit computations of a crossed product associated to a projection of crossed modules in groups. 1 Finally finally ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 develop develop VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 explicit explicit ADJ JJ Degree=Pos 7 amod _ _ 7 computations computation NOUN NNS Number=Plur 4 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 crossed cross VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 amod _ _ 11 product product NOUN NN Number=Sing 8 pobj _ _ 12 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 acl _ _ 13 to to ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 projection projection NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 crossed cross VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 amod _ _ 18 modules module NOUN NNS Number=Plur 16 pobj _ _ 19 in in ADP IN _ 18 prep _ _ 20 groups group NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 661 # sent_id = 1 # text = Tangent categories provide an axiomatic approach to key structural aspects of differential geometry that exist not only in the classical category of smooth manifolds but also in algebraic geometry, homological algebra, computer science, and combinatorics. 1 Tangent tangent ADJ JJ Degree=Pos 2 compound _ _ 2 categories category NOUN NNS Number=Plur 3 nsubj _ _ 3 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 an an DET DT Definite=Ind|PronType=Art 6 det _ _ 5 axiomatic axiomatic ADJ JJ Degree=Pos 6 amod _ _ 6 approach approach NOUN NN Number=Sing 3 dobj _ _ 7 to to ADP IN _ 6 prep _ _ 8 key key ADJ JJ Degree=Pos 10 amod _ _ 9 structural structural ADJ JJ Degree=Pos 10 amod _ _ 10 aspects aspect NOUN NNS Number=Plur 7 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 differential differential ADJ JJ Degree=Pos 13 amod _ _ 13 geometry geometry NOUN NN Number=Sing 11 pobj _ _ 14 that that PRON WDT PronType=Rel 15 nsubj _ _ 15 exist exist VERB VBP Tense=Pres|VerbForm=Fin 10 relcl _ _ 16 not not PART RB Polarity=Neg 18 preconj _ _ 17 only only ADV RB _ 16 advmod _ _ 18 in in ADP IN _ 15 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 classical classical ADJ JJ Degree=Pos 21 amod _ _ 21 category category NOUN NN Number=Sing 18 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 smooth smooth ADJ JJ Degree=Pos 24 amod _ _ 24 manifolds manifold NOUN NNS Number=Plur 22 pobj _ _ 25 but but CCONJ CC ConjType=Cmp 18 cc _ _ 26 also also ADV RB _ 25 advmod _ _ 27 in in ADP IN _ 18 conj _ _ 28 algebraic algebraic ADJ JJ Degree=Pos 29 amod _ _ 29 geometry geometry NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 29 punct _ _ 31 homological homological ADJ JJ Degree=Pos 32 amod _ _ 32 algebra algebra NOUN NN Number=Sing 29 conj _ SpaceAfter=No 33 , , PUNCT , PunctType=Comm 32 punct _ _ 34 computer computer NOUN NN Number=Sing 35 compound _ _ 35 science science NOUN NN Number=Sing 32 conj _ SpaceAfter=No 36 , , PUNCT , PunctType=Comm 35 punct _ _ 37 and and CCONJ CC ConjType=Cmp 35 cc _ _ 38 combinatorics combinatoric NOUN NNS Number=Plur 35 conj _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = Generalizing the notion of (linear) connection on a smooth vector bundle, Cockett and Cruttwell have defined a notion of connection on a differential bundle in an arbitrary tangent category. 1 Generalizing generalize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 19 advcl _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 notion notion NOUN NN Number=Sing 1 dobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 8 punct _ SpaceAfter=No 6 linear linear ADJ JJ Degree=Pos 8 nmod _ SpaceAfter=No 7 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 8 punct _ _ 8 connection connection NOUN NN Number=Sing 4 pobj _ _ 9 on on ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 11 smooth smooth ADJ JJ Degree=Pos 13 amod _ _ 12 vector vector NOUN NN Number=Sing 13 compound _ _ 13 bundle bundle NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 19 punct _ _ 15 Cockett Cockett PROPN NNP Number=Sing 19 nsubj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 Cruttwell Cruttwell PROPN NNP Number=Sing 15 conj _ _ 18 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 19 aux _ _ 19 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 20 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 21 notion notion NOUN NN Number=Sing 19 dobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 connection connection NOUN NN Number=Sing 22 pobj _ _ 24 on on ADP IN _ 23 prep _ _ 25 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 26 differential differential ADJ JJ Degree=Pos 27 amod _ _ 27 bundle bundle NOUN NN Number=Sing 24 pobj _ _ 28 in in ADP IN _ 27 prep _ _ 29 an an DET DT Definite=Ind|PronType=Art 32 det _ _ 30 arbitrary arbitrary ADJ JJ Degree=Pos 32 amod _ _ 31 tangent tangent NOUN NN Number=Sing 32 compound _ _ 32 category category NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 3 # text = Herein, we establish equivalent formulations of this notion of connection that reduce the amount of specified structure required. 1 Herein Herein PROPN NNP Number=Sing 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 establish establish VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 equivalent equivalent ADJ JJ Degree=Pos 6 amod _ _ 6 formulations formulation NOUN NNS Number=Plur 4 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 this this DET DT Number=Sing|PronType=Dem 9 det _ _ 9 notion notion NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 connection connection NOUN NN Number=Sing 10 pobj _ _ 12 that that PRON WDT PronType=Rel 13 nsubj _ _ 13 reduce reduce VERB VBP Tense=Pres|VerbForm=Fin 11 relcl _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 amount amount NOUN NN Number=Sing 13 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 specified specify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 amod _ _ 18 structure structure NOUN NN Number=Sing 16 pobj _ _ 19 required require VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 acl _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = Further, one of our equivalent formulations substantially reduces the number of axioms imposed, and others provide useful abstract conceptualizations of connections. 1 Further far ADV RB _ 9 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 9 punct _ _ 3 one one NUM CD NumType=Card 9 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 7 poss _ _ 6 equivalent equivalent ADJ JJ Degree=Pos 7 amod _ _ 7 formulations formulation NOUN NNS Number=Plur 4 pobj _ _ 8 substantially substantially ADV RB _ 9 advmod _ _ 9 reduces reduce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 number number NOUN NN Number=Sing 9 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 axioms axiom NOUN NNS Number=Plur 12 pobj _ _ 14 imposed impose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 acl _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 9 punct _ _ 16 and and CCONJ CC ConjType=Cmp 9 cc _ _ 17 others other NOUN NNS Number=Plur 18 nsubj _ _ 18 provide provide VERB VBP Tense=Pres|VerbForm=Fin 9 conj _ _ 19 useful useful ADJ JJ Degree=Pos 21 amod _ _ 20 abstract abstract ADJ JJ Degree=Pos 21 amod _ _ 21 conceptualizations conceptualization NOUN NNS Number=Plur 18 dobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 connections connection NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # sent_id = 5 # text = In particular, we show that a connection on a differential bundle $ E $ over $ M $ is equivalently given by a single morphism $ K $ that induces a suitable decomposition of $ TE $ as a biproduct. 1 In in ADP IN _ 5 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 that that SCONJ IN _ 18 mark _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 connection connection NOUN NN Number=Sing 18 nsubjpass _ _ 9 on on ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 differential differential ADJ JJ Degree=Pos 12 amod _ _ 12 bundle bundle NOUN NN Number=Sing 9 pobj _ _ 13 $ E $ $ e $ SYM $ _ 15 nmod _ _ 14 over over ADP IN _ 15 advmod _ _ 15 $ M $ $ m $ SYM $ _ 8 appos _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 auxpass _ _ 17 equivalently equivalently ADV RB _ 18 advmod _ _ 18 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 ccomp _ _ 19 by by ADP IN _ 18 agent _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 single single ADJ JJ Degree=Pos 22 amod _ _ 22 morphism morphism NOUN NN Number=Sing 19 pobj _ _ 23 $ K $ $ k $ SYM $ _ 22 appos _ _ 24 that that PRON WDT PronType=Rel 25 nsubj _ _ 25 induces induce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 relcl _ _ 26 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 27 suitable suitable ADJ JJ Degree=Pos 28 amod _ _ 28 decomposition decomposition NOUN NN Number=Sing 25 dobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 $ TE $ $ te $ SYM $ _ 29 pobj _ _ 31 as as ADP IN _ 25 prep _ _ 32 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 33 biproduct biproduct NOUN NN Number=Sing 31 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 6 # text = We also show that a connection is equivalently given by a vertical connection $ K $ for which a certain associated diagram is a limit diagram. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 9 mark _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 connection connection NOUN NN Number=Sing 9 nsubjpass _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 8 equivalently equivalently ADV RB _ 9 advmod _ _ 9 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 ccomp _ _ 10 by by ADP IN _ 9 agent _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 vertical vertical ADJ JJ Degree=Pos 13 amod _ _ 13 connection connection NOUN NN Number=Sing 10 pobj _ _ 14 $ K $ $ k $ SYM $ _ 13 appos _ _ 15 for for ADP IN _ 21 prep _ _ 16 which which PRON WDT _ 15 pobj _ _ 17 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 18 certain certain ADJ JJ Degree=Pos 20 amod _ _ 19 associated associated ADJ JJ Degree=Pos 20 amod _ _ 20 diagram diagram NOUN NN Number=Sing 21 nsubj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 relcl _ _ 22 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 23 limit limit NOUN NN Number=Sing 24 compound _ _ 24 diagram diagram NOUN NN Number=Sing 21 attr _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 662 # sent_id = 1 # text = The Ehresmann - Schein - Nambooripad Theorem asserts an equivalence between the category of inverse semigroups and the category of inductive groupoids. 1 The the DET DT Definite=Def|PronType=Art 7 det _ _ 2 Ehresmann Ehresmann PROPN NNP Number=Sing 4 compound _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 Schein Schein PROPN NNP Number=Sing 6 compound _ _ 5 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 6 Nambooripad Nambooripad PROPN NNP Number=Sing 7 compound _ _ 7 Theorem Theorem PROPN NNP Number=Sing 8 nsubj _ _ 8 asserts assert VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 an an DET DT Definite=Ind|PronType=Art 10 det _ _ 10 equivalence equivalence NOUN NN Number=Sing 8 dobj _ _ 11 between between ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 category category NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 inverse inverse ADJ JJ Degree=Pos 16 amod _ _ 16 semigroups semigroup NOUN NNS Number=Plur 14 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 13 cc _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 category category NOUN NN Number=Sing 13 conj _ _ 20 of of ADP IN _ 19 prep _ _ 21 inductive inductive ADJ JJ Degree=Pos 22 amod _ _ 22 groupoids groupoid NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 2 # text = In this paper, we consider the category of inverse categories and functors—a natural generalization of inverse semigroups and semigroup homomorphisms—and extend the ESN Theorem to an equivalence between this category and the category of locally complete inductive groupoids and locally inductive functors. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 category category NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 inverse inverse ADJ JJ Degree=Pos 11 amod _ _ 11 categories category NOUN NNS Number=Plur 9 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 functors functor NOUN NNS Number=Plur 11 conj _ SpaceAfter=No 14 — — PUNCT : _ 8 punct _ SpaceAfter=No 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 natural natural ADJ JJ Degree=Pos 17 amod _ _ 17 generalization generalization NOUN NN Number=Sing 8 appos _ _ 18 of of ADP IN _ 17 prep _ _ 19 inverse inverse ADJ JJ Degree=Pos 20 amod _ _ 20 semigroups semigroup NOUN NNS Number=Plur 18 pobj _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 semigroup semigroup NOUN NN Number=Sing 23 compound _ _ 23 homomorphisms homomorphism NOUN NNS Number=Plur 20 conj _ SpaceAfter=No 24 — — PUNCT : _ 8 punct _ SpaceAfter=No 25 and and CCONJ CC ConjType=Cmp 6 cc _ _ 26 extend extend VERB VB VerbForm=Inf 6 conj _ _ 27 the the DET DT Definite=Def|PronType=Art 29 det _ _ 28 ESN ESN PROPN NNP Number=Sing 29 compound _ _ 29 Theorem Theorem PROPN NNP Number=Sing 26 dobj _ _ 30 to to ADP IN _ 26 prep _ _ 31 an an DET DT Definite=Ind|PronType=Art 32 det _ _ 32 equivalence equivalence NOUN NN Number=Sing 30 pobj _ _ 33 between between ADP IN _ 32 prep _ _ 34 this this DET DT Number=Sing|PronType=Dem 35 det _ _ 35 category category NOUN NN Number=Sing 33 pobj _ _ 36 and and CCONJ CC ConjType=Cmp 35 cc _ _ 37 the the DET DT Definite=Def|PronType=Art 38 det _ _ 38 category category NOUN NN Number=Sing 35 conj _ _ 39 of of ADP IN _ 38 prep _ _ 40 locally locally ADV RB _ 41 advmod _ _ 41 complete complete ADJ JJ Degree=Pos 43 amod _ _ 42 inductive inductive ADJ JJ Degree=Pos 43 amod _ _ 43 groupoids groupoid NOUN NNS Number=Plur 39 pobj _ _ 44 and and CCONJ CC ConjType=Cmp 43 cc _ _ 45 locally locally ADV RB _ 46 advmod _ _ 46 inductive inductive ADJ JJ Degree=Pos 47 amod _ _ 47 functors functor NOUN NNS Number=Plur 43 conj _ SpaceAfter=No 48 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = From the proof of this extension, we also generalize the ESN Theorem to an equivalence between the category of inverse semicategories and the category of locally inductive groupoids and to an equivalence between the category of inverse categories with oplax functors and the category of locally complete inductive groupoids and ordered functors. 1 From from ADP IN _ 10 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 proof proof NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 6 extension extension NOUN NN Number=Sing 4 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 10 punct _ _ 8 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 10 nsubj _ _ 9 also also ADV RB _ 10 advmod _ _ 10 generalize generalize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 ESN ESN PROPN NNP Number=Sing 13 compound _ _ 13 Theorem Theorem PROPN NNP Number=Sing 10 dobj _ _ 14 to to ADP IN _ 10 prep _ _ 15 an an DET DT Definite=Ind|PronType=Art 16 det _ _ 16 equivalence equivalence NOUN NN Number=Sing 14 pobj _ _ 17 between between ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 category category NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 inverse inverse ADJ JJ Degree=Pos 22 amod _ _ 22 semicategories semicategorie NOUN NNS Number=Plur 20 pobj _ _ 23 and and CCONJ CC ConjType=Cmp 19 cc _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 category category NOUN NN Number=Sing 19 conj _ _ 26 of of ADP IN _ 25 prep _ _ 27 locally locally ADV RB _ 28 advmod _ _ 28 inductive inductive ADJ JJ Degree=Pos 29 amod _ _ 29 groupoids groupoid NOUN NNS Number=Plur 26 pobj _ _ 30 and and CCONJ CC ConjType=Cmp 26 cc _ _ 31 to to ADP IN _ 26 conj _ _ 32 an an DET DT Definite=Ind|PronType=Art 33 det _ _ 33 equivalence equivalence NOUN NN Number=Sing 31 pobj _ _ 34 between between ADP IN _ 33 prep _ _ 35 the the DET DT Definite=Def|PronType=Art 36 det _ _ 36 category category NOUN NN Number=Sing 34 pobj _ _ 37 of of ADP IN _ 36 prep _ _ 38 inverse inverse ADJ JJ Degree=Pos 39 amod _ _ 39 categories category NOUN NNS Number=Plur 37 pobj _ _ 40 with with ADP IN _ 39 prep _ _ 41 oplax oplax PROPN NNP Number=Sing 42 compound _ _ 42 functors functor NOUN NNS Number=Plur 40 pobj _ _ 43 and and CCONJ CC ConjType=Cmp 42 cc _ _ 44 the the DET DT Definite=Def|PronType=Art 45 det _ _ 45 category category NOUN NN Number=Sing 42 conj _ _ 46 of of ADP IN _ 45 prep _ _ 47 locally locally ADV RB _ 48 advmod _ _ 48 complete complete ADJ JJ Degree=Pos 50 amod _ _ 49 inductive inductive ADJ JJ Degree=Pos 50 amod _ _ 50 groupoids groupoid NOUN NNS Number=Plur 46 pobj _ _ 51 and and CCONJ CC ConjType=Cmp 36 cc _ _ 52 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 advcl _ _ 53 functors functor NOUN NNS Number=Plur 52 dobj _ SpaceAfter=No 54 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # doc_id = 663 # sent_id = 1 # text = Let $ H $ be a quasi - Hopf algebra. 1 Let let VERB VB VerbForm=Inf 0 ROOT _ _ 2 $ H $ $ h $ SYM $ _ 1 ccomp _ _ 3 be be AUX VB VerbForm=Inf 1 ccomp _ _ 4 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 5 quasi quasi ADJ JJ Degree=Pos 8 amod _ _ 6 - - ADJ JJ Degree=Pos 8 punct _ _ 7 Hopf hopf ADJ JJ Degree=Pos 8 amod _ _ 8 algebra algebra NOUN NN Number=Sing 3 attr _ SpaceAfter=No 9 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = We show that any $ H $ - bimodule coalgebra $ C $ for which there exists an $ H $ - bimodule coalgebra morphism $ n : C - > H $ is isomorphic to what we will call a smash product coalgebra. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 21 mark _ _ 4 any any DET DT _ 8 det _ _ 5 $ H $ $ h $ SYM $ _ 7 amod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 bimodule bimodule NOUN NN Number=Sing 8 compound _ _ 8 coalgebra coalgebra NOUN NNS Number=Plur 21 nsubj _ _ 9 $ C $ $ c $ SYM $ _ 8 appos _ _ 10 for for ADP IN _ 13 prep _ _ 11 which which PRON WDT _ 10 pobj _ _ 12 there there PRON EX _ 13 expl _ _ 13 exists exist VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 relcl _ _ 14 an an DET DT Definite=Ind|PronType=Art 19 det _ _ 15 $ H $ $ h $ SYM $ _ 17 advmod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 bimodule bimodule NOUN NN Number=Sing 19 compound _ _ 18 coalgebra coalgebra PROPN NNP Number=Sing 19 compound _ _ 19 morphism morphism PROPN NNP Number=Sing 13 dobj _ _ 20 $ n : C - > H $ $ n : c - > h $ SYM $ _ 13 npadvmod _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 22 isomorphic isomorphic ADJ JJ Degree=Pos 21 acomp _ _ 23 to to ADP IN _ 22 prep _ _ 24 what what PRON WP _ 27 dobj _ _ 25 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 27 nsubj _ _ 26 will will AUX MD VerbForm=Fin 27 aux _ _ 27 call call VERB VB VerbForm=Inf 23 pcomp _ _ 28 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 29 smash smash NOUN NN Number=Sing 30 compound _ _ 30 product product NOUN NN Number=Sing 31 compound _ _ 31 coalgebra coalgebra NOUN NNS Number=Plur 27 oprd _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = To this end, we use an explicit monoidal equivalence between the category of two - sided two - cosided Hopf modules over $ H $ and the category of left Yetter - Drinfeld modules over $ H $ . 1 To to ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 end end NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 an an DET DT Definite=Ind|PronType=Art 10 det _ _ 8 explicit explicit ADJ JJ Degree=Pos 10 amod _ _ 9 monoidal monoidal ADJ JJ Degree=Pos 10 amod _ _ 10 equivalence equivalence NOUN NN Number=Sing 6 dobj _ _ 11 between between ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 category category NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 two two NUM CD NumType=Card 14 pobj _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 sided sided ADJ JJ Degree=Pos 22 amod _ _ 18 two two NUM CD NumType=Card 20 advmod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 cosided coside VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 amod _ _ 21 Hopf Hopf PROPN NNP Number=Sing 22 compound _ _ 22 modules module NOUN NNS Number=Plur 6 dobj _ _ 23 over over ADP IN _ 22 prep _ _ 24 $ H $ $ h $ SYM $ _ 23 pobj _ _ 25 and and CCONJ CC ConjType=Cmp 22 cc _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 category category NOUN NN Number=Sing 22 conj _ _ 28 of of ADP IN _ 27 prep _ _ 29 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 33 amod _ _ 30 Yetter Yetter PROPN NNP Number=Sing 32 compound _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 Drinfeld Drinfeld PROPN NNP Number=Sing 33 compound _ _ 33 modules module NOUN NNS Number=Plur 28 pobj _ _ 34 over over ADP IN _ 33 prep _ _ 35 $ H $ $ h $ SYM $ _ 34 pobj _ _ 36 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = This categorical method allows also to reobtain the structure theorem for a quasi - Hopf (bi)comodule algebra given by Panaite and Van Oystaeyen, and by Dello et al. 1 This this DET DT Number=Sing|PronType=Dem 3 det _ _ 2 categorical categorical ADJ JJ Degree=Pos 3 amod _ _ 3 method method NOUN NN Number=Sing 4 nsubj _ _ 4 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 also also ADV RB _ 4 advmod _ _ 6 to to PART TO _ 7 aux _ _ 7 reobtain reobtain VERB VB VerbForm=Inf 4 xcomp _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 structure structure NOUN NN Number=Sing 10 nsubj _ _ 10 theorem theorem VERB VBD Tense=Past|VerbForm=Fin 7 ccomp _ _ 11 for for ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 13 quasi quasi ADJ JJ Degree=Pos 18 compound _ _ 14 - - PUNCT : _ 18 punct _ _ 15 Hopf hopf NOUN NN Number=Sing 18 nmod _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 18 punct _ SpaceAfter=No 17 bi)comodule bi)comodule NOUN NN Number=Sing 18 compound _ _ 18 algebra algebra NOUN NN Number=Sing 11 pobj _ _ 19 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 acl _ _ 20 by by ADP IN _ 19 agent _ _ 21 Panaite Panaite PROPN NNP Number=Sing 24 nmod _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 Van Van PROPN NNP Number=Sing 24 compound _ _ 24 Oystaeyen Oystaeyen PROPN NNP Number=Sing 20 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 19 punct _ _ 26 and and CCONJ CC ConjType=Cmp 11 cc _ _ 27 by by ADP IN _ 11 conj _ _ 28 Dello Dello PROPN NNP Number=Sing 27 pobj _ _ 29 et et NOUN NN Number=Sing 27 pobj _ _ 30 al al PROPN NNP Number=Sing 27 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 664 # sent_id = 1 # text = Passive linear networks are used in a wide variety of engineering applications, but the best studied are electrical circuits made of resistors, inductors and capacitors. 1 Passive passive ADJ JJ Degree=Pos 3 amod _ _ 2 linear linear ADJ JJ Degree=Pos 3 compound _ _ 3 networks network NOUN NNS Number=Plur 5 nsubjpass _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 in in ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 wide wide ADJ JJ Degree=Pos 9 amod _ _ 9 variety variety NOUN NN Number=Sing 6 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 engineering engineering NOUN NN Number=Sing 12 compound _ _ 12 applications application NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 5 punct _ _ 14 but but CCONJ CC ConjType=Cmp 5 cc _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 best good ADJ JJS Degree=Sup 17 amod _ _ 17 studied study VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 nsubj _ _ 18 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 conj _ _ 19 electrical electrical ADJ JJ Degree=Pos 20 amod _ _ 20 circuits circuit NOUN NNS Number=Plur 18 attr _ _ 21 made make VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 acl _ _ 22 of of ADP IN _ 21 prep _ _ 23 resistors resistor NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 23 punct _ _ 25 inductors inductor NOUN NNS Number=Plur 23 conj _ _ 26 and and CCONJ CC ConjType=Cmp 25 cc _ _ 27 capacitors capacitor NOUN NNS Number=Plur 25 conj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # sent_id = 2 # text = We describe a category where a morphism is a circuit of this sort with marked input and output terminals. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 category category NOUN NN Number=Sing 2 dobj _ _ 5 where where SCONJ WRB _ 8 advmod _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 morphism morphism NOUN NN Number=Sing 8 nsubj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 relcl _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 circuit circuit NOUN NN Number=Sing 8 attr _ _ 11 of of ADP IN _ 10 prep _ _ 12 this this DET DT Number=Sing|PronType=Dem 13 det _ _ 13 sort sort NOUN NN Number=Sing 11 pobj _ _ 14 with with ADP IN _ 10 prep _ _ 15 marked marked ADJ JJ Degree=Pos 16 amod _ _ 16 input input NOUN NN Number=Sing 14 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 output output NOUN NN Number=Sing 19 compound _ _ 19 terminals terminal NOUN NNS Number=Plur 16 conj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = In this category, composition describes the process of attaching the outputs of one circuit to the inputs of another. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 category category NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 composition composition NOUN NN Number=Sing 6 nsubj _ _ 6 describes describe VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 process process NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 attaching attach VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 pcomp _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 outputs output NOUN NNS Number=Plur 10 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 one one NUM CD NumType=Card 15 nummod _ _ 15 circuit circuit NOUN NN Number=Sing 13 pobj _ _ 16 to to ADP IN _ 10 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 inputs input NOUN NNS Number=Plur 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 another another PRON DT _ 19 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = We construct a functor, dubbed the `black box functor', that takes a circuit, forgets its internal structure, and remembers only its external behavior. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 functor functor NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 4 punct _ _ 6 dubbed dub VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 acl _ _ 7 the the DET DT Definite=Def|PronType=Art 11 det _ _ 8 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 11 punct _ SpaceAfter=No 9 black black PROPN NNP Number=Sing 10 amod _ _ 10 box box PROPN NNP Number=Sing 11 compound _ _ 11 functor functor NOUN NN Number=Sing 6 oprd _ SpaceAfter=No 12 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 4 punct _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 4 punct _ _ 14 that that PRON WDT PronType=Rel 15 nsubj _ _ 15 takes take VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 relcl _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 circuit circuit NOUN NN Number=Sing 15 dobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 19 punct _ _ 19 forgets forget VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 conj _ _ 20 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 22 poss _ _ 21 internal internal ADJ JJ Degree=Pos 22 amod _ _ 22 structure structure NOUN NN Number=Sing 19 dobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 19 punct _ _ 24 and and CCONJ CC ConjType=Cmp 19 cc _ _ 25 remembers remember VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 conj _ _ 26 only only ADV RB _ 29 advmod _ _ 27 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 29 poss _ _ 28 external external ADJ JJ Degree=Pos 29 amod _ _ 29 behavior behavior NOUN NN Number=Sing 25 dobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = Two circuits have the same external behavior if and only if they impose same relation between currents and potentials at their terminals. 1 Two two NUM CD NumType=Card 2 nummod _ _ 2 circuits circuit NOUN NNS Number=Plur 3 nsubj _ _ 3 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 same same ADJ JJ Degree=Pos 7 amod _ _ 6 external external ADJ JJ Degree=Pos 7 amod _ _ 7 behavior behavior NOUN NN Number=Sing 3 dobj _ _ 8 if if SCONJ IN _ 3 punct _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 only only ADV RB _ 13 advmod _ _ 11 if if SCONJ IN _ 13 mark _ _ 12 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 13 nsubj _ _ 13 impose impose VERB VBP Tense=Pres|VerbForm=Fin 3 advcl _ _ 14 same same ADJ JJ Degree=Pos 15 amod _ _ 15 relation relation NOUN NN Number=Sing 13 dobj _ _ 16 between between ADP IN _ 15 prep _ _ 17 currents current NOUN NNS Number=Plur 16 pobj _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 potentials potential NOUN NNS Number=Plur 17 conj _ _ 20 at at ADP IN _ 13 prep _ _ 21 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 22 poss _ _ 22 terminals terminal NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = The space of these currents and potentials naturally has the structure of a symplectic vector space, and the relation imposed by a circuit is a Lagrangian linear relation. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 space space NOUN NN Number=Sing 9 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 these these DET DT Number=Plur|PronType=Dem 5 det _ _ 5 currents current NOUN NNS Number=Plur 3 pobj _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 potentials potential NOUN NNS Number=Plur 5 conj _ _ 8 naturally naturally ADV RB _ 9 advmod _ _ 9 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 structure structure NOUN NN Number=Sing 9 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 14 symplectic symplectic ADJ JJ Degree=Pos 16 amod _ _ 15 vector vector NOUN NN Number=Sing 16 compound _ _ 16 space space NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 9 punct _ _ 18 and and CCONJ CC ConjType=Cmp 9 cc _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 relation relation NOUN NN Number=Sing 25 nsubj _ _ 21 imposed impose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 acl _ _ 22 by by ADP IN _ 21 agent _ _ 23 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 24 circuit circuit NOUN NN Number=Sing 22 pobj _ _ 25 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 conj _ _ 26 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 27 Lagrangian lagrangian ADJ JJ Degree=Pos 29 amod _ _ 28 linear linear ADJ JJ Degree=Pos 29 compound _ _ 29 relation relation NOUN NN Number=Sing 25 attr _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 25 punct _ SpaceAfter=No # sent_id = 7 # text = Thus, the black box functor goes from our category of circuits to a category with Lagrangian linear relations as morphisms. 1 Thus thus ADV RB _ 7 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 7 punct _ _ 3 the the DET DT Definite=Def|PronType=Art 6 det _ _ 4 black black ADJ JJ Degree=Pos 5 amod _ _ 5 box box NOUN NN Number=Sing 6 compound _ _ 6 functor functor NOUN NN Number=Sing 7 nsubj _ _ 7 goes go VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 from from ADP IN _ 7 prep _ _ 9 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 10 poss _ _ 10 category category NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 circuits circuit NOUN NNS Number=Plur 11 pobj _ _ 13 to to ADP IN _ 7 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 category category NOUN NN Number=Sing 13 pobj _ _ 16 with with ADP IN _ 15 prep _ _ 17 Lagrangian lagrangian ADJ JJ Degree=Pos 19 amod _ _ 18 linear linear ADJ JJ Degree=Pos 19 compound _ _ 19 relations relation NOUN NNS Number=Plur 16 pobj _ _ 20 as as ADP IN _ 19 prep _ _ 21 morphisms morphism NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 8 # text = We prove that this functor is symmetric monoidal and indeed a hypergraph functor. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 6 mark _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 functor functor NOUN NN Number=Sing 6 nsubj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 7 symmetric symmetric ADJ JJ Degree=Pos 8 amod _ _ 8 monoidal monoidal NOUN NN Number=Sing 6 attr _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 indeed indeed ADV RB _ 13 advmod _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 hypergraph hypergraph NOUN NN Number=Sing 13 compound _ _ 13 functor functor NOUN NN Number=Sing 8 conj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 9 # text = We assume the reader is familiar with category theory, but not with circuit theory or symplectic linear algebra. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 assume assume VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 reader reader NOUN NN Number=Sing 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 6 familiar familiar ADJ JJ Degree=Pos 5 acomp _ _ 7 with with ADP IN _ 6 prep _ _ 8 category category NOUN NN Number=Sing 9 compound _ _ 9 theory theory NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 5 punct _ _ 11 but but CCONJ CC ConjType=Cmp 5 cc _ _ 12 not not PART RB Polarity=Neg 13 neg _ _ 13 with with ADP IN _ 5 conj _ _ 14 circuit circuit NOUN NN Number=Sing 15 compound _ _ 15 theory theory NOUN NN Number=Sing 13 pobj _ _ 16 or or CCONJ CC ConjType=Cmp 15 cc _ _ 17 symplectic symplectic ADJ JJ Degree=Pos 19 amod _ _ 18 linear linear ADJ JJ Degree=Pos 19 compound _ _ 19 algebra algebra PROPN NNP Number=Sing 15 conj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 665 # sent_id = 1 # text = Long before the invention of Feynman diagrams, engineers were using similar diagrams to reason about electrical circuits and more general networks containing mechanical, hydraulic, thermodynamic and chemical components. 1 Long long ADV RB _ 2 advmod _ _ 2 before before ADP IN _ 11 prep _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 invention invention NOUN NN Number=Sing 2 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 Feynman Feynman PROPN NNP Number=Sing 7 compound _ _ 7 diagrams diagram NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 11 punct _ _ 9 engineers engineer NOUN NNS Number=Plur 11 nsubj _ _ 10 were be AUX VBD Mood=Ind|Tense=Past|VerbForm=Fin 11 aux _ _ 11 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 0 ROOT _ _ 12 similar similar ADJ JJ Degree=Pos 13 amod _ _ 13 diagrams diagram NOUN NNS Number=Plur 11 dobj _ _ 14 to to PART TO _ 15 aux _ _ 15 reason reason VERB VB VerbForm=Inf 11 xcomp _ _ 16 about about ADP IN _ 15 prep _ _ 17 electrical electrical ADJ JJ Degree=Pos 18 amod _ _ 18 circuits circuit NOUN NNS Number=Plur 16 pobj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 more more ADJ JJR Degree=Cmp 21 advmod _ _ 21 general general ADJ JJ Degree=Pos 22 amod _ _ 22 networks network NOUN NNS Number=Plur 18 conj _ _ 23 containing contain VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 acl _ _ 24 mechanical mechanical ADJ JJ Degree=Pos 31 amod _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 hydraulic hydraulic ADJ JJ Degree=Pos 24 conj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 26 punct _ _ 28 thermodynamic thermodynamic ADJ JJ Degree=Pos 26 conj _ _ 29 and and CCONJ CC ConjType=Cmp 28 cc _ _ 30 chemical chemical ADJ JJ Degree=Pos 28 conj _ _ 31 components component NOUN NNS Number=Plur 23 dobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 2 # text = We can formalize this reasoning using props: that is, strict symmetric monoidal categories where the objects are natural numbers, with the tensor product of objects given by addition. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 can can AUX MD VerbForm=Fin 3 aux _ _ 3 formalize formalize VERB VB VerbForm=Inf 10 ccomp _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 reasoning reasoning NOUN NN Number=Sing 3 dobj _ _ 6 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 advcl _ _ 7 props prop NOUN NNS Number=Plur 6 dobj _ SpaceAfter=No 8 : : PUNCT : _ 10 punct _ _ 9 that that PRON DT Number=Sing|PronType=Dem 10 advmod _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 15 punct _ _ 12 strict strict ADJ JJ Degree=Pos 15 amod _ _ 13 symmetric symmetric ADJ JJ Degree=Pos 15 amod _ _ 14 monoidal monoidal ADJ JJ Degree=Pos 15 amod _ _ 15 categories category NOUN NNS Number=Plur 10 attr _ _ 16 where where SCONJ WRB _ 19 advmod _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 objects object NOUN NNS Number=Plur 19 nsubj _ _ 19 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 relcl _ _ 20 natural natural ADJ JJ Degree=Pos 21 amod _ _ 21 numbers number NOUN NNS Number=Plur 19 attr _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 15 punct _ _ 23 with with ADP IN _ 15 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 26 det _ _ 25 tensor tensor NOUN NN Number=Sing 26 compound _ _ 26 product product NOUN NN Number=Sing 23 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 objects object NOUN NNS Number=Plur 27 pobj _ _ 29 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 acl _ _ 30 by by ADP IN _ 29 agent _ _ 31 addition addition NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 3 # text = In this approach, each kind of network corresponds to a prop, and each network of this kind is a morphism in that prop. 1 In in ADP IN _ 9 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 approach approach NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 9 punct _ _ 5 each each DET DT _ 6 det _ _ 6 kind kind NOUN NN Number=Sing 9 nsubj _ _ 7 of of ADP IN _ 6 prep _ _ 8 network network NOUN NN Number=Sing 9 compound _ _ 9 corresponds correspond NOUN NNS Number=Plur 0 ROOT _ _ 10 to to ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 prop prop NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 9 punct _ _ 14 and and CCONJ CC ConjType=Cmp 9 cc _ _ 15 each each DET DT _ 16 det _ _ 16 network network NOUN NN Number=Sing 20 nsubj _ _ 17 of of ADP IN _ 16 prep _ _ 18 this this DET DT Number=Sing|PronType=Dem 19 det _ _ 19 kind kind NOUN NN Number=Sing 17 pobj _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 conj _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 morphism morphism NOUN NN Number=Sing 20 attr _ _ 23 in in ADP IN _ 22 prep _ _ 24 that that DET DT Number=Sing|PronType=Dem 25 det _ _ 25 prop prop NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # sent_id = 4 # text = A network with $ m $ inputs and $ n $ outputs is a morphism from $ m $ to $ n $ , putting networks together in series is composition, and setting them side by side is tensoring. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 network network NOUN NN Number=Sing 9 nsubj _ _ 3 with with ADP IN _ 2 prep _ _ 4 $ m $ $ m $ SYM $ _ 5 nmod _ _ 5 inputs input NOUN NNS Number=Plur 3 pobj _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 $ n $ $ n $ SYM $ _ 8 nmod _ _ 8 outputs output NOUN NNS Number=Plur 5 conj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 ccomp _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 morphism morphism NOUN NN Number=Sing 9 attr _ _ 12 from from ADP IN _ 11 prep _ _ 13 $ m $ $ m $ SYM $ _ 12 pobj _ _ 14 to to PART TO _ 12 prep _ _ 15 $ n $ $ n $ SYM $ _ 14 pobj _ _ 16 , , PUNCT , PunctType=Comm 9 punct _ _ 17 putting put VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 csubj _ _ 18 networks network NOUN NNS Number=Plur 17 dobj _ _ 19 together together ADV RB _ 17 advmod _ _ 20 in in ADP IN _ 17 prep _ _ 21 series series NOUN NN Number=Sing 20 pobj _ _ 22 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 23 composition composition NOUN NN Number=Sing 22 attr _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 22 punct _ _ 25 and and CCONJ CC ConjType=Cmp 22 cc _ _ 26 setting set VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 32 csubj _ _ 27 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 26 dobj _ _ 28 side side NOUN NN Number=Sing 26 dobj _ _ 29 by by ADP IN _ 26 prep _ _ 30 side side NOUN NN Number=Sing 29 pobj _ _ 31 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 32 aux _ _ 32 tensoring tensore VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 conj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 32 punct _ SpaceAfter=No # sent_id = 5 # text = Here we work out the details of this approach for various kinds of electrical circuits, starting with circuits made solely of ideal perfectly conductive wires, then circuits with passive linear components, and then circuits that also have voltage and current sources. 1 Here here ADV RB PronType=Dem 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 work work VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 out out ADP RP _ 3 prt _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 details detail NOUN NNS Number=Plur 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 this this DET DT Number=Sing|PronType=Dem 9 det _ _ 9 approach approach NOUN NN Number=Sing 7 pobj _ _ 10 for for ADP IN _ 9 prep _ _ 11 various various ADJ JJ Degree=Pos 12 amod _ _ 12 kinds kind NOUN NNS Number=Plur 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 electrical electrical ADJ JJ Degree=Pos 15 amod _ _ 15 circuits circuit NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 3 punct _ _ 17 starting start VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 advcl _ _ 18 with with ADP IN _ 17 prep _ _ 19 circuits circuit NOUN NNS Number=Plur 18 pobj _ _ 20 made make VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 acl _ _ 21 solely solely ADV RB _ 22 advmod _ _ 22 of of ADP IN _ 20 prep _ _ 23 ideal ideal ADJ JJ Degree=Pos 26 amod _ _ 24 perfectly perfectly ADV RB _ 25 advmod _ _ 25 conductive conductive ADJ JJ Degree=Pos 26 amod _ _ 26 wires wire NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 3 punct _ _ 28 then then ADV RB PronType=Dem 29 advmod _ _ 29 circuits circuit NOUN NNS Number=Plur 3 dep _ _ 30 with with ADP IN _ 29 prep _ _ 31 passive passive ADJ JJ Degree=Pos 33 amod _ _ 32 linear linear ADJ JJ Degree=Pos 33 amod _ _ 33 components component NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 29 punct _ _ 35 and and CCONJ CC ConjType=Cmp 29 cc _ _ 36 then then ADV RB PronType=Dem 37 advmod _ _ 37 circuits circuit NOUN NNS Number=Plur 29 conj _ _ 38 that that PRON WDT PronType=Rel 40 nsubj _ _ 39 also also ADV RB _ 40 advmod _ _ 40 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 37 relcl _ _ 41 voltage voltage NOUN NN Number=Sing 40 dobj _ _ 42 and and CCONJ CC ConjType=Cmp 41 cc _ _ 43 current current ADJ JJ Degree=Pos 44 amod _ _ 44 sources source NOUN NNS Number=Plur 41 conj _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = Each kind of circuit corresponds to a mathematically natural prop. 1 Each each DET DT _ 2 det _ _ 2 kind kind NOUN NN Number=Sing 0 ROOT _ _ 3 of of ADP IN _ 2 prep _ _ 4 circuit circuit NOUN NN Number=Sing 5 compound _ _ 5 corresponds correspond NOUN NNS Number=Plur 3 pobj _ _ 6 to to ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 8 mathematically mathematically ADV RB _ 9 advmod _ _ 9 natural natural ADJ JJ Degree=Pos 10 amod _ _ 10 prop prop NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 7 # text = We describe the `behavior' of these circuits using morphisms between props. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 5 punct _ SpaceAfter=No 5 behavior behavior NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 6 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 5 punct _ _ 7 of of ADP IN _ 5 prep _ _ 8 these these DET DT Number=Plur|PronType=Dem 9 det _ _ 9 circuits circuit NOUN NNS Number=Plur 7 pobj _ _ 10 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 acl _ _ 11 morphisms morphism NOUN NNS Number=Plur 10 dobj _ _ 12 between between ADP IN _ 10 prep _ _ 13 props prop NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 8 # text = In particular, we give a new construction of the black - boxing functor of Fong and the first author; unlike the original construction, this new one easily generalizes to circuits with nonlinear components. 1 In in ADP IN _ 5 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 give give VERB VBP Tense=Pres|VerbForm=Fin 31 ccomp _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 new new ADJ JJ Degree=Pos 8 amod _ _ 8 construction construction NOUN NN Number=Sing 5 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 14 det _ _ 11 black black ADJ JJ Degree=Pos 13 amod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 boxing boxing NOUN NN Number=Sing 14 amod _ _ 14 functor functor NOUN NN Number=Sing 9 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 Fong Fong PROPN NNP Number=Sing 15 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 the the DET DT Definite=Def|PronType=Art 20 det _ _ 19 first first ADJ JJ Degree=Pos 20 amod _ _ 20 author author NOUN NN Number=Sing 8 conj _ SpaceAfter=No 21 ; ; PUNCT : _ 31 punct _ _ 22 unlike unlike ADP IN _ 31 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 original original ADJ JJ Degree=Pos 25 amod _ _ 25 construction construction NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 31 punct _ _ 27 this this DET DT Number=Sing|PronType=Dem 29 det _ _ 28 new new ADJ JJ Degree=Pos 29 amod _ _ 29 one one NUM CD NumType=Card 31 nsubj _ _ 30 easily easily ADV RB _ 31 advmod _ _ 31 generalizes generalize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 32 to to ADP IN _ 31 prep _ _ 33 circuits circuit NOUN NNS Number=Plur 32 pobj _ _ 34 with with ADP IN _ 33 prep _ _ 35 nonlinear nonlinear ADJ JJ Degree=Pos 36 amod _ _ 36 components component NOUN NNS Number=Plur 34 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 31 punct _ SpaceAfter=No # sent_id = 9 # text = We also use a morphism of props to clarify the relation between circuit diagrams and the signal - flow diagrams in control theory. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 morphism morphism NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 props prop NOUN NNS Number=Plur 6 pobj _ _ 8 to to PART TO _ 9 aux _ _ 9 clarify clarify VERB VB VerbForm=Inf 3 xcomp _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 relation relation NOUN NN Number=Sing 9 dobj _ _ 12 between between ADP IN _ 11 prep _ _ 13 circuit circuit NOUN NN Number=Sing 14 compound _ _ 14 diagrams diagram NOUN NNS Number=Plur 12 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 the the DET DT Definite=Def|PronType=Art 20 det _ _ 17 signal signal NOUN NN Number=Sing 19 amod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 flow flow NOUN NN Number=Sing 20 compound _ _ 20 diagrams diagram NOUN NNS Number=Plur 14 conj _ _ 21 in in ADP IN _ 20 prep _ _ 22 control control NOUN NN Number=Sing 23 compound _ _ 23 theory theory NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 10 # text = Technically, the key tools are the Rosebrugh - Sabadini - Walters result relating circuits to special commutative Frobenius monoids, the monadic adjunction between props and signatures, and a result saying which symmetric monoidal categories are equivalent to props. 1 Technically technically ADV RB _ 6 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 6 punct _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 key key ADJ JJ Degree=Pos 5 amod _ _ 5 tools tool NOUN NNS Number=Plur 6 nsubj _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 ccomp _ _ 7 the the DET DT Definite=Def|PronType=Art 12 det _ _ 8 Rosebrugh Rosebrugh PROPN NNP Number=Sing 12 compound _ _ 9 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 10 Sabadini Sabadini PROPN NNP Number=Sing 12 compound _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 Walters Walters PROPN NNP Number=Sing 13 nsubj _ _ 13 result result VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 relating relate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 xcomp _ _ 15 circuits circuit NOUN NNS Number=Plur 14 dobj _ _ 16 to to ADP IN _ 15 prep _ _ 17 special special ADJ JJ Degree=Pos 20 amod _ _ 18 commutative commutative ADJ JJ Degree=Pos 20 amod _ _ 19 Frobenius Frobenius PROPN NNP Number=Sing 20 compound _ _ 20 monoids monoid NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 monadic monadic ADJ JJ Degree=Pos 24 amod _ _ 24 adjunction adjunction NOUN NN Number=Sing 20 appos _ _ 25 between between ADP IN _ 24 prep _ _ 26 props prop NOUN NNS Number=Plur 25 pobj _ _ 27 and and CCONJ CC ConjType=Cmp 26 cc _ _ 28 signatures signature NOUN NNS Number=Plur 26 conj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 24 punct _ _ 30 and and CCONJ CC ConjType=Cmp 24 cc _ _ 31 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 32 result result NOUN NN Number=Sing 24 conj _ _ 33 saying say VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 32 acl _ _ 34 which which PRON WDT _ 38 mark _ _ 35 symmetric symmetric ADJ JJ Degree=Pos 37 amod _ _ 36 monoidal monoidal ADJ JJ Degree=Pos 37 amod _ _ 37 categories category NOUN NNS Number=Plur 38 nsubj _ _ 38 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 33 ccomp _ _ 39 equivalent equivalent ADJ JJ Degree=Pos 38 acomp _ _ 40 to to ADP IN _ 39 prep _ _ 41 props prop NOUN NNS Number=Plur 40 pobj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # doc_id = 666 # sent_id = 1 # text = Good atlases are defined for effective orbifolds, and a spark complex is constructed on each good atlas. 1 Good good ADJ JJ Degree=Pos 2 amod _ _ 2 atlases atlas NOUN NNS Number=Plur 4 nsubjpass _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 for for ADP IN _ 4 prep _ _ 6 effective effective ADJ JJ Degree=Pos 7 amod _ _ 7 orbifolds orbifold NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 4 punct _ _ 9 and and CCONJ CC ConjType=Cmp 4 cc _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 spark spark NOUN NN Number=Sing 12 compound _ _ 12 complex complex NOUN NN Number=Sing 14 nsubjpass _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 conj _ _ 15 on on ADP IN _ 14 prep _ _ 16 each each DET DT _ 18 det _ _ 17 good good ADJ JJ Degree=Pos 18 amod _ _ 18 atlas atlas PROPN NNP Number=Sing 15 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 2 # text = It is proved that this process is 2 - functorial with compatible systems playing as morphisms between good atlases, and that the spark character 2 - functor factors through this 2 - functor. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 that that SCONJ IN _ 7 mark _ _ 5 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 6 process process NOUN NN Number=Sing 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 8 2 2 NUM CD NumType=Card 10 nummod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 functorial functorial NOUN NN Number=Sing 7 acomp _ _ 11 with with ADP IN _ 10 prep _ _ 12 compatible compatible ADJ JJ Degree=Pos 13 amod _ _ 13 systems system NOUN NNS Number=Plur 11 pobj _ _ 14 playing play VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 acl _ _ 15 as as ADP IN _ 14 prep _ _ 16 morphisms morphism NOUN NNS Number=Plur 15 pobj _ _ 17 between between ADP IN _ 16 prep _ _ 18 good good ADJ JJ Degree=Pos 19 amod _ _ 19 atlases atlas NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 7 punct _ _ 21 and and CCONJ CC ConjType=Cmp 7 cc _ _ 22 that that SCONJ IN _ 25 mark _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 spark spark NOUN NN Number=Sing 25 compound _ _ 25 character character NOUN NN Number=Sing 7 conj _ _ 26 2 2 NUM CD NumType=Card 28 nummod _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 functor functor NOUN NN Number=Sing 29 compound _ _ 29 factors factor NOUN NNS Number=Plur 25 appos _ _ 30 through through ADP IN _ 25 prep _ _ 31 this this DET DT Number=Sing|PronType=Dem 34 det _ _ 32 2 2 NUM CD NumType=Card 34 nummod _ _ 33 - - PUNCT HYPH PunctType=Dash 34 punct _ _ 34 functor functor NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 667 # sent_id = 1 # text = Following the pattern of the Frobenius structure usually assigned to the 1 - dimensional sphere, we investigate the Frobenius structures of spheres in all other dimensions. 1 Following follow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 18 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 pattern pattern NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 Frobenius Frobenius PROPN NNP Number=Sing 7 compound _ _ 7 structure structure NOUN NN Number=Sing 4 pobj _ _ 8 usually usually ADV RB _ 9 advmod _ _ 9 assigned assign VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 acl _ _ 10 to to ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 15 det _ _ 12 1 1 NUM CD NumType=Card 14 advmod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 dimensional dimensional ADJ JJ Degree=Pos 15 amod _ _ 15 sphere sphere NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 18 punct _ _ 17 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 18 nsubj _ _ 18 investigate investigate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 Frobenius Frobenius PROPN NNP Number=Sing 21 compound _ _ 21 structures structure NOUN NNS Number=Plur 18 dobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 spheres sphere NOUN NNS Number=Plur 22 pobj _ _ 24 in in ADP IN _ 21 prep _ _ 25 all all DET DT _ 27 det _ _ 26 other other ADJ JJ Degree=Pos 27 amod _ _ 27 dimensions dimension NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # sent_id = 2 # text = Starting from dimension $ d=1 $ , all the spheres are commutative Frobenius objects in categories whose arrows are $ (d+1) $ - dimensional cobordisms. 1 Starting start VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 advcl _ _ 2 from from ADP IN _ 1 prep _ _ 3 dimension dimension NOUN NN Number=Sing 2 pobj _ _ 4 $ d=1 $ $ d=1 $ SYM $ _ 1 dobj _ _ 5 , , PUNCT , PunctType=Comm 9 punct _ _ 6 all all DET PDT _ 8 predet _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 spheres sphere NOUN NNS Number=Plur 9 nsubj _ _ 9 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 commutative commutative ADJ JJ Degree=Pos 12 amod _ _ 11 Frobenius Frobenius PROPN NNP Number=Sing 12 compound _ _ 12 objects object NOUN NNS Number=Plur 9 attr _ _ 13 in in ADP IN _ 12 prep _ _ 14 categories category NOUN NNS Number=Plur 13 pobj _ _ 15 whose whose DET WP$ Poss=Yes 16 poss _ _ 16 arrows arrow NOUN NNS Number=Plur 17 nsubj _ _ 17 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 14 relcl _ _ 18 $ (d+1) $ $ (d+1) $ SYM $ _ 20 advmod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 dimensional dimensional ADJ JJ Degree=Pos 21 amod _ _ 21 cobordisms cobordism NOUN NNS Number=Plur 17 attr _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 3 # text = With respect to the language of Frobenius objects, there is no distinction between these spheres—they are all free of additional equations formulated in this language. 1 With with ADP IN _ 11 prep _ _ 2 respect respect NOUN NN Number=Sing 1 pobj _ _ 3 to to ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 language language NOUN NN Number=Sing 3 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 Frobenius Frobenius PROPN NNP Number=Sing 8 compound _ _ 8 objects object NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 11 punct _ _ 10 there there PRON EX _ 11 expl _ _ 11 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 ccomp _ _ 12 no no DET DT _ 13 det _ _ 13 distinction distinction NOUN NN Number=Sing 11 attr _ _ 14 between between ADP IN _ 13 prep _ _ 15 these these DET DT Number=Plur|PronType=Dem 16 det _ _ 16 spheres sphere NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 17 — — PUNCT : _ 19 punct _ SpaceAfter=No 18 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 19 nsubj _ _ 19 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 20 all all ADV RB _ 19 advmod _ _ 21 free free ADJ JJ Degree=Pos 19 acomp _ _ 22 of of ADP IN _ 21 prep _ _ 23 additional additional ADJ JJ Degree=Pos 24 amod _ _ 24 equations equation NOUN NNS Number=Plur 22 pobj _ _ 25 formulated formulate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 acl _ _ 26 in in ADP IN _ 25 prep _ _ 27 this this DET DT Number=Sing|PronType=Dem 28 det _ _ 28 language language NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 4 # text = The corresponding structure makes out of the 0 - dimensional sphere not a commutative but a symmetric Frobenius object. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 amod _ _ 3 structure structure NOUN NN Number=Sing 4 nsubj _ _ 4 makes make VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 out out ADP IN _ 4 prep _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 11 det _ _ 8 0 0 NUM CD NumType=Card 10 advmod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 dimensional dimensional ADJ JJ Degree=Pos 11 amod _ _ 11 sphere sphere NOUN NN Number=Sing 6 pobj _ _ 12 not not PART RB Polarity=Neg 14 neg _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 commutative commutative NOUN NN Number=Sing 11 appos _ _ 15 but but CCONJ CC ConjType=Cmp 4 cc _ _ 16 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 17 symmetric symmetric ADJ JJ Degree=Pos 19 amod _ _ 18 Frobenius Frobenius PROPN NNP Number=Sing 19 compound _ _ 19 object object NOUN NN Number=Sing 4 conj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = This sphere is mapped to a matrix Frobenius algebra by a 1 - dimensional topological quantum field theory, which corresponds to the representation of a class of diagrammatic algebras given by Richard Brauer. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 sphere sphere NOUN NN Number=Sing 4 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 mapped map VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 to to ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 matrix matrix NOUN NN Number=Sing 5 pobj _ _ 8 Frobenius Frobenius PROPN NNP Number=Sing 9 compound _ _ 9 algebra algebra NOUN NN Number=Sing 7 appos _ _ 10 by by ADP IN _ 4 agent _ _ 11 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 12 1 1 NUM CD NumType=Card 14 advmod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 dimensional dimensional ADJ JJ Degree=Pos 18 amod _ _ 15 topological topological ADJ JJ Degree=Pos 18 amod _ _ 16 quantum quantum NOUN NN Number=Sing 17 compound _ _ 17 field field NOUN NN Number=Sing 18 compound _ _ 18 theory theory NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 which which PRON WDT _ 21 nsubj _ _ 21 corresponds correspond VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 relcl _ _ 22 to to ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 representation representation NOUN NN Number=Sing 22 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 27 class class NOUN NN Number=Sing 25 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 diagrammatic diagrammatic ADJ JJ Degree=Pos 30 amod _ _ 30 algebras algebra NOUN NNS Number=Plur 28 pobj _ _ 31 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 acl _ _ 32 by by ADP IN _ 31 agent _ _ 33 Richard Richard PROPN NNP Number=Sing 34 compound _ _ 34 Brauer Brauer PROPN NNP Number=Sing 32 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 668 # sent_id = 1 # text = Let $ C $ be a category with finite colimits, and let $ (E, M) $ be a factorisation system on $ C $ with $ M $ stable under pushout. 1 Let let VERB VB VerbForm=Inf 0 ROOT _ _ 2 $ C $ $ c $ SYM $ _ 3 nsubj _ _ 3 be be AUX VB VerbForm=Inf 1 ccomp _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 3 attr _ _ 6 with with ADP IN _ 5 prep _ _ 7 finite finite ADJ JJ Degree=Pos 8 amod _ _ 8 colimits colimit NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 3 punct _ _ 10 and and CCONJ CC ConjType=Cmp 3 cc _ _ 11 let let VERB VB VerbForm=Inf 3 conj _ _ 12 $ (E, M) $ $ (e, m) $ SYM $ _ 13 nsubj _ _ 13 be be AUX VB VerbForm=Inf 11 ccomp _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 factorisation factorisation NOUN NN Number=Sing 16 compound _ _ 16 system system NOUN NN Number=Sing 13 attr _ _ 17 on on ADP IN _ 16 prep _ _ 18 $ C $ $ c $ SYM $ _ 17 pobj _ _ 19 with with ADP IN _ 13 prep _ _ 20 $ M $ $ m $ SYM $ _ 19 pobj _ _ 21 stable stable ADJ JJ Degree=Pos 13 acomp _ _ 22 under under ADP IN _ 13 prep _ _ 23 pushout pushout NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = Writing $ C;M^{op} $ for the symmetric monoidal category with morphisms cospans of the form $ stackrel{c}to stackrel{m}leftarrow $ , where $ c in C $ and $ m in M $ , we give a method for constructing a category from a symmetric lax monoidal functor $ F : (C; mc M^{op}, +) to (Set, times) $ . 1 Writing write VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 advcl _ _ 2 $ C;M^{op} $ $ c;m^{op} $ SYM $ _ 1 dobj _ _ 3 for for ADP IN _ 1 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 symmetric symmetric ADJ JJ Degree=Pos 7 amod _ _ 6 monoidal monoidal ADJ JJ Degree=Pos 7 amod _ _ 7 category category NOUN NN Number=Sing 3 pobj _ _ 8 with with ADP IN _ 7 prep _ _ 9 morphisms morphism NOUN NNS Number=Plur 10 compound _ _ 10 cospans cospan NOUN NNS Number=Plur 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 form form NOUN NN Number=Sing 11 pobj _ _ 14 $ stackrel{c}to stackrel{m}leftarrow $ $ stackrel{c}to stackrel{m}leftarrow $ SYM $ _ 1 dep _ _ 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 where where SCONJ WRB _ 17 advmod _ _ 17 $ c in C $ $ c in c $ SYM $ _ 14 relcl _ _ 18 and and CCONJ CC ConjType=Cmp 17 cc _ _ 19 $ m in M $ $ m in m $ SYM $ _ 17 conj _ _ 20 , , PUNCT , PunctType=Comm 22 punct _ _ 21 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 22 nsubj _ _ 22 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 23 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 24 method method NOUN NN Number=Sing 22 dobj _ _ 25 for for ADP IN _ 24 prep _ _ 26 constructing construct VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 25 pcomp _ _ 27 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 28 category category NOUN NN Number=Sing 26 dobj _ _ 29 from from ADP IN _ 26 prep _ _ 30 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 31 symmetric symmetric ADJ JJ Degree=Pos 34 amod _ _ 32 lax lax ADJ JJ Degree=Pos 34 amod _ _ 33 monoidal monoidal NOUN NN Number=Sing 34 compound _ _ 34 functor functor NOUN NN Number=Sing 29 pobj _ _ 35 $ F : (C; mc M^{op}, +) to (Set, times) $ $ f : (c; mc m^{op}, +) to (set, times) $ SYM $ _ 22 dative _ _ 36 . . PUNCT . PunctType=Peri 22 punct _ SpaceAfter=No # sent_id = 3 # text = A morphism in this category, termed a decorated corelation, comprises (i) a cospan $ X to N leftarrow Y $ in $ C $ such that the canonical copairing $ X+Y to N $ lies in $ E $ , together with (ii) an element of $ FN $ . 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 morphism morphism NOUN NN Number=Sing 7 nsubj _ _ 3 in in ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 category category NOUN NN Number=Sing 3 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 7 punct _ _ 7 termed term VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 decorated decorate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 10 corelation corelation NOUN NN Number=Sing 7 dobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 7 punct _ _ 12 comprises comprise NOUN NNS Number=Plur 7 dep _ _ 13 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 14 punct _ SpaceAfter=No 14 i i NOUN NN Number=Sing 12 appos _ SpaceAfter=No 15 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 14 punct _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 cospan cospan NOUN NN Number=Sing 14 appos _ _ 18 $ X to N leftarrow Y $ $ x to n leftarrow y $ SYM $ _ 12 dep _ _ 19 in in ADP IN _ 12 prep _ _ 20 $ C $ $ c $ SYM $ _ 21 nmod _ _ 21 such such ADJ JJ Degree=Pos 19 pobj _ _ 22 that that SCONJ IN _ 27 mark _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 canonical canonical NOUN NN Number=Sing 27 nsubj _ _ 25 copairing copaire VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 24 acl _ _ 26 $ X+Y to N $ $ x+y to n $ SYM $ _ 27 poss _ _ 27 lies lie VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 ccomp _ _ 28 in in ADP IN _ 27 prep _ _ 29 $ E $ $ e $ SYM $ _ 28 pobj _ _ 30 , , PUNCT , PunctType=Comm 27 punct _ _ 31 together together ADV RB _ 32 advmod _ _ 32 with with ADP IN _ 27 prep _ _ 33 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 34 punct _ SpaceAfter=No 34 ii ii PROPN NNP Number=Sing 32 pobj _ SpaceAfter=No 35 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 32 punct _ _ 36 an an DET DT Definite=Ind|PronType=Art 37 det _ _ 37 element element NOUN NN Number=Sing 32 pobj _ _ 38 of of ADP IN _ 37 prep _ _ 39 $ FN $ $ fn $ SYM $ _ 38 pobj _ _ 40 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = Functors between decorated corelation categories can be constructed from natural transformations between the decorating functors $ F $ . 1 Functors functor NOUN NNS Number=Plur 8 nsubjpass _ _ 2 between between ADP IN _ 1 prep _ _ 3 decorated decorate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 amod _ _ 4 corelation corelation NOUN NN Number=Sing 5 compound _ _ 5 categories category NOUN NNS Number=Plur 2 pobj _ _ 6 can can AUX MD VerbForm=Fin 8 aux _ _ 7 be be AUX VB VerbForm=Inf 8 auxpass _ _ 8 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 from from ADP IN _ 8 prep _ _ 10 natural natural ADJ JJ Degree=Pos 11 amod _ _ 11 transformations transformation NOUN NNS Number=Plur 9 pobj _ _ 12 between between ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 decorating decorate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 amod _ _ 15 functors functor NOUN NNS Number=Plur 12 pobj _ _ 16 $ F $ $ f $ SYM $ _ 8 dep _ _ 17 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 5 # text = This provides a general method for constructing hypergraph categories—symmetric monoidal categories in which each object is a special commutative Frobenius monoid in a coherent way—and their functors. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 general general ADJ JJ Degree=Pos 5 amod _ _ 5 method method NOUN NN Number=Sing 2 dobj _ _ 6 for for ADP IN _ 5 prep _ _ 7 constructing construct VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 pcomp _ _ 8 hypergraph hypergraph ADJ JJ Degree=Pos 9 amod _ _ 9 categories category NOUN NNS Number=Plur 7 dobj _ SpaceAfter=No 10 — — PUNCT : _ 2 punct _ SpaceAfter=No 11 symmetric symmetric ADJ JJ Degree=Pos 13 amod _ _ 12 monoidal monoidal ADJ JJ Degree=Pos 13 amod _ _ 13 categories category NOUN NNS Number=Plur 1 appos _ _ 14 in in ADP IN _ 18 prep _ _ 15 which which PRON WDT _ 14 pobj _ _ 16 each each DET DT _ 17 det _ _ 17 object object NOUN NN Number=Sing 18 nsubj _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 relcl _ _ 19 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 20 special special ADJ JJ Degree=Pos 23 amod _ _ 21 commutative commutative ADJ JJ Degree=Pos 23 amod _ _ 22 Frobenius Frobenius PROPN NNP Number=Sing 23 compound _ _ 23 monoid monoid NOUN NN Number=Sing 18 attr _ _ 24 in in ADP IN _ 23 prep _ _ 25 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 26 coherent coherent ADJ JJ Degree=Pos 27 amod _ _ 27 way way NOUN NN Number=Sing 24 pobj _ SpaceAfter=No 28 — — PUNCT : _ 13 punct _ SpaceAfter=No 29 and and CCONJ CC ConjType=Cmp 13 cc _ _ 30 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 31 poss _ _ 31 functors functor NOUN NNS Number=Plur 13 conj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = Such categories are useful for modelling network languages, for example circuit diagrams, and such functors are useful for modelling their semantics. 1 Such such ADJ JJ Degree=Pos 2 amod _ _ 2 categories category NOUN NNS Number=Plur 3 nsubj _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 useful useful ADJ JJ Degree=Pos 3 acomp _ _ 5 for for ADP IN _ 4 prep _ _ 6 modelling model VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 pcomp _ _ 7 network network NOUN NN Number=Sing 8 compound _ _ 8 languages language NOUN NNS Number=Plur 6 dobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 3 punct _ _ 10 for for ADP IN _ 3 prep _ _ 11 example example NOUN NN Number=Sing 13 compound _ _ 12 circuit circuit NOUN NN Number=Sing 13 compound _ _ 13 diagrams diagram NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 3 punct _ _ 15 and and CCONJ CC ConjType=Cmp 3 cc _ _ 16 such such ADJ JJ Degree=Pos 17 amod _ _ 17 functors functor NOUN NNS Number=Plur 18 nsubj _ _ 18 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 conj _ _ 19 useful useful ADJ JJ Degree=Pos 18 acomp _ _ 20 for for ADP IN _ 19 prep _ _ 21 modelling model VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 20 pcomp _ _ 22 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 23 poss _ _ 23 semantics semantic NOUN NNS Number=Plur 21 dobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # doc_id = 669 # sent_id = 1 # text = We associate to a 2 - vector bundle over an essentially finite groupoid a 2 - vector space of parallel sections, or, in representation theoretic terms, of higher invariants, which can be described as homotopy fixed points. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 associate associate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 to to ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 5 2 2 NUM CD NumType=Card 7 nummod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 vector vector NOUN NN Number=Sing 8 compound _ _ 8 bundle bundle NOUN NN Number=Sing 3 pobj _ _ 9 over over ADP IN _ 8 prep _ _ 10 an an DET DT Definite=Ind|PronType=Art 13 det _ _ 11 essentially essentially ADV RB _ 12 advmod _ _ 12 finite finite ADJ JJ Degree=Pos 13 amod _ _ 13 groupoid groupoid NOUN NN Number=Sing 9 pobj _ _ 14 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 15 2 2 NUM CD NumType=Card 17 nummod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 vector vector NOUN NN Number=Sing 18 compound _ _ 18 space space NOUN NN Number=Sing 13 dobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 parallel parallel ADJ JJ Degree=Pos 21 amod _ _ 21 sections section NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 13 punct _ _ 23 or or CCONJ CC ConjType=Cmp 2 cc _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 2 punct _ _ 25 in in ADP IN _ 2 prep _ _ 26 representation representation NOUN NN Number=Sing 28 nmod _ _ 27 theoretic theoretic ADJ JJ Degree=Pos 28 amod _ _ 28 terms term NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 28 punct _ _ 30 of of ADP IN _ 28 prep _ _ 31 higher high ADJ JJR Degree=Cmp 32 amod _ _ 32 invariants invariant NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 33 , , PUNCT , PunctType=Comm 32 punct _ _ 34 which which PRON WDT _ 37 nsubjpass _ _ 35 can can AUX MD VerbForm=Fin 37 aux _ _ 36 be be AUX VB VerbForm=Inf 37 auxpass _ _ 37 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 relcl _ _ 38 as as ADP IN _ 37 prep _ _ 39 homotopy homotopy NOUN NN Number=Sing 41 nmod _ _ 40 fixed fix VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 41 amod _ _ 41 points point NOUN NNS Number=Plur 38 pobj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Our main result is the extension of this assignment to a symmetric monoidal 2 - functor $ Par : 2VecBunGrpd to 2Vect $ . 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 3 poss _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 result result NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 extension extension NOUN NN Number=Sing 4 attr _ _ 7 of of ADP IN _ 6 prep _ _ 8 this this DET DT Number=Sing|PronType=Dem 9 det _ _ 9 assignment assignment NOUN NN Number=Sing 7 pobj _ _ 10 to to ADP IN _ 6 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 symmetric symmetric ADJ JJ Degree=Pos 13 amod _ _ 13 monoidal monoidal NOUN NN Number=Sing 10 pobj _ _ 14 2 2 NUM CD NumType=Card 16 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 functor functor NOUN NN Number=Sing 4 dep _ _ 17 $ Par : 2VecBunGrpd to 2Vect $ $ par : 2vecbungrpd to 2vect $ SYM $ _ 16 appos _ _ 18 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = It is defined on the symmetric monoidal bicategory $ 2VecBunGrpd $ whose morphisms arise from spans of groupoids in such a way that the functor $ Par $ provides pull - push maps between 2 - vector spaces of parallel sections of 2 - vector bundles. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 on on ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 8 det _ _ 6 symmetric symmetric ADJ JJ Degree=Pos 8 amod _ _ 7 monoidal monoidal ADJ JJ Degree=Pos 8 amod _ _ 8 bicategory bicategory NOUN NN Number=Sing 4 pobj _ _ 9 $ 2VecBunGrpd $ $ 2vecbungrpd $ SYM $ _ 8 appos _ _ 10 whose whose DET WP$ Poss=Yes 11 poss _ _ 11 morphisms morphism NOUN NNS Number=Plur 12 nsubj _ _ 12 arise arise VERB VBP Tense=Pres|VerbForm=Fin 9 relcl _ _ 13 from from ADP IN _ 12 prep _ _ 14 spans span NOUN NNS Number=Plur 13 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 groupoids groupoid NOUN NNS Number=Plur 15 pobj _ _ 17 in in ADP IN _ 12 prep _ _ 18 such such DET PDT _ 20 predet _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 way way NOUN NN Number=Sing 17 pobj _ _ 21 that that PRON WDT PronType=Rel 25 advmod _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 functor functor NOUN NN Number=Sing 25 nsubj _ _ 24 $ Par $ $ par $ SYM $ _ 23 appos _ _ 25 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 relcl _ _ 26 pull pull VERB VB VerbForm=Inf 28 compound _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 push push NOUN NN Number=Sing 29 compound _ _ 29 maps map NOUN NNS Number=Plur 25 dobj _ _ 30 between between ADP IN _ 25 prep _ _ 31 2 2 NUM CD NumType=Card 33 nummod _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 vector vector NOUN NN Number=Sing 34 compound _ _ 34 spaces space NOUN NNS Number=Plur 30 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 parallel parallel ADJ JJ Degree=Pos 37 amod _ _ 37 sections section NOUN NNS Number=Plur 35 pobj _ _ 38 of of ADP IN _ 37 prep _ _ 39 2 2 NUM CD NumType=Card 41 nummod _ _ 40 - - PUNCT HYPH PunctType=Dash 41 punct _ _ 41 vector vector NOUN NN Number=Sing 42 compound _ _ 42 bundles bundle NOUN NNS Number=Plur 38 pobj _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = The direct motivation for our construction comes from the orbifoldization of extended equivariant topological field theories. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 direct direct ADJ JJ Degree=Pos 3 amod _ _ 3 motivation motivation NOUN NN Number=Sing 7 nsubj _ _ 4 for for ADP IN _ 3 prep _ _ 5 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 6 poss _ _ 6 construction construction NOUN NN Number=Sing 4 pobj _ _ 7 comes come VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 from from ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 orbifoldization orbifoldization NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 extended extended ADJ JJ Degree=Pos 16 amod _ _ 13 equivariant equivariant ADJ JJ Degree=Pos 16 amod _ _ 14 topological topological ADJ JJ Degree=Pos 15 amod _ _ 15 field field NOUN NN Number=Sing 16 compound _ _ 16 theories theory NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # doc_id = 670 # sent_id = 1 # text = The interleaving distance was originally defined in the field of Topological Data Analysis (TDA) by Chazal as a metric on the class of persistence modules parametrized over the real line. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 interleaving interleave VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 amod _ _ 3 distance distance NOUN NN Number=Sing 6 nsubjpass _ _ 4 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 6 auxpass _ _ 5 originally originally ADV RB _ 6 advmod _ _ 6 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 in in ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 field field NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 Topological Topological PROPN NNP Number=Sing 13 compound _ _ 12 Data Data PROPN NNP Number=Sing 13 compound _ _ 13 Analysis Analysis PROPN NNP Number=Sing 10 pobj _ _ 14 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 13 punct _ SpaceAfter=No 15 TDA TDA PROPN NNP Number=Sing 13 appos _ SpaceAfter=No 16 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 13 punct _ _ 17 by by ADP IN _ 6 agent _ _ 18 Chazal Chazal PROPN NNP Number=Sing 17 pobj _ _ 19 as as ADP IN _ 6 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 21 metric metric NOUN NN Number=Sing 19 pobj _ _ 22 on on ADP IN _ 21 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 class class NOUN NN Number=Sing 22 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 persistence persistence NOUN NN Number=Sing 27 compound _ _ 27 modules module NOUN NNS Number=Plur 25 pobj _ _ 28 parametrized parametrize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 acl _ _ 29 over over ADP IN _ 28 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 32 det _ _ 31 real real ADJ JJ Degree=Pos 32 amod _ _ 32 line line NOUN NN Number=Sing 29 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = Bubenik et 1 Bubenik Bubenik PROPN NNP Number=Sing 0 ROOT _ _ 2 et et NOUN NN Number=Sing 1 intj _ SpaceAfter=No # sent_id = 3 # text = al. 1 al al PROPN NNP Number=Sing 0 ROOT _ SpaceAfter=No 2 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 4 # text = subsequently extended the definition to categories of functors on a poset, the objects in these categories being regarded as `generalized persistence modules'. 1 subsequently subsequently ADV RB _ 2 advmod _ _ 2 extended extend VERB VBD Tense=Past|VerbForm=Fin 19 advcl _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 definition definition NOUN NN Number=Sing 2 dobj _ _ 5 to to ADP IN _ 4 prep _ _ 6 categories category NOUN NNS Number=Plur 5 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 functors functor NOUN NNS Number=Plur 7 pobj _ _ 9 on on ADP IN _ 6 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 11 poset poset NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 19 punct _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 objects object NOUN NNS Number=Plur 19 nsubjpass _ _ 15 in in ADP IN _ 14 prep _ _ 16 these these DET DT Number=Plur|PronType=Dem 17 det _ _ 17 categories category NOUN NNS Number=Plur 15 pobj _ _ 18 being be AUX VBG VerbForm=Ger 19 auxpass _ _ 19 regarded regard VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 20 as as ADP IN _ 19 prep _ _ 21 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 24 punct _ SpaceAfter=No 22 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 23 persistence persistence NOUN NN Number=Sing 24 compound _ _ 24 modules module NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 25 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 19 punct _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 5 # text = These metrics typically depend on the choice of a lax semigroup of endomorphisms of the poset. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 metrics metric NOUN NNS Number=Plur 4 nsubj _ _ 3 typically typically ADV RB _ 4 advmod _ _ 4 depend depend VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 on on ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 choice choice NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 lax lax ADJ JJ Degree=Pos 11 amod _ _ 11 semigroup semigroup NOUN NN Number=Sing 8 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 endomorphisms endomorphism NOUN NNS Number=Plur 12 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 poset poset NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 6 # text = The purpose of the present paper is to develop a more general framework for the notion of interleaving distance using the theory of `actegories'. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 purpose purpose NOUN NN Number=Sing 7 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 present present ADJ JJ Degree=Pos 6 amod _ _ 6 paper paper NOUN NN Number=Sing 3 pobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 to to PART TO _ 9 aux _ _ 9 develop develop VERB VB VerbForm=Inf 7 xcomp _ _ 10 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 11 more more ADV RBR Degree=Cmp 12 advmod _ _ 12 general general ADJ JJ Degree=Pos 13 amod _ _ 13 framework framework NOUN NN Number=Sing 9 dobj _ _ 14 for for ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 notion notion NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 interleaving interleave VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 19 amod _ _ 19 distance distance NOUN NN Number=Sing 17 pobj _ _ 20 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 acl _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 theory theory NOUN NN Number=Sing 20 dobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 23 punct _ SpaceAfter=No 25 actegories actegorie NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 26 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 23 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 7 # text = Specifically, we extend the notion of interleaving distance to arbitrary categories equipped with a flow, that is, a lax monoidal action by the monoid $ [0, infty) $ . 1 Specifically specifically ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 extend extend VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 notion notion NOUN NN Number=Sing 4 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 interleaving interleave VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 amod _ _ 9 distance distance NOUN NN Number=Sing 7 pobj _ _ 10 to to ADP IN _ 9 prep _ _ 11 arbitrary arbitrary ADJ JJ Degree=Pos 12 amod _ _ 12 categories category NOUN NNS Number=Plur 10 pobj _ _ 13 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 acl _ _ 14 with with ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 flow flow NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 4 punct _ _ 18 that that ADV RB _ 19 advmod _ _ 19 is is ADV RB _ 24 advmod _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 24 punct _ _ 21 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 22 lax lax ADJ JJ Degree=Pos 24 amod _ _ 23 monoidal monoidal ADJ JJ Degree=Pos 24 amod _ _ 24 action action NOUN NN Number=Sing 4 dobj _ _ 25 by by ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 monoid monoid NOUN NN Number=Sing 25 pobj _ _ 28 $ [0, infty) $ $ [0, infty) $ SYM $ _ 4 dep _ _ 29 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 8 # text = In this way, the class of objects in such a category acquires the structure of a Lawvere metric space. 1 In in ADP IN _ 13 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 way way NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 13 punct _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 class class NOUN NN Number=Sing 13 nsubj _ _ 7 of of ADP IN _ 6 prep _ _ 8 objects object NOUN NNS Number=Plur 7 pobj _ _ 9 in in ADP IN _ 6 prep _ _ 10 such such DET PDT _ 12 predet _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 category category NOUN NN Number=Sing 9 pobj _ _ 13 acquires acquire VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 structure structure NOUN NN Number=Sing 13 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 18 Lawvere lawvere ADV RB _ 19 advmod _ _ 19 metric metric ADJ JJ Degree=Pos 20 amod _ _ 20 space space NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 9 # text = Functors that are colax $ [0, infty) $ - equivariant yield maps that are 1 - Lipschitz. 1 Functors functor NOUN NNS Number=Plur 0 ROOT _ _ 2 that that PRON WDT PronType=Rel 4 nsubjpass _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 colax colax ADJ JJ Degree=Pos 1 relcl _ _ 5 $ [0, infty) $ $ [0, infty) $ SYM $ _ 7 advmod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 equivariant equivariant ADJ JJ Degree=Pos 9 amod _ _ 8 yield yield NOUN NN Number=Sing 9 compound _ _ 9 maps map NOUN NNS Number=Plur 4 dobj _ _ 10 that that PRON WDT PronType=Rel 11 nsubj _ _ 11 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 relcl _ _ 12 1 1 NUM CD NumType=Card 14 nummod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 Lipschitz Lipschitz PROPN NNP Number=Sing 11 attr _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 10 # text = This leads to concise proofs of various known stability results from TDA, by considering appropriate colax $ [0, infty) $ - equivariant functors. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 leads lead VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 to to ADP IN _ 2 prep _ _ 4 concise concise ADJ JJ Degree=Pos 5 amod _ _ 5 proofs proof NOUN NNS Number=Plur 3 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 various various ADJ JJ Degree=Pos 10 amod _ _ 8 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 9 stability stability NOUN NN Number=Sing 10 compound _ _ 10 results result NOUN NNS Number=Plur 6 pobj _ _ 11 from from ADP IN _ 5 prep _ _ 12 TDA TDA PROPN NNP Number=Sing 11 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 2 punct _ _ 14 by by ADP IN _ 2 prep _ _ 15 considering consider VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 pcomp _ _ 16 appropriate appropriate ADJ JJ Degree=Pos 17 amod _ _ 17 colax colax PROPN NNP Number=Sing 15 dobj _ _ 18 $ [0, infty) $ $ [0, infty) $ SYM $ _ 20 quantmod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 equivariant equivariant ADJ JJ Degree=Pos 21 amod _ _ 21 functors functor NOUN NNS Number=Plur 17 appos _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 11 # text = Along the way, we show that several common metrics, including the Hausdorff distance and the $ L^infty $ - norm, can be realized as interleaving distances in this general perspective. 1 Along along ADP IN _ 6 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 way way NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 that that SCONJ IN _ 24 mark _ _ 8 several several ADJ JJ Degree=Pos 10 amod _ _ 9 common common ADJ JJ Degree=Pos 10 amod _ _ 10 metrics metric NOUN NNS Number=Plur 24 nsubjpass _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 Hausdorff Hausdorff PROPN NNP Number=Sing 15 compound _ _ 15 distance distance NOUN NN Number=Sing 12 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 the the DET DT Definite=Def|PronType=Art 20 det _ _ 18 $ L^infty $ $ l^infty $ SYM $ _ 20 compound _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 norm norm NOUN NN Number=Sing 15 conj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 10 punct _ _ 22 can can AUX MD VerbForm=Fin 24 aux _ _ 23 be be AUX VB VerbForm=Inf 24 auxpass _ _ 24 realized realize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 ccomp _ _ 25 as as ADP IN _ 24 prep _ _ 26 interleaving interleave VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 27 amod _ _ 27 distances distance NOUN NNS Number=Plur 25 pobj _ _ 28 in in ADP IN _ 27 prep _ _ 29 this this DET DT Number=Sing|PronType=Dem 31 det _ _ 30 general general ADJ JJ Degree=Pos 31 amod _ _ 31 perspective perspective NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 671 # sent_id = 1 # text = We introduce and compare several new exactness conditions involving what we call split cubes. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 compare compare VERB VB VerbForm=Inf 2 conj _ _ 5 several several ADJ JJ Degree=Pos 8 amod _ _ 6 new new ADJ JJ Degree=Pos 8 amod _ _ 7 exactness exactness NOUN NN Number=Sing 8 compound _ _ 8 conditions condition NOUN NNS Number=Plur 4 dobj _ _ 9 involving involve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 acl _ _ 10 what what PRON WP _ 12 dobj _ _ 11 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 12 nsubj _ _ 12 call call VERB VBP Tense=Pres|VerbForm=Fin 9 ccomp _ _ 13 split split ADJ JJ Degree=Pos 14 amod _ _ 14 cubes cube NOUN NNS Number=Plur 12 oprd _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = These conditions are motivated by their special cases, some which become familiar, in the pointed context, once we reformulate them with split cubes replaced with split extensions. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 conditions condition NOUN NNS Number=Plur 4 nsubjpass _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 motivated motivate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 ccomp _ _ 5 by by ADP IN _ 4 agent _ _ 6 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 8 poss _ _ 7 special special ADJ JJ Degree=Pos 8 amod _ _ 8 cases case NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 22 punct _ _ 10 some some PRON DT _ 22 nsubj _ _ 11 which which PRON WDT _ 12 nsubj _ _ 12 become become VERB VBP Tense=Pres|VerbForm=Fin 10 relcl _ _ 13 familiar familiar ADJ JJ Degree=Pos 12 acomp _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 10 punct _ _ 15 in in ADP IN _ 10 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 pointed pointed ADJ JJ Degree=Pos 18 amod _ _ 18 context context NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 10 punct _ _ 20 once once SCONJ IN _ 22 mark _ _ 21 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 22 nsubj _ _ 22 reformulate reformulate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 23 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 22 dobj _ _ 24 with with ADP IN _ 22 prep _ _ 25 split split ADJ JJ Degree=Pos 26 amod _ _ 26 cubes cube NOUN NNS Number=Plur 24 pobj _ _ 27 replaced replace VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 acl _ _ 28 with with ADP IN _ 27 prep _ _ 29 split split ADJ JJ Degree=Pos 30 amod _ _ 30 extensions extension NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 22 punct _ SpaceAfter=No # doc_id = 672 # sent_id = 1 # text = This paper is about an invariant of small categories called isotropy. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 about about ADP IN _ 3 prep _ _ 5 an an DET DT Definite=Ind|PronType=Art 6 det _ _ 6 invariant invariant NOUN NN Number=Sing 4 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 small small ADJ JJ Degree=Pos 9 amod _ _ 9 categories category NOUN NNS Number=Plur 7 pobj _ _ 10 called call VERB VBD Tense=Past|VerbForm=Fin 9 acl _ _ 11 isotropy isotropy NOUN NN Number=Sing 10 oprd _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = Every small category $ C $ has associated with it a presheaf of groups on $ C $ , called its isotropy group, which in a sense solves the problem of making the assignment $ C | - > Aut(C) $ functorial. 1 Every every DET DT _ 3 det _ _ 2 small small ADJ JJ Degree=Pos 3 amod _ _ 3 category category NOUN NN Number=Sing 6 nsubj _ _ 4 $ C $ $ c $ SYM $ _ 3 appos _ _ 5 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 aux _ _ 6 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 with with ADP IN _ 6 prep _ _ 8 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 7 pobj _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 presheaf presheaf NOUN NN Number=Sing 6 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 groups group NOUN NNS Number=Plur 11 pobj _ _ 13 on on ADP IN _ 12 prep _ _ 14 $ C $ $ c $ SYM $ _ 13 pobj _ _ 15 , , PUNCT , PunctType=Comm 6 punct _ _ 16 called call VERB VBD Tense=Past|VerbForm=Fin 6 dep _ _ 17 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 19 poss _ _ 18 isotropy isotropy ADJ JJ Degree=Pos 19 amod _ _ 19 group group NOUN NN Number=Sing 16 oprd _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 19 punct _ _ 21 which which PRON WDT _ 25 nsubj _ _ 22 in in ADP IN _ 25 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 24 sense sense NOUN NN Number=Sing 22 pobj _ _ 25 solves solve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 relcl _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 problem problem NOUN NN Number=Sing 25 dobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 making make VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 28 pcomp _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 assignment assignment NOUN NN Number=Sing 33 nsubj _ _ 32 $ C | - > Aut(C) $ $ c | - > aut(c) $ SYM $ _ 33 nmod _ _ 33 functorial functorial NOUN NN Number=Sing 29 ccomp _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = Consequently, every category has a canonical congruence that annihilates the isotropy; however, it turns out that the resulting quotient may itself have non - trivial isotropy. 1 Consequently consequently ADV RB _ 5 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 5 punct _ _ 3 every every DET DT _ 4 det _ _ 4 category category NOUN NN Number=Sing 5 nsubj _ _ 5 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 ccomp _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 canonical canonical ADJ JJ Degree=Pos 8 amod _ _ 8 congruence congruence NOUN NN Number=Sing 5 dobj _ _ 9 that that PRON WDT PronType=Rel 10 nsubj _ _ 10 annihilates annihilate VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 relcl _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 isotropy isotropy NOUN NN Number=Sing 10 dobj _ SpaceAfter=No 13 ; ; PUNCT : _ 17 punct _ _ 14 however however ADV RB _ 17 advmod _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 17 punct _ _ 16 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 17 nsubj _ _ 17 turns turn VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 18 out out ADP RP _ 17 prt _ _ 19 that that SCONJ IN _ 25 mark _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 resulting result VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 amod _ _ 22 quotient quotient NOUN NN Number=Sing 25 nsubj _ _ 23 may may AUX MD VerbForm=Fin 25 aux _ _ 24 itself itself PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs|Reflex=Yes 25 nsubj _ _ 25 have have VERB VB VerbForm=Inf 17 ccomp _ _ 26 non non ADJ JJ Degree=Pos 29 amod _ _ 27 - - ADJ JJ Degree=Pos 29 amod _ _ 28 trivial trivial ADJ JJ Degree=Pos 29 amod _ _ 29 isotropy isotropy NOUN NN Number=Sing 25 dobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 4 # text = This phenomenon, which we term higher order isotropy, is the subject of our investigation. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 phenomenon phenomenon NOUN NN Number=Sing 11 nsubj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 2 punct _ _ 4 which which PRON WDT _ 6 dobj _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 term term VERB VBP Tense=Pres|VerbForm=Fin 2 relcl _ _ 7 higher high ADJ JJR Degree=Cmp 9 amod _ _ 8 order order NOUN NN Number=Sing 9 compound _ _ 9 isotropy isotropy NOUN NN Number=Sing 6 dobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 2 punct _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 subject subject NOUN NN Number=Sing 11 attr _ _ 14 of of ADP IN _ 13 prep _ _ 15 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 16 poss _ _ 16 investigation investigation NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 5 # text = We show that with each category $ C $ we may associate a sequence of groups called its higher isotropy groups, and that these give rise to a sequence of quotients of $ C $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 10 mark _ _ 4 with with ADP IN _ 10 prep _ _ 5 each each DET DT _ 6 det _ _ 6 category category NOUN NN Number=Sing 4 pobj _ _ 7 $ C $ $ c $ SYM $ _ 6 appos _ _ 8 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 10 nsubj _ _ 9 may may AUX MD VerbForm=Fin 10 aux _ _ 10 associate associate VERB VB VerbForm=Inf 2 ccomp _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 sequence sequence NOUN NN Number=Sing 10 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 groups group NOUN NNS Number=Plur 13 pobj _ _ 15 called call VERB VBD Tense=Past|VerbForm=Fin 14 acl _ _ 16 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 19 poss _ _ 17 higher high ADJ JJR Degree=Cmp 19 amod _ _ 18 isotropy isotropy ADJ JJ Degree=Pos 19 amod _ _ 19 groups group NOUN NNS Number=Plur 15 dobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 10 punct _ _ 21 and and CCONJ CC ConjType=Cmp 10 cc _ _ 22 that that SCONJ IN _ 24 mark _ _ 23 these these PRON DT Number=Plur|PronType=Dem 24 nsubj _ _ 24 give give VERB VBP Tense=Pres|VerbForm=Fin 10 conj _ _ 25 rise rise NOUN NN Number=Sing 24 dobj _ _ 26 to to ADP IN _ 25 prep _ _ 27 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 28 sequence sequence NOUN NN Number=Sing 26 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 quotients quotient NOUN NNS Number=Plur 29 pobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 $ C $ $ c $ SYM $ _ 31 pobj _ _ 33 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = This sequence leads us to an ordinal invariant for small categories, which we call isotropy rank: the isotropy rank of a small category is the ordinal at which the sequence of quotients stabilizes. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 sequence sequence NOUN NN Number=Sing 3 nsubj _ _ 3 leads lead VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 26 ccomp _ _ 4 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 3 dobj _ _ 5 to to ADP IN _ 3 prep _ _ 6 an an DET DT Definite=Ind|PronType=Art 8 det _ _ 7 ordinal ordinal ADJ JJ Degree=Pos 8 amod _ _ 8 invariant invariant NOUN NN Number=Sing 5 pobj _ _ 9 for for ADP IN _ 8 prep _ _ 10 small small ADJ JJ Degree=Pos 11 amod _ _ 11 categories category NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 which which PRON WDT _ 15 nsubj _ _ 14 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 15 nsubj _ _ 15 call call VERB VBP Tense=Pres|VerbForm=Fin 11 relcl _ _ 16 isotropy isotropy PROPN NNP Number=Sing 17 amod _ _ 17 rank rank PROPN NNP Number=Sing 15 oprd _ SpaceAfter=No 18 : : PUNCT : _ 26 punct _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 isotropy isotropy ADJ JJ Degree=Pos 21 amod _ _ 21 rank rank NOUN NN Number=Sing 26 nsubj _ _ 22 of of ADP IN _ 21 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 24 small small ADJ JJ Degree=Pos 25 amod _ _ 25 category category NOUN NN Number=Sing 22 pobj _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 ordinal ordinal ADJ JJ Degree=Pos 26 attr _ _ 29 at at ADP IN _ 35 prep _ _ 30 which which PRON WDT _ 29 pobj _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 sequence sequence NOUN NN Number=Sing 35 nsubj _ _ 33 of of ADP IN _ 32 prep _ _ 34 quotients quotient NOUN NNS Number=Plur 33 pobj _ _ 35 stabilizes stabilize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 28 relcl _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 26 punct _ SpaceAfter=No # sent_id = 7 # text = Our main results state that each small category has a well - defined isotropy rank, and moreover, that for each small ordinal one may construct a small category with precisely that rank. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 3 poss _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 results result NOUN NNS Number=Plur 4 nsubj _ _ 4 state state VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 9 mark _ _ 6 each each DET DT _ 8 det _ _ 7 small small ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 9 nsubj _ _ 9 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 10 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 11 well well ADV RB Degree=Pos 13 advmod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 amod _ _ 14 isotropy isotropy ADJ JJ Degree=Pos 15 amod _ _ 15 rank rank NOUN NN Number=Sing 9 dobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 4 punct _ _ 17 and and CCONJ CC ConjType=Cmp 4 cc _ _ 18 moreover moreover ADV RB _ 27 advmod _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 27 punct _ _ 20 that that SCONJ IN _ 27 mark _ _ 21 for for ADP IN _ 27 prep _ _ 22 each each DET DT _ 25 det _ _ 23 small small ADJ JJ Degree=Pos 25 amod _ _ 24 ordinal ordinal ADJ JJ Degree=Pos 25 amod _ _ 25 one one NOUN NN Number=Sing 27 nsubj _ _ 26 may may AUX MD VerbForm=Fin 27 aux _ _ 27 construct construct VERB VB VerbForm=Inf 4 conj _ _ 28 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 29 small small ADJ JJ Degree=Pos 30 amod _ _ 30 category category NOUN NN Number=Sing 27 dobj _ _ 31 with with ADP IN _ 27 prep _ _ 32 precisely precisely ADV RB _ 34 advmod _ _ 33 that that DET DT Number=Sing|PronType=Dem 34 det _ _ 34 rank rank NOUN NN Number=Sing 31 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 27 punct _ SpaceAfter=No # sent_id = 8 # text = It happens that isotropy rank of a small category is an instance of the same concept for Grothendieck toposes, for which corresponding statements hold. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 happens happen VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that PRON WDT PronType=Rel 4 nsubj _ _ 4 isotropy isotropy VERB VBP Tense=Pres|VerbForm=Fin 2 ccomp _ _ 5 rank rank NOUN NN Number=Sing 4 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 small small ADJ JJ Degree=Pos 9 amod _ _ 9 category category NOUN NN Number=Sing 6 pobj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 conj _ _ 11 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 12 instance instance NOUN NN Number=Sing 10 attr _ _ 13 of of ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 same same ADJ JJ Degree=Pos 16 amod _ _ 16 concept concept NOUN NN Number=Sing 13 pobj _ _ 17 for for ADP IN _ 16 prep _ _ 18 Grothendieck Grothendieck PROPN NNP Number=Sing 19 compound _ _ 19 toposes topos NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 19 punct _ _ 21 for for ADP IN _ 25 prep _ _ 22 which which PRON WDT _ 21 pobj _ _ 23 corresponding corresponding ADJ JJ Degree=Pos 24 amod _ _ 24 statements statement NOUN NNS Number=Plur 25 nsubj _ _ 25 hold hold VERB VBP Tense=Pres|VerbForm=Fin 19 relcl _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 9 # text = Most of the technical work in the paper is concerned with the development of tools that allow us to compute (higher) isotropy groups of categories in terms of those of certain suitable subcategories. 1 Most Most ADJ JJS Degree=Sup 10 nsubjpass _ _ 2 of of ADP IN _ 1 prep _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 technical technical ADJ JJ Degree=Pos 5 amod _ _ 5 work work NOUN NN Number=Sing 2 pobj _ _ 6 in in ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 paper paper NOUN NN Number=Sing 6 pobj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 10 concerned concern VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 ccomp _ _ 11 with with ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 development development NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 tools tool NOUN NNS Number=Plur 14 pobj _ _ 16 that that PRON WDT PronType=Rel 17 nsubj _ _ 17 allow allow VERB VBP Tense=Pres|VerbForm=Fin 15 relcl _ _ 18 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 20 nsubj _ _ 19 to to PART TO _ 20 aux _ _ 20 compute compute VERB VB VerbForm=Inf 17 ccomp _ _ 21 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 24 punct _ SpaceAfter=No 22 higher high ADJ JJR Degree=Cmp 24 amod _ SpaceAfter=No 23 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 24 punct _ _ 24 isotropy isotropy VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 25 groups group NOUN NNS Number=Plur 24 dobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 categories category NOUN NNS Number=Plur 26 pobj _ _ 28 in in ADP IN _ 24 prep _ _ 29 terms term NOUN NNS Number=Plur 28 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 those those PRON DT Number=Plur|PronType=Dem 30 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 certain certain ADJ JJ Degree=Pos 35 amod _ _ 34 suitable suitable ADJ JJ Degree=Pos 35 amod _ _ 35 subcategories subcategorie NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 24 punct _ SpaceAfter=No # doc_id = 673 # sent_id = 1 # text = In this paper we prove a stability result for inner fibrations in terms of the wide, or fat join operation on simplicial sets. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 stability stability NOUN NN Number=Sing 8 compound _ _ 8 result result NOUN NN Number=Sing 5 dobj _ _ 9 for for ADP IN _ 8 prep _ _ 10 inner inner ADJ JJ Degree=Pos 11 amod _ _ 11 fibrations fibration NOUN NNS Number=Plur 9 pobj _ _ 12 in in ADP IN _ 11 prep _ _ 13 terms term NOUN NNS Number=Plur 12 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 21 det _ _ 16 wide wide ADJ JJ Degree=Pos 21 amod _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 or or CCONJ CC ConjType=Cmp 16 cc _ _ 19 fat fat ADJ JJ Degree=Pos 16 conj _ _ 20 join join VERB VBP Tense=Pres|VerbForm=Fin 16 conj _ _ 21 operation operation NOUN NN Number=Sing 14 pobj _ _ 22 on on ADP IN _ 21 prep _ _ 23 simplicial simplicial ADJ JJ Degree=Pos 24 amod _ _ 24 sets set NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = We also prove some additional results on inner anodyne morphisms that may be of independent interest. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 some some DET DT _ 6 det _ _ 5 additional additional ADJ JJ Degree=Pos 6 amod _ _ 6 results result NOUN NNS Number=Plur 3 dobj _ _ 7 on on ADP IN _ 6 prep _ _ 8 inner inner ADJ JJ Degree=Pos 9 amod _ _ 9 anodyne anodyne NOUN NN Number=Sing 10 compound _ _ 10 morphisms morphism NOUN NNS Number=Plur 7 pobj _ _ 11 that that PRON WDT PronType=Rel 13 nsubj _ _ 12 may may AUX MD VerbForm=Fin 13 aux _ _ 13 be be AUX VB VerbForm=Inf 6 relcl _ _ 14 of of ADP IN _ 13 prep _ _ 15 independent independent ADJ JJ Degree=Pos 16 amod _ _ 16 interest interest NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 674 # sent_id = 1 # text = It is well known that a relation $ phi $ between sets is regular if, and only if, $ Kphi $ is completely distributive, where $ Kphi $ is the complete lattice consisting of fixed points of the Kan adjunction induced by $ phi $ . 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 well well ADV RB Degree=Pos 4 advmod _ _ 4 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 acomp _ _ 5 that that SCONJ IN _ 11 mark _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 relation relation NOUN NN Number=Sing 11 nsubj _ _ 8 $ phi $ $ phi $ SYM $ _ 7 appos _ _ 9 between between ADP IN _ 7 prep _ _ 10 sets set NOUN NNS Number=Plur 9 pobj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 12 regular regular ADJ JJ Degree=Pos 11 acomp _ _ 13 if if SCONJ IN _ 11 prep _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 4 punct _ _ 15 and and CCONJ CC ConjType=Cmp 4 cc _ _ 16 only only ADV RB _ 20 advmod _ _ 17 if if SCONJ IN _ 20 mark _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 20 punct _ _ 19 $ Kphi $ $ kphi $ SYM $ _ 20 nsubj _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 26 advcl _ _ 21 completely completely ADV RB _ 22 advmod _ _ 22 distributive distributive ADJ JJ Degree=Pos 20 acomp _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 20 punct _ _ 24 where where SCONJ WRB _ 26 advmod _ _ 25 $ Kphi $ $ kphi $ SYM $ _ 26 nsubj _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 27 the the DET DT Definite=Def|PronType=Art 29 det _ _ 28 complete complete ADJ JJ Degree=Pos 29 amod _ _ 29 lattice lattice NOUN NN Number=Sing 26 attr _ _ 30 consisting consist VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 29 acl _ _ 31 of of ADP IN _ 30 prep _ _ 32 fixed fix VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 33 amod _ _ 33 points point NOUN NNS Number=Plur 31 pobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 the the DET DT Definite=Def|PronType=Art 37 det _ _ 36 Kan Kan PROPN NNP Number=Sing 37 compound _ _ 37 adjunction adjunction NOUN NN Number=Sing 34 pobj _ _ 38 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 37 acl _ _ 39 by by ADP IN _ 38 agent _ _ 40 $ phi $ $ phi $ SYM $ _ 39 pobj _ _ 41 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = For a small quantaloid Q, we investigate the $ Q $ - enriched version of this classical result, that is, the regularity of $ Q $ - distributors versus the constructive complete distributivity of $ Q $ - categories, and prove that ``the dual of $ Kphi $ is constructive completely distributive implies $ phi $ is regular implies $ Kphi $ is constructive completely distributive for any $ Q $ - distributor $ phi $ . 1 For for ADP IN _ 8 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 3 small small ADJ JJ Degree=Pos 5 amod _ _ 4 quantaloid quantaloid NOUN NN Number=Sing 5 compound _ _ 5 Q Q PROPN NNP Number=Sing 1 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 8 punct _ _ 7 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 8 nsubj _ _ 8 investigate investigate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 the the DET DT Definite=Def|PronType=Art 13 det _ _ 10 $ Q $ $ q $ SYM $ _ 12 advmod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 amod _ _ 13 version version NOUN NN Number=Sing 8 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 this this DET DT Number=Sing|PronType=Dem 17 det _ _ 16 classical classical ADJ JJ Degree=Pos 17 amod _ _ 17 result result NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 13 punct _ _ 19 that that ADV RB _ 20 advmod _ _ 20 is is ADV RB _ 23 advmod _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 regularity regularity NOUN NN Number=Sing 8 dobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 $ Q $ $ q $ SYM $ _ 27 compound _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 distributors distributor NOUN NNS Number=Plur 24 pobj _ _ 28 versus versus ADP IN _ 27 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 32 det _ _ 30 constructive constructive ADJ JJ Degree=Pos 32 amod _ _ 31 complete complete ADJ JJ Degree=Pos 32 amod _ _ 32 distributivity distributivity NOUN NN Number=Sing 28 pobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 $ Q $ $ q $ SYM $ _ 36 nmod _ _ 35 - - PUNCT HYPH PunctType=Dash 36 punct _ _ 36 categories category NOUN NNS Number=Plur 33 pobj _ SpaceAfter=No 37 , , PUNCT , PunctType=Comm 23 punct _ _ 38 and and CCONJ CC ConjType=Cmp 8 cc _ _ 39 prove prove VERB VB VerbForm=Inf 8 conj _ _ 40 that that SCONJ IN _ 47 mark _ _ 41 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 47 punct _ SpaceAfter=No 42 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 47 punct _ SpaceAfter=No 43 the the DET DT Definite=Def|PronType=Art 44 det _ _ 44 dual dual ADJ JJ Degree=Pos 47 nsubj _ _ 45 of of ADP IN _ 44 prep _ _ 46 $ Kphi $ $ kphi $ SYM $ _ 45 pobj _ _ 47 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 39 ccomp _ _ 48 constructive constructive ADJ JJ Degree=Pos 47 acomp _ _ 49 completely completely ADV RB _ 50 advmod _ _ 50 distributive distributive ADJ JJ Degree=Pos 48 amod _ _ 51 implies imply VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 39 conj _ _ 52 $ phi $ $ phi $ SYM $ _ 53 nsubj _ _ 53 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 51 ccomp _ _ 54 regular regular ADJ JJ Degree=Pos 53 acomp _ _ 55 implies imply VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 conj _ _ 56 $ Kphi $ $ kphi $ SYM $ _ 57 nsubj _ _ 57 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 55 ccomp _ _ 58 constructive constructive ADJ JJ Degree=Pos 57 acomp _ _ 59 completely completely ADV RB _ 60 advmod _ _ 60 distributive distributive ADJ JJ Degree=Pos 57 acomp _ _ 61 for for ADP IN _ 60 prep _ _ 62 any any DET DT _ 65 det _ _ 63 $ Q $ $ q $ SYM $ _ 65 compound _ _ 64 - - PUNCT HYPH PunctType=Dash 65 punct _ _ 65 distributor distributor NOUN NN Number=Sing 61 pobj _ _ 66 $ phi $ $ phi $ SYM $ _ 65 appos _ _ 67 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 3 # text = Although the converse implications do not hold in general, in the case that $ Q $ is a commutative integral quantale, we show that these three statements are equivalent for any $ phi $ if, and only if, $ Q $ is a Girard quantale. 1 Although although SCONJ IN _ 7 mark _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 converse converse NOUN NN Number=Sing 4 compound _ _ 4 implications implication NOUN NNS Number=Plur 7 nsubj _ _ 5 do do AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 aux _ _ 6 not not PART RB Polarity=Neg 7 neg _ _ 7 hold hold VERB VB VerbForm=Inf 23 advcl _ _ 8 in in ADP IN _ 7 prep _ _ 9 general general ADJ JJ Degree=Pos 8 amod _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 7 punct _ _ 11 in in ADP IN _ 23 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 case case NOUN NN Number=Sing 11 pobj _ _ 14 that that SCONJ IN _ 16 mark _ _ 15 $ Q $ $ q $ SYM $ _ 16 nsubj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 acl _ _ 17 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 18 commutative commutative ADJ JJ Degree=Pos 20 amod _ _ 19 integral integral ADJ JJ Degree=Pos 20 amod _ _ 20 quantale quantale NOUN NN Number=Sing 16 attr _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 23 punct _ _ 22 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 23 nsubj _ _ 23 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 24 that that SCONJ IN _ 28 mark _ _ 25 these these DET DT Number=Plur|PronType=Dem 27 det _ _ 26 three three NUM CD NumType=Card 27 nummod _ _ 27 statements statement NOUN NNS Number=Plur 28 nsubj _ _ 28 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 23 ccomp _ _ 29 equivalent equivalent ADJ JJ Degree=Pos 28 acomp _ _ 30 for for ADP IN _ 29 prep _ _ 31 any any DET DT _ 32 det _ _ 32 $ phi $ $ phi $ SYM $ _ 33 nmod _ _ 33 if if SCONJ IN _ 28 dep _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 28 punct _ _ 35 and and CCONJ CC ConjType=Cmp 28 cc _ _ 36 only only ADV RB _ 40 advmod _ _ 37 if if SCONJ IN _ 40 mark _ SpaceAfter=No 38 , , PUNCT , PunctType=Comm 40 punct _ _ 39 $ Q $ $ q $ SYM $ _ 40 nsubj _ _ 40 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 28 conj _ _ 41 a a DET DT Definite=Ind|PronType=Art 43 det _ _ 42 Girard Girard PROPN NNP Number=Sing 43 amod _ _ 43 quantale quantale NOUN NN Number=Sing 40 attr _ SpaceAfter=No 44 . . PUNCT . PunctType=Peri 23 punct _ SpaceAfter=No # doc_id = 675 # sent_id = 1 # text = We give a direct proof that between two toposes, $ F $ and $ E $ , bounded over a base topos $ S $ , adjunctions $ L - | R: Loc_F - > Loc_E $ over $ Loc_S $ are Frobenius if and only if $ R $ commutes with the double power locale monad and finite coproducts. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 direct direct ADJ JJ Degree=Pos 5 amod _ _ 5 proof proof NOUN NN Number=Sing 2 dobj _ _ 6 that that SCONJ IN _ 26 mark _ _ 7 between between ADP IN _ 26 prep _ _ 8 two two NUM CD NumType=Card 9 nummod _ _ 9 toposes topos NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 $ F $ $ f $ SYM $ _ 9 appos _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 $ E $ $ e $ SYM $ _ 9 appos _ _ 14 , , PUNCT , PunctType=Comm 9 punct _ _ 15 bounded bound VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 acl _ _ 16 over over ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 18 base base NOUN NN Number=Sing 19 compound _ _ 19 topos topos NOUN NN Number=Sing 16 pobj _ _ 20 $ S $ $ s $ SYM $ _ 19 appos _ _ 21 , , PUNCT , PunctType=Comm 9 punct _ _ 22 adjunctions adjunction NOUN NNS Number=Plur 7 pobj _ _ 23 $ L - | R: Loc_F - > Loc_E $ $ l - | r: loc_f - > loc_e $ SYM $ _ 25 quantmod _ _ 24 over over ADP IN _ 25 advmod _ _ 25 $ Loc_S $ $ loc_s $ SYM $ _ 7 pobj _ _ 26 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 acl _ _ 27 Frobenius Frobenius PROPN NNP Number=Sing 26 attr _ _ 28 if if SCONJ IN _ 26 prep _ _ 29 and and CCONJ CC ConjType=Cmp 28 cc _ _ 30 only only ADV RB _ 31 advmod _ _ 31 if if SCONJ IN _ 32 cc _ _ 32 $ R $ $ r $ SYM $ _ 33 poss _ _ 33 commutes commute NOUN NNS Number=Plur 28 conj _ _ 34 with with ADP IN _ 33 prep _ _ 35 the the DET DT Definite=Def|PronType=Art 39 det _ _ 36 double double ADJ JJ Degree=Pos 39 amod _ _ 37 power power NOUN NN Number=Sing 38 compound _ _ 38 locale locale NOUN NN Number=Sing 39 compound _ _ 39 monad monad NOUN NNS Number=Plur 34 pobj _ _ 40 and and CCONJ CC ConjType=Cmp 39 cc _ _ 41 finite finite ADJ JJ Degree=Pos 42 amod _ _ 42 coproducts coproduct NOUN NNS Number=Plur 39 conj _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The proof uses only certain categorical properties of the category of locales, Loc. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 proof proof NOUN NN Number=Sing 3 nsubj _ _ 3 uses use VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 only only ADV RB _ 7 advmod _ _ 5 certain certain ADJ JJ Degree=Pos 7 amod _ _ 6 categorical categorical ADJ JJ Degree=Pos 7 amod _ _ 7 properties property NOUN NNS Number=Plur 3 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 category category NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 locales locale NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 7 punct _ _ 14 Loc Loc PROPN NNP Number=Sing 7 appos _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = This implies that between categories axiomatized to behave like categories of locales, it does not make a difference whether maps are defined as structure preserving adjunctions (that is, those that commute with the double power monads) or Frobenius adjunctions. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 implies imply VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 17 mark _ _ 4 between between ADP IN _ 17 prep _ _ 5 categories category NOUN NNS Number=Plur 4 pobj _ _ 6 axiomatized axiomatize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 acl _ _ 7 to to PART TO _ 8 aux _ _ 8 behave behave VERB VB VerbForm=Inf 6 xcomp _ _ 9 like like ADP IN _ 8 prep _ _ 10 categories category NOUN NNS Number=Plur 9 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 locales locale NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 17 punct _ _ 14 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 17 nsubj _ _ 15 does do AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 aux _ _ 16 not not PART RB Polarity=Neg 17 neg _ _ 17 make make VERB VB VerbForm=Inf 2 ccomp _ _ 18 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 19 difference difference NOUN NN Number=Sing 17 dobj _ _ 20 whether whether SCONJ IN _ 23 mark _ _ 21 maps map NOUN NNS Number=Plur 23 nsubjpass _ _ 22 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 23 auxpass _ _ 23 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 acl _ _ 24 as as ADP IN _ 23 prep _ _ 25 structure structure NOUN NN Number=Sing 26 npadvmod _ _ 26 preserving preserve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 27 amod _ _ 27 adjunctions adjunction NOUN NNS Number=Plur 24 pobj _ _ 28 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 27 punct _ SpaceAfter=No 29 that that ADV RB _ 30 nsubj _ _ 30 is is ADV RB _ 27 parataxis _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 30 punct _ _ 32 those those PRON DT Number=Plur|PronType=Dem 30 attr _ _ 33 that that PRON WDT PronType=Rel 34 nsubj _ _ 34 commute commute VERB VBP Tense=Pres|VerbForm=Fin 32 relcl _ _ 35 with with ADP IN _ 34 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 39 det _ _ 37 double double ADJ JJ Degree=Pos 39 amod _ _ 38 power power NOUN NN Number=Sing 39 compound _ _ 39 monads monad NOUN NNS Number=Plur 35 pobj _ SpaceAfter=No 40 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 39 punct _ _ 41 or or CCONJ CC ConjType=Cmp 39 cc _ _ 42 Frobenius Frobenius PROPN NNP Number=Sing 43 compound _ _ 43 adjunctions adjunction NOUN NNS Number=Plur 39 conj _ SpaceAfter=No 44 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 676 # sent_id = 1 # text = The formation of the "strict" span category $ Span(C) $ of a category $ C $ with pullbacks is a standard organizational tool of category theory. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 formation formation NOUN NN Number=Sing 17 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 9 det _ _ 5 " " PUNCT `` PunctSide=Ini|PunctType=Quot 9 punct _ SpaceAfter=No 6 strict strict ADJ JJ Degree=Pos 9 amod _ SpaceAfter=No 7 " " PUNCT '' PunctSide=Fin|PunctType=Quot 9 punct _ _ 8 span span NOUN NN Number=Sing 9 compound _ _ 9 category category NOUN NN Number=Sing 3 pobj _ _ 10 $ Span(C) $ $ span(c) $ SYM $ _ 9 appos _ _ 11 of of ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 category category NOUN NN Number=Sing 11 pobj _ _ 14 $ C $ $ c $ SYM $ _ 9 punct _ _ 15 with with ADP IN _ 2 prep _ _ 16 pullbacks pullback NOUN NNS Number=Plur 15 pobj _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 18 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 19 standard standard ADJ JJ Degree=Pos 21 amod _ _ 20 organizational organizational ADJ JJ Degree=Pos 21 amod _ _ 21 tool tool NOUN NN Number=Sing 17 attr _ _ 22 of of ADP IN _ 21 prep _ _ 23 category category NOUN NN Number=Sing 24 compound _ _ 24 theory theory NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 2 # text = Unfortunately, limits or colimits in $ Span(C) $ are not easily computed in terms of constructions in $ C $ . 1 Unfortunately unfortunately ADV RB _ 11 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 11 punct _ _ 3 limits limit NOUN NNS Number=Plur 11 nsubjpass _ _ 4 or or CCONJ CC ConjType=Cmp 3 cc _ _ 5 colimits colimit NOUN NNS Number=Plur 3 conj _ _ 6 in in ADP IN _ 3 prep _ _ 7 $ Span(C) $ $ span(c) $ SYM $ _ 6 pobj _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 9 not not PART RB Polarity=Neg 11 neg _ _ 10 easily easily ADV RB _ 11 advmod _ _ 11 computed compute VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 12 in in ADP IN _ 11 prep _ _ 13 terms term NOUN NNS Number=Plur 12 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 constructions construction NOUN NNS Number=Plur 14 pobj _ _ 16 in in ADP IN _ 15 prep _ _ 17 $ C $ $ c $ SYM $ _ 16 pobj _ _ 18 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 3 # text = This paper shows how to form the pullback in $ Span(C) $ for many, but not all, pairs of spans, given the existence of some specific so - called lax pullback complements in $ C $ of the "left legs" of at least one of the two given spans. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 shows show VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 how how SCONJ WRB _ 6 advmod _ _ 5 to to PART TO _ 6 aux _ _ 6 form form VERB VB VerbForm=Inf 3 xcomp _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 pullback pullback NOUN NN Number=Sing 6 dobj _ _ 9 in in ADP IN _ 6 prep _ _ 10 $ Span(C) $ $ span(c) $ SYM $ _ 9 pobj _ _ 11 for for ADP IN _ 6 prep _ _ 12 many many ADJ JJ Degree=Pos 11 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 but but CCONJ CC ConjType=Cmp 11 cc _ _ 15 not not PART RB Polarity=Neg 16 neg _ _ 16 all all DET DT _ 18 det _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 18 punct _ _ 18 pairs pair NOUN NNS Number=Plur 3 conj _ _ 19 of of ADP IN _ 18 prep _ _ 20 spans span NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 18 punct _ _ 22 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 prep _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 existence existence NOUN NN Number=Sing 22 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 some some DET DT _ 33 det _ _ 27 specific specific ADJ JJ Degree=Pos 33 amod _ _ 28 so so ADV RB _ 30 advmod _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 33 amod _ _ 31 lax lax ADJ JJ Degree=Pos 33 amod _ _ 32 pullback pullback NOUN NN Number=Sing 33 compound _ _ 33 complements complement NOUN NNS Number=Plur 25 pobj _ _ 34 in in ADP IN _ 24 prep _ _ 35 $ C $ $ c $ SYM $ _ 34 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 the the DET DT Definite=Def|PronType=Art 40 det _ _ 38 " " PUNCT `` PunctSide=Ini|PunctType=Quot 40 punct _ SpaceAfter=No 39 left left ADJ JJ Degree=Pos 40 amod _ _ 40 legs leg NOUN NNS Number=Plur 36 pobj _ SpaceAfter=No 41 " " PUNCT '' PunctSide=Fin|PunctType=Quot 40 punct _ _ 42 of of ADP IN _ 40 prep _ _ 43 at at ADV RB _ 44 advmod _ _ 44 least least ADJ JJS Degree=Sup 45 advmod _ _ 45 one one NUM CD NumType=Card 42 pobj _ _ 46 of of ADP IN _ 45 prep _ _ 47 the the DET DT Definite=Def|PronType=Art 50 det _ _ 48 two two NUM CD NumType=Card 50 nummod _ _ 49 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 50 amod _ _ 50 spans span NOUN NNS Number=Plur 46 pobj _ SpaceAfter=No 51 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = For some types of spans we require the ambient category to be adhesive to be able to form at least a weak pullback in $ Span(C) $ . 1 For for ADP IN _ 7 prep _ _ 2 some some DET DT _ 3 det _ _ 3 types type NOUN NNS Number=Plur 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 spans span NOUN NNS Number=Plur 4 pobj _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 require require VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 ambient ambient ADJ JJ Degree=Pos 10 amod _ _ 10 category category NOUN NN Number=Sing 7 dobj _ _ 11 to to PART TO _ 12 aux _ _ 12 be be AUX VB VerbForm=Inf 7 xcomp _ _ 13 adhesive adhesive ADJ JJ Degree=Pos 12 acomp _ _ 14 to to PART TO _ 15 aux _ _ 15 be be AUX VB VerbForm=Inf 13 xcomp _ _ 16 able able ADJ JJ Degree=Pos 15 acomp _ _ 17 to to PART TO _ 18 aux _ _ 18 form form VERB VB VerbForm=Inf 16 xcomp _ _ 19 at at ADV RB _ 20 advmod _ _ 20 least least ADJ JJS Degree=Sup 23 advmod _ _ 21 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 22 weak weak ADJ JJ Degree=Pos 23 amod _ _ 23 pullback pullback NOUN NN Number=Sing 18 dobj _ _ 24 in in ADP IN _ 23 prep _ _ 25 $ Span(C) $ $ span(c) $ SYM $ _ 24 pobj _ _ 26 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 5 # text = The existence of all lax pullback complements in $ C $ along a given morphism is equivalent to the exponentiability of that morphism. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 existence existence NOUN NN Number=Sing 14 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 all all DET DT _ 7 det _ _ 5 lax lax ADJ JJ Degree=Pos 7 amod _ _ 6 pullback pullback NOUN NN Number=Sing 7 compound _ _ 7 complements complement NOUN NNS Number=Plur 3 pobj _ _ 8 in in ADP IN _ 7 prep _ _ 9 $ C $ $ c $ SYM $ _ 8 pobj _ _ 10 along along ADP IN _ 2 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 amod _ _ 13 morphism morphism NOUN NN Number=Sing 10 pobj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 equivalent equivalent ADJ JJ Degree=Pos 14 acomp _ _ 16 to to ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 exponentiability exponentiability NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 that that DET DT Number=Sing|PronType=Dem 21 det _ _ 21 morphism morphism NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 6 # text = Since exponentiability is a rather restrictive property of a morphism, the paper first develops a comprehensive framework of rules for individual lax pullback complement diagrams, which resembles the set of pasting and cancellation rules for pullback diagrams, including their behaviour under pullback. 1 Since since SCONJ IN _ 3 mark _ _ 2 exponentiability exponentiability NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 advcl _ _ 4 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 5 rather rather ADV RB _ 6 advmod _ _ 6 restrictive restrictive ADJ JJ Degree=Pos 7 amod _ _ 7 property property NOUN NN Number=Sing 3 attr _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 morphism morphism NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 15 punct _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 paper paper NOUN NN Number=Sing 15 nsubj _ _ 14 first first ADV RB _ 15 advmod _ _ 15 develops develop VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 comprehensive comprehensive ADJ JJ Degree=Pos 18 amod _ _ 18 framework framework NOUN NN Number=Sing 15 dobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 rules rule NOUN NNS Number=Plur 19 pobj _ _ 21 for for ADP IN _ 20 prep _ _ 22 individual individual ADJ JJ Degree=Pos 26 amod _ _ 23 lax lax ADJ JJ Degree=Pos 22 nmod _ _ 24 pullback pullback NOUN NN Number=Sing 25 compound _ _ 25 complement complement NOUN NN Number=Sing 26 compound _ _ 26 diagrams diagram NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 26 punct _ _ 28 which which PRON WDT _ 29 nsubj _ _ 29 resembles resemble VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 26 relcl _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 set set NOUN NN Number=Sing 29 dobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 pasting pasting NOUN NN Number=Sing 36 nmod _ _ 34 and and CCONJ CC ConjType=Cmp 33 cc _ _ 35 cancellation cancellation NOUN NN Number=Sing 33 conj _ _ 36 rules rule NOUN NNS Number=Plur 32 pobj _ _ 37 for for ADP IN _ 36 prep _ _ 38 pullback pullback NOUN NN Number=Sing 39 compound _ _ 39 diagrams diagram NOUN NNS Number=Plur 37 pobj _ SpaceAfter=No 40 , , PUNCT , PunctType=Comm 39 punct _ _ 41 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 39 prep _ _ 42 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 43 poss _ _ 43 behaviour behaviour NOUN NN Number=Sing 41 pobj _ _ 44 under under ADP IN _ 43 prep _ _ 45 pullback pullback NOUN NN Number=Sing 44 pobj _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 7 # text = We also present examples of lax pullback complements along non - exponentiable morphisms, obtained via lifting along a fibration. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 present present VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 examples example NOUN NNS Number=Plur 3 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 lax lax ADJ JJ Degree=Pos 8 amod _ _ 7 pullback pullback NOUN NN Number=Sing 8 compound _ _ 8 complements complement NOUN NNS Number=Plur 5 pobj _ _ 9 along along ADP IN _ 8 prep _ _ 10 non non ADJ JJ Degree=Pos 13 amod _ _ 11 - - PUNCT HYPH PunctType=Dash 13 amod _ _ 12 exponentiable exponentiable ADJ JJ Degree=Pos 13 amod _ _ 13 morphisms morphism NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 4 punct _ _ 15 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 acl _ _ 16 via via ADP IN _ 15 prep _ _ 17 lifting lift VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 pobj _ _ 18 along along ADP IN _ 17 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 fibration fibration NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 677 # sent_id = 1 # text = There are two main constructions in classical descent theory: the category of algebras and the descent category, which are known to be examples of weighted bilimits. 1 There there PRON EX _ 2 expl _ _ 2 are be VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 two two NUM CD NumType=Card 5 nummod _ _ 4 main main ADJ JJ Degree=Pos 5 amod _ _ 5 constructions construction NOUN NNS Number=Plur 2 attr _ _ 6 in in ADP IN _ 5 prep _ _ 7 classical classical ADJ JJ Degree=Pos 8 amod _ _ 8 descent descent NOUN NN Number=Sing 9 compound _ _ 9 theory theory NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 10 : : PUNCT : _ 5 punct _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 category category NOUN NN Number=Sing 5 appos _ _ 13 of of ADP IN _ 12 prep _ _ 14 algebras algebra NOUN NNS Number=Plur 13 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 12 cc _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 descent descent NOUN NN Number=Sing 18 compound _ _ 18 category category NOUN NN Number=Sing 12 conj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 which which PRON WDT _ 22 nsubjpass _ _ 21 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 22 auxpass _ _ 22 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 relcl _ _ 23 to to PART TO _ 24 aux _ _ 24 be be AUX VB VerbForm=Inf 22 xcomp _ _ 25 examples example NOUN NNS Number=Plur 24 attr _ _ 26 of of ADP IN _ 25 prep _ _ 27 weighted weighted ADJ JJ Degree=Pos 28 amod _ _ 28 bilimits bilimit NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We give a formal approach to descent theory, employing formal consequences of commuting properties of bilimits to prove classical and new theorems in the context of Janelidze - Tholen ``Facets of Descent II'', such as Benabou - Roubaud Theorems, a Galois Theorem, embedding results and formal ways of getting effective descent morphisms. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 formal formal ADJ JJ Degree=Pos 5 amod _ _ 5 approach approach NOUN NN Number=Sing 2 dobj _ _ 6 to to PART TO _ 7 aux _ _ 7 descent descent VERB VB VerbForm=Inf 5 relcl _ _ 8 theory theory NOUN NN Number=Sing 7 dobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 2 punct _ _ 10 employing employ VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 11 formal formal ADJ JJ Degree=Pos 12 amod _ _ 12 consequences consequence NOUN NNS Number=Plur 10 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 commuting commute VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 pcomp _ _ 15 properties property NOUN NNS Number=Plur 14 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 bilimits bilimit NOUN NNS Number=Plur 16 pobj _ _ 18 to to PART TO _ 19 aux _ _ 19 prove prove VERB VB VerbForm=Inf 12 relcl _ _ 20 classical classical ADJ JJ Degree=Pos 23 amod _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 new new ADJ JJ Degree=Pos 20 conj _ _ 23 theorems theorem NOUN NNS Number=Plur 19 dobj _ _ 24 in in ADP IN _ 19 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 context context NOUN NN Number=Sing 24 pobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 Janelidze Janelidze PROPN NNP Number=Sing 30 compound _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 Tholen Tholen PROPN NNP Number=Sing 33 nmod _ _ 31 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 33 punct _ SpaceAfter=No 32 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 33 punct _ SpaceAfter=No 33 Facets facet NOUN NNS Number=Plur 50 nsubj _ _ 34 of of ADP IN _ 33 prep _ _ 35 Descent Descent PROPN NNP Number=Sing 36 compound _ _ 36 II II PROPN NNP Number=Sing 34 pobj _ SpaceAfter=No 37 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 33 punct _ SpaceAfter=No 38 , , PUNCT , PunctType=Comm 33 punct _ _ 39 such such ADJ JJ Degree=Pos 40 amod _ _ 40 as as ADP IN _ 33 prep _ _ 41 Benabou Benabou PROPN NNP Number=Sing 43 compound _ _ 42 - - PUNCT HYPH PunctType=Dash 43 punct _ _ 43 Roubaud Roubaud PROPN NNP Number=Sing 44 compound _ _ 44 Theorems Theorems PROPN NNP Number=Sing 40 pobj _ SpaceAfter=No 45 , , PUNCT , PunctType=Comm 44 punct _ _ 46 a a DET DT Definite=Ind|PronType=Art 48 det _ _ 47 Galois Galois PROPN NNP Number=Sing 48 compound _ _ 48 Theorem Theorem PROPN NNP Number=Sing 44 appos _ SpaceAfter=No 49 , , PUNCT , PunctType=Comm 44 punct _ _ 50 embedding embed VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 conj _ _ 51 results result NOUN NNS Number=Plur 50 dobj _ _ 52 and and CCONJ CC ConjType=Cmp 51 cc _ _ 53 formal formal ADJ JJ Degree=Pos 54 amod _ _ 54 ways way NOUN NNS Number=Plur 51 conj _ _ 55 of of ADP IN _ 54 prep _ _ 56 getting get VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 55 pcomp _ _ 57 effective effective ADJ JJ Degree=Pos 59 amod _ _ 58 descent descent NOUN NN Number=Sing 59 compound _ _ 59 morphisms morphism NOUN NNS Number=Plur 56 dobj _ SpaceAfter=No 60 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = In order to do this, we develop the formal part of the theory on commuting bilimits via pseudomonad theory, studying idempotent pseudomonads and proving a 2 - dimensional version of the adjoint triangle theorem. 1 In in ADP IN _ 8 prep _ _ 2 order order NOUN NN Number=Sing 1 pobj _ _ 3 to to PART TO _ 4 aux _ _ 4 do do AUX VB VerbForm=Inf 2 acl _ _ 5 this this PRON DT Number=Sing|PronType=Dem 4 dobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 8 punct _ _ 7 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 8 nsubj _ _ 8 develop develop VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 formal formal ADJ JJ Degree=Pos 11 amod _ _ 11 part part NOUN NN Number=Sing 8 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 theory theory NOUN NN Number=Sing 12 pobj _ _ 15 on on ADP IN _ 14 prep _ _ 16 commuting commute VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 pcomp _ _ 17 bilimits bilimit NOUN NNS Number=Plur 16 dobj _ _ 18 via via ADP IN _ 16 prep _ _ 19 pseudomonad pseudomonad NOUN NNS Number=Plur 20 compound _ _ 20 theory theory NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 8 punct _ _ 22 studying study VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 advcl _ _ 23 idempotent idempotent ADJ JJ Degree=Pos 24 amod _ _ 24 pseudomonads pseudomonad NOUN NNS Number=Plur 22 dobj _ _ 25 and and CCONJ CC ConjType=Cmp 22 cc _ _ 26 proving prove VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 conj _ _ 27 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 28 2 2 NUM CD NumType=Card 30 advmod _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 dimensional dimensional ADJ JJ Degree=Pos 31 amod _ _ 31 version version NOUN NN Number=Sing 26 dobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 the the DET DT Definite=Def|PronType=Art 35 det _ _ 34 adjoint adjoint NOUN NN Number=Sing 35 compound _ _ 35 triangle triangle NOUN NN Number=Sing 32 pobj _ _ 36 theorem theorem ADJ JJ Degree=Pos 26 oprd _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 4 # text = Also, we work out the concept of pointwise pseudo - Kan extension, used as a framework to talk about bilimits, commutativity and the descent object. 1 Also also ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 work work VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 out out ADP RP _ 4 prt _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 concept concept NOUN NN Number=Sing 4 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 pointwise pointwise ADJ JJ Degree=Pos 10 amod _ _ 10 pseudo pseudo NOUN NN Number=Sing 12 compound _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 Kan Kan PROPN NNP Number=Sing 13 compound _ _ 13 extension extension NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 7 punct _ _ 15 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 acl _ _ 16 as as ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 framework framework NOUN NN Number=Sing 16 pobj _ _ 19 to to PART TO _ 20 aux _ _ 20 talk talk VERB VB VerbForm=Inf 15 xcomp _ _ 21 about about ADP IN _ 20 prep _ _ 22 bilimits bilimit NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 commutativity commutativity NOUN NN Number=Sing 22 conj _ _ 25 and and CCONJ CC ConjType=Cmp 24 cc _ _ 26 the the DET DT Definite=Def|PronType=Art 28 det _ _ 27 descent descent NOUN NN Number=Sing 28 compound _ _ 28 object object NOUN NN Number=Sing 24 conj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = As a subproduct, this formal approach can be an alternative perspective/guiding template for the development of higher descent theory. 1 As as ADP IN _ 9 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 subproduct subproduct NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 9 punct _ _ 5 this this DET DT Number=Sing|PronType=Dem 7 det _ _ 6 formal formal ADJ JJ Degree=Pos 7 amod _ _ 7 approach approach NOUN NN Number=Sing 9 nsubj _ _ 8 can can AUX MD VerbForm=Fin 9 aux _ _ 9 be be AUX VB VerbForm=Inf 0 ROOT _ _ 10 an an DET DT Definite=Ind|PronType=Art 15 det _ _ 11 alternative alternative ADJ JJ Degree=Pos 15 amod _ _ 12 perspective perspective NOUN NN Number=Sing 15 nmod _ SpaceAfter=No 13 / / SYM SYM _ 14 punct _ SpaceAfter=No 14 guiding guide VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 amod _ _ 15 template template NOUN NN Number=Sing 9 attr _ _ 16 for for ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 development development NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 higher high ADJ JJR Degree=Cmp 22 amod _ _ 21 descent descent NOUN NN Number=Sing 22 compound _ _ 22 theory theory NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 678 # sent_id = 1 # text = Stable derivators provide an enhancement of triangulated categories as is indicated by the existence of canonical triangulations. 1 Stable stable ADJ JJ Degree=Pos 2 amod _ _ 2 derivators derivator NOUN NNS Number=Plur 3 nsubj _ _ 3 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 5 enhancement enhancement NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 triangulated triangulate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 8 categories category NOUN NNS Number=Plur 6 pobj _ _ 9 as as SCONJ IN _ 11 mark _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 11 indicated indicate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 advcl _ _ 12 by by ADP IN _ 11 agent _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 existence existence NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 canonical canonical ADJ JJ Degree=Pos 17 amod _ _ 17 triangulations triangulation NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = In this paper we show that exact morphisms of stable derivators induce exact functors of canonical triangulations, and similarly for arbitrary natural transformations. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 that that SCONJ IN _ 12 mark _ _ 7 exact exact ADJ JJ Degree=Pos 8 amod _ _ 8 morphisms morphism NOUN NNS Number=Plur 12 nsubj _ _ 9 of of ADP IN _ 8 prep _ _ 10 stable stable ADJ JJ Degree=Pos 11 amod _ _ 11 derivators derivator NOUN NNS Number=Plur 9 pobj _ _ 12 induce induce VERB VBP Tense=Pres|VerbForm=Fin 5 ccomp _ _ 13 exact exact ADJ JJ Degree=Pos 14 amod _ _ 14 functors functor NOUN NNS Number=Plur 12 dobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 canonical canonical ADJ JJ Degree=Pos 17 amod _ _ 17 triangulations triangulation NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 12 punct _ _ 19 and and CCONJ CC ConjType=Cmp 12 cc _ _ 20 similarly similarly ADV RB _ 21 advmod _ _ 21 for for ADP IN _ 5 prep _ _ 22 arbitrary arbitrary ADJ JJ Degree=Pos 24 amod _ _ 23 natural natural ADJ JJ Degree=Pos 24 amod _ _ 24 transformations transformation NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = This 2 - categorical refinement also provides a uniqueness statement concerning canonical triangulations. 1 This this DET DT Number=Sing|PronType=Dem 5 det _ _ 2 2 2 NUM CD NumType=Card 4 nummod _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 categorical categorical ADJ JJ Degree=Pos 5 amod _ _ 5 refinement refinement NOUN NN Number=Sing 7 nsubj _ _ 6 also also ADV RB _ 7 advmod _ _ 7 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 uniqueness uniqueness ADJ JJ Degree=Pos 10 amod _ _ 10 statement statement NOUN NN Number=Sing 7 dobj _ _ 11 concerning concern VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 acl _ _ 12 canonical canonical ADJ JJ Degree=Pos 13 amod _ _ 13 triangulations triangulation NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = These results rely on a more careful study of morphisms of derivators and this study is of independent interest. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 results result NOUN NNS Number=Plur 3 nsubj _ _ 3 rely rely VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 on on ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 6 more more ADV RBR Degree=Cmp 7 advmod _ _ 7 careful careful ADJ JJ Degree=Pos 8 amod _ _ 8 study study NOUN NN Number=Sing 4 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 morphisms morphism NOUN NNS Number=Plur 9 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 derivators derivator NOUN NNS Number=Plur 11 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 8 cc _ _ 14 this this DET DT Number=Sing|PronType=Dem 15 det _ _ 15 study study NOUN NN Number=Sing 16 nsubj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 conj _ _ 17 of of ADP IN _ 16 prep _ _ 18 independent independent ADJ JJ Degree=Pos 19 amod _ _ 19 interest interest NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 5 # text = We analyze the interaction of morphisms of derivators with limits, colimits, and Kan extensions, including a discussion of invariance and closure properties of the class of Kan extensions preserved by a fixed morphism. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 analyze analyze VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 interaction interaction NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 morphisms morphism NOUN NNS Number=Plur 5 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 derivators derivator NOUN NNS Number=Plur 7 pobj _ _ 9 with with ADP IN _ 4 prep _ _ 10 limits limit NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 colimits colimit NOUN NNS Number=Plur 10 conj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 and and CCONJ CC ConjType=Cmp 12 cc _ _ 15 Kan Kan PROPN NNP Number=Sing 16 compound _ _ 16 extensions extension NOUN NNS Number=Plur 12 conj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 discussion discussion NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 invariance invariance NOUN NN Number=Sing 25 nmod _ _ 23 and and CCONJ CC ConjType=Cmp 22 cc _ _ 24 closure closure NOUN NN Number=Sing 22 conj _ _ 25 properties property NOUN NNS Number=Plur 21 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 class class NOUN NN Number=Sing 26 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 Kan Kan PROPN NNP Number=Sing 31 compound _ _ 31 extensions extension NOUN NNS Number=Plur 29 pobj _ _ 32 preserved preserve VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 31 acl _ _ 33 by by ADP IN _ 32 agent _ _ 34 a a DET DT Definite=Ind|PronType=Art 36 det _ _ 35 fixed fix VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 36 amod _ _ 36 morphism morphism NOUN NN Number=Sing 33 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 679 # sent_id = 1 # text = This paper generalizes the normally ordered tensor product from Tate vector spaces to Tate objects over arbitrary exact categories. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 generalizes generalize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 8 det _ _ 5 normally normally ADV RB _ 6 advmod _ _ 6 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 7 tensor tensor NOUN NN Number=Sing 8 compound _ _ 8 product product NOUN NN Number=Sing 3 dobj _ _ 9 from from ADP IN _ 3 prep _ _ 10 Tate Tate PROPN NNP Number=Sing 12 compound _ _ 11 vector vector NOUN NN Number=Sing 12 compound _ _ 12 spaces space NOUN NNS Number=Plur 9 pobj _ _ 13 to to ADP IN _ 3 prep _ _ 14 Tate Tate PROPN NNP Number=Sing 15 compound _ _ 15 objects object NOUN NNS Number=Plur 13 pobj _ _ 16 over over ADP IN _ 15 prep _ _ 17 arbitrary arbitrary ADJ JJ Degree=Pos 19 amod _ _ 18 exact exact ADJ JJ Degree=Pos 19 amod _ _ 19 categories category NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = We show how to lift bi - right exact monoidal structures, duality functors, and construct external Homs. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 how how SCONJ WRB _ 5 advmod _ _ 4 to to PART TO _ 5 aux _ _ 5 lift lift VERB VB VerbForm=Inf 2 xcomp _ _ 6 bi bi ADJ JJ Degree=Pos 8 amod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 right right ADJ JJ Degree=Pos 11 amod _ _ 9 exact exact ADJ JJ Degree=Pos 11 amod _ _ 10 monoidal monoidal ADJ JJ Degree=Pos 11 amod _ _ 11 structures structure NOUN NNS Number=Plur 5 dobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 duality duality NOUN NN Number=Sing 14 compound _ _ 14 functors functor NOUN NNS Number=Plur 11 conj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 2 punct _ _ 16 and and CCONJ CC ConjType=Cmp 2 cc _ _ 17 construct construct VERB VB VerbForm=Inf 2 conj _ _ 18 external external ADJ JJ Degree=Pos 19 amod _ _ 19 Homs hom NOUN NNS Number=Plur 17 dobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We list some applications: (i) Adeles of a flag can be written as ordered tensor products; (ii) Intersection numbers can be interpreted via these tensor products; (iii) Pontryagin duality uniquely extends to $ n $ - Tate objects in locally compact abelian groups. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 list list VERB VBP Tense=Pres|VerbForm=Fin 40 ccomp _ _ 3 some some DET DT _ 4 det _ _ 4 applications application NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 5 : : PUNCT : _ 4 punct _ _ 6 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 9 punct _ SpaceAfter=No 7 i i NOUN NN Number=Sing 9 nmod _ SpaceAfter=No 8 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 9 punct _ _ 9 Adeles Adeles PROPN NNPS Number=Plur 15 nsubjpass _ _ 10 of of ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 flag flag NOUN NN Number=Sing 10 pobj _ _ 13 can can AUX MD VerbForm=Fin 15 aux _ _ 14 be be AUX VB VerbForm=Inf 15 auxpass _ _ 15 written write VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 acl _ _ 16 as as SCONJ IN _ 17 mark _ _ 17 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 amod _ _ 18 tensor tensor NOUN NN Number=Sing 19 compound _ _ 19 products product NOUN NNS Number=Plur 15 dobj _ SpaceAfter=No 20 ; ; PUNCT : _ 4 punct _ _ 21 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 28 punct _ SpaceAfter=No 22 ii ii PROPN NNP Number=Sing 25 nmod _ SpaceAfter=No 23 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 25 punct _ _ 24 Intersection intersection NOUN NN Number=Sing 25 compound _ _ 25 numbers number NOUN NNS Number=Plur 28 nsubjpass _ _ 26 can can AUX MD VerbForm=Fin 28 aux _ _ 27 be be AUX VB VerbForm=Inf 28 auxpass _ _ 28 interpreted interpret VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 acl _ _ 29 via via ADP IN _ 28 prep _ _ 30 these these DET DT Number=Plur|PronType=Dem 32 det _ _ 31 tensor tensor NOUN NN Number=Sing 32 compound _ _ 32 products product NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 33 ; ; PUNCT : _ 40 punct _ _ 34 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 40 punct _ SpaceAfter=No 35 iii iii X LS NumType=Ord 38 nmod _ SpaceAfter=No 36 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 38 punct _ _ 37 Pontryagin Pontryagin PROPN NNP Number=Sing 38 compound _ _ 38 duality duality NOUN NN Number=Sing 40 nsubj _ _ 39 uniquely uniquely ADV RB _ 40 advmod _ _ 40 extends extend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 41 to to ADP IN _ 40 prep _ _ 42 $ n $ $ n $ SYM $ _ 44 quantmod _ _ 43 - - PUNCT HYPH PunctType=Dash 44 punct _ _ 44 Tate tate ADJ JJ Degree=Pos 45 compound _ _ 45 objects object NOUN NNS Number=Plur 41 pobj _ _ 46 in in ADP IN _ 45 prep _ _ 47 locally locally ADV RB _ 50 amod _ _ 48 compact compact ADJ JJ Degree=Pos 50 amod _ _ 49 abelian abelian ADJ JJ Degree=Pos 50 compound _ _ 50 groups group NOUN NNS Number=Plur 46 pobj _ SpaceAfter=No 51 . . PUNCT . PunctType=Peri 40 punct _ SpaceAfter=No # doc_id = 680 # sent_id = 1 # text = This paper provides three characterizations of final functors between internal groupoids in an exact category (in the sense of Barr). 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 three three NUM CD NumType=Card 5 nummod _ _ 5 characterizations characterization NOUN NNS Number=Plur 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 final final ADJ JJ Degree=Pos 8 amod _ _ 8 functors functor NOUN NNS Number=Plur 6 pobj _ _ 9 between between ADP IN _ 8 prep _ _ 10 internal internal ADJ JJ Degree=Pos 11 amod _ _ 11 groupoids groupoid NOUN NNS Number=Plur 9 pobj _ _ 12 in in ADP IN _ 3 prep _ _ 13 an an DET DT Definite=Ind|PronType=Art 15 det _ _ 14 exact exact ADJ JJ Degree=Pos 15 amod _ _ 15 category category NOUN NN Number=Sing 12 pobj _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 15 punct _ SpaceAfter=No 17 in in ADP IN _ 3 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 sense sense NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 Barr Barr PROPN NNP Number=Sing 20 pobj _ SpaceAfter=No 22 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 3 punct _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = In particular, it is proved that a functor between internal groupoids is final if and only if it is internally full and essentially surjective. 1 In in ADP IN _ 6 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 6 punct _ _ 4 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 6 nsubjpass _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 6 proved prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 that that SCONJ IN _ 13 mark _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 functor functor NOUN NN Number=Sing 13 nsubj _ _ 10 between between ADP IN _ 9 prep _ _ 11 internal internal ADJ JJ Degree=Pos 12 amod _ _ 12 groupoids groupoid NOUN NNS Number=Plur 10 pobj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 14 final final ADJ JJ Degree=Pos 13 acomp _ _ 15 if if SCONJ IN _ 20 mark _ _ 16 and and CCONJ CC ConjType=Cmp 20 cc _ _ 17 only only ADV RB _ 20 advmod _ _ 18 if if SCONJ IN _ 20 mark _ _ 19 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 20 nsubj _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 advcl _ _ 21 internally internally ADV RB _ 22 advmod _ _ 22 full full ADJ JJ Degree=Pos 20 acomp _ _ 23 and and CCONJ CC ConjType=Cmp 22 cc _ _ 24 essentially essentially ADV RB _ 25 advmod _ _ 25 surjective surjective ADJ JJ Degree=Pos 22 conj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 681 # sent_id = 1 # text = We introduce a new class of categories generalizing locally presentable ones. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 new new ADJ JJ Degree=Pos 5 amod _ _ 5 class class NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 categories category NOUN NNS Number=Plur 6 pobj _ _ 8 generalizing generalize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 acl _ _ 9 locally locally ADV RB _ 11 advmod _ _ 10 presentable presentable ADJ JJ Degree=Pos 11 amod _ _ 11 ones one NOUN NNS Number=Plur 8 dobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = The distinction does not manifest in the abelian case and, assuming Vopenka's principle, the same happens in the regular case. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 distinction distinction NOUN NN Number=Sing 5 nsubj _ _ 3 does do AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 aux _ _ 4 not not PART RB Polarity=Neg 5 neg _ _ 5 manifest manifest VERB VB VerbForm=Inf 19 ccomp _ _ 6 in in ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 abelian abelian PROPN NNP Number=Sing 9 compound _ _ 9 case case NOUN NN Number=Sing 6 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 5 cc _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 5 punct _ _ 12 assuming assume VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 5 advcl _ _ 13 Vopenka Vopenka PROPN NNP Number=Sing 15 poss _ SpaceAfter=No 14 's 's PART POS _ 13 case _ _ 15 principle principle NOUN NN Number=Sing 12 dobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 19 punct _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 same same ADJ JJ Degree=Pos 19 nsubj _ _ 19 happens happen VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 20 in in ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 23 det _ _ 22 regular regular ADJ JJ Degree=Pos 23 amod _ _ 23 case case NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 3 # text = The category of complete partial orders is the natural example of a nearly locally finitely presentable category which is not locally presentable. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 category category NOUN NN Number=Sing 7 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 complete complete ADJ JJ Degree=Pos 6 amod _ _ 5 partial partial ADJ JJ Degree=Pos 6 amod _ _ 6 orders order NOUN NNS Number=Plur 3 pobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 natural natural ADJ JJ Degree=Pos 10 amod _ _ 10 example example NOUN NN Number=Sing 7 attr _ _ 11 of of ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 13 nearly nearly ADV RB _ 14 advmod _ _ 14 locally locally ADV RB _ 15 advmod _ _ 15 finitely finitely ADV RB _ 17 amod _ _ 16 presentable presentable ADJ JJ Degree=Pos 17 amod _ _ 17 category category NOUN NN Number=Sing 11 pobj _ _ 18 which which PRON WDT _ 19 nsubj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 relcl _ _ 20 not not PART RB Polarity=Neg 19 neg _ _ 21 locally locally ADV RB _ 22 advmod _ _ 22 presentable presentable ADJ JJ Degree=Pos 19 acomp _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # doc_id = 682 # sent_id = 1 # text = Brauer - Clifford groups are equivariant Brauer groups for which a Hopf algebra acts or coacts nontrivially on the base ring. 1 Brauer Brauer PROPN NNP Number=Sing 3 compound _ _ 2 - - PUNCT HYPH PunctType=Dash 3 punct _ _ 3 Clifford Clifford PROPN NNP Number=Sing 4 compound _ _ 4 groups group NOUN NNS Number=Plur 5 nsubj _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 equivariant equivariant ADJ JJ Degree=Pos 8 amod _ _ 7 Brauer Brauer PROPN NNP Number=Sing 8 compound _ _ 8 groups group NOUN NNS Number=Plur 5 attr _ _ 9 for for ADP IN _ 14 prep _ _ 10 which which PRON WDT _ 9 pobj _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 Hopf Hopf PROPN NNP Number=Sing 13 compound _ _ 13 algebra algebra NOUN NN Number=Sing 14 nsubj _ _ 14 acts act VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 relcl _ _ 15 or or CCONJ CC ConjType=Cmp 14 cc _ _ 16 coacts coact NOUN NNS Number=Plur 14 conj _ _ 17 nontrivially nontrivially ADV RB _ 16 advmod _ _ 18 on on ADP IN _ 16 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 base base NOUN NN Number=Sing 21 compound _ _ 21 ring ring NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = Brauer - Clifford groups have been established previously in the category of modules for a skew group ring $ SG $ , the category of modules for the smash product $ SH $ over a cocommutative Hopf algebra $ H $ , and its dual category of $ (S, H) $ - Hopf modules over a commutative Hopf algebra $ H $ . 1 Brauer Brauer PROPN NNP Number=Sing 3 compound _ _ 2 - - PUNCT HYPH PunctType=Dash 3 punct _ _ 3 Clifford Clifford PROPN NNP Number=Sing 4 compound _ _ 4 groups group NOUN NNS Number=Plur 7 nsubjpass _ _ 5 have have AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 aux _ _ 6 been be AUX VBN Tense=Past|VerbForm=Part 7 auxpass _ _ 7 established establish VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 previously previously ADV RB _ 7 advmod _ _ 9 in in ADP IN _ 7 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 category category NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 modules module NOUN NNS Number=Plur 12 pobj _ _ 14 for for ADP IN _ 7 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 skew skew NOUN NN Number=Sing 17 compound _ _ 17 group group NOUN NN Number=Sing 18 compound _ _ 18 ring ring NOUN NN Number=Sing 14 pobj _ _ 19 $ SG $ $ sg $ SYM $ _ 7 dep _ _ 20 , , PUNCT , PunctType=Comm 7 punct _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 category category NOUN NN Number=Sing 4 appos _ _ 23 of of ADP IN _ 22 prep _ _ 24 modules module NOUN NNS Number=Plur 23 pobj _ _ 25 for for ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 28 det _ _ 27 smash smash NOUN NN Number=Sing 28 compound _ _ 28 product product NOUN NN Number=Sing 25 pobj _ _ 29 $ SH $ $ sh $ SYM $ _ 22 dep _ _ 30 over over ADP IN _ 22 prep _ _ 31 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 32 cocommutative cocommutative ADJ JJ Degree=Pos 34 amod _ _ 33 Hopf hopf NOUN NN Number=Sing 34 compound _ _ 34 algebra algebra NOUN NN Number=Sing 30 pobj _ _ 35 $ H $ $ h $ SYM $ _ 34 appos _ _ 36 , , PUNCT , PunctType=Comm 22 punct _ _ 37 and and CCONJ CC ConjType=Cmp 22 cc _ _ 38 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 40 poss _ _ 39 dual dual ADJ JJ Degree=Pos 40 amod _ _ 40 category category NOUN NN Number=Sing 22 conj _ _ 41 of of ADP IN _ 40 prep _ _ 42 $ (S, H) $ $ (s, h) $ SYM $ _ 44 compound _ _ 43 - - PUNCT HYPH PunctType=Dash 44 punct _ _ 44 Hopf hopf NOUN NN Number=Sing 45 compound _ _ 45 modules module NOUN NNS Number=Plur 41 pobj _ _ 46 over over ADP IN _ 45 prep _ _ 47 a a DET DT Definite=Ind|PronType=Art 50 det _ _ 48 commutative commutative ADJ JJ Degree=Pos 50 amod _ _ 49 Hopf Hopf PROPN NNP Number=Sing 50 compound _ _ 50 algebra algebra NOUN NN Number=Sing 46 pobj _ _ 51 $ H $ $ h $ SYM $ _ 50 appos _ _ 52 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = In this article the authors introduce a Brauer - Clifford group for the category of dyslectic Hopf Yetter - Drinfel'd $ (S, H) $ - modules for an $ H $ - commutative base ring $ S $ and quantum group $ H $ . 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 article article NOUN NN Number=Sing 1 pobj _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 authors author NOUN NNS Number=Plur 6 nsubj _ _ 6 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 8 Brauer Brauer PROPN NNP Number=Sing 10 compound _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 Clifford Clifford PROPN NNP Number=Sing 11 compound _ _ 11 group group NOUN NN Number=Sing 6 dobj _ _ 12 for for ADP IN _ 6 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 category category NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 dyslectic dyslectic ADJ JJ Degree=Pos 23 amod _ _ 17 Hopf Hopf PROPN NNP Number=Sing 20 nmod _ _ 18 Yetter Yetter PROPN NNP Number=Sing 20 nmod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 Drinfel'd drinfel'd X ADD _ 23 nmod _ _ 21 $ (S, H) $ $ (s, h) $ SYM $ _ 23 compound _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 modules module NOUN NNS Number=Plur 15 pobj _ _ 24 for for ADP IN _ 6 prep _ _ 25 an an DET DT Definite=Ind|PronType=Art 30 det _ _ 26 $ H $ $ h $ SYM $ _ 28 advmod _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 commutative commutative ADJ JJ Degree=Pos 29 amod _ _ 29 base base NOUN NN Number=Sing 30 compound _ _ 30 ring ring NOUN NN Number=Sing 24 pobj _ _ 31 $ S $ $ s $ SYM $ _ 30 dep _ _ 32 and and CCONJ CC ConjType=Cmp 30 cc _ _ 33 quantum quantum NOUN NN Number=Sing 34 compound _ _ 34 group group NOUN NN Number=Sing 30 conj _ _ 35 $ H $ $ h $ SYM $ _ 6 dobj _ _ 36 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = This is the first such example in a category of modules for a quantum group, and it gives a new example of an equivariant Brauer group in a braided monoidal category. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 6 det _ _ 4 first first ADJ JJ Degree=Pos 6 amod _ _ 5 such such ADJ JJ Degree=Pos 6 amod _ _ 6 example example NOUN NN Number=Sing 2 attr _ _ 7 in in ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 category category NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 modules module NOUN NNS Number=Plur 10 pobj _ _ 12 for for ADP IN _ 11 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 quantum quantum NOUN NN Number=Sing 15 compound _ _ 15 group group NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 2 punct _ _ 17 and and CCONJ CC ConjType=Cmp 2 cc _ _ 18 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 19 nsubj _ _ 19 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 conj _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 new new ADJ JJ Degree=Pos 22 amod _ _ 22 example example NOUN NN Number=Sing 19 dobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 an an DET DT Definite=Ind|PronType=Art 27 det _ _ 25 equivariant equivariant ADJ JJ Degree=Pos 27 amod _ _ 26 Brauer Brauer PROPN NNP Number=Sing 27 compound _ _ 27 group group NOUN NN Number=Sing 23 pobj _ _ 28 in in ADP IN _ 27 prep _ _ 29 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 30 braided braid VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 amod _ _ 31 monoidal monoidal ADJ JJ Degree=Pos 32 amod _ _ 32 category category NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # doc_id = 683 # sent_id = 1 # text = It is known since the late 1960's that the dual of the category of compact Hausdorff spaces and continuous maps is a variety—not finitary, but bounded by $ aleph_1 $ . 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 since since SCONJ IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 late late ADJ JJ Degree=Pos 7 amod _ _ 7 1960 1960 NUM CD NumType=Card 4 pobj _ SpaceAfter=No 8 's be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 case _ _ 9 that that SCONJ IN _ 22 mark _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 dual dual ADJ JJ Degree=Pos 22 nsubj _ _ 12 of of ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 category category NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 compact compact ADJ JJ Degree=Pos 18 amod _ _ 17 Hausdorff Hausdorff PROPN NNP Number=Sing 18 compound _ _ 18 spaces space NOUN NNS Number=Plur 15 pobj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 continuous continuous ADJ JJ Degree=Pos 21 amod _ _ 21 maps map NOUN NNS Number=Plur 18 conj _ _ 22 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 23 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 24 variety variety NOUN NN Number=Sing 22 attr _ SpaceAfter=No 25 — — PUNCT : _ 24 punct _ SpaceAfter=No 26 not not PART RB Polarity=Neg 27 neg _ _ 27 finitary finitary ADJ JJ Degree=Pos 24 appos _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 22 punct _ _ 29 but but CCONJ CC ConjType=Cmp 22 cc _ _ 30 bounded bound VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 conj _ _ 31 by by ADP IN _ 30 agent _ _ 32 $ aleph_1 $ $ aleph_1 $ SYM $ _ 31 pobj _ _ 33 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = In this note we show that the dual of the category of partially ordered compact spaces and monotone continuous maps is an $ aleph_1 $ - ary quasivariety, and describe partially its algebraic theory. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 note note NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 that that SCONJ IN _ 21 mark _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 dual dual ADJ JJ Degree=Pos 21 nsubj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 category category NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 partially partially ADV RB _ 14 advmod _ _ 14 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 15 compact compact ADJ JJ Degree=Pos 16 amod _ _ 16 spaces space NOUN NNS Number=Plur 12 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 monotone monotone ADJ JJ Degree=Pos 20 amod _ _ 19 continuous continuous ADJ JJ Degree=Pos 20 amod _ _ 20 maps map NOUN NNS Number=Plur 16 conj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 ccomp _ _ 22 an an DET DT Definite=Ind|PronType=Art 26 det _ _ 23 $ aleph_1 $ $ aleph_1 $ SYM $ _ 25 quantmod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 ary ary PROPN NNP Number=Sing 26 compound _ _ 26 quasivariety quasivariety NOUN NN Number=Sing 21 attr _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 21 punct _ _ 28 and and CCONJ CC ConjType=Cmp 21 cc _ _ 29 describe describe VERB VB VerbForm=Inf 21 conj _ _ 30 partially partially ADV RB _ 29 advmod _ _ 31 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 33 poss _ _ 32 algebraic algebraic ADJ JJ Degree=Pos 33 amod _ _ 33 theory theory NOUN NN Number=Sing 29 dobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = Based on this description, we extend these results to categories of Vietoris coalgebras and homomorphisms on ordered compact spaces. 1 Based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 prep _ _ 2 on on ADP IN _ 1 prep _ _ 3 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 4 description description NOUN NN Number=Sing 2 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 extend extend VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 these these DET DT Number=Plur|PronType=Dem 9 det _ _ 9 results result NOUN NNS Number=Plur 7 dobj _ _ 10 to to ADP IN _ 7 prep _ _ 11 categories category NOUN NNS Number=Plur 10 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 Vietoris Vietoris PROPN NNP Number=Sing 14 compound _ _ 14 coalgebras coalgebra NOUN NNS Number=Plur 12 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 homomorphisms homomorphism NOUN NNS Number=Plur 14 conj _ _ 17 on on ADP IN _ 7 prep _ _ 18 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 amod _ _ 19 compact compact ADJ JJ Degree=Pos 20 amod _ _ 20 spaces space NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = We also characterise the $ aleph_1 $ - copresentable partially ordered compact spaces. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 characterise characterise VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 11 det _ _ 5 $ aleph_1 $ $ aleph_1 $ SYM $ _ 7 advmod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 copresentable copresentable ADJ JJ Degree=Pos 11 amod _ _ 8 partially partially ADV RB _ 9 advmod _ _ 9 ordered order VERB VBD Tense=Past|VerbForm=Fin 11 amod _ _ 10 compact compact ADJ JJ Degree=Pos 11 amod _ _ 11 spaces space NOUN NNS Number=Plur 3 dobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 684 # sent_id = 1 # text = Given a 2 - category $ A $ , a 2 - functor $ F : A to Cat $ and a distinguished 1 - subcategory $ Sigma subset A $ containing all the objects, a $ sigma $ - cone for $ F $ (with respect to $ Sigma $ ) is a lax cone such that the structural 2 - cells corresponding to the arrows of $ Sigma $ are invertible. 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 37 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 3 2 2 NUM CD NumType=Card 5 nummod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 category category NOUN NN Number=Sing 6 compound _ _ 6 $ A $ $ a $ SYM $ _ 1 pobj _ _ 7 , , PUNCT , PunctType=Comm 1 punct _ _ 8 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 9 2 2 NUM CD NumType=Card 11 nummod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 functor functor NOUN NN Number=Sing 12 compound _ _ 12 $ F : A to Cat $ $ f : a to cat $ SYM $ _ 1 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 15 distinguished distinguished ADJ JJ Degree=Pos 19 amod _ _ 16 1 1 NUM CD NumType=Card 18 nummod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 subcategory subcategory NOUN NN Number=Sing 19 compound _ _ 19 $ Sigma subset A $ $ sigma subset a $ SYM $ _ 12 conj _ _ 20 containing contain VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 12 acl _ _ 21 all all DET PDT _ 23 predet _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 objects object NOUN NNS Number=Plur 20 dobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 37 punct _ _ 25 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 26 $ sigma $ $ sigma $ SYM $ _ 28 compound _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 cone cone NOUN NN Number=Sing 37 nsubj _ _ 29 for for ADP IN _ 28 prep _ _ 30 $ F $ $ f $ SYM $ _ 29 pobj _ _ 31 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 28 punct _ SpaceAfter=No 32 with with ADP IN _ 28 prep _ _ 33 respect respect NOUN NN Number=Sing 32 pobj _ _ 34 to to ADP IN _ 33 prep _ _ 35 $ Sigma $ $ sigma $ SYM $ _ 34 pobj _ _ 36 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 28 punct _ _ 37 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 38 a a DET DT Definite=Ind|PronType=Art 40 det _ _ 39 lax lax ADJ JJ Degree=Pos 40 amod _ _ 40 cone cone NOUN NN Number=Sing 37 attr _ _ 41 such such ADJ JJ Degree=Pos 40 nmod _ _ 42 that that SCONJ IN _ 54 mark _ _ 43 the the DET DT Definite=Def|PronType=Art 47 det _ _ 44 structural structural ADJ JJ Degree=Pos 47 amod _ _ 45 2 2 NUM CD NumType=Card 47 nummod _ _ 46 - - PUNCT HYPH PunctType=Dash 47 punct _ _ 47 cells cell NOUN NNS Number=Plur 54 nsubj _ _ 48 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 47 acl _ _ 49 to to ADP IN _ 48 prep _ _ 50 the the DET DT Definite=Def|PronType=Art 51 det _ _ 51 arrows arrow NOUN NNS Number=Plur 49 pobj _ _ 52 of of ADP IN _ 51 prep _ _ 53 $ Sigma $ $ sigma $ SYM $ _ 52 pobj _ _ 54 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 37 ccomp _ _ 55 invertible invertible ADJ JJ Degree=Pos 54 acomp _ SpaceAfter=No 56 . . PUNCT . PunctType=Peri 37 punct _ SpaceAfter=No # sent_id = 2 # text = The conical $ sigma $ - limit} is the universal (up to isomorphism) $ sigma $ - cone. 1 The the DET DT Definite=Def|PronType=Art 5 det _ _ 2 conical conical ADJ JJ Degree=Pos 5 amod _ _ 3 $ sigma $ $ sigma $ SYM $ _ 5 compound _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 limit limit NOUN NN Number=Sing 7 nsubj _ SpaceAfter=No 6 } } PUNCT -RRB- PunctSide=Fin|PunctType=Brck 7 punct _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 universal universal ADJ JJ Degree=Pos 7 attr _ _ 10 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 9 punct _ SpaceAfter=No 11 up up ADP IN _ 9 prep _ _ 12 to to ADP IN _ 11 prep _ _ 13 isomorphism isomorphism NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 14 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 9 punct _ _ 15 $ sigma $ $ sigma $ SYM $ _ 17 compound _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 cone cone NOUN NN Number=Sing 7 acomp _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = The notion of $ sigma $ - limit generalizes the well known notions of pseudo and lax limit. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 notion notion NOUN NN Number=Sing 7 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 $ sigma $ $ sigma $ SYM $ _ 6 compound _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 limit limit NOUN NN Number=Sing 3 pobj _ _ 7 generalizes generalize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 the the DET DT Definite=Def|PronType=Art 11 det _ _ 9 well well ADV RB Degree=Pos 10 advmod _ _ 10 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 amod _ _ 11 notions notion NOUN NNS Number=Plur 7 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 pseudo pseudo NOUN NN Number=Sing 12 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 lax lax ADJ JJ Degree=Pos 16 amod _ _ 16 limit limit NOUN NN Number=Sing 13 conj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = We consider the fundamental notion of $ sigma $ - filtered pair $ (A, Sigma) $ which generalizes the notion of 2 - filtered 2 - category. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 fundamental fundamental ADJ JJ Degree=Pos 5 amod _ _ 5 notion notion NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 $ sigma $ $ sigma $ SYM $ _ 9 advmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 filtered filter VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 10 pair pair NOUN NN Number=Sing 11 compound _ _ 11 $ (A, Sigma) $ $ (a, sigma) $ SYM $ _ 6 pobj _ _ 12 which which PRON WDT _ 13 nsubj _ _ 13 generalizes generalize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 relcl _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 notion notion NOUN NN Number=Sing 13 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 2 2 NUM CD NumType=Card 19 npadvmod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 filtered filter VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 amod _ _ 20 2 2 NUM CD NumType=Card 22 nummod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 category category NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = We give an explicit construction of $ sigma $ - filtered $ sigma $ - colimits of categories, a construction which allows computations with these colimits. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 5 det _ _ 4 explicit explicit ADJ JJ Degree=Pos 5 amod _ _ 5 construction construction NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 $ sigma $ $ sigma $ SYM $ _ 9 dep _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 filtered filter VERB VBD Tense=Past|VerbForm=Fin 6 pobj _ _ 10 $ sigma $ $ sigma $ SYM $ _ 12 nmod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 colimits colimit NOUN NNS Number=Plur 9 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 categories category NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 12 punct _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 construction construction NOUN NN Number=Sing 12 appos _ _ 18 which which PRON WDT _ 19 nsubj _ _ 19 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 relcl _ _ 20 computations computation NOUN NNS Number=Plur 19 dobj _ _ 21 with with ADP IN _ 20 prep _ _ 22 these these DET DT Number=Plur|PronType=Dem 23 det _ _ 23 colimits colimit NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = We then state and prove a basic exactness property of the 2 - category of categories, namely, that $ sigma $ - filtered $ sigma $ - colimits commute with finite weighted pseudo (or bi) limits. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 state state NOUN NN Number=Sing 0 ROOT _ _ 4 and and CCONJ CC ConjType=Cmp 3 cc _ _ 5 prove prove VERB VB VerbForm=Inf 3 conj _ _ 6 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 7 basic basic ADJ JJ Degree=Pos 9 amod _ _ 8 exactness exactness NOUN NN Number=Sing 9 amod _ _ 9 property property NOUN NN Number=Sing 5 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 14 det _ _ 12 2 2 NUM CD NumType=Card 14 nummod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 category category NOUN NN Number=Sing 10 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 categories category NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 9 punct _ _ 18 namely namely ADV RB _ 5 advmod _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 23 punct _ _ 20 that that SCONJ IN _ 23 mark _ _ 21 $ sigma $ $ sigma $ SYM $ _ 23 dep _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 filtered filter VERB VBD Tense=Past|VerbForm=Fin 3 conj _ _ 24 $ sigma $ $ sigma $ SYM $ _ 26 compound _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 colimits colimit NOUN NNS Number=Plur 27 compound _ _ 27 commute commute NOUN NN Number=Sing 23 dobj _ _ 28 with with ADP IN _ 27 prep _ _ 29 finite finite PROPN NNP Number=Sing 28 pobj _ _ 30 weighted weight VERB VBD Tense=Past|VerbForm=Fin 31 amod _ _ 31 pseudo pseudo NOUN NN Number=Sing 36 nmod _ _ 32 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 31 punct _ SpaceAfter=No 33 or or CCONJ CC ConjType=Cmp 31 cc _ _ 34 bi bi NOUN NN Number=Sing 31 conj _ SpaceAfter=No 35 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 31 punct _ _ 36 limits limit NOUN NNS Number=Plur 3 conj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 7 # text = An important corollary of this result is that a $ sigma $ - filtered $ sigma $ - colimit of exact category valued 2 - functors is exact. 1 An an DET DT Definite=Ind|PronType=Art 3 det _ _ 2 important important ADJ JJ Degree=Pos 3 amod _ _ 3 corollary corollary NOUN NN Number=Sing 7 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 6 result result NOUN NN Number=Sing 4 pobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 that that SCONJ IN _ 23 mark _ _ 9 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 10 $ sigma $ $ sigma $ SYM $ _ 12 dep _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 filtered filter VERB VBD Tense=Past|VerbForm=Fin 15 amod _ _ 13 $ sigma $ $ sigma $ SYM $ _ 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 colimit colimit NOUN NN Number=Sing 23 nsubj _ _ 16 of of ADP IN _ 15 prep _ _ 17 exact exact ADJ JJ Degree=Pos 18 amod _ _ 18 category category NOUN NN Number=Sing 16 pobj _ _ 19 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 acl _ _ 20 2 2 NUM CD NumType=Card 22 nummod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 functors functor NOUN NNS Number=Plur 19 dobj _ _ 23 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 ccomp _ _ 24 exact exact ADJ JJ Degree=Pos 23 acomp _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 8 # text = This corollary is essential in the 2 - dimensional theory of flat and pro - representable 2 - functors, that we develop elsewhere. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 corollary corollary NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 essential essential ADJ JJ Degree=Pos 3 acomp _ _ 5 in in ADP IN _ 3 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 10 det _ _ 7 2 2 NUM CD NumType=Card 9 advmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 dimensional dimensional ADJ JJ Degree=Pos 10 amod _ _ 10 theory theory NOUN NN Number=Sing 5 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 flat flat ADJ JJ Degree=Pos 16 amod _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 pro pro ADJ JJ Degree=Pos 12 conj _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 representable representable ADJ JJ Degree=Pos 19 amod _ _ 17 2 2 NUM CD NumType=Card 19 nummod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 functors functor NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 3 punct _ _ 21 that that SCONJ IN _ 23 mark _ _ 22 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 23 nsubj _ _ 23 develop develop VERB VBP Tense=Pres|VerbForm=Fin 3 ccomp _ _ 24 elsewhere elsewhere ADV RB _ 23 advmod _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 685 # sent_id = 1 # text = We show that the regular patterns of Getzler form a 2 - category biequivalent to the 2 - category of substitudes of Day and Street, and that the Feynman categories of Kaufmann and Ward form a 2 - category biequivalent to the 2 - category of coloured operads (with invertible 2 - cells). 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 9 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 regular regular ADJ JJ Degree=Pos 6 amod _ _ 6 patterns pattern NOUN NNS Number=Plur 9 nsubj _ _ 7 of of ADP IN _ 6 prep _ _ 8 Getzler Getzler PROPN NNP Number=Sing 7 pobj _ _ 9 form form VERB VBP Tense=Pres|VerbForm=Fin 2 ccomp _ _ 10 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 11 2 2 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 category category NOUN NN Number=Sing 14 compound _ _ 14 biequivalent biequivalent NOUN NN Number=Sing 9 dobj _ _ 15 to to ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 19 det _ _ 17 2 2 NUM CD NumType=Card 19 nummod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 category category NOUN NN Number=Sing 15 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 substitudes substitude NOUN NNS Number=Plur 20 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 Day Day PROPN NNP Number=Sing 22 pobj _ _ 24 and and CCONJ CC ConjType=Cmp 23 cc _ _ 25 Street Street PROPN NNP Number=Sing 23 conj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 9 punct _ _ 27 and and CCONJ CC ConjType=Cmp 9 cc _ _ 28 that that SCONJ IN _ 36 mark _ _ 29 the the DET DT Definite=Def|PronType=Art 31 det _ _ 30 Feynman Feynman PROPN NNP Number=Sing 31 compound _ _ 31 categories category NOUN NNS Number=Plur 36 nsubj _ _ 32 of of ADP IN _ 31 prep _ _ 33 Kaufmann Kaufmann PROPN NNP Number=Sing 32 pobj _ _ 34 and and CCONJ CC ConjType=Cmp 33 cc _ _ 35 Ward Ward PROPN NNP Number=Sing 33 conj _ _ 36 form form VERB VB VerbForm=Inf 9 conj _ _ 37 a a DET DT Definite=Ind|PronType=Art 41 det _ _ 38 2 2 NUM CD NumType=Card 40 nummod _ _ 39 - - PUNCT HYPH PunctType=Dash 40 punct _ _ 40 category category NOUN NN Number=Sing 41 compound _ _ 41 biequivalent biequivalent NOUN NN Number=Sing 36 dobj _ _ 42 to to ADP IN _ 41 prep _ _ 43 the the DET DT Definite=Def|PronType=Art 46 det _ _ 44 2 2 NUM CD NumType=Card 46 nummod _ _ 45 - - PUNCT HYPH PunctType=Dash 46 punct _ _ 46 category category NOUN NN Number=Sing 42 pobj _ _ 47 of of ADP IN _ 46 prep _ _ 48 coloured coloured ADJ JJ Degree=Pos 49 amod _ _ 49 operads operad NOUN NNS Number=Plur 47 pobj _ _ 50 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 46 punct _ SpaceAfter=No 51 with with ADP IN _ 36 prep _ _ 52 invertible invertible ADJ JJ Degree=Pos 55 amod _ _ 53 2 2 NUM CD NumType=Card 55 nummod _ _ 54 - - PUNCT HYPH PunctType=Dash 55 punct _ _ 55 cells cell NOUN NNS Number=Plur 51 pobj _ SpaceAfter=No 56 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 36 punct _ SpaceAfter=No 57 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = These biequivalences induce equivalences between the corresponding categories of algebras. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 biequivalences biequivalence NOUN NNS Number=Plur 3 nsubj _ _ 3 induce induce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 equivalences equivalence NOUN NNS Number=Plur 3 dobj _ _ 5 between between ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 amod _ _ 8 categories category NOUN NNS Number=Plur 5 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 algebras algebra NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = There are three main ingredients in establishing these biequivalences. 1 There there PRON EX _ 2 expl _ _ 2 are be VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 three three NUM CD NumType=Card 5 nummod _ _ 4 main main ADJ JJ Degree=Pos 5 amod _ _ 5 ingredients ingredient NOUN NNS Number=Plur 2 attr _ _ 6 in in ADP IN _ 5 prep _ _ 7 establishing establish VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 pcomp _ _ 8 these these DET DT Number=Plur|PronType=Dem 9 det _ _ 9 biequivalences biequivalence NOUN NNS Number=Plur 7 dobj _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = The first is a strictification theorem (exploiting Power's General Coherence Result) which allows to reduce to the case where the structure maps are identity - on - objects functors and strict monoidal. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 first first ADJ JJ Degree=Pos 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 strictification strictification NOUN NN Number=Sing 6 npadvmod _ _ 6 theorem theorem VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 attr _ _ 7 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 6 punct _ SpaceAfter=No 8 exploiting exploit VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 acl _ _ 9 Power Power PROPN NNP Number=Sing 13 poss _ SpaceAfter=No 10 's 's PART POS _ 9 case _ _ 11 General General PROPN NNP Number=Sing 12 compound _ _ 12 Coherence Coherence PROPN NNP Number=Sing 13 compound _ _ 13 Result Result PROPN NNP Number=Sing 8 dobj _ SpaceAfter=No 14 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 13 punct _ _ 15 which which PRON WDT _ 16 nsubj _ _ 16 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 relcl _ _ 17 to to PART TO _ 18 aux _ _ 18 reduce reduce VERB VB VerbForm=Inf 16 xcomp _ _ 19 to to ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 case case NOUN NN Number=Sing 19 pobj _ _ 22 where where SCONJ WRB _ 26 advmod _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 structure structure NOUN NN Number=Sing 25 compound _ _ 25 maps map NOUN NNS Number=Plur 26 nsubj _ _ 26 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 21 relcl _ _ 27 identity identity NOUN NN Number=Sing 32 nmod _ _ 28 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 29 on on ADP IN _ 27 prep _ _ 30 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 31 objects object NOUN NNS Number=Plur 29 pobj _ _ 32 functors functor NOUN NNS Number=Plur 26 attr _ _ 33 and and CCONJ CC ConjType=Cmp 32 cc _ _ 34 strict strict ADJ JJ Degree=Pos 35 amod _ _ 35 monoidal monoidal NOUN NN Number=Sing 32 conj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = Second, we subsume the Getzler and Kaufmann - Ward hereditary axioms into the notion of Guitart exactness, a general condition ensuring compatibility between certain left Kan extensions and a given monad, in this case the free - symmetric - monoidal - category monad. 1 Second second ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 subsume subsume VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 Getzler Getzler PROPN NNP Number=Sing 4 dobj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 Kaufmann Kaufmann PROPN NNP Number=Sing 10 compound _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 Ward Ward PROPN NNP Number=Sing 6 conj _ _ 11 hereditary hereditary ADJ JJ Degree=Pos 12 amod _ _ 12 axioms axiom NOUN NNS Number=Plur 4 dobj _ _ 13 into into ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 notion notion NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 Guitart Guitart PROPN NNP Number=Sing 18 compound _ _ 18 exactness exactness NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 12 punct _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 general general ADJ JJ Degree=Pos 22 amod _ _ 22 condition condition NOUN NN Number=Sing 12 appos _ _ 23 ensuring ensure VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 acl _ _ 24 compatibility compatibility NOUN NN Number=Sing 23 dobj _ _ 25 between between ADP IN _ 24 prep _ _ 26 certain certain ADJ JJ Degree=Pos 29 amod _ _ 27 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 amod _ _ 28 Kan Kan PROPN NNP Number=Sing 29 compound _ _ 29 extensions extension NOUN NNS Number=Plur 25 pobj _ _ 30 and and CCONJ CC ConjType=Cmp 29 cc _ _ 31 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 32 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 33 amod _ _ 33 monad monad NOUN NNS Number=Plur 29 conj _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 4 punct _ _ 35 in in ADP IN _ 46 prep _ _ 36 this this DET DT Number=Sing|PronType=Dem 37 det _ _ 37 case case NOUN NN Number=Sing 35 pobj _ _ 38 the the DET DT Definite=Def|PronType=Art 46 det _ _ 39 free free ADJ JJ Degree=Pos 43 amod _ _ 40 - - PUNCT HYPH PunctType=Dash 43 punct _ _ 41 symmetric symmetric ADJ JJ Degree=Pos 43 amod _ _ 42 - - PUNCT HYPH PunctType=Dash 43 punct _ _ 43 monoidal monoidal ADJ JJ Degree=Pos 45 amod _ _ 44 - - PUNCT HYPH PunctType=Dash 45 punct _ _ 45 category category NOUN NN Number=Sing 46 compound _ _ 46 monad monad NOUN NNS Number=Plur 4 dobj _ SpaceAfter=No 47 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 6 # text = Finally we set up a biadjunction between substitudes and what we call pinned symmetric monoidal categories, from which the results follow as a consequence of the fact that the hereditary map is precisely the counit of this biadjunction. 1 Finally finally ADV RB _ 3 advmod _ _ 2 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 3 set set VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 up up ADP RP _ 3 prt _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 biadjunction biadjunction NOUN NN Number=Sing 3 dobj _ _ 7 between between ADP IN _ 6 prep _ _ 8 substitudes substitude NOUN NNS Number=Plur 7 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 what what PRON WP _ 12 dobj _ _ 11 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 12 nsubj _ _ 12 call call VERB VBP Tense=Pres|VerbForm=Fin 3 ccomp _ _ 13 pinned pin VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 conj _ _ 14 symmetric symmetric ADJ JJ Degree=Pos 16 amod _ _ 15 monoidal monoidal ADJ JJ Degree=Pos 16 amod _ _ 16 categories category NOUN NNS Number=Plur 13 dobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 from from ADP IN _ 22 prep _ _ 19 which which PRON WDT _ 18 pobj _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 results result NOUN NNS Number=Plur 22 nsubj _ _ 22 follow follow VERB VBP Tense=Pres|VerbForm=Fin 16 relcl _ _ 23 as as ADP IN _ 22 prep _ _ 24 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 25 consequence consequence NOUN NN Number=Sing 23 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 fact fact NOUN NN Number=Sing 26 pobj _ _ 29 that that SCONJ IN _ 33 mark _ _ 30 the the DET DT Definite=Def|PronType=Art 32 det _ _ 31 hereditary hereditary ADJ JJ Degree=Pos 32 amod _ _ 32 map map NOUN NN Number=Sing 33 nsubj _ _ 33 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 28 acl _ _ 34 precisely precisely ADV RB _ 36 advmod _ _ 35 the the DET DT Definite=Def|PronType=Art 36 det _ _ 36 counit counit NOUN NN Number=Sing 33 attr _ _ 37 of of ADP IN _ 36 prep _ _ 38 this this DET DT Number=Sing|PronType=Dem 39 det _ _ 39 biadjunction biadjunction NOUN NN Number=Sing 37 pobj _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 686 # sent_id = 1 # text = We study spans of cospans in a category $ C $ and explain how to horizontally and vertically compose these. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 spans span NOUN NNS Number=Plur 2 dobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 cospans cospan NOUN NNS Number=Plur 4 pobj _ _ 6 in in ADP IN _ 2 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 category category NOUN NN Number=Sing 6 pobj _ _ 9 $ C $ $ c $ SYM $ _ 2 dep _ _ 10 and and CCONJ CC ConjType=Cmp 2 cc _ _ 11 explain explain VERB VB VerbForm=Inf 2 conj _ _ 12 how how SCONJ WRB _ 17 advmod _ _ 13 to to PART TO _ 17 aux _ _ 14 horizontally horizontally ADV RB _ 17 advmod _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 vertically vertically ADV RB _ 17 advmod _ _ 17 compose compose VERB VB VerbForm=Inf 11 xcomp _ _ 18 these these PRON DT Number=Plur|PronType=Dem 17 dobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = When $ C $ is a topos and the legs of the spans are monic, these two forms of composition satisfy the interchange law. 1 When when SCONJ WRB _ 3 advmod _ _ 2 $ C $ $ c $ SYM $ _ 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 advcl _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 topos topos NOUN NN Number=Sing 3 attr _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 legs leg NOUN NNS Number=Plur 5 conj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 spans span NOUN NNS Number=Plur 9 pobj _ _ 12 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 20 ccomp _ _ 13 monic monic ADJ JJ Degree=Pos 12 acomp _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 20 punct _ _ 15 these these DET DT Number=Plur|PronType=Dem 17 det _ _ 16 two two NUM CD NumType=Card 17 nummod _ _ 17 forms form NOUN NNS Number=Plur 20 nsubj _ _ 18 of of ADP IN _ 17 prep _ _ 19 composition composition NOUN NN Number=Sing 18 pobj _ _ 20 satisfy satisfy VERB VB VerbForm=Inf 0 ROOT _ _ 21 the the DET DT Definite=Def|PronType=Art 23 det _ _ 22 interchange interchange ADJ JJ Degree=Pos 23 compound _ _ 23 law law NOUN NN Number=Sing 20 dobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # sent_id = 3 # text = In this case there is a bicategory of objects, cospans, and `monic - legged' spans of cospans in $ C $ . 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 case case NOUN NN Number=Sing 1 pobj _ _ 4 there there PRON EX _ 5 expl _ _ 5 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 bicategory bicategory NOUN NN Number=Sing 5 attr _ _ 8 of of ADP IN _ 7 prep _ _ 9 objects object NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 cospans cospan NOUN NNS Number=Plur 9 conj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 and and CCONJ CC ConjType=Cmp 11 cc _ _ 14 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 19 punct _ SpaceAfter=No 15 monic monic ADJ JJ Degree=Pos 17 amod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 legged legged ADJ JJ Degree=Pos 19 amod _ SpaceAfter=No 18 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 19 punct _ _ 19 spans span NOUN NNS Number=Plur 11 conj _ _ 20 of of ADP IN _ 19 prep _ _ 21 cospans cospan NOUN NNS Number=Plur 20 pobj _ _ 22 in in ADP IN _ 7 prep _ _ 23 $ C $ $ c $ SYM $ _ 22 pobj _ _ 24 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = One motivation for this construction is an application to graph rewriting. 1 One one NUM CD NumType=Card 2 nummod _ _ 2 motivation motivation NOUN NN Number=Sing 6 nsubj _ _ 3 for for ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 construction construction NOUN NN Number=Sing 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 an an DET DT Definite=Ind|PronType=Art 8 det _ _ 8 application application NOUN NN Number=Sing 6 attr _ _ 9 to to PART TO _ 10 aux _ _ 10 graph graph VERB VB VerbForm=Inf 8 acl _ _ 11 rewriting rewrite VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 dobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 687 # sent_id = 1 # text = We define strict and weak duality involutions on 2 - categories, and prove a coherence theorem that every bicategory with a weak duality involution is biequivalent to a 2 - category with a strict duality involution. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 strict strict ADJ JJ Degree=Pos 7 amod _ _ 4 and and CCONJ CC ConjType=Cmp 3 cc _ _ 5 weak weak ADJ JJ Degree=Pos 3 conj _ _ 6 duality duality NOUN NN Number=Sing 7 compound _ _ 7 involutions involution NOUN NNS Number=Plur 2 dobj _ _ 8 on on ADP IN _ 7 prep _ _ 9 2 2 NUM CD NumType=Card 11 nummod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 categories category NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 2 punct _ _ 13 and and CCONJ CC ConjType=Cmp 2 cc _ _ 14 prove prove VERB VB VerbForm=Inf 2 conj _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 coherence coherence NOUN NN Number=Sing 17 nsubj _ _ 17 theorem theorem ADJ JJ Degree=Pos 14 ccomp _ _ 18 that that SCONJ IN _ 26 mark _ _ 19 every every DET DT _ 20 det _ _ 20 bicategory bicategory NOUN NN Number=Sing 26 nsubj _ _ 21 with with ADP IN _ 20 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 23 weak weak ADJ JJ Degree=Pos 25 amod _ _ 24 duality duality NOUN NN Number=Sing 25 compound _ _ 25 involution involution NOUN NN Number=Sing 21 pobj _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 ccomp _ _ 27 biequivalent biequivalent NOUN NN Number=Sing 26 acomp _ _ 28 to to ADP IN _ 27 prep _ _ 29 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 30 2 2 NUM CD NumType=Card 32 nummod _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 category category NOUN NN Number=Sing 28 pobj _ _ 33 with with ADP IN _ 27 prep _ _ 34 a a DET DT Definite=Ind|PronType=Art 37 det _ _ 35 strict strict ADJ JJ Degree=Pos 37 amod _ _ 36 duality duality NOUN NN Number=Sing 37 compound _ _ 37 involution involution NOUN NN Number=Sing 33 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = For this purpose we introduce "2 - categories with contravariance", a sort of enhanced 2 - category with a basic notion of "contravariant morphism", which can be regarded either as generalized multicategories or as enriched categories. 1 For for ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 purpose purpose NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 " " PUNCT `` PunctSide=Ini|PunctType=Quot 9 punct _ SpaceAfter=No 7 2 2 NUM CD NumType=Card 9 nummod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 categories category NOUN NNS Number=Plur 5 dobj _ _ 10 with with ADP IN _ 5 prep _ _ 11 contravariance contravariance NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 12 " " PUNCT '' PunctSide=Fin|PunctType=Quot 5 punct _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 5 punct _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 sort sort NOUN NN Number=Sing 5 dobj _ _ 16 of of ADV RB _ 17 advmod _ _ 17 enhanced enhance VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 amod _ _ 18 2 2 NUM CD NumType=Card 20 nummod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 category category NOUN NN Number=Sing 15 appos _ _ 21 with with ADP IN _ 15 prep _ _ 22 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 23 basic basic ADJ JJ Degree=Pos 24 amod _ _ 24 notion notion NOUN NN Number=Sing 21 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 " " PUNCT `` PunctSide=Ini|PunctType=Quot 25 punct _ SpaceAfter=No 27 contravariant contravariant ADJ JJ Degree=Pos 28 amod _ _ 28 morphism morphism NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 29 " " PUNCT '' PunctSide=Fin|PunctType=Quot 28 punct _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 28 punct _ _ 31 which which PRON WDT _ 34 nsubjpass _ _ 32 can can AUX MD VerbForm=Fin 34 aux _ _ 33 be be AUX VB VerbForm=Inf 34 auxpass _ _ 34 regarded regard VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 relcl _ _ 35 either either CCONJ CC ConjType=Cmp 36 preconj _ _ 36 as as ADP IN _ 34 prep _ _ 37 generalized generalize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 38 amod _ _ 38 multicategories multicategorie NOUN NNS Number=Plur 36 pobj _ _ 39 or or CCONJ CC ConjType=Cmp 38 cc _ _ 40 as as ADP IN _ 38 conj _ _ 41 enriched enriched ADJ JJ Degree=Pos 42 amod _ _ 42 categories category NOUN NNS Number=Plur 40 pobj _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = This enables a universal characterization of duality involutions using absolute weighted colimits, leading to a conceptual proof of the coherence theorem. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 enables enable VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 universal universal ADJ JJ Degree=Pos 5 amod _ _ 5 characterization characterization NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 duality duality NOUN NN Number=Sing 8 compound _ _ 8 involutions involution NOUN NNS Number=Plur 6 pobj _ _ 9 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 acl _ _ 10 absolute absolute ADJ JJ Degree=Pos 12 amod _ _ 11 weighted weighted ADJ JJ Degree=Pos 12 amod _ _ 12 colimits colimit NOUN NNS Number=Plur 9 dobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 2 punct _ _ 14 leading lead VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 15 to to ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 conceptual conceptual ADJ JJ Degree=Pos 18 amod _ _ 18 proof proof NOUN NN Number=Sing 15 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 coherence coherence NOUN NN Number=Sing 19 pobj _ _ 22 theorem theorem ADJ JJ Degree=Pos 2 ccomp _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 688 # sent_id = 1 # text = In this technical note, we proffer a very explicit construction of the dual cocartesian fibration of a cartesian fibration, and we show they are classified by the same functor to the $ infty $ - category of $ infty $ - categories. 1 In in ADP IN _ 7 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 3 technical technical ADJ JJ Degree=Pos 4 amod _ _ 4 note note NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 proffer proffer VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 9 very very ADV RB _ 10 advmod _ _ 10 explicit explicit ADJ JJ Degree=Pos 11 amod _ _ 11 construction construction NOUN NN Number=Sing 7 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 16 det _ _ 14 dual dual ADJ JJ Degree=Pos 15 amod _ _ 15 cocartesian cocartesian NOUN NN Number=Sing 16 compound _ _ 16 fibration fibration NOUN NN Number=Sing 12 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 cartesian cartesian ADJ JJ Degree=Pos 20 amod _ _ 20 fibration fibration NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 7 punct _ _ 22 and and CCONJ CC ConjType=Cmp 7 cc _ _ 23 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 24 nsubj _ _ 24 show show VERB VBP Tense=Pres|VerbForm=Fin 7 conj _ _ 25 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 27 nsubjpass _ _ 26 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 27 auxpass _ _ 27 classified classify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 ccomp _ _ 28 by by ADP IN _ 27 agent _ _ 29 the the DET DT Definite=Def|PronType=Art 31 det _ _ 30 same same ADJ JJ Degree=Pos 31 amod _ _ 31 functor functor NOUN NN Number=Sing 28 pobj _ _ 32 to to ADP IN _ 27 prep _ _ 33 the the DET DT Definite=Def|PronType=Art 36 det _ _ 34 $ infty $ $ infty $ SYM $ _ 36 nmod _ _ 35 - - PUNCT HYPH PunctType=Dash 36 punct _ _ 36 category category NOUN NN Number=Sing 32 pobj _ _ 37 of of ADP IN _ 36 prep _ _ 38 $ infty $ $ infty $ SYM $ _ 40 compound _ _ 39 - - PUNCT HYPH PunctType=Dash 40 punct _ _ 40 categories category NOUN NNS Number=Plur 37 pobj _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 24 punct _ SpaceAfter=No # doc_id = 689 # sent_id = 1 # text = In this paper, we study properties of maps between fibrant objects in model categories. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 properties property NOUN NNS Number=Plur 6 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 maps map NOUN NNS Number=Plur 8 pobj _ _ 10 between between ADP IN _ 9 prep _ _ 11 fibrant fibrant ADJ JJ Degree=Pos 12 amod _ _ 12 objects object NOUN NNS Number=Plur 10 pobj _ _ 13 in in ADP IN _ 12 prep _ _ 14 model model NOUN NN Number=Sing 15 compound _ _ 15 categories category NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = We give a characterization of weak equivalences between fibrant objects. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 characterization characterization NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 weak weak ADJ JJ Degree=Pos 7 amod _ _ 7 equivalences equivalence NOUN NNS Number=Plur 5 pobj _ _ 8 between between ADP IN _ 4 prep _ _ 9 fibrant fibrant ADJ JJ Degree=Pos 10 amod _ _ 10 objects object NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = If every object of a model category is fibrant, then we give a simple description of a set of generating cofibrations. 1 If if SCONJ IN _ 8 mark _ _ 2 every every DET DT _ 3 det _ _ 3 object object NOUN NN Number=Sing 8 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 model model NOUN NN Number=Sing 7 compound _ _ 7 category category NOUN NN Number=Sing 4 pobj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 advcl _ _ 9 fibrant fibrant ADJ JJ Degree=Pos 8 acomp _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 13 punct _ _ 11 then then ADV RB PronType=Dem 13 advmod _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 simple simple ADJ JJ Degree=Pos 16 amod _ _ 16 description description NOUN NN Number=Sing 13 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 19 set set NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 generating generating NOUN NN Number=Sing 22 compound _ _ 22 cofibrations cofibration NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 4 # text = We show that to construct such a model structure it is enough to check some relatively simple conditions. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that PRON DT Number=Sing|PronType=Dem 5 mark _ _ 4 to to PART TO _ 5 aux _ _ 5 construct construct VERB VB VerbForm=Inf 2 ccomp _ _ 6 such such DET PDT _ 9 predet _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 model model NOUN NN Number=Sing 9 compound _ _ 9 structure structure NOUN NN Number=Sing 5 dobj _ _ 10 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 11 nsubj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 relcl _ _ 12 enough enough ADJ JJ Degree=Pos 11 acomp _ _ 13 to to PART TO _ 14 aux _ _ 14 check check VERB VB VerbForm=Inf 12 xcomp _ _ 15 some some DET DT _ 18 det _ _ 16 relatively relatively ADV RB _ 17 advmod _ _ 17 simple simple ADJ JJ Degree=Pos 18 amod _ _ 18 conditions condition NOUN NNS Number=Plur 14 dobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 690 # sent_id = 1 # text = We extend to the category of crossed modules of Leibniz algebras the notion of biderivation via the action of a Leibniz algebra. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 extend extend VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 to to ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 3 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 crossed crossed ADJ JJ Degree=Pos 8 amod _ _ 8 modules module NOUN NNS Number=Plur 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 Leibniz Leibniz PROPN NNP Number=Sing 9 pobj _ _ 11 algebras algebra VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 advcl _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 notion notion NOUN NN Number=Sing 11 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 biderivation biderivation NOUN NN Number=Sing 14 pobj _ _ 16 via via ADP IN _ 11 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 action action NOUN NN Number=Sing 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 Leibniz Leibniz PROPN NNP Number=Sing 22 compound _ _ 22 algebra algebra NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = This results into a pair of Leibniz algebras which allow us to construct an object which is the actor under certain circumstances. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 results result VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 into into ADP IN _ 2 prep _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 pair pair NOUN NN Number=Sing 3 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 Leibniz Leibniz PROPN NNP Number=Sing 8 compound _ _ 8 algebras algebra NOUN NNS Number=Plur 6 pobj _ _ 9 which which PRON WDT _ 10 nsubj _ _ 10 allow allow VERB VBP Tense=Pres|VerbForm=Fin 5 relcl _ _ 11 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 12 to to PART TO _ 13 aux _ _ 13 construct construct VERB VB VerbForm=Inf 10 ccomp _ _ 14 an an DET DT Definite=Ind|PronType=Art 15 det _ _ 15 object object NOUN NN Number=Sing 13 dobj _ _ 16 which which PRON WDT _ 17 nsubj _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 relcl _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 actor actor NOUN NN Number=Sing 17 attr _ _ 20 under under ADP IN _ 19 prep _ _ 21 certain certain ADJ JJ Degree=Pos 22 amod _ _ 22 circumstances circumstance NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Additionally, we give a description of an action in the category of crossed modules of Leibniz algebras in terms of equations. 1 Additionally additionally ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 description description NOUN NN Number=Sing 4 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 9 action action NOUN NN Number=Sing 7 pobj _ _ 10 in in ADP IN _ 9 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 category category NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 crossed crossed ADJ JJ Degree=Pos 15 amod _ _ 15 modules module NOUN NNS Number=Plur 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 Leibniz Leibniz PROPN NNP Number=Sing 18 compound _ _ 18 algebras algebra NOUN NNS Number=Plur 16 pobj _ _ 19 in in ADP IN _ 4 prep _ _ 20 terms term NOUN NNS Number=Plur 19 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 equations equation NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = Finally, we check that, under the aforementioned conditions, the kernel of the canonical map from a crossed module to its actor coincides with the center and we introduce the notions of crossed module of inner and outer biderivations. 1 Finally finally ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 check check VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 31 mark _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 31 punct _ _ 7 under under ADP IN _ 31 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 aforementioned aforementioned ADJ JJ Degree=Pos 10 amod _ _ 10 conditions condition NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 31 punct _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 kernel kernel NOUN NN Number=Sing 31 nsubj _ _ 14 of of ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 canonical canonical ADJ JJ Degree=Pos 17 amod _ _ 17 map map NOUN NN Number=Sing 14 pobj _ _ 18 from from ADP IN _ 17 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 20 crossed crossed ADJ JJ Degree=Pos 21 amod _ _ 21 module module NOUN NN Number=Sing 18 pobj _ _ 22 to to ADP IN _ 21 prep _ _ 23 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 25 poss _ _ 24 actor actor NOUN NN Number=Sing 25 compound _ _ 25 coincides coincide NOUN NNS Number=Plur 22 pobj _ _ 26 with with ADP IN _ 25 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 center center NOUN NN Number=Sing 26 pobj _ _ 29 and and CCONJ CC ConjType=Cmp 13 cc _ _ 30 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 31 nsubj _ _ 31 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 4 ccomp _ _ 32 the the DET DT Definite=Def|PronType=Art 33 det _ _ 33 notions notion NOUN NNS Number=Plur 31 dobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 crossed cross VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 36 amod _ _ 36 module module NOUN NN Number=Sing 34 pobj _ _ 37 of of ADP IN _ 36 prep _ _ 38 inner inner ADJ JJ Degree=Pos 41 amod _ _ 39 and and CCONJ CC ConjType=Cmp 38 cc _ _ 40 outer outer ADJ JJ Degree=Pos 38 conj _ _ 41 biderivations biderivation NOUN NNS Number=Plur 37 pobj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 691 # sent_id = 1 # text = For a topos $ T $ , there is a bicategory $ MonicSp(Csp(T)) $ whose objects are those of $ T $ , morphisms are cospans in $ T $ , and 2 - morphisms are isomorphism classes of monic spans of cospans in $ T $ . 1 For for ADP IN _ 7 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 topos topos NOUN NN Number=Sing 1 pobj _ _ 4 $ T $ $ t $ SYM $ _ 3 appos _ _ 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 there there PRON EX _ 7 expl _ _ 7 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 ccomp _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 bicategory bicategory NOUN NN Number=Sing 7 attr _ _ 10 $ MonicSp(Csp(T)) $ $ monicsp(csp(t)) $ SYM $ _ 13 attr _ _ 11 whose whose DET WP$ Poss=Yes 12 poss _ _ 12 objects object NOUN NNS Number=Plur 13 nsubj _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 19 advcl _ _ 14 those those PRON DT Number=Plur|PronType=Dem 13 attr _ _ 15 of of ADP IN _ 14 prep _ _ 16 $ T $ $ t $ SYM $ _ 15 pobj _ _ 17 , , PUNCT , PunctType=Comm 19 punct _ _ 18 morphisms morphism NOUN NNS Number=Plur 19 nsubj _ _ 19 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 20 cospans cospan NOUN NNS Number=Plur 19 attr _ _ 21 in in ADP IN _ 20 prep _ _ 22 $ T $ $ t $ SYM $ _ 21 pobj _ _ 23 , , PUNCT , PunctType=Comm 19 punct _ _ 24 and and CCONJ CC ConjType=Cmp 19 cc _ _ 25 2 2 NUM CD NumType=Card 27 nummod _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 morphisms morphism NOUN NNS Number=Plur 28 nsubj _ _ 28 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 19 conj _ _ 29 isomorphism isomorphism NOUN NN Number=Sing 30 compound _ _ 30 classes class NOUN NNS Number=Plur 28 attr _ _ 31 of of ADP IN _ 30 prep _ _ 32 monic monic ADJ JJ Degree=Pos 33 amod _ _ 33 spans span NOUN NNS Number=Plur 31 pobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 cospans cospan NOUN NNS Number=Plur 34 pobj _ _ 36 in in ADP IN _ 30 prep _ _ 37 $ T $ $ t $ SYM $ _ 36 pobj _ _ 38 . . PUNCT . PunctType=Peri 28 punct _ SpaceAfter=No # sent_id = 2 # text = Using a result of Shulman, we prove that $ MonicSp(Csp(T)) $ is symmetric monoidal, and moreover, that it is compact closed in the sense of Stay. 1 Using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 advcl _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 result result NOUN NN Number=Sing 1 dobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 Shulman Shulman PROPN NNP Number=Sing 4 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 8 punct _ _ 7 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 8 nsubj _ _ 8 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 that that SCONJ IN _ 11 mark _ _ 10 $ MonicSp(Csp(T)) $ $ monicsp(csp(t)) $ SYM $ _ 11 nsubj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 ccomp _ _ 12 symmetric symmetric ADJ JJ Degree=Pos 13 amod _ _ 13 monoidal monoidal NOUN NN Number=Sing 11 attr _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 11 punct _ _ 15 and and CCONJ CC ConjType=Cmp 11 cc _ _ 16 moreover moreover ADV RB _ 11 advmod _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 that that SCONJ IN _ 20 mark _ _ 19 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 20 nsubj _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 ccomp _ _ 21 compact compact ADJ JJ Degree=Pos 20 acomp _ _ 22 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 acomp _ _ 23 in in ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 sense sense NOUN NN Number=Sing 23 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 Stay Stay PROPN NNP Number=Sing 26 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 3 # text = We provide an application which illustrates how to encode double pushout rewrite rules as 2 - morphisms inside a compact closed sub - bicategory of $ MonicSp(Csp(Graph)) $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 an an DET DT Definite=Ind|PronType=Art 4 det _ _ 4 application application NOUN NN Number=Sing 2 dobj _ _ 5 which which PRON WDT _ 6 nsubj _ _ 6 illustrates illustrate VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 relcl _ _ 7 how how SCONJ WRB _ 9 advmod _ _ 8 to to PART TO _ 9 aux _ _ 9 encode encode VERB VB VerbForm=Inf 6 xcomp _ _ 10 double double ADJ JJ Degree=Pos 13 amod _ _ 11 pushout pushout NOUN NN Number=Sing 13 compound _ _ 12 rewrite rewrite NOUN NN Number=Sing 13 compound _ _ 13 rules rule NOUN NNS Number=Plur 9 dobj _ _ 14 as as ADP IN _ 9 prep _ _ 15 2 2 NUM CD NumType=Card 17 nummod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 morphisms morphism NOUN NNS Number=Plur 14 pobj _ _ 18 inside inside ADP IN _ 17 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 20 compact compact ADJ JJ Degree=Pos 24 amod _ _ 21 closed closed ADJ JJ Degree=Pos 24 amod _ _ 22 sub sub NOUN NN Number=Sing 24 compound _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 bicategory bicategory NOUN NN Number=Sing 18 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 $ MonicSp(Csp(Graph)) $ $ monicsp(csp(graph)) $ SYM $ _ 2 dobj _ _ 27 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 692 # sent_id = 1 # text = Given a set $ Sigma $ of morphisms in a category $ C $ , we construct a functor $ F $ which sends elements of $ Sigma $ to split monomorphisms. 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 set set NOUN NN Number=Sing 1 pobj _ _ 4 $ Sigma $ $ sigma $ SYM $ _ 3 prep _ _ 5 of of ADP IN _ 4 prep _ _ 6 morphisms morphism NOUN NNS Number=Plur 5 pobj _ _ 7 in in ADP IN _ 3 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 category category NOUN NN Number=Sing 7 pobj _ _ 10 $ C $ $ c $ SYM $ _ 9 nummod _ _ 11 , , PUNCT , PunctType=Comm 13 punct _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 functor functor NOUN NN Number=Sing 13 dobj _ _ 16 $ F $ $ f $ SYM $ _ 15 punct _ _ 17 which which PRON WDT _ 18 nsubj _ _ 18 sends send VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 15 relcl _ _ 19 elements element NOUN NNS Number=Plur 18 dobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 $ Sigma $ $ sigma $ SYM $ _ 20 pobj _ _ 22 to to PART TO _ 23 aux _ _ 23 split split VERB VB VerbForm=Inf 18 advcl _ _ 24 monomorphisms monomorphism NOUN NNS Number=Plur 23 dobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 2 # text = Moreover, we prove that $ F $ is weakly universal with that property when considered in the world of locally posetal 2 - categories. 1 Moreover moreover ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 7 mark _ _ 6 $ F $ $ f $ SYM $ _ 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 8 weakly weakly ADV RB _ 9 advmod _ _ 9 universal universal ADJ JJ Degree=Pos 7 acomp _ _ 10 with with ADP IN _ 9 prep _ _ 11 that that DET DT Number=Sing|PronType=Dem 12 det _ _ 12 property property NOUN NN Number=Sing 10 pobj _ _ 13 when when SCONJ WRB _ 14 advmod _ _ 14 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 advcl _ _ 15 in in ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 world world NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 locally locally ADV RB _ 20 advmod _ _ 20 posetal posetal ADJ JJ Degree=Pos 23 amod _ _ 21 2 2 NUM CD NumType=Card 23 nummod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 categories category NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = Besides, we also use locally posetal 2 - categories in order to construct weak left adjoints to those functors for which any object in the codomain admits a weak reflection. 1 Besides besides ADV RB _ 5 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 5 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 4 also also ADV RB _ 5 advmod _ _ 5 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 locally locally ADV RB _ 7 advmod _ _ 7 posetal posetal ADJ JJ Degree=Pos 10 amod _ _ 8 2 2 NUM CD NumType=Card 10 nummod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 categories category NOUN NNS Number=Plur 5 dobj _ _ 11 in in ADP IN _ 5 prep _ _ 12 order order NOUN NN Number=Sing 11 pobj _ _ 13 to to PART TO _ 14 aux _ _ 14 construct construct VERB VB VerbForm=Inf 12 acl _ _ 15 weak weak ADJ JJ Degree=Pos 17 amod _ _ 16 left left ADJ JJ Degree=Pos 17 amod _ _ 17 adjoints adjoint NOUN NNS Number=Plur 14 dobj _ _ 18 to to ADP IN _ 14 prep _ _ 19 those those DET DT Number=Plur|PronType=Dem 20 det _ _ 20 functors functor NOUN NNS Number=Plur 18 pobj _ _ 21 for for ADP IN _ 28 prep _ _ 22 which which PRON WDT _ 21 pobj _ _ 23 any any DET DT _ 24 det _ _ 24 object object NOUN NN Number=Sing 28 nsubj _ _ 25 in in ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 codomain codomain NOUN NN Number=Sing 25 pobj _ _ 28 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 relcl _ _ 29 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 30 weak weak ADJ JJ Degree=Pos 31 amod _ _ 31 reflection reflection NOUN NN Number=Sing 28 dobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = We then apply these two results in order to restate the Injective Subcategory Problem for $ Sigma $ into the existence of some kind of weak right adjoint for $ F $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 apply apply VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 these these DET DT Number=Plur|PronType=Dem 6 det _ _ 5 two two NUM CD NumType=Card 6 nummod _ _ 6 results result NOUN NNS Number=Plur 3 dobj _ _ 7 in in ADP IN _ 3 prep _ _ 8 order order NOUN NN Number=Sing 7 pobj _ _ 9 to to PART TO _ 10 aux _ _ 10 restate restate VERB VB VerbForm=Inf 8 acl _ _ 11 the the DET DT Definite=Def|PronType=Art 14 det _ _ 12 Injective Injective PROPN NNP Number=Sing 14 compound _ _ 13 Subcategory Subcategory PROPN NNP Number=Sing 14 compound _ _ 14 Problem Problem PROPN NNP Number=Sing 10 dobj _ _ 15 for for ADP IN _ 10 prep _ _ 16 $ Sigma $ $ sigma $ SYM $ _ 15 pobj _ _ 17 into into ADP IN _ 10 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 existence existence NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 some some DET DT _ 22 det _ _ 22 kind kind NOUN NN Number=Sing 20 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 weak weak ADJ JJ Degree=Pos 26 amod _ _ 25 right right ADJ JJ Degree=Pos 26 amod _ _ 26 adjoint adjoint NOUN NN Number=Sing 23 pobj _ _ 27 for for ADP IN _ 26 prep _ _ 28 $ F $ $ f $ SYM $ _ 27 pobj _ _ 29 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 693 # sent_id = 1 # text = From the interpretation of Linear Logic multiplicative disjunction as the epsilon product defined by Laurent Schwartz, we construct several models of Differential Linear Logic based on the usual mathematical notions of smooth maps. 1 From from ADP IN _ 19 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 interpretation interpretation NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 Linear Linear PROPN NNP Number=Sing 6 compound _ _ 6 Logic Logic PROPN NNP Number=Sing 8 nmod _ _ 7 multiplicative multiplicative ADJ JJ Degree=Pos 8 amod _ _ 8 disjunction disjunction NOUN NN Number=Sing 4 pobj _ _ 9 as as ADP IN _ 3 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 epsilon epsilon NOUN NN Number=Sing 12 compound _ _ 12 product product NOUN NN Number=Sing 9 pobj _ _ 13 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 acl _ _ 14 by by ADP IN _ 13 agent _ _ 15 Laurent Laurent PROPN NNP Number=Sing 16 compound _ _ 16 Schwartz Schwartz PROPN NNP Number=Sing 14 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 19 punct _ _ 18 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 19 nsubj _ _ 19 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 20 several several ADJ JJ Degree=Pos 21 amod _ _ 21 models model NOUN NNS Number=Plur 19 dobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 Differential Differential PROPN NNP Number=Sing 24 compound _ _ 24 Linear Linear PROPN NNP Number=Sing 25 compound _ _ 25 Logic Logic PROPN NNP Number=Sing 22 pobj _ _ 26 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 prep _ _ 27 on on ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 31 det _ _ 29 usual usual ADJ JJ Degree=Pos 31 amod _ _ 30 mathematical mathematical ADJ JJ Degree=Pos 31 amod _ _ 31 notions notion NOUN NNS Number=Plur 27 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 smooth smooth ADJ JJ Degree=Pos 34 amod _ _ 34 maps map NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 2 # text = This improves on previous results by Blute, Ehrhard and Tasson based on convenient smoothness where only intuitionist models were built. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 improves improve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 on on ADP IN _ 2 prep _ _ 4 previous previous ADJ JJ Degree=Pos 5 amod _ _ 5 results result NOUN NNS Number=Plur 3 pobj _ _ 6 by by ADP IN _ 5 prep _ _ 7 Blute Blute PROPN NNP Number=Sing 6 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 Ehrhard Ehrhard PROPN NNP Number=Sing 7 conj _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 Tasson Tasson PROPN NNP Number=Sing 9 conj _ _ 12 based base VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 prep _ _ 13 on on ADP IN _ 12 prep _ _ 14 convenient convenient ADJ JJ Degree=Pos 15 amod _ _ 15 smoothness smoothness NOUN NN Number=Sing 13 pobj _ _ 16 where where SCONJ WRB _ 21 advmod _ _ 17 only only ADV RB _ 19 advmod _ _ 18 intuitionist intuitionist ADJ JJ Degree=Pos 19 amod _ _ 19 models model NOUN NNS Number=Plur 21 nsubjpass _ _ 20 were be AUX VBD Mood=Ind|Tense=Past|VerbForm=Fin 21 auxpass _ _ 21 built build VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 relcl _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We isolate a completeness condition, called $ k $ - quasi - completeness, and an associated notion which is stable under duality called $ k $ - reflexivity, allowing for a star - autonomous category of $ k $ - reflexive spaces in which the dual of the tensor product is the reflexive version of the epsilon - product. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 isolate isolate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 completeness completeness NOUN NN Number=Sing 5 compound _ _ 5 condition condition NOUN NN Number=Sing 2 dobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 2 punct _ _ 7 called call VERB VBD Tense=Past|VerbForm=Fin 2 conj _ _ 8 $ k $ $ k $ SYM $ _ 10 quantmod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 quasi quasi NOUN NN Number=Sing 7 oprd _ _ 11 - - NOUN NN Number=Sing 10 punct _ _ 12 completeness completeness NOUN NN Number=Sing 10 conj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 7 punct _ _ 14 and and CCONJ CC ConjType=Cmp 7 cc _ _ 15 an an DET DT Definite=Ind|PronType=Art 17 det _ _ 16 associated associated ADJ JJ Degree=Pos 17 amod _ _ 17 notion notion NOUN NN Number=Sing 2 conj _ _ 18 which which PRON WDT _ 19 nsubj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 relcl _ _ 20 stable stable ADJ JJ Degree=Pos 19 acomp _ _ 21 under under ADP IN _ 20 prep _ _ 22 duality duality NOUN NN Number=Sing 21 pobj _ _ 23 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 acl _ _ 24 $ k $ $ k $ SYM $ _ 26 nummod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 reflexivity reflexivity NOUN NN Number=Sing 23 oprd _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 23 punct _ _ 28 allowing allow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 23 advcl _ _ 29 for for ADP IN _ 28 prep _ _ 30 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 31 star star NOUN NN Number=Sing 33 npadvmod _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 autonomous autonomous ADJ JJ Degree=Pos 34 amod _ _ 34 category category NOUN NN Number=Sing 29 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 $ k $ $ k $ SYM $ _ 38 advmod _ _ 37 - - PUNCT HYPH PunctType=Dash 38 punct _ _ 38 reflexive reflexive ADJ JJ Degree=Pos 39 amod _ _ 39 spaces space NOUN NNS Number=Plur 35 pobj _ _ 40 in in ADP IN _ 48 prep _ _ 41 which which PRON WDT _ 40 pobj _ _ 42 the the DET DT Definite=Def|PronType=Art 43 det _ _ 43 dual dual ADJ JJ Degree=Pos 48 nsubj _ _ 44 of of ADP IN _ 43 prep _ _ 45 the the DET DT Definite=Def|PronType=Art 47 det _ _ 46 tensor tensor NOUN NN Number=Sing 47 compound _ _ 47 product product NOUN NN Number=Sing 44 pobj _ _ 48 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 39 relcl _ _ 49 the the DET DT Definite=Def|PronType=Art 51 det _ _ 50 reflexive reflexive ADJ JJ Degree=Pos 51 amod _ _ 51 version version NOUN NN Number=Sing 48 attr _ _ 52 of of ADP IN _ 51 prep _ _ 53 the the DET DT Definite=Def|PronType=Art 56 det _ _ 54 epsilon epsilon NOUN NN Number=Sing 56 compound _ _ 55 - - PUNCT HYPH PunctType=Dash 56 punct _ _ 56 product product NOUN NN Number=Sing 52 pobj _ SpaceAfter=No 57 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We adapt Meise's definition of smooth maps into a first model of Differential Linear Logic, made of $ k $ - reflexive spaces. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 adapt adapt VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 Meise Meise PROPN NNP Number=Sing 5 poss _ SpaceAfter=No 4 's 's PART POS _ 3 case _ _ 5 definition definition NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 smooth smooth ADJ JJ Degree=Pos 8 amod _ _ 8 maps map NOUN NNS Number=Plur 6 pobj _ _ 9 into into ADP IN _ 2 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 first first ADJ JJ Degree=Pos 12 amod _ _ 12 model model NOUN NN Number=Sing 9 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 Differential Differential PROPN NNP Number=Sing 16 compound _ _ 15 Linear Linear PROPN NNP Number=Sing 16 compound _ _ 16 Logic Logic PROPN NNP Number=Sing 13 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 12 punct _ _ 18 made make VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 acl _ _ 19 of of ADP IN _ 18 prep _ _ 20 $ k $ $ k $ SYM $ _ 22 advmod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 reflexive reflexive ADJ JJ Degree=Pos 23 amod _ _ 23 spaces space NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = We also build two new models of Linear Logic with conveniently smooth maps, on categories made respectively of Mackey - complete Schwartz spaces and Mackey - complete Nuclear Spaces (with extra reflexivity conditions). 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 build build VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 two two NUM CD NumType=Card 6 nummod _ _ 5 new new ADJ JJ Degree=Pos 6 amod _ _ 6 models model NOUN NNS Number=Plur 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 Linear Linear PROPN NNP Number=Sing 9 compound _ _ 9 Logic Logic PROPN NNP Number=Sing 7 pobj _ _ 10 with with ADP IN _ 3 prep _ _ 11 conveniently conveniently ADV RB _ 12 advmod _ _ 12 smooth smooth ADJ JJ Degree=Pos 13 amod _ _ 13 maps map NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 3 punct _ _ 15 on on ADP IN _ 3 prep _ _ 16 categories category NOUN NNS Number=Plur 15 pobj _ _ 17 made make VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 acl _ _ 18 respectively respectively ADV RB _ 17 advmod _ _ 19 of of ADP IN _ 17 prep _ _ 20 Mackey Mackey PROPN NNP Number=Sing 22 npadvmod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 complete complete ADJ JJ Degree=Pos 24 amod _ _ 23 Schwartz Schwartz PROPN NNP Number=Sing 24 compound _ _ 24 spaces space NOUN NNS Number=Plur 19 pobj _ _ 25 and and CCONJ CC ConjType=Cmp 24 cc _ _ 26 Mackey Mackey PROPN NNP Number=Sing 28 npadvmod _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 complete complete ADJ JJ Degree=Pos 30 amod _ _ 29 Nuclear Nuclear PROPN NNP Number=Sing 30 compound _ _ 30 Spaces Spaces PROPN NNPS Number=Plur 24 conj _ _ 31 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 30 punct _ SpaceAfter=No 32 with with ADP IN _ 30 prep _ _ 33 extra extra ADJ JJ Degree=Pos 35 amod _ _ 34 reflexivity reflexivity NOUN NN Number=Sing 35 compound _ _ 35 conditions condition NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 36 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 3 punct _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = Varying slightly the notion of smoothness, one also recovers models of DiLL on the same star - autonomous categories. 1 Varying vary VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 advcl _ _ 2 slightly slightly ADV RB _ 1 advmod _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 notion notion NOUN NN Number=Sing 1 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 smoothness smoothness NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 10 punct _ _ 8 one one PRON PRP PronType=Prs 10 nsubj _ _ 9 also also ADV RB _ 10 advmod _ _ 10 recovers recover VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 models model NOUN NNS Number=Plur 10 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 DiLL DiLL PROPN NNP Number=Sing 12 pobj _ _ 14 on on ADP IN _ 10 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 20 det _ _ 16 same same ADJ JJ Degree=Pos 20 amod _ _ 17 star star NOUN NN Number=Sing 19 npadvmod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 autonomous autonomous ADJ JJ Degree=Pos 20 amod _ _ 20 categories category NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 7 # text = Throughout the article, we work within the setting of Dialogue categories where the tensor product is exactly the epsilon - product (without reflexivization). 1 Throughout throughout ADP IN _ 6 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 article article NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 work work VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 within within ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 setting setting NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 Dialogue Dialogue PROPN NNP Number=Sing 12 compound _ _ 12 categories category NOUN NNS Number=Plur 10 pobj _ _ 13 where where SCONJ WRB _ 17 advmod _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 tensor tensor NOUN NN Number=Sing 16 compound _ _ 16 product product NOUN NN Number=Sing 17 nsubj _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 advcl _ _ 18 exactly exactly ADV RB _ 17 advmod _ _ 19 the the DET DT Definite=Def|PronType=Art 22 det _ _ 20 epsilon epsilon NOUN NN Number=Sing 22 compound _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 product product NOUN NN Number=Sing 17 attr _ _ 23 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 22 punct _ SpaceAfter=No 24 without without ADP IN _ 22 prep _ _ 25 reflexivization reflexivization NOUN NN Number=Sing 24 pobj _ SpaceAfter=No 26 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 22 punct _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 694 # sent_id = 1 # text = In a recent paper, Hofmann, Neves and Nora proved that the dual of the category of compact ordered spaces and monotone continuous maps is a quasi - variety—not finitary, but bounded by $ aleph_1 $ . 1 In in ADP IN _ 11 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 recent recent ADJ JJ Degree=Pos 4 amod _ _ 4 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 4 punct _ _ 6 Hofmann Hofmann PROPN NNP Number=Sing 4 appos _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 6 punct _ _ 8 Neves Neves PROPN NNPS Number=Plur 6 conj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 Nora Nora PROPN NNP Number=Sing 8 conj _ _ 11 proved prove VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 12 that that SCONJ IN _ 26 mark _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 dual dual ADJ JJ Degree=Pos 26 nsubj _ _ 15 of of ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 category category NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 compact compact ADJ JJ Degree=Pos 20 amod _ _ 20 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 amod _ _ 21 spaces space NOUN NNS Number=Plur 18 pobj _ _ 22 and and CCONJ CC ConjType=Cmp 14 cc _ _ 23 monotone monotone ADJ JJ Degree=Pos 25 amod _ _ 24 continuous continuous ADJ JJ Degree=Pos 25 amod _ _ 25 maps map NOUN NNS Number=Plur 14 conj _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 ccomp _ _ 27 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 28 quasi quasi ADJ JJ Degree=Pos 30 compound _ _ 29 - - NOUN NN Number=Sing 30 punct _ _ 30 variety variety NOUN NN Number=Sing 26 attr _ SpaceAfter=No 31 — — PUNCT : _ 30 punct _ SpaceAfter=No 32 not not PART RB Polarity=Neg 33 neg _ _ 33 finitary finitary ADJ JJ Degree=Pos 30 appos _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 26 punct _ _ 35 but but CCONJ CC ConjType=Cmp 26 cc _ _ 36 bounded bound VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 conj _ _ 37 by by ADP IN _ 36 prep _ _ 38 $ aleph_1 $ $ aleph_1 $ SYM $ _ 37 pobj _ _ 39 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 2 # text = An open question was: is it also a variety? 1 An an DET DT Definite=Ind|PronType=Art 3 det _ _ 2 open open ADJ JJ Degree=Pos 3 amod _ _ 3 question question NOUN NN Number=Sing 4 nsubj _ _ 4 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 6 ccomp _ SpaceAfter=No 5 : : PUNCT : _ 4 punct _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 6 nsubj _ _ 8 also also ADV RB _ 6 advmod _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 variety variety NOUN NN Number=Sing 6 attr _ SpaceAfter=No 11 ? ? PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = We show that the answer is affirmative. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 6 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 answer answer NOUN NN Number=Sing 6 nsubj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 7 affirmative affirmative ADJ JJ Degree=Pos 6 acomp _ SpaceAfter=No 8 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We describe the variety by means of a set of finitary operations, together with an operation of countably infinite arity, and equational axioms. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 variety variety NOUN NN Number=Sing 2 dobj _ _ 5 by by ADP IN _ 2 prep _ _ 6 means mean NOUN NNS Number=Plur 5 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 set set NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 finitary finitary ADJ JJ Degree=Pos 12 amod _ _ 12 operations operation NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 2 punct _ _ 14 together together ADV RB _ 15 advmod _ _ 15 with with ADP IN _ 2 prep _ _ 16 an an DET DT Definite=Ind|PronType=Art 17 det _ _ 17 operation operation NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 countably countably ADV RB _ 20 advmod _ _ 20 infinite infinite ADJ JJ Degree=Pos 21 amod _ _ 21 arity arity NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 and and CCONJ CC ConjType=Cmp 21 cc _ _ 24 equational equational ADJ JJ Degree=Pos 25 amod _ _ 25 axioms axiom NOUN NNS Number=Plur 21 conj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = The dual equivalence is induced by the dualizing object $ [0, 1] $ . 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 dual dual ADJ JJ Degree=Pos 3 amod _ _ 3 equivalence equivalence NOUN NN Number=Sing 5 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 by by ADP IN _ 5 agent _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 dualizing dualize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 amod _ _ 9 object object NOUN NN Number=Sing 6 pobj _ _ 10 $ [0, 1] $ $ [0, 1] $ SYM $ _ 9 appos _ _ 11 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 695 # sent_id = 1 # text = In this paper, we investigate the property P that binary products commute with arbitrary coequalizers in pointed categories. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 investigate investigate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 property property NOUN NN Number=Sing 9 compound _ _ 9 P p NOUN NN Number=Sing 6 dobj _ _ 10 that that SCONJ IN _ 13 dobj _ _ 11 binary binary ADJ JJ Degree=Pos 12 amod _ _ 12 products product NOUN NNS Number=Plur 13 compound _ _ 13 commute commute NOUN NN Number=Sing 6 ccomp _ _ 14 with with ADP IN _ 13 prep _ _ 15 arbitrary arbitrary ADJ JJ Degree=Pos 16 amod _ _ 16 coequalizers coequalizer NOUN NNS Number=Plur 14 pobj _ _ 17 in in ADP IN _ 13 prep _ _ 18 pointed pointed ADJ JJ Degree=Pos 19 amod _ _ 19 categories category NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = Examples of such categories include any regular unital or (pointed) majority category with coequalizers, as well as any pointed factor permutable category with coequalizers. 1 Examples example NOUN NNS Number=Plur 5 nsubj _ _ 2 of of ADP IN _ 1 prep _ _ 3 such such ADJ JJ Degree=Pos 4 amod _ _ 4 categories category NOUN NNS Number=Plur 2 pobj _ _ 5 include include VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 any any DET DT _ 8 det _ _ 7 regular regular ADJ JJ Degree=Pos 8 amod _ _ 8 unital unital NOUN NN Number=Sing 5 dobj _ _ 9 or or CCONJ CC ConjType=Cmp 8 cc _ _ 10 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 11 punct _ SpaceAfter=No 11 pointed point VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ SpaceAfter=No 12 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 11 punct _ _ 13 majority majority NOUN NN Number=Sing 14 compound _ _ 14 category category NOUN NN Number=Sing 8 conj _ _ 15 with with ADP IN _ 14 prep _ _ 16 coequalizers coequalizer NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 14 punct _ _ 18 as as ADV RB _ 20 advmod _ _ 19 well well ADV RB Degree=Pos 20 advmod _ _ 20 as as ADP IN _ 14 cc _ _ 21 any any DET DT _ 23 det _ _ 22 pointed pointed ADJ JJ Degree=Pos 23 amod _ _ 23 factor factor NOUN NN Number=Sing 25 nmod _ _ 24 permutable permutable ADJ JJ Degree=Pos 25 amod _ _ 25 category category NOUN NN Number=Sing 14 conj _ _ 26 with with ADP IN _ 14 prep _ _ 27 coequalizers coequalizer NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = We establish a Maltsev term condition characterizing pointed varieties of universal algebras satisfying P. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 establish establish VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 4 Maltsev Maltsev PROPN NNP Number=Sing 6 compound _ _ 5 term term NOUN NN Number=Sing 6 compound _ _ 6 condition condition NOUN NN Number=Sing 2 dobj _ _ 7 characterizing characterize VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 acl _ _ 8 pointed point VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 amod _ _ 9 varieties variety NOUN NNS Number=Plur 7 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 universal universal ADJ JJ Degree=Pos 12 amod _ _ 12 algebras algebra NOUN NNS Number=Plur 10 pobj _ _ 13 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 acl _ _ 14 P. P. PROPN NNP Number=Sing 13 dobj _ SpaceAfter=No # sent_id = 4 # text = We then consider categories satisfying P locally, that is, those categories for which every fibre of the fibration of points satisfies P. Examples include any regular Maltsev or majority category with coequalizers, as well as any regular Gumm category with coequalizers. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 categories category NOUN NNS Number=Plur 5 nsubj _ _ 5 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 ccomp _ _ 6 P p NOUN NN Number=Sing 5 dobj _ _ 7 locally locally ADV RB _ 5 advmod _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 5 punct _ _ 9 that that ADV RB _ 10 advmod _ _ 10 is is ADV RB _ 13 advmod _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 13 punct _ _ 12 those those DET DT Number=Plur|PronType=Dem 13 det _ _ 13 categories category NOUN NNS Number=Plur 5 dobj _ _ 14 for for ADP IN _ 26 prep _ _ 15 which which PRON WDT _ 14 pobj _ _ 16 every every DET DT _ 17 det _ _ 17 fibre fibre NOUN NN Number=Sing 26 nsubj _ _ 18 of of ADP IN _ 17 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 fibration fibration NOUN NN Number=Sing 18 pobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 points point NOUN NNS Number=Plur 23 compound _ _ 23 satisfies satisfie NOUN NNS Number=Plur 21 pobj _ _ 24 P. P. PROPN NNP Number=Sing 25 compound _ _ 25 Examples Examples PROPN NNP Number=Sing 17 appos _ _ 26 include include VERB VBP Tense=Pres|VerbForm=Fin 13 relcl _ _ 27 any any DET DT _ 32 det _ _ 28 regular regular ADJ JJ Degree=Pos 32 amod _ _ 29 Maltsev Maltsev PROPN NNP Number=Sing 32 nmod _ _ 30 or or CCONJ CC ConjType=Cmp 29 cc _ _ 31 majority majority NOUN NN Number=Sing 29 conj _ _ 32 category category NOUN NN Number=Sing 26 dobj _ _ 33 with with ADP IN _ 32 prep _ _ 34 coequalizers coequalizer NOUN NNS Number=Plur 33 pobj _ SpaceAfter=No 35 , , PUNCT , PunctType=Comm 32 punct _ _ 36 as as ADV RB _ 38 advmod _ _ 37 well well ADV RB Degree=Pos 38 advmod _ _ 38 as as ADP IN _ 32 cc _ _ 39 any any DET DT _ 42 det _ _ 40 regular regular ADJ JJ Degree=Pos 42 amod _ _ 41 Gumm Gumm PROPN NNP Number=Sing 42 compound _ _ 42 category category NOUN NN Number=Sing 32 conj _ _ 43 with with ADP IN _ 42 prep _ _ 44 coequalizers coequalizer NOUN NNS Number=Plur 43 pobj _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = Varieties satisfying P locally are also characterized by a Maltsev term condition, which turns out to be equivalent to a variant of Gumm's shifting lemma. 1 Varieties variety NOUN NNS Number=Plur 7 nsubjpass _ _ 2 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 1 acl _ _ 3 P p NOUN NN Number=Sing 2 dobj _ _ 4 locally locally ADV RB _ 7 advmod _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 6 also also ADV RB _ 7 advmod _ _ 7 characterized characterize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 by by ADP IN _ 7 agent _ _ 9 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 10 Maltsev Maltsev PROPN NNP Number=Sing 12 compound _ _ 11 term term NOUN NN Number=Sing 12 compound _ _ 12 condition condition NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 which which PRON WDT _ 15 nsubj _ _ 15 turns turn VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 relcl _ _ 16 out out ADP RP _ 15 prt _ _ 17 to to PART TO _ 18 aux _ _ 18 be be AUX VB VerbForm=Inf 15 xcomp _ _ 19 equivalent equivalent ADJ JJ Degree=Pos 18 acomp _ _ 20 to to ADP IN _ 19 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 variant variant NOUN NN Number=Sing 20 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 Gumm Gumm PROPN NNP Number=Sing 27 poss _ SpaceAfter=No 25 's 's PART POS _ 24 case _ _ 26 shifting shift VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 27 amod _ _ 27 lemma lemma NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 6 # text = Furthermore, we show that the varieties satisfying P locally are precisely the varieties with normal local projections in the sense of Janelidze. 1 Furthermore furthermore ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 11 mark _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 varieties variety NOUN NNS Number=Plur 11 nsubj _ _ 8 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 acl _ _ 9 P p NOUN NN Number=Sing 8 dobj _ _ 10 locally locally ADV RB _ 11 advmod _ _ 11 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 12 precisely precisely ADV RB _ 14 advmod _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 varieties variety NOUN NNS Number=Plur 11 attr _ _ 15 with with ADP IN _ 14 prep _ _ 16 normal normal ADJ JJ Degree=Pos 18 amod _ _ 17 local local ADJ JJ Degree=Pos 18 amod _ _ 18 projections projection NOUN NNS Number=Plur 15 pobj _ _ 19 in in ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 sense sense NOUN NN Number=Sing 19 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 Janelidze Janelidze PROPN NNP Number=Sing 22 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 696 # sent_id = 1 # text = Universal algebra uniformly captures various algebraic structures, by expressing them as equational theories or abstract clones. 1 Universal universal ADJ JJ Degree=Pos 2 amod _ _ 2 algebra algebra NOUN NN Number=Sing 4 nsubj _ _ 3 uniformly uniformly ADV RB _ 4 advmod _ _ 4 captures capture VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 various various ADJ JJ Degree=Pos 7 amod _ _ 6 algebraic algebraic ADJ JJ Degree=Pos 7 amod _ _ 7 structures structure NOUN NNS Number=Plur 4 dobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 4 punct _ _ 9 by by ADP IN _ 4 prep _ _ 10 expressing express VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 pcomp _ _ 11 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 10 dobj _ _ 12 as as ADP IN _ 10 prep _ _ 13 equational equational ADJ JJ Degree=Pos 14 amod _ _ 14 theories theory NOUN NNS Number=Plur 12 pobj _ _ 15 or or CCONJ CC ConjType=Cmp 14 cc _ _ 16 abstract abstract ADJ JJ Degree=Pos 17 amod _ _ 17 clones clone NOUN NNS Number=Plur 14 conj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = The ubiquity of algebraic structures in mathematics and related fields has given rise to several variants of universal algebra, such as theories of symmetric operads, non - symmetric operads, generalised operads, PROPs, PROs, and monads. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 ubiquity ubiquity NOUN NN Number=Sing 12 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 algebraic algebraic ADJ JJ Degree=Pos 5 amod _ _ 5 structures structure NOUN NNS Number=Plur 3 pobj _ _ 6 in in ADP IN _ 5 prep _ _ 7 mathematics mathematic NOUN NNS Number=Plur 6 pobj _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 10 fields field NOUN NNS Number=Plur 7 conj _ _ 11 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 aux _ _ 12 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 13 rise rise NOUN NN Number=Sing 12 dobj _ _ 14 to to ADP IN _ 12 prep _ _ 15 several several ADJ JJ Degree=Pos 16 amod _ _ 16 variants variant NOUN NNS Number=Plur 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 universal universal ADJ JJ Degree=Pos 19 amod _ _ 19 algebra algebra PROPN NNP Number=Sing 17 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 19 punct _ _ 21 such such ADJ JJ Degree=Pos 22 amod _ _ 22 as as ADP IN _ 19 prep _ _ 23 theories theory NOUN NNS Number=Plur 22 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 symmetric symmetric ADJ JJ Degree=Pos 26 amod _ _ 26 operads operad NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 26 punct _ _ 28 non non ADJ JJ Degree=Pos 31 amod _ _ 29 - - PUNCT HYPH PunctType=Dash 31 amod _ _ 30 symmetric symmetric ADJ JJ Degree=Pos 31 amod _ _ 31 operads operad NOUN NNS Number=Plur 26 conj _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 31 punct _ _ 33 generalised generalise VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 34 amod _ _ 34 operads operad NOUN NNS Number=Plur 31 conj _ SpaceAfter=No 35 , , PUNCT , PunctType=Comm 34 punct _ _ 36 PROPs prop NOUN NNS Number=Plur 34 conj _ SpaceAfter=No 37 , , PUNCT , PunctType=Comm 36 punct _ _ 38 PROs pro NOUN NNS Number=Plur 36 conj _ SpaceAfter=No 39 , , PUNCT , PunctType=Comm 38 punct _ _ 40 and and CCONJ CC ConjType=Cmp 38 cc _ _ 41 monads monad NOUN NNS Number=Plur 38 conj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 3 # text = These variants of universal algebra are called notions of algebraic theory. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 variants variant NOUN NNS Number=Plur 7 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 universal universal ADJ JJ Degree=Pos 5 amod _ _ 5 algebra algebra NOUN NNS Number=Plur 3 pobj _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 7 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 notions notion NOUN NNS Number=Plur 7 oprd _ _ 9 of of ADP IN _ 8 prep _ _ 10 algebraic algebraic ADJ JJ Degree=Pos 11 amod _ _ 11 theory theory NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = In this paper, we develop a unified framework for them. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 develop develop VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 unified unified ADJ JJ Degree=Pos 9 amod _ _ 9 framework framework NOUN NN Number=Sing 6 dobj _ _ 10 for for ADP IN _ 9 prep _ _ 11 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 10 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 5 # text = The key observation is that each notion of algebraic theory can be identified with a monoidal category, in such a way that algebraic theories correspond to monoid objects therein. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 key key ADJ JJ Degree=Pos 3 amod _ _ 3 observation observation NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 13 mark _ _ 6 each each DET DT _ 7 det _ _ 7 notion notion NOUN NN Number=Sing 13 nsubjpass _ _ 8 of of ADP IN _ 7 prep _ _ 9 algebraic algebraic ADJ JJ Degree=Pos 10 amod _ _ 10 theory theory NOUN NN Number=Sing 8 pobj _ _ 11 can can AUX MD VerbForm=Fin 13 aux _ _ 12 be be AUX VB VerbForm=Inf 13 auxpass _ _ 13 identified identify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 ccomp _ _ 14 with with ADP IN _ 13 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 monoidal monoidal ADJ JJ Degree=Pos 17 amod _ _ 17 category category NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 13 punct _ _ 19 in in ADP IN _ 13 prep _ _ 20 such such DET PDT _ 22 predet _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 way way NOUN NN Number=Sing 19 pobj _ _ 23 that that PRON WDT PronType=Rel 26 advmod _ _ 24 algebraic algebraic ADJ JJ Degree=Pos 25 amod _ _ 25 theories theory NOUN NNS Number=Plur 26 nsubj _ _ 26 correspond correspond VERB VBP Tense=Pres|VerbForm=Fin 22 relcl _ _ 27 to to ADP IN _ 26 prep _ _ 28 monoid monoid NOUN NN Number=Sing 29 compound _ _ 29 objects object NOUN NNS Number=Plur 27 pobj _ _ 30 therein therein ADV RB _ 29 advmod _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 6 # text = To incorporate semantics, we introduce a categorical structure called metamodel, which formalises a definition of models of algebraic theories. 1 To to PART TO _ 2 aux _ _ 2 incorporate incorporate VERB VB VerbForm=Inf 6 advcl _ _ 3 semantics semantic NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 categorical categorical ADJ JJ Degree=Pos 9 amod _ _ 9 structure structure NOUN NN Number=Sing 6 dobj _ _ 10 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 acl _ _ 11 metamodel metamodel NOUN NN Number=Sing 10 oprd _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 which which PRON WDT _ 14 nsubj _ _ 14 formalises formalise VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 relcl _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 definition definition NOUN NN Number=Sing 14 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 models model NOUN NNS Number=Plur 17 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 algebraic algebraic ADJ JJ Degree=Pos 21 amod _ _ 21 theories theory NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 7 # text = We also define morphisms between notions of algebraic theory, which are a monoidal version of profunctors. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 morphisms morphism NOUN NNS Number=Plur 3 dobj _ _ 5 between between ADP IN _ 4 prep _ _ 6 notions notion NOUN NNS Number=Plur 5 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 algebraic algebraic ADJ JJ Degree=Pos 9 amod _ _ 9 theory theory NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 which which PRON WDT _ 12 nsubj _ _ 12 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 relcl _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 monoidal monoidal ADJ JJ Degree=Pos 15 amod _ _ 15 version version NOUN NN Number=Sing 12 attr _ _ 16 of of ADP IN _ 15 prep _ _ 17 profunctors profunctor NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 8 # text = Every strong monoidal functor gives rise to an adjoint pair of such morphisms, and provides a uniform method to establish isomorphisms between categories of models in different notions of algebraic theory. 1 Every every DET DT _ 4 det _ _ 2 strong strong ADJ JJ Degree=Pos 4 amod _ _ 3 monoidal monoidal ADJ JJ Degree=Pos 4 amod _ _ 4 functor functor NOUN NN Number=Sing 5 nsubj _ _ 5 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 rise rise NOUN NN Number=Sing 5 dobj _ _ 7 to to ADP IN _ 6 prep _ _ 8 an an DET DT Definite=Ind|PronType=Art 10 det _ _ 9 adjoint adjoint NOUN NN Number=Sing 10 compound _ _ 10 pair pair NOUN NN Number=Sing 7 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 such such ADJ JJ Degree=Pos 13 amod _ _ 13 morphisms morphism NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 5 punct _ _ 15 and and CCONJ CC ConjType=Cmp 5 cc _ _ 16 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 conj _ _ 17 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 18 uniform uniform ADJ JJ Degree=Pos 19 amod _ _ 19 method method NOUN NN Number=Sing 16 dobj _ _ 20 to to PART TO _ 21 aux _ _ 21 establish establish VERB VB VerbForm=Inf 16 advcl _ _ 22 isomorphisms isomorphism NOUN NNS Number=Plur 21 dobj _ _ 23 between between ADP IN _ 22 prep _ _ 24 categories category NOUN NNS Number=Plur 23 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 models model NOUN NNS Number=Plur 25 pobj _ _ 27 in in ADP IN _ 26 prep _ _ 28 different different ADJ JJ Degree=Pos 29 amod _ _ 29 notions notion NOUN NNS Number=Plur 27 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 algebraic algebraic ADJ JJ Degree=Pos 32 amod _ _ 32 theory theory NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 9 # text = A general structure - semantics adjointness result and a double categorical universal property of categories of models are also shown. 1 A a DET DT Definite=Ind|PronType=Art 7 det _ _ 2 general general ADJ JJ Degree=Pos 7 amod _ _ 3 structure structure NOUN NN Number=Sing 5 compound _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 semantics semantic NOUN NNS Number=Plur 6 compound _ _ 6 adjointness adjointness PROPN NNP Number=Sing 7 compound _ _ 7 result result PROPN NNP Number=Sing 20 nsubjpass _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 10 double double ADJ JJ Degree=Pos 13 amod _ _ 11 categorical categorical ADJ JJ Degree=Pos 13 amod _ _ 12 universal universal ADJ JJ Degree=Pos 13 amod _ _ 13 property property NOUN NN Number=Sing 7 conj _ _ 14 of of ADP IN _ 13 prep _ _ 15 categories category NOUN NNS Number=Plur 14 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 models model NOUN NNS Number=Plur 16 pobj _ _ 18 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 20 auxpass _ _ 19 also also ADV RB _ 20 advmod _ _ 20 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # doc_id = 697 # sent_id = 1 # text = This is the first part of a two paper series studying free globularly generated double categories. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 first first ADJ JJ Degree=Pos 5 amod _ _ 5 part part NOUN NN Number=Sing 2 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 8 two two NUM CD NumType=Card 10 nummod _ _ 9 paper paper NOUN NN Number=Sing 10 compound _ _ 10 series series NOUN NN Number=Sing 6 pobj _ _ 11 studying study VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 acl _ _ 12 free free ADJ JJ Degree=Pos 16 amod _ _ 13 globularly globularly ADV RB _ 14 advmod _ _ 14 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 15 double double ADJ JJ Degree=Pos 16 amod _ _ 16 categories category NOUN NNS Number=Plur 11 dobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = In this first installment we introduce the free globularly generated double category construction. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 3 first first ADJ JJ Degree=Pos 4 amod _ _ 4 installment installment NOUN NN Number=Sing 1 pobj _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 13 det _ _ 8 free free ADJ JJ Degree=Pos 13 amod _ _ 9 globularly globularly ADV RB _ 10 advmod _ _ 10 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 amod _ _ 11 double double ADJ JJ Degree=Pos 13 amod _ _ 12 category category NOUN NN Number=Sing 13 compound _ _ 13 construction construction NOUN NN Number=Sing 6 dobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = The free globularly generated double category construction canonically associates to every bicategory together with a possible category of vertical morphisms, a double category fixing this set of initial data in a free and minimal way. 1 The the DET DT Definite=Def|PronType=Art 7 det _ _ 2 free free ADJ JJ Degree=Pos 7 amod _ _ 3 globularly globularly ADV RB _ 4 advmod _ _ 4 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 amod _ _ 5 double double ADJ JJ Degree=Pos 7 amod _ _ 6 category category NOUN NN Number=Sing 7 compound _ _ 7 construction construction NOUN NN Number=Sing 9 nsubj _ _ 8 canonically canonically ADV RB _ 9 advmod _ _ 9 associates associate VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 to to ADP IN _ 9 prep _ _ 11 every every DET DT _ 12 det _ _ 12 bicategory bicategory NOUN NN Number=Sing 10 pobj _ _ 13 together together ADV RB _ 14 advmod _ _ 14 with with ADP IN _ 9 prep _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 possible possible ADJ JJ Degree=Pos 17 amod _ _ 17 category category NOUN NN Number=Sing 14 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 vertical vertical ADJ JJ Degree=Pos 20 amod _ _ 20 morphisms morphism NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 9 punct _ _ 22 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 23 double double ADJ JJ Degree=Pos 24 amod _ _ 24 category category NOUN NN Number=Sing 9 appos _ _ 25 fixing fix VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 24 acl _ _ 26 this this DET DT Number=Sing|PronType=Dem 27 det _ _ 27 set set NOUN NN Number=Sing 25 dobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 initial initial ADJ JJ Degree=Pos 30 amod _ _ 30 data datum NOUN NNS Number=Plur 28 pobj _ _ 31 in in ADP IN _ 25 prep _ _ 32 a a DET DT Definite=Ind|PronType=Art 36 det _ _ 33 free free ADJ JJ Degree=Pos 36 amod _ _ 34 and and CCONJ CC ConjType=Cmp 33 cc _ _ 35 minimal minimal ADJ JJ Degree=Pos 33 conj _ _ 36 way way NOUN NN Number=Sing 31 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 4 # text = We use the free globularly generated double category to study length, free products, and problems of internalization. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 8 det _ _ 4 free free ADJ JJ Degree=Pos 8 amod _ _ 5 globularly globularly ADV RB _ 6 advmod _ _ 6 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 7 double double ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 2 dobj _ _ 9 to to PART TO _ 10 aux _ _ 10 study study VERB VB VerbForm=Inf 2 xcomp _ _ 11 length length NOUN NN Number=Sing 10 dobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 free free ADJ JJ Degree=Pos 14 amod _ _ 14 products product NOUN NNS Number=Plur 11 conj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 and and CCONJ CC ConjType=Cmp 14 cc _ _ 17 problems problem NOUN NNS Number=Plur 14 conj _ _ 18 of of ADP IN _ 17 prep _ _ 19 internalization internalization NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = We use the free globularly generated double category construction to provide formal functorial extensions of the Haagerup standard form construction and the Connes fusion operation to inclusions of factors of not - necessarily finite Jones index. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 9 det _ _ 4 free free ADJ JJ Degree=Pos 9 amod _ _ 5 globularly globularly ADV RB _ 6 advmod _ _ 6 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 amod _ _ 7 double double ADJ JJ Degree=Pos 9 amod _ _ 8 category category NOUN NN Number=Sing 9 compound _ _ 9 construction construction NOUN NN Number=Sing 2 dobj _ _ 10 to to PART TO _ 11 aux _ _ 11 provide provide VERB VB VerbForm=Inf 2 xcomp _ _ 12 formal formal ADJ JJ Degree=Pos 14 amod _ _ 13 functorial functorial ADJ JJ Degree=Pos 14 amod _ _ 14 extensions extension NOUN NNS Number=Plur 11 dobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 Haagerup Haagerup PROPN NNP Number=Sing 18 compound _ _ 18 standard standard NOUN NN Number=Sing 20 amod _ _ 19 form form NOUN NN Number=Sing 20 compound _ _ 20 construction construction NOUN NN Number=Sing 15 pobj _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 the the DET DT Definite=Def|PronType=Art 25 det _ _ 23 Connes Connes PROPN NNP Number=Sing 24 compound _ _ 24 fusion fusion NOUN NN Number=Sing 25 compound _ _ 25 operation operation NOUN NN Number=Sing 20 conj _ _ 26 to to ADP IN _ 11 prep _ _ 27 inclusions inclusion NOUN NNS Number=Plur 26 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 factors factor NOUN NNS Number=Plur 28 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 not not PART RB Polarity=Neg 33 neg _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 necessarily necessarily ADV RB _ 34 advmod _ _ 34 finite finite PROPN NNP Number=Sing 36 amod _ _ 35 Jones Jones PROPN NNP Number=Sing 36 compound _ _ 36 index index NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 698 # sent_id = 1 # text = By the Three Graces we refer, following Loday, to the algebraic operads $ Ass $ , $ Com $ , and $ Lie $ , each generated by a single binary operation; algebras over these operads are respectively associative, commutative associative, and Lie. 1 By by ADP IN _ 34 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 Three Three PROPN NNP Number=Sing 4 compound _ _ 4 Graces Graces PROPN NNPS Number=Plur 1 pobj _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 refer refer VERB VBP Tense=Pres|VerbForm=Fin 4 relcl _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 6 punct _ _ 8 following follow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 prep _ _ 9 Loday Loday PROPN NNP Number=Sing 8 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 8 punct _ _ 11 to to ADP IN _ 1 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 algebraic algebraic ADJ JJ Degree=Pos 14 amod _ _ 14 operads operad NOUN NNS Number=Plur 11 pobj _ _ 15 $ Ass $ $ ass $ SYM $ _ 14 appos _ _ 16 , , PUNCT , PunctType=Comm 14 punct _ _ 17 $ Com $ $ com $ SYM $ _ 14 appos _ _ 18 , , PUNCT , PunctType=Comm 11 punct _ _ 19 and and CCONJ CC ConjType=Cmp 11 cc _ _ 20 $ Lie $ $ lie $ SYM $ _ 1 pcomp _ _ 21 , , PUNCT , PunctType=Comm 34 punct _ _ 22 each each PRON DT _ 34 dep _ _ 23 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 acl _ _ 24 by by ADP IN _ 23 agent _ _ 25 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 26 single single ADJ JJ Degree=Pos 28 amod _ _ 27 binary binary ADJ JJ Degree=Pos 28 amod _ _ 28 operation operation NOUN NN Number=Sing 24 pobj _ SpaceAfter=No 29 ; ; PUNCT : _ 34 punct _ _ 30 algebras algebra NOUN NNS Number=Plur 34 nsubj _ _ 31 over over ADP IN _ 30 prep _ _ 32 these these DET DT Number=Plur|PronType=Dem 33 det _ _ 33 operads operad NOUN NNS Number=Plur 31 pobj _ _ 34 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 35 respectively respectively ADV RB _ 36 advmod _ _ 36 associative associative ADJ JJ Degree=Pos 34 acomp _ SpaceAfter=No 37 , , PUNCT , PunctType=Comm 34 punct _ _ 38 commutative commutative ADJ JJ Degree=Pos 39 amod _ _ 39 associative associative NOUN NN Number=Sing 34 conj _ SpaceAfter=No 40 , , PUNCT , PunctType=Comm 39 punct _ _ 41 and and CCONJ CC ConjType=Cmp 39 cc _ _ 42 Lie Lie PROPN NNP Number=Sing 39 conj _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 34 punct _ SpaceAfter=No # sent_id = 2 # text = We classify all distributive laws (in the categorical sense of Beck) between these three operads. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 classify classify VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 all all DET DT _ 5 det _ _ 4 distributive distributive ADJ JJ Degree=Pos 5 amod _ _ 5 laws law NOUN NNS Number=Plur 2 dobj _ _ 6 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 5 punct _ SpaceAfter=No 7 in in ADP IN _ 5 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 categorical categorical ADJ JJ Degree=Pos 10 amod _ _ 10 sense sense NOUN NN Number=Sing 7 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 Beck Beck PROPN NNP Number=Sing 11 pobj _ SpaceAfter=No 13 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 7 punct _ _ 14 between between ADP IN _ 5 prep _ _ 15 these these DET DT Number=Plur|PronType=Dem 17 det _ _ 16 three three NUM CD NumType=Card 17 nummod _ _ 17 operads operad NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Some of our results depend on the computer algebra system Maple, especially its packages LinearAlgebra and Groebner. 1 Some some PRON DT _ 5 nsubj _ _ 2 of of ADP IN _ 1 prep _ _ 3 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 4 poss _ _ 4 results result NOUN NNS Number=Plur 2 pobj _ _ 5 depend depend VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 on on ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 10 det _ _ 8 computer computer NOUN NN Number=Sing 9 compound _ _ 9 algebra algebra NOUN NN Number=Sing 10 compound _ _ 10 system system NOUN NN Number=Sing 11 compound _ _ 11 Maple Maple PROPN NNP Number=Sing 6 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 especially especially ADV RB _ 15 advmod _ _ 14 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 15 poss _ _ 15 packages package NOUN NNS Number=Plur 11 appos _ _ 16 LinearAlgebra LinearAlgebra PROPN NNP Number=Sing 15 appos _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 Groebner Groebner PROPN NNP Number=Sing 16 conj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 699 # sent_id = 1 # text = The Noether Isomorphism Theorems and the Zassenhaus Lemma from group theory have a non - pointed version in a suitable categorical context first considered by Tholen in his PhD thesis. 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 Noether Noether PROPN NNP Number=Sing 4 compound _ _ 3 Isomorphism Isomorphism PROPN NNP Number=Sing 4 compound _ _ 4 Theorems Theorems PROPN NNP Number=Sing 12 nsubj _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 Zassenhaus Zassenhaus PROPN NNP Number=Sing 8 compound _ _ 8 Lemma Lemma PROPN NNP Number=Sing 4 conj _ _ 9 from from ADP IN _ 8 prep _ _ 10 group group NOUN NN Number=Sing 11 compound _ _ 11 theory theory NOUN NN Number=Sing 9 pobj _ _ 12 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 14 non non ADV RB _ 16 advmod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 pointed point VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 17 version version NOUN NN Number=Sing 12 dobj _ _ 18 in in ADP IN _ 17 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 20 suitable suitable ADJ JJ Degree=Pos 22 amod _ _ 21 categorical categorical ADJ JJ Degree=Pos 22 amod _ _ 22 context context NOUN NN Number=Sing 18 pobj _ _ 23 first first ADV RB _ 24 advmod _ _ 24 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 acl _ _ 25 by by ADP IN _ 24 agent _ _ 26 Tholen Tholen PROPN NNP Number=Sing 25 pobj _ _ 27 in in ADP IN _ 24 prep _ _ 28 his his PRON PRP$ Gender=Masc|Number=Sing|Person=3|Poss=Yes|PronType=Prs 30 poss _ _ 29 PhD phd NOUN NN Number=Sing 30 compound _ _ 30 thesis thesis NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 2 # text = This article leads to a unification of these results with the ones in the pointed categorical context previously considered by Wyler, by working in the framework of star - regular categories introduced by Gran, Janelidze and Ursini. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 article article NOUN NN Number=Sing 3 nsubj _ _ 3 leads lead VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 to to ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 unification unification NOUN NN Number=Sing 4 pobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 these these DET DT Number=Plur|PronType=Dem 9 det _ _ 9 results result NOUN NNS Number=Plur 7 pobj _ _ 10 with with ADP IN _ 6 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 ones one NOUN NNS Number=Plur 10 pobj _ _ 13 in in ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 17 det _ _ 15 pointed pointed ADJ JJ Degree=Pos 17 amod _ _ 16 categorical categorical ADJ JJ Degree=Pos 17 amod _ _ 17 context context NOUN NN Number=Sing 13 pobj _ _ 18 previously previously ADV RB _ 19 advmod _ _ 19 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 acl _ _ 20 by by ADP IN _ 19 agent _ _ 21 Wyler Wyler PROPN NNP Number=Sing 20 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 3 punct _ _ 23 by by ADP IN _ 3 prep _ _ 24 working work VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 23 pcomp _ _ 25 in in ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 framework framework NOUN NN Number=Sing 25 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 star star NOUN NN Number=Sing 31 compound _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 regular regular ADJ JJ Degree=Pos 32 amod _ _ 32 categories category NOUN NNS Number=Plur 28 pobj _ _ 33 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 acl _ _ 34 by by ADP IN _ 33 agent _ _ 35 Gran Gran PROPN NNP Number=Sing 34 pobj _ SpaceAfter=No 36 , , PUNCT , PunctType=Comm 35 punct _ _ 37 Janelidze Janelidze PROPN NNP Number=Sing 35 conj _ _ 38 and and CCONJ CC ConjType=Cmp 37 cc _ _ 39 Ursini Ursini PROPN NNP Number=Sing 37 conj _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = Some concrete examples of categories where these results hold are examined in detail. 1 Some some DET DT _ 3 det _ _ 2 concrete concrete ADJ JJ Degree=Pos 3 amod _ _ 3 examples example NOUN NNS Number=Plur 11 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 categories category NOUN NNS Number=Plur 4 pobj _ _ 6 where where SCONJ WRB _ 9 advmod _ _ 7 these these DET DT Number=Plur|PronType=Dem 8 det _ _ 8 results result NOUN NNS Number=Plur 9 nsubj _ _ 9 hold hold VERB VBP Tense=Pres|VerbForm=Fin 3 relcl _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 11 examined examine VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 12 in in ADP IN _ 11 prep _ _ 13 detail detail NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # doc_id = 700 # sent_id = 1 # text = For finitary regular monads $ T $ on locally finitely presentable categories we characterize the finitely presentable objects in the category of $ T $ - algebras in the style known from general algebra: they are precisely the algebras presentable by finitely many generators and finitely many relations. 1 For for ADP IN _ 33 prep _ _ 2 finitary finitary ADJ JJ Degree=Pos 4 amod _ _ 3 regular regular ADJ JJ Degree=Pos 4 amod _ _ 4 monads monad NOUN NNS Number=Plur 1 pobj _ _ 5 $ T $ $ t $ SYM $ _ 1 dep _ _ 6 on on ADP IN _ 1 prep _ _ 7 locally locally ADV RB _ 8 advmod _ _ 8 finitely finitely ADV RB _ 10 amod _ _ 9 presentable presentable ADJ JJ Degree=Pos 10 amod _ _ 10 categories category NOUN NNS Number=Plur 6 pobj _ _ 11 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 12 nsubj _ _ 12 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 10 relcl _ _ 13 the the DET DT Definite=Def|PronType=Art 16 det _ _ 14 finitely finitely ADV RB _ 15 advmod _ _ 15 presentable presentable ADJ JJ Degree=Pos 16 amod _ _ 16 objects object NOUN NNS Number=Plur 12 dobj _ _ 17 in in ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 category category NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 $ T $ $ t $ SYM $ _ 23 compound _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 algebras algebra NOUN NNS Number=Plur 20 pobj _ _ 24 in in ADP IN _ 19 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 style style NOUN NN Number=Sing 24 pobj _ _ 27 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 acl _ _ 28 from from ADP IN _ 27 prep _ _ 29 general general ADJ JJ Degree=Pos 30 amod _ _ 30 algebra algebra PROPN NNP Number=Sing 28 pobj _ SpaceAfter=No 31 : : PUNCT : _ 33 punct _ _ 32 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 33 nsubj _ _ 33 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 34 precisely precisely ADV RB _ 33 advmod _ _ 35 the the DET DT Definite=Def|PronType=Art 36 det _ _ 36 algebras algebras PROPN NNPS Number=Plur 33 attr _ _ 37 presentable presentable ADJ JJ Degree=Pos 36 amod _ _ 38 by by ADP IN _ 37 prep _ _ 39 finitely finitely ADV RB _ 40 advmod _ _ 40 many many ADJ JJ Degree=Pos 41 amod _ _ 41 generators generator NOUN NNS Number=Plur 38 pobj _ _ 42 and and CCONJ CC ConjType=Cmp 41 cc _ _ 43 finitely finitely ADV RB _ 44 advmod _ _ 44 many many ADJ JJ Degree=Pos 45 amod _ _ 45 relations relation NOUN NNS Number=Plur 41 conj _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 33 punct _ SpaceAfter=No # doc_id = 701 # sent_id = 1 # text = By theorems of Carlson and Renaudin, the theory of $ (∞, 1) $ - categories embeds in that of prederivators. 1 By by ADP IN _ 14 prep _ _ 2 theorems theorem NOUN NNS Number=Plur 1 pobj _ _ 3 of of ADP IN _ 2 prep _ _ 4 Carlson Carlson PROPN NNP Number=Sing 3 pobj _ _ 5 and and CCONJ CC ConjType=Cmp 4 cc _ _ 6 Renaudin Renaudin PROPN NNP Number=Sing 4 conj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 14 punct _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 theory theory NOUN NN Number=Sing 14 nsubj _ _ 10 of of ADP IN _ 9 prep _ _ 11 $ (∞, 1) $ $ (∞, 1) $ SYM $ _ 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 categories category NOUN NNS Number=Plur 14 nsubj _ _ 14 embeds embed VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 in in ADP IN _ 14 prep _ _ 16 that that PRON DT Number=Sing|PronType=Dem 15 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 prederivators prederivator NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 2 # text = The purpose of this paper is to give a two - fold answer to the inverse problem: understanding which prederivators model $ (∞, 1) $ - categories, either strictly or in a homotopical sense. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 purpose purpose NOUN NN Number=Sing 6 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 paper paper NOUN NN Number=Sing 3 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 to to PART TO _ 8 aux _ _ 8 give give VERB VB VerbForm=Inf 6 xcomp _ _ 9 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 10 two two NUM CD NumType=Card 12 nummod _ _ 11 - - ADJ JJ Degree=Pos 12 punct _ _ 12 fold fold ADJ JJ Degree=Pos 13 amod _ _ 13 answer answer NOUN NN Number=Sing 8 dobj _ _ 14 to to ADP IN _ 8 dative _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 inverse inverse ADJ JJ Degree=Pos 17 amod _ _ 17 problem problem NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 18 : : PUNCT : _ 17 punct _ _ 19 understanding understanding NOUN NN Number=Sing 17 appos _ _ 20 which which PRON WDT _ 21 nsubj _ _ 21 prederivators prederivator VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 relcl _ _ 22 model model NOUN NN Number=Sing 21 dobj _ _ 23 $ (∞, 1) $ $ (∞, 1) $ PROPN NNP Number=Sing 25 nmod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 categories category NOUN NNS Number=Plur 22 dobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 25 punct _ _ 27 either either CCONJ CC ConjType=Cmp 28 preconj _ _ 28 strictly strictly ADV RB _ 21 advmod _ _ 29 or or CCONJ CC ConjType=Cmp 28 cc _ _ 30 in in ADP IN _ 28 conj _ _ 31 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 32 homotopical homotopical ADJ JJ Degree=Pos 33 amod _ _ 33 sense sense NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = First, we characterize which prederivators arise on the nose as prederivators associated to quasicategories. 1 First first ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 characterize characterize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 which which PRON WDT _ 7 dobj _ _ 6 prederivators prederivator NOUN NNS Number=Plur 7 nsubj _ _ 7 arise arise VERB VBP Tense=Pres|VerbForm=Fin 4 ccomp _ _ 8 on on ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 nose nose NOUN NN Number=Sing 8 pobj _ _ 11 as as ADP IN _ 7 prep _ _ 12 prederivators prederivator NOUN NNS Number=Plur 11 pobj _ _ 13 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 acl _ _ 14 to to ADP IN _ 13 prep _ _ 15 quasicategories quasicategorie NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = Next, we put a model structure on the category of prederivators and strict natural transformations, and prove a Quillen equivalence with the Joyal model structure for quasicategories. 1 Next next ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 put put VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 model model NOUN NN Number=Sing 7 compound _ _ 7 structure structure NOUN NN Number=Sing 4 dobj _ _ 8 on on ADP IN _ 4 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 category category NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 prederivators prederivator NOUN NNS Number=Plur 11 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 10 cc _ _ 14 strict strict ADJ JJ Degree=Pos 16 amod _ _ 15 natural natural ADJ JJ Degree=Pos 16 amod _ _ 16 transformations transformation NOUN NNS Number=Plur 10 conj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 4 punct _ _ 18 and and CCONJ CC ConjType=Cmp 4 cc _ _ 19 prove prove VERB VB VerbForm=Inf 4 conj _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 Quillen quillen ADJ JJ Degree=Pos 22 amod _ _ 22 equivalence equivalence NOUN NN Number=Sing 19 dobj _ _ 23 with with ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 27 det _ _ 25 Joyal joyal ADJ JJ Degree=Pos 27 amod _ _ 26 model model NOUN NN Number=Sing 27 compound _ _ 27 structure structure NOUN NN Number=Sing 23 pobj _ _ 28 for for ADP IN _ 27 prep _ _ 29 quasicategories quasicategorie NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 702 # sent_id = 1 # text = The category of 1 - cat groups, which is equivalent to the category of crossed modules, has internal object actions which are representable (by internal automorphism groups). 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 category category NOUN NN Number=Sing 19 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 1 1 NUM CD NumType=Card 6 nummod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 cat cat NOUN NN Number=Sing 7 compound _ _ 7 groups group NOUN NNS Number=Plur 3 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 which which PRON WDT _ 10 nsubj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 relcl _ _ 11 equivalent equivalent ADJ JJ Degree=Pos 10 acomp _ _ 12 to to ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 category category NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 crossed crossed ADJ JJ Degree=Pos 17 amod _ _ 17 modules module NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 7 punct _ _ 19 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 20 internal internal ADJ JJ Degree=Pos 22 amod _ _ 21 object object NOUN NN Number=Sing 22 compound _ _ 22 actions action NOUN NNS Number=Plur 19 dobj _ _ 23 which which PRON WDT _ 24 nsubj _ _ 24 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 22 relcl _ _ 25 representable representable ADJ JJ Degree=Pos 24 acomp _ _ 26 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 25 punct _ SpaceAfter=No 27 by by ADP IN _ 25 prep _ _ 28 internal internal ADJ JJ Degree=Pos 30 amod _ _ 29 automorphism automorphism NOUN NN Number=Sing 30 compound _ _ 30 groups group NOUN NNS Number=Plur 27 pobj _ SpaceAfter=No 31 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 22 punct _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 2 # text = Moreover, it is known that the crossed module, corresponding to the representing object $ [X] = Aut(X) $ associated with a 1 - cat group $ X $ , must be isomorphic to the Norrie actor of the crossed module corresponding to $ X $ . 1 Moreover moreover ADV RB _ 5 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 5 punct _ _ 3 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 5 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 that that SCONJ IN _ 17 mark _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 crossed cross VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 amod _ _ 9 module module NOUN NN Number=Sing 17 nsubj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 amod _ _ 12 to to ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 representing represent VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 amod _ _ 15 object object NOUN NN Number=Sing 12 pobj _ _ 16 $ [X] = Aut(X) $ $ [x] = aut(x) $ SYM $ _ 17 nsubj _ _ 17 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 ccomp _ _ 18 with with ADP IN _ 17 prep _ _ 19 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 20 1 1 NUM CD NumType=Card 22 nummod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 cat cat NOUN NN Number=Sing 23 compound _ _ 23 group group NOUN NN Number=Sing 18 pobj _ _ 24 $ X $ $ x $ SYM $ _ 23 appos _ _ 25 , , PUNCT , PunctType=Comm 27 punct _ _ 26 must must AUX MD VerbForm=Fin 27 aux _ _ 27 be be AUX VB VerbForm=Inf 5 conj _ _ 28 isomorphic isomorphic ADJ JJ Degree=Pos 27 acomp _ _ 29 to to ADP IN _ 28 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 32 det _ _ 31 Norrie Norrie PROPN NNP Number=Sing 32 amod _ _ 32 actor actor NOUN NN Number=Sing 29 pobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 36 det _ _ 35 crossed crossed ADJ JJ Degree=Pos 36 amod _ _ 36 module module NOUN NN Number=Sing 33 pobj _ _ 37 corresponding corresponding NOUN NN Number=Sing 36 amod _ _ 38 to to ADP IN _ 37 prep _ _ 39 $ X $ $ x $ SYM $ _ 38 pobj _ _ 40 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = We recall the description of $ Aut(X) $ from the author's PhD thesis, and construct that isomorphism explicitly. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 recall recall VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 description description NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 $ Aut(X) $ $ aut(x) $ SYM $ _ 5 pobj _ _ 7 from from ADP IN _ 2 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 author author NOUN NN Number=Sing 12 poss _ SpaceAfter=No 10 's 's PART POS _ 9 case _ _ 11 PhD phd NOUN NN Number=Sing 12 compound _ _ 12 thesis thesis NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 2 punct _ _ 14 and and CCONJ CC ConjType=Cmp 2 cc _ _ 15 construct construct VERB VB VerbForm=Inf 2 conj _ _ 16 that that DET DT Number=Sing|PronType=Dem 17 det _ _ 17 isomorphism isomorphism NOUN NN Number=Sing 15 dobj _ _ 18 explicitly explicitly ADV RB _ 15 advmod _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 703 # sent_id = 1 # text = A simple criterion for a functor to be finitary is presented: we call $ F $ finitely bounded if for all objects $ X $ every finitely generated subobject of $ FX $ factorizes through the $ F $ - image of a finitely generated subobject of $ X $ . 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 simple simple ADJ JJ Degree=Pos 3 amod _ _ 3 criterion criterion NOUN NN Number=Sing 11 nsubjpass _ _ 4 for for ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 functor functor NOUN NN Number=Sing 11 nsubjpass _ _ 7 to to PART TO _ 8 aux _ _ 8 be be AUX VB VerbForm=Inf 6 acl _ _ 9 finitary finitary ADJ JJ Degree=Pos 8 acomp _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 11 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 ccomp _ SpaceAfter=No 12 : : PUNCT : _ 14 punct _ _ 13 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 14 nsubj _ _ 14 call call VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 $ F $ $ f $ SYM $ _ 17 dep _ _ 16 finitely finitely ADV RB _ 17 advmod _ _ 17 bounded bound VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 advcl _ _ 18 if if SCONJ IN _ 14 prep _ _ 19 for for ADP IN _ 14 prep _ _ 20 all all DET DT _ 21 det _ _ 21 objects object NOUN NNS Number=Plur 19 pobj _ _ 22 $ X $ $ x $ SYM $ _ 23 nmod _ _ 23 every every DET DT _ 26 det _ _ 24 finitely finitely ADV RB _ 25 advmod _ _ 25 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 amod _ _ 26 subobject subobject NOUN NN Number=Sing 14 dobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 $ FX $ $ fx $ SYM $ _ 29 nsubj _ _ 29 factorizes factorize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 27 pobj _ _ 30 through through ADP IN _ 14 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 34 det _ _ 32 $ F $ $ f $ SYM $ _ 34 compound _ _ 33 - - PUNCT HYPH PunctType=Dash 34 punct _ _ 34 image image NOUN NN Number=Sing 30 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 a a DET DT Definite=Ind|PronType=Art 39 det _ _ 37 finitely finitely ADV RB _ 38 advmod _ _ 38 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 39 amod _ _ 39 subobject subobject NOUN NN Number=Sing 35 pobj _ _ 40 of of ADP IN _ 39 prep _ _ 41 $ X $ $ x $ SYM $ _ 40 pobj _ _ 42 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 2 # text = This is equivalent to $ F $ being finitary for all functors between `reasonable' locally finitely presentable categories, provided that $ F $ preserves monomorphisms. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 equivalent equivalent ADJ JJ Degree=Pos 2 acomp _ _ 4 to to ADP IN _ 3 prep _ _ 5 $ F $ $ f $ SYM $ _ 4 pobj _ _ 6 being be AUX VBG VerbForm=Ger 2 advcl _ _ 7 finitary finitary ADJ JJ Degree=Pos 6 acomp _ _ 8 for for ADP IN _ 6 prep _ _ 9 all all DET DT _ 10 det _ _ 10 functors functor NOUN NNS Number=Plur 8 pobj _ _ 11 between between ADP IN _ 10 prep _ _ 12 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 11 punct _ SpaceAfter=No 13 reasonable reasonable ADJ JJ Degree=Pos 18 amod _ SpaceAfter=No 14 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 13 punct _ _ 15 locally locally ADV RB _ 16 advmod _ _ 16 finitely finitely ADV RB _ 17 advmod _ _ 17 presentable presentable ADJ JJ Degree=Pos 18 amod _ _ 18 categories category NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 2 punct _ _ 20 provided provide VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 prep _ _ 21 that that SCONJ IN _ 23 mark _ _ 22 $ F $ $ f $ SYM $ _ 23 nsubj _ _ 23 preserves preserve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 pcomp _ _ 24 monomorphisms monomorphism NOUN NNS Number=Plur 23 dobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We also discuss the question when that last assumption can be dropped. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 discuss discuss VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 question question NOUN NN Number=Sing 3 dobj _ _ 6 when when SCONJ WRB _ 12 advmod _ _ 7 that that DET DT Number=Sing|PronType=Dem 9 det _ _ 8 last last ADJ JJ Degree=Pos 9 amod _ _ 9 assumption assumption NOUN NN Number=Sing 12 nsubjpass _ _ 10 can can AUX MD VerbForm=Fin 12 aux _ _ 11 be be AUX VB VerbForm=Inf 12 auxpass _ _ 12 dropped drop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 advcl _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = The answer is affirmative for functors between categories such as $ Set $ , $ K - Vec $ (vector spaces), boolean algebras, and actions of any finite group either on $ Set $ or on $ K - Vec $ for fields $ K $ of characteristic 0. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 answer answer NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 affirmative affirmative ADJ JJ Degree=Pos 3 acomp _ _ 5 for for ADP IN _ 4 prep _ _ 6 functors functor NOUN NNS Number=Plur 5 pobj _ _ 7 between between ADP IN _ 6 prep _ _ 8 categories category NOUN NNS Number=Plur 7 pobj _ _ 9 such such ADJ JJ Degree=Pos 10 amod _ _ 10 as as ADP IN _ 8 prep _ _ 11 $ Set $ $ set $ SYM $ _ 10 pobj _ _ 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 $ K - Vec $ $ k - vec $ SYM $ _ 11 conj _ _ 14 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 13 punct _ SpaceAfter=No 15 vector vector NOUN NN Number=Sing 16 compound _ _ 16 spaces space NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 17 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 16 punct _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 16 punct _ _ 19 boolean boolean PROPN NNP Number=Sing 20 compound _ _ 20 algebras algebras PROPN NNP Number=Sing 16 conj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 and and CCONJ CC ConjType=Cmp 20 cc _ _ 23 actions action NOUN NNS Number=Plur 20 conj _ _ 24 of of ADP IN _ 23 prep _ _ 25 any any DET DT _ 27 det _ _ 26 finite finite PROPN NNP Number=Sing 27 compound _ _ 27 group group NOUN NN Number=Sing 24 pobj _ _ 28 either either CCONJ CC ConjType=Cmp 29 preconj _ _ 29 on on ADP IN _ 23 prep _ _ 30 $ Set $ $ set $ SYM $ _ 29 pobj _ _ 31 or or CCONJ CC ConjType=Cmp 30 cc _ _ 32 on on ADP IN _ 30 conj _ _ 33 $ K - Vec $ $ k - vec $ SYM $ _ 32 pobj _ _ 34 for for ADP IN _ 23 prep _ _ 35 fields field NOUN NNS Number=Plur 34 pobj _ _ 36 $ K $ $ k $ SYM $ _ 6 appos _ _ 37 of of ADP IN _ 36 prep _ _ 38 characteristic characteristic ADJ JJ Degree=Pos 37 pobj _ _ 39 0 0 NUM CD NumType=Card 37 pobj _ SpaceAfter=No 40 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = All this generalizes to locally $ lambda $ - presentable categories, $ lambda $ - accessible functors and $ lambda $ - presentable algebras. 1 All all DET PDT _ 2 predet _ _ 2 this this PRON DT Number=Sing|PronType=Dem 3 nsubj _ _ 3 generalizes generalize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 to to ADP IN _ 3 prep _ _ 5 locally locally ADV RB _ 9 advmod _ _ 6 $ lambda $ $ lambda $ SYM $ _ 8 advmod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 presentable presentable ADJ JJ Degree=Pos 9 amod _ _ 9 categories category NOUN NNS Number=Plur 4 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 $ lambda $ $ lambda $ SYM $ _ 13 advmod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 accessible accessible ADJ JJ Degree=Pos 14 amod _ _ 14 functors functor NOUN NNS Number=Plur 9 conj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 $ lambda $ $ lambda $ SYM $ _ 18 advmod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 presentable presentable ADJ JJ Degree=Pos 19 amod _ _ 19 algebras algebra NOUN NNS Number=Plur 14 conj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = As an application we obtain an easy proof that the Hausdorff functor on the category of complete metric spaces is $ aleph_1 $ - accessible. 1 As as ADP IN _ 5 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 application application NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 an an DET DT Definite=Ind|PronType=Art 8 det _ _ 7 easy easy ADJ JJ Degree=Pos 8 amod _ _ 8 proof proof NOUN NN Number=Sing 5 dobj _ _ 9 that that SCONJ IN _ 20 mark _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 Hausdorff Hausdorff PROPN NNP Number=Sing 12 compound _ _ 12 functor functor NOUN NN Number=Sing 20 nsubj _ _ 13 on on ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 category category NOUN NN Number=Sing 13 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 complete complete ADJ JJ Degree=Pos 19 amod _ _ 18 metric metric ADJ JJ Degree=Pos 19 amod _ _ 19 spaces space NOUN NNS Number=Plur 16 pobj _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 acl _ _ 21 $ aleph_1 $ $ aleph_1 $ SYM $ _ 23 advmod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 accessible accessible ADJ JJ Degree=Pos 20 acomp _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 704 # sent_id = 1 # text = Higher categorical structures are often defined by induction on dimension, which a priori produces only finite - dimensional structures. 1 Higher high ADJ JJR Degree=Cmp 3 amod _ _ 2 categorical categorical ADJ JJ Degree=Pos 3 amod _ _ 3 structures structure NOUN NNS Number=Plur 6 nsubjpass _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 5 often often ADV RB _ 6 advmod _ _ 6 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 by by ADP IN _ 6 agent _ _ 8 induction induction NOUN NN Number=Sing 7 pobj _ _ 9 on on ADP IN _ 8 prep _ _ 10 dimension dimension NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 which which PRON WDT _ 15 nsubj _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 priori priori X FW Foreign=Yes 15 nsubj _ _ 15 produces produce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 10 relcl _ _ 16 only only ADV RB _ 20 amod _ _ 17 finite finite ADJ JJ Degree=Pos 19 npadvmod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 dimensional dimensional ADJ JJ Degree=Pos 20 amod _ _ 20 structures structure NOUN NNS Number=Plur 15 dobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = In this paper we show how to extend such definitions to infinite dimensions using the theory of terminal coalgebras, and we apply this method to Trimble's notion of weak $ n $ - category. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 how how SCONJ WRB _ 8 advmod _ _ 7 to to PART TO _ 8 aux _ _ 8 extend extend VERB VB VerbForm=Inf 5 xcomp _ _ 9 such such ADJ JJ Degree=Pos 10 amod _ _ 10 definitions definition NOUN NNS Number=Plur 8 dobj _ _ 11 to to PART TO _ 8 prep _ _ 12 infinite infinite VERB VB VerbForm=Inf 13 amod _ _ 13 dimensions dimension NOUN NNS Number=Plur 11 pobj _ _ 14 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 advcl _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 theory theory NOUN NN Number=Sing 14 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 terminal terminal ADJ JJ Degree=Pos 19 amod _ _ 19 coalgebras coalgebra NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 5 punct _ _ 21 and and CCONJ CC ConjType=Cmp 5 cc _ _ 22 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 23 nsubj _ _ 23 apply apply VERB VBP Tense=Pres|VerbForm=Fin 5 conj _ _ 24 this this DET DT Number=Sing|PronType=Dem 25 det _ _ 25 method method NOUN NN Number=Sing 23 dobj _ _ 26 to to ADP IN _ 23 prep _ _ 27 Trimble Trimble PROPN NNP Number=Sing 29 poss _ SpaceAfter=No 28 's 's PART POS _ 27 case _ _ 29 notion notion NOUN NN Number=Sing 26 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 weak weak ADJ JJ Degree=Pos 34 amod _ _ 32 $ n $ $ n $ SYM $ _ 34 nummod _ _ 33 - - PUNCT HYPH PunctType=Dash 34 punct _ _ 34 category category NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 23 punct _ SpaceAfter=No # sent_id = 3 # text = Trimble's definition makes explicit the relationship between $ n $ - categories and topological spaces; our extended theory produces a definition of Trimble $ infty $ - category and a fundamental $ infty $ - groupoid construction. 1 Trimble trimble ADJ JJ Degree=Pos 3 poss _ SpaceAfter=No 2 's 's PART POS _ 1 case _ _ 3 definition definition NOUN NN Number=Sing 4 nsubj _ _ 4 makes make VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 ccomp _ _ 5 explicit explicit ADJ JJ Degree=Pos 4 ccomp _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 relationship relationship NOUN NN Number=Sing 5 dobj _ _ 8 between between ADP IN _ 7 prep _ _ 9 $ n $ $ n $ SYM $ _ 11 nummod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 categories category NOUN NNS Number=Plur 8 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 topological topological ADJ JJ Degree=Pos 14 amod _ _ 14 spaces space NOUN NNS Number=Plur 11 conj _ SpaceAfter=No 15 ; ; PUNCT : _ 19 punct _ _ 16 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 18 poss _ _ 17 extended extended ADJ JJ Degree=Pos 18 amod _ _ 18 theory theory NOUN NN Number=Sing 19 nsubj _ _ 19 produces produce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 20 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 21 definition definition NOUN NN Number=Sing 19 dobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 Trimble Trimble PROPN NNP Number=Sing 26 amod _ _ 24 $ infty $ $ infty $ SYM $ _ 26 compound _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 category category NOUN NN Number=Sing 22 pobj _ _ 27 and and CCONJ CC ConjType=Cmp 21 cc _ _ 28 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 29 fundamental fundamental ADJ JJ Degree=Pos 33 amod _ _ 30 $ infty $ $ infty $ SYM $ _ 32 nmod _ _ 31 - - PUNCT HYPH PunctType=Dash 32 punct _ _ 32 groupoid groupoid NOUN NN Number=Sing 33 compound _ _ 33 construction construction NOUN NN Number=Sing 21 conj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 4 # text = Furthermore, terminal coalgebras are often constructed as limits of a certain type. 1 Furthermore furthermore ADV RB _ 7 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 7 punct _ _ 3 terminal terminal ADJ JJ Degree=Pos 4 amod _ _ 4 coalgebras coalgebra NOUN NNS Number=Plur 7 nsubjpass _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 6 often often ADV RB _ 7 advmod _ _ 7 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 as as ADP IN _ 7 prep _ _ 9 limits limit NOUN NNS Number=Plur 8 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 certain certain ADJ JJ Degree=Pos 13 amod _ _ 13 type type NOUN NN Number=Sing 10 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 5 # text = We prove that the theory of Batanin - Leinster weak $ infty $ - categories arises as just such a limit, justifying our approach to Trimble $ infty $ - categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 14 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 theory theory NOUN NN Number=Sing 14 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 Batanin Batanin PROPN NNP Number=Sing 9 compound _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 Leinster leinster NOUN NN Number=Sing 6 pobj _ _ 10 weak weak ADJ JJ Degree=Pos 13 amod _ _ 11 $ infty $ $ infty $ SYM $ _ 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 categories category NOUN NNS Number=Plur 9 appos _ _ 14 arises arise VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 15 as as ADP IN _ 14 prep _ _ 16 just just ADV RB _ 19 advmod _ _ 17 such such DET PDT _ 19 predet _ _ 18 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 19 limit limit NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 14 punct _ _ 21 justifying justify VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 advcl _ _ 22 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 23 poss _ _ 23 approach approach NOUN NN Number=Sing 21 dobj _ _ 24 to to ADP IN _ 23 prep _ _ 25 Trimble Trimble PROPN NNP Number=Sing 28 amod _ _ 26 $ infty $ $ infty $ SYM $ _ 28 compound _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 categories category NOUN NNS Number=Plur 24 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = In fact we work at the level of monads for $ infty $ - categories, rather than $ infty $ - categories themselves; this requires more sophisticated technology but also provides a more complete theory of the structures in question. 1 In in ADP IN _ 4 prep _ _ 2 fact fact NOUN NN Number=Sing 1 pobj _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 work work VERB VBP Tense=Pres|VerbForm=Fin 23 ccomp _ _ 5 at at ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 level level NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 monads monad NOUN NNS Number=Plur 8 pobj _ _ 10 for for ADP IN _ 7 prep _ _ 11 $ infty $ $ infty $ SYM $ _ 13 nmod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 categories category NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 13 punct _ _ 15 rather rather ADV RB _ 16 advmod _ _ 16 than than ADP IN _ 13 cc _ _ 17 $ infty $ $ infty $ SYM $ _ 19 compound _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 categories category NOUN NNS Number=Plur 13 conj _ _ 20 themselves themselves PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs|Reflex=Yes 19 appos _ SpaceAfter=No 21 ; ; PUNCT : _ 23 punct _ _ 22 this this PRON DT Number=Sing|PronType=Dem 23 nsubj _ _ 23 requires require VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 24 more more ADV RBR Degree=Cmp 25 advmod _ _ 25 sophisticated sophisticated ADJ JJ Degree=Pos 26 amod _ _ 26 technology technology NOUN NN Number=Sing 23 dobj _ _ 27 but but CCONJ CC ConjType=Cmp 23 cc _ _ 28 also also ADV RB _ 27 advmod _ _ 29 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 conj _ _ 30 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 31 more more ADV RBR Degree=Cmp 32 advmod _ _ 32 complete complete ADJ JJ Degree=Pos 33 amod _ _ 33 theory theory NOUN NN Number=Sing 29 dobj _ _ 34 of of ADP IN _ 33 prep _ _ 35 the the DET DT Definite=Def|PronType=Art 36 det _ _ 36 structures structure NOUN NNS Number=Plur 34 pobj _ _ 37 in in ADP IN _ 29 prep _ _ 38 question question NOUN NN Number=Sing 37 pobj _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 23 punct _ SpaceAfter=No # doc_id = 705 # sent_id = 1 # text = This paper studies the homotopy theory of parametrized spectrum objects in a model category from a global point of view. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 studies study VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 homotopy homotopy NOUN NN Number=Sing 6 compound _ _ 6 theory theory NOUN NN Number=Sing 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 parametrized parametrized ADJ JJ Degree=Pos 10 amod _ _ 9 spectrum spectrum NOUN NN Number=Sing 10 compound _ _ 10 objects object NOUN NNS Number=Plur 7 pobj _ _ 11 in in ADP IN _ 3 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 model model NOUN NN Number=Sing 14 compound _ _ 14 category category NOUN NN Number=Sing 11 pobj _ _ 15 from from ADP IN _ 3 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 global global ADJ JJ Degree=Pos 18 amod _ _ 18 point point NOUN NN Number=Sing 15 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 view view NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = More precisely, for a model category $ M $ satisfying suitable conditions, we construct a map of model categories $ TM to M $ , called the tangent bundle, whose fiber over an object in $ M $ is a model category for spectra in its over - category. 1 More more ADV RBR Degree=Cmp 2 advmod _ _ 2 precisely precisely ADV RB _ 14 advmod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 14 punct _ _ 4 for for ADP IN _ 14 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 model model NOUN NN Number=Sing 7 compound _ _ 7 category category NOUN NN Number=Sing 4 pobj _ _ 8 $ M $ $ m $ SYM $ _ 7 appos _ _ 9 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 pcomp _ _ 10 suitable suitable ADJ JJ Degree=Pos 11 amod _ _ 11 conditions condition NOUN NNS Number=Plur 9 dobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 14 punct _ _ 13 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 14 nsubj _ _ 14 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 map map NOUN NN Number=Sing 14 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 model model NOUN NN Number=Sing 19 compound _ _ 19 categories category NOUN NNS Number=Plur 17 pobj _ _ 20 $ TM to M $ $ tm to m $ SYM $ _ 16 appos _ _ 21 , , PUNCT , PunctType=Comm 16 punct _ _ 22 called call VERB VBD Tense=Past|VerbForm=Fin 16 acl _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 tangent tangent NOUN NN Number=Sing 25 compound _ _ 25 bundle bundle NOUN NN Number=Sing 22 oprd _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 25 punct _ _ 27 whose whose DET WP$ Poss=Yes 28 poss _ _ 28 fiber fiber NOUN NN Number=Sing 34 nsubj _ _ 29 over over ADP IN _ 28 prep _ _ 30 an an DET DT Definite=Ind|PronType=Art 31 det _ _ 31 object object NOUN NN Number=Sing 29 pobj _ _ 32 in in ADP IN _ 31 prep _ _ 33 $ M $ $ m $ SYM $ _ 32 pobj _ _ 34 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 25 relcl _ _ 35 a a DET DT Definite=Ind|PronType=Art 37 det _ _ 36 model model NOUN NN Number=Sing 37 compound _ _ 37 category category NOUN NN Number=Sing 34 attr _ _ 38 for for ADP IN _ 37 prep _ _ 39 spectra spectra PROPN NNP Number=Sing 38 pobj _ _ 40 in in ADP IN _ 34 prep _ _ 41 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 44 poss _ _ 42 over over ADP IN _ 44 nmod _ _ 43 - - PUNCT HYPH PunctType=Dash 44 punct _ _ 44 category category NOUN NN Number=Sing 40 pobj _ SpaceAfter=No 45 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 3 # text = We show that the tangent bundle is a relative model category and presents the $ infty $ - categorical tangent bundle, as constructed by Lurie. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 7 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 tangent tangent NOUN NN Number=Sing 6 compound _ _ 6 bundle bundle NOUN NN Number=Sing 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 8 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 9 relative relative ADJ JJ Degree=Pos 10 amod _ _ 10 model model NOUN NN Number=Sing 11 compound _ _ 11 category category NOUN NN Number=Sing 7 attr _ _ 12 and and CCONJ CC ConjType=Cmp 7 cc _ _ 13 presents present VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 conj _ _ 14 the the DET DT Definite=Def|PronType=Art 19 det _ _ 15 $ infty $ $ infty $ SYM $ _ 17 advmod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 categorical categorical ADJ JJ Degree=Pos 19 amod _ _ 18 tangent tangent NOUN NN Number=Sing 19 compound _ _ 19 bundle bundle NOUN NN Number=Sing 13 dobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 13 punct _ _ 21 as as SCONJ IN _ 22 mark _ _ 22 constructed construct VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 advcl _ _ 23 by by ADP IN _ 22 agent _ _ 24 Lurie Lurie PROPN NNP Number=Sing 23 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = Moreover, the tangent bundle $ TM $ inherits an enriched model structure from $ M $ . 1 Moreover moreover ADV RB _ 5 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 5 punct _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 tangent tangent NOUN NN Number=Sing 5 nsubj _ _ 5 bundle bundle VERB VB VerbForm=Inf 0 ROOT _ _ 6 $ TM $ $ tm $ SYM $ _ 7 nsubj _ _ 7 inherits inherit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 ccomp _ _ 8 an an DET DT Definite=Ind|PronType=Art 11 det _ _ 9 enriched enriched ADJ JJ Degree=Pos 11 amod _ _ 10 model model NOUN NN Number=Sing 11 compound _ _ 11 structure structure NOUN NN Number=Sing 7 dobj _ _ 12 from from ADP IN _ 7 prep _ _ 13 $ M $ $ m $ SYM $ _ 12 pobj _ _ 14 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 5 # text = This additional structure is used in subsequent work to identify the tangent bundles of algebras over an operad and of enriched categories, but may be of independent interest. 1 This this DET DT Number=Sing|PronType=Dem 3 det _ _ 2 additional additional ADJ JJ Degree=Pos 3 amod _ _ 3 structure structure NOUN NN Number=Sing 5 nsubjpass _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 auxpass _ _ 5 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 in in ADP IN _ 5 prep _ _ 7 subsequent subsequent ADJ JJ Degree=Pos 8 amod _ _ 8 work work NOUN NN Number=Sing 6 pobj _ _ 9 to to PART TO _ 10 aux _ _ 10 identify identify VERB VB VerbForm=Inf 5 xcomp _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 tangent tangent ADJ JJ Degree=Pos 13 compound _ _ 13 bundles bundle NOUN NNS Number=Plur 10 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 algebras algebra NOUN NNS Number=Plur 14 pobj _ _ 16 over over ADP IN _ 10 prep _ _ 17 an an DET DT Definite=Ind|PronType=Art 18 det _ _ 18 operad operad NOUN NN Number=Sing 16 pobj _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 of of ADP IN _ 18 prep _ _ 21 enriched enriched ADJ JJ Degree=Pos 22 amod _ _ 22 categories category NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 5 punct _ _ 24 but but CCONJ CC ConjType=Cmp 5 cc _ _ 25 may may AUX MD VerbForm=Fin 26 aux _ _ 26 be be AUX VB VerbForm=Inf 5 conj _ _ 27 of of ADP IN _ 26 prep _ _ 28 independent independent ADJ JJ Degree=Pos 29 amod _ _ 29 interest interest NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 706 # sent_id = 1 # text = An extensive category can be defined as a category $ C $ with finite coproducts such that for each pair $ X $ , $ Y $ of objects in $ C $ , the canonical functor $ + : C/X times C/Y to C/(X + Y) $ is an equivalence. 1 An an DET DT Definite=Ind|PronType=Art 3 det _ _ 2 extensive extensive ADJ JJ Degree=Pos 3 amod _ _ 3 category category NOUN NN Number=Sing 6 nsubjpass _ _ 4 can can AUX MD VerbForm=Fin 6 aux _ _ 5 be be AUX VB VerbForm=Inf 6 auxpass _ _ 6 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 as as ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 category category NOUN NN Number=Sing 7 pobj _ _ 10 $ C $ $ c $ SYM $ _ 9 appos _ _ 11 with with ADP IN _ 6 prep _ _ 12 finite finite ADJ JJ Degree=Pos 13 amod _ _ 13 coproducts coproduct NOUN NNS Number=Plur 11 pobj _ _ 14 such such ADJ JJ Degree=Pos 15 amod _ _ 15 that that SCONJ IN _ 31 mark _ _ 16 for for ADP IN _ 31 prep _ _ 17 each each DET DT _ 18 det _ _ 18 pair pair NOUN NN Number=Sing 16 pobj _ _ 19 $ X $ $ x $ SYM $ _ 16 pobj _ _ 20 , , PUNCT , PunctType=Comm 19 punct _ _ 21 $ Y $ $ y $ SYM $ _ 16 dep _ _ 22 of of ADP IN _ 21 prep _ _ 23 objects object NOUN NNS Number=Plur 22 pobj _ _ 24 in in ADP IN _ 23 prep _ _ 25 $ C $ $ c $ SYM $ _ 24 pobj _ _ 26 , , PUNCT , PunctType=Comm 31 punct _ _ 27 the the DET DT Definite=Def|PronType=Art 29 det _ _ 28 canonical canonical ADJ JJ Degree=Pos 29 amod _ _ 29 functor functor NOUN NN Number=Sing 31 nsubj _ _ 30 $ + : C/X times C/Y to C/(X + Y) $ $ + : c/x times c/y to c/(x + y) $ SYM $ _ 29 appos _ _ 31 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 advcl _ _ 32 an an DET DT Definite=Ind|PronType=Art 33 det _ _ 33 equivalence equivalence NOUN NN Number=Sing 31 attr _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = We say that a category $ C $ with finite products is left coextensive if the dual canonical functor $ times : X/C times Y/C to (X times Y)/C $ is fully faithful. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 say say VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 11 mark _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 11 nsubjpass _ _ 6 $ C $ $ c $ SYM $ _ 5 appos _ _ 7 with with ADP IN _ 5 prep _ _ 8 finite finite ADJ JJ Degree=Pos 9 amod _ _ 9 products product NOUN NNS Number=Plur 7 pobj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 11 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 12 coextensive coextensive ADJ JJ Degree=Pos 11 oprd _ _ 13 if if SCONJ IN _ 19 mark _ _ 14 the the DET DT Definite=Def|PronType=Art 17 det _ _ 15 dual dual ADJ JJ Degree=Pos 17 amod _ _ 16 canonical canonical NOUN NN Number=Sing 17 compound _ _ 17 functor functor NOUN NN Number=Sing 19 nsubj _ _ 18 $ times : X/C times Y/C to (X times Y)/C $ $ times : x/c times y/c to (x times y)/c $ SYM $ _ 17 appos _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 advcl _ _ 20 fully fully ADV RB _ 21 advmod _ _ 21 faithful faithful ADJ JJ Degree=Pos 19 acomp _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We then give a syntactical characterization of left coextensive varieties of universal algebras. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 syntactical syntactical ADJ JJ Degree=Pos 6 amod _ _ 6 characterization characterization NOUN NN Number=Sing 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 left left ADJ JJ Degree=Pos 10 amod _ _ 9 coextensive coextensive ADJ JJ Degree=Pos 10 amod _ _ 10 varieties variety NOUN NNS Number=Plur 7 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 universal universal ADJ JJ Degree=Pos 13 amod _ _ 13 algebras algebra NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 707 # sent_id = 1 # text = We say a set - valued functor on a category is nearly representable if it is a quotient of a representable functor by a group of automorphisms. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 say say VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 4 set set NOUN NN Number=Sing 6 npadvmod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 amod _ _ 7 functor functor NOUN NN Number=Sing 11 nsubj _ _ 8 on on ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 category category NOUN NN Number=Sing 8 pobj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 12 nearly nearly ADV RB _ 13 advmod _ _ 13 representable representable ADJ JJ Degree=Pos 11 acomp _ _ 14 if if SCONJ IN _ 16 mark _ _ 15 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 16 nsubj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 advcl _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 quotient quotient NOUN NN Number=Sing 16 attr _ _ 19 of of ADP IN _ 18 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 representable representable ADJ JJ Degree=Pos 22 amod _ _ 22 functor functor NOUN NN Number=Sing 19 pobj _ _ 23 by by ADP IN _ 16 prep _ _ 24 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 25 group group NOUN NN Number=Sing 23 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 automorphisms automorphism NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = A distributor is a set - valued functor in two arguments, contravariant in one argument and covariant in the other. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 distributor distributor NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 5 set set NOUN NN Number=Sing 7 npadvmod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 8 functor functor NOUN NN Number=Sing 3 attr _ _ 9 in in ADP IN _ 8 prep _ _ 10 two two NUM CD NumType=Card 11 nummod _ _ 11 arguments argument NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 contravariant contravariant ADJ JJ Degree=Pos 11 amod _ _ 14 in in ADP IN _ 13 prep _ _ 15 one one NUM CD NumType=Card 16 nummod _ _ 16 argument argument NOUN NN Number=Sing 14 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 covariant covariant NOUN NN Number=Sing 16 conj _ _ 19 in in ADP IN _ 16 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 other other ADJ JJ Degree=Pos 19 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = We say a distributor is slicewise nearly representable if it is nearly representable in either of the arguments whenever the other argument is fixed. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 say say VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 distributor distributor NOUN NN Number=Sing 5 nsubj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 6 slicewise slicewise ADJ JJR Degree=Cmp 5 acomp _ _ 7 nearly nearly ADV RB _ 8 advmod _ _ 8 representable representable ADJ JJ Degree=Pos 5 acomp _ _ 9 if if SCONJ IN _ 11 mark _ _ 10 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 11 nsubj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 advcl _ _ 12 nearly nearly ADV RB _ 13 advmod _ _ 13 representable representable ADJ JJ Degree=Pos 11 acomp _ _ 14 in in ADP IN _ 13 prep _ _ 15 either either PRON DT _ 14 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 arguments argument NOUN NNS Number=Plur 16 pobj _ _ 19 whenever whenever SCONJ WRB _ 24 advmod _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 other other ADJ JJ Degree=Pos 22 amod _ _ 22 argument argument NOUN NN Number=Sing 24 nsubjpass _ _ 23 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 auxpass _ _ 24 fixed fix VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 advcl _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We consider such a distributor a weak analogue of adjunction. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 such such DET PDT _ 5 predet _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 distributor distributor NOUN NN Number=Sing 8 nsubj _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 weak weak ADJ JJ Degree=Pos 8 amod _ _ 8 analogue analogue NOUN NN Number=Sing 2 ccomp _ _ 9 of of ADP IN _ 8 prep _ _ 10 adjunction adjunction NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = Under a finiteness assumption on the domain categories, we show that every slicewise nearly representable functor is a composite of two distributors, each of which may be considered as a weak analogue of (co - )reflective adjunction. 1 Under under ADP IN _ 11 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 finiteness finiteness ADJ JJ Degree=Pos 4 amod _ _ 4 assumption assumption NOUN NN Number=Sing 1 pobj _ _ 5 on on ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 domain domain NOUN NN Number=Sing 8 compound _ _ 8 categories category NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 11 punct _ _ 10 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 11 nsubj _ _ 11 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 that that SCONJ IN _ 18 mark _ _ 13 every every DET DT _ 17 det _ _ 14 slicewise slicewise ADJ JJ Degree=Pos 17 amod _ _ 15 nearly nearly ADV RB _ 16 advmod _ _ 16 representable representable ADJ JJ Degree=Pos 17 amod _ _ 17 functor functor NOUN NN Number=Sing 18 nsubj _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 ccomp _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 composite composite NOUN NN Number=Sing 18 attr _ _ 21 of of ADP IN _ 20 prep _ _ 22 two two NUM CD NumType=Card 23 nummod _ _ 23 distributors distributor NOUN NNS Number=Plur 21 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 23 punct _ _ 25 each each PRON DT _ 30 nsubjpass _ _ 26 of of ADP IN _ 25 prep _ _ 27 which which PRON WDT _ 26 pobj _ _ 28 may may AUX MD VerbForm=Fin 30 aux _ _ 29 be be AUX VB VerbForm=Inf 30 auxpass _ _ 30 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 relcl _ _ 31 as as ADP IN _ 30 prep _ _ 32 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 33 weak weak ADJ JJ Degree=Pos 34 amod _ _ 34 analogue analogue NOUN NN Number=Sing 31 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 35 punct _ SpaceAfter=No 37 co co VERB VB VerbForm=Inf 41 nmod _ _ 38 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 39 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 37 punct _ SpaceAfter=No 40 reflective reflective ADJ JJ Degree=Pos 41 amod _ _ 41 adjunction adjunction NOUN NN Number=Sing 35 pobj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # doc_id = 708 # sent_id = 1 # text = Noetherian forms provide an abstract self - dual context in which one can establish homomorphism theorems (Noether isomorphism theorems and homological diagram lemmas) for groups, rings, modules and other group - like structures. 1 Noetherian noetherian ADJ JJ Degree=Pos 2 amod _ _ 2 forms form NOUN NNS Number=Plur 3 nsubj _ _ 3 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 5 abstract abstract ADJ JJ Degree=Pos 9 amod _ _ 6 self self NOUN NN Number=Sing 8 npadvmod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 dual dual ADJ JJ Degree=Pos 9 amod _ _ 9 context context NOUN NN Number=Sing 3 dobj _ _ 10 in in ADP IN _ 14 prep _ _ 11 which which PRON WDT _ 10 pobj _ _ 12 one one PRON PRP PronType=Prs 14 nsubj _ _ 13 can can AUX MD VerbForm=Fin 14 aux _ _ 14 establish establish VERB VB VerbForm=Inf 9 relcl _ _ 15 homomorphism homomorphism NOUN NN Number=Sing 16 compound _ _ 16 theorems theorem NOUN NNS Number=Plur 14 dobj _ _ 17 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 20 punct _ SpaceAfter=No 18 Noether Noether PROPN NNP Number=Sing 20 advmod _ _ 19 isomorphism isomorphism NOUN NN Number=Sing 20 compound _ _ 20 theorems theorem NOUN NNS Number=Plur 9 appos _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 homological homological ADJ JJ Degree=Pos 23 amod _ _ 23 diagram diagram NOUN NN Number=Sing 24 compound _ _ 24 lemmas lemma NOUN NNS Number=Plur 20 conj _ SpaceAfter=No 25 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 24 punct _ _ 26 for for ADP IN _ 20 prep _ _ 27 groups group NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 27 punct _ _ 29 rings ring NOUN NNS Number=Plur 27 conj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 29 punct _ _ 31 modules module NOUN NNS Number=Plur 29 conj _ _ 32 and and CCONJ CC ConjType=Cmp 31 cc _ _ 33 other other ADJ JJ Degree=Pos 37 amod _ _ 34 group group NOUN NN Number=Sing 36 npadvmod _ _ 35 - - PUNCT HYPH PunctType=Dash 36 punct _ _ 36 like like ADJ JJ Degree=Pos 37 amod _ _ 37 structures structure NOUN NNS Number=Plur 31 conj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = In fact, any semi - abelian category in the sense of Janelidze, Marki and Tholen, as well as any exact category in the sense of Grandis (and hence, in particular, any abelian category), can be seen as an example of a noetherian form. 1 In in ADP IN _ 44 prep _ _ 2 fact fact NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 44 punct _ _ 4 any any DET DT _ 8 det _ _ 5 semi semi ADJ JJ Degree=Pos 8 amod _ _ 6 - - ADJ JJ Degree=Pos 8 amod _ _ 7 abelian abelian ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 44 nsubjpass _ _ 9 in in ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 sense sense NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 Janelidze Janelidze PROPN NNP Number=Sing 12 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 13 punct _ _ 15 Marki Marki PROPN NNP Number=Sing 13 conj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 Tholen Tholen PROPN NNP Number=Sing 15 conj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 13 punct _ _ 19 as as ADV RB _ 21 advmod _ _ 20 well well ADV RB Degree=Pos 21 advmod _ _ 21 as as ADP IN _ 13 cc _ _ 22 any any DET DT _ 24 det _ _ 23 exact exact ADJ JJ Degree=Pos 24 amod _ _ 24 category category NOUN NN Number=Sing 13 conj _ _ 25 in in ADP IN _ 8 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 sense sense NOUN NN Number=Sing 25 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 Grandis Grandis PROPN NNP Number=Sing 28 pobj _ _ 30 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 29 punct _ SpaceAfter=No 31 and and CCONJ CC ConjType=Cmp 25 cc _ _ 32 hence hence ADV RB _ 25 conj _ SpaceAfter=No 33 , , PUNCT , PunctType=Comm 8 punct _ _ 34 in in ADP IN _ 39 prep _ _ 35 particular particular ADJ JJ Degree=Pos 34 amod _ SpaceAfter=No 36 , , PUNCT , PunctType=Comm 39 punct _ _ 37 any any DET DT _ 39 det _ _ 38 abelian abelian ADJ JJ Degree=Pos 39 compound _ _ 39 category category NOUN NN Number=Sing 8 appos _ SpaceAfter=No 40 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 39 punct _ SpaceAfter=No 41 , , PUNCT , PunctType=Comm 44 punct _ _ 42 can can AUX MD VerbForm=Fin 44 aux _ _ 43 be be AUX VB VerbForm=Inf 44 auxpass _ _ 44 seen see VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 45 as as ADP IN _ 44 prep _ _ 46 an an DET DT Definite=Ind|PronType=Art 47 det _ _ 47 example example NOUN NN Number=Sing 45 pobj _ _ 48 of of ADP IN _ 47 prep _ _ 49 a a DET DT Definite=Ind|PronType=Art 51 det _ _ 50 noetherian noetherian ADJ JJ Degree=Pos 51 amod _ _ 51 form form NOUN NN Number=Sing 48 pobj _ SpaceAfter=No 52 . . PUNCT . PunctType=Peri 44 punct _ SpaceAfter=No # sent_id = 3 # text = In this paper we generalize the notion of a biproduct of objects in an abelian category to a noetherian form and apply it do develop commutator theory in noetherian forms. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 generalize generalize VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 notion notion NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 biproduct biproduct NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 objects object NOUN NNS Number=Plur 11 pobj _ _ 13 in in ADP IN _ 10 prep _ _ 14 an an DET DT Definite=Ind|PronType=Art 16 det _ _ 15 abelian abelian ADJ JJ Degree=Pos 16 amod _ _ 16 category category NOUN NN Number=Sing 13 pobj _ _ 17 to to ADP IN _ 10 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 19 noetherian noetherian ADJ JJ Degree=Pos 20 amod _ _ 20 form form NOUN NN Number=Sing 17 pobj _ _ 21 and and CCONJ CC ConjType=Cmp 5 cc _ _ 22 apply apply VERB VB VerbForm=Inf 5 conj _ _ 23 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 25 nsubj _ _ 24 do do AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 25 aux _ _ 25 develop develop VERB VB VerbForm=Inf 22 ccomp _ _ 26 commutator commutator NOUN NN Number=Sing 27 compound _ _ 27 theory theory NOUN NN Number=Sing 25 dobj _ _ 28 in in ADP IN _ 25 prep _ _ 29 noetherian noetherian ADJ JJ Degree=Pos 30 amod _ _ 30 forms form NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = In the case of semi - abelian categories, biproducts give usual products of objects and our commutators coincide with the so - called Huq commutators (which in the case of groups are the usual commutators of subgroups). 1 In in ADP IN _ 11 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 case case NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 semi semi ADJ JJ Degree=Pos 8 amod _ _ 6 - - ADJ JJ Degree=Pos 8 amod _ _ 7 abelian abelian ADJ JJ Degree=Pos 8 amod _ _ 8 categories category NOUN NNS Number=Plur 4 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 11 punct _ _ 10 biproducts biproduct NOUN NNS Number=Plur 11 nsubj _ _ 11 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 usual usual ADJ JJ Degree=Pos 13 amod _ _ 13 products product NOUN NNS Number=Plur 11 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 objects object NOUN NNS Number=Plur 14 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 13 cc _ _ 17 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 18 poss _ _ 18 commutators commutator NOUN NNS Number=Plur 13 conj _ _ 19 coincide coincide VERB VBP Tense=Pres|VerbForm=Fin 11 dobj _ _ 20 with with ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 26 det _ _ 22 so so ADV RB _ 24 advmod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 amod _ _ 25 Huq Huq PROPN NNP Number=Sing 26 compound _ _ 26 commutators commutator NOUN NNS Number=Plur 20 pobj _ _ 27 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 26 punct _ SpaceAfter=No 28 which which PRON WDT _ 34 nsubj _ _ 29 in in ADP IN _ 34 prep _ _ 30 the the DET DT Definite=Def|PronType=Art 31 det _ _ 31 case case NOUN NN Number=Sing 29 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 groups group NOUN NNS Number=Plur 32 pobj _ _ 34 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 26 relcl _ _ 35 the the DET DT Definite=Def|PronType=Art 37 det _ _ 36 usual usual ADJ JJ Degree=Pos 37 amod _ _ 37 commutators commutator NOUN NNS Number=Plur 34 attr _ _ 38 of of ADP IN _ 37 prep _ _ 39 subgroups subgroup NOUN NNS Number=Plur 38 pobj _ SpaceAfter=No 40 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 26 punct _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 5 # text = This paper thus shows that the structure of a noetherian form allows for a self - dual approach to products and commutators in semi - abelian categories, similarly as has been known for homomorphism theorems. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 4 nsubj _ _ 3 thus thus ADV RB _ 4 advmod _ _ 4 shows show VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 12 mark _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 structure structure NOUN NN Number=Sing 12 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 noetherian noetherian ADJ JJ Degree=Pos 11 amod _ _ 11 form form NOUN NN Number=Sing 8 pobj _ _ 12 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 13 for for ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 15 self self NOUN NN Number=Sing 17 npadvmod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 dual dual ADJ JJ Degree=Pos 18 amod _ _ 18 approach approach NOUN NN Number=Sing 13 pobj _ _ 19 to to ADP IN _ 18 prep _ _ 20 products product NOUN NNS Number=Plur 19 pobj _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 commutators commutator NOUN NNS Number=Plur 20 conj _ _ 23 in in ADP IN _ 20 prep _ _ 24 semi semi ADJ JJ Degree=Pos 27 amod _ _ 25 - - ADJ JJ Degree=Pos 27 amod _ _ 26 abelian abelian ADJ JJ Degree=Pos 27 amod _ _ 27 categories category NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 12 punct _ _ 29 similarly similarly ADV RB _ 33 advmod _ _ 30 as as SCONJ IN _ 33 mark _ _ 31 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 33 aux _ _ 32 been be AUX VBN Tense=Past|VerbForm=Part 33 auxpass _ _ 33 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 advcl _ _ 34 for for ADP IN _ 33 prep _ _ 35 homomorphism homomorphism NOUN NN Number=Sing 36 compound _ _ 36 theorems theorem NOUN NNS Number=Plur 34 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 709 # sent_id = 1 # text = Poly - bicategories generalise planar polycategories in the same way as bicategories generalise monoidal categories. 1 Poly poly ADJ JJ Degree=Pos 3 amod _ _ 2 - - PUNCT HYPH PunctType=Dash 3 punct _ _ 3 bicategories bicategorie NOUN NNS Number=Plur 6 compound _ _ 4 generalise generalise NOUN NN Number=Sing 6 compound _ _ 5 planar planar ADJ JJ Degree=Pos 6 amod _ _ 6 polycategories polycategorie NOUN NNS Number=Plur 0 ROOT _ _ 7 in in ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 10 det _ _ 9 same same ADJ JJ Degree=Pos 10 amod _ _ 10 way way NOUN NN Number=Sing 7 pobj _ _ 11 as as SCONJ IN _ 13 mark _ _ 12 bicategories bicategorie NOUN NNS Number=Plur 13 nsubj _ _ 13 generalise generalise VERB VBP Tense=Pres|VerbForm=Fin 6 advcl _ _ 14 monoidal monoidal ADJ JJ Degree=Pos 15 amod _ _ 15 categories category NOUN NNS Number=Plur 13 dobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = In a poly - bicategory, the existence of enough 2 - cells satisfying certain universal properties (representability) induces coherent algebraic structure on the 2 - graph of single - input, single - output 2 - cells. 1 In in ADP IN _ 21 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 3 poly poly ADJ JJ Degree=Pos 5 amod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 bicategory bicategory NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 21 punct _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 existence existence NOUN NN Number=Sing 21 nsubj _ _ 9 of of ADP IN _ 8 prep _ _ 10 enough enough ADJ JJ Degree=Pos 13 amod _ _ 11 2 2 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 cells cell NOUN NNS Number=Plur 9 pobj _ _ 14 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 acl _ _ 15 certain certain ADJ JJ Degree=Pos 17 amod _ _ 16 universal universal ADJ JJ Degree=Pos 17 amod _ _ 17 properties property NOUN NNS Number=Plur 14 dobj _ _ 18 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 17 punct _ SpaceAfter=No 19 representability representability NOUN NN Number=Sing 17 appos _ SpaceAfter=No 20 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 17 punct _ _ 21 induces induce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 22 coherent coherent ADJ JJ Degree=Pos 24 amod _ _ 23 algebraic algebraic ADJ JJ Degree=Pos 24 amod _ _ 24 structure structure NOUN NN Number=Sing 21 dobj _ _ 25 on on ADP IN _ 21 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 29 det _ _ 27 2 2 NUM CD NumType=Card 29 nummod _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 graph graph NOUN NN Number=Sing 25 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 single single ADJ JJ Degree=Pos 33 amod _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 input input ADJ JJ Degree=Pos 40 nmod _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 40 punct _ _ 35 single single ADJ JJ Degree=Pos 37 amod _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 output output NOUN NN Number=Sing 40 nmod _ _ 38 2 2 NUM CD NumType=Card 40 nummod _ _ 39 - - PUNCT HYPH PunctType=Dash 40 punct _ _ 40 cells cell NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 21 punct _ SpaceAfter=No # sent_id = 3 # text = A special case of this theory was used by Hermida to produce a proof of strictification for bicategories. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 special special ADJ JJ Degree=Pos 3 amod _ _ 3 case case NOUN NN Number=Sing 8 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 6 theory theory NOUN NN Number=Sing 4 pobj _ _ 7 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 8 auxpass _ _ 8 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 by by ADP IN _ 8 agent _ _ 10 Hermida Hermida PROPN NNP Number=Sing 9 pobj _ _ 11 to to PART TO _ 12 aux _ _ 12 produce produce VERB VB VerbForm=Inf 8 xcomp _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 proof proof NOUN NN Number=Sing 12 dobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 strictification strictification NOUN NN Number=Sing 15 pobj _ _ 17 for for ADP IN _ 16 prep _ _ 18 bicategories bicategorie NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 4 # text = No full strictification is possible for higher - dimensional categories, seemingly due to problems with 2 - cells that have degenerate boundaries; it was conjectured by Simpson that semi - strictification excluding units may be possible. 1 No no DET DT _ 3 det _ _ 2 full full ADJ JJ Degree=Pos 3 amod _ _ 3 strictification strictification NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 27 ccomp _ _ 5 possible possible ADJ JJ Degree=Pos 4 acomp _ _ 6 for for ADP IN _ 4 prep _ _ 7 higher high ADJ JJR Degree=Cmp 9 advmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 dimensional dimensional ADJ JJ Degree=Pos 10 amod _ _ 10 categories category NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 seemingly seemingly ADV RB _ 13 advmod _ _ 13 due due ADJ JJ Degree=Pos 10 amod _ _ 14 to to ADP IN _ 13 prep _ _ 15 problems problem NOUN NNS Number=Plur 14 pobj _ _ 16 with with ADP IN _ 15 prep _ _ 17 2 2 NUM CD NumType=Card 19 nummod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 cells cell NOUN NNS Number=Plur 16 pobj _ _ 20 that that PRON WDT PronType=Rel 21 nsubj _ _ 21 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 19 relcl _ _ 22 degenerate degenerate ADJ JJ Degree=Pos 23 amod _ _ 23 boundaries boundary NOUN NNS Number=Plur 21 dobj _ SpaceAfter=No 24 ; ; PUNCT : _ 27 punct _ _ 25 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 27 nsubjpass _ _ 26 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 27 auxpass _ _ 27 conjectured conjecture VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 28 by by ADP IN _ 27 agent _ _ 29 Simpson Simpson PROPN NNP Number=Sing 28 pobj _ _ 30 that that SCONJ IN _ 37 mark _ _ 31 semi semi ADJ JJ Degree=Pos 33 amod _ _ 32 - - ADJ JJ Degree=Pos 33 punct _ _ 33 strictification strictification NOUN NN Number=Sing 37 nsubj _ _ 34 excluding exclude VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 33 prep _ _ 35 units unit NOUN NNS Number=Plur 34 pobj _ _ 36 may may AUX MD VerbForm=Fin 37 aux _ _ 37 be be AUX VB VerbForm=Inf 27 ccomp _ _ 38 possible possible ADJ JJ Degree=Pos 37 acomp _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 27 punct _ SpaceAfter=No # sent_id = 5 # text = We study poly - bicategories where 2 - cells with degenerate boundaries are barred, and show that we can recover the structure of a bicategory through a different construction of weak units. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 poly poly ADJ JJ Degree=Pos 5 amod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 bicategories bicategorie NOUN NNS Number=Plur 2 dobj _ _ 6 where where SCONJ WRB _ 14 advmod _ _ 7 2 2 NUM CD NumType=Card 9 nummod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 cells cell NOUN NNS Number=Plur 14 nsubjpass _ _ 10 with with ADP IN _ 9 prep _ _ 11 degenerate degenerate ADJ JJ Degree=Pos 12 amod _ _ 12 boundaries boundary NOUN NNS Number=Plur 10 pobj _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 barred bar VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 relcl _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 2 punct _ _ 16 and and CCONJ CC ConjType=Cmp 2 cc _ _ 17 show show VERB VBP Tense=Pres|VerbForm=Fin 2 conj _ _ 18 that that SCONJ IN _ 21 mark _ _ 19 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 21 nsubj _ _ 20 can can AUX MD VerbForm=Fin 21 aux _ _ 21 recover recover VERB VB VerbForm=Inf 17 ccomp _ _ 22 the the DET DT Definite=Def|PronType=Art 23 det _ _ 23 structure structure NOUN NN Number=Sing 21 dobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 26 bicategory bicategory NOUN NN Number=Sing 24 pobj _ _ 27 through through ADP IN _ 21 prep _ _ 28 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 29 different different ADJ JJ Degree=Pos 30 amod _ _ 30 construction construction NOUN NN Number=Sing 27 pobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 weak weak ADJ JJ Degree=Pos 33 amod _ _ 33 units unit NOUN NNS Number=Plur 31 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = We prove that the existence of these units is equivalent to the existence of 1 - cells satisfying lower - dimensional universal properties, and study the relation between preservation of units and universal cells. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 9 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 existence existence NOUN NN Number=Sing 9 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 these these DET DT Number=Plur|PronType=Dem 8 det _ _ 8 units unit NOUN NNS Number=Plur 6 pobj _ _ 9 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 10 equivalent equivalent ADJ JJ Degree=Pos 9 acomp _ _ 11 to to ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 existence existence NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 1 1 NUM CD NumType=Card 17 nummod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 cells cell NOUN NNS Number=Plur 14 pobj _ _ 18 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 17 acl _ _ 19 lower low ADJ JJR Degree=Cmp 21 advmod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 dimensional dimensional ADJ JJ Degree=Pos 23 amod _ _ 22 universal universal ADJ JJ Degree=Pos 23 amod _ _ 23 properties property NOUN NNS Number=Plur 18 dobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 9 punct _ _ 25 and and CCONJ CC ConjType=Cmp 9 cc _ _ 26 study study VERB VB VerbForm=Inf 9 conj _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 relation relation NOUN NN Number=Sing 26 dobj _ _ 29 between between ADP IN _ 28 prep _ _ 30 preservation preservation NOUN NN Number=Sing 29 pobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 units unit NOUN NNS Number=Plur 31 pobj _ _ 33 and and CCONJ CC ConjType=Cmp 32 cc _ _ 34 universal universal ADJ JJ Degree=Pos 35 amod _ _ 35 cells cell NOUN NNS Number=Plur 32 conj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 7 # text = Then, we introduce merge - bicategories, a variant of poly - bicategories with more composition operations, which admits a natural monoidal closed structure, giving access to higher morphisms. 1 Then then ADV RB PronType=Dem 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 merge merge NOUN NN Number=Sing 7 compound _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 bicategories bicategorie NOUN NNS Number=Plur 4 dobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 variant variant NOUN NN Number=Sing 4 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 poly poly ADJ JJ Degree=Pos 14 amod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 bicategories bicategorie NOUN NNS Number=Plur 11 pobj _ _ 15 with with ADP IN _ 10 prep _ _ 16 more more ADJ JJR Degree=Cmp 18 amod _ _ 17 composition composition NOUN NN Number=Sing 18 compound _ _ 18 operations operation NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 which which PRON WDT _ 21 nsubj _ _ 21 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 relcl _ _ 22 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 23 natural natural ADJ JJ Degree=Pos 24 amod _ _ 24 monoidal monoidal NOUN NN Number=Sing 26 amod _ _ 25 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 amod _ _ 26 structure structure NOUN NN Number=Sing 21 dobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 4 punct _ _ 28 giving give VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 advcl _ _ 29 access access NOUN NN Number=Sing 28 dobj _ _ 30 to to ADP IN _ 29 prep _ _ 31 higher high ADJ JJR Degree=Cmp 32 amod _ _ 32 morphisms morphism NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 8 # text = We derive equivalences between morphisms, transformations, and modifications of representable merge - bicategories and the corresponding notions for bicategories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 derive derive VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 equivalences equivalence NOUN NNS Number=Plur 2 dobj _ _ 4 between between ADP IN _ 3 prep _ _ 5 morphisms morphism NOUN NNS Number=Plur 4 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 5 punct _ _ 7 transformations transformation NOUN NNS Number=Plur 5 conj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 and and CCONJ CC ConjType=Cmp 7 cc _ _ 10 modifications modification NOUN NNS Number=Plur 7 conj _ _ 11 of of ADP IN _ 10 prep _ _ 12 representable representable ADJ JJ Degree=Pos 15 amod _ _ 13 merge merge NOUN NN Number=Sing 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 bicategories bicategorie NOUN NNS Number=Plur 11 pobj _ _ 16 and and CCONJ CC ConjType=Cmp 5 cc _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 19 amod _ _ 19 notions notion NOUN NNS Number=Plur 5 conj _ _ 20 for for ADP IN _ 19 prep _ _ 21 bicategories bicategorie NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 9 # text = Finally, we prove a semi - strictification theorem for representable merge - bicategories with a choice of composites and units. 1 Finally finally ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 6 semi semi ADJ JJ Degree=Pos 9 amod _ _ 7 - - ADJ JJ Degree=Pos 9 amod _ _ 8 strictification strictification NOUN NN Number=Sing 9 compound _ _ 9 theorem theorem NOUN NN Number=Sing 4 dobj _ _ 10 for for ADP IN _ 9 prep _ _ 11 representable representable ADJ JJ Degree=Pos 14 amod _ _ 12 merge merge NOUN NN Number=Sing 14 compound _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 bicategories bicategorie NOUN NNS Number=Plur 10 pobj _ _ 15 with with ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 choice choice NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 composites composite NOUN NNS Number=Plur 18 pobj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 units unit NOUN NNS Number=Plur 19 conj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 710 # sent_id = 1 # text = We construct model category structures on various types of (marked) $ * $ - categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 model model NOUN NN Number=Sing 5 compound _ _ 4 category category NOUN NN Number=Sing 5 compound _ _ 5 structures structure NOUN NNS Number=Plur 2 dobj _ _ 6 on on ADP IN _ 5 prep _ _ 7 various various ADJ JJ Degree=Pos 8 amod _ _ 8 types type NOUN NNS Number=Plur 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 9 punct _ SpaceAfter=No 11 marked marked ADJ JJ Degree=Pos 15 amod _ SpaceAfter=No 12 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 11 punct _ _ 13 $ * $ $ * $ SYM $ _ 15 nummod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 categories category NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = These structures are used to present the infinity categories of (marked) $ * $ - categories obtained by inverting (marked) unitary equivalences. 1 These these DET DT Number=Plur|PronType=Dem 2 det _ _ 2 structures structure NOUN NNS Number=Plur 4 nsubjpass _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 to to PART TO _ 6 aux _ _ 6 present present VERB VB VerbForm=Inf 4 xcomp _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 infinity infinity NOUN NN Number=Sing 9 compound _ _ 9 categories category NOUN NNS Number=Plur 6 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 10 punct _ SpaceAfter=No 12 marked marked ADJ JJ Degree=Pos 16 amod _ SpaceAfter=No 13 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 16 punct _ _ 14 $ * $ $ * $ SYM $ _ 16 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 categories category NOUN NNS Number=Plur 10 pobj _ _ 17 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 acl _ _ 18 by by ADP IN _ 17 agent _ _ 19 inverting inverting NOUN NN Number=Sing 24 nmod _ _ 20 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 24 punct _ SpaceAfter=No 21 marked marked ADJ JJ Degree=Pos 24 amod _ SpaceAfter=No 22 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 24 punct _ _ 23 unitary unitary ADJ JJ Degree=Pos 24 amod _ _ 24 equivalences equivalence NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = We use this presentation to explicitly calculate the $ infty $ - categorical $ G $ - fixed points and $ G $ - orbits for $ G $ - equivariant (marked) $ * $ - categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 use use VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 this this DET DT Number=Sing|PronType=Dem 4 det _ _ 4 presentation presentation NOUN NN Number=Sing 2 dobj _ _ 5 to to PART TO _ 7 aux _ _ 6 explicitly explicitly ADV RB _ 7 advmod _ _ 7 calculate calculate VERB VB VerbForm=Inf 2 xcomp _ _ 8 the the DET DT Definite=Def|PronType=Art 15 det _ _ 9 $ infty $ $ infty $ SYM $ _ 11 advmod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 categorical categorical ADJ JJ Degree=Pos 15 amod _ _ 12 $ G $ $ g $ SYM $ _ 14 advmod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 fixed fix VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 amod _ _ 15 points point NOUN NNS Number=Plur 7 dobj _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 $ G $ $ g $ SYM $ _ 19 compound _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 orbits orbit NOUN NNS Number=Plur 15 conj _ _ 20 for for ADP IN _ 19 prep _ _ 21 $ G $ $ g $ SYM $ _ 23 quantmod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 equivariant equivariant ADJ JJ Degree=Pos 29 amod _ _ 24 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 29 punct _ SpaceAfter=No 25 marked marked ADJ JJ Degree=Pos 29 amod _ SpaceAfter=No 26 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 29 punct _ _ 27 $ * $ $ * $ SYM $ _ 29 nummod _ _ 28 - - PUNCT HYPH PunctType=Dash 29 punct _ _ 29 categories category NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 711 # sent_id = 1 # text = We construct a generalization of the operadic nerve, providing a translation between the equivariant simplicially enriched operadic world to the parametrized $ infty $ - categorical perspective. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 generalization generalization NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 operadic operadic ADJ JJ Degree=Pos 8 amod _ _ 8 nerve nerve NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 2 punct _ _ 10 providing provide VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 translation translation NOUN NN Number=Sing 10 dobj _ _ 13 between between ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 19 det _ _ 15 equivariant equivariant ADJ JJ Degree=Pos 19 amod _ _ 16 simplicially simplicially ADV RB _ 17 advmod _ _ 17 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 amod _ _ 18 operadic operadic ADJ JJ Degree=Pos 19 amod _ _ 19 world world NOUN NN Number=Sing 13 pobj _ _ 20 to to ADP IN _ 10 dative _ _ 21 the the DET DT Definite=Def|PronType=Art 26 det _ _ 22 parametrized parametrized ADJ JJ Degree=Pos 26 amod _ _ 23 $ infty $ $ infty $ SYM $ _ 25 advmod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 categorical categorical ADJ JJ Degree=Pos 26 amod _ _ 26 perspective perspective NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = This naturally factors through genuine equivariant operads, a model for ``equivariant operads with norms up to homotopy''. 1 This this PRON DT Number=Sing|PronType=Dem 3 nsubj _ _ 2 naturally naturally ADV RB _ 3 advmod _ _ 3 factors factor NOUN NNS Number=Plur 0 ROOT _ _ 4 through through ADP IN _ 3 prep _ _ 5 genuine genuine ADJ JJ Degree=Pos 7 amod _ _ 6 equivariant equivariant ADJ JJ Degree=Pos 7 amod _ _ 7 operads operad NOUN NNS Number=Plur 4 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 10 model model NOUN NN Number=Sing 7 appos _ _ 11 for for ADP IN _ 10 prep _ _ 12 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 15 punct _ SpaceAfter=No 13 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 15 punct _ SpaceAfter=No 14 equivariant equivariant ADJ JJ Degree=Pos 15 amod _ _ 15 operads operad NOUN NNS Number=Plur 11 pobj _ _ 16 with with ADP IN _ 15 prep _ _ 17 norms norm NOUN NNS Number=Plur 16 pobj _ _ 18 up up ADP IN _ 3 prep _ _ 19 to to ADP IN _ 18 prep _ _ 20 homotopy homotopy NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 21 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 3 punct _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = We introduce the notion of an op - fibration of genuine equivariant operads, extending Grothendieck op - fibrations, and characterize fibrant operads as the image of genuine equivariant symmetric monoidal categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 notion notion NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 7 op op NOUN NN Number=Sing 9 compound _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 fibration fibration NOUN NN Number=Sing 5 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 genuine genuine ADJ JJ Degree=Pos 13 amod _ _ 12 equivariant equivariant ADJ JJ Degree=Pos 13 amod _ _ 13 operads operad NOUN NNS Number=Plur 10 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 2 punct _ _ 15 extending extend VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 16 Grothendieck Grothendieck PROPN NNP Number=Sing 19 compound _ _ 17 op op NOUN NN Number=Sing 19 compound _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 fibrations fibration NOUN NNS Number=Plur 15 dobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 2 punct _ _ 21 and and CCONJ CC ConjType=Cmp 2 cc _ _ 22 characterize characterize VERB VB VerbForm=Inf 2 conj _ _ 23 fibrant fibrant ADJ JJ Degree=Pos 24 amod _ _ 24 operads operad NOUN NNS Number=Plur 22 dobj _ _ 25 as as ADP IN _ 22 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 image image NOUN NN Number=Sing 25 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 genuine genuine ADJ JJ Degree=Pos 33 amod _ _ 30 equivariant equivariant ADJ JJ Degree=Pos 33 amod _ _ 31 symmetric symmetric ADJ JJ Degree=Pos 33 amod _ _ 32 monoidal monoidal ADJ JJ Degree=Pos 33 amod _ _ 33 categories category NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = Moreover, we show that under the operadic nerve, this image is sent to $ G $ - symmetric monoidal $ G $ - $ infty $ - categories. 1 Moreover moreover ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 14 mark _ _ 6 under under ADP IN _ 14 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 operadic operadic ADJ JJ Degree=Pos 9 amod _ _ 9 nerve nerve NOUN NN Number=Sing 6 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 14 punct _ _ 11 this this DET DT Number=Sing|PronType=Dem 12 det _ _ 12 image image NOUN NN Number=Sing 14 nsubjpass _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 auxpass _ _ 14 sent send VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 ccomp _ _ 15 to to ADP IN _ 14 prep _ _ 16 $ G $ $ g $ SYM $ _ 18 quantmod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 symmetric symmetric ADJ JJ Degree=Pos 19 amod _ _ 19 monoidal monoidal NOUN NN Number=Sing 15 pobj _ _ 20 $ G $ $ g $ SYM $ _ 24 compound _ _ 21 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 22 $ infty $ $ infty $ SYM $ _ 24 compound _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 categories category NOUN NNS Number=Plur 14 dobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = Finally, we produce a functor comparing the notion of algebra over an operad in each of these two contexts. 1 Finally finally ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 produce produce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 functor functor NOUN NN Number=Sing 4 dobj _ _ 7 comparing compare VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 acl _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 notion notion NOUN NN Number=Sing 7 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 algebra algebra NOUN NN Number=Sing 10 pobj _ _ 12 over over ADP IN _ 7 prep _ _ 13 an an DET DT Definite=Ind|PronType=Art 14 det _ _ 14 operad operad NOUN NN Number=Sing 12 pobj _ _ 15 in in ADP IN _ 14 prep _ _ 16 each each PRON DT _ 15 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 these these DET DT Number=Plur|PronType=Dem 20 det _ _ 19 two two NUM CD NumType=Card 20 nummod _ _ 20 contexts context NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 712 # sent_id = 1 # text = Let $ E $ be a topos. 1 Let let VERB VB VerbForm=Inf 0 ROOT _ _ 2 $ E $ $ e $ SYM $ _ 3 nsubj _ _ 3 be be AUX VB VerbForm=Inf 1 ccomp _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 topos topos NOUN NN Number=Sing 3 attr _ SpaceAfter=No 6 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = If $ l $ is a level of $ E $ with monic skeleta then it makes sense to consider the objects in $ E $ that have $ l $ - skeletal boundaries. 1 If if SCONJ IN _ 3 mark _ _ 2 $ l $ $ l $ SYM $ _ 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 advcl _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 level level NOUN NN Number=Sing 3 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 $ E $ $ e $ SYM $ _ 6 pobj _ _ 8 with with ADP IN _ 5 prep _ _ 9 monic monic ADJ JJ Degree=Pos 10 amod _ _ 10 skeleta skeleta NOUN NN Number=Sing 8 pobj _ _ 11 then then ADV RB PronType=Dem 13 advmod _ _ 12 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 13 nsubj _ _ 13 makes make VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 14 sense sense NOUN NN Number=Sing 13 dobj _ _ 15 to to PART TO _ 16 aux _ _ 16 consider consider VERB VB VerbForm=Inf 13 xcomp _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 objects object NOUN NNS Number=Plur 16 dobj _ _ 19 in in ADP IN _ 18 prep _ _ 20 $ E $ $ e $ SYM $ _ 19 pobj _ _ 21 that that PRON WDT PronType=Rel 22 nsubj _ _ 22 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 18 relcl _ _ 23 $ l $ $ l $ SYM $ _ 25 quantmod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 skeletal skeletal ADJ JJ Degree=Pos 26 amod _ _ 26 boundaries boundary NOUN NNS Number=Plur 22 dobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 13 punct _ SpaceAfter=No # sent_id = 3 # text = In particular, if $ p : E to S $ is a pre - cohesive geometric morphism then its centre (that may be called level 0) has monic skeleta. 1 In in ADP IN _ 6 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 6 punct _ _ 4 if if SCONJ IN _ 6 mark _ _ 5 $ p : E to S $ $ p : e to s $ SYM $ _ 6 nsubj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 8 pre pre ADJ JJ Degree=Pos 10 advmod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 cohesive cohesive ADJ JJ Degree=Pos 12 amod _ _ 11 geometric geometric ADJ JJ Degree=Pos 12 amod _ _ 12 morphism morphism NOUN NN Number=Sing 6 attr _ _ 13 then then ADV RB PronType=Dem 15 advmod _ _ 14 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 15 poss _ _ 15 centre centre NOUN NN Number=Sing 24 nsubj _ _ 16 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 20 punct _ SpaceAfter=No 17 that that PRON WDT PronType=Rel 20 nsubjpass _ _ 18 may may AUX MD VerbForm=Fin 20 aux _ _ 19 be be AUX VB VerbForm=Inf 20 auxpass _ _ 20 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 parataxis _ _ 21 level level NOUN NN Number=Sing 20 oprd _ _ 22 0 0 NUM CD NumType=Card 20 oprd _ SpaceAfter=No 23 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 15 punct _ _ 24 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 relcl _ _ 25 monic monic ADJ JJ Degree=Pos 26 amod _ _ 26 skeleta skeleta NOUN NN Number=Sing 24 dobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = Let level 1 be the Aufhebung of level 0. 1 Let let VERB VB VerbForm=Inf 0 ROOT _ _ 2 level level NOUN NN Number=Sing 4 nsubj _ _ 3 1 1 NUM CD NumType=Card 2 nummod _ _ 4 be be AUX VB VerbForm=Inf 1 ccomp _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 Aufhebung Aufhebung PROPN NNP Number=Sing 4 attr _ _ 7 of of ADP IN _ 6 prep _ _ 8 level level NOUN NN Number=Sing 7 pobj _ _ 9 0 0 NUM CD NumType=Card 8 nummod _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 5 # text = We show that if level 1 has monic skeleta then the quotients of 0 - separated objects with 0 - skeletal boundaries are 1 - skeletal. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 23 mark _ _ 4 if if SCONJ IN _ 7 mark _ _ 5 level level NOUN NN Number=Sing 7 nsubj _ _ 6 1 1 NUM CD NumType=Card 5 nummod _ _ 7 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 advcl _ _ 8 monic monic ADJ JJ Degree=Pos 9 amod _ _ 9 skeleta skeleta NOUN NN Number=Sing 7 dobj _ _ 10 then then ADV RB PronType=Dem 23 advmod _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 quotients quotient NOUN NNS Number=Plur 23 nsubj _ _ 13 of of ADP IN _ 12 prep _ _ 14 0 0 NUM CD NumType=Card 17 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 separated separate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 amod _ _ 17 objects object NOUN NNS Number=Plur 13 pobj _ _ 18 with with ADP IN _ 17 prep _ _ 19 0 0 NUM CD NumType=Card 22 nummod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 skeletal skeletal ADJ JJ Degree=Pos 22 amod _ _ 22 boundaries boundary NOUN NNS Number=Plur 18 pobj _ _ 23 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 24 1 1 NUM CD NumType=Card 26 nummod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 skeletal skeletal ADJ JJ Degree=Pos 23 acomp _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = We also prove that in several examples (such as the classifier of non - trivial Boolean algebras, simplicial sets and the classifier of strictly bipointed objects) every 1 - skeletal object is of that form. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 35 mark _ _ 5 in in ADP IN _ 35 prep _ _ 6 several several ADJ JJ Degree=Pos 7 amod _ _ 7 examples example NOUN NNS Number=Plur 5 pobj _ _ 8 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 7 punct _ SpaceAfter=No 9 such such ADJ JJ Degree=Pos 10 amod _ _ 10 as as ADP IN _ 7 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 classifier classifier NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 non non ADJ JJ Degree=Pos 16 amod _ _ 15 - - ADJ JJ Degree=Pos 16 punct _ _ 16 trivial trivial ADJ JJ Degree=Pos 18 amod _ _ 17 Boolean boolean ADJ JJ Degree=Pos 18 amod _ _ 18 algebras algebra NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 simplicial simplicial ADJ JJ Degree=Pos 21 amod _ _ 21 sets set NOUN NNS Number=Plur 18 conj _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 classifier classifier NOUN NN Number=Sing 21 conj _ _ 25 of of ADP IN _ 24 prep _ _ 26 strictly strictly ADV RB _ 27 advmod _ _ 27 bipointed bipointe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 amod _ _ 28 objects object NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 29 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 35 punct _ _ 30 every every DET DT _ 34 det _ _ 31 1 1 NUM CD NumType=Card 33 nummod _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 skeletal skeletal ADJ JJ Degree=Pos 34 amod _ _ 34 object object NOUN NN Number=Sing 35 nsubj _ _ 35 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 36 of of ADP IN _ 35 prep _ _ 37 that that DET DT Number=Sing|PronType=Dem 38 det _ _ 38 form form NOUN NN Number=Sing 36 pobj _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 713 # sent_id = 1 # text = In this work we define a 2 - dimensional analogue of extranatural transformation and use these to characterise codescent objects. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 work work NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 7 2 2 NUM CD NumType=Card 9 advmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 dimensional dimensional ADJ JJ Degree=Pos 10 amod _ _ 10 analogue analogue NOUN NN Number=Sing 5 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 extranatural extranatural ADJ JJ Degree=Pos 13 amod _ _ 13 transformation transformation NOUN NN Number=Sing 11 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 5 cc _ _ 15 use use VERB VB VerbForm=Inf 5 conj _ _ 16 these these PRON DT Number=Plur|PronType=Dem 15 dobj _ _ 17 to to PART TO _ 18 aux _ _ 18 characterise characterise VERB VB VerbForm=Inf 15 xcomp _ _ 19 codescent codescent NOUN NN Number=Sing 20 compound _ _ 20 objects object NOUN NNS Number=Plur 18 dobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = They will be seen as universal objects amongst pseudo - extranatural transformations in a similar manner in which coends are universal objects amongst extranatural transformations. 1 They they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 4 nsubjpass _ _ 2 will will AUX MD VerbForm=Fin 4 aux _ _ 3 be be AUX VB VerbForm=Inf 4 auxpass _ _ 4 seen see VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 as as ADP IN _ 4 prep _ _ 6 universal universal ADJ JJ Degree=Pos 7 amod _ _ 7 objects object NOUN NNS Number=Plur 5 pobj _ _ 8 amongst amongst ADP IN _ 7 prep _ _ 9 pseudo pseudo NOUN NN Number=Sing 11 npadvmod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 extranatural extranatural ADJ JJ Degree=Pos 12 amod _ _ 12 transformations transformation NOUN NNS Number=Plur 8 pobj _ _ 13 in in ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 similar similar ADJ JJ Degree=Pos 16 amod _ _ 16 manner manner NOUN NN Number=Sing 13 pobj _ _ 17 in in ADP IN _ 20 prep _ _ 18 which which PRON WDT _ 17 pobj _ _ 19 coends coend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 nsubj _ _ 20 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 16 relcl _ _ 21 universal universal ADJ JJ Degree=Pos 22 amod _ _ 22 objects object NOUN NNS Number=Plur 20 attr _ _ 23 amongst amongst ADP IN _ 22 prep _ _ 24 extranatural extranatural ADJ JJ Degree=Pos 25 amod _ _ 25 transformations transformation NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 3 # text = Some composition lemmas concerning these transformations are introduced and a Fubini theorem for codescent objects is proven using the universal characterisation description. 1 Some some DET DT _ 3 det _ _ 2 composition composition NOUN NN Number=Sing 3 compound _ _ 3 lemmas lemma NOUN NNS Number=Plur 8 nsubjpass _ _ 4 concerning concern VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 prep _ _ 5 these these DET DT Number=Plur|PronType=Dem 6 det _ _ 6 transformations transformation NOUN NNS Number=Plur 4 pobj _ _ 7 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 Fubini Fubini PROPN NNP Number=Sing 12 compound _ _ 12 theorem theorem ADJ JJ Degree=Pos 17 nsubjpass _ _ 13 for for ADP IN _ 12 prep _ _ 14 codescent codescent NOUN NN Number=Sing 15 compound _ _ 15 objects object NOUN NNS Number=Plur 13 pobj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 auxpass _ _ 17 proven prove VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 conj _ _ 18 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 17 xcomp _ _ 19 the the DET DT Definite=Def|PronType=Art 22 det _ _ 20 universal universal ADJ JJ Degree=Pos 22 amod _ _ 21 characterisation characterisation NOUN NN Number=Sing 22 compound _ _ 22 description description NOUN NN Number=Sing 18 dobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # doc_id = 714 # sent_id = 1 # text = Given 2 - categories $ C $ and $ D $ , let Lax $ (C, D) $ denote the 2 - category of lax functors, lax natural transformations and modifications, and $ [C, D]_lnt $ its full sub - 2 - category of (strict) 2 - functors. 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 prep _ _ 2 2 2 NUM CD NumType=Card 4 nummod _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 categories category NOUN NNS Number=Plur 1 pobj _ _ 5 $ C $ $ c $ SYM $ _ 4 appos _ _ 6 and and CCONJ CC ConjType=Cmp 4 cc _ _ 7 $ D $ $ d $ SYM $ _ 1 advmod _ _ 8 , , PUNCT , PunctType=Comm 9 punct _ _ 9 let let VERB VB VerbForm=Inf 0 ROOT _ _ 10 Lax Lax PROPN NNP Number=Sing 12 nsubj _ _ 11 $ (C, D) $ $ (c, d) $ SYM $ _ 12 nsubj _ _ 12 denote denote VERB VBD Tense=Past|VerbForm=Fin 9 ccomp _ _ 13 the the DET DT Definite=Def|PronType=Art 16 det _ _ 14 2 2 NUM CD NumType=Card 16 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 category category NOUN NN Number=Sing 12 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 lax lax ADJ JJ Degree=Pos 19 amod _ _ 19 functors functor NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 16 punct _ _ 21 lax lax ADJ JJ Degree=Pos 23 amod _ _ 22 natural natural ADJ JJ Degree=Pos 23 amod _ _ 23 transformations transformation NOUN NNS Number=Plur 16 conj _ _ 24 and and CCONJ CC ConjType=Cmp 23 cc _ _ 25 modifications modification NOUN NNS Number=Plur 23 conj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 12 punct _ _ 27 and and CCONJ CC ConjType=Cmp 12 cc _ _ 28 $ [C, D]_lnt $ $ [c, d]_lnt $ SYM $ _ 35 poss _ _ 29 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 35 poss _ _ 30 full full ADJ JJ Degree=Pos 35 amod _ _ 31 sub sub NOUN NN Number=Sing 35 nmod _ _ 32 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 33 2 2 NUM CD NumType=Card 35 nummod _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 category category NOUN NN Number=Sing 12 conj _ _ 36 of of ADP IN _ 35 prep _ _ 37 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 42 punct _ SpaceAfter=No 38 strict strict ADJ JJ Degree=Pos 42 amod _ SpaceAfter=No 39 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 42 punct _ _ 40 2 2 NUM CD NumType=Card 42 nummod _ _ 41 - - PUNCT HYPH PunctType=Dash 42 punct _ _ 42 functors functor NOUN NNS Number=Plur 36 pobj _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 2 # text = We give two isomorphic constructions of a 2 - category $ C boxtimes D $ satisfying Lax $ (C, Lax(D, E)) cong [C boxtimes D, E}_lnt $ , hence generalising the case of the free distributive law $ 1 boxtimes 1 $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 two two NUM CD NumType=Card 5 nummod _ _ 4 isomorphic isomorphic ADJ JJ Degree=Pos 5 amod _ _ 5 constructions construction NOUN NNS Number=Plur 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 8 2 2 NUM CD NumType=Card 10 nummod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 category category NOUN NN Number=Sing 11 compound _ _ 11 $ C boxtimes D $ $ c boxtimes d $ SYM $ _ 6 pobj _ _ 12 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 13 Lax Lax PROPN NNP Number=Sing 14 compound _ _ 14 $ (C, Lax(D, E)) cong [C boxtimes D, E}_lnt $ $ (c, lax(d, e)) cong [c boxtimes d, e}_lnt $ SYM $ _ 12 dobj _ _ 15 , , PUNCT , PunctType=Comm 2 punct _ _ 16 hence hence ADV RB _ 17 advmod _ _ 17 generalising generalise VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 advcl _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 case case NOUN NN Number=Sing 17 dobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 24 det _ _ 22 free free ADJ JJ Degree=Pos 23 amod _ _ 23 distributive distributive ADJ JJ Degree=Pos 24 amod _ _ 24 law law NOUN NN Number=Sing 20 pobj _ _ 25 $ 1 boxtimes 1 $ $ 1 boxtimes 1 $ SYM $ _ 24 appos _ _ 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We also discuss dual constructions. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 discuss discuss VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 dual dual ADJ JJ Degree=Pos 5 amod _ _ 5 constructions construction NOUN NNS Number=Plur 3 dobj _ SpaceAfter=No 6 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 715 # sent_id = 1 # text = A Lie 2 - group $ G $ is a category internal to the category of Lie groups. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 Lie lie NOUN NN Number=Sing 7 nsubj _ _ 3 2 2 NUM CD NumType=Card 5 nummod _ _ 4 - - PUNCT HYPH PunctType=Dash 5 punct _ _ 5 group group NOUN NN Number=Sing 2 npadvmod _ _ 6 $ G $ $ g $ SYM $ _ 2 appos _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 category category NOUN NN Number=Sing 7 attr _ _ 10 internal internal ADJ JJ Degree=Pos 9 amod _ _ 11 to to ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 category category NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 Lie lie NOUN NN Number=Sing 16 compound _ _ 16 groups group NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 2 # text = Consequently it is a monoidal category and a Lie groupoid. 1 Consequently consequently ADV RB _ 3 advmod _ _ 2 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 monoidal monoidal ADJ JJ Degree=Pos 6 amod _ _ 6 category category NOUN NN Number=Sing 3 attr _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 Lie lie NOUN NN Number=Sing 10 compound _ _ 10 groupoid groupoid NOUN NN Number=Sing 6 conj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = The Lie groupoid structure on $ G $ gives rise to the Lie 2 - algebra $ X(G) $ of multiplicative vector fields. 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 Lie lie NOUN NN Number=Sing 4 compound _ _ 3 groupoid groupoid NOUN NN Number=Sing 4 compound _ _ 4 structure structure NOUN NN Number=Sing 7 nsubj _ _ 5 on on ADP IN _ 4 prep _ _ 6 $ G $ $ g $ SYM $ _ 5 pobj _ _ 7 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 rise rise VERB VB VerbForm=Inf 7 dobj _ _ 9 to to ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 Lie lie NOUN NN Number=Sing 9 pobj _ _ 12 2 2 NUM CD NumType=Card 14 nummod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 algebra algebra PROPN NNP Number=Sing 15 nmod _ _ 15 $ X(G) $ $ x(g) $ SYM $ _ 7 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 multiplicative multiplicative ADJ JJ Degree=Pos 19 amod _ _ 18 vector vector NOUN NN Number=Sing 19 compound _ _ 19 fields field NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = The monoidal structure on $ G $ gives rise to a left action of the 2 - group $ G $ on the Lie groupoid $ G $ , hence to an action of $ G $ on the Lie 2 - algebra $ X(G) $ . 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 monoidal monoidal ADJ JJ Degree=Pos 3 amod _ _ 3 structure structure NOUN NN Number=Sing 6 nsubj _ _ 4 on on ADP IN _ 3 prep _ _ 5 $ G $ $ g $ SYM $ _ 4 pobj _ _ 6 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 rise rise VERB VB VerbForm=Inf 6 dobj _ _ 8 to to ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 left left ADJ JJ Degree=Pos 11 amod _ _ 11 action action NOUN NN Number=Sing 8 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 16 det _ _ 14 2 2 NUM CD NumType=Card 16 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 group group NOUN NN Number=Sing 12 pobj _ _ 17 $ G $ $ g $ SYM $ _ 16 appos _ _ 18 on on ADP IN _ 7 prep _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 Lie lie NOUN NN Number=Sing 18 pobj _ _ 21 groupoid groupoid VERB VB VerbForm=Inf 6 dobj _ _ 22 $ G $ $ g $ SYM $ _ 21 dobj _ _ 23 , , PUNCT , PunctType=Comm 21 punct _ _ 24 hence hence ADV RB _ 25 advmod _ _ 25 to to ADP IN _ 6 prep _ _ 26 an an DET DT Definite=Ind|PronType=Art 27 det _ _ 27 action action NOUN NN Number=Sing 25 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 $ G $ $ g $ SYM $ _ 28 pobj _ _ 30 on on ADP IN _ 27 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 Lie lie NOUN NN Number=Sing 36 nmod _ _ 33 2 2 NUM CD NumType=Card 35 nummod _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 algebra algebra PROPN NNP Number=Sing 36 nmod _ _ 36 $ X(G) $ $ x(g) $ SYM $ _ 30 pobj _ _ 37 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 5 # text = As a result we get the Lie 2 - algebra $ X(G)^G $ of left - invariant multiplicative vector fields. 1 As as ADP IN _ 5 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 result result NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 get get VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 Lie lie NOUN NN Number=Sing 5 dobj _ _ 8 2 2 NUM CD NumType=Card 10 nummod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 algebra algebra NOUN NN Number=Sing 5 npadvmod _ _ 11 $ X(G)^G $ $ x(g)^g $ SYM $ _ 10 appos _ _ 12 of of ADP IN _ 11 prep _ _ 13 left left ADJ JJ Degree=Pos 15 amod _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 invariant invariant ADJ JJ Degree=Pos 18 amod _ _ 16 multiplicative multiplicative ADJ JJ Degree=Pos 17 amod _ _ 17 vector vector NOUN NN Number=Sing 18 compound _ _ 18 fields field NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 6 # text = On the other hand there is a well - known construction that associates a Lie 2 - algebra $ g $ to a Lie 2 - group $ G $ : apply the functor $ Lie : LieGp - > LieAlg $ to the structure maps of the category $ G $ . 1 On on ADP IN _ 6 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 other other ADJ JJ Degree=Pos 4 amod _ _ 4 hand hand NOUN NN Number=Sing 1 pobj _ _ 5 there there PRON EX _ 6 expl _ _ 6 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 8 well well ADV RB Degree=Pos 10 advmod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 amod _ _ 11 construction construction NOUN NN Number=Sing 6 attr _ _ 12 that that PRON WDT PronType=Rel 13 nsubj _ _ 13 associates associate VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 relcl _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 Lie lie NOUN NN Number=Sing 13 dobj _ _ 16 2 2 NUM CD NumType=Card 18 nummod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 algebra algebra NOUN NN Number=Sing 19 nmod _ _ 19 $ g $ $ g $ SYM $ _ 15 nummod _ _ 20 to to ADP IN _ 13 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 22 Lie lie NOUN NN Number=Sing 20 pobj _ _ 23 2 2 NUM CD NumType=Card 25 nummod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 group group NOUN NN Number=Sing 20 pobj _ _ 26 $ G $ $ g $ SYM $ _ 25 appos _ _ 27 : : PUNCT : _ 6 punct _ _ 28 apply apply VERB VB VerbForm=Inf 6 conj _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 functor functor NOUN NN Number=Sing 28 dobj _ _ 31 $ Lie : LieGp - > LieAlg $ $ lie : liegp - > liealg $ SYM $ _ 28 dep _ _ 32 to to ADP IN _ 28 prep _ _ 33 the the DET DT Definite=Def|PronType=Art 35 det _ _ 34 structure structure NOUN NN Number=Sing 35 compound _ _ 35 maps map NOUN NNS Number=Plur 32 pobj _ _ 36 of of ADP IN _ 35 prep _ _ 37 the the DET DT Definite=Def|PronType=Art 38 det _ _ 38 category category NOUN NN Number=Sing 36 pobj _ _ 39 $ G $ $ g $ SYM $ _ 28 dep _ _ 40 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 7 # text = We show that the Lie 2 - algebra $ g $ is isomorphic to the Lie 2 - algebra $ X(G)^G $ of left invariant multiplicative vector fields. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 10 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 9 det _ _ 5 Lie Lie PROPN NNP Number=Sing 9 nmod _ _ 6 2 2 NUM CD NumType=Card 8 nummod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 algebra algebra NOUN NN Number=Sing 9 nmod _ _ 9 $ g $ $ g $ SYM $ _ 10 nsubj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 11 isomorphic isomorphic ADJ JJ Degree=Pos 10 acomp _ _ 12 to to ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 Lie lie NOUN NN Number=Sing 12 pobj _ _ 15 2 2 NUM CD NumType=Card 17 nummod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 algebra algebra NOUN NN Number=Sing 10 npadvmod _ _ 18 $ X(G)^G $ $ x(g)^g $ SYM $ _ 17 appos _ _ 19 of of ADP IN _ 18 prep _ _ 20 left left ADJ JJ Degree=Pos 24 amod _ _ 21 invariant invariant ADJ JJ Degree=Pos 24 amod _ _ 22 multiplicative multiplicative ADJ JJ Degree=Pos 23 amod _ _ 23 vector vector NOUN NN Number=Sing 24 compound _ _ 24 fields field NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 716 # sent_id = 1 # text = This paper studies a category $ X $ with an endofunctor $ T : X to X $ . 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 studies study VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 3 dobj _ _ 6 $ X $ $ x $ SYM $ _ 5 appos _ _ 7 with with ADP IN _ 3 prep _ _ 8 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 9 endofunctor endofunctor NOUN NN Number=Sing 7 pobj _ _ 10 $ T : X to X $ $ t : x to x $ SYM $ _ 9 appos _ _ 11 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = A $ T $ - algebra is given by a morphism $ Tx to x in X $ . 1 A a DET DT Definite=Ind|PronType=Art 4 det _ _ 2 $ T $ $ t $ SYM $ _ 4 compound _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 algebra algebra PROPN NNP Number=Sing 6 nsubjpass _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 6 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 by by ADP IN _ 6 agent _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 morphism morphism NOUN NN Number=Sing 7 pobj _ _ 10 $ Tx to x in X $ $ tx to x in x $ SYM $ _ 9 appos _ _ 11 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = We examine the related questions of when $ T $ freely generates a triple (or monad) on $ X $ ; when an object $ x $ in $ X $ freely generates a $ T $ - algebra; and when the category of $ T $ - algebras has coequalizers and other colimits. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 examine examine VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 related related ADJ JJ Degree=Pos 5 amod _ _ 5 questions question NOUN NNS Number=Plur 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 when when SCONJ WRB _ 10 advmod _ _ 8 $ T $ $ t $ SYM $ _ 10 nsubj _ _ 9 freely freely ADV RB _ 10 advmod _ _ 10 generates generate VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 pcomp _ _ 11 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 12 triple triple ADJ JJ Degree=Pos 15 amod _ _ 13 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 12 punct _ SpaceAfter=No 14 or or CCONJ CC ConjType=Cmp 12 cc _ _ 15 monad monad NOUN NNS Number=Plur 10 dobj _ SpaceAfter=No 16 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 10 punct _ _ 17 on on ADP IN _ 10 prep _ _ 18 $ X $ $ x $ SYM $ _ 17 pobj _ _ 19 ; ; PUNCT : _ 5 punct _ _ 20 when when SCONJ WRB _ 27 advmod _ _ 21 an an DET DT Definite=Ind|PronType=Art 22 det _ _ 22 object object NOUN NN Number=Sing 27 nsubj _ _ 23 $ x $ $ x $ SYM $ _ 22 prep _ _ 24 in in ADP IN _ 22 prep _ _ 25 $ X $ $ x $ SYM $ _ 27 nsubj _ _ 26 freely freely ADV RB _ 27 advmod _ _ 27 generates generate VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 advcl _ _ 28 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 29 $ T $ $ t $ SYM $ _ 31 nmod _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 algebra algebra NOUN NN Number=Sing 27 dobj _ SpaceAfter=No 32 ; ; PUNCT : _ 27 punct _ _ 33 and and CCONJ CC ConjType=Cmp 27 cc _ _ 34 when when SCONJ WRB _ 41 advmod _ _ 35 the the DET DT Definite=Def|PronType=Art 36 det _ _ 36 category category NOUN NN Number=Sing 41 nsubj _ _ 37 of of ADP IN _ 36 prep _ _ 38 $ T $ $ t $ SYM $ _ 40 compound _ _ 39 - - PUNCT HYPH PunctType=Dash 40 punct _ _ 40 algebras algebras PROPN NNP Number=Sing 37 pobj _ _ 41 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 27 conj _ _ 42 coequalizers coequalizer NOUN NNS Number=Plur 41 dobj _ _ 43 and and CCONJ CC ConjType=Cmp 42 cc _ _ 44 other other ADJ JJ Degree=Pos 45 amod _ _ 45 colimits colimit NOUN NNS Number=Plur 42 conj _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = The paper defines a category of `` $ T $ - horns'' which effectively contains $ X $ as well as all $ T $ - algebras. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 defines define VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 3 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 6 punct _ SpaceAfter=No 8 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 6 punct _ _ 9 $ T $ $ t $ SYM $ _ 11 compound _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 horns horn NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 12 '' '' PUNCT '' PunctSide=Fin|PunctType=Quot 5 punct _ _ 13 which which PRON WDT _ 15 nsubj _ _ 14 effectively effectively ADV RB _ 15 advmod _ _ 15 contains contain VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 relcl _ _ 16 $ X $ $ x $ SYM $ _ 15 dobj _ _ 17 as as ADV RB _ 19 advmod _ _ 18 well well ADV RB Degree=Pos 19 advmod _ _ 19 as as ADP IN _ 16 cc _ _ 20 all all DET DT _ 23 det _ _ 21 $ T $ $ t $ SYM $ _ 23 compound _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 algebras algebra NOUN NNS Number=Plur 16 conj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = It is assume that $ Xs $ is cocomplete and has a factorization system $ (E, M) $ satisfying reasonable properties. 1 It it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 3 nsubjpass _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 aux _ _ 3 assume assume VERB VB VerbForm=Inf 0 ROOT _ _ 4 that that SCONJ IN _ 6 mark _ _ 5 $ Xs $ $ xs $ SYM $ _ 6 nsubj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 7 cocomplete cocomplete ADJ JJ Degree=Pos 6 acomp _ _ 8 and and CCONJ CC ConjType=Cmp 6 cc _ _ 9 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 conj _ _ 10 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 11 factorization factorization NOUN NN Number=Sing 12 compound _ _ 12 system system NOUN NN Number=Sing 9 dobj _ _ 13 $ (E, M) $ $ (e, m) $ SYM $ _ 14 nsubj _ _ 14 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 advcl _ _ 15 reasonable reasonable ADJ JJ Degree=Pos 16 amod _ _ 16 properties property NOUN NNS Number=Plur 14 dobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = An ordinal - indexed sequence of $ T $ - horns is then defined which provides successive approximations to a free $ T $ - algebra generated by an object $ x $ in $ X $ , as well as approximations to coequalizers and other colimits for the category of $ T $ - algebras. 1 An an DET DT Definite=Ind|PronType=Art 5 det _ _ 2 ordinal ordinal ADJ JJ Degree=Pos 4 advmod _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 indexed index VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 amod _ _ 5 sequence sequence NOUN NN Number=Sing 12 nsubjpass _ _ 6 of of ADP IN _ 5 prep _ _ 7 $ T $ $ t $ SYM $ _ 9 compound _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 horns horn NOUN NNS Number=Plur 6 pobj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 11 then then ADV RB PronType=Dem 12 advmod _ _ 12 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 13 which which PRON WDT _ 14 nsubj _ _ 14 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 ccomp _ _ 15 successive successive ADJ JJ Degree=Pos 16 amod _ _ 16 approximations approximation NOUN NNS Number=Plur 14 dobj _ _ 17 to to ADP IN _ 14 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 19 free free ADJ JJ Degree=Pos 22 amod _ _ 20 $ T $ $ t $ SYM $ _ 22 compound _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 algebra algebra NOUN NN Number=Sing 17 pobj _ _ 23 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 22 acl _ _ 24 by by ADP IN _ 23 agent _ _ 25 an an DET DT Definite=Ind|PronType=Art 26 det _ _ 26 object object NOUN NN Number=Sing 24 pobj _ _ 27 $ x $ $ x $ SYM $ _ 26 prep _ _ 28 in in ADP IN _ 26 prep _ _ 29 $ X $ $ x $ SYM $ _ 28 pobj _ _ 30 , , PUNCT , PunctType=Comm 26 punct _ _ 31 as as ADV RB _ 33 advmod _ _ 32 well well ADV RB Degree=Pos 33 advmod _ _ 33 as as ADP IN _ 26 cc _ _ 34 approximations approximation NOUN NNS Number=Plur 26 conj _ _ 35 to to ADP IN _ 34 prep _ _ 36 coequalizers coequalizer NOUN NNS Number=Plur 35 pobj _ _ 37 and and CCONJ CC ConjType=Cmp 36 cc _ _ 38 other other ADJ JJ Degree=Pos 39 amod _ _ 39 colimits colimit NOUN NNS Number=Plur 36 conj _ _ 40 for for ADP IN _ 34 prep _ _ 41 the the DET DT Definite=Def|PronType=Art 42 det _ _ 42 category category NOUN NN Number=Sing 40 pobj _ _ 43 of of ADP IN _ 42 prep _ _ 44 $ T $ $ t $ SYM $ _ 43 pobj _ _ 45 - - PUNCT HYPH PunctType=Dash 46 punct _ _ 46 algebras algebra NOUN NNS Number=Plur 43 pobj _ SpaceAfter=No 47 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 7 # text = Using the notions of an $ M $ - cone and a separated $ T $ - horn it is shown that if $ X $ is $ M $ - well - powered, then the ordinal sequence stabilizes at the desired free algebra or coequalizer or other colimit whenever they exist. 1 Using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 17 advcl _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 notions notion NOUN NNS Number=Plur 1 dobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 an an DET DT Definite=Ind|PronType=Art 8 det _ _ 6 $ M $ $ m $ SYM $ _ 8 compound _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 cone cone NOUN NN Number=Sing 4 pobj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 11 separated separate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 amod _ _ 12 $ T $ $ t $ SYM $ _ 14 nmod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 horn horn NOUN NN Number=Sing 1 conj _ _ 15 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 17 nsubjpass _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 auxpass _ _ 17 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 18 that that SCONJ IN _ 32 mark _ _ 19 if if SCONJ IN _ 21 mark _ _ 20 $ X $ $ x $ SYM $ _ 21 nsubj _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 32 advcl _ _ 22 $ M $ $ m $ SYM $ _ 26 advmod _ _ 23 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 24 well well ADV RB Degree=Pos 26 advmod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 powered power VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 acomp _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 32 punct _ _ 28 then then ADV RB PronType=Dem 32 advmod _ _ 29 the the DET DT Definite=Def|PronType=Art 31 det _ _ 30 ordinal ordinal ADJ JJ Degree=Pos 31 amod _ _ 31 sequence sequence NOUN NN Number=Sing 32 nsubj _ _ 32 stabilizes stabilize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 ccomp _ _ 33 at at ADP IN _ 32 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 37 det _ _ 35 desired desire VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 37 amod _ _ 36 free free ADJ JJ Degree=Pos 37 amod _ _ 37 algebra algebra NOUN NNS Number=Plur 33 pobj _ _ 38 or or CCONJ CC ConjType=Cmp 37 cc _ _ 39 coequalizer coequalizer NOUN NN Number=Sing 37 conj _ _ 40 or or CCONJ CC ConjType=Cmp 39 cc _ _ 41 other other ADJ JJ Degree=Pos 42 amod _ _ 42 colimit colimit NOUN NN Number=Sing 39 conj _ _ 43 whenever whenever SCONJ WRB _ 45 advmod _ _ 44 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 45 nsubj _ _ 45 exist exist VERB VBP Tense=Pres|VerbForm=Fin 32 advcl _ SpaceAfter=No 46 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 8 # text = This paper is a successor to a paper written by the first author in 1970 that showed that $ T $ generates a free triple when every $ x $ in $ X $ generates a free $ T $ - algebra. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 successor successor NOUN NN Number=Sing 3 attr _ _ 6 to to ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 paper paper NOUN NN Number=Sing 6 pobj _ _ 9 written write VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 acl _ _ 10 by by ADP IN _ 9 agent _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 first first ADJ JJ Degree=Pos 13 amod _ _ 13 author author NOUN NN Number=Sing 10 pobj _ _ 14 in in ADP IN _ 9 prep _ _ 15 1970 1970 NUM CD NumType=Card 14 pobj _ _ 16 that that PRON WDT PronType=Rel 17 nsubj _ _ 17 showed show VERB VBD Tense=Past|VerbForm=Fin 8 relcl _ _ 18 that that SCONJ IN _ 20 mark _ _ 19 $ T $ $ t $ SYM $ _ 20 nsubj _ _ 20 generates generate VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 ccomp _ _ 21 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 22 free free ADJ JJ Degree=Pos 23 amod _ _ 23 triple triple NOUN NN Number=Sing 20 dobj _ _ 24 when when SCONJ WRB _ 29 advmod _ _ 25 every every DET DT _ 26 det _ _ 26 $ x $ $ x $ SYM $ _ 29 nsubj _ _ 27 in in ADP IN _ 29 prep _ _ 28 $ X $ $ x $ SYM $ _ 27 pobj _ _ 29 generates generate VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 advcl _ _ 30 a a DET DT Definite=Ind|PronType=Art 34 det _ _ 31 free free ADJ JJ Degree=Pos 34 amod _ _ 32 $ T $ $ t $ SYM $ _ 34 compound _ _ 33 - - PUNCT HYPH PunctType=Dash 34 punct _ _ 34 algebra algebra NOUN NN Number=Sing 29 dobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 9 # text = We also consider colimits in triple algebras and give some examples of functors $ T $ for which no $ x $ in $ T $ generates a free $ T $ - algebra. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 colimits colimit NOUN NNS Number=Plur 3 dobj _ _ 5 in in ADP IN _ 4 prep _ _ 6 triple triple ADJ JJ Degree=Pos 7 amod _ _ 7 algebras algebra NOUN NNS Number=Plur 5 pobj _ _ 8 and and CCONJ CC ConjType=Cmp 3 cc _ _ 9 give give VERB VB VerbForm=Inf 3 conj _ _ 10 some some DET DT _ 11 det _ _ 11 examples example NOUN NNS Number=Plur 9 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 functors functor NOUN NNS Number=Plur 12 pobj _ _ 14 $ T $ $ t $ SYM $ _ 9 dobj _ _ 15 for for ADP IN _ 21 prep _ _ 16 which which PRON WDT _ 15 pobj _ _ 17 no no PRON DT _ 21 nsubj _ _ 18 $ x $ $ x $ SYM $ _ 17 nmod _ _ 19 in in ADP IN _ 21 prep _ _ 20 $ T $ $ t $ SYM $ _ 19 pobj _ _ 21 generates generate VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 relcl _ _ 22 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 23 free free ADJ JJ Degree=Pos 26 amod _ _ 24 $ T $ $ t $ SYM $ _ 26 compound _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 algebra algebra NOUN NN Number=Sing 21 dobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 717 # sent_id = 1 # text = We unify previous constructions from our work on concurrent game semantics into a single categorical framework. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 unify unify VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 previous previous ADJ JJ Degree=Pos 4 amod _ _ 4 constructions construction NOUN NNS Number=Plur 2 dobj _ _ 5 from from ADP IN _ 2 prep _ _ 6 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 7 poss _ _ 7 work work NOUN NN Number=Sing 5 pobj _ _ 8 on on ADP IN _ 2 prep _ _ 9 concurrent concurrent ADJ JJ Degree=Pos 11 amod _ _ 10 game game NOUN NN Number=Sing 11 compound _ _ 11 semantics semantic NOUN NNS Number=Plur 8 pobj _ _ 12 into into ADP IN _ 2 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 14 single single ADJ JJ Degree=Pos 16 amod _ _ 15 categorical categorical ADJ JJ Degree=Pos 16 amod _ _ 16 framework framework NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = From an operational description of positions and moves in some game, called a signature, we produce a pseudo double category, in which objects are positions and vertical morphisms are plays. 1 From from ADP IN _ 13 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 4 det _ _ 3 operational operational ADJ JJ Degree=Pos 4 amod _ _ 4 description description NOUN NN Number=Sing 1 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 positions position NOUN NNS Number=Plur 5 pobj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 moves move NOUN NNS Number=Plur 6 conj _ _ 9 in in ADP IN _ 4 prep _ _ 10 some some DET DT _ 11 det _ _ 11 game game NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 13 punct _ _ 13 called call VERB VBD Tense=Past|VerbForm=Fin 18 ccomp _ _ 14 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 15 signature signature NOUN NN Number=Sing 13 oprd _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 18 punct _ _ 17 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 18 nsubj _ _ 18 produce produce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 19 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 20 pseudo pseudo NOUN NN Number=Sing 22 nmod _ _ 21 double double ADJ JJ Degree=Pos 22 amod _ _ 22 category category NOUN NN Number=Sing 18 dobj _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 22 punct _ _ 24 in in ADP IN _ 27 prep _ _ 25 which which PRON WDT _ 24 pobj _ _ 26 objects object NOUN NNS Number=Plur 27 nsubj _ _ 27 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 22 relcl _ _ 28 positions position NOUN NNS Number=Plur 27 attr _ _ 29 and and CCONJ CC ConjType=Cmp 28 cc _ _ 30 vertical vertical ADJ JJ Degree=Pos 31 amod _ _ 31 morphisms morphism NOUN NNS Number=Plur 28 conj _ _ 32 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 18 conj _ _ 33 plays play NOUN NNS Number=Plur 32 attr _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # sent_id = 3 # text = The considered games are multi - player, so it makes sense to consider embeddings of positions: these are the horizontal morphisms. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 considered considered ADJ JJ Degree=Pos 3 amod _ _ 3 games game NOUN NNS Number=Plur 4 nsubj _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 11 ccomp _ _ 5 multi multi ADJ JJ Degree=Pos 7 amod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 player player NOUN NN Number=Sing 4 attr _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 11 punct _ _ 9 so so CCONJ CC ConjType=Cmp 11 advmod _ _ 10 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 11 nsubj _ _ 11 makes make VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 ccomp _ _ 12 sense sense NOUN NN Number=Sing 11 dobj _ _ 13 to to PART TO _ 14 aux _ _ 14 consider consider VERB VB VerbForm=Inf 11 xcomp _ _ 15 embeddings embedding NOUN NNS Number=Plur 14 dobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 positions position NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 18 : : PUNCT : _ 20 punct _ _ 19 these these PRON DT Number=Plur|PronType=Dem 20 nsubj _ _ 20 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 21 the the DET DT Definite=Def|PronType=Art 23 det _ _ 22 horizontal horizontal ADJ JJ Degree=Pos 23 amod _ _ 23 morphisms morphism NOUN NNS Number=Plur 20 attr _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 20 punct _ SpaceAfter=No # sent_id = 4 # text = Finally, cells may be thought of as embeddings of plays preserving initial and final positions. 1 Finally finally ADV RB _ 6 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 6 punct _ _ 3 cells cell NOUN NNS Number=Plur 6 nsubjpass _ _ 4 may may AUX MD VerbForm=Fin 6 aux _ _ 5 be be AUX VB VerbForm=Inf 6 auxpass _ _ 6 thought think VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 7 of of ADP IN _ 6 prep _ _ 8 as as ADP IN _ 6 prep _ _ 9 embeddings embedding NOUN NNS Number=Plur 12 nsubj _ _ 10 of of ADP IN _ 9 prep _ _ 11 plays play NOUN NNS Number=Plur 10 pobj _ _ 12 preserving preserve VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 pcomp _ _ 13 initial initial ADJ JJ Degree=Pos 16 amod _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 final final ADJ JJ Degree=Pos 13 conj _ _ 16 positions position NOUN NNS Number=Plur 12 dobj _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 5 # text = In order to be suitable for game semantics, the obtained pseudo double category should enjoy a certain fibredness property. 1 In in ADP IN _ 16 prep _ _ 2 order order NOUN NN Number=Sing 1 pobj _ _ 3 to to PART TO _ 4 aux _ _ 4 be be AUX VB VerbForm=Inf 2 acl _ _ 5 suitable suitable ADJ JJ Degree=Pos 4 acomp _ _ 6 for for ADP IN _ 5 prep _ _ 7 game game NOUN NN Number=Sing 8 compound _ _ 8 semantics semantic NOUN NNS Number=Plur 6 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 16 punct _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 12 amod _ _ 12 pseudo pseudo NOUN NN Number=Sing 14 nmod _ _ 13 double double ADJ JJ Degree=Pos 14 amod _ _ 14 category category NOUN NN Number=Sing 16 nsubj _ _ 15 should should AUX MD VerbForm=Fin 16 aux _ _ 16 enjoy enjoy VERB VB VerbForm=Inf 0 ROOT _ _ 17 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 18 certain certain ADJ JJ Degree=Pos 20 amod _ _ 19 fibredness fibredness NOUN NN Number=Sing 20 compound _ _ 20 property property NOUN NN Number=Sing 16 dobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 6 # text = Under suitable hypotheses, we show that our construction actually produces such a fibred pseudo double category, from which we can define relevant categories of plays, and thus of strategies. 1 Under under ADP IN _ 6 prep _ _ 2 suitable suitable ADJ JJ Degree=Pos 3 amod _ _ 3 hypotheses hypothesis NOUN NNS Number=Plur 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 that that SCONJ IN _ 11 mark _ _ 8 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 9 poss _ _ 9 construction construction NOUN NN Number=Sing 11 nsubj _ _ 10 actually actually ADV RB _ 11 advmod _ _ 11 produces produce VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 12 such such DET PDT _ 17 predet _ _ 13 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 14 fibred fibred ADJ JJ Degree=Pos 15 amod _ _ 15 pseudo pseudo NOUN NN Number=Sing 17 nmod _ _ 16 double double ADJ JJ Degree=Pos 17 amod _ _ 17 category category NOUN NN Number=Sing 11 dobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 from from ADP IN _ 23 prep _ _ 20 which which PRON WDT _ 19 pobj _ _ 21 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 23 nsubj _ _ 22 can can AUX MD VerbForm=Fin 23 aux _ _ 23 define define VERB VB VerbForm=Inf 17 relcl _ _ 24 relevant relevant ADJ JJ Degree=Pos 25 amod _ _ 25 categories category NOUN NNS Number=Plur 23 dobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 plays play NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 23 punct _ _ 29 and and CCONJ CC ConjType=Cmp 23 cc _ _ 30 thus thus ADV RB _ 31 advmod _ _ 31 of of ADP IN _ 23 conj _ _ 32 strategies strategy NOUN NNS Number=Plur 31 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 7 # text = We give a first necessary and sufficient criterion for this to hold and then a sufficient criterion that can be checked more easily. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 4 first first ADJ JJ Degree=Pos 8 amod _ _ 5 necessary necessary ADJ JJ Degree=Pos 8 amod _ _ 6 and and CCONJ CC ConjType=Cmp 5 cc _ _ 7 sufficient sufficient ADJ JJ Degree=Pos 5 conj _ _ 8 criterion criterion NOUN NN Number=Sing 2 dobj _ _ 9 for for SCONJ IN _ 12 mark _ _ 10 this this PRON DT Number=Sing|PronType=Dem 12 nsubj _ _ 11 to to PART TO _ 12 aux _ _ 12 hold hold VERB VB VerbForm=Inf 8 advcl _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 then then ADV RB PronType=Dem 17 advmod _ _ 15 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 16 sufficient sufficient ADJ JJ Degree=Pos 17 amod _ _ 17 criterion criterion NOUN NN Number=Sing 8 conj _ _ 18 that that PRON WDT PronType=Rel 21 nsubjpass _ _ 19 can can AUX MD VerbForm=Fin 21 aux _ _ 20 be be AUX VB VerbForm=Inf 21 auxpass _ _ 21 checked check VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 relcl _ _ 22 more more ADV RBR Degree=Cmp 23 advmod _ _ 23 easily easily ADV RB _ 21 advmod _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 718 # sent_id = 1 # text = Having given a characterization of the categorical congruence modularity getting rid of the assumption that the ground category is regular, we give now a characterization of the categorical congruence distributivity. 1 Having having AUX VBG Aspect=Prog|Tense=Pres|VerbForm=Part 2 aux _ _ 2 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 23 advcl _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 characterization characterization NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 10 det _ _ 7 categorical categorical ADJ JJ Degree=Pos 9 amod _ _ 8 congruence congruence NOUN NN Number=Sing 9 compound _ _ 9 modularity modularity NOUN NN Number=Sing 10 compound _ _ 10 getting getting AUX NN Number=Sing 11 auxpass _ _ 11 rid rid VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 pcomp _ _ 12 of of ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 assumption assumption NOUN NN Number=Sing 12 pobj _ _ 15 that that SCONJ IN _ 19 mark _ _ 16 the the DET DT Definite=Def|PronType=Art 18 det _ _ 17 ground ground NOUN NN Number=Sing 18 compound _ _ 18 category category NOUN NN Number=Sing 19 nsubj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 acl _ _ 20 regular regular ADJ JJ Degree=Pos 19 acomp _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 23 punct _ _ 22 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 23 nsubj _ _ 23 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 24 now now ADV RB _ 23 advmod _ _ 25 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 26 characterization characterization NOUN NN Number=Sing 23 dobj _ _ 27 of of ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 31 det _ _ 29 categorical categorical ADJ JJ Degree=Pos 31 amod _ _ 30 congruence congruence NOUN NN Number=Sing 31 compound _ _ 31 distributivity distributivity NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 23 punct _ SpaceAfter=No # sent_id = 2 # text = We have a look as well at the case where the congruence distributivity is only involved, in some sense, for a subclass $ Gamma $ of equivalence relations. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 have have VERB VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 look look NOUN NN Number=Sing 2 dobj _ _ 5 as as ADV RB _ 6 advmod _ _ 6 well well ADV RB Degree=Pos 4 advmod _ _ 7 at at ADP IN _ 4 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 case case NOUN NN Number=Sing 7 pobj _ _ 10 where where SCONJ WRB _ 14 advmod _ _ 11 the the DET DT Definite=Def|PronType=Art 13 det _ _ 12 congruence congruence NOUN NN Number=Sing 13 compound _ _ 13 distributivity distributivity NOUN NN Number=Sing 14 nsubj _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 relcl _ _ 15 only only ADV RB _ 16 advmod _ _ 16 involved involve VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 acomp _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 14 punct _ _ 18 in in ADP IN _ 14 prep _ _ 19 some some DET DT _ 20 det _ _ 20 sense sense NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 14 punct _ _ 22 for for ADP IN _ 14 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 24 subclass subclass ADJ JJ Degree=Pos 25 amod _ _ 25 $ Gamma $ $ gamma $ SYM $ _ 22 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 equivalence equivalence NOUN NN Number=Sing 28 compound _ _ 28 relations relation NOUN NNS Number=Plur 26 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 719 # sent_id = 1 # text = We study properties of a category after quotienting out a suitable chosen group of isomorphisms on each object. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 properties property NOUN NNS Number=Plur 2 dobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 category category NOUN NN Number=Sing 4 pobj _ _ 7 after after ADP IN _ 2 prep _ _ 8 quotienting quotiente VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 pcomp _ _ 9 out out ADP RP _ 8 prt _ _ 10 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 11 suitable suitable ADJ JJ Degree=Pos 13 amod _ _ 12 chosen choose VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 amod _ _ 13 group group NOUN NN Number=Sing 8 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 isomorphisms isomorphism NOUN NNS Number=Plur 14 pobj _ _ 16 on on ADP IN _ 13 prep _ _ 17 each each DET DT _ 18 det _ _ 18 object object NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Coproducts in the original category are described in its quotient by our new weaker notion of a `phased coproduct'. 1 Coproducts coproduct NOUN NNS Number=Plur 7 nsubjpass _ _ 2 in in ADP IN _ 1 prep _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 original original ADJ JJ Degree=Pos 5 amod _ _ 5 category category NOUN NN Number=Sing 2 pobj _ _ 6 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 7 described describe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 in in ADP IN _ 7 prep _ _ 9 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 10 poss _ _ 10 quotient quotient NOUN NN Number=Sing 8 pobj _ _ 11 by by ADP IN _ 7 agent _ _ 12 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 15 poss _ _ 13 new new ADJ JJ Degree=Pos 15 amod _ _ 14 weaker weak ADJ JJR Degree=Cmp 15 amod _ _ 15 notion notion NOUN NN Number=Sing 11 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 18 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 20 punct _ SpaceAfter=No 19 phased phase VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 amod _ _ 20 coproduct coproduct NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 21 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 7 punct _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = We examine these and show that any suitable category with them arises as such a quotient of a category with coproducts. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 examine examine VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 these these PRON DT Number=Plur|PronType=Dem 2 dobj _ _ 4 and and CCONJ CC ConjType=Cmp 2 cc _ _ 5 show show VERB VB VerbForm=Inf 2 conj _ _ 6 that that SCONJ IN _ 12 mark _ _ 7 any any DET DT _ 9 det _ _ 8 suitable suitable ADJ JJ Degree=Pos 9 amod _ _ 9 category category NOUN NN Number=Sing 12 nsubj _ _ 10 with with ADP IN _ 9 prep _ _ 11 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 10 pobj _ _ 12 arises arise VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 ccomp _ _ 13 as as ADP IN _ 12 prep _ _ 14 such such DET PDT _ 16 predet _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 quotient quotient NOUN NN Number=Sing 13 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 19 category category NOUN NN Number=Sing 17 pobj _ _ 20 with with ADP IN _ 19 prep _ _ 21 coproducts coproduct NOUN NNS Number=Plur 20 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = Motivation comes from projective geometry, and also quantum theory where they describe superpositions in the category of Hilbert spaces and continuous linear maps up to global phase. 1 Motivation motivation NOUN NN Number=Sing 2 nsubj _ _ 2 comes come VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 from from ADP IN _ 2 prep _ _ 4 projective projective ADJ JJ Degree=Pos 5 amod _ _ 5 geometry geometry NOUN NN Number=Sing 3 pobj _ SpaceAfter=No 6 , , PUNCT , PunctType=Comm 2 punct _ _ 7 and and CCONJ CC ConjType=Cmp 2 cc _ _ 8 also also ADV RB _ 10 advmod _ _ 9 quantum quantum ADJ JJ Degree=Pos 10 amod _ _ 10 theory theory NOUN NN Number=Sing 2 conj _ _ 11 where where SCONJ WRB _ 13 advmod _ _ 12 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 13 nsubj _ _ 13 describe describe VERB VBP Tense=Pres|VerbForm=Fin 10 relcl _ _ 14 superpositions superposition NOUN NNS Number=Plur 13 dobj _ _ 15 in in ADP IN _ 13 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 category category NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 Hilbert Hilbert PROPN NNP Number=Sing 20 compound _ _ 20 spaces space NOUN NNS Number=Plur 18 pobj _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 continuous continuous ADJ JJ Degree=Pos 24 amod _ _ 23 linear linear PROPN NNP Number=Sing 24 compound _ _ 24 maps map NOUN NNS Number=Plur 20 conj _ _ 25 up up ADP RP _ 13 prep _ _ 26 to to ADP IN _ 13 prep _ _ 27 global global ADJ JJ Degree=Pos 28 amod _ _ 28 phase phase NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 29 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = The quotients we consider also generalise those induced by categorical isotropy in the sense of Funk et al. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 quotients quotient NOUN NNS Number=Plur 0 ROOT _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 consider consider VERB VBP Tense=Pres|VerbForm=Fin 2 relcl _ _ 5 also also ADV RB _ 6 advmod _ _ 6 generalise generalise VERB VB VerbForm=Inf 4 ccomp _ _ 7 those those PRON DT Number=Plur|PronType=Dem 6 dobj _ _ 8 induced induce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 acl _ _ 9 by by ADP IN _ 8 agent _ _ 10 categorical categorical ADJ JJ Degree=Pos 11 amod _ _ 11 isotropy isotropy NOUN NN Number=Sing 9 pobj _ _ 12 in in ADP IN _ 8 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 sense sense NOUN NN Number=Sing 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 Funk Funk PROPN NNP Number=Sing 15 pobj _ _ 17 et et NOUN NN Number=Sing 2 appos _ _ 18 al al PROPN NNP Number=Sing 2 appos _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 720 # sent_id = 1 # text = We develop a notion of limit for dagger categories, that we show is suitable in the following ways: it subsumes special cases known from the literature; dagger limits are unique up to unitary isomorphism; a wide class of dagger limits can be built from a small selection of them; dagger limits of a fixed shape can be phrased as dagger adjoints to a diagonal functor; dagger limits can be built from ordinary limits in the presence of polar decomposition; dagger limits commute with dagger colimits in many cases. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 develop develop VERB VBP Tense=Pres|VerbForm=Fin 22 ccomp _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 notion notion NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 limit limit NOUN NN Number=Sing 5 pobj _ _ 7 for for ADP IN _ 6 prep _ _ 8 dagger dagger NOUN NN Number=Sing 9 compound _ _ 9 categories category NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 2 punct _ _ 11 that that SCONJ IN _ 14 nsubj _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 13 nsubj _ _ 13 show show VERB VBP Tense=Pres|VerbForm=Fin 2 advcl _ _ 14 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 ccomp _ _ 15 suitable suitable ADJ JJ Degree=Pos 14 acomp _ _ 16 in in ADP IN _ 14 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 following follow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 19 amod _ _ 19 ways way NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 20 : : PUNCT : _ 22 punct _ _ 21 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 22 nsubj _ _ 22 subsumes subsume VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 32 ccomp _ _ 23 special special ADJ JJ Degree=Pos 24 amod _ _ 24 cases case NOUN NNS Number=Plur 22 dobj _ _ 25 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 acl _ _ 26 from from ADP IN _ 25 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 literature literature NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 29 ; ; PUNCT : _ 32 punct _ _ 30 dagger dagger NOUN NN Number=Sing 31 compound _ _ 31 limits limit NOUN NNS Number=Plur 32 nsubj _ _ 32 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 47 ccomp _ _ 33 unique unique ADJ JJ Degree=Pos 32 acomp _ _ 34 up up ADP IN _ 33 prep _ _ 35 to to ADP IN _ 34 prep _ _ 36 unitary unitary ADJ JJ Degree=Pos 37 amod _ _ 37 isomorphism isomorphism NOUN NN Number=Sing 35 pobj _ SpaceAfter=No 38 ; ; PUNCT : _ 47 punct _ _ 39 a a DET DT Definite=Ind|PronType=Art 41 det _ _ 40 wide wide ADJ JJ Degree=Pos 41 amod _ _ 41 class class NOUN NN Number=Sing 47 nsubjpass _ _ 42 of of ADP IN _ 41 prep _ _ 43 dagger dagger NOUN NN Number=Sing 44 compound _ _ 44 limits limit NOUN NNS Number=Plur 42 pobj _ _ 45 can can AUX MD VerbForm=Fin 47 aux _ _ 46 be be AUX VB VerbForm=Inf 47 auxpass _ _ 47 built build VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 63 ccomp _ _ 48 from from ADP IN _ 47 prep _ _ 49 a a DET DT Definite=Ind|PronType=Art 51 det _ _ 50 small small ADJ JJ Degree=Pos 51 amod _ _ 51 selection selection NOUN NN Number=Sing 48 pobj _ _ 52 of of ADP IN _ 51 prep _ _ 53 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 52 pobj _ SpaceAfter=No 54 ; ; PUNCT : _ 63 punct _ _ 55 dagger dagger NOUN NN Number=Sing 56 compound _ _ 56 limits limit NOUN NNS Number=Plur 63 nsubjpass _ _ 57 of of ADP IN _ 56 prep _ _ 58 a a DET DT Definite=Ind|PronType=Art 60 det _ _ 59 fixed fix VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 60 amod _ _ 60 shape shape NOUN NN Number=Sing 57 pobj _ _ 61 can can AUX MD VerbForm=Fin 63 aux _ _ 62 be be AUX VB VerbForm=Inf 63 auxpass _ _ 63 phrased phrase VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 76 ccomp _ _ 64 as as ADP IN _ 63 prep _ _ 65 dagger dagg ADJ JJR Degree=Cmp 66 compound _ _ 66 adjoints adjoint NOUN NNS Number=Plur 64 pobj _ _ 67 to to ADP IN _ 63 prep _ _ 68 a a DET DT Definite=Ind|PronType=Art 70 det _ _ 69 diagonal diagonal ADJ JJ Degree=Pos 70 amod _ _ 70 functor functor NOUN NN Number=Sing 67 pobj _ SpaceAfter=No 71 ; ; PUNCT : _ 76 punct _ _ 72 dagger dagger NOUN NN Number=Sing 73 compound _ _ 73 limits limit NOUN NNS Number=Plur 76 nsubjpass _ _ 74 can can AUX MD VerbForm=Fin 76 aux _ _ 75 be be AUX VB VerbForm=Inf 76 auxpass _ _ 76 built build VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 89 ccomp _ _ 77 from from ADP IN _ 76 prep _ _ 78 ordinary ordinary ADJ JJ Degree=Pos 79 amod _ _ 79 limits limit NOUN NNS Number=Plur 77 pobj _ _ 80 in in ADP IN _ 76 prep _ _ 81 the the DET DT Definite=Def|PronType=Art 82 det _ _ 82 presence presence NOUN NN Number=Sing 80 pobj _ _ 83 of of ADP IN _ 82 prep _ _ 84 polar polar ADJ JJ Degree=Pos 85 amod _ _ 85 decomposition decomposition NOUN NN Number=Sing 83 pobj _ SpaceAfter=No 86 ; ; PUNCT : _ 89 punct _ _ 87 dagger dagger NOUN NN Number=Sing 88 compound _ _ 88 limits limit NOUN NNS Number=Plur 89 nsubj _ _ 89 commute commute VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 90 with with ADP IN _ 89 prep _ _ 91 dagger dagger NOUN NN Number=Sing 92 compound _ _ 92 colimits colimit NOUN NNS Number=Plur 90 pobj _ _ 93 in in ADP IN _ 89 prep _ _ 94 many many ADJ JJ Degree=Pos 95 amod _ _ 95 cases case NOUN NNS Number=Plur 93 pobj _ SpaceAfter=No 96 . . PUNCT . PunctType=Peri 89 punct _ SpaceAfter=No # doc_id = 721 # sent_id = 1 # text = If $ C $ is a monoidal category with reflexive coequalizers which are preserved by tensoring from both sides, then the category $ MonC $ of monoids over $ C $ has all coequalizers and these are regular epimorphisms in $ C $ . 1 If if SCONJ IN _ 3 mark _ _ 2 $ C $ $ c $ SYM $ _ 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 27 advcl _ _ 4 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 5 monoidal monoidal ADJ JJ Degree=Pos 6 amod _ _ 6 category category NOUN NN Number=Sing 3 attr _ _ 7 with with ADP IN _ 6 prep _ _ 8 reflexive reflexive ADJ JJ Degree=Pos 9 amod _ _ 9 coequalizers coequalizer NOUN NNS Number=Plur 7 pobj _ _ 10 which which PRON WDT _ 12 nsubjpass _ _ 11 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 12 auxpass _ _ 12 preserved preserve VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 relcl _ _ 13 by by ADP IN _ 12 agent _ _ 14 tensoring tensore VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 pcomp _ _ 15 from from ADP IN _ 14 prep _ _ 16 both both DET DT _ 17 det _ _ 17 sides side NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 27 punct _ _ 19 then then ADV RB PronType=Dem 27 advmod _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 category category NOUN NN Number=Sing 27 nsubj _ _ 22 $ MonC $ $ monc $ SYM $ _ 21 appos _ _ 23 of of ADP IN _ 22 prep _ _ 24 monoids monoid NOUN NNS Number=Plur 23 pobj _ _ 25 over over ADP IN _ 21 prep _ _ 26 $ C $ $ c $ SYM $ _ 25 pobj _ _ 27 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 28 all all DET DT _ 29 det _ _ 29 coequalizers coequalizer NOUN NNS Number=Plur 27 dobj _ _ 30 and and CCONJ CC ConjType=Cmp 27 cc _ _ 31 these these PRON DT Number=Plur|PronType=Dem 32 nsubj _ _ 32 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 27 conj _ _ 33 regular regular ADJ JJ Degree=Pos 34 amod _ _ 34 epimorphisms epimorphism NOUN NNS Number=Plur 32 attr _ _ 35 in in ADP IN _ 34 prep _ _ 36 $ C $ $ c $ SYM $ _ 35 pobj _ _ 37 . . PUNCT . PunctType=Peri 32 punct _ SpaceAfter=No # sent_id = 2 # text = This implies that $ MonC $ has all colimits which exist in $ C $ , provided that $ C $ in addition has (regular epi, jointly monomorphic) - factorizations of discrete cones and admits arbitrary free monoids. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 implies imply VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 5 mark _ _ 4 $ MonC $ $ monc $ SYM $ _ 5 nsubj _ _ 5 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 6 all all DET DT _ 7 det _ _ 7 colimits colimit NOUN NNS Number=Plur 5 dobj _ _ 8 which which PRON WDT _ 9 nsubj _ _ 9 exist exist VERB VBP Tense=Pres|VerbForm=Fin 7 relcl _ _ 10 in in ADP IN _ 9 prep _ _ 11 $ C $ $ c $ SYM $ _ 10 pobj _ _ 12 , , PUNCT , PunctType=Comm 5 punct _ _ 13 provided provide VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 prep _ _ 14 that that SCONJ IN _ 18 mark _ _ 15 $ C $ $ c $ SYM $ _ 18 nsubj _ _ 16 in in ADP IN _ 18 prep _ _ 17 addition addition NOUN NN Number=Sing 16 pobj _ _ 18 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 pcomp _ _ 19 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 18 punct _ SpaceAfter=No 20 regular regular ADJ JJ Degree=Pos 21 amod _ _ 21 epi epi NOUN NN Number=Sing 27 dep _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 jointly jointly ADV RB _ 24 advmod _ _ 24 monomorphic monomorphic ADJ JJ Degree=Pos 21 amod _ SpaceAfter=No 25 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 21 punct _ _ 26 - - PUNCT : _ 27 punct _ _ 27 factorizations factorization NOUN NNS Number=Plur 18 dobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 discrete discrete ADJ JJ Degree=Pos 30 amod _ _ 30 cones cone NOUN NNS Number=Plur 28 pobj _ _ 31 and and CCONJ CC ConjType=Cmp 18 cc _ _ 32 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 18 conj _ _ 33 arbitrary arbitrary ADJ JJ Degree=Pos 35 amod _ _ 34 free free ADJ JJ Degree=Pos 35 amod _ _ 35 monoids monoid NOUN NNS Number=Plur 32 dobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = A further application is a lifting theorem for adjunctions with a monoidal right adjoint whose left adjoint is not necessarily strong to adjunctions between the respective categories of monoids. 1 A a DET DT Definite=Ind|PronType=Art 3 det _ _ 2 further further ADJ JJ Degree=Pos 3 amod _ _ 3 application application NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 lifting lifting NOUN NN Number=Sing 7 amod _ _ 7 theorem theorem NOUN NN Number=Sing 4 attr _ _ 8 for for ADP IN _ 7 prep _ _ 9 adjunctions adjunction NOUN NNS Number=Plur 8 pobj _ _ 10 with with ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 12 monoidal monoidal ADJ JJ Degree=Pos 14 amod _ _ 13 right right NOUN NN Number=Sing 14 amod _ _ 14 adjoint adjoint NOUN NN Number=Sing 10 pobj _ _ 15 whose whose DET WP$ Poss=Yes 17 poss _ _ 16 left left ADJ JJ Degree=Pos 17 amod _ _ 17 adjoint adjoint NOUN NN Number=Sing 18 nsubj _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 relcl _ _ 19 not not PART RB Polarity=Neg 18 neg _ _ 20 necessarily necessarily ADV RB _ 18 advmod _ _ 21 strong strong ADJ JJ Degree=Pos 18 acomp _ _ 22 to to ADP IN _ 21 prep _ _ 23 adjunctions adjunction NOUN NNS Number=Plur 22 pobj _ _ 24 between between ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 27 det _ _ 26 respective respective ADJ JJ Degree=Pos 27 amod _ _ 27 categories category NOUN NNS Number=Plur 24 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 monoids monoid NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 722 # sent_id = 1 # text = Van den Bergh has defined the blowup of a noncommutative surface at a point lying on a commutative divisor. 1 Van van NOUN NN Number=Sing 2 compound _ _ 2 den den NOUN NN Number=Sing 5 npadvmod _ _ 3 Bergh Bergh PROPN NNP Number=Sing 5 nsubj _ _ 4 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 aux _ _ 5 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 blowup blowup NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 noncommutative noncommutative ADJ JJ Degree=Pos 11 amod _ _ 11 surface surface NOUN NN Number=Sing 8 pobj _ _ 12 at at ADP IN _ 5 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 point point NOUN NN Number=Sing 12 pobj _ _ 15 lying lie VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 acl _ _ 16 on on ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 18 commutative commutative ADJ JJ Degree=Pos 19 amod _ _ 19 divisor divisor NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = We study one aspect of the construction, with an eventual aim of defining more general kinds of noncommutative blowups. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 study study VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 one one NUM CD NumType=Card 4 nummod _ _ 4 aspect aspect NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 construction construction NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 2 punct _ _ 9 with with ADP IN _ 2 prep _ _ 10 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 11 eventual eventual ADJ JJ Degree=Pos 12 amod _ _ 12 aim aim NOUN NN Number=Sing 9 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 defining define VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 pcomp _ _ 15 more more ADJ JJR Degree=Cmp 17 amod _ _ 16 general general ADJ JJ Degree=Pos 17 amod _ _ 17 kinds kind NOUN NNS Number=Plur 14 dobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 noncommutative noncommutative ADJ JJ Degree=Pos 20 amod _ _ 20 blowups blowup NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Our basic object of study is a quasi - scheme $ X $ (a Grothendieck category). 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 3 poss _ _ 2 basic basic ADJ JJ Degree=Pos 3 amod _ _ 3 object object NOUN NN Number=Sing 6 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 study study NOUN NN Number=Sing 4 pobj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 8 quasi quasi ADJ JJ Degree=Pos 11 amod _ _ 9 - - ADJ JJ Degree=Pos 11 punct _ _ 10 scheme scheme NOUN NN Number=Sing 11 amod _ _ 11 $ X $ $ x $ SYM $ _ 6 attr _ _ 12 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 11 punct _ SpaceAfter=No 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 Grothendieck Grothendieck PROPN NNP Number=Sing 15 compound _ _ 15 category category NOUN NN Number=Sing 11 appos _ SpaceAfter=No 16 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 11 punct _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = Given a closed subcategory $ Z $ , in order to define a blowup of $ X $ along $ Z $ one first needs to have a functor $ F_Z $ which is an analog of tensoring with the defining ideal of $ Z $ . 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 3 closed closed ADJ JJ Degree=Pos 4 amod _ _ 4 subcategory subcategory NOUN NN Number=Sing 1 pobj _ _ 5 $ Z $ $ z $ SYM $ _ 4 appos _ _ 6 , , PUNCT , PunctType=Comm 19 punct _ _ 7 in in ADP IN _ 19 prep _ _ 8 order order NOUN NN Number=Sing 7 pobj _ _ 9 to to PART TO _ 10 aux _ _ 10 define define VERB VB VerbForm=Inf 8 acl _ _ 11 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 12 blowup blowup NOUN NN Number=Sing 10 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 $ X $ $ x $ SYM $ _ 13 pobj _ _ 15 along along ADP IN _ 10 prep _ _ 16 $ Z $ $ z $ SYM $ _ 17 nmod _ _ 17 one one NUM CD NumType=Card 15 pobj _ _ 18 first first ADJ JJ Degree=Pos 19 amod _ _ 19 needs need VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 20 to to PART TO _ 21 aux _ _ 21 have have VERB VB VerbForm=Inf 19 xcomp _ _ 22 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 23 functor functor NOUN NN Number=Sing 21 dobj _ _ 24 $ F_Z $ $ f_z $ SYM $ _ 23 prep _ _ 25 which which PRON WDT _ 26 nsubj _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 23 relcl _ _ 27 an an DET DT Definite=Ind|PronType=Art 28 det _ _ 28 analog analog NOUN NN Number=Sing 26 attr _ _ 29 of of ADP IN _ 28 prep _ _ 30 tensoring tensore VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 29 pcomp _ _ 31 with with ADP IN _ 30 prep _ _ 32 the the DET DT Definite=Def|PronType=Art 34 det _ _ 33 defining define VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 34 amod _ _ 34 ideal ideal NOUN NN Number=Sing 31 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 $ Z $ $ z $ SYM $ _ 35 pobj _ _ 37 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 5 # text = Following Van den Bergh, a closed subcategory $ Z $ which has such a functor is called well - closed. 1 Following follow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 prep _ _ 2 Van Van PROPN NNP Number=Sing 3 compound _ _ 3 den den NOUN NN Number=Sing 4 compound _ _ 4 Bergh Bergh PROPN NNP Number=Sing 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 4 punct _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 closed closed ADJ JJ Degree=Pos 8 amod _ _ 8 subcategory subcategory NOUN NN Number=Sing 4 appos _ _ 9 $ Z $ $ z $ SYM $ _ 8 prep _ _ 10 which which PRON WDT _ 11 nsubj _ _ 11 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 relcl _ _ 12 such such DET PDT _ 14 predet _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 functor functor NOUN NN Number=Sing 16 nsubjpass _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 auxpass _ _ 16 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 17 well well ADV RB Degree=Pos 19 advmod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 closed closed ADJ JJ Degree=Pos 16 oprd _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 6 # text = We show that well - closedness can be characterized by the existence of certain projective effacements for each object of $ X $ , and that the needed functor $ F_Z $ has an explicit description in terms of such effacements. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 9 mark _ _ 4 well well ADV RB Degree=Pos 6 amod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 closedness closedness NOUN NN Number=Sing 9 nsubjpass _ _ 7 can can AUX MD VerbForm=Fin 9 aux _ _ 8 be be AUX VB VerbForm=Inf 9 auxpass _ _ 9 characterized characterize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 10 by by ADP IN _ 9 agent _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 existence existence NOUN NN Number=Sing 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 certain certain ADJ JJ Degree=Pos 16 amod _ _ 15 projective projective ADJ JJ Degree=Pos 16 amod _ _ 16 effacements effacement NOUN NNS Number=Plur 13 pobj _ _ 17 for for ADP IN _ 16 prep _ _ 18 each each DET DT _ 19 det _ _ 19 object object NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 $ X $ $ x $ SYM $ _ 20 pobj _ _ 22 , , PUNCT , PunctType=Comm 9 punct _ _ 23 and and CCONJ CC ConjType=Cmp 9 cc _ _ 24 that that SCONJ IN _ 29 mark _ _ 25 the the DET DT Definite=Def|PronType=Art 27 det _ _ 26 needed need VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 amod _ _ 27 functor functor NOUN NN Number=Sing 29 nsubj _ _ 28 $ F_Z $ $ f_z $ SYM $ _ 27 appos _ _ 29 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 conj _ _ 30 an an DET DT Definite=Ind|PronType=Art 32 det _ _ 31 explicit explicit ADJ JJ Degree=Pos 32 amod _ _ 32 description description NOUN NN Number=Sing 29 dobj _ _ 33 in in ADP IN _ 32 prep _ _ 34 terms term NOUN NNS Number=Plur 33 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 such such ADJ JJ Degree=Pos 37 amod _ _ 37 effacements effacement NOUN NNS Number=Plur 35 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 7 # text = As an application, we prove that closed points are well - closed in quite general quasi - schemes. 1 As as ADP IN _ 6 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 application application NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 that that SCONJ IN _ 10 mark _ _ 8 closed closed ADJ JJ Degree=Pos 9 amod _ _ 9 points point NOUN NNS Number=Plur 10 nsubj _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 ccomp _ _ 11 well well ADV RB Degree=Pos 13 advmod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 closed close VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 acomp _ _ 14 in in ADP IN _ 13 prep _ _ 15 quite quite ADV RB _ 16 advmod _ _ 16 general general ADJ JJ Degree=Pos 17 amod _ _ 17 quasi quasi NOUN NNS Number=Plur 14 pobj _ _ 18 - - NOUN NNS Number=Plur 14 pobj _ _ 19 schemes scheme NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 723 # sent_id = 1 # text = We continue the program of structural differential geometry that . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 continue continue VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 program program NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 structural structural ADJ JJ Degree=Pos 8 amod _ _ 7 differential differential ADJ JJ Degree=Pos 8 amod _ _ 8 geometry geometry NOUN NN Number=Sing 5 pobj _ _ 9 that that PRON WDT PronType=Rel 2 dobj _ _ 10 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 724 # sent_id = 1 # text = We introduce a new condition on an abstract span of categories which we refer to as having right fibred right adjoints, RFRA for short. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 new new ADJ JJ Degree=Pos 5 amod _ _ 5 condition condition NOUN NN Number=Sing 2 dobj _ _ 6 on on ADP IN _ 5 prep _ _ 7 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 8 abstract abstract ADJ JJ Degree=Pos 9 amod _ _ 9 span span NOUN NN Number=Sing 6 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 categories category NOUN NNS Number=Plur 10 pobj _ _ 12 which which PRON WDT _ 15 pobj _ _ 13 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 14 nsubj _ _ 14 refer refer VERB VBP Tense=Pres|VerbForm=Fin 9 relcl _ _ 15 to to ADP IN _ 14 prep _ _ 16 as as ADP IN _ 14 prep _ _ 17 having have VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 16 pcomp _ _ 18 right right ADV RB _ 19 advmod _ _ 19 fibred fibre VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 amod _ _ 20 right right ADJ JJ Degree=Pos 21 amod _ _ 21 adjoints adjoint NOUN NNS Number=Plur 17 dobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 2 punct _ _ 23 RFRA RFRA PROPN NNP Number=Sing 2 npadvmod _ _ 24 for for ADP IN _ 23 prep _ _ 25 short short ADJ JJ Degree=Pos 24 amod _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We show that: (i) the span of split extensions of a semi - abelian category $ C $ has RFRA if and only if $ C $ is action representable; (ii) the reversed span to the one considered in (i) has RFRA if and only if $ C $ is locally algebraically cartesian closed; (iii) the span of split extensions of the category of morphisms of $ C $ has RFRA if and only if $ C $ is action representable and has normalizers; (iv) the reversed span to the one considered in (iii) has RFRA if and only if $ C $ is locally algebraically cartesian closed. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 45 ccomp _ _ 3 that that SCONJ IN _ 20 mark _ SpaceAfter=No 4 : : PUNCT : _ 20 punct _ _ 5 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 6 punct _ SpaceAfter=No 6 i i NOUN NN Case=Nom|Number=Sing|Person=1|PronType=Prs 20 nsubj _ SpaceAfter=No 7 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 6 punct _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 span span NOUN NN Number=Sing 20 nsubj _ _ 10 of of ADP IN _ 9 prep _ _ 11 split split ADJ JJ Degree=Pos 12 amod _ _ 12 extensions extension NOUN NNS Number=Plur 10 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 15 semi semi ADJ JJ Degree=Pos 18 amod _ _ 16 - - ADJ JJ Degree=Pos 18 amod _ _ 17 abelian abelian ADJ JJ Degree=Pos 18 amod _ _ 18 category category NOUN NN Number=Sing 13 pobj _ _ 19 $ C $ $ c $ SYM $ _ 18 appos _ _ 20 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 21 RFRA RFRA PROPN NNP Number=Sing 20 dobj _ _ 22 if if SCONJ IN _ 27 mark _ _ 23 and and CCONJ CC ConjType=Cmp 27 cc _ _ 24 only only ADV RB _ 27 advmod _ _ 25 if if SCONJ IN _ 27 mark _ _ 26 $ C $ $ c $ SYM $ _ 27 nsubj _ _ 27 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 advcl _ _ 28 action action NOUN NN Number=Sing 27 attr _ _ 29 representable representable ADJ JJ Degree=Pos 28 amod _ SpaceAfter=No 30 ; ; PUNCT : _ 45 punct _ _ 31 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 32 punct _ SpaceAfter=No 32 ii ii PROPN NNP Number=Sing 45 dep _ SpaceAfter=No 33 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 32 punct _ _ 34 the the DET DT Definite=Def|PronType=Art 36 det _ _ 35 reversed reversed ADJ JJ Degree=Pos 36 amod _ _ 36 span span NOUN NN Number=Sing 45 nsubj _ _ 37 to to ADP IN _ 36 prep _ _ 38 the the DET DT Definite=Def|PronType=Art 39 det _ _ 39 one one NOUN NN Number=Sing 37 pobj _ _ 40 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 39 acl _ _ 41 in in ADP IN _ 40 prep _ _ 42 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 41 punct _ SpaceAfter=No 43 i i NOUN NN Case=Acc|Number=Sing|Person=1|PronType=Prs 41 pobj _ SpaceAfter=No 44 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 39 punct _ _ 45 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 101 ccomp _ _ 46 RFRA RFRA PROPN NNP Number=Sing 45 dobj _ _ 47 if if SCONJ IN _ 73 mark _ _ 48 and and CCONJ CC ConjType=Cmp 73 cc _ _ 49 only only ADV RB _ 52 advmod _ _ 50 if if SCONJ IN _ 52 mark _ _ 51 $ C $ $ c $ SYM $ _ 52 nsubj _ _ 52 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 73 advcl _ _ 53 locally locally ADV RB _ 52 advmod _ _ 54 algebraically algebraically ADV RB _ 55 advmod _ _ 55 cartesian cartesian ADJ JJ Degree=Pos 56 amod _ _ 56 closed closed ADJ JJ Degree=Pos 52 acomp _ SpaceAfter=No 57 ; ; PUNCT : _ 73 punct _ _ 58 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 59 punct _ SpaceAfter=No 59 iii iii NOUN NN Number=Sing 73 meta _ SpaceAfter=No 60 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 59 punct _ _ 61 the the DET DT Definite=Def|PronType=Art 62 det _ _ 62 span span NOUN NN Number=Sing 73 nsubj _ _ 63 of of ADP IN _ 62 prep _ _ 64 split split ADJ JJ Degree=Pos 65 amod _ _ 65 extensions extension NOUN NNS Number=Plur 63 pobj _ _ 66 of of ADP IN _ 65 prep _ _ 67 the the DET DT Definite=Def|PronType=Art 68 det _ _ 68 category category NOUN NN Number=Sing 66 pobj _ _ 69 of of ADP IN _ 68 prep _ _ 70 morphisms morphism NOUN NNS Number=Plur 69 pobj _ _ 71 of of ADP IN _ 70 prep _ _ 72 $ C $ $ c $ SYM $ _ 71 pobj _ _ 73 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 45 advcl _ _ 74 RFRA RFRA PROPN NNP Number=Sing 73 dobj _ _ 75 if if SCONJ IN _ 80 mark _ _ 76 and and CCONJ CC ConjType=Cmp 80 cc _ _ 77 only only ADV RB _ 80 advmod _ _ 78 if if SCONJ IN _ 80 mark _ _ 79 $ C $ $ c $ SYM $ _ 80 nsubj _ _ 80 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 73 advcl _ _ 81 action action NOUN NN Number=Sing 82 npadvmod _ _ 82 representable representable ADJ JJ Degree=Pos 80 acomp _ _ 83 and and CCONJ CC ConjType=Cmp 80 cc _ _ 84 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 80 conj _ _ 85 normalizers normalizer NOUN NNS Number=Plur 84 dobj _ SpaceAfter=No 86 ; ; PUNCT : _ 101 punct _ _ 87 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 88 punct _ SpaceAfter=No 88 iv iv PROPN NNP Number=Sing 101 meta _ SpaceAfter=No 89 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 88 punct _ _ 90 the the DET DT Definite=Def|PronType=Art 92 det _ _ 91 reversed reversed ADJ JJ Degree=Pos 92 amod _ _ 92 span span NOUN NN Number=Sing 101 nsubj _ _ 93 to to ADP IN _ 92 prep _ _ 94 the the DET DT Definite=Def|PronType=Art 95 det _ _ 95 one one NOUN NN Number=Sing 93 pobj _ _ 96 considered consider VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 95 acl _ _ 97 in in ADP IN _ 96 prep _ _ 98 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 97 punct _ SpaceAfter=No 99 iii iii NOUN NN Number=Sing 97 pobj _ SpaceAfter=No 100 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 95 punct _ _ 101 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 102 RFRA RFRA PROPN NNP Number=Sing 101 dobj _ _ 103 if if SCONJ IN _ 108 mark _ _ 104 and and CCONJ CC ConjType=Cmp 108 cc _ _ 105 only only ADV RB _ 108 advmod _ _ 106 if if SCONJ IN _ 108 mark _ _ 107 $ C $ $ c $ SYM $ _ 108 nsubj _ _ 108 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 101 advcl _ _ 109 locally locally ADV RB _ 108 advmod _ _ 110 algebraically algebraically ADV RB _ 111 advmod _ _ 111 cartesian cartesian ADJ JJ Degree=Pos 112 amod _ _ 112 closed closed ADJ JJ Degree=Pos 108 acomp _ SpaceAfter=No 113 . . PUNCT . PunctType=Peri 101 punct _ SpaceAfter=No # sent_id = 3 # text = We also examine our condition for the span of monoid actions (of monoids in a monoidal category $ C $ on objects in a given category on which $ C $ acts), and for various other spans. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 examine examine VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 5 poss _ _ 5 condition condition NOUN NN Number=Sing 3 dobj _ _ 6 for for ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 span span NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 monoid monoid NOUN NN Number=Sing 11 compound _ _ 11 actions action NOUN NNS Number=Plur 9 pobj _ _ 12 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 11 punct _ SpaceAfter=No 13 of of ADP IN _ 11 prep _ _ 14 monoids monoid NOUN NNS Number=Plur 13 pobj _ _ 15 in in ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 monoidal monoidal ADJ JJ Degree=Pos 18 amod _ _ 18 category category NOUN NN Number=Sing 15 pobj _ _ 19 $ C $ $ c $ SYM $ _ 3 dep _ _ 20 on on ADP IN _ 3 prep _ _ 21 objects object NOUN NNS Number=Plur 20 pobj _ _ 22 in in ADP IN _ 21 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 24 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 25 amod _ _ 25 category category NOUN NN Number=Sing 22 pobj _ _ 26 on on ADP IN _ 29 prep _ _ 27 which which PRON WDT _ 26 pobj _ _ 28 $ C $ $ c $ SYM $ _ 29 nmod _ _ 29 acts act NOUN NNS Number=Plur 25 relcl _ SpaceAfter=No 30 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 3 punct _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 3 punct _ _ 32 and and CCONJ CC ConjType=Cmp 3 cc _ _ 33 for for ADP IN _ 3 prep _ _ 34 various various ADJ JJ Degree=Pos 36 amod _ _ 35 other other ADJ JJ Degree=Pos 36 amod _ _ 36 spans span NOUN NNS Number=Plur 33 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 725 # sent_id = 1 # text = We relate the relative nerve $ N_f(D) $ of a diagram of simplicial sets $ f : D to sSet $ with the Grothendieck construction $ Gr F $ of a simplicial functor $ F : D to sCat $ in the case where $ f = N F $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 relate relate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 relative relative ADJ JJ Degree=Pos 5 amod _ _ 5 nerve nerve NOUN NN Number=Sing 2 dobj _ _ 6 $ N_f(D) $ $ n_f(d) $ SYM $ _ 5 appos _ _ 7 of of ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 9 diagram diagram NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 simplicial simplicial ADJ JJ Degree=Pos 12 amod _ _ 12 sets set NOUN NNS Number=Plur 10 pobj _ _ 13 $ f : D to sSet $ $ f : d to sset $ SYM $ _ 6 appos _ _ 14 with with ADP IN _ 5 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 Grothendieck Grothendieck PROPN NNP Number=Sing 17 compound _ _ 17 construction construction NOUN NN Number=Sing 14 pobj _ _ 18 $ Gr F $ $ gr f $ SYM $ _ 2 dep _ _ 19 of of ADP IN _ 18 prep _ _ 20 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 21 simplicial simplicial ADJ JJ Degree=Pos 22 amod _ _ 22 functor functor NOUN NN Number=Sing 19 pobj _ _ 23 $ F : D to sCat $ $ f : d to scat $ SYM $ _ 22 appos _ _ 24 in in ADP IN _ 22 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 case case NOUN NN Number=Sing 24 pobj _ _ 27 where where SCONJ WRB _ 28 advmod _ _ 28 $ f = N F $ $ f = n f $ SYM $ _ 2 advcl _ _ 29 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We further show that any strict monoidal simplicial category $ C $ gives rise to a functor $ C^bullet : Delta^op to sCat $ , and that the relative nerve of $ N C^bullet $ is the operadic nerve $ N^otimes(C) $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 further far ADV RB _ 3 advmod _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 11 mark _ _ 5 any any DET DT _ 9 det _ _ 6 strict strict ADJ JJ Degree=Pos 9 amod _ _ 7 monoidal monoidal ADJ JJ Degree=Pos 9 amod _ _ 8 simplicial simplicial NOUN NN Number=Sing 9 amod _ _ 9 category category NOUN NN Number=Sing 11 nsubj _ _ 10 $ C $ $ c $ SYM $ _ 9 appos _ _ 11 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 12 rise rise VERB VB VerbForm=Inf 11 dobj _ _ 13 to to ADP IN _ 12 prep _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 functor functor NOUN NN Number=Sing 16 compound _ _ 16 $ C^bullet : Delta^op to sCat $ $ c^bullet : delta^op to scat $ SYM $ _ 13 pobj _ _ 17 , , PUNCT , PunctType=Comm 11 punct _ _ 18 and and CCONJ CC ConjType=Cmp 11 cc _ _ 19 that that SCONJ IN _ 25 mark _ _ 20 the the DET DT Definite=Def|PronType=Art 22 det _ _ 21 relative relative ADJ JJ Degree=Pos 22 amod _ _ 22 nerve nerve NOUN NN Number=Sing 25 nsubj _ _ 23 of of ADP IN _ 22 prep _ _ 24 $ N C^bullet $ $ n c^bullet $ SYM $ _ 23 pobj _ _ 25 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 conj _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 operadic operadic NOUN NN Number=Sing 28 compound _ _ 28 nerve nerve NOUN NN Number=Sing 25 attr _ _ 29 $ N^otimes(C) $ $ n^otimes(c) $ SYM $ _ 25 attr _ _ 30 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = Finally, we show that all the above constructions commute with appropriately defined opposite functors. 1 Finally finally ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 that that SCONJ IN _ 10 mark _ _ 6 all all DET PDT _ 9 predet _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 above above ADJ JJ Degree=Pos 9 amod _ _ 9 constructions construction NOUN NNS Number=Plur 10 nsubj _ _ 10 commute commute VERB VBP Tense=Pres|VerbForm=Fin 4 ccomp _ _ 11 with with ADP IN _ 10 prep _ _ 12 appropriately appropriately ADV RB _ 13 advmod _ _ 13 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 amod _ _ 14 opposite opposite ADJ JJ Degree=Pos 15 amod _ _ 15 functors functor NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 726 # sent_id = 1 # text = Certain aspects of Street's formal theory of monads in 2 - categories are extended to multimonoidal monads in symmetric strict monoidal 2 - categories. 1 Certain certain ADJ JJ Degree=Pos 2 amod _ _ 2 aspects aspect NOUN NNS Number=Plur 15 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 Street Street PROPN NNP Number=Sing 7 poss _ SpaceAfter=No 5 's 's PART POS _ 4 case _ _ 6 formal formal ADJ JJ Degree=Pos 7 amod _ _ 7 theory theory NOUN NN Number=Sing 3 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 monads monad NOUN NNS Number=Plur 8 pobj _ _ 10 in in ADP IN _ 2 prep _ _ 11 2 2 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 categories category NOUN NNS Number=Plur 10 pobj _ _ 14 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 auxpass _ _ 15 extended extend VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 16 to to ADP IN _ 15 prep _ _ 17 multimonoidal multimonoidal ADJ JJ Degree=Pos 18 amod _ _ 18 monads monad NOUN NNS Number=Plur 16 pobj _ _ 19 in in ADP IN _ 15 prep _ _ 20 symmetric symmetric ADJ JJ Degree=Pos 25 amod _ _ 21 strict strict ADJ JJ Degree=Pos 25 amod _ _ 22 monoidal monoidal ADJ JJ Degree=Pos 25 amod _ _ 23 2 2 NUM CD NumType=Card 25 nummod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 categories category NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 2 # text = Namely, any symmetric strict monoidal 2 - category $ M $ admits a symmetric strict monoidal 2 - category of pseudomonoids, monoidal 1 - cells and monoidal 2 - cells in $ M $ . 1 Namely namely ADV RB _ 11 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 11 punct _ _ 3 any any DET DT _ 9 det _ _ 4 symmetric symmetric ADJ JJ Degree=Pos 6 amod _ _ 5 strict strict ADJ JJ Degree=Pos 6 amod _ _ 6 monoidal monoidal ADJ JJ Degree=Pos 9 amod _ _ 7 2 2 NUM CD NumType=Card 9 nummod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 category category NOUN NN Number=Sing 11 nsubj _ _ 10 $ M $ $ m $ SYM $ _ 11 nsubj _ _ 11 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 13 symmetric symmetric ADJ JJ Degree=Pos 18 amod _ _ 14 strict strict ADJ JJ Degree=Pos 18 amod _ _ 15 monoidal monoidal ADJ JJ Degree=Pos 18 amod _ _ 16 2 2 NUM CD NumType=Card 18 nummod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 category category NOUN NN Number=Sing 11 dobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 pseudomonoids pseudomonoid NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 18 punct _ _ 22 monoidal monoidal ADJ JJ Degree=Pos 25 amod _ _ 23 1 1 NUM CD NumType=Card 25 nummod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 cells cell NOUN NNS Number=Plur 18 conj _ _ 26 and and CCONJ CC ConjType=Cmp 25 cc _ _ 27 monoidal monoidal ADJ JJ Degree=Pos 30 amod _ _ 28 2 2 NUM CD NumType=Card 30 nummod _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 cells cell NOUN NNS Number=Plur 25 conj _ _ 31 in in ADP IN _ 25 prep _ _ 32 $ M $ $ m $ SYM $ _ 31 pobj _ _ 33 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 3 # text = Dually, there is a symmetric strict monoidal 2 - category of pseudomonoids, opmonoidal 1 - cells and opmonoidal 2 - cells in $ M $ . 1 Dually Dually PROPN NNP Number=Sing 4 npadvmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 there there PRON EX _ 4 expl _ _ 4 is be VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 6 symmetric symmetric ADJ JJ Degree=Pos 11 amod _ _ 7 strict strict ADJ JJ Degree=Pos 11 amod _ _ 8 monoidal monoidal ADJ JJ Degree=Pos 11 amod _ _ 9 2 2 NUM CD NumType=Card 11 nummod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 category category NOUN NN Number=Sing 4 attr _ _ 12 of of ADP IN _ 11 prep _ _ 13 pseudomonoids pseudomonoid NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 4 punct _ _ 15 opmonoidal opmonoidal ADJ JJ Degree=Pos 18 amod _ _ 16 1 1 NUM CD NumType=Card 18 nummod _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 cells cell NOUN NNS Number=Plur 4 attr _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 opmonoidal opmonoidal ADJ JJ Degree=Pos 23 amod _ _ 21 2 2 NUM CD NumType=Card 23 nummod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 cells cell NOUN NNS Number=Plur 18 conj _ _ 24 in in ADP IN _ 23 prep _ _ 25 $ M $ $ m $ SYM $ _ 24 pobj _ _ 26 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = Extending a construction due to Aguiar and Mahajan for $ M = Cat $ , we may apply the first construction $ p $ times and the second one $ q $ times (in any order). 1 Extending extend VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 advcl _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 construction construction NOUN NN Number=Sing 1 dobj _ _ 4 due due ADP IN _ 1 prep _ _ 5 to to ADP IN _ 4 pcomp _ _ 6 Aguiar Aguiar PROPN NNP Number=Sing 4 pobj _ _ 7 and and CCONJ CC ConjType=Cmp 6 cc _ _ 8 Mahajan Mahajan PROPN NNP Number=Sing 6 conj _ _ 9 for for ADP IN _ 1 prep _ _ 10 $ M = Cat $ $ m = cat $ SYM $ _ 9 pobj _ _ 11 , , PUNCT , PunctType=Comm 14 punct _ _ 12 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 14 nsubj _ _ 13 may may AUX MD VerbForm=Fin 14 aux _ _ 14 apply apply VERB VB VerbForm=Inf 0 ROOT _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 first first ADJ JJ Degree=Pos 17 amod _ _ 17 construction construction NOUN NN Number=Sing 14 dobj _ _ 18 $ p $ $ p $ SYM $ _ 19 nmod _ _ 19 times time NOUN NNS Number=Plur 14 npadvmod _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 the the DET DT Definite=Def|PronType=Art 23 det _ _ 22 second second ADJ JJ Degree=Pos 23 amod _ _ 23 one one NUM CD NumType=Card 19 conj _ _ 24 $ q $ $ q $ SYM $ _ 25 nmod _ _ 25 times time NOUN NNS Number=Plur 23 npadvmod _ _ 26 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 23 punct _ SpaceAfter=No 27 in in ADP IN _ 23 prep _ _ 28 any any DET DT _ 29 det _ _ 29 order order NOUN NN Number=Sing 27 pobj _ SpaceAfter=No 30 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 14 punct _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # sent_id = 5 # text = It yields a 2 - category $ M_{pq} $ . 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 yields yield VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 4 2 2 NUM CD NumType=Card 6 nummod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 category category NOUN NN Number=Sing 7 compound _ _ 7 $ M_{pq} $ $ m_{pq} $ SYM $ _ 2 dobj _ _ 8 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 6 # text = A 0 - cell therein is an object $ A $ of $ M $ together with $ p+q $ compatible pseudomonoid structures; it is termed a $ (p+q) $ - oidal object in $ M $ . 1 A a DET DT Definite=Ind|PronType=Art 5 det _ _ 2 0 0 NUM CD NumType=Card 4 nummod _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 cell cell NOUN NN Number=Sing 5 compound _ _ 5 therein therein ADV RB _ 6 advmod _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 21 ccomp _ _ 7 an an DET DT Definite=Ind|PronType=Art 8 det _ _ 8 object object NOUN NN Number=Sing 6 attr _ _ 9 $ A $ $ a $ SYM $ _ 8 prep _ _ 10 of of ADP IN _ 9 prep _ _ 11 $ M $ $ m $ SYM $ _ 10 pobj _ _ 12 together together ADV RB _ 8 advmod _ _ 13 with with ADP IN _ 8 prep _ _ 14 $ p+q $ $ p+q $ SYM $ _ 17 nmod _ _ 15 compatible compatible ADJ JJ Degree=Pos 17 amod _ _ 16 pseudomonoid pseudomonoid NOUN NN Number=Sing 17 compound _ _ 17 structures structure NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 18 ; ; PUNCT : _ 21 punct _ _ 19 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 21 nsubjpass _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 21 auxpass _ _ 21 termed term VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 22 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 23 $ (p+q) $ $ (p+q) $ NUM CD NumType=Card 25 amod _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 oidal oidal ADJ JJ Degree=Pos 26 amod _ _ 26 object object NOUN NN Number=Sing 21 oprd _ _ 27 in in ADP IN _ 26 prep _ _ 28 $ M $ $ m $ SYM $ _ 27 pobj _ _ 29 . . PUNCT . PunctType=Peri 21 punct _ SpaceAfter=No # sent_id = 7 # text = A monad in $ M_{pq} $ is called a $ (p, q) $ - oidal monad in $ M $ ; it is a monad $ t $ on $ A $ in $ M $ together with $ p $ monoidal, and $ q $ opmonoidal structures in a compatible way. 1 A a DET DT Definite=Ind|PronType=Art 2 det _ _ 2 monad monad NOUN NNS Number=Plur 6 nsubjpass _ _ 3 in in ADP IN _ 2 prep _ _ 4 $ M_{pq} $ $ m_{pq} $ SYM $ _ 3 pobj _ _ 5 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 6 called call VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 ccomp _ _ 7 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 8 $ (p, q) $ $ (p, q) $ NUM CD NumType=Card 10 amod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 oidal oidal ADJ JJ Degree=Pos 11 amod _ _ 11 monad monad NOUN NNS Number=Plur 6 oprd _ _ 12 in in ADP IN _ 11 prep _ _ 13 $ M $ $ m $ SYM $ _ 12 pobj _ _ 14 ; ; PUNCT : _ 16 punct _ _ 15 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 16 nsubj _ _ 16 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 monad monad NOUN NNS Number=Plur 16 attr _ _ 19 $ t $ $ t $ SYM $ _ 18 appos _ _ 20 on on ADP IN _ 18 prep _ _ 21 $ A $ $ a $ SYM $ _ 20 pobj _ _ 22 in in ADP IN _ 20 prep _ _ 23 $ M $ $ m $ SYM $ _ 22 pobj _ _ 24 together together ADV RB _ 18 advmod _ _ 25 with with ADP IN _ 18 prep _ _ 26 $ p $ $ p $ SYM $ _ 27 nmod _ _ 27 monoidal monoidal NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 18 punct _ _ 29 and and CCONJ CC ConjType=Cmp 18 cc _ _ 30 $ q $ $ q $ SYM $ _ 32 nummod _ _ 31 opmonoidal opmonoidal NOUN NN Number=Sing 32 compound _ _ 32 structures structure NOUN NNS Number=Plur 18 conj _ _ 33 in in ADP IN _ 16 prep _ _ 34 a a DET DT Definite=Ind|PronType=Art 36 det _ _ 35 compatible compatible ADJ JJ Degree=Pos 36 amod _ _ 36 way way NOUN NN Number=Sing 33 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 8 # text = If $ M $ has monoidal Eilenberg - Moore construction, and certain (Linton type) stable coequalizers exist, then a $ (p+q) $ - oidal structure on the Eilenberg - Moore object $ A^t $ of a $ (p, q) $ - oidal monad $ (A, t) $ is shown to arise via a symmetric strict monoidal double functor to Ehresmann's double category $ Sqr(M) $ of squares in $ M $ , from the double category of monads in $ Sqr(M) $ in the sense of Fiore, Gambino and Kock. 1 If if SCONJ IN _ 3 mark _ _ 2 $ M $ $ m $ SYM $ _ 3 nsubj _ _ 3 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 31 advcl _ _ 4 monoidal monoidal VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 5 Eilenberg Eilenberg PROPN NNP Number=Sing 7 compound _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 Moore Moore PROPN NNP Number=Sing 8 compound _ _ 8 construction construction NOUN NN Number=Sing 3 dobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 3 punct _ _ 10 and and CCONJ CC ConjType=Cmp 3 cc _ _ 11 certain certain ADJ JJ Degree=Pos 14 amod _ _ 12 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 14 punct _ SpaceAfter=No 13 Linton Linton PROPN NNP Number=Sing 14 compound _ _ 14 type type NOUN NN Number=Sing 18 nsubj _ SpaceAfter=No 15 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 14 punct _ _ 16 stable stable ADJ JJ Degree=Pos 17 amod _ _ 17 coequalizers coequalizer NOUN NNS Number=Plur 18 nsubj _ _ 18 exist exist VERB VBP Tense=Pres|VerbForm=Fin 3 conj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 then then ADV RB PronType=Dem 25 advmod _ _ 21 a a DET DT Definite=Ind|PronType=Art 25 det _ _ 22 $ (p+q) $ $ (p+q) $ SYM $ _ 24 amod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 oidal oidal ADJ JJ Degree=Pos 25 amod _ _ 25 structure structure NOUN NN Number=Sing 31 nsubj _ _ 26 on on ADP IN _ 25 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 30 det _ _ 28 Eilenberg Eilenberg PROPN NNP Number=Sing 30 compound _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 Moore Moore PROPN NNP Number=Sing 26 pobj _ _ 31 object object VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 32 $ A^t $ $ a^t $ SYM $ _ 31 dobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 a a DET DT Definite=Ind|PronType=Art 38 det _ _ 35 $ (p, q) $ $ (p, q) $ SYM $ _ 37 amod _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 oidal oidal ADJ JJ Degree=Pos 38 amod _ _ 38 monad monad NOUN NNS Number=Plur 33 pobj _ _ 39 $ (A, t) $ $ (a, t) $ SYM $ _ 41 nsubjpass _ _ 40 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 41 auxpass _ _ 41 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 38 relcl _ _ 42 to to PART TO _ 43 aux _ _ 43 arise arise VERB VB VerbForm=Inf 41 xcomp _ _ 44 via via ADP IN _ 43 prep _ _ 45 a a DET DT Definite=Ind|PronType=Art 50 det _ _ 46 symmetric symmetric ADJ JJ Degree=Pos 50 amod _ _ 47 strict strict ADJ JJ Degree=Pos 50 amod _ _ 48 monoidal monoidal ADJ JJ Degree=Pos 50 amod _ _ 49 double double ADJ JJ Degree=Pos 50 amod _ _ 50 functor functor NOUN NN Number=Sing 44 pobj _ _ 51 to to ADP IN _ 43 prep _ _ 52 Ehresmann Ehresmann PROPN NNP Number=Sing 55 poss _ SpaceAfter=No 53 's 's PART POS _ 52 case _ _ 54 double double ADJ JJ Degree=Pos 55 amod _ _ 55 category category NOUN NN Number=Sing 51 pobj _ _ 56 $ Sqr(M) $ $ sqr(m) $ SYM $ _ 55 appos _ _ 57 of of ADP IN _ 56 prep _ _ 58 squares square NOUN NNS Number=Plur 57 pobj _ _ 59 in in ADP IN _ 55 prep _ _ 60 $ M $ $ m $ SYM $ _ 59 pobj _ _ 61 , , PUNCT , PunctType=Comm 41 punct _ _ 62 from from ADP IN _ 41 prep _ _ 63 the the DET DT Definite=Def|PronType=Art 65 det _ _ 64 double double ADJ JJ Degree=Pos 65 amod _ _ 65 category category NOUN NN Number=Sing 62 pobj _ _ 66 of of ADP IN _ 65 prep _ _ 67 monads monad NOUN NNS Number=Plur 66 pobj _ _ 68 in in ADP IN _ 65 prep _ _ 69 $ Sqr(M) $ $ sqr(m) $ SYM $ _ 68 pobj _ _ 70 in in ADP IN _ 62 prep _ _ 71 the the DET DT Definite=Def|PronType=Art 72 det _ _ 72 sense sense NOUN NN Number=Sing 70 pobj _ _ 73 of of ADP IN _ 72 prep _ _ 74 Fiore Fiore PROPN NNP Number=Sing 73 pobj _ SpaceAfter=No 75 , , PUNCT , PunctType=Comm 74 punct _ _ 76 Gambino Gambino PROPN NNP Number=Sing 74 conj _ _ 77 and and CCONJ CC ConjType=Cmp 76 cc _ _ 78 Kock Kock PROPN NNP Number=Sing 76 conj _ SpaceAfter=No 79 . . PUNCT . PunctType=Peri 31 punct _ SpaceAfter=No # sent_id = 9 # text = While $ q $ ones of the pseudomonoid structures of $ A^t $ are lifted along the `forgetful' 1 - cell $ A^t - > A $ , the other $ p $ ones are lifted along its left adjoint. 1 While while SCONJ IN _ 11 mark _ _ 2 $ q $ $ q $ SYM $ _ 3 nummod _ _ 3 ones one NOUN NNS Number=Plur 11 nsubjpass _ _ 4 of of ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 7 det _ _ 6 pseudomonoid pseudomonoid NOUN NN Number=Sing 7 compound _ _ 7 structures structure NOUN NNS Number=Plur 4 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 $ A^t $ $ a^t $ SYM $ _ 8 pobj _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 11 auxpass _ _ 11 lifted lift VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 advcl _ _ 12 along along ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 19 det _ _ 14 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 19 punct _ SpaceAfter=No 15 forgetful forgetful ADJ JJ Degree=Pos 19 amod _ SpaceAfter=No 16 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 19 punct _ _ 17 1 1 NUM CD NumType=Card 19 nummod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 cell cell NOUN NN Number=Sing 12 pobj _ _ 20 $ A^t - > A $ $ a^t - > a $ SYM $ _ 19 appos _ _ 21 , , PUNCT , PunctType=Comm 27 punct _ _ 22 the the DET DT Definite=Def|PronType=Art 25 det _ _ 23 other other ADJ JJ Degree=Pos 25 amod _ _ 24 $ p $ $ p $ SYM $ _ 23 cc _ _ 25 ones one NOUN NNS Number=Plur 27 nsubjpass _ _ 26 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 27 auxpass _ _ 27 lifted lift VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 28 along along ADP IN _ 27 prep _ _ 29 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 31 poss _ _ 30 left left ADJ JJ Degree=Pos 31 amod _ _ 31 adjoint adjoint NOUN NN Number=Sing 28 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 27 punct _ SpaceAfter=No # sent_id = 10 # text = In the particular example when $ M $ is an appropriate 2 - subcategory of $ Cat $ , this yields a conceptually different proof of some recent results due to Aguiar, Haim and Lopez Franco. 1 In in ADP IN _ 17 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 particular particular ADJ JJ Degree=Pos 4 amod _ _ 4 example example NOUN NN Number=Sing 1 pobj _ _ 5 when when SCONJ WRB _ 7 advmod _ _ 6 $ M $ $ m $ SYM $ _ 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 advcl _ _ 8 an an DET DT Definite=Ind|PronType=Art 12 det _ _ 9 appropriate appropriate ADJ JJ Degree=Pos 12 amod _ _ 10 2 2 NUM CD NumType=Card 12 nummod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 subcategory subcategory NOUN NN Number=Sing 7 attr _ _ 13 of of ADP IN _ 12 prep _ _ 14 $ Cat $ $ cat $ SYM $ _ 13 pobj _ _ 15 , , PUNCT , PunctType=Comm 17 punct _ _ 16 this this PRON DT Number=Sing|PronType=Dem 17 nsubj _ _ 17 yields yield VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 18 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 19 conceptually conceptually ADV RB _ 20 advmod _ _ 20 different different ADJ JJ Degree=Pos 21 amod _ _ 21 proof proof NOUN NN Number=Sing 17 dobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 some some DET DT _ 25 det _ _ 24 recent recent ADJ JJ Degree=Pos 25 amod _ _ 25 results result NOUN NNS Number=Plur 22 pobj _ _ 26 due due ADJ JJ Degree=Pos 25 amod _ _ 27 to to ADP IN _ 26 pcomp _ _ 28 Aguiar Aguiar PROPN NNP Number=Sing 27 pobj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 28 punct _ _ 30 Haim Haim PROPN NNP Number=Sing 28 conj _ _ 31 and and CCONJ CC ConjType=Cmp 30 cc _ _ 32 Lopez Lopez PROPN NNP Number=Sing 33 compound _ _ 33 Franco Franco PROPN NNP Number=Sing 30 conj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # doc_id = 727 # sent_id = 1 # text = We give necessary and sufficient conditions on a presentable $ infty $ - category $ C $ so that families of objects of $ C $ form an $ infty $ - topos. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 necessary necessary ADJ JJ Degree=Pos 6 amod _ _ 4 and and CCONJ CC ConjType=Cmp 3 cc _ _ 5 sufficient sufficient ADJ JJ Degree=Pos 3 conj _ _ 6 conditions condition NOUN NNS Number=Plur 2 dobj _ _ 7 on on ADP IN _ 2 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 9 presentable presentable ADJ JJ Degree=Pos 12 amod _ _ 10 $ infty $ $ infty $ SYM $ _ 12 nmod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 category category NOUN NN Number=Sing 7 pobj _ _ 13 $ C $ $ c $ SYM $ _ 14 nmod _ _ 14 so so SCONJ IN _ 2 dative _ _ 15 that that SCONJ IN _ 21 mark _ _ 16 families family NOUN NNS Number=Plur 21 nsubj _ _ 17 of of ADP IN _ 16 prep _ _ 18 objects object NOUN NNS Number=Plur 17 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 $ C $ $ c $ SYM $ _ 19 pobj _ _ 21 form form VERB VB VerbForm=Inf 2 ccomp _ _ 22 an an DET DT Definite=Ind|PronType=Art 25 det _ _ 23 $ infty $ $ infty $ SYM $ _ 25 compound _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 topos topos NOUN NN Number=Sing 21 dobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = In particular, we prove a conjecture of Joyal that this is the case whenever $ C $ is stable. 1 In in ADP IN _ 5 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 conjecture conjecture NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 Joyal Joyal PROPN NNP Number=Sing 8 pobj _ _ 10 that that SCONJ IN _ 12 mark _ _ 11 this this PRON DT Number=Sing|PronType=Dem 12 nsubj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 acl _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 case case NOUN NN Number=Sing 12 attr _ _ 15 whenever whenever SCONJ WRB _ 17 advmod _ _ 16 $ C $ $ c $ SYM $ _ 17 nsubj _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 advcl _ _ 18 stable stable ADJ JJ Degree=Pos 17 acomp _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # doc_id = 728 # sent_id = 1 # text = In this paper, we introduce the notion of a pre - Lie 2 - algebra, which is the categorification of a pre - Lie algebra. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 notion notion NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 11 pre pre ADJ JJ Degree=Pos 13 nmod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 Lie lie NOUN NN Number=Sing 16 nmod _ _ 14 2 2 NUM CD NumType=Card 16 nummod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 algebra algebra PROPN NNP Number=Sing 9 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 which which PRON WDT _ 19 nsubj _ _ 19 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 16 relcl _ _ 20 the the DET DT Definite=Def|PronType=Art 21 det _ _ 21 categorification categorification NOUN NN Number=Sing 19 attr _ _ 22 of of ADP IN _ 21 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 24 pre pre ADJ JJ Degree=Pos 26 amod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 Lie lie NOUN NN Number=Sing 27 compound _ _ 27 algebra algebra NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = We prove that the category of pre - Lie 2 - algebras and the category of 2 - term pre - Lie $ _infty $ - algebras are equivalent. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 26 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 category category NOUN NN Number=Sing 26 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 pre pre ADJ JJ Degree=Pos 9 nmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 Lie lie NOUN NN Number=Sing 6 pobj _ _ 10 2 2 NUM CD NumType=Card 12 nummod _ _ 11 - - PUNCT HYPH PunctType=Dash 12 punct _ _ 12 algebras algebra NOUN NNS Number=Plur 6 pobj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 the the DET DT Definite=Def|PronType=Art 15 det _ _ 15 category category NOUN NN Number=Sing 12 conj _ _ 16 of of ADP IN _ 15 prep _ _ 17 2 2 NUM CD NumType=Card 19 nummod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 term term NOUN NN Number=Sing 16 pobj _ _ 20 pre pre NOUN NN Number=Sing 26 nsubj _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 Lie lie VERB VB VerbForm=Inf 20 nmod _ _ 23 $ _infty $ $ _infty $ SYM $ _ 25 compound _ _ 24 - - PUNCT HYPH PunctType=Dash 25 punct _ _ 25 algebras algebra NOUN NNS Number=Plur 26 nsubj _ _ 26 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 27 equivalent equivalent ADJ JJ Degree=Pos 26 acomp _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = We classify skeletal pre - Lie 2 - algebras by the third cohomology group of a pre - Lie algebra. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 classify classify VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 skeletal skeletal ADJ JJ Degree=Pos 9 amod _ _ 4 pre pre ADJ AFX Hyph=Yes 6 amod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 Lie lie NOUN NN Number=Sing 3 nmod _ _ 7 2 2 NUM CD NumType=Card 9 nummod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 algebras algebra NOUN NNS Number=Plur 2 dobj _ _ 10 by by ADP IN _ 2 prep _ _ 11 the the DET DT Definite=Def|PronType=Art 14 det _ _ 12 third third ADJ JJ Degree=Pos 14 amod _ _ 13 cohomology cohomology NOUN NN Number=Sing 14 compound _ _ 14 group group NOUN NN Number=Sing 10 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 17 pre pre ADJ JJ Degree=Pos 19 amod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 Lie lie NOUN NN Number=Sing 20 compound _ _ 20 algebra algebra NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = We prove that crossed modules of pre - Lie algebras are in one - to - one correspondence with strict pre - Lie 2 - algebras. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 4 nsubj _ _ 4 crossed cross VERB VBD Tense=Past|VerbForm=Fin 2 ccomp _ _ 5 modules module NOUN NNS Number=Plur 4 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 pre pre ADJ JJ Degree=Pos 9 amod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 Lie lie ADJ JJ Degree=Pos 10 compound _ _ 10 algebras algebra NOUN NNS Number=Plur 6 pobj _ _ 11 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 12 in in ADP IN _ 11 prep _ _ 13 one one NUM CD NumType=Card 18 nummod _ _ 14 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 15 to to ADP IN _ 13 prep _ _ 16 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 17 one one NUM CD NumType=Card 15 pobj _ _ 18 correspondence correspondence NOUN NN Number=Sing 12 pobj _ _ 19 with with ADP IN _ 18 prep _ _ 20 strict strict ADJ JJ Degree=Pos 26 amod _ _ 21 pre pre ADJ AFX Hyph=Yes 23 compound _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 Lie lie NOUN NN Number=Sing 20 nmod _ _ 24 2 2 NUM CD NumType=Card 26 nummod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 algebras algebra NOUN NNS Number=Plur 19 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = O - operators on Lie 2 - algebras are introduced, which can be used to construct pre - Lie 2 - algebras. 1 O o NOUN NN Number=Sing 3 compound _ _ 2 - - PUNCT HYPH PunctType=Dash 3 punct _ _ 3 operators operator NOUN NNS Number=Plur 10 nsubjpass _ _ 4 on on ADP IN _ 3 prep _ _ 5 Lie Lie PROPN NNP Number=Sing 4 pobj _ _ 6 2 2 NUM CD NumType=Card 8 nummod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 algebras algebra NOUN NNS Number=Plur 10 nsubjpass _ _ 9 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 10 auxpass _ _ 10 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 which which PRON WDT _ 15 nsubjpass _ _ 13 can can AUX MD VerbForm=Fin 15 aux _ _ 14 be be AUX VB VerbForm=Inf 15 auxpass _ _ 15 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 relcl _ _ 16 to to PART TO _ 17 aux _ _ 17 construct construct VERB VB VerbForm=Inf 15 xcomp _ _ 18 pre pre ADJ JJ Degree=Pos 20 advmod _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 Lie lie NOUN NN Number=Sing 17 dobj _ _ 21 2 2 NUM CD NumType=Card 23 nummod _ _ 22 - - PUNCT HYPH PunctType=Dash 23 punct _ _ 23 algebras algebra NOUN NNS Number=Plur 17 dobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 6 # text = As an application, we give solutions of 2 - graded classical Yang - Baxter equations in some semidirect product Lie 2 - algebras. 1 As as ADP IN _ 6 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 application application NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 solutions solution NOUN NNS Number=Plur 6 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 2 2 NUM CD NumType=Card 11 npadvmod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 graded grade VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 12 classical classical ADJ JJ Degree=Pos 16 amod _ _ 13 Yang Yang PROPN NNP Number=Sing 15 compound _ _ 14 - - PUNCT HYPH PunctType=Dash 15 punct _ _ 15 Baxter Baxter PROPN NNP Number=Sing 16 compound _ _ 16 equations equation NOUN NNS Number=Plur 8 pobj _ _ 17 in in ADP IN _ 6 prep _ _ 18 some some DET DT _ 21 det _ _ 19 semidirect semidirect NOUN NN Number=Sing 20 compound _ _ 20 product product NOUN NN Number=Sing 21 compound _ _ 21 Lie lie NOUN NN Number=Sing 17 pobj _ _ 22 2 2 NUM CD NumType=Card 24 nummod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 algebras algebra NOUN NNS Number=Plur 6 dobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 729 # sent_id = 1 # text = We introduce the notion of a majority category—the categorical counterpart of varieties of universal algebras admitting a majority term. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 notion notion NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 7 majority majority NOUN NN Number=Sing 8 compound _ _ 8 category category NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 9 — — PUNCT : _ 8 punct _ SpaceAfter=No 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 categorical categorical ADJ JJ Degree=Pos 12 amod _ _ 12 counterpart counterpart NOUN NN Number=Sing 8 appos _ _ 13 of of ADP IN _ 12 prep _ _ 14 varieties variety NOUN NNS Number=Plur 13 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 universal universal ADJ JJ Degree=Pos 17 amod _ _ 17 algebras algebra NOUN NNS Number=Plur 15 pobj _ _ 18 admitting admit VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 17 acl _ _ 19 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 20 majority majority NOUN NN Number=Sing 21 compound _ _ 21 term term NOUN NN Number=Sing 18 dobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = This notion can be thought to capture properties of the category of lattices, in a way that parallels how Maltsev categories capture properties of the category of groups. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 notion notion NOUN NN Number=Sing 5 nsubjpass _ _ 3 can can AUX MD VerbForm=Fin 5 aux _ _ 4 be be AUX VB VerbForm=Inf 5 auxpass _ _ 5 thought think VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 to to PART TO _ 7 aux _ _ 7 capture capture VERB VB VerbForm=Inf 5 xcomp _ _ 8 properties property NOUN NNS Number=Plur 7 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 category category NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 lattices lattice NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 7 punct _ _ 15 in in ADP IN _ 7 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 17 way way NOUN NN Number=Sing 15 pobj _ _ 18 that that PRON WDT PronType=Rel 19 nsubj _ _ 19 parallels parallel VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 relcl _ _ 20 how how SCONJ WRB _ 23 advmod _ _ 21 Maltsev maltsev ADJ JJ Degree=Pos 22 amod _ _ 22 categories category NOUN NNS Number=Plur 23 nsubj _ _ 23 capture capture VERB VBP Tense=Pres|VerbForm=Fin 19 ccomp _ _ 24 properties property NOUN NNS Number=Plur 23 dobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 category category NOUN NN Number=Sing 25 pobj _ _ 28 of of ADP IN _ 27 prep _ _ 29 groups group NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = Among algebraic majority categories are the categories of lattices, Boolean algebras and Heyting algebras. 1 Among among ADP IN _ 5 prep _ _ 2 algebraic algebraic ADJ JJ Degree=Pos 4 amod _ _ 3 majority majority NOUN NN Number=Sing 4 compound _ _ 4 categories category NOUN NNS Number=Plur 1 pobj _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 categories category NOUN NNS Number=Plur 5 nsubj _ _ 8 of of ADP IN _ 7 prep _ _ 9 lattices lattice NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 Boolean boolean ADJ JJ Degree=Pos 12 amod _ _ 12 algebras algebra NOUN NNS Number=Plur 9 conj _ _ 13 and and CCONJ CC ConjType=Cmp 12 cc _ _ 14 Heyting Heyting PROPN NNP Number=Sing 12 conj _ _ 15 algebras algebra NOUN NNS Number=Plur 12 conj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = Many geometric categories such as the category of topological spaces, metric spaces, ordered sets, any topos, et cetera, are comajority categories (that is, their duals are majority categories), and we show that, under mild assumptions, the only categories which are both majority and comajority, are the preorders. 1 Many many ADJ JJ Degree=Pos 3 amod _ _ 2 geometric geometric ADJ JJ Degree=Pos 3 amod _ _ 3 categories category NOUN NNS Number=Plur 24 nsubj _ _ 4 such such ADJ JJ Degree=Pos 5 amod _ _ 5 as as ADP IN _ 3 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 category category NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 topological topological ADJ JJ Degree=Pos 10 amod _ _ 10 spaces space NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 metric metric ADJ JJ Degree=Pos 13 amod _ _ 13 spaces space NOUN NNS Number=Plur 10 conj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 13 punct _ _ 15 ordered order VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 16 sets set NOUN NNS Number=Plur 13 conj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 any any DET DT _ 19 det _ _ 19 topos topos NOUN NN Number=Sing 16 conj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 19 punct _ _ 21 et et NOUN NN Number=Sing 22 compound _ _ 22 cetera cetera PROPN NNP Number=Sing 7 appos _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 3 punct _ _ 24 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 33 ccomp _ _ 25 comajority comajority NOUN NN Number=Sing 26 compound _ _ 26 categories category NOUN NNS Number=Plur 24 attr _ _ 27 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 26 punct _ SpaceAfter=No 28 that that ADV RB _ 29 advmod _ _ 29 is is ADV RB _ 33 advmod _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 33 punct _ _ 31 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 32 poss _ _ 32 duals dual NOUN NNS Number=Plur 33 nsubj _ _ 33 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 34 majority majority NOUN NN Number=Sing 35 compound _ _ 35 categories category NOUN NNS Number=Plur 33 attr _ SpaceAfter=No 36 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 33 punct _ SpaceAfter=No 37 , , PUNCT , PunctType=Comm 33 punct _ _ 38 and and CCONJ CC ConjType=Cmp 33 cc _ _ 39 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 40 nsubj _ _ 40 show show VERB VBP Tense=Pres|VerbForm=Fin 33 conj _ _ 41 that that SCONJ IN _ 57 mark _ SpaceAfter=No 42 , , PUNCT , PunctType=Comm 57 punct _ _ 43 under under ADP IN _ 57 prep _ _ 44 mild mild ADJ JJ Degree=Pos 45 amod _ _ 45 assumptions assumption NOUN NNS Number=Plur 43 pobj _ SpaceAfter=No 46 , , PUNCT , PunctType=Comm 57 punct _ _ 47 the the DET DT Definite=Def|PronType=Art 49 det _ _ 48 only only ADJ JJ Degree=Pos 49 amod _ _ 49 categories category NOUN NNS Number=Plur 57 nsubj _ _ 50 which which PRON WDT _ 51 nsubj _ _ 51 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 49 relcl _ _ 52 both both PRON DT _ 51 dep _ _ 53 majority majority NOUN NN Number=Sing 51 attr _ _ 54 and and CCONJ CC ConjType=Cmp 53 cc _ _ 55 comajority comajority NOUN NN Number=Sing 53 conj _ SpaceAfter=No 56 , , PUNCT , PunctType=Comm 49 punct _ _ 57 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 40 ccomp _ _ 58 the the DET DT Definite=Def|PronType=Art 59 det _ _ 59 preorders preorder NOUN NNS Number=Plur 57 attr _ SpaceAfter=No 60 . . PUNCT . PunctType=Peri 40 punct _ SpaceAfter=No # sent_id = 5 # text = Maltsev majority categories provide an alternative generalization of arithmetical categories to protoarithmetical categories in the sense of Bourn. 1 Maltsev maltsev ADJ JJ Degree=Pos 3 amod _ _ 2 majority majority NOUN NN Number=Sing 3 compound _ _ 3 categories category NOUN NNS Number=Plur 4 nsubj _ _ 4 provide provide VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 an an DET DT Definite=Ind|PronType=Art 7 det _ _ 6 alternative alternative ADJ JJ Degree=Pos 7 amod _ _ 7 generalization generalization NOUN NN Number=Sing 4 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 arithmetical arithmetical ADJ JJ Degree=Pos 10 amod _ _ 10 categories category NOUN NNS Number=Plur 8 pobj _ _ 11 to to ADP IN _ 4 dative _ _ 12 protoarithmetical protoarithmetical ADJ JJ Degree=Pos 13 amod _ _ 13 categories category NOUN NNS Number=Plur 11 pobj _ _ 14 in in ADP IN _ 4 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 sense sense NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 Bourn Bourn PROPN NNP Number=Sing 17 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 6 # text = We show that every Maltsev majority category is protoarithmetical, provide a counter - example for the converse implication, and show that in the Barr - exact context, the converse implication also holds. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 8 mark _ _ 4 every every DET DT _ 7 det _ _ 5 Maltsev Maltsev PROPN NNP Number=Sing 7 compound _ _ 6 majority majority NOUN NN Number=Sing 7 compound _ _ 7 category category NOUN NN Number=Sing 8 nsubj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 9 protoarithmetical protoarithmetical ADJ JJ Degree=Pos 8 acomp _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 8 punct _ _ 11 provide provide VERB VB VerbForm=Inf 8 conj _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 counter counter NOUN NN Number=Sing 11 dobj _ _ 14 - - NOUN NN Number=Sing 15 punct _ _ 15 example example NOUN NN Number=Sing 11 dobj _ _ 16 for for ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 converse converse NOUN NN Number=Sing 19 compound _ _ 19 implication implication NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 20 , , PUNCT , PunctType=Comm 11 punct _ _ 21 and and CCONJ CC ConjType=Cmp 11 cc _ _ 22 show show VERB VBP Tense=Pres|VerbForm=Fin 11 conj _ _ 23 that that SCONJ IN _ 35 mark _ _ 24 in in ADP IN _ 35 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 29 det _ _ 26 Barr Barr PROPN NNP Number=Sing 28 npadvmod _ _ 27 - - PUNCT HYPH PunctType=Dash 28 punct _ _ 28 exact exact ADJ JJ Degree=Pos 29 amod _ _ 29 context context NOUN NN Number=Sing 24 pobj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 35 punct _ _ 31 the the DET DT Definite=Def|PronType=Art 33 det _ _ 32 converse converse NOUN NN Number=Sing 33 compound _ _ 33 implication implication NOUN NN Number=Sing 35 nsubj _ _ 34 also also ADV RB _ 35 advmod _ _ 35 holds hold VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 ccomp _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 7 # text = We can then conclude that a category is arithmetical if and only if it is a Barr - exact Maltsev majority category, recovering in the varietal context a well known result of Pixley. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 2 can can AUX MD VerbForm=Fin 4 aux _ _ 3 then then ADV RB PronType=Dem 4 advmod _ _ 4 conclude conclude VERB VB VerbForm=Inf 0 ROOT _ _ 5 that that SCONJ IN _ 8 mark _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 category category NOUN NN Number=Sing 8 nsubj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 ccomp _ _ 9 arithmetical arithmetical ADJ JJ Degree=Pos 8 acomp _ _ 10 if if SCONJ IN _ 15 mark _ _ 11 and and CCONJ CC ConjType=Cmp 15 cc _ _ 12 only only ADV RB _ 15 advmod _ _ 13 if if SCONJ IN _ 15 mark _ _ 14 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 15 nsubj _ _ 15 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 advcl _ _ 16 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 17 Barr Barr PROPN NNP Number=Sing 19 npadvmod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 exact exact ADJ JJ Degree=Pos 22 amod _ _ 20 Maltsev Maltsev PROPN NNP Number=Sing 22 compound _ _ 21 majority majority NOUN NN Number=Sing 22 compound _ _ 22 category category NOUN NN Number=Sing 15 attr _ SpaceAfter=No 23 , , PUNCT , PunctType=Comm 15 punct _ _ 24 recovering recover VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 15 advcl _ _ 25 in in ADP IN _ 24 prep _ _ 26 the the DET DT Definite=Def|PronType=Art 28 det _ _ 27 varietal varietal ADJ JJ Degree=Pos 28 amod _ _ 28 context context NOUN NN Number=Sing 25 pobj _ _ 29 a a DET DT Definite=Ind|PronType=Art 32 det _ _ 30 well well ADV RB Degree=Pos 31 advmod _ _ 31 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 32 amod _ _ 32 result result NOUN NN Number=Sing 24 dobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 Pixley Pixley PROPN NNP Number=Sing 33 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 730 # sent_id = 1 # text = We define and study a probability monad on the category of complete metric spaces and short maps. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 study study VERB VB VerbForm=Inf 2 conj _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 probability probability NOUN NN Number=Sing 7 compound _ _ 7 monad monad NOUN NNS Number=Plur 4 dobj _ _ 8 on on ADP IN _ 4 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 category category NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 complete complete ADJ JJ Degree=Pos 14 amod _ _ 13 metric metric ADJ JJ Degree=Pos 14 amod _ _ 14 spaces space NOUN NNS Number=Plur 11 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 14 cc _ _ 16 short short ADJ JJ Degree=Pos 17 amod _ _ 17 maps map NOUN NNS Number=Plur 14 conj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = It assigns to each space the space of Radon probability measures on it with finite first moment, equipped with the Kantorovich - Wasserstein distance. 1 It it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 2 nsubj _ _ 2 assigns assign VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 to to ADP IN _ 2 prep _ _ 4 each each DET DT _ 5 det _ _ 5 space space NOUN NN Number=Sing 3 pobj _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 space space NOUN NN Number=Sing 2 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 Radon Radon PROPN NNP Number=Sing 11 compound _ _ 10 probability probability NOUN NN Number=Sing 11 compound _ _ 11 measures measure NOUN NNS Number=Plur 8 pobj _ _ 12 on on ADP IN _ 11 prep _ _ 13 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 12 pobj _ _ 14 with with ADP IN _ 7 prep _ _ 15 finite finite PROPN NNP Number=Sing 17 nmod _ _ 16 first first ADJ JJ Degree=Pos 17 amod _ _ 17 moment moment NOUN NN Number=Sing 14 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 7 punct _ _ 19 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 acl _ _ 20 with with ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 25 det _ _ 22 Kantorovich Kantorovich PROPN NNP Number=Sing 24 compound _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 Wasserstein Wasserstein PROPN NNP Number=Sing 25 compound _ _ 25 distance distance NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = This monad is analogous to the Giry monad on the category of Polish spaces, and it extends a construction due to van Breugel for compact and for 1 - bounded complete metric spaces. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 monad monad NOUN NNS Number=Plur 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 analogous analogous ADJ JJ Degree=Pos 3 acomp _ _ 5 to to ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 8 det _ _ 7 Giry Giry PROPN NNP Number=Sing 8 compound _ _ 8 monad monad NOUN NNS Number=Plur 5 pobj _ _ 9 on on ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 category category NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 Polish polish ADJ JJ Degree=Pos 14 amod _ _ 14 spaces space NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 3 punct _ _ 16 and and CCONJ CC ConjType=Cmp 3 cc _ _ 17 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 18 nsubj _ _ 18 extends extend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 conj _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 construction construction NOUN NN Number=Sing 18 dobj _ _ 21 due due ADP IN _ 18 prep _ _ 22 to to ADP IN _ 21 pcomp _ _ 23 van van PROPN NNP Number=Sing 24 compound _ _ 24 Breugel Breugel PROPN NNP Number=Sing 21 pobj _ _ 25 for for ADP IN _ 18 prep _ _ 26 compact compact ADJ JJ Degree=Pos 25 amod _ _ 27 and and CCONJ CC ConjType=Cmp 25 cc _ _ 28 for for ADP IN _ 25 conj _ _ 29 1 1 NUM CD NumType=Card 31 npadvmod _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 bounded bound VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 34 amod _ _ 32 complete complete ADJ JJ Degree=Pos 34 amod _ _ 33 metric metric ADJ JJ Degree=Pos 34 amod _ _ 34 spaces space NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 18 punct _ SpaceAfter=No # sent_id = 4 # text = We prove that this Kantorovich monad arises from a colimit construction on finite power - like constructions, which formalizes the intuition that probability measures are limits of finite samples. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 7 mark _ _ 4 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 5 Kantorovich Kantorovich PROPN NNP Number=Sing 6 compound _ _ 6 monad monad NOUN NNS Number=Plur 7 nsubj _ _ 7 arises arise VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 8 from from ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 colimit colimit NOUN NN Number=Sing 11 compound _ _ 11 construction construction NOUN NN Number=Sing 8 pobj _ _ 12 on on ADP IN _ 11 prep _ _ 13 finite finite ADJ JJ Degree=Pos 17 amod _ _ 14 power power NOUN NN Number=Sing 16 npadvmod _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 like like ADJ JJ Degree=Pos 17 amod _ _ 17 constructions construction NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 which which PRON WDT _ 20 nsubj _ _ 20 formalizes formalize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 relcl _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 intuition intuition NOUN NN Number=Sing 20 dobj _ _ 23 that that SCONJ IN _ 26 mark _ _ 24 probability probability NOUN NN Number=Sing 25 compound _ _ 25 measures measure NOUN NNS Number=Plur 26 nsubj _ _ 26 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 22 acl _ _ 27 limits limit NOUN NNS Number=Plur 26 attr _ _ 28 of of ADP IN _ 27 prep _ _ 29 finite finite ADJ JJ Degree=Pos 30 amod _ _ 30 samples sample NOUN NNS Number=Plur 28 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = The proof relies on a criterion for when an ordinary left Kan extension of lax monoidal functors is a monoidal Kan extension. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 proof proof NOUN NN Number=Sing 3 nsubj _ _ 3 relies rely VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 on on ADP IN _ 3 prep _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 criterion criterion NOUN NN Number=Sing 4 pobj _ _ 7 for for ADP IN _ 6 prep _ _ 8 when when SCONJ WRB _ 11 advmod _ _ 9 an an DET DT Definite=Ind|PronType=Art 10 det _ _ 10 ordinary ordinary ADJ JJ Degree=Pos 11 nsubj _ _ 11 left leave VERB VBD Tense=Past|VerbForm=Fin 7 pcomp _ _ 12 Kan Kan PROPN NNP Number=Sing 13 compound _ _ 13 extension extension NOUN NN Number=Sing 11 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 lax lax ADJ JJ Degree=Pos 17 amod _ _ 16 monoidal monoidal ADJ JJ Degree=Pos 17 amod _ _ 17 functors functor NOUN NNS Number=Plur 14 pobj _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 conj _ _ 19 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 20 monoidal monoidal ADJ JJ Degree=Pos 22 amod _ _ 21 Kan Kan PROPN NNP Number=Sing 22 compound _ _ 22 extension extension NOUN NN Number=Sing 18 attr _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 6 # text = The colimit characterization allows the development of integration theory and the treatment of measures on spaces of measures, without measure theory. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 colimit colimit NOUN NN Number=Sing 3 compound _ _ 3 characterization characterization NOUN NN Number=Sing 4 nsubj _ _ 4 allows allow VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 development development NOUN NN Number=Sing 4 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 integration integration NOUN NN Number=Sing 9 compound _ _ 9 theory theory NOUN NN Number=Sing 7 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 6 cc _ _ 11 the the DET DT Definite=Def|PronType=Art 12 det _ _ 12 treatment treatment NOUN NN Number=Sing 6 conj _ _ 13 of of ADP IN _ 12 prep _ _ 14 measures measure NOUN NNS Number=Plur 13 pobj _ _ 15 on on ADP IN _ 14 prep _ _ 16 spaces space NOUN NNS Number=Plur 15 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 measures measure NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 6 punct _ _ 20 without without ADP IN _ 6 prep _ _ 21 measure measure NOUN NN Number=Sing 22 compound _ _ 22 theory theory NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 7 # text = We also show that the category of algebras of the Kantorovich monad is equivalent to the category of closed convex subsets of Banach spaces with short affine maps as morphisms. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 13 mark _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 category category NOUN NN Number=Sing 13 nsubj _ _ 7 of of ADP IN _ 6 prep _ _ 8 algebras algebra NOUN NNS Number=Plur 7 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 Kantorovich Kantorovich PROPN NNP Number=Sing 12 compound _ _ 12 monad monad NOUN NNS Number=Plur 9 pobj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 14 equivalent equivalent ADJ JJ Degree=Pos 13 acomp _ _ 15 to to ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 category category NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 closed closed ADJ JJ Degree=Pos 21 amod _ _ 20 convex convex ADJ JJ Degree=Pos 21 compound _ _ 21 subsets subset NOUN NNS Number=Plur 18 pobj _ _ 22 of of ADP IN _ 21 prep _ _ 23 Banach Banach PROPN NNP Number=Sing 24 compound _ _ 24 spaces space NOUN NNS Number=Plur 22 pobj _ _ 25 with with ADP IN _ 21 prep _ _ 26 short short ADJ JJ Degree=Pos 28 amod _ _ 27 affine affine NOUN NN Number=Sing 28 compound _ _ 28 maps map NOUN NNS Number=Plur 25 pobj _ _ 29 as as ADP IN _ 17 prep _ _ 30 morphisms morphism NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 31 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 731 # sent_id = 1 # text = Let $ (C, E, s) $ be an extriangulated category. 1 Let let VERB VB VerbForm=Inf 0 ROOT _ _ 2 $ (C, E, s) $ $ (c, e, s) $ SYM $ _ 3 nsubj _ _ 3 be be AUX VB VerbForm=Inf 1 ccomp _ _ 4 an an DET DT Definite=Ind|PronType=Art 6 det _ _ 5 extriangulated extriangulated ADJ JJ Degree=Pos 6 amod _ _ 6 category category NOUN NN Number=Sing 3 attr _ SpaceAfter=No 7 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = We show that certain quotient categories of extriangulated categories are equivalent to module categories by some restriction of functor $ E $ , and in some cases, they are abelian. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 10 mark _ _ 4 certain certain ADJ JJ Degree=Pos 6 amod _ _ 5 quotient quotient ADJ JJ Degree=Pos 6 amod _ _ 6 categories category NOUN NNS Number=Plur 10 nsubj _ _ 7 of of ADP IN _ 6 prep _ _ 8 extriangulated extriangulate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 amod _ _ 9 categories category NOUN NNS Number=Plur 7 pobj _ _ 10 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 11 equivalent equivalent ADJ JJ Degree=Pos 10 acomp _ _ 12 to to PART TO _ 13 aux _ _ 13 module module VERB VB VerbForm=Inf 11 xcomp _ _ 14 categories category NOUN NNS Number=Plur 13 dobj _ _ 15 by by ADP IN _ 13 prep _ _ 16 some some DET DT _ 17 det _ _ 17 restriction restriction NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 functor functor NOUN NN Number=Sing 18 pobj _ _ 20 $ E $ $ e $ SYM $ _ 13 advmod _ _ 21 , , PUNCT , PunctType=Comm 10 punct _ _ 22 and and CCONJ CC ConjType=Cmp 10 cc _ _ 23 in in ADP IN _ 28 prep _ _ 24 some some DET DT _ 25 det _ _ 25 cases case NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 28 punct _ _ 27 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 28 nsubj _ _ 28 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 10 conj _ _ 29 abelian abelian ADJ JJ Degree=Pos 28 attr _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = This result can be regarded as a simultaneous generalization of Koenig - Zhu and Demonet - Liu. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 result result NOUN NN Number=Sing 5 nsubjpass _ _ 3 can can AUX MD VerbForm=Fin 5 aux _ _ 4 be be AUX VB VerbForm=Inf 5 auxpass _ _ 5 regarded regard VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 6 as as ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 simultaneous simultaneous ADJ JJ Degree=Pos 9 amod _ _ 9 generalization generalization NOUN NN Number=Sing 6 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 Koenig Koenig PROPN NNP Number=Sing 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 Zhu Zhu PROPN NNP Number=Sing 10 pobj _ _ 14 and and CCONJ CC ConjType=Cmp 13 cc _ _ 15 Demonet Demonet PROPN NNP Number=Sing 17 compound _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 Liu Liu PROPN NNP Number=Sing 13 conj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = In addition, we introduce the notion of maximal rigid subcategories in extriangulated categories. 1 In in ADP IN _ 5 prep _ _ 2 addition addition NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 notion notion NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 maximal maximal ADJ JJ Degree=Pos 11 amod _ _ 10 rigid rigid ADJ JJ Degree=Pos 11 amod _ _ 11 subcategories subcategorie NOUN NNS Number=Plur 8 pobj _ _ 12 in in ADP IN _ 11 prep _ _ 13 extriangulated extriangulated ADJ JJ Degree=Pos 14 amod _ _ 14 categories category NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 5 # text = Cluster tilting subcategories are obviously strongly functorially finite maximal rigid subcategories, we prove that the converse is true if the 2 - Calabi - Yau extriangulated categories admit a cluster tilting subcategories, which generalizes a result of Buan - Iyama - Reiten - Scott and Zhou - Zhu. 1 Cluster cluster NOUN NN Number=Sing 3 compound _ _ 2 tilting tilting NOUN NN Number=Sing 3 compound _ _ 3 subcategories subcategorie NOUN NNS Number=Plur 4 nsubj _ _ 4 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 14 ccomp _ _ 5 obviously obviously ADV RB _ 4 advmod _ _ 6 strongly strongly ADV RB _ 7 advmod _ _ 7 functorially functorially ADV RB _ 4 advmod _ _ 8 finite finite ADJ JJ Degree=Pos 11 nmod _ _ 9 maximal maximal ADJ JJ Degree=Pos 11 amod _ _ 10 rigid rigid ADJ JJ Degree=Pos 11 amod _ _ 11 subcategories subcategorie NOUN NNS Number=Plur 4 attr _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 14 punct _ _ 13 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 14 nsubj _ _ 14 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 15 that that SCONJ IN _ 18 mark _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 converse converse NOUN NN Number=Sing 18 nsubj _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 ccomp _ _ 19 true true ADJ JJ Degree=Pos 18 acomp _ _ 20 if if SCONJ IN _ 29 mark _ _ 21 the the DET DT Definite=Def|PronType=Art 28 det _ _ 22 2 2 NUM CD NumType=Card 24 nummod _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 Calabi calabi NOUN NN Number=Sing 26 nmod _ _ 25 - - PUNCT HYPH PunctType=Dash 26 punct _ _ 26 Yau yau NOUN NN Number=Sing 28 nmod _ _ 27 extriangulated extriangulated ADJ JJ Degree=Pos 28 amod _ _ 28 categories category NOUN NNS Number=Plur 29 nsubj _ _ 29 admit admit VERB VBP Tense=Pres|VerbForm=Fin 18 advcl _ _ 30 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 31 cluster cluster NOUN NN Number=Sing 32 compound _ _ 32 tilting tilting NOUN NN Number=Sing 33 compound _ _ 33 subcategories subcategorie NOUN NNS Number=Plur 29 dobj _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 33 punct _ _ 35 which which PRON WDT _ 36 nsubj _ _ 36 generalizes generalize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 33 relcl _ _ 37 a a DET DT Definite=Ind|PronType=Art 38 det _ _ 38 result result NOUN NN Number=Sing 36 dobj _ _ 39 of of ADP IN _ 38 prep _ _ 40 Buan Buan PROPN NNP Number=Sing 42 compound _ _ 41 - - PUNCT HYPH PunctType=Dash 42 punct _ _ 42 Iyama Iyama PROPN NNP Number=Sing 46 nmod _ _ 43 - - PUNCT HYPH PunctType=Dash 46 punct _ _ 44 Reiten Reiten PROPN NNP Number=Sing 46 compound _ _ 45 - - PUNCT HYPH PunctType=Dash 46 punct _ _ 46 Scott Scott PROPN NNP Number=Sing 39 pobj _ _ 47 and and CCONJ CC ConjType=Cmp 46 cc _ _ 48 Zhou Zhou PROPN NNP Number=Sing 50 compound _ _ 49 - - PUNCT HYPH PunctType=Dash 50 punct _ _ 50 Zhu Zhu PROPN NNP Number=Sing 46 conj _ SpaceAfter=No 51 . . PUNCT . PunctType=Peri 14 punct _ SpaceAfter=No # doc_id = 732 # sent_id = 1 # text = This paper shows that generalizations of operads equipped with their respective bar/cobar dualities are related by a six operations formalism analogous to that of classical contexts in algebraic geometry. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 paper paper NOUN NN Number=Sing 3 nsubj _ _ 3 shows show VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 17 mark _ _ 5 generalizations generalization NOUN NNS Number=Plur 17 nsubjpass _ _ 6 of of ADP IN _ 5 prep _ _ 7 operads operad NOUN NNS Number=Plur 6 pobj _ _ 8 equipped equip VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 acl _ _ 9 with with ADP IN _ 8 prep _ _ 10 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 15 poss _ _ 11 respective respective ADJ JJ Degree=Pos 15 amod _ _ 12 bar bar NOUN NN Number=Sing 14 nmod _ SpaceAfter=No 13 / / SYM SYM _ 14 punct _ SpaceAfter=No 14 cobar cobar NOUN NN Number=Sing 15 compound _ _ 15 dualities duality NOUN NNS Number=Plur 9 pobj _ _ 16 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 17 auxpass _ _ 17 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 ccomp _ _ 18 by by ADP IN _ 17 agent _ _ 19 a a DET DT Definite=Ind|PronType=Art 22 det _ _ 20 six six NUM CD NumType=Card 21 nummod _ _ 21 operations operation NOUN NNS Number=Plur 22 compound _ _ 22 formalism formalism NOUN NN Number=Sing 18 pobj _ _ 23 analogous analogous ADJ JJ Degree=Pos 22 amod _ _ 24 to to ADP IN _ 23 prep _ _ 25 that that PRON DT Number=Sing|PronType=Dem 24 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 classical classical ADJ JJ Degree=Pos 28 amod _ _ 28 contexts context NOUN NNS Number=Plur 26 pobj _ _ 29 in in ADP IN _ 28 prep _ _ 30 algebraic algebraic ADJ JJ Degree=Pos 31 amod _ _ 31 geometry geometry NOUN NN Number=Sing 29 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 2 # text = As a consequence of our constructions, we prove intertwining theorems which govern derived Koszul duality of push - forwards and pull - backs. 1 As as ADP IN _ 9 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 consequence consequence NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 6 poss _ _ 6 constructions construction NOUN NNS Number=Plur 4 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 9 punct _ _ 8 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 9 nsubj _ _ 9 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 intertwining intertwining ADJ JJ Degree=Pos 11 amod _ _ 11 theorems theorem NOUN NNS Number=Plur 9 dobj _ _ 12 which which PRON WDT _ 13 nsubj _ _ 13 govern govern VERB VBP Tense=Pres|VerbForm=Fin 11 relcl _ _ 14 derived derive VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 15 Koszul koszul ADJ JJ Degree=Pos 16 amod _ _ 16 duality duality NOUN NN Number=Sing 13 dobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 push push NOUN NN Number=Sing 20 compound _ _ 19 - - PUNCT HYPH PunctType=Dash 20 punct _ _ 20 forwards forward NOUN NNS Number=Plur 17 pobj _ _ 21 and and CCONJ CC ConjType=Cmp 20 cc _ _ 22 pull pull VERB VB VerbForm=Inf 24 compound _ _ 23 - - PUNCT HYPH PunctType=Dash 24 punct _ _ 24 backs back NOUN NNS Number=Plur 20 conj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 733 # sent_id = 1 # text = In this note we prove that distributors between groupoids in a Barr - exact category $ E $ form the bicategory of relations relative to the comprehensive factorization system in $ Gpd(E) $ . 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 note note NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 that that SCONJ IN _ 17 mark _ _ 7 distributors distributor NOUN NNS Number=Plur 17 nsubj _ _ 8 between between ADP IN _ 7 prep _ _ 9 groupoids groupoid NOUN NNS Number=Plur 8 pobj _ _ 10 in in ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 12 Barr Barr PROPN NNP Number=Sing 14 npadvmod _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 exact exact ADJ JJ Degree=Pos 15 amod _ _ 15 category category NOUN NN Number=Sing 10 pobj _ _ 16 $ E $ $ e $ SYM $ _ 7 appos _ _ 17 form form VERB VB VerbForm=Inf 5 ccomp _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 bicategory bicategory NOUN NN Number=Sing 17 dobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 relations relation NOUN NNS Number=Plur 20 pobj _ _ 22 relative relative ADJ JJ Degree=Pos 21 amod _ _ 23 to to ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 27 det _ _ 25 comprehensive comprehensive ADJ JJ Degree=Pos 27 amod _ _ 26 factorization factorization NOUN NN Number=Sing 27 compound _ _ 27 system system NOUN NN Number=Sing 23 pobj _ _ 28 in in ADP IN _ 27 prep _ _ 29 $ Gpd(E) $ $ gpd(e) $ SYM $ _ 28 pobj _ _ 30 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = The case $ E = Set $ is of special interest. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 case case NOUN NN Number=Sing 4 nsubj _ _ 3 $ E = Set $ $ e = set $ SYM $ _ 2 appos _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 of of ADP IN _ 4 prep _ _ 6 special special ADJ JJ Degree=Pos 7 amod _ _ 7 interest interest NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 8 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 734 # sent_id = 1 # text = This is the first part of a series of papers studying the problem of existence of double categories for which horizontal bicategory and object category are given. 1 This this PRON DT Number=Sing|PronType=Dem 2 nsubj _ _ 2 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 first first ADJ JJ Degree=Pos 5 amod _ _ 5 part part NOUN NN Number=Sing 2 attr _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 series series NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 papers paper NOUN NNS Number=Plur 9 pobj _ _ 11 studying study VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 acl _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 problem problem NOUN NN Number=Sing 11 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 existence existence NOUN NN Number=Sing 14 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 double double ADJ JJ Degree=Pos 18 amod _ _ 18 categories category NOUN NNS Number=Plur 16 pobj _ _ 19 for for ADP IN _ 27 prep _ _ 20 which which PRON WDT _ 19 pobj _ _ 21 horizontal horizontal ADJ JJ Degree=Pos 22 amod _ _ 22 bicategory bicategory NOUN NN Number=Sing 27 nsubjpass _ _ 23 and and CCONJ CC ConjType=Cmp 22 cc _ _ 24 object object NOUN NN Number=Sing 22 conj _ _ 25 category category NOUN NN Number=Sing 22 conj _ _ 26 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 27 auxpass _ _ 27 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 18 relcl _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We refer to this problem as the problem of existence of internalizations for decorated bicategories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 refer refer VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 to to ADP IN _ 2 prep _ _ 4 this this DET DT Number=Sing|PronType=Dem 5 det _ _ 5 problem problem NOUN NN Number=Sing 3 pobj _ _ 6 as as ADP IN _ 2 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 problem problem NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 existence existence NOUN NN Number=Sing 9 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 internalizations internalization NOUN NNS Number=Plur 11 pobj _ _ 13 for for ADP IN _ 12 prep _ _ 14 decorated decorate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 amod _ _ 15 bicategories bicategorie NOUN NNS Number=Plur 13 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Motivated by this we introduce the condition of a double category being globularily generated. 1 Motivated motivate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 5 advcl _ _ 2 by by ADP IN _ 1 agent _ _ 3 this this PRON DT Number=Sing|PronType=Dem 2 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 condition condition NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 10 double double ADJ JJ Degree=Pos 11 amod _ _ 11 category category NOUN NN Number=Sing 14 nsubjpass _ _ 12 being be AUX VBG VerbForm=Ger 14 auxpass _ _ 13 globularily globularily ADV RB _ 14 advmod _ _ 14 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 pcomp _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = We prove that the problem of existence of internalizations for a decorated bicategory admits a solution if and only if it admits a globularily generated solution, and we prove that the condition of a double category being globularily generated is precisely the condition of a solution to the problem of existence of internalizations for a decorated bicategory being minimal in a sense which we will make precise. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 14 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 problem problem NOUN NN Number=Sing 14 nsubj _ _ 6 of of ADP IN _ 5 prep _ _ 7 existence existence NOUN NN Number=Sing 6 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 internalizations internalization NOUN NNS Number=Plur 8 pobj _ _ 10 for for ADP IN _ 9 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 12 decorated decorate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 amod _ _ 13 bicategory bicategory NOUN NN Number=Sing 10 pobj _ _ 14 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 15 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 16 solution solution NOUN NN Number=Sing 14 dobj _ _ 17 if if SCONJ IN _ 22 mark _ _ 18 and and CCONJ CC ConjType=Cmp 22 cc _ _ 19 only only ADV RB _ 22 advmod _ _ 20 if if SCONJ IN _ 22 mark _ _ 21 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 22 nsubj _ _ 22 admits admit VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 14 advcl _ _ 23 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 24 globularily globularily ADV RB _ 25 advmod _ _ 25 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 26 amod _ _ 26 solution solution NOUN NN Number=Sing 22 dobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 22 punct _ _ 28 and and CCONJ CC ConjType=Cmp 22 cc _ _ 29 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 30 nsubj _ _ 30 prove prove VERB VBP Tense=Pres|VerbForm=Fin 22 conj _ _ 31 that that SCONJ IN _ 41 mark _ _ 32 the the DET DT Definite=Def|PronType=Art 33 det _ _ 33 condition condition NOUN NN Number=Sing 41 nsubj _ _ 34 of of ADP IN _ 33 prep _ _ 35 a a DET DT Definite=Ind|PronType=Art 37 det _ _ 36 double double ADJ JJ Degree=Pos 37 amod _ _ 37 category category NOUN NN Number=Sing 34 pobj _ _ 38 being be AUX VBG VerbForm=Ger 40 auxpass _ _ 39 globularily globularily ADV RB _ 40 advmod _ _ 40 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 37 acl _ _ 41 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 ccomp _ _ 42 precisely precisely ADV RB _ 44 advmod _ _ 43 the the DET DT Definite=Def|PronType=Art 44 det _ _ 44 condition condition NOUN NN Number=Sing 41 attr _ _ 45 of of ADP IN _ 44 prep _ _ 46 a a DET DT Definite=Ind|PronType=Art 47 det _ _ 47 solution solution NOUN NN Number=Sing 45 pobj _ _ 48 to to ADP IN _ 47 prep _ _ 49 the the DET DT Definite=Def|PronType=Art 50 det _ _ 50 problem problem NOUN NN Number=Sing 48 pobj _ _ 51 of of ADP IN _ 50 prep _ _ 52 existence existence NOUN NN Number=Sing 51 pobj _ _ 53 of of ADP IN _ 52 prep _ _ 54 internalizations internalization NOUN NNS Number=Plur 53 pobj _ _ 55 for for ADP IN _ 54 prep _ _ 56 a a DET DT Definite=Ind|PronType=Art 58 det _ _ 57 decorated decorate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 58 amod _ _ 58 bicategory bicategory NOUN NN Number=Sing 55 pobj _ _ 59 being be AUX VBG VerbForm=Ger 58 acl _ _ 60 minimal minimal ADJ JJ Degree=Pos 59 acomp _ _ 61 in in ADP IN _ 59 prep _ _ 62 a a DET DT Definite=Ind|PronType=Art 63 det _ _ 63 sense sense NOUN NN Number=Sing 61 pobj _ _ 64 which which PRON WDT _ 67 pobj _ _ 65 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 67 nsubj _ _ 66 will will AUX MD VerbForm=Fin 67 aux _ _ 67 make make VERB VB VerbForm=Inf 63 relcl _ _ 68 precise precise ADJ JJ Degree=Pos 67 acomp _ SpaceAfter=No 69 . . PUNCT . PunctType=Peri 30 punct _ SpaceAfter=No # sent_id = 5 # text = The study of the condition of a double category being globularily generated will thus be pivotal in our study of the problem of existence of internalizations. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 study study NOUN NN Number=Sing 15 nsubj _ _ 3 of of ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 condition condition NOUN NN Number=Sing 3 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 double double ADJ JJ Degree=Pos 9 amod _ _ 9 category category NOUN NN Number=Sing 6 pobj _ _ 10 being be AUX VBG VerbForm=Ger 12 auxpass _ _ 11 globularily globularily ADV RB _ 12 advmod _ _ 12 generated generate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 acl _ _ 13 will will AUX MD VerbForm=Fin 15 aux _ _ 14 thus thus ADV RB _ 15 advmod _ _ 15 be be AUX VB VerbForm=Inf 0 ROOT _ _ 16 pivotal pivotal ADJ JJ Degree=Pos 15 acomp _ _ 17 in in ADP IN _ 15 prep _ _ 18 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 19 poss _ _ 19 study study NOUN NN Number=Sing 17 pobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 problem problem NOUN NN Number=Sing 20 pobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 existence existence NOUN NN Number=Sing 23 pobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 internalizations internalization NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 27 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # doc_id = 735 # sent_id = 1 # text = Let $ (C, otimes, 1) $ be an abelian symmetric monoidal category satisfying certain exactness conditions. 1 Let let VERB VB VerbForm=Inf 0 ROOT _ _ 2 $ (C, otimes, 1) $ $ (c, otimes, 1) $ SYM $ _ 3 nsubj _ _ 3 be be AUX VB VerbForm=Inf 1 ccomp _ _ 4 an an DET DT Definite=Ind|PronType=Art 8 det _ _ 5 abelian abelian ADJ JJ Degree=Pos 8 amod _ _ 6 symmetric symmetric ADJ JJ Degree=Pos 8 amod _ _ 7 monoidal monoidal ADJ JJ Degree=Pos 8 amod _ _ 8 category category NOUN NN Number=Sing 3 attr _ _ 9 satisfying satisfy VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 acl _ _ 10 certain certain ADJ JJ Degree=Pos 12 amod _ _ 11 exactness exactness ADJ JJ Degree=Pos 12 amod _ _ 12 conditions condition NOUN NNS Number=Plur 9 dobj _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 1 punct _ SpaceAfter=No # sent_id = 2 # text = In this paper we define a presheaf $ Proj{C} $ on the category of commutative algebras in $ C $ and we prove that this functor is a $ C $ - scheme in the sense of Toen and Vaquie. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 presheaf presheaf NOUN NN Number=Sing 5 dobj _ _ 8 $ Proj{C} $ $ proj{c} $ SYM $ _ 5 dep _ _ 9 on on ADP IN _ 5 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 category category NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 commutative commutative ADJ JJ Degree=Pos 14 amod _ _ 14 algebras algebra NOUN NNS Number=Plur 12 pobj _ _ 15 in in ADP IN _ 5 prep _ _ 16 $ C $ $ c $ SYM $ _ 15 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 5 cc _ _ 18 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 19 nsubj _ _ 19 prove prove VERB VBP Tense=Pres|VerbForm=Fin 5 conj _ _ 20 that that SCONJ IN _ 23 mark _ _ 21 this this DET DT Number=Sing|PronType=Dem 22 det _ _ 22 functor functor NOUN NN Number=Sing 23 nsubj _ _ 23 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 ccomp _ _ 24 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 25 $ C $ $ c $ SYM $ _ 27 nmod _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 scheme scheme NOUN NN Number=Sing 23 attr _ _ 28 in in ADP IN _ 27 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 30 det _ _ 30 sense sense NOUN NN Number=Sing 28 pobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 Toen Toen PROPN NNP Number=Sing 31 pobj _ _ 33 and and CCONJ CC ConjType=Cmp 32 cc _ _ 34 Vaquie Vaquie PROPN NNP Number=Sing 32 conj _ SpaceAfter=No 35 . . PUNCT . PunctType=Peri 19 punct _ SpaceAfter=No # sent_id = 3 # text = We give another definition and prove that they give isomorphic $ C $ - schemes. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 another another DET DT _ 4 det _ _ 4 definition definition NOUN NN Number=Sing 2 dobj _ _ 5 and and CCONJ CC ConjType=Cmp 2 cc _ _ 6 prove prove VERB VB VerbForm=Inf 2 conj _ _ 7 that that SCONJ IN _ 9 mark _ _ 8 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 9 nsubj _ _ 9 give give VERB VBP Tense=Pres|VerbForm=Fin 6 ccomp _ _ 10 isomorphic isomorphic ADJ JJ Degree=Pos 13 amod _ _ 11 $ C $ $ c $ SYM $ _ 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 schemes scheme NOUN NNS Number=Plur 9 dobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = This construction gives us a context of non - associative relative algebraic geometry. 1 This this DET DT Number=Sing|PronType=Dem 2 det _ _ 2 construction construction NOUN NN Number=Sing 3 nsubj _ _ 3 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 3 dative _ _ 5 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 6 context context NOUN NN Number=Sing 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 non non ADJ JJ Degree=Pos 10 amod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 associative associative ADJ JJ Degree=Pos 13 amod _ _ 11 relative relative ADJ JJ Degree=Pos 13 amod _ _ 12 algebraic algebraic ADJ JJ Degree=Pos 13 amod _ _ 13 geometry geometry NOUN NN Number=Sing 7 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = The most important example of the construction is the octonionic projective space. 1 The the DET DT Definite=Def|PronType=Art 4 det _ _ 2 most most ADV RBS Degree=Sup 3 advmod _ _ 3 important important ADJ JJ Degree=Pos 4 amod _ _ 4 example example NOUN NN Number=Sing 8 nsubj _ _ 5 of of ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 construction construction NOUN NN Number=Sing 5 pobj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 the the DET DT Definite=Def|PronType=Art 12 det _ _ 10 octonionic octonionic ADJ JJ Degree=Pos 12 amod _ _ 11 projective projective ADJ JJ Degree=Pos 12 amod _ _ 12 space space NOUN NN Number=Sing 8 attr _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # doc_id = 736 # sent_id = 1 # text = We give a unified direct proof of the lifting of PIE limits to the 2 - category of algebras and (pseudo) morphisms, which specifies precisely which of the projections of the lifted limit are strict and detect strictness. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 6 det _ _ 4 unified unified ADJ JJ Degree=Pos 6 amod _ _ 5 direct direct ADJ JJ Degree=Pos 6 amod _ _ 6 proof proof NOUN NN Number=Sing 2 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 lifting lifting NOUN NN Number=Sing 7 pobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 PIE pie NOUN NN Number=Sing 12 compound _ _ 12 limits limit NOUN NNS Number=Plur 10 pobj _ _ 13 to to ADP IN _ 6 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 17 det _ _ 15 2 2 NUM CD NumType=Card 17 nummod _ _ 16 - - PUNCT HYPH PunctType=Dash 17 punct _ _ 17 category category NOUN NN Number=Sing 13 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 algebras algebra NOUN NNS Number=Plur 18 pobj _ _ 20 and and CCONJ CC ConjType=Cmp 19 cc _ _ 21 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 22 punct _ SpaceAfter=No 22 pseudo pseudo NOUN NN Number=Sing 19 conj _ SpaceAfter=No 23 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 19 punct _ _ 24 morphisms morphism NOUN NNS Number=Plur 19 appos _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 which which PRON WDT _ 27 nsubj _ _ 27 specifies specify VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 24 relcl _ _ 28 precisely precisely ADV RB _ 29 advmod _ _ 29 which which PRON WDT _ 27 dobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 32 det _ _ 32 projections projection NOUN NNS Number=Plur 30 pobj _ _ 33 of of ADP IN _ 32 prep _ _ 34 the the DET DT Definite=Def|PronType=Art 36 det _ _ 35 lifted lift VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 36 amod _ _ 36 limit limit NOUN NN Number=Sing 33 pobj _ _ 37 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 conj _ _ 38 strict strict ADJ JJ Degree=Pos 37 acomp _ _ 39 and and CCONJ CC ConjType=Cmp 38 cc _ _ 40 detect detect VERB VB VerbForm=Inf 38 conj _ _ 41 strictness strictness NOUN NN Number=Sing 40 dobj _ SpaceAfter=No 42 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = In the literature, these limits were lifted one by one, so as to keep track of these projections in each case. 1 In in ADP IN _ 8 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 3 det _ _ 3 literature literature NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 8 punct _ _ 5 these these DET DT Number=Plur|PronType=Dem 6 det _ _ 6 limits limit NOUN NNS Number=Plur 8 nsubjpass _ _ 7 were be AUX VBD Mood=Ind|Tense=Past|VerbForm=Fin 8 auxpass _ _ 8 lifted lift VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 9 one one NUM CD NumType=Card 8 npadvmod _ _ 10 by by ADP IN _ 9 prep _ _ 11 one one NUM CD NumType=Card 10 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 8 punct _ _ 13 so so SCONJ IN _ 16 mark _ _ 14 as as SCONJ IN _ 16 mark _ _ 15 to to PART TO _ 16 aux _ _ 16 keep keep VERB VB VerbForm=Inf 8 advcl _ _ 17 track track NOUN NN Number=Sing 16 dobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 these these DET DT Number=Plur|PronType=Dem 20 det _ _ 20 projections projection NOUN NNS Number=Plur 18 pobj _ _ 21 in in ADP IN _ 16 prep _ _ 22 each each DET DT _ 23 det _ _ 23 case case NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 3 # text = We work in the more general context of weak algebra morphisms, so as to include lax morphisms as well. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 work work VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 in in ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 more more ADV RBR Degree=Cmp 6 advmod _ _ 6 general general ADJ JJ Degree=Pos 7 amod _ _ 7 context context NOUN NN Number=Sing 3 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 weak weak ADJ JJ Degree=Pos 11 amod _ _ 10 algebra algebra NOUN NN Number=Sing 11 compound _ _ 11 morphisms morphism NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 2 punct _ _ 13 so so SCONJ IN _ 16 mark _ _ 14 as as SCONJ IN _ 16 mark _ _ 15 to to PART TO _ 16 aux _ _ 16 include include VERB VB VerbForm=Inf 2 advcl _ _ 17 lax lax ADJ JJ Degree=Pos 18 amod _ _ 18 morphisms morphism NOUN NNS Number=Plur 16 dobj _ _ 19 as as ADV RB _ 20 advmod _ _ 20 well well ADV RB Degree=Pos 16 advmod _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 4 # text = PIE limits are also all simultaneously lifted in this case, provided some specified arrows of the diagram are pseudo morphisms. 1 PIE pie NOUN NN Number=Sing 2 compound _ _ 2 limits limit NOUN NNS Number=Plur 7 nsubjpass _ _ 3 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 auxpass _ _ 4 also also ADV RB _ 3 advmod _ _ 5 all all PRON DT _ 7 dep _ _ 6 simultaneously simultaneously ADV RB _ 7 advmod _ _ 7 lifted lift VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 8 in in ADP IN _ 7 prep _ _ 9 this this DET DT Number=Sing|PronType=Dem 10 det _ _ 10 case case NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 7 punct _ _ 12 provided provide VERB VBD Tense=Past|VerbForm=Fin 7 prep _ _ 13 some some DET DT _ 15 det _ _ 14 specified specify VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 amod _ _ 15 arrows arrow NOUN NNS Number=Plur 12 pobj _ _ 16 of of ADP IN _ 15 prep _ _ 17 the the DET DT Definite=Def|PronType=Art 18 det _ _ 18 diagram diagram NOUN NN Number=Sing 16 pobj _ _ 19 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 conj _ _ 20 pseudo pseudo NOUN NN Number=Sing 21 compound _ _ 21 morphisms morphism NOUN NNS Number=Plur 19 attr _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 5 # text = Again, this unifies the previously known lifting of many particular PIE limits, which were also treated separately. 1 Again again ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 this this PRON DT Number=Sing|PronType=Dem 4 nsubj _ _ 4 unifies unify VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 8 det _ _ 6 previously previously ADV RB _ 7 advmod _ _ 7 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 amod _ _ 8 lifting lifting NOUN NN Number=Sing 4 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 many many ADJ JJ Degree=Pos 13 amod _ _ 11 particular particular ADJ JJ Degree=Pos 13 amod _ _ 12 PIE PIE PROPN NNP Number=Sing 13 compound _ _ 13 limits limit NOUN NNS Number=Plur 9 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 13 punct _ _ 15 which which PRON WDT _ 18 nsubjpass _ _ 16 were be AUX VBD Mood=Ind|Tense=Past|VerbForm=Fin 18 auxpass _ _ 17 also also ADV RB _ 18 advmod _ _ 18 treated treat VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 13 relcl _ _ 19 separately separately ADV RB _ 18 advmod _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 737 # sent_id = 1 # text = Involutive category theory provides a flexible framework to describe involutive structures on algebraic objects, such as anti - linear involutions on complex vector spaces. 1 Involutive involutive ADJ JJ Degree=Pos 3 amod _ _ 2 category category NOUN NN Number=Sing 3 compound _ _ 3 theory theory NOUN NN Number=Sing 4 nsubj _ _ 4 provides provide VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 flexible flexible ADJ JJ Degree=Pos 7 amod _ _ 7 framework framework NOUN NN Number=Sing 4 dobj _ _ 8 to to PART TO _ 9 aux _ _ 9 describe describe VERB VB VerbForm=Inf 7 acl _ _ 10 involutive involutive ADJ JJ Degree=Pos 11 amod _ _ 11 structures structure NOUN NNS Number=Plur 9 dobj _ _ 12 on on ADP IN _ 9 prep _ _ 13 algebraic algebraic ADJ JJ Degree=Pos 14 amod _ _ 14 objects object NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 15 , , PUNCT , PunctType=Comm 14 punct _ _ 16 such such ADJ JJ Degree=Pos 17 amod _ _ 17 as as ADP IN _ 14 prep _ _ 18 anti anti ADJ JJ Degree=Pos 21 amod _ _ 19 - - ADJ JJ Degree=Pos 21 amod _ _ 20 linear linear ADJ JJ Degree=Pos 21 amod _ _ 21 involutions involution NOUN NNS Number=Plur 17 pobj _ _ 22 on on ADP IN _ 21 prep _ _ 23 complex complex ADJ JJ Degree=Pos 25 amod _ _ 24 vector vector NOUN NN Number=Sing 25 compound _ _ 25 spaces space NOUN NNS Number=Plur 22 pobj _ SpaceAfter=No 26 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = Motivated by the prominent role of involutions in quantum (field) theory, we develop the involutive analogs of colored operads and their algebras, named colored $ * $ - operads and $ * $ - algebras. 1 Motivated motivate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 advcl _ _ 2 by by ADP IN _ 1 agent _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 prominent prominent ADJ JJ Degree=Pos 5 amod _ _ 5 role role NOUN NN Number=Sing 2 pobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 involutions involution NOUN NNS Number=Plur 6 pobj _ _ 8 in in ADP IN _ 7 prep _ _ 9 quantum quantum PROPN NNP Number=Sing 8 pobj _ _ 10 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 9 punct _ SpaceAfter=No 11 field field NOUN NN Number=Sing 9 appos _ SpaceAfter=No 12 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 9 punct _ _ 13 theory theory NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 16 punct _ _ 15 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 16 nsubj _ _ 16 develop develop VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 involutive involutive ADJ JJ Degree=Pos 19 amod _ _ 19 analogs analog NOUN NNS Number=Plur 16 dobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 colored colored ADJ JJ Degree=Pos 22 amod _ _ 22 operads operad NOUN NNS Number=Plur 20 pobj _ _ 23 and and CCONJ CC ConjType=Cmp 22 cc _ _ 24 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 25 poss _ _ 25 algebras algebra NOUN NNS Number=Plur 22 conj _ SpaceAfter=No 26 , , PUNCT , PunctType=Comm 25 punct _ _ 27 named name VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 25 acl _ _ 28 colored color VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 31 amod _ _ 29 $ * $ $ * $ SYM $ _ 31 nmod _ _ 30 - - PUNCT HYPH PunctType=Dash 31 punct _ _ 31 operads operad NOUN NNS Number=Plur 27 oprd _ _ 32 and and CCONJ CC ConjType=Cmp 31 cc _ _ 33 $ * $ $ * $ SYM $ _ 35 compound _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 algebras algebra NOUN NNS Number=Plur 31 conj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 16 punct _ SpaceAfter=No # sent_id = 3 # text = Central to the definition of colored $ * $ - operads is the involutive monoidal category of symmetric sequences, which we obtain from a general product - exponential 2 - adjunction whose right adjoint forms involutive functor categories. 1 Central central ADJ JJ Degree=Pos 10 acomp _ _ 2 to to ADP IN _ 1 prep _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 definition definition NOUN NN Number=Sing 2 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 colored color VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 amod _ _ 7 $ * $ $ * $ SYM $ _ 9 nmod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 operads operad NOUN NNS Number=Plur 5 pobj _ _ 10 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 the the DET DT Definite=Def|PronType=Art 14 det _ _ 12 involutive involutive ADJ JJ Degree=Pos 14 amod _ _ 13 monoidal monoidal ADJ JJ Degree=Pos 14 amod _ _ 14 category category NOUN NN Number=Sing 10 attr _ _ 15 of of ADP IN _ 14 prep _ _ 16 symmetric symmetric ADJ JJ Degree=Pos 17 amod _ _ 17 sequences sequence NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 14 punct _ _ 19 which which PRON WDT _ 21 dobj _ _ 20 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 21 nsubj _ _ 21 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 14 relcl _ _ 22 from from ADP IN _ 21 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 24 general general ADJ JJ Degree=Pos 25 amod _ _ 25 product product NOUN NN Number=Sing 27 compound _ _ 26 - - PUNCT HYPH PunctType=Dash 27 punct _ _ 27 exponential exponential NOUN NN Number=Sing 30 compound _ _ 28 2 2 NUM CD NumType=Card 30 nummod _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 adjunction adjunction NOUN NN Number=Sing 22 pobj _ _ 31 whose whose DET WP$ Poss=Yes 34 poss _ _ 32 right right ADJ JJ Degree=Pos 33 amod _ _ 33 adjoint adjoint NOUN NN Number=Sing 34 compound _ _ 34 forms form NOUN NNS Number=Plur 35 nsubj _ _ 35 involutive involutive PROPN NNP Number=Sing 37 compound _ _ 36 functor functor NOUN NN Number=Sing 37 compound _ _ 37 categories category NOUN NNS Number=Plur 30 appos _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 4 # text = For $ * $ - algebras over $ * $ - operads we obtain involutive analogs of the usual change of color and operad adjunctions. 1 For for ADP IN _ 0 ROOT _ _ 2 $ * $ $ * $ SYM $ _ 4 dep _ _ 3 - - PUNCT HYPH PunctType=Dash 4 punct _ _ 4 algebras algebra VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 1 pobj _ _ 5 over over ADP IN _ 8 advmod _ _ 6 $ * $ $ * $ SYM $ _ 8 compound _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 operads operad NOUN NNS Number=Plur 1 pobj _ _ 9 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 10 nsubj _ _ 10 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 8 relcl _ _ 11 involutive involutive ADJ JJ Degree=Pos 12 amod _ _ 12 analogs analog NOUN NNS Number=Plur 10 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 16 det _ _ 15 usual usual ADJ JJ Degree=Pos 16 amod _ _ 16 change change NOUN NN Number=Sing 13 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 color color NOUN NN Number=Sing 21 amod _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 operad operad ADJ JJ Degree=Pos 18 conj _ _ 21 adjunctions adjunction NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # sent_id = 5 # text = As an application, we turn the colored operads for algebraic quantum field theory into colored $ * $ - operads. 1 As as ADP IN _ 6 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 application application NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 turn turn VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 colored colored ADJ JJ Degree=Pos 9 amod _ _ 9 operads operad NOUN NNS Number=Plur 6 dobj _ _ 10 for for ADP IN _ 9 prep _ _ 11 algebraic algebraic ADJ JJ Degree=Pos 14 amod _ _ 12 quantum quantum PROPN NNP Number=Sing 13 compound _ _ 13 field field NOUN NN Number=Sing 14 compound _ _ 14 theory theory NOUN NN Number=Sing 10 pobj _ _ 15 into into ADP IN _ 14 prep _ _ 16 colored color VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 19 amod _ _ 17 $ * $ $ * $ SYM $ _ 19 nmod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 operads operad NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 6 # text = The simplest instance is the associative $ * $ - operad, whose $ * $ - algebras are unital and associative $ * $ - algebras. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 simplest simple ADJ JJS Degree=Sup 3 amod _ _ 3 instance instance NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 9 det _ _ 6 associative associative ADJ JJ Degree=Pos 9 amod _ _ 7 $ * $ $ * $ SYM $ _ 9 dep _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 operad operad NOUN NN Number=Sing 4 attr _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 whose whose DET WP$ Poss=Yes 14 poss _ _ 12 $ * $ $ * $ SYM $ _ 14 compound _ _ 13 - - PUNCT HYPH PunctType=Dash 14 punct _ _ 14 algebras algebra NOUN NNS Number=Plur 15 nsubj _ _ 15 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 relcl _ _ 16 unital unital ADJ JJ Degree=Pos 15 acomp _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 associative associative VERB VB VerbForm=Inf 16 conj _ _ 19 $ * $ $ * $ SYM $ _ 21 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 algebras algebra NOUN NNS Number=Plur 9 appos _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 738 # sent_id = 1 # text = We explain how, in the context of a semi - abelian category, the concept of an internal crossed square may be used to set up an intrinsic approach to the Brown - Loday non - abelian tensor product. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 explain explain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 how how SCONJ WRB _ 24 advmod _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 24 punct _ _ 5 in in ADP IN _ 24 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 context context NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 10 semi semi ADJ JJ Degree=Pos 13 amod _ _ 11 - - ADJ JJ Degree=Pos 13 amod _ _ 12 abelian abelian ADJ JJ Degree=Pos 13 amod _ _ 13 category category NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 24 punct _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 concept concept NOUN NN Number=Sing 24 nsubjpass _ _ 17 of of ADP IN _ 16 prep _ _ 18 an an DET DT Definite=Ind|PronType=Art 21 det _ _ 19 internal internal ADJ JJ Degree=Pos 21 amod _ _ 20 crossed crossed ADJ JJ Degree=Pos 21 amod _ _ 21 square square NOUN NN Number=Sing 17 pobj _ _ 22 may may AUX MD VerbForm=Fin 24 aux _ _ 23 be be AUX VB VerbForm=Inf 24 auxpass _ _ 24 used use VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 25 to to PART TO _ 26 aux _ _ 26 set set VERB VB VerbForm=Inf 24 xcomp _ _ 27 up up ADP RP _ 26 prt _ _ 28 an an DET DT Definite=Ind|PronType=Art 30 det _ _ 29 intrinsic intrinsic ADJ JJ Degree=Pos 30 amod _ _ 30 approach approach NOUN NN Number=Sing 26 dobj _ _ 31 to to ADP IN _ 30 prep _ _ 32 the the DET DT Definite=Def|PronType=Art 40 det _ _ 33 Brown Brown PROPN NNP Number=Sing 35 compound _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 Loday Loday PROPN NNP Number=Sing 40 nmod _ _ 36 non non PROPN NNP Number=Sing 38 amod _ _ 37 - - PUNCT HYPH PunctType=Dash 38 punct _ _ 38 abelian abelian PROPN NNP Number=Sing 40 amod _ _ 39 tensor tensor NOUN NN Number=Sing 40 compound _ _ 40 product product NOUN NN Number=Sing 31 pobj _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 739 # sent_id = 1 # text = In this paper we develop a theory of Segal enriched categories. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 develop develop VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 theory theory NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 Segal segal ADJ JJ Degree=Pos 11 amod _ _ 10 enriched enriched ADJ JJ Degree=Pos 11 amod _ _ 11 categories category NOUN NNS Number=Plur 8 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = Our motivation was to generalize the notion of up - to - homotopy monoid in a monoidal category, introduced by Leinster. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 motivation motivation NOUN NN Number=Sing 3 nsubj _ _ 3 was be AUX VBD Mood=Ind|Number=Sing|Person=3|Tense=Past|VerbForm=Fin 0 ROOT _ _ 4 to to PART TO _ 5 aux _ _ 5 generalize generalize VERB VB VerbForm=Inf 3 xcomp _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 notion notion NOUN NN Number=Sing 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 up up ADP IN _ 14 nmod _ _ 10 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 11 to to ADP IN _ 9 prep _ _ 12 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 13 homotopy homotopy NOUN NN Number=Sing 11 pobj _ _ 14 monoid monoid NOUN NN Number=Sing 8 pobj _ _ 15 in in ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 monoidal monoidal ADJ JJ Degree=Pos 18 amod _ _ 18 category category NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 14 punct _ _ 20 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 14 acl _ _ 21 by by ADP IN _ 20 agent _ _ 22 Leinster Leinster PROPN NNP Number=Sing 21 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = Our formalism generalizes the classical theory of Segal categories and extends the theory of categories enriched over a 2 - category. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 formalism formalism NOUN NN Number=Sing 3 nsubj _ _ 3 generalizes generalize VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 classical classical ADJ JJ Degree=Pos 6 amod _ _ 6 theory theory NOUN NN Number=Sing 3 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 Segal segal ADJ JJ Degree=Pos 9 amod _ _ 9 categories category NOUN NNS Number=Plur 7 pobj _ _ 10 and and CCONJ CC ConjType=Cmp 3 cc _ _ 11 extends extend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 conj _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 theory theory NOUN NN Number=Sing 11 dobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 categories category NOUN NNS Number=Plur 14 pobj _ _ 16 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 acl _ _ 17 over over ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 19 2 2 NUM CD NumType=Card 21 nummod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 category category NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = We introduce Segal dg - categories which did not exist so far. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 Segal Segal PROPN NNP Number=Sing 6 compound _ _ 4 dg dg NOUN NN Number=Sing 6 compound _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 categories category NOUN NNS Number=Plur 2 dobj _ _ 7 which which PRON WDT _ 10 nsubj _ _ 8 did do AUX VBD Tense=Past|VerbForm=Fin 10 aux _ _ 9 not not PART RB Polarity=Neg 10 neg _ _ 10 exist exist VERB VB VerbForm=Inf 6 relcl _ _ 11 so so ADV RB _ 12 advmod _ _ 12 far far ADV RB _ 10 advmod _ SpaceAfter=No 13 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = We show that the homotopy transfer problem for algebras leads directly to a Leinster - Segal algebra. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 10 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 homotopy homotopy NOUN NN Number=Sing 6 compound _ _ 6 transfer transfer NOUN NN Number=Sing 7 compound _ _ 7 problem problem NOUN NN Number=Sing 10 nsubj _ _ 8 for for ADP IN _ 7 prep _ _ 9 algebras algebra NOUN NNS Number=Plur 8 pobj _ _ 10 leads lead VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 11 directly directly ADV RB _ 10 advmod _ _ 12 to to ADP IN _ 10 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 17 det _ _ 14 Leinster Leinster PROPN NNP Number=Sing 16 compound _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 Segal Segal PROPN NNP Number=Sing 17 compound _ _ 17 algebra algebra NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 18 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 740 # sent_id = 1 # text = We consider pre - exponentiable objects of a pre - cartesian double category $ D $ , that is, objects $ Y $ such that the lax functor $ - x Y: D - - > D $ has a right adjoint in the 2 - category LxDbl of double categories and lax functors. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 pre pre ADJ JJ Degree=Pos 6 amod _ _ 4 - - ADJ JJ Degree=Pos 6 amod _ _ 5 exponentiable exponentiable ADJ JJ Degree=Pos 6 amod _ _ 6 objects object NOUN NNS Number=Plur 2 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 9 pre pre ADJ JJ Degree=Pos 11 amod _ _ 10 - - ADJ JJ Degree=Pos 11 punct _ _ 11 cartesian cartesian ADJ JJ Degree=Pos 13 amod _ _ 12 double double ADJ JJ Degree=Pos 13 amod _ _ 13 category category NOUN NN Number=Sing 7 pobj _ _ 14 $ D $ $ d $ SYM $ _ 13 appos _ _ 15 , , PUNCT , PunctType=Comm 13 punct _ _ 16 that that ADV RB _ 17 advmod _ _ 17 is is ADV RB _ 19 advmod _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 19 punct _ _ 19 objects object VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 20 $ Y $ $ y $ SYM $ _ 21 nmod _ _ 21 such such ADJ JJ Degree=Pos 19 dobj _ _ 22 that that SCONJ IN _ 27 mark _ _ 23 the the DET DT Definite=Def|PronType=Art 25 det _ _ 24 lax lax PROPN NNP Number=Sing 25 compound _ _ 25 functor functor PROPN NNP Number=Sing 27 nsubj _ _ 26 $ - x Y: D - - > D $ $ - x y: d - - > d $ SYM $ _ 25 appos _ _ 27 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 ccomp _ _ 28 a a DET DT Definite=Ind|PronType=Art 30 det _ _ 29 right right ADJ JJ Degree=Pos 30 amod _ _ 30 adjoint adjoint NOUN NN Number=Sing 27 dobj _ _ 31 in in ADP IN _ 30 prep _ _ 32 the the DET DT Definite=Def|PronType=Art 36 det _ _ 33 2 2 NUM CD NumType=Card 35 nummod _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 category category NOUN NN Number=Sing 36 compound _ _ 36 LxDbl LxDbl PROPN NNP Number=Sing 31 pobj _ _ 37 of of ADP IN _ 36 prep _ _ 38 double double ADJ JJ Degree=Pos 39 amod _ _ 39 categories category NOUN NNS Number=Plur 37 pobj _ _ 40 and and CCONJ CC ConjType=Cmp 39 cc _ _ 41 lax lax ADJ JJ Degree=Pos 42 amod _ _ 42 functors functor NOUN NNS Number=Plur 39 conj _ SpaceAfter=No 43 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = When $ D $ has 2 - glueing, we show that $ Y $ is pre - exponentiable in $ D $ if and only if $ Y $ is exponentiable in $ D_0 $ and $ - x Y $ is an oplax functor. 1 When when SCONJ WRB _ 3 advmod _ _ 2 $ D $ $ d $ SYM $ _ 3 nsubj _ _ 3 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 advcl _ _ 4 2 2 NUM CD NumType=Card 6 nummod _ _ 5 - - PUNCT HYPH PunctType=Dash 6 punct _ _ 6 glueing glueing NOUN NN Number=Sing 3 dobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 9 punct _ _ 8 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 9 nsubj _ _ 9 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 that that SCONJ IN _ 12 mark _ _ 11 $ Y $ $ y $ SYM $ _ 12 nsubj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 ccomp _ _ 13 pre pre ADJ JJ Degree=Pos 12 acomp _ _ 14 - - ADJ JJ Degree=Pos 12 acomp _ _ 15 exponentiable exponentiable ADJ JJ Degree=Pos 12 acomp _ _ 16 in in ADP IN _ 15 prep _ _ 17 $ D $ $ d $ SYM $ _ 16 pobj _ _ 18 if if SCONJ IN _ 12 dep _ _ 19 and and CCONJ CC ConjType=Cmp 18 cc _ _ 20 only only ADV RB _ 23 advmod _ _ 21 if if SCONJ IN _ 23 mark _ _ 22 $ Y $ $ y $ SYM $ _ 23 nsubj _ _ 23 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 29 advcl _ _ 24 exponentiable exponentiable ADJ JJ Degree=Pos 23 acomp _ _ 25 in in ADP IN _ 24 prep _ _ 26 $ D_0 $ $ d_0 $ SYM $ _ 25 pobj _ _ 27 and and CCONJ CC ConjType=Cmp 26 cc _ _ 28 $ - x Y $ $ - x y $ SYM $ _ 29 nsubj _ _ 29 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 conj _ _ 30 an an DET DT Definite=Ind|PronType=Art 32 det _ _ 31 oplax oplax NOUN NN Number=Sing 32 compound _ _ 32 functor functor NOUN NN Number=Sing 29 attr _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 3 # text = Thus, such a $ D $ is pre - cartesian closed as a double category if and only if $ D_0 $ is a cartesian closed category. 1 Thus thus ADV RB _ 6 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 6 punct _ _ 3 such such DET PDT _ 5 predet _ _ 4 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 5 $ D $ $ d $ SYM $ _ 6 nsubj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 pre pre ADJ JJ Degree=Pos 10 amod _ _ 8 - - ADJ JJ Degree=Pos 10 amod _ _ 9 cartesian cartesian ADJ JJ Degree=Pos 10 nsubj _ _ 10 closed close VERB VBD Tense=Past|VerbForm=Fin 6 acomp _ _ 11 as as ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 13 double double ADJ JJ Degree=Pos 14 amod _ _ 14 category category NOUN NN Number=Sing 11 pobj _ _ 15 if if SCONJ IN _ 20 mark _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 only only ADV RB _ 20 advmod _ _ 18 if if SCONJ IN _ 20 mark _ _ 19 $ D_0 $ $ d_0 $ SYM $ _ 20 nsubj _ _ 20 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 advcl _ _ 21 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 22 cartesian cartesian ADJ JJ Degree=Pos 23 advmod _ _ 23 closed closed ADJ JJ Degree=Pos 24 amod _ _ 24 category category NOUN NN Number=Sing 20 attr _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 4 # text = Applications include the double categories $ cat $ , $ pos $ , $ spaces $ , $ loc $ , and $ topos $ , whose objects are small categories, posets, topological space, locales, and toposes, respectively. 1 Applications application NOUN NNS Number=Plur 2 nsubj _ _ 2 include include VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 double double ADJ JJ Degree=Pos 5 amod _ _ 5 categories category NOUN NNS Number=Plur 2 dobj _ _ 6 $ cat $ $ cat $ SYM $ _ 5 appos _ _ 7 , , PUNCT , PunctType=Comm 6 punct _ _ 8 $ pos $ $ pos $ SYM $ _ 5 appos _ _ 9 , , PUNCT , PunctType=Comm 8 punct _ _ 10 $ spaces $ $ spaces $ SYM $ _ 8 conj _ _ 11 , , PUNCT , PunctType=Comm 10 punct _ _ 12 $ loc $ $ loc $ SYM $ _ 8 conj _ _ 13 , , PUNCT , PunctType=Comm 5 punct _ _ 14 and and CCONJ CC ConjType=Cmp 5 cc _ _ 15 $ topos $ $ topos $ SYM $ _ 5 conj _ _ 16 , , PUNCT , PunctType=Comm 5 punct _ _ 17 whose whose DET WP$ Poss=Yes 18 poss _ _ 18 objects object NOUN NNS Number=Plur 19 nsubj _ _ 19 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 5 relcl _ _ 20 small small ADJ JJ Degree=Pos 21 amod _ _ 21 categories category NOUN NNS Number=Plur 19 attr _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 posets poset NOUN NNS Number=Plur 21 conj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 23 punct _ _ 25 topological topological ADJ JJ Degree=Pos 26 amod _ _ 26 space space NOUN NN Number=Sing 23 conj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 26 punct _ _ 28 locales locale NOUN NNS Number=Plur 26 conj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 28 punct _ _ 30 and and CCONJ CC ConjType=Cmp 28 cc _ _ 31 toposes topos NOUN NNS Number=Plur 28 conj _ SpaceAfter=No 32 , , PUNCT , PunctType=Comm 31 punct _ _ 33 respectively respectively ADV RB _ 31 advmod _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 741 # sent_id = 1 # text = In previous work, we introduced an axiomatic framework within which to prove theorems about many varieties of infinite - dimensional categories simultaneously. 1 In in ADP IN _ 6 prep _ _ 2 previous previous ADJ JJ Degree=Pos 3 amod _ _ 3 work work NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 introduced introduce VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 7 an an DET DT Definite=Ind|PronType=Art 9 det _ _ 8 axiomatic axiomatic ADJ JJ Degree=Pos 9 amod _ _ 9 framework framework NOUN NN Number=Sing 6 dobj _ _ 10 within within ADP IN _ 13 prep _ _ 11 which which PRON WDT _ 10 pobj _ _ 12 to to PART TO _ 13 aux _ _ 13 prove prove VERB VB VerbForm=Inf 9 relcl _ _ 14 theorems theorem NOUN NNS Number=Plur 13 dobj _ _ 15 about about ADP IN _ 13 prep _ _ 16 many many ADJ JJ Degree=Pos 17 amod _ _ 17 varieties variety NOUN NNS Number=Plur 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 infinite infinite ADJ JJ Degree=Pos 21 amod _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 dimensional dimensional ADJ JJ Degree=Pos 22 amod _ _ 22 categories category NOUN NNS Number=Plur 18 pobj _ _ 23 simultaneously simultaneously ADV RB _ 13 advmod _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 2 # text = In this paper, we establish criteria implying that an $ infty $ - category—for instance, a quasi - category, a complete Segal space, or a Segal category—is complete and cocomplete, admitting limits and colimits indexed by any small simplicial set. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 establish establish VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 criteria criterion NOUN NNS Number=Plur 6 dobj _ _ 8 implying imply VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 7 acl _ _ 9 that that SCONJ IN _ 33 mark _ _ 10 an an DET DT Definite=Ind|PronType=Art 13 det _ _ 11 $ infty $ $ infty $ SYM $ _ 13 compound _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 category category NOUN NN Number=Sing 33 nsubj _ SpaceAfter=No 14 — — PUNCT : _ 13 punct _ SpaceAfter=No 15 for for ADP IN _ 13 prep _ _ 16 instance instance NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 13 punct _ _ 18 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 19 quasi quasi ADJ JJ Degree=Pos 13 appos _ _ 20 - - NOUN NN Number=Sing 13 conj _ _ 21 category category NOUN NN Number=Sing 13 appos _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 a a DET DT Definite=Ind|PronType=Art 26 det _ _ 24 complete complete ADJ JJ Degree=Pos 26 amod _ _ 25 Segal Segal PROPN NNP Number=Sing 26 amod _ _ 26 space space NOUN NN Number=Sing 21 conj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 26 punct _ _ 28 or or CCONJ CC ConjType=Cmp 26 cc _ _ 29 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 30 Segal Segal PROPN NNP Number=Sing 31 compound _ _ 31 category category NOUN NN Number=Sing 26 conj _ SpaceAfter=No 32 — — PUNCT : _ 13 punct _ SpaceAfter=No 33 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 ccomp _ _ 34 complete complete ADJ JJ Degree=Pos 33 acomp _ _ 35 and and CCONJ CC ConjType=Cmp 34 cc _ _ 36 cocomplete cocomplete ADJ JJ Degree=Pos 34 conj _ SpaceAfter=No 37 , , PUNCT , PunctType=Comm 33 punct _ _ 38 admitting admit VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 33 advcl _ _ 39 limits limit NOUN NNS Number=Plur 38 dobj _ _ 40 and and CCONJ CC ConjType=Cmp 39 cc _ _ 41 colimits colimit NOUN NNS Number=Plur 39 conj _ _ 42 indexed index VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 39 acl _ _ 43 by by ADP IN _ 42 agent _ _ 44 any any DET DT _ 47 det _ _ 45 small small ADJ JJ Degree=Pos 47 amod _ _ 46 simplicial simplicial ADJ JJ Degree=Pos 47 amod _ _ 47 set set NOUN NN Number=Sing 43 pobj _ SpaceAfter=No 48 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = Our strategy is to build (co)limits of diagrams indexed by a simplicial set inductively from (co)limits of restricted diagrams indexed by the pieces of its skeletal filtration. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 strategy strategy NOUN NN Number=Sing 3 nsubj _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 to to PART TO _ 5 aux _ _ 5 build build VERB VB VerbForm=Inf 3 xcomp _ _ 6 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 5 punct _ SpaceAfter=No 7 co)limits co)limit NOUN NNS Number=Plur 5 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 diagrams diagram NOUN NNS Number=Plur 8 pobj _ _ 10 indexed index VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 9 acl _ _ 11 by by ADP IN _ 10 agent _ _ 12 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 13 simplicial simplicial NOUN NN Number=Sing 11 pobj _ _ 14 set set NOUN NN Number=Sing 13 acl _ _ 15 inductively inductively ADV RB _ 14 advmod _ _ 16 from from ADP IN _ 14 prep _ _ 17 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 16 punct _ SpaceAfter=No 18 co)limits co)limit NOUN NNS Number=Plur 16 pobj _ _ 19 of of ADP IN _ 18 prep _ _ 20 restricted restricted ADJ JJ Degree=Pos 21 amod _ _ 21 diagrams diagram NOUN NNS Number=Plur 19 pobj _ _ 22 indexed index VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 21 acl _ _ 23 by by ADP IN _ 22 agent _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 pieces piece NOUN NNS Number=Plur 23 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 29 poss _ _ 28 skeletal skeletal ADJ JJ Degree=Pos 29 amod _ _ 29 filtration filtration NOUN NN Number=Sing 26 pobj _ SpaceAfter=No 30 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 4 # text = We show directly that the modules that express the universal properties of (co)limits of diagrams of these shapes are reconstructible as limits of the modules that express the universal properties of (co)limits of the restricted diagrams. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 directly directly ADV RB _ 2 advmod _ _ 4 that that SCONJ IN _ 20 mark _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 modules module NOUN NNS Number=Plur 20 nsubj _ _ 7 that that PRON WDT PronType=Rel 8 nsubj _ _ 8 express express VERB VBP Tense=Pres|VerbForm=Fin 6 relcl _ _ 9 the the DET DT Definite=Def|PronType=Art 11 det _ _ 10 universal universal ADJ JJ Degree=Pos 11 amod _ _ 11 properties property NOUN NNS Number=Plur 8 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 12 punct _ SpaceAfter=No 14 co)limits co)limit NOUN NNS Number=Plur 12 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 diagrams diagram NOUN NNS Number=Plur 15 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 these these DET DT Number=Plur|PronType=Dem 19 det _ _ 19 shapes shape NOUN NNS Number=Plur 17 pobj _ _ 20 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 21 reconstructible reconstructible ADJ JJ Degree=Pos 20 acomp _ _ 22 as as ADP IN _ 20 prep _ _ 23 limits limit NOUN NNS Number=Plur 22 pobj _ _ 24 of of ADP IN _ 23 prep _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 modules module NOUN NNS Number=Plur 24 pobj _ _ 27 that that PRON WDT PronType=Rel 28 nsubj _ _ 28 express express VERB VBP Tense=Pres|VerbForm=Fin 26 relcl _ _ 29 the the DET DT Definite=Def|PronType=Art 31 det _ _ 30 universal universal ADJ JJ Degree=Pos 31 amod _ _ 31 properties property NOUN NNS Number=Plur 28 dobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 32 punct _ SpaceAfter=No 34 co)limits co)limit NOUN NNS Number=Plur 32 pobj _ _ 35 of of ADP IN _ 34 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 38 det _ _ 37 restricted restricted ADJ JJ Degree=Pos 38 amod _ _ 38 diagrams diagram NOUN NNS Number=Plur 35 pobj _ SpaceAfter=No 39 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = We also prove that the Yoneda embedding preserves and reflects limits in a suitable sense, and deduce our main theorems as a consequence. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 10 mark _ _ 5 the the DET DT Definite=Def|PronType=Art 8 det _ _ 6 Yoneda Yoneda PROPN NNP Number=Sing 8 nmod _ _ 7 embedding embed VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 amod _ _ 8 preserves preserve NOUN NNS Number=Plur 10 nsubj _ _ 9 and and CCONJ CC ConjType=Cmp 8 cc _ _ 10 reflects reflect VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 3 ccomp _ _ 11 limits limit NOUN NNS Number=Plur 10 dobj _ _ 12 in in ADP IN _ 10 prep _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 suitable suitable ADJ JJ Degree=Pos 15 amod _ _ 15 sense sense NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 3 punct _ _ 17 and and CCONJ CC ConjType=Cmp 3 cc _ _ 18 deduce deduce VERB VB VerbForm=Inf 3 conj _ _ 19 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 21 poss _ _ 20 main main ADJ JJ Degree=Pos 21 amod _ _ 21 theorems theorem NOUN NNS Number=Plur 18 dobj _ _ 22 as as ADP IN _ 18 prep _ _ 23 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 24 consequence consequence NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 25 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 742 # sent_id = 1 # text = We determine the largest submonoid of the monoid of continuous endomorphisms of the unit interval $ [0, 1] $ on which the finite partitions form the basis of a Grothendieck topology, and thus determine a cohesive topos over sets. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 determine determine VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 largest large ADJ JJS Degree=Sup 5 amod _ _ 5 submonoid submonoid NOUN NN Number=Sing 2 dobj _ _ 6 of of ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 monoid monoid NOUN NN Number=Sing 6 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 continuous continuous ADJ JJ Degree=Pos 11 amod _ _ 11 endomorphisms endomorphism NOUN NNS Number=Plur 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 15 det _ _ 14 unit unit NOUN NN Number=Sing 15 compound _ _ 15 interval interval NOUN NN Number=Sing 12 pobj _ _ 16 $ [0, 1] $ $ [0, 1] $ SYM $ _ 15 appos _ _ 17 on on ADP IN _ 22 prep _ _ 18 which which PRON WDT _ 17 pobj _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 finite finite PROPN NNP Number=Sing 21 compound _ _ 21 partitions partition NOUN NNS Number=Plur 22 nsubj _ _ 22 form form VERB VBP Tense=Pres|VerbForm=Fin 16 relcl _ _ 23 the the DET DT Definite=Def|PronType=Art 24 det _ _ 24 basis basis NOUN NN Number=Sing 22 dobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 27 Grothendieck Grothendieck PROPN NNP Number=Sing 28 compound _ _ 28 topology topology NOUN NN Number=Sing 25 pobj _ SpaceAfter=No 29 , , PUNCT , PunctType=Comm 22 punct _ _ 30 and and CCONJ CC ConjType=Cmp 22 cc _ _ 31 thus thus ADV RB _ 32 advmod _ _ 32 determine determine VERB VB VerbForm=Inf 22 conj _ _ 33 a a DET DT Definite=Ind|PronType=Art 35 det _ _ 34 cohesive cohesive ADJ JJ Degree=Pos 35 amod _ _ 35 topos topos NOUN NN Number=Sing 32 dobj _ _ 36 over over ADP IN _ 35 prep _ _ 37 sets set NOUN NNS Number=Plur 36 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We analyze some of the sheaf theoretic aspects of this topos. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 analyze analyze VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 some some PRON DT _ 2 dobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 8 det _ _ 6 sheaf sheaf NOUN NN Number=Sing 7 compound _ _ 7 theoretic theoretic ADJ JJ Degree=Pos 8 amod _ _ 8 aspects aspect NOUN NNS Number=Plur 4 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 this this DET DT Number=Sing|PronType=Dem 11 det _ _ 11 topos topos NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 12 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Furthermore, we adapt the constructions of Menni to include another model of axiomatic cohesion. 1 Furthermore furthermore ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 adapt adapt VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 constructions construction NOUN NNS Number=Plur 4 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 Menni Menni PROPN NNP Number=Sing 7 pobj _ _ 9 to to PART TO _ 10 aux _ _ 10 include include VERB VB VerbForm=Inf 4 advcl _ _ 11 another another DET DT _ 12 det _ _ 12 model model NOUN NN Number=Sing 10 dobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 axiomatic axiomatic ADJ JJ Degree=Pos 15 amod _ _ 15 cohesion cohesion NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = We conclude the paper with a proof of the fact that a sufficiently cohesive topos of presheaves does not satisfy the continuity axiom. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 conclude conclude VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 paper paper NOUN NN Number=Sing 2 dobj _ _ 5 with with ADP IN _ 2 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 proof proof NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 fact fact NOUN NN Number=Sing 8 pobj _ _ 11 that that SCONJ IN _ 20 mark _ _ 12 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 13 sufficiently sufficiently ADV RB _ 14 advmod _ _ 14 cohesive cohesive ADJ JJ Degree=Pos 15 amod _ _ 15 topos topos NOUN NN Number=Sing 20 nsubj _ _ 16 of of ADP IN _ 15 prep _ _ 17 presheaves presheave NOUN NNS Number=Plur 16 pobj _ _ 18 does do AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 20 aux _ _ 19 not not PART RB Polarity=Neg 20 neg _ _ 20 satisfy satisfy VERB VB VerbForm=Inf 10 acl _ _ 21 the the DET DT Definite=Def|PronType=Art 23 det _ _ 22 continuity continuity NOUN NN Number=Sing 23 compound _ _ 23 axiom axiom NOUN NN Number=Sing 20 dobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 743 # sent_id = 1 # text = We lift the standard equivalence between fibrations and indexed categories to an equivalence between monoidal fibrations and monoidal indexed categories, namely lax monoidal pseudofunctors to the 2 - category of categories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 lift lift VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 5 det _ _ 4 standard standard ADJ JJ Degree=Pos 5 amod _ _ 5 equivalence equivalence NOUN NN Number=Sing 2 dobj _ _ 6 between between ADP IN _ 5 prep _ _ 7 fibrations fibration NOUN NNS Number=Plur 6 pobj _ _ 8 and and CCONJ CC ConjType=Cmp 7 cc _ _ 9 indexed index VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 amod _ _ 10 categories category NOUN NNS Number=Plur 7 conj _ _ 11 to to ADP IN _ 2 prep _ _ 12 an an DET DT Definite=Ind|PronType=Art 13 det _ _ 13 equivalence equivalence NOUN NN Number=Sing 11 pobj _ _ 14 between between ADP IN _ 13 prep _ _ 15 monoidal monoidal ADJ JJ Degree=Pos 16 amod _ _ 16 fibrations fibration NOUN NNS Number=Plur 14 pobj _ _ 17 and and CCONJ CC ConjType=Cmp 16 cc _ _ 18 monoidal monoidal ADJ JJ Degree=Pos 20 amod _ _ 19 indexed index VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 amod _ _ 20 categories category NOUN NNS Number=Plur 16 conj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 namely namely ADV RB _ 23 advmod _ _ 23 lax lax ADJ JJ Degree=Pos 25 amod _ _ 24 monoidal monoidal ADJ JJ Degree=Pos 25 amod _ _ 25 pseudofunctors pseudofunctor NOUN NNS Number=Plur 20 appos _ _ 26 to to ADP IN _ 2 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 30 det _ _ 28 2 2 NUM CD NumType=Card 30 nummod _ _ 29 - - PUNCT HYPH PunctType=Dash 30 punct _ _ 30 category category NOUN NN Number=Sing 26 pobj _ _ 31 of of ADP IN _ 30 prep _ _ 32 categories category NOUN NNS Number=Plur 31 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Furthermore, we investigate the relation between this `global' monoidal version where the total category is monoidal and the fibration strictly preserves the structure, and a `fibrewise' one where the fibres are monoidal and the reindexing functors strongly preserve the structure, first hinted by Shulman. 1 Furthermore furthermore ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 investigate investigate VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 relation relation NOUN NN Number=Sing 4 dobj _ _ 7 between between ADP IN _ 6 prep _ _ 8 this this DET DT Number=Sing|PronType=Dem 13 det _ _ 9 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 13 punct _ SpaceAfter=No 10 global global ADJ JJ Degree=Pos 13 amod _ SpaceAfter=No 11 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 13 punct _ _ 12 monoidal monoidal ADJ JJ Degree=Pos 13 amod _ _ 13 version version NOUN NN Number=Sing 7 pobj _ _ 14 where where SCONJ WRB _ 18 advmod _ _ 15 the the DET DT Definite=Def|PronType=Art 17 det _ _ 16 total total ADJ JJ Degree=Pos 17 amod _ _ 17 category category NOUN NN Number=Sing 18 nsubj _ _ 18 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 13 relcl _ _ 19 monoidal monoidal ADJ JJ Degree=Pos 18 acomp _ _ 20 and and CCONJ CC ConjType=Cmp 18 cc _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 fibration fibration NOUN NN Number=Sing 24 nsubj _ _ 23 strictly strictly ADV RB _ 24 advmod _ _ 24 preserves preserve VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 conj _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 structure structure NOUN NN Number=Sing 24 dobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 24 punct _ _ 28 and and CCONJ CC ConjType=Cmp 24 cc _ _ 29 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 30 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 31 punct _ SpaceAfter=No 31 fibrewise fibrewise NOUN NN Number=Sing 24 conj _ SpaceAfter=No 32 ' ' PUNCT '' PunctSide=Fin|PunctType=Quot 31 punct _ _ 33 one one NOUN NN Number=Sing 31 appos _ _ 34 where where SCONJ WRB _ 37 advmod _ _ 35 the the DET DT Definite=Def|PronType=Art 36 det _ _ 36 fibres fibre NOUN NNS Number=Plur 37 nsubj _ _ 37 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 33 relcl _ _ 38 monoidal monoidal ADJ JJ Degree=Pos 37 acomp _ _ 39 and and CCONJ CC ConjType=Cmp 33 cc _ _ 40 the the DET DT Definite=Def|PronType=Art 42 det _ _ 41 reindexing reindexe VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 42 amod _ _ 42 functors functor NOUN NNS Number=Plur 44 nsubj _ _ 43 strongly strongly ADV RB _ 44 advmod _ _ 44 preserve preserve VERB VBP Tense=Pres|VerbForm=Fin 24 conj _ _ 45 the the DET DT Definite=Def|PronType=Art 46 det _ _ 46 structure structure NOUN NN Number=Sing 44 dobj _ SpaceAfter=No 47 , , PUNCT , PunctType=Comm 44 punct _ _ 48 first first ADV RB _ 49 advmod _ _ 49 hinted hint VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 44 advcl _ _ 50 by by ADP IN _ 49 agent _ _ 51 Shulman Shulman PROPN NNP Number=Sing 50 pobj _ SpaceAfter=No 52 . . PUNCT . PunctType=Peri 24 punct _ SpaceAfter=No # sent_id = 3 # text = In particular, when the domain is cocartesian monoidal, we show how lax monoidal structures on a pseudofunctor to $ Cat $ bijectively correspond to lifts of the pseudofunctor to $ MonCat $ . 1 In in ADP IN _ 12 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 12 punct _ _ 4 when when SCONJ WRB _ 7 advmod _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 domain domain NOUN NN Number=Sing 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 advcl _ _ 8 cocartesian cocartesian ADJ JJ Degree=Pos 9 amod _ _ 9 monoidal monoidal NOUN NN Number=Sing 7 attr _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 12 punct _ _ 11 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 12 nsubj _ _ 12 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 how how SCONJ WRB _ 14 advmod _ _ 14 lax lax ADJ JJ Degree=Pos 16 amod _ _ 15 monoidal monoidal ADJ JJ Degree=Pos 16 amod _ _ 16 structures structure NOUN NNS Number=Plur 23 nsubj _ _ 17 on on ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 19 det _ _ 19 pseudofunctor pseudofunctor NOUN NN Number=Sing 17 pobj _ _ 20 to to ADP IN _ 16 prep _ _ 21 $ Cat $ $ cat $ SYM $ _ 20 pobj _ _ 22 bijectively bijectively ADV RB _ 23 advmod _ _ 23 correspond correspond VERB VBP Tense=Pres|VerbForm=Fin 12 ccomp _ _ 24 to to ADP IN _ 23 prep _ _ 25 lifts lift NOUN NNS Number=Plur 24 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 pseudofunctor pseudofunctor NOUN NN Number=Sing 26 pobj _ _ 29 to to ADP IN _ 23 prep _ _ 30 $ MonCat $ $ moncat $ SYM $ _ 29 pobj _ _ 31 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 4 # text = Finally, we give some examples where this correspondence appears, spanning from the fundamental and family fibrations to network models and systems. 1 Finally finally ADV RB _ 4 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 4 punct _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 some some DET DT _ 6 det _ _ 6 examples example NOUN NNS Number=Plur 4 dobj _ _ 7 where where SCONJ WRB _ 10 advmod _ _ 8 this this DET DT Number=Sing|PronType=Dem 9 det _ _ 9 correspondence correspondence NOUN NN Number=Sing 10 nsubj _ _ 10 appears appear VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 6 relcl _ SpaceAfter=No 11 , , PUNCT , PunctType=Comm 4 punct _ _ 12 spanning span VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 4 advcl _ _ 13 from from ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 18 det _ _ 15 fundamental fundamental ADJ JJ Degree=Pos 18 amod _ _ 16 and and CCONJ CC ConjType=Cmp 15 cc _ _ 17 family family NOUN NN Number=Sing 15 conj _ _ 18 fibrations fibration NOUN NNS Number=Plur 13 pobj _ _ 19 to to ADP IN _ 18 prep _ _ 20 network network NOUN NN Number=Sing 21 compound _ _ 21 models model NOUN NNS Number=Plur 19 pobj _ _ 22 and and CCONJ CC ConjType=Cmp 21 cc _ _ 23 systems system NOUN NNS Number=Plur 21 conj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 744 # sent_id = 1 # text = In this paper we prove an equivalence theorem originally observed by Robert MacPherson. 1 In in ADP IN _ 5 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 an an DET DT Definite=Ind|PronType=Art 7 det _ _ 7 equivalence equivalence NOUN NN Number=Sing 8 nsubj _ _ 8 theorem theorem ADJ JJ Degree=Pos 5 ccomp _ _ 9 originally originally ADV RB _ 10 advmod _ _ 10 observed observe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 acl _ _ 11 by by ADP IN _ 10 agent _ _ 12 Robert Robert PROPN NNP Number=Sing 13 compound _ _ 13 MacPherson MacPherson PROPN NNP Number=Sing 11 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 2 # text = On one side of the equivalence is the category of cosheaves that are constructible with respect to a locally cone - like stratification. 1 On on ADP IN _ 7 prep _ _ 2 one one NUM CD NumType=Card 3 nummod _ _ 3 side side NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 the the DET DT Definite=Def|PronType=Art 6 det _ _ 6 equivalence equivalence NOUN NN Number=Sing 4 pobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 the the DET DT Definite=Def|PronType=Art 9 det _ _ 9 category category NOUN NN Number=Sing 7 attr _ _ 10 of of ADP IN _ 9 prep _ _ 11 cosheaves cosheave NOUN NNS Number=Plur 10 pobj _ _ 12 that that PRON WDT PronType=Rel 13 nsubj _ _ 13 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 11 relcl _ _ 14 constructible constructible ADJ JJ Degree=Pos 13 acomp _ _ 15 with with ADP IN _ 14 prep _ _ 16 respect respect NOUN NN Number=Sing 15 pobj _ _ 17 to to ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 23 det _ _ 19 locally locally ADV RB _ 22 advmod _ _ 20 cone cone NOUN NN Number=Sing 22 npadvmod _ _ 21 - - PUNCT HYPH PunctType=Dash 22 punct _ _ 22 like like ADJ JJ Degree=Pos 23 amod _ _ 23 stratification stratification NOUN NN Number=Sing 17 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = Our constructibility condition is new and only requires that certain inclusions of open sets are sent to isomorphisms. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 3 poss _ _ 2 constructibility constructibility NOUN NN Number=Sing 3 compound _ _ 3 condition condition NOUN NN Number=Sing 4 nsubj _ _ 4 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 new new ADJ JJ Degree=Pos 4 acomp _ _ 6 and and CCONJ CC ConjType=Cmp 4 cc _ _ 7 only only ADV RB _ 8 advmod _ _ 8 requires require VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 conj _ _ 9 that that SCONJ IN _ 16 mark _ _ 10 certain certain ADJ JJ Degree=Pos 11 amod _ _ 11 inclusions inclusion NOUN NNS Number=Plur 16 nsubjpass _ _ 12 of of ADP IN _ 11 prep _ _ 13 open open ADJ JJ Degree=Pos 14 amod _ _ 14 sets set NOUN NNS Number=Plur 12 pobj _ _ 15 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 16 auxpass _ _ 16 sent send VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 8 ccomp _ _ 17 to to ADP IN _ 16 prep _ _ 18 isomorphisms isomorphism NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = On the other side of the equivalence is the category of functors from the entrance path category, which has points for objects and certain homotopy classes of paths for morphisms. 1 On on ADP IN _ 8 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 other other ADJ JJ Degree=Pos 4 amod _ _ 4 side side NOUN NN Number=Sing 1 pobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 equivalence equivalence NOUN NN Number=Sing 5 pobj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 category category NOUN NN Number=Sing 8 attr _ _ 11 of of ADP IN _ 10 prep _ _ 12 functors functor NOUN NNS Number=Plur 11 pobj _ _ 13 from from ADP IN _ 12 prep _ _ 14 the the DET DT Definite=Def|PronType=Art 17 det _ _ 15 entrance entrance NOUN NN Number=Sing 16 compound _ _ 16 path path NOUN NN Number=Sing 17 compound _ _ 17 category category NOUN NN Number=Sing 13 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 which which PRON WDT _ 20 nsubj _ _ 20 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 relcl _ _ 21 points point NOUN NNS Number=Plur 20 dobj _ _ 22 for for ADP IN _ 21 prep _ _ 23 objects object NOUN NNS Number=Plur 22 pobj _ _ 24 and and CCONJ CC ConjType=Cmp 23 cc _ _ 25 certain certain ADJ JJ Degree=Pos 27 amod _ _ 26 homotopy homotopy NOUN NN Number=Sing 27 compound _ _ 27 classes class NOUN NNS Number=Plur 23 conj _ _ 28 of of ADP IN _ 27 prep _ _ 29 paths path NOUN NNS Number=Plur 28 pobj _ _ 30 for for ADP IN _ 23 prep _ _ 31 morphisms morphism NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 32 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 5 # text = When our constructible cosheaves are valued in Set we prove an additional equivalence with the category of stratified coverings. 1 When when SCONJ WRB _ 6 advmod _ _ 2 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 4 poss _ _ 3 constructible constructible ADJ JJ Degree=Pos 4 amod _ _ 4 cosheaves cosheave NOUN NNS Number=Plur 6 nsubjpass _ _ 5 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 6 auxpass _ _ 6 valued value VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 10 advcl _ _ 7 in in ADP IN _ 6 prep _ _ 8 Set Set PROPN NNP Number=Sing 7 pobj _ _ 9 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 10 nsubj _ _ 10 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 11 an an DET DT Definite=Ind|PronType=Art 13 det _ _ 12 additional additional ADJ JJ Degree=Pos 13 amod _ _ 13 equivalence equivalence NOUN NN Number=Sing 10 dobj _ _ 14 with with ADP IN _ 13 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 category category NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 stratified stratified ADJ JJ Degree=Pos 19 amod _ _ 19 coverings covering NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 20 . . PUNCT . PunctType=Peri 10 punct _ SpaceAfter=No # doc_id = 745 # sent_id = 1 # text = We show that the various higher Segal conditions of Dyckerhoff and Kapranov can all be characterized in purely categorical terms by higher excision conditions (in the spirit of Goodwillie - - Weiss manifold calculus) on the simplex category $ Delta $ and the cyclic category $ Lambda $ . 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 16 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 8 det _ _ 5 various various ADJ JJ Degree=Pos 8 amod _ _ 6 higher high ADJ JJR Degree=Cmp 8 amod _ _ 7 Segal Segal PROPN NNP Number=Sing 8 compound _ _ 8 conditions condition NOUN NNS Number=Plur 16 nsubjpass _ _ 9 of of ADP IN _ 8 prep _ _ 10 Dyckerhoff Dyckerhoff PROPN NNP Number=Sing 9 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 10 cc _ _ 12 Kapranov Kapranov PROPN NNP Number=Sing 10 conj _ _ 13 can can AUX MD VerbForm=Fin 16 aux _ _ 14 all all ADV RB _ 16 dep _ _ 15 be be AUX VB VerbForm=Inf 16 auxpass _ _ 16 characterized characterize VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 17 in in ADP IN _ 16 prep _ _ 18 purely purely ADV RB _ 19 advmod _ _ 19 categorical categorical ADJ JJ Degree=Pos 20 amod _ _ 20 terms term NOUN NNS Number=Plur 17 pobj _ _ 21 by by ADP IN _ 20 prep _ _ 22 higher high ADJ JJR Degree=Cmp 23 amod _ _ 23 excision excision NOUN NN Number=Sing 24 compound _ _ 24 conditions condition NOUN NNS Number=Plur 21 pobj _ _ 25 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 24 punct _ SpaceAfter=No 26 in in ADP IN _ 24 prep _ _ 27 the the DET DT Definite=Def|PronType=Art 28 det _ _ 28 spirit spirit NOUN NN Number=Sing 26 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 Goodwillie Goodwillie PROPN NNP Number=Sing 33 nmod _ _ 31 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 32 - - PUNCT HYPH PunctType=Dash 33 punct _ _ 33 Weiss Weiss PROPN NNP Number=Sing 35 nmod _ _ 34 manifold manifold ADJ JJ Degree=Pos 35 amod _ _ 35 calculus calculus NOUN NN Number=Sing 29 pobj _ SpaceAfter=No 36 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 35 punct _ _ 37 on on ADP IN _ 28 prep _ _ 38 the the DET DT Definite=Def|PronType=Art 40 det _ _ 39 simplex simplex NOUN NN Number=Sing 40 compound _ _ 40 category category NOUN NN Number=Sing 37 pobj _ _ 41 $ Delta $ $ delta $ SYM $ _ 40 appos _ _ 42 and and CCONJ CC ConjType=Cmp 40 cc _ _ 43 the the DET DT Definite=Def|PronType=Art 45 det _ _ 44 cyclic cyclic ADJ JJ Degree=Pos 45 amod _ _ 45 category category NOUN NN Number=Sing 40 conj _ _ 46 $ Lambda $ $ lambda $ SYM $ _ 45 appos _ _ 47 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 746 # sent_id = 1 # text = The task of constructing compositional semantics for network - style diagrammatic languages, such as electrical circuits or chemical reaction networks, has been dubbed the black boxing problem, as it gives semantics that describes the properties of each network that can be observed externally, through composition, while discarding the internal structure. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 task task NOUN NN Number=Sing 25 nsubjpass _ _ 3 of of ADP IN _ 2 prep _ _ 4 constructing construct VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 3 pcomp _ _ 5 compositional compositional ADJ JJ Degree=Pos 6 amod _ _ 6 semantics semantic NOUN NNS Number=Plur 4 dobj _ _ 7 for for ADP IN _ 6 prep _ _ 8 network network NOUN NN Number=Sing 10 nmod _ _ 9 - - PUNCT HYPH PunctType=Dash 10 punct _ _ 10 style style NOUN NN Number=Sing 12 compound _ _ 11 diagrammatic diagrammatic NOUN NN Number=Sing 12 compound _ _ 12 languages language NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 such such ADJ JJ Degree=Pos 15 amod _ _ 15 as as ADP IN _ 12 prep _ _ 16 electrical electrical ADJ JJ Degree=Pos 17 amod _ _ 17 circuits circuit NOUN NNS Number=Plur 15 pobj _ _ 18 or or CCONJ CC ConjType=Cmp 17 cc _ _ 19 chemical chemical ADJ JJ Degree=Pos 20 compound _ _ 20 reaction reaction NOUN NN Number=Sing 21 compound _ _ 21 networks network NOUN NNS Number=Plur 17 conj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 2 punct _ _ 23 has have AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 25 aux _ _ 24 been be AUX VBN Tense=Past|VerbForm=Part 25 auxpass _ _ 25 dubbed dub VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 26 the the DET DT Definite=Def|PronType=Art 29 det _ _ 27 black black ADJ JJ Degree=Pos 29 amod _ _ 28 boxing boxing NOUN NN Number=Sing 29 compound _ _ 29 problem problem NOUN NN Number=Sing 25 oprd _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 25 punct _ _ 31 as as SCONJ IN _ 33 mark _ _ 32 it it PRON PRP Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs 33 nsubj _ _ 33 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 25 advcl _ _ 34 semantics semantic NOUN NNS Number=Plur 33 dobj _ _ 35 that that PRON WDT PronType=Rel 36 nsubj _ _ 36 describes describe VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 34 relcl _ _ 37 the the DET DT Definite=Def|PronType=Art 38 det _ _ 38 properties property NOUN NNS Number=Plur 36 dobj _ _ 39 of of ADP IN _ 38 prep _ _ 40 each each DET DT _ 41 det _ _ 41 network network NOUN NN Number=Sing 39 pobj _ _ 42 that that PRON WDT PronType=Rel 45 nsubjpass _ _ 43 can can AUX MD VerbForm=Fin 45 aux _ _ 44 be be AUX VB VerbForm=Inf 45 auxpass _ _ 45 observed observe VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 38 relcl _ _ 46 externally externally ADV RB _ 45 advmod _ SpaceAfter=No 47 , , PUNCT , PunctType=Comm 45 punct _ _ 48 through through ADP IN _ 45 prep _ _ 49 composition composition NOUN NN Number=Sing 48 pobj _ SpaceAfter=No 50 , , PUNCT , PunctType=Comm 45 punct _ _ 51 while while SCONJ IN _ 52 mark _ _ 52 discarding discard VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 45 advcl _ _ 53 the the DET DT Definite=Def|PronType=Art 55 det _ _ 54 internal internal ADJ JJ Degree=Pos 55 amod _ _ 55 structure structure NOUN NN Number=Sing 52 dobj _ SpaceAfter=No 56 . . PUNCT . PunctType=Peri 25 punct _ SpaceAfter=No # sent_id = 2 # text = One way to solve these problems is to formalise the diagrams and their semantics using hypergraph categories, with semantic interpretation a hypergraph functor, called the black box functor, between them. 1 One one NUM CD NumType=Card 2 nummod _ _ 2 way way NOUN NN Number=Sing 7 nsubj _ _ 3 to to PART TO _ 4 aux _ _ 4 solve solve VERB VB VerbForm=Inf 2 relcl _ _ 5 these these DET DT Number=Plur|PronType=Dem 6 det _ _ 6 problems problem NOUN NNS Number=Plur 4 dobj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 to to PART TO _ 9 aux _ _ 9 formalise formalise VERB VB VerbForm=Inf 7 xcomp _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 diagrams diagram NOUN NNS Number=Plur 9 dobj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 14 poss _ _ 14 semantics semantic NOUN NNS Number=Plur 11 conj _ _ 15 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 11 acl _ _ 16 hypergraph hypergraph ADJ JJ Degree=Pos 17 amod _ _ 17 categories category NOUN NNS Number=Plur 15 dobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 9 punct _ _ 19 with with ADP IN _ 9 prep _ _ 20 semantic semantic ADJ JJ Degree=Pos 21 amod _ _ 21 interpretation interpretation NOUN NN Number=Sing 19 pobj _ _ 22 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 23 hypergraph hypergraph NOUN NN Number=Sing 24 compound _ _ 24 functor functor NOUN NN Number=Sing 9 dobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 24 punct _ _ 26 called call VERB VBD Tense=Past|VerbForm=Fin 24 acl _ _ 27 the the DET DT Definite=Def|PronType=Art 30 det _ _ 28 black black ADJ JJ Degree=Pos 29 compound _ _ 29 box box NOUN NN Number=Sing 30 compound _ _ 30 functor functor NOUN NN Number=Sing 26 oprd _ SpaceAfter=No 31 , , PUNCT , PunctType=Comm 24 punct _ _ 32 between between ADP IN _ 24 prep _ _ 33 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 32 pobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 3 # text = Building on a previous method for constructing hypergraph categories and functors, known as decorated corelations, in this paper we construct a category of decorating data, and show that the decorated corelations method is itself functorial, with a universal property characterised by a left Kan extension. 1 Building build VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 22 advcl _ _ 2 on on ADP IN _ 1 prep _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 previous previous ADJ JJ Degree=Pos 5 amod _ _ 5 method method NOUN NN Number=Sing 2 pobj _ _ 6 for for ADP IN _ 5 prep _ _ 7 constructing construct VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 pcomp _ _ 8 hypergraph hypergraph ADJ JJ Degree=Pos 9 amod _ _ 9 categories category NOUN NNS Number=Plur 7 dobj _ _ 10 and and CCONJ CC ConjType=Cmp 9 cc _ _ 11 functors functor NOUN NNS Number=Plur 9 conj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 7 punct _ _ 13 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 7 advcl _ _ 14 as as ADP IN _ 13 prep _ _ 15 decorated decorate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 16 corelations corelation NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 22 punct _ _ 18 in in ADP IN _ 22 prep _ _ 19 this this DET DT Number=Sing|PronType=Dem 20 det _ _ 20 paper paper NOUN NN Number=Sing 18 pobj _ _ 21 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 22 nsubj _ _ 22 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 23 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 24 category category NOUN NN Number=Sing 22 dobj _ _ 25 of of ADP IN _ 24 prep _ _ 26 decorating decorate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 25 pcomp _ _ 27 data datum NOUN NNS Number=Plur 26 dobj _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 22 punct _ _ 29 and and CCONJ CC ConjType=Cmp 22 cc _ _ 30 show show VERB VB VerbForm=Inf 22 conj _ _ 31 that that SCONJ IN _ 36 mark _ _ 32 the the DET DT Definite=Def|PronType=Art 34 det _ _ 33 decorated decorate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 34 amod _ _ 34 corelations corelation NOUN NNS Number=Plur 35 compound _ _ 35 method method NOUN NN Number=Sing 36 nsubj _ _ 36 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 30 ccomp _ _ 37 itself itself PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs|Reflex=Yes 36 attr _ _ 38 functorial functorial NOUN NN Number=Sing 36 acomp _ SpaceAfter=No 39 , , PUNCT , PunctType=Comm 36 punct _ _ 40 with with ADP IN _ 36 prep _ _ 41 a a DET DT Definite=Ind|PronType=Art 43 det _ _ 42 universal universal ADJ JJ Degree=Pos 43 amod _ _ 43 property property NOUN NN Number=Sing 40 pobj _ _ 44 characterised characterise VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 43 acl _ _ 45 by by ADP IN _ 44 agent _ _ 46 a a DET DT Definite=Ind|PronType=Art 49 det _ _ 47 left leave VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 49 amod _ _ 48 Kan Kan PROPN NNP Number=Sing 49 compound _ _ 49 extension extension NOUN NN Number=Sing 45 pobj _ SpaceAfter=No 50 . . PUNCT . PunctType=Peri 22 punct _ SpaceAfter=No # sent_id = 4 # text = We then show that any hypergraph category can be presented in terms of decorating data, and hence argue that the category of decorating data is a good setting in which to construct any hypergraph functor. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 then then ADV RB PronType=Dem 3 advmod _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 10 mark _ _ 5 any any DET DT _ 7 det _ _ 6 hypergraph hypergraph ADJ JJ Degree=Pos 7 amod _ _ 7 category category NOUN NN Number=Sing 10 nsubjpass _ _ 8 can can AUX MD VerbForm=Fin 10 aux _ _ 9 be be AUX VB VerbForm=Inf 10 auxpass _ _ 10 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 3 ccomp _ _ 11 in in ADP IN _ 10 prep _ _ 12 terms term NOUN NNS Number=Plur 11 pobj _ _ 13 of of ADP IN _ 12 prep _ _ 14 decorating decorate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 13 pcomp _ _ 15 data datum NOUN NNS Number=Plur 14 dobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 10 punct _ _ 17 and and CCONJ CC ConjType=Cmp 10 cc _ _ 18 hence hence ADV RB _ 19 advmod _ _ 19 argue argue VERB VBP Tense=Pres|VerbForm=Fin 10 conj _ _ 20 that that SCONJ IN _ 26 mark _ _ 21 the the DET DT Definite=Def|PronType=Art 22 det _ _ 22 category category NOUN NN Number=Sing 26 nsubj _ _ 23 of of ADP IN _ 22 prep _ _ 24 decorating decorate VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 23 pcomp _ _ 25 data datum NOUN NNS Number=Plur 24 dobj _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 19 ccomp _ _ 27 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 28 good good ADJ JJ Degree=Pos 29 amod _ _ 29 setting setting NOUN NN Number=Sing 26 attr _ _ 30 in in ADP IN _ 33 prep _ _ 31 which which PRON WDT _ 30 pobj _ _ 32 to to PART TO _ 33 aux _ _ 33 construct construct VERB VB VerbForm=Inf 29 relcl _ _ 34 any any DET DT _ 36 det _ _ 35 hypergraph hypergraph NOUN NN Number=Sing 36 compound _ _ 36 functor functor NOUN NN Number=Sing 33 dobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 5 # text = As an example, we give a new construction of Baez and Pollard's black box functor for reaction networks. 1 As as ADP IN _ 6 prep _ _ 2 an an DET DT Definite=Ind|PronType=Art 3 det _ _ 3 example example NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 9 det _ _ 8 new new ADJ JJ Degree=Pos 9 amod _ _ 9 construction construction NOUN NN Number=Sing 6 dobj _ _ 10 of of ADP IN _ 9 prep _ _ 11 Baez Baez PROPN NNP Number=Sing 10 pobj _ _ 12 and and CCONJ CC ConjType=Cmp 11 cc _ _ 13 Pollard Pollard PROPN NNP Number=Sing 17 poss _ SpaceAfter=No 14 's 's PART POS _ 13 case _ _ 15 black black ADJ JJ Degree=Pos 16 amod _ _ 16 box box NOUN NN Number=Sing 17 compound _ _ 17 functor functor NOUN NN Number=Sing 11 conj _ _ 18 for for ADP IN _ 6 prep _ _ 19 reaction reaction NOUN NN Number=Sing 20 compound _ _ 20 networks network NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 747 # sent_id = 1 # text = For a diagram of simplicial combinatorial model categories, we show that the associated lax limit, endowed with the projective model structure, is a presentation of the lax limit of the underlying $ infty $ - categories. 1 For for ADP IN _ 11 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 diagram diagram NOUN NN Number=Sing 1 pobj _ _ 4 of of ADP IN _ 3 prep _ _ 5 simplicial simplicial ADJ JJ Degree=Pos 8 amod _ _ 6 combinatorial combinatorial ADJ JJ Degree=Pos 7 amod _ _ 7 model model NOUN NN Number=Sing 8 compound _ _ 8 categories category NOUN NNS Number=Plur 4 pobj _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 11 punct _ _ 10 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 11 nsubj _ _ 11 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 12 that that SCONJ IN _ 25 mark _ _ 13 the the DET DT Definite=Def|PronType=Art 16 det _ _ 14 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 amod _ _ 15 lax lax PROPN NNP Number=Sing 16 compound _ _ 16 limit limit NOUN NN Number=Sing 25 nsubj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 endowed endow VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 acl _ _ 19 with with ADP IN _ 18 prep _ _ 20 the the DET DT Definite=Def|PronType=Art 23 det _ _ 21 projective projective ADJ JJ Degree=Pos 23 amod _ _ 22 model model NOUN NN Number=Sing 23 compound _ _ 23 structure structure NOUN NN Number=Sing 19 pobj _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 16 punct _ _ 25 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 11 ccomp _ _ 26 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 27 presentation presentation NOUN NN Number=Sing 25 attr _ _ 28 of of ADP IN _ 27 prep _ _ 29 the the DET DT Definite=Def|PronType=Art 31 det _ _ 30 lax lax ADJ JJ Degree=Pos 31 amod _ _ 31 limit limit NOUN NN Number=Sing 28 pobj _ _ 32 of of ADP IN _ 31 prep _ _ 33 the the DET DT Definite=Def|PronType=Art 37 det _ _ 34 underlying underlie VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 37 amod _ _ 35 $ infty $ $ infty $ SYM $ _ 37 compound _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 categories category NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 38 . . PUNCT . PunctType=Peri 11 punct _ SpaceAfter=No # sent_id = 2 # text = Our approach can also allow for the indexing category to be simplicial, as long as the diagram factors through its homotopy category. 1 Our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 2 poss _ _ 2 approach approach NOUN NN Number=Sing 5 nsubj _ _ 3 can can AUX MD VerbForm=Fin 5 aux _ _ 4 also also ADV RB _ 5 advmod _ _ 5 allow allow VERB VB VerbForm=Inf 0 ROOT _ _ 6 for for SCONJ IN _ 11 mark _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 indexing indexing NOUN NN Number=Sing 9 compound _ _ 9 category category NOUN NN Number=Sing 11 nsubj _ _ 10 to to PART TO _ 11 aux _ _ 11 be be AUX VB VerbForm=Inf 5 ccomp _ _ 12 simplicial simplicial ADJ JJ Degree=Pos 11 acomp _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 11 punct _ _ 14 as as ADV RB _ 15 advmod _ _ 15 long long ADV RB _ 11 advmod _ _ 16 as as SCONJ IN _ 19 mark _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 diagram diagram NOUN NN Number=Sing 19 compound _ _ 19 factors factor NOUN NNS Number=Plur 15 advcl _ _ 20 through through ADP IN _ 19 prep _ _ 21 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 23 poss _ _ 22 homotopy homotopy NOUN NN Number=Sing 23 compound _ _ 23 category category NOUN NN Number=Sing 20 pobj _ SpaceAfter=No 24 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 3 # text = Analogous results for the associated homotopy limit (and other intermediate limits) directly follow. 1 Analogous analogous ADJ JJ Degree=Pos 2 amod _ _ 2 results result NOUN NNS Number=Plur 15 nsubj _ _ 3 for for ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 7 det _ _ 5 associated associate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 6 amod _ _ 6 homotopy homotopy NOUN NN Number=Sing 7 compound _ _ 7 limit limit NOUN NN Number=Sing 3 pobj _ _ 8 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 7 punct _ SpaceAfter=No 9 and and CCONJ CC ConjType=Cmp 7 cc _ _ 10 other other ADJ JJ Degree=Pos 12 amod _ _ 11 intermediate intermediate ADJ JJ Degree=Pos 12 amod _ _ 12 limits limit NOUN NNS Number=Plur 15 nsubj _ SpaceAfter=No 13 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 12 punct _ _ 14 directly directly ADV RB _ 15 advmod _ _ 15 follow follow VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # doc_id = 748 # sent_id = 1 # text = We introduce a notion of "weak model category" which is a weakening of the notion of Quillen model category, still sufficient to define a homotopy category, Quillen adjunctions, Quillen equivalences, and most of the usual constructions of categorical homotopy theory. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 a a DET DT Definite=Ind|PronType=Art 4 det _ _ 4 notion notion NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 " " PUNCT `` PunctSide=Ini|PunctType=Quot 9 punct _ SpaceAfter=No 7 weak weak ADJ JJ Degree=Pos 9 amod _ _ 8 model model NOUN NN Number=Sing 9 compound _ _ 9 category category NOUN NN Number=Sing 5 pobj _ SpaceAfter=No 10 " " PUNCT '' PunctSide=Fin|PunctType=Quot 9 punct _ _ 11 which which PRON WDT _ 12 nsubj _ _ 12 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 relcl _ _ 13 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 14 weakening weakening NOUN NN Number=Sing 12 attr _ _ 15 of of ADP IN _ 14 prep _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 notion notion NOUN NN Number=Sing 15 pobj _ _ 18 of of ADP IN _ 17 prep _ _ 19 Quillen quillen ADJ JJ Degree=Pos 21 amod _ _ 20 model model NOUN NN Number=Sing 21 compound _ _ 21 category category NOUN NN Number=Sing 18 pobj _ SpaceAfter=No 22 , , PUNCT , PunctType=Comm 21 punct _ _ 23 still still ADV RB _ 24 advmod _ _ 24 sufficient sufficient ADJ JJ Degree=Pos 21 amod _ _ 25 to to PART TO _ 26 aux _ _ 26 define define VERB VB VerbForm=Inf 24 xcomp _ _ 27 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 28 homotopy homotopy NOUN NN Number=Sing 29 compound _ _ 29 category category NOUN NN Number=Sing 26 dobj _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 32 punct _ _ 31 Quillen quillen ADJ JJ Degree=Pos 32 amod _ _ 32 adjunctions adjunction NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 33 , , PUNCT , PunctType=Comm 32 punct _ _ 34 Quillen quillen ADJ JJ Degree=Pos 35 amod _ _ 35 equivalences equivalence NOUN NNS Number=Plur 32 conj _ SpaceAfter=No 36 , , PUNCT , PunctType=Comm 35 punct _ _ 37 and and CCONJ CC ConjType=Cmp 35 cc _ _ 38 most most ADJ JJS Degree=Sup 35 conj _ _ 39 of of ADP IN _ 38 prep _ _ 40 the the DET DT Definite=Def|PronType=Art 42 det _ _ 41 usual usual ADJ JJ Degree=Pos 42 amod _ _ 42 constructions construction NOUN NNS Number=Plur 39 pobj _ _ 43 of of ADP IN _ 42 prep _ _ 44 categorical categorical ADJ JJ Degree=Pos 45 amod _ _ 45 homotopy homotopy NOUN NN Number=Sing 46 compound _ _ 46 theory theory NOUN NN Number=Sing 43 pobj _ SpaceAfter=No 47 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Both left and right semi - model categories are weak model categories, and the opposite of a weak model category is again a weak model category. 1 Both both PRON DT _ 2 preconj _ _ 2 left leave VERB VBD Tense=Past|VerbForm=Fin 8 amod _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 right right ADJ JJ Degree=Pos 8 amod _ _ 5 semi semi ADJ JJ Degree=Pos 7 amod _ _ 6 - - PUNCT HYPH PunctType=Dash 7 punct _ _ 7 model model ADJ JJ Degree=Pos 8 amod _ _ 8 categories category NOUN NNS Number=Plur 9 nsubj _ _ 9 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 10 weak weak ADJ JJ Degree=Pos 12 amod _ _ 11 model model NOUN NN Number=Sing 12 compound _ _ 12 categories category NOUN NNS Number=Plur 9 attr _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 9 punct _ _ 14 and and CCONJ CC ConjType=Cmp 9 cc _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 opposite opposite NOUN NN Number=Sing 22 nsubj _ _ 17 of of ADP IN _ 16 prep _ _ 18 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 19 weak weak ADJ JJ Degree=Pos 21 amod _ _ 20 model model NOUN NN Number=Sing 21 compound _ _ 21 category category NOUN NN Number=Sing 17 pobj _ _ 22 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 conj _ _ 23 again again ADV RB _ 22 advmod _ _ 24 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 25 weak weak ADJ JJ Degree=Pos 27 amod _ _ 26 model model NOUN NN Number=Sing 27 compound _ _ 27 category category NOUN NN Number=Sing 22 attr _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 22 punct _ SpaceAfter=No # sent_id = 3 # text = The main advantage of weak model categories is that they are easier to construct than Quillen model categories. 1 The the DET DT Definite=Def|PronType=Art 3 det _ _ 2 main main ADJ JJ Degree=Pos 3 amod _ _ 3 advantage advantage NOUN NN Number=Sing 8 nsubj _ _ 4 of of ADP IN _ 3 prep _ _ 5 weak weak ADJ JJ Degree=Pos 7 amod _ _ 6 model model NOUN NN Number=Sing 7 compound _ _ 7 categories category NOUN NNS Number=Plur 4 pobj _ _ 8 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 9 that that SCONJ IN _ 11 mark _ _ 10 they they PRON PRP Case=Nom|Number=Plur|Person=3|PronType=Prs 11 nsubj _ _ 11 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 8 ccomp _ _ 12 easier easy ADJ JJR Degree=Cmp 11 acomp _ _ 13 to to PART TO _ 14 aux _ _ 14 construct construct VERB VB VerbForm=Inf 12 xcomp _ _ 15 than than ADP IN _ 14 prep _ _ 16 Quillen quillen ADJ JJ Degree=Pos 18 amod _ _ 17 model model NOUN NN Number=Sing 18 compound _ _ 18 categories category NOUN NNS Number=Plur 15 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 8 punct _ SpaceAfter=No # sent_id = 4 # text = In particular we give some simple criteria on two weak factorization systems for them to form a weak model category. 1 In in ADP IN _ 4 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ _ 3 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 4 nsubj _ _ 4 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 some some DET DT _ 7 det _ _ 6 simple simple ADJ JJ Degree=Pos 7 amod _ _ 7 criteria criterion NOUN NNS Number=Plur 4 dobj _ _ 8 on on ADP IN _ 7 prep _ _ 9 two two NUM CD NumType=Card 12 nummod _ _ 10 weak weak ADJ JJ Degree=Pos 12 amod _ _ 11 factorization factorization NOUN NN Number=Sing 12 compound _ _ 12 systems system NOUN NNS Number=Plur 8 pobj _ _ 13 for for SCONJ IN _ 16 mark _ _ 14 them they PRON PRP Case=Acc|Number=Plur|Person=3|PronType=Prs 16 nsubj _ _ 15 to to PART TO _ 16 aux _ _ 16 form form VERB VB VerbForm=Inf 4 advcl _ _ 17 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 18 weak weak ADJ JJ Degree=Pos 20 amod _ _ 19 model model NOUN NN Number=Sing 20 compound _ _ 20 category category NOUN NN Number=Sing 16 dobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 5 # text = The theory is developed in a very weak constructive, even predicative, framework and we use it to give constructive proofs of the existence of weak versions of various standard model categories, including the Kan - Quillen model structure, Lurie's variant of the Joyal model structure on marked simplicial sets, and the Verity model structure for weak complicial sets. 1 The the DET DT Definite=Def|PronType=Art 2 det _ _ 2 theory theory NOUN NN Number=Sing 4 nsubjpass _ _ 3 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 4 auxpass _ _ 4 developed develop VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 in in ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 7 very very ADV RB _ 8 advmod _ _ 8 weak weak ADJ JJ Degree=Pos 12 advmod _ _ 9 constructive constructive ADJ JJ Degree=Pos 12 amod _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 12 punct _ _ 11 even even ADV RB _ 12 advmod _ _ 12 predicative predicative ADJ JJ Degree=Pos 14 amod _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 framework framework NOUN NN Number=Sing 5 pobj _ _ 15 and and CCONJ CC ConjType=Cmp 4 cc _ _ 16 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 17 nsubj _ _ 17 use use VERB VBP Tense=Pres|VerbForm=Fin 4 conj _ _ 18 it it PRON PRP Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs 17 dobj _ _ 19 to to PART TO _ 20 aux _ _ 20 give give VERB VB VerbForm=Inf 17 xcomp _ _ 21 constructive constructive ADJ JJ Degree=Pos 22 amod _ _ 22 proofs proof NOUN NNS Number=Plur 20 dobj _ _ 23 of of ADP IN _ 22 prep _ _ 24 the the DET DT Definite=Def|PronType=Art 25 det _ _ 25 existence existence NOUN NN Number=Sing 23 pobj _ _ 26 of of ADP IN _ 25 prep _ _ 27 weak weak ADJ JJ Degree=Pos 28 amod _ _ 28 versions version NOUN NNS Number=Plur 26 pobj _ _ 29 of of ADP IN _ 28 prep _ _ 30 various various ADJ JJ Degree=Pos 33 amod _ _ 31 standard standard ADJ JJ Degree=Pos 33 amod _ _ 32 model model NOUN NN Number=Sing 33 compound _ _ 33 categories category NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 34 , , PUNCT , PunctType=Comm 33 punct _ _ 35 including include VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 33 prep _ _ 36 the the DET DT Definite=Def|PronType=Art 41 det _ _ 37 Kan Kan PROPN NNP Number=Sing 39 compound _ _ 38 - - PUNCT HYPH PunctType=Dash 39 punct _ _ 39 Quillen Quillen PROPN NNP Number=Sing 41 amod _ _ 40 model model NOUN NN Number=Sing 41 compound _ _ 41 structure structure NOUN NN Number=Sing 35 pobj _ SpaceAfter=No 42 , , PUNCT , PunctType=Comm 17 punct _ _ 43 Lurie Lurie PROPN NNP Number=Sing 45 poss _ SpaceAfter=No 44 's 's PART POS _ 43 case _ _ 45 variant variant NOUN NN Number=Sing 17 dobj _ _ 46 of of ADP IN _ 45 prep _ _ 47 the the DET DT Definite=Def|PronType=Art 50 det _ _ 48 Joyal joyal ADJ JJ Degree=Pos 50 amod _ _ 49 model model NOUN NN Number=Sing 50 compound _ _ 50 structure structure NOUN NN Number=Sing 46 pobj _ _ 51 on on ADP IN _ 50 prep _ _ 52 marked marked ADJ JJ Degree=Pos 54 amod _ _ 53 simplicial simplicial ADJ JJ Degree=Pos 54 amod _ _ 54 sets set NOUN NNS Number=Plur 51 pobj _ SpaceAfter=No 55 , , PUNCT , PunctType=Comm 45 punct _ _ 56 and and CCONJ CC ConjType=Cmp 45 cc _ _ 57 the the DET DT Definite=Def|PronType=Art 60 det _ _ 58 Verity verity NOUN NN Number=Sing 59 compound _ _ 59 model model NOUN NN Number=Sing 60 compound _ _ 60 structure structure NOUN NN Number=Sing 45 conj _ _ 61 for for ADP IN _ 60 prep _ _ 62 weak weak ADJ JJ Degree=Pos 64 amod _ _ 63 complicial complicial ADJ JJ Degree=Pos 64 amod _ _ 64 sets set NOUN NNS Number=Plur 61 pobj _ SpaceAfter=No 65 . . PUNCT . PunctType=Peri 17 punct _ SpaceAfter=No # sent_id = 6 # text = We also construct semi - simplicial versions of all these. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 construct construct VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 semi semi ADJ JJ Degree=Pos 7 amod _ _ 5 - - ADJ JJ Degree=Pos 6 punct _ _ 6 simplicial simplicial ADJ JJ Degree=Pos 7 amod _ _ 7 versions version NOUN NNS Number=Plur 3 dobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 all all DET PDT _ 10 predet _ _ 10 these these PRON DT Number=Plur|PronType=Dem 8 pobj _ SpaceAfter=No 11 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 749 # sent_id = 1 # text = Given a bicategory $ C $ and a family $ W $ of arrows of $ C $ , we give conditions on the pair $ (C, W) $ that allow us to construct the bicategorical localization with respect to $ W $ by dealing only with the 2 - cells, that is without adding objects or arrows to $ C $ . 1 Given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 15 prep _ _ 2 a a DET DT Definite=Ind|PronType=Art 3 det _ _ 3 bicategory bicategory NOUN NN Number=Sing 1 pobj _ _ 4 $ C $ $ c $ SYM $ _ 3 appos _ _ 5 and and CCONJ CC ConjType=Cmp 3 cc _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 family family NOUN NN Number=Sing 3 conj _ _ 8 $ W $ $ w $ SYM $ _ 1 pobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 arrows arrow NOUN NNS Number=Plur 9 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 $ C $ $ c $ SYM $ _ 11 pobj _ _ 13 , , PUNCT , PunctType=Comm 15 punct _ _ 14 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 15 nsubj _ _ 15 give give VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 16 conditions condition NOUN NNS Number=Plur 15 dobj _ _ 17 on on ADP IN _ 16 prep _ _ 18 the the DET DT Definite=Def|PronType=Art 19 det _ _ 19 pair pair NOUN NN Number=Sing 17 pobj _ _ 20 $ (C, W) $ $ (c, w) $ SYM $ _ 15 dative _ _ 21 that that PRON WDT PronType=Rel 22 nsubj _ _ 22 allow allow VERB VBP Tense=Pres|VerbForm=Fin 20 relcl _ _ 23 us we PRON PRP Case=Acc|Number=Plur|Person=1|PronType=Prs 25 nsubj _ _ 24 to to PART TO _ 25 aux _ _ 25 construct construct VERB VB VerbForm=Inf 22 ccomp _ _ 26 the the DET DT Definite=Def|PronType=Art 28 det _ _ 27 bicategorical bicategorical ADJ JJ Degree=Pos 28 amod _ _ 28 localization localization NOUN NN Number=Sing 25 dobj _ _ 29 with with ADP IN _ 25 prep _ _ 30 respect respect NOUN NN Number=Sing 29 pobj _ _ 31 to to ADP IN _ 30 prep _ _ 32 $ W $ $ w $ SYM $ _ 31 pobj _ _ 33 by by ADP IN _ 25 prep _ _ 34 dealing deal VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 33 pcomp _ _ 35 only only ADV RB _ 36 advmod _ _ 36 with with ADP IN _ 34 prep _ _ 37 the the DET DT Definite=Def|PronType=Art 40 det _ _ 38 2 2 NUM CD NumType=Card 40 nummod _ _ 39 - - PUNCT HYPH PunctType=Dash 40 punct _ _ 40 cells cell NOUN NNS Number=Plur 36 pobj _ SpaceAfter=No 41 , , PUNCT , PunctType=Comm 40 punct _ _ 42 that that ADV RB _ 43 nsubj _ _ 43 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 40 relcl _ _ 44 without without ADP IN _ 43 prep _ _ 45 adding add VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 44 pcomp _ _ 46 objects object NOUN NNS Number=Plur 45 dobj _ _ 47 or or CCONJ CC ConjType=Cmp 46 cc _ _ 48 arrows arrow NOUN NNS Number=Plur 46 conj _ _ 49 to to ADP IN _ 45 prep _ _ 50 $ C $ $ c $ SYM $ _ 49 pobj _ _ 51 . . PUNCT . PunctType=Peri 15 punct _ SpaceAfter=No # sent_id = 2 # text = We show that in this case, the 2 - cells of the localization can be given by the homotopies with respect to $ W $ , a notion defined in this article which is closely related to Quillen's notion of homotopy for model categories but depends only on a single family of arrows. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 17 mark _ _ 4 in in ADP IN _ 17 prep _ _ 5 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 6 case case NOUN NN Number=Sing 4 pobj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 17 punct _ _ 8 the the DET DT Definite=Def|PronType=Art 11 det _ _ 9 2 2 NUM CD NumType=Card 11 nummod _ _ 10 - - PUNCT HYPH PunctType=Dash 11 punct _ _ 11 cells cell NOUN NNS Number=Plur 17 nsubjpass _ _ 12 of of ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 14 det _ _ 14 localization localization NOUN NN Number=Sing 12 pobj _ _ 15 can can AUX MD VerbForm=Fin 17 aux _ _ 16 be be AUX VB VerbForm=Inf 17 auxpass _ _ 17 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 18 by by ADP IN _ 17 agent _ _ 19 the the DET DT Definite=Def|PronType=Art 20 det _ _ 20 homotopies homotopie NOUN NNS Number=Plur 18 pobj _ _ 21 with with ADP IN _ 17 prep _ _ 22 respect respect NOUN NN Number=Sing 21 pobj _ _ 23 to to ADP IN _ 22 prep _ _ 24 $ W $ $ w $ SYM $ _ 23 pobj _ _ 25 , , PUNCT , PunctType=Comm 17 punct _ _ 26 a a DET DT Definite=Ind|PronType=Art 27 det _ _ 27 notion notion NOUN NN Number=Sing 17 dobj _ _ 28 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 27 acl _ _ 29 in in ADP IN _ 28 prep _ _ 30 this this DET DT Number=Sing|PronType=Dem 31 det _ _ 31 article article NOUN NN Number=Sing 29 pobj _ _ 32 which which PRON WDT _ 35 nsubjpass _ _ 33 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 35 auxpass _ _ 34 closely closely ADV RB _ 35 advmod _ _ 35 related relate VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 31 relcl _ _ 36 to to ADP IN _ 35 prep _ _ 37 Quillen Quillen PROPN NNP Number=Sing 39 poss _ SpaceAfter=No 38 's 's PART POS _ 37 case _ _ 39 notion notion NOUN NN Number=Sing 36 pobj _ _ 40 of of ADP IN _ 39 prep _ _ 41 homotopy homotopy NOUN NN Number=Sing 40 pobj _ _ 42 for for ADP IN _ 41 prep _ _ 43 model model NOUN NN Number=Sing 44 compound _ _ 44 categories category NOUN NNS Number=Plur 42 pobj _ _ 45 but but CCONJ CC ConjType=Cmp 17 cc _ _ 46 depends depend VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 conj _ _ 47 only only ADV RB _ 48 advmod _ _ 48 on on ADP IN _ 46 prep _ _ 49 a a DET DT Definite=Ind|PronType=Art 51 det _ _ 50 single single ADJ JJ Degree=Pos 51 amod _ _ 51 family family NOUN NN Number=Sing 48 pobj _ _ 52 of of ADP IN _ 51 prep _ _ 53 arrows arrow NOUN NNS Number=Plur 52 pobj _ SpaceAfter=No 54 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = This localization result has a natural application to the construction of the homotopy bicategory of a model bicategory, which we develop elsewhere, as the pair $ (C_{fc}, W) $ given by the weak equivalences between fibrant - cofibrant objects satisfies the conditions given in the present article. 1 This this DET DT Number=Sing|PronType=Dem 3 det _ _ 2 localization localization NOUN NN Number=Sing 3 compound _ _ 3 result result NOUN NN Number=Sing 4 nsubj _ _ 4 has have VERB VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 6 natural natural ADJ JJ Degree=Pos 7 amod _ _ 7 application application NOUN NN Number=Sing 4 dobj _ _ 8 to to ADP IN _ 7 prep _ _ 9 the the DET DT Definite=Def|PronType=Art 10 det _ _ 10 construction construction NOUN NN Number=Sing 8 pobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 14 det _ _ 13 homotopy homotopy NOUN NN Number=Sing 14 compound _ _ 14 bicategory bicategory NOUN NN Number=Sing 11 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 17 model model NOUN NN Number=Sing 18 compound _ _ 18 bicategory bicategory NOUN NN Number=Sing 15 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 18 punct _ _ 20 which which PRON WDT _ 22 dobj _ _ 21 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 22 nsubj _ _ 22 develop develop VERB VBP Tense=Pres|VerbForm=Fin 18 relcl _ _ 23 elsewhere elsewhere ADV RB _ 22 advmod _ SpaceAfter=No 24 , , PUNCT , PunctType=Comm 4 punct _ _ 25 as as SCONJ IN _ 29 mark _ _ 26 the the DET DT Definite=Def|PronType=Art 27 det _ _ 27 pair pair NOUN NN Number=Sing 25 pobj _ _ 28 $ (C_{fc}, W) $ $ (C_{fc}, W) $ PROPN NNP Number=Sing 29 nsubj _ _ 29 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 4 advcl _ _ 30 by by ADP IN _ 29 agent _ _ 31 the the DET DT Definite=Def|PronType=Art 33 det _ _ 32 weak weak ADJ JJ Degree=Pos 33 amod _ _ 33 equivalences equivalence NOUN NNS Number=Plur 30 pobj _ _ 34 between between ADP IN _ 33 prep _ _ 35 fibrant fibrant ADJ JJ Degree=Pos 37 amod _ _ 36 - - PUNCT HYPH PunctType=Dash 37 punct _ _ 37 cofibrant cofibrant NOUN NN Number=Sing 38 amod _ _ 38 objects object NOUN NNS Number=Plur 39 compound _ _ 39 satisfies satisfie NOUN NNS Number=Plur 34 pobj _ _ 40 the the DET DT Definite=Def|PronType=Art 41 det _ _ 41 conditions condition NOUN NNS Number=Plur 39 dobj _ _ 42 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 41 acl _ _ 43 in in ADP IN _ 42 prep _ _ 44 the the DET DT Definite=Def|PronType=Art 46 det _ _ 45 present present ADJ JJ Degree=Pos 46 amod _ _ 46 article article NOUN NN Number=Sing 43 pobj _ SpaceAfter=No 47 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # doc_id = 750 # sent_id = 1 # text = Restriction categories were introduced as a way of generalising the notion of partial map category. 1 Restriction restriction NOUN NN Number=Sing 2 compound _ _ 2 categories category NOUN NNS Number=Plur 4 nsubjpass _ _ 3 were be AUX VBD Mood=Ind|Tense=Past|VerbForm=Fin 4 auxpass _ _ 4 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 as as ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 way way NOUN NN Number=Sing 5 pobj _ _ 8 of of ADP IN _ 7 prep _ _ 9 generalising generalise VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 8 pcomp _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 notion notion NOUN NN Number=Sing 9 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 partial partial ADJ JJ Degree=Pos 15 amod _ _ 14 map map NOUN NN Number=Sing 15 compound _ _ 15 category category NOUN NN Number=Sing 12 pobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = In this paper, we define a notion of cocompleteness for restriction categories, and describe the free cocompletion of a small restriction category as a suitably defined category of restriction presheaves. 1 In in ADP IN _ 6 prep _ _ 2 this this DET DT Number=Sing|PronType=Dem 3 det _ _ 3 paper paper NOUN NN Number=Sing 1 pobj _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 6 punct _ _ 5 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 6 nsubj _ _ 6 define define VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 8 det _ _ 8 notion notion NOUN NN Number=Sing 6 dobj _ _ 9 of of ADP IN _ 8 prep _ _ 10 cocompleteness cocompleteness NOUN NN Number=Sing 9 pobj _ _ 11 for for ADP IN _ 10 prep _ _ 12 restriction restriction NOUN NN Number=Sing 13 compound _ _ 13 categories category NOUN NNS Number=Plur 11 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 6 punct _ _ 15 and and CCONJ CC ConjType=Cmp 6 cc _ _ 16 describe describe VERB VB VerbForm=Inf 6 conj _ _ 17 the the DET DT Definite=Def|PronType=Art 19 det _ _ 18 free free ADJ JJ Degree=Pos 19 amod _ _ 19 cocompletion cocompletion NOUN NN Number=Sing 16 dobj _ _ 20 of of ADP IN _ 19 prep _ _ 21 a a DET DT Definite=Ind|PronType=Art 24 det _ _ 22 small small ADJ JJ Degree=Pos 23 amod _ _ 23 restriction restriction NOUN NN Number=Sing 24 compound _ _ 24 category category NOUN NN Number=Sing 20 pobj _ _ 25 as as ADP IN _ 16 prep _ _ 26 a a DET DT Definite=Ind|PronType=Art 29 det _ _ 27 suitably suitably ADV RB _ 28 advmod _ _ 28 defined define VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 29 amod _ _ 29 category category NOUN NN Number=Sing 25 pobj _ _ 30 of of ADP IN _ 29 prep _ _ 31 restriction restriction NOUN NN Number=Sing 32 compound _ _ 32 presheaves presheave NOUN NNS Number=Plur 30 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # sent_id = 3 # text = We also consider free cocompletions in the case where our restriction category is only locally small. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 also also ADV RB _ 3 advmod _ _ 3 consider consider VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 free free ADJ JJ Degree=Pos 5 amod _ _ 5 cocompletions cocompletion NOUN NNS Number=Plur 3 dobj _ _ 6 in in ADP IN _ 5 prep _ _ 7 the the DET DT Definite=Def|PronType=Art 8 det _ _ 8 case case NOUN NN Number=Sing 6 pobj _ _ 9 where where SCONJ WRB _ 13 advmod _ _ 10 our our PRON PRP$ Number=Plur|Person=1|Poss=Yes|PronType=Prs 12 poss _ _ 11 restriction restriction NOUN NN Number=Sing 12 compound _ _ 12 category category NOUN NN Number=Sing 13 nsubj _ _ 13 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 relcl _ _ 14 only only ADV RB _ 16 advmod _ _ 15 locally locally ADV RB _ 16 advmod _ _ 16 small small ADJ JJ Degree=Pos 13 acomp _ SpaceAfter=No 17 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # doc_id = 751 # sent_id = 1 # text = We prove that the folk model category structure on the category of strict $ omega $ - categories, introduced by Lafont, Métayer and Worytkiewicz, is monoidal, first, for the Gray tensor product and, second, for the join of $ omega $ - categories, introduced by the first author and Maltsiniotis. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 26 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 8 det _ _ 5 folk folk NOUN NN Number=Sing 6 compound _ _ 6 model model NOUN NN Number=Sing 8 compound _ _ 7 category category NOUN NN Number=Sing 8 compound _ _ 8 structure structure NOUN NN Number=Sing 26 nsubj _ _ 9 on on ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 11 det _ _ 11 category category NOUN NN Number=Sing 9 pobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 strict strict ADJ JJ Degree=Pos 16 amod _ _ 14 $ omega $ $ omega $ SYM $ _ 16 compound _ _ 15 - - PUNCT HYPH PunctType=Dash 16 punct _ _ 16 categories category NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 17 , , PUNCT , PunctType=Comm 16 punct _ _ 18 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 16 acl _ _ 19 by by ADP IN _ 18 agent _ _ 20 Lafont Lafont PROPN NNP Number=Sing 19 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 20 punct _ _ 22 Métayer Métayer PROPN NNP Number=Sing 20 conj _ _ 23 and and CCONJ CC ConjType=Cmp 22 cc _ _ 24 Worytkiewicz Worytkiewicz PROPN NNP Number=Sing 22 conj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 8 punct _ _ 26 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 27 monoidal monoidal ADJ JJ Degree=Pos 26 attr _ SpaceAfter=No 28 , , PUNCT , PunctType=Comm 27 punct _ _ 29 first first ADV RB _ 26 advmod _ SpaceAfter=No 30 , , PUNCT , PunctType=Comm 26 punct _ _ 31 for for ADP IN _ 26 prep _ _ 32 the the DET DT Definite=Def|PronType=Art 35 det _ _ 33 Gray Gray PROPN NNP Number=Sing 35 compound _ _ 34 tensor tensor NOUN NN Number=Sing 35 compound _ _ 35 product product NOUN NN Number=Sing 31 pobj _ _ 36 and and CCONJ CC ConjType=Cmp 35 cc _ SpaceAfter=No 37 , , PUNCT , PunctType=Comm 35 punct _ _ 38 second second ADJ JJ Degree=Pos 26 acomp _ SpaceAfter=No 39 , , PUNCT , PunctType=Comm 38 punct _ _ 40 for for ADP IN _ 38 prep _ _ 41 the the DET DT Definite=Def|PronType=Art 42 det _ _ 42 join join NOUN NN Number=Sing 40 pobj _ _ 43 of of ADP IN _ 42 prep _ _ 44 $ omega $ $ omega $ SYM $ _ 46 compound _ _ 45 - - PUNCT HYPH PunctType=Dash 46 punct _ _ 46 categories category NOUN NNS Number=Plur 43 pobj _ SpaceAfter=No 47 , , PUNCT , PunctType=Comm 42 punct _ _ 48 introduced introduce VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 42 acl _ _ 49 by by ADP IN _ 48 agent _ _ 50 the the DET DT Definite=Def|PronType=Art 52 det _ _ 51 first first ADJ JJ Degree=Pos 52 amod _ _ 52 author author NOUN NN Number=Sing 49 pobj _ _ 53 and and CCONJ CC ConjType=Cmp 52 cc _ _ 54 Maltsiniotis Maltsiniotis PROPN NNP Number=Sing 52 conj _ SpaceAfter=No 55 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = We moreover show that the Gray tensor product induces, by adjunction, a tensor product of strict $ (m, n) $ - categories and that this tensor product is also compatible with the folk model category structure. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 3 nsubj _ _ 2 moreover moreover ADV RB _ 3 advmod _ _ 3 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 4 that that SCONJ IN _ 9 mark _ _ 5 the the DET DT Definite=Def|PronType=Art 8 det _ _ 6 Gray Gray PROPN NNP Number=Sing 8 compound _ _ 7 tensor tensor NOUN NN Number=Sing 8 compound _ _ 8 product product NOUN NN Number=Sing 9 compound _ _ 9 induces induce NOUN NNS Number=Plur 3 ccomp _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 9 punct _ _ 11 by by ADP IN _ 9 prep _ _ 12 adjunction adjunction NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 9 punct _ _ 14 a a DET DT Definite=Ind|PronType=Art 16 det _ _ 15 tensor tensor NOUN NN Number=Sing 16 compound _ _ 16 product product NOUN NN Number=Sing 9 appos _ _ 17 of of ADP IN _ 16 prep _ _ 18 strict strict ADJ JJ Degree=Pos 21 amod _ _ 19 $ (m, n) $ $ (m, n) $ PROPN NNP Number=Sing 21 compound _ _ 20 - - PUNCT HYPH PunctType=Dash 21 punct _ _ 21 categories category NOUN NNS Number=Plur 17 pobj _ _ 22 and and CCONJ CC ConjType=Cmp 9 cc _ _ 23 that that SCONJ IN _ 27 mark _ _ 24 this this DET DT Number=Sing|PronType=Dem 26 det _ _ 25 tensor tensor NOUN NN Number=Sing 26 compound _ _ 26 product product NOUN NN Number=Sing 27 nsubj _ _ 27 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 conj _ _ 28 also also ADV RB _ 27 advmod _ _ 29 compatible compatible ADJ JJ Degree=Pos 27 acomp _ _ 30 with with ADP IN _ 29 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 35 det _ _ 32 folk folk NOUN NN Number=Sing 33 compound _ _ 33 model model NOUN NN Number=Sing 35 compound _ _ 34 category category NOUN NN Number=Sing 35 compound _ _ 35 structure structure NOUN NN Number=Sing 30 pobj _ SpaceAfter=No 36 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = In particular, we get a monoidal model category structure on the category of strict $ omega $ - groupoids. 1 In in ADP IN _ 5 prep _ _ 2 particular particular ADJ JJ Degree=Pos 1 amod _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 5 punct _ _ 4 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 5 nsubj _ _ 5 get get VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 6 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 7 monoidal monoidal ADJ JJ Degree=Pos 8 amod _ _ 8 model model NOUN NN Number=Sing 10 compound _ _ 9 category category NOUN NN Number=Sing 10 compound _ _ 10 structure structure NOUN NN Number=Sing 5 dobj _ _ 11 on on ADP IN _ 10 prep _ _ 12 the the DET DT Definite=Def|PronType=Art 13 det _ _ 13 category category NOUN NN Number=Sing 11 pobj _ _ 14 of of ADP IN _ 13 prep _ _ 15 strict strict ADJ JJ Degree=Pos 18 amod _ _ 16 $ omega $ $ omega $ SYM $ _ 18 compound _ _ 17 - - PUNCT HYPH PunctType=Dash 18 punct _ _ 18 groupoids groupoid NOUN NNS Number=Plur 14 pobj _ SpaceAfter=No 19 . . PUNCT . PunctType=Peri 5 punct _ SpaceAfter=No # sent_id = 4 # text = We prove that this monoidal model category structure satisfies the monoid axiom, so that the category of Gray monoids, studied by the second author, bears a natural model category structure. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 prove prove VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 9 mark _ _ 4 this this DET DT Number=Sing|PronType=Dem 9 det _ _ 5 monoidal monoidal ADJ JJ Degree=Pos 6 amod _ _ 6 model model NOUN NN Number=Sing 8 compound _ _ 7 category category NOUN NN Number=Sing 8 compound _ _ 8 structure structure NOUN NN Number=Sing 9 compound _ _ 9 satisfies satisfie NOUN NNS Number=Plur 2 ccomp _ _ 10 the the DET DT Definite=Def|PronType=Art 12 det _ _ 11 monoid monoid NOUN NN Number=Sing 12 compound _ _ 12 axiom axiom NOUN NN Number=Sing 9 dobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 so so SCONJ IN _ 28 mark _ _ 15 that that SCONJ IN _ 28 mark _ _ 16 the the DET DT Definite=Def|PronType=Art 17 det _ _ 17 category category NOUN NN Number=Sing 28 nsubj _ _ 18 of of ADP IN _ 17 prep _ _ 19 Gray Gray PROPN NNP Number=Sing 20 compound _ _ 20 monoids monoid NOUN NNS Number=Plur 18 pobj _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 17 punct _ _ 22 studied study VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 17 acl _ _ 23 by by ADP IN _ 22 agent _ _ 24 the the DET DT Definite=Def|PronType=Art 26 det _ _ 25 second second ADJ JJ Degree=Pos 26 amod _ _ 26 author author NOUN NN Number=Sing 23 pobj _ SpaceAfter=No 27 , , PUNCT , PunctType=Comm 17 punct _ _ 28 bears bear VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 9 advcl _ _ 29 a a DET DT Definite=Ind|PronType=Art 33 det _ _ 30 natural natural ADJ JJ Degree=Pos 31 amod _ _ 31 model model NOUN NN Number=Sing 33 compound _ _ 32 category category NOUN NN Number=Sing 33 compound _ _ 33 structure structure NOUN NN Number=Sing 28 dobj _ SpaceAfter=No 34 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # doc_id = 752 # sent_id = 1 # text = Cheng, Gurski, and Riehl constructed a cyclic double multicategory of multivariable adjunctions. 1 Cheng Cheng PROPN NNP Number=Sing 7 nsubj _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 1 punct _ _ 3 Gurski Gurski PROPN NNP Number=Sing 1 appos _ SpaceAfter=No 4 , , PUNCT , PunctType=Comm 1 punct _ _ 5 and and CCONJ CC ConjType=Cmp 1 cc _ _ 6 Riehl Riehl PROPN NNP Number=Sing 7 nsubj _ _ 7 constructed construct VERB VBD Tense=Past|VerbForm=Fin 0 ROOT _ _ 8 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 9 cyclic cyclic ADJ JJ Degree=Pos 11 amod _ _ 10 double double ADJ JJ Degree=Pos 11 amod _ _ 11 multicategory multicategory NOUN NN Number=Sing 7 dobj _ _ 12 of of ADP IN _ 11 prep _ _ 13 multivariable multivariable ADJ JJ Degree=Pos 14 amod _ _ 14 adjunctions adjunction NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 2 # text = We show that the same information is carried by a poly double category, in which opposite categories are polycategorical duals. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 8 mark _ _ 4 the the DET DT Definite=Def|PronType=Art 6 det _ _ 5 same same ADJ JJ Degree=Pos 6 amod _ _ 6 information information NOUN NN Number=Sing 8 nsubjpass _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 8 auxpass _ _ 8 carried carry VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 2 ccomp _ _ 9 by by ADP IN _ 8 agent _ _ 10 a a DET DT Definite=Ind|PronType=Art 13 det _ _ 11 poly poly ADJ JJ Degree=Pos 13 amod _ _ 12 double double ADJ JJ Degree=Pos 13 amod _ _ 13 category category NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 14 , , PUNCT , PunctType=Comm 13 punct _ _ 15 in in ADP IN _ 19 prep _ _ 16 which which PRON WDT _ 15 pobj _ _ 17 opposite opposite ADJ JJ Degree=Pos 18 amod _ _ 18 categories category NOUN NNS Number=Plur 19 nsubj _ _ 19 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 13 relcl _ _ 20 polycategorical polycategorical ADJ JJ Degree=Pos 21 amod _ _ 21 duals dual NOUN NNS Number=Plur 19 attr _ SpaceAfter=No 22 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Moreover, this poly double category is a full substructure of a double Chu construction, whose objects are a sort of polarized category, and which is a natural home for 2 - categorical dualities. 1 Moreover moreover ADV RB _ 7 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 7 punct _ _ 3 this this DET DT Number=Sing|PronType=Dem 6 det _ _ 4 poly poly ADJ JJ Degree=Pos 6 amod _ _ 5 double double ADJ JJ Degree=Pos 6 amod _ _ 6 category category NOUN NN Number=Sing 7 nsubj _ _ 7 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 a a DET DT Definite=Ind|PronType=Art 10 det _ _ 9 full full ADJ JJ Degree=Pos 10 amod _ _ 10 substructure substructure NOUN NN Number=Sing 7 attr _ _ 11 of of ADP IN _ 10 prep _ _ 12 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 13 double double ADJ JJ Degree=Pos 15 amod _ _ 14 Chu Chu PROPN NNP Number=Sing 15 compound _ _ 15 construction construction NOUN NN Number=Sing 11 pobj _ SpaceAfter=No 16 , , PUNCT , PunctType=Comm 15 punct _ _ 17 whose whose DET WP$ Poss=Yes 18 poss _ _ 18 objects object NOUN NNS Number=Plur 19 nsubj _ _ 19 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 15 relcl _ _ 20 a a DET DT Definite=Ind|PronType=Art 21 det _ _ 21 sort sort NOUN NN Number=Sing 19 attr _ _ 22 of of ADP IN _ 21 prep _ _ 23 polarized polarized ADJ JJ Degree=Pos 24 amod _ _ 24 category category NOUN NN Number=Sing 22 pobj _ SpaceAfter=No 25 , , PUNCT , PunctType=Comm 15 punct _ _ 26 and and CCONJ CC ConjType=Cmp 7 cc _ _ 27 which which PRON WDT _ 28 nsubj _ _ 28 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 7 conj _ _ 29 a a DET DT Definite=Ind|PronType=Art 31 det _ _ 30 natural natural ADJ JJ Degree=Pos 31 amod _ _ 31 home home NOUN NN Number=Sing 28 attr _ _ 32 for for ADP IN _ 31 prep _ _ 33 2 2 NUM CD NumType=Card 35 nummod _ _ 34 - - PUNCT HYPH PunctType=Dash 35 punct _ _ 35 categorical categorical ADJ JJ Degree=Pos 36 amod _ _ 36 dualities duality NOUN NNS Number=Plur 32 pobj _ SpaceAfter=No 37 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No # sent_id = 4 # text = We obtain the double Chu construction using a general "Chu - Dialectica" construction on polycategories, which includes both the Chu construction and the categorical Dialectica construction of de Paiva. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 obtain obtain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 6 det _ _ 4 double double ADJ JJ Degree=Pos 6 amod _ _ 5 Chu Chu PROPN NNP Number=Sing 6 compound _ _ 6 construction construction NOUN NN Number=Sing 2 dobj _ _ 7 using use VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 6 acl _ _ 8 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 9 general general ADJ JJ Degree=Pos 15 amod _ _ 10 " " PUNCT `` PunctSide=Ini|PunctType=Quot 15 punct _ SpaceAfter=No 11 Chu Chu PROPN NNP Number=Sing 13 nmod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 Dialectica Dialectica PROPN NNP Number=Sing 15 nmod _ SpaceAfter=No 14 " " PUNCT '' PunctSide=Fin|PunctType=Quot 15 punct _ _ 15 construction construction NOUN NN Number=Sing 7 dobj _ _ 16 on on ADP IN _ 15 prep _ _ 17 polycategories polycategorie NOUN NNS Number=Plur 16 pobj _ SpaceAfter=No 18 , , PUNCT , PunctType=Comm 17 punct _ _ 19 which which PRON WDT _ 20 nsubj _ _ 20 includes include VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 17 relcl _ _ 21 both both CCONJ CC ConjType=Cmp 24 preconj _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 Chu Chu PROPN NNP Number=Sing 24 compound _ _ 24 construction construction NOUN NN Number=Sing 20 dobj _ _ 25 and and CCONJ CC ConjType=Cmp 24 cc _ _ 26 the the DET DT Definite=Def|PronType=Art 29 det _ _ 27 categorical categorical ADJ JJ Degree=Pos 29 amod _ _ 28 Dialectica Dialectica PROPN NNP Number=Sing 29 compound _ _ 29 construction construction NOUN NN Number=Sing 24 conj _ _ 30 of of ADP IN _ 29 prep _ _ 31 de de PROPN NNP Number=Sing 32 compound _ _ 32 Paiva Paiva PROPN NNP Number=Sing 30 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = The Chu and Dialectica constructions each impose additional hypotheses making the resulting polycategory representable (hence $ * $ - autonomous), but for different reasons; this leads to their apparent differences. 1 The the DET DT Definite=Def|PronType=Art 5 det _ _ 2 Chu Chu PROPN NNP Number=Sing 5 nmod _ _ 3 and and CCONJ CC ConjType=Cmp 2 cc _ _ 4 Dialectica Dialectica PROPN NNP Number=Sing 2 conj _ _ 5 constructions construction NOUN NNS Number=Plur 7 nsubj _ _ 6 each each PRON DT _ 7 nsubj _ _ 7 impose impose VERB VBP Tense=Pres|VerbForm=Fin 28 ccomp _ _ 8 additional additional ADJ JJ Degree=Pos 9 amod _ _ 9 hypotheses hypothesis NOUN NNS Number=Plur 7 dobj _ _ 10 making make VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 9 acl _ _ 11 the the DET DT Definite=Def|PronType=Art 14 det _ _ 12 resulting result VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 amod _ _ 13 polycategory polycategory NOUN NN Number=Sing 14 compound _ _ 14 representable representable NOUN NN Number=Sing 10 dobj _ _ 15 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 19 punct _ SpaceAfter=No 16 hence hence ADV RB _ 19 advmod _ _ 17 $ * $ $ * $ SYM $ _ 19 advmod _ _ 18 - - PUNCT HYPH PunctType=Dash 19 punct _ _ 19 autonomous autonomous ADJ JJ Degree=Pos 14 appos _ SpaceAfter=No 20 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 14 punct _ SpaceAfter=No 21 , , PUNCT , PunctType=Comm 7 punct _ _ 22 but but CCONJ CC ConjType=Cmp 7 cc _ _ 23 for for ADP IN _ 7 conj _ _ 24 different different ADJ JJ Degree=Pos 25 amod _ _ 25 reasons reason NOUN NNS Number=Plur 23 pobj _ SpaceAfter=No 26 ; ; PUNCT : _ 28 punct _ _ 27 this this PRON DT Number=Sing|PronType=Dem 28 nsubj _ _ 28 leads lead VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 29 to to ADP IN _ 28 prep _ _ 30 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 32 poss _ _ 31 apparent apparent ADJ JJ Degree=Pos 32 amod _ _ 32 differences difference NOUN NNS Number=Plur 29 pobj _ SpaceAfter=No 33 . . PUNCT . PunctType=Peri 28 punct _ SpaceAfter=No # doc_id = 753 # sent_id = 1 # text = Networks can be combined in various ways, such as overlaying one on top of another or setting two side by side. 1 Networks network NOUN NNS Number=Plur 4 nsubjpass _ _ 2 can can AUX MD VerbForm=Fin 4 aux _ _ 3 be be AUX VB VerbForm=Inf 4 auxpass _ _ 4 combined combine VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 5 in in ADP IN _ 4 prep _ _ 6 various various ADJ JJ Degree=Pos 7 amod _ _ 7 ways way NOUN NNS Number=Plur 5 pobj _ SpaceAfter=No 8 , , PUNCT , PunctType=Comm 7 punct _ _ 9 such such ADJ JJ Degree=Pos 10 amod _ _ 10 as as ADP IN _ 7 prep _ _ 11 overlaying overlay VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 10 pcomp _ _ 12 one one NUM CD NumType=Card 11 dobj _ _ 13 on on ADP IN _ 12 prep _ _ 14 top top NOUN NN Number=Sing 13 pobj _ _ 15 of of ADP IN _ 14 prep _ _ 16 another another PRON DT _ 15 pobj _ _ 17 or or CCONJ CC ConjType=Cmp 11 cc _ _ 18 setting set VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 11 conj _ _ 19 two two NUM CD NumType=Card 20 nummod _ _ 20 side side NOUN NN Number=Sing 18 dobj _ _ 21 by by ADP IN _ 18 prep _ _ 22 side side NOUN NN Number=Sing 21 pobj _ SpaceAfter=No 23 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 2 # text = We introduce `network models' to encode these ways of combining networks. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 ` ` PUNCT `` PunctSide=Ini|PunctType=Quot 5 punct _ SpaceAfter=No 4 network network NOUN NN Number=Sing 5 compound _ _ 5 models model NOUN NNS Number=Plur 2 dobj _ SpaceAfter=No 6 ' ' PART POS _ 5 case _ _ 7 to to PART TO _ 8 aux _ _ 8 encode encode VERB VB VerbForm=Inf 5 relcl _ _ 9 these these DET DT Number=Plur|PronType=Dem 10 det _ _ 10 ways way NOUN NNS Number=Plur 8 dobj _ _ 11 of of ADP IN _ 10 prep _ _ 12 combining combine VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 11 pcomp _ _ 13 networks network NOUN NNS Number=Plur 12 dobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 3 # text = Different network models describe different kinds of networks. 1 Different different ADJ JJ Degree=Pos 3 amod _ _ 2 network network NOUN NN Number=Sing 3 compound _ _ 3 models model NOUN NNS Number=Plur 4 nsubj _ _ 4 describe describe VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 5 different different ADJ JJ Degree=Pos 6 amod _ _ 6 kinds kind NOUN NNS Number=Plur 4 dobj _ _ 7 of of ADP IN _ 6 prep _ _ 8 networks network NOUN NNS Number=Plur 7 pobj _ SpaceAfter=No 9 . . PUNCT . PunctType=Peri 4 punct _ SpaceAfter=No # sent_id = 4 # text = We show that each network model gives rise to an operad, whose operations are ways of assembling a network of the given kind from smaller parts. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 that that SCONJ IN _ 7 mark _ _ 4 each each DET DT _ 6 det _ _ 5 network network NOUN NN Number=Sing 6 compound _ _ 6 model model NOUN NN Number=Sing 7 nsubj _ _ 7 gives give VERB VBZ Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 2 ccomp _ _ 8 rise rise VERB VB VerbForm=Inf 7 dobj _ _ 9 to to ADP IN _ 8 prep _ _ 10 an an DET DT Definite=Ind|PronType=Art 11 det _ _ 11 operad operad NOUN NN Number=Sing 9 pobj _ SpaceAfter=No 12 , , PUNCT , PunctType=Comm 11 punct _ _ 13 whose whose DET WP$ Poss=Yes 14 poss _ _ 14 operations operation NOUN NNS Number=Plur 15 nsubj _ _ 15 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 11 relcl _ _ 16 ways way NOUN NNS Number=Plur 15 attr _ _ 17 of of ADP IN _ 16 prep _ _ 18 assembling assemble VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 17 pcomp _ _ 19 a a DET DT Definite=Ind|PronType=Art 20 det _ _ 20 network network NOUN NN Number=Sing 18 dobj _ _ 21 of of ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 24 det _ _ 23 given give VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 24 amod _ _ 24 kind kind NOUN NN Number=Sing 21 pobj _ _ 25 from from ADP IN _ 18 prep _ _ 26 smaller small ADJ JJR Degree=Cmp 27 amod _ _ 27 parts part NOUN NNS Number=Plur 25 pobj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = Such operads, and their algebras, can serve as tools for designing networks. 1 Such such ADJ JJ Degree=Pos 2 amod _ _ 2 operads operad NOUN NNS Number=Plur 9 nsubj _ SpaceAfter=No 3 , , PUNCT , PunctType=Comm 2 punct _ _ 4 and and CCONJ CC ConjType=Cmp 2 cc _ _ 5 their their PRON PRP$ Number=Plur|Person=3|Poss=Yes|PronType=Prs 6 poss _ _ 6 algebras algebra NOUN NNS Number=Plur 2 conj _ SpaceAfter=No 7 , , PUNCT , PunctType=Comm 6 punct _ _ 8 can can AUX MD VerbForm=Fin 9 aux _ _ 9 serve serve VERB VB VerbForm=Inf 0 ROOT _ _ 10 as as ADP IN _ 9 prep _ _ 11 tools tool NOUN NNS Number=Plur 10 pobj _ _ 12 for for ADP IN _ 11 prep _ _ 13 designing designing NOUN NN Number=Sing 14 compound _ _ 14 networks network NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 15 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # sent_id = 6 # text = Technically, a network model is a lax symmetric monoidal functor from the free symmetric monoidal category on some set to $ Cat $ , and the construction of the corresponding operad proceeds via a symmetric monoidal version of the Grothendieck construction. 1 Technically technically ADV RB _ 6 advmod _ SpaceAfter=No 2 , , PUNCT , PunctType=Comm 6 punct _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 network network NOUN NN Number=Sing 5 compound _ _ 5 model model NOUN NN Number=Sing 6 nsubj _ _ 6 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 0 ROOT _ _ 7 a a DET DT Definite=Ind|PronType=Art 11 det _ _ 8 lax lax ADJ JJ Degree=Pos 11 amod _ _ 9 symmetric symmetric ADJ JJ Degree=Pos 11 amod _ _ 10 monoidal monoidal ADJ JJ Degree=Pos 11 amod _ _ 11 functor functor NOUN NN Number=Sing 6 attr _ _ 12 from from ADP IN _ 11 prep _ _ 13 the the DET DT Definite=Def|PronType=Art 17 det _ _ 14 free free ADJ JJ Degree=Pos 17 amod _ _ 15 symmetric symmetric ADJ JJ Degree=Pos 17 amod _ _ 16 monoidal monoidal ADJ JJ Degree=Pos 17 amod _ _ 17 category category NOUN NN Number=Sing 12 pobj _ _ 18 on on ADP IN _ 17 prep _ _ 19 some some PRON DT _ 18 pobj _ _ 20 set set VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 11 acl _ _ 21 to to ADP IN _ 20 prep _ _ 22 $ Cat $ $ cat $ SYM $ _ 21 pobj _ _ 23 , , PUNCT , PunctType=Comm 6 punct _ _ 24 and and CCONJ CC ConjType=Cmp 6 cc _ _ 25 the the DET DT Definite=Def|PronType=Art 26 det _ _ 26 construction construction NOUN NN Number=Sing 6 conj _ _ 27 of of ADP IN _ 26 prep _ _ 28 the the DET DT Definite=Def|PronType=Art 31 det _ _ 29 corresponding correspond VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 31 amod _ _ 30 operad operad NOUN NN Number=Sing 31 compound _ _ 31 proceeds proceed NOUN NNS Number=Plur 27 pobj _ _ 32 via via ADP IN _ 31 prep _ _ 33 a a DET DT Definite=Ind|PronType=Art 36 det _ _ 34 symmetric symmetric ADJ JJ Degree=Pos 36 amod _ _ 35 monoidal monoidal ADJ JJ Degree=Pos 36 amod _ _ 36 version version NOUN NN Number=Sing 32 pobj _ _ 37 of of ADP IN _ 36 prep _ _ 38 the the DET DT Definite=Def|PronType=Art 40 det _ _ 39 Grothendieck Grothendieck PROPN NNP Number=Sing 40 compound _ _ 40 construction construction NOUN NN Number=Sing 37 pobj _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 6 punct _ SpaceAfter=No # doc_id = 754 # sent_id = 1 # text = In contrast to the fact that every completely distributive lattice is necessarily continuous in the sense of Scott, it is shown that complete distributivity of a category enriched over the closed category obtained by endowing the unit interval with a continuous $ t $ - norm does not imply its continuity in general. 1 In in ADP IN _ 22 prep _ _ 2 contrast contrast NOUN NN Number=Sing 1 pobj _ _ 3 to to ADP IN _ 2 prep _ _ 4 the the DET DT Definite=Def|PronType=Art 5 det _ _ 5 fact fact NOUN NN Number=Sing 3 pobj _ _ 6 that that SCONJ IN _ 11 mark _ _ 7 every every DET DT _ 10 det _ _ 8 completely completely ADV RB _ 9 advmod _ _ 9 distributive distributive ADJ JJ Degree=Pos 10 amod _ _ 10 lattice lattice NOUN NN Number=Sing 11 nsubj _ _ 11 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 5 acl _ _ 12 necessarily necessarily ADV RB _ 11 advmod _ _ 13 continuous continuous ADJ JJ Degree=Pos 11 acomp _ _ 14 in in ADP IN _ 11 prep _ _ 15 the the DET DT Definite=Def|PronType=Art 16 det _ _ 16 sense sense NOUN NN Number=Sing 14 pobj _ _ 17 of of ADP IN _ 16 prep _ _ 18 Scott Scott PROPN NNP Number=Sing 17 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 22 punct _ _ 20 it it PRON PRP Gender=Neut|Number=Sing|Person=3|PronType=Prs 22 nsubjpass _ _ 21 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 22 auxpass _ _ 22 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 23 that that DET DT Number=Sing|PronType=Dem 25 det _ _ 24 complete complete ADJ JJ Degree=Pos 25 amod _ _ 25 distributivity distributivity NOUN NN Number=Sing 48 nsubj _ _ 26 of of ADP IN _ 25 prep _ _ 27 a a DET DT Definite=Ind|PronType=Art 28 det _ _ 28 category category NOUN NN Number=Sing 26 pobj _ _ 29 enriched enrich VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 28 acl _ _ 30 over over ADP IN _ 29 prep _ _ 31 the the DET DT Definite=Def|PronType=Art 33 det _ _ 32 closed closed ADJ JJ Degree=Pos 33 amod _ _ 33 category category NOUN NN Number=Sing 30 pobj _ _ 34 obtained obtain VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 33 acl _ _ 35 by by ADP IN _ 34 prep _ _ 36 endowing endow VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 35 pcomp _ _ 37 the the DET DT Definite=Def|PronType=Art 39 det _ _ 38 unit unit NOUN NN Number=Sing 39 compound _ _ 39 interval interval NOUN NN Number=Sing 36 dobj _ _ 40 with with ADP IN _ 36 prep _ _ 41 a a DET DT Definite=Ind|PronType=Art 45 det _ _ 42 continuous continuous ADJ JJ Degree=Pos 45 amod _ _ 43 $ t $ $ t $ SYM $ _ 45 nummod _ _ 44 - - PUNCT HYPH PunctType=Dash 45 punct _ _ 45 norm norm NOUN NN Number=Sing 40 pobj _ _ 46 does do AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 48 aux _ _ 47 not not PART RB Polarity=Neg 48 neg _ _ 48 imply imply VERB VB VerbForm=Inf 22 ccomp _ _ 49 its its PRON PRP$ Gender=Neut|Number=Sing|Person=3|Poss=Yes|PronType=Prs 50 poss _ _ 50 continuity continuity NOUN NN Number=Sing 48 dobj _ _ 51 in in ADP IN _ 50 prep _ _ 52 general general ADJ JJ Degree=Pos 51 amod _ SpaceAfter=No 53 . . PUNCT . PunctType=Peri 22 punct _ SpaceAfter=No # sent_id = 2 # text = Necessary and sufficient conditions for the implication are presented. 1 Necessary necessary ADJ JJ Degree=Pos 4 amod _ _ 2 and and CCONJ CC ConjType=Cmp 1 cc _ _ 3 sufficient sufficient ADJ JJ Degree=Pos 1 conj _ _ 4 conditions condition NOUN NNS Number=Plur 9 nsubjpass _ _ 5 for for SCONJ IN _ 9 mark _ _ 6 the the DET DT Definite=Def|PronType=Art 7 det _ _ 7 implication implication NOUN NN Number=Sing 9 nsubjpass _ _ 8 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 9 auxpass _ _ 9 presented present VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ SpaceAfter=No 10 . . PUNCT . PunctType=Peri 9 punct _ SpaceAfter=No # doc_id = 755 # sent_id = 1 # text = We introduce the notion of a braiding on a skew monoidal category, whose curious feature is that the defining isomorphisms involve three objects rather than two. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 introduce introduce VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 the the DET DT Definite=Def|PronType=Art 4 det _ _ 4 notion notion NOUN NN Number=Sing 2 dobj _ _ 5 of of ADP IN _ 4 prep _ _ 6 a a DET DT Definite=Ind|PronType=Art 7 det _ _ 7 braiding braiding NOUN NN Number=Sing 5 pobj _ _ 8 on on ADP IN _ 7 prep _ _ 9 a a DET DT Definite=Ind|PronType=Art 12 det _ _ 10 skew skew ADJ JJ Degree=Pos 12 amod _ _ 11 monoidal monoidal ADJ JJ Degree=Pos 12 amod _ _ 12 category category NOUN NN Number=Sing 8 pobj _ SpaceAfter=No 13 , , PUNCT , PunctType=Comm 12 punct _ _ 14 whose whose DET WP$ Poss=Yes 16 poss _ _ 15 curious curious ADJ JJ Degree=Pos 16 amod _ _ 16 feature feature NOUN NN Number=Sing 17 nsubj _ _ 17 is be AUX VBZ Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin 12 relcl _ _ 18 that that SCONJ IN _ 22 mark _ _ 19 the the DET DT Definite=Def|PronType=Art 21 det _ _ 20 defining define VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 21 amod _ _ 21 isomorphisms isomorphism NOUN NNS Number=Plur 22 nsubj _ _ 22 involve involve VERB VBP Tense=Pres|VerbForm=Fin 17 ccomp _ _ 23 three three NUM CD NumType=Card 24 nummod _ _ 24 objects object NOUN NNS Number=Plur 22 dobj _ _ 25 rather rather ADV RB _ 26 advmod _ _ 26 than than ADP IN _ 24 cc _ _ 27 two two NUM CD NumType=Card 24 conj _ SpaceAfter=No 28 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 2 # text = Examples are shown to arise from 2 - category theory and from bialgebras. 1 Examples example NOUN NNS Number=Plur 3 nsubjpass _ _ 2 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 3 auxpass _ _ 3 shown show VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 0 ROOT _ _ 4 to to PART TO _ 5 aux _ _ 5 arise arise VERB VB VerbForm=Inf 3 xcomp _ _ 6 from from ADP IN _ 5 prep _ _ 7 2 2 NUM CD NumType=Card 9 nummod _ _ 8 - - PUNCT HYPH PunctType=Dash 9 punct _ _ 9 category category NOUN NN Number=Sing 10 compound _ _ 10 theory theory NOUN NN Number=Sing 6 pobj _ _ 11 and and CCONJ CC ConjType=Cmp 6 cc _ _ 12 from from ADP IN _ 6 conj _ _ 13 bialgebras bialgebra NOUN NNS Number=Plur 12 pobj _ SpaceAfter=No 14 . . PUNCT . PunctType=Peri 3 punct _ SpaceAfter=No # sent_id = 3 # text = In order to describe the 2 - categorical examples, we take a multicategorical approach. 1 In in ADP IN _ 12 prep _ _ 2 order order NOUN NN Number=Sing 1 pobj _ _ 3 to to PART TO _ 4 aux _ _ 4 describe describe VERB VB VerbForm=Inf 2 acl _ _ 5 the the DET DT Definite=Def|PronType=Art 9 det _ _ 6 2 2 NUM CD NumType=Card 8 nummod _ _ 7 - - PUNCT HYPH PunctType=Dash 8 punct _ _ 8 categorical categorical ADJ JJ Degree=Pos 9 amod _ _ 9 examples example NOUN NNS Number=Plur 4 dobj _ SpaceAfter=No 10 , , PUNCT , PunctType=Comm 12 punct _ _ 11 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 12 nsubj _ _ 12 take take VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 13 a a DET DT Definite=Ind|PronType=Art 15 det _ _ 14 multicategorical multicategorical ADJ JJ Degree=Pos 15 amod _ _ 15 approach approach NOUN NN Number=Sing 12 dobj _ SpaceAfter=No 16 . . PUNCT . PunctType=Peri 12 punct _ SpaceAfter=No # sent_id = 4 # text = We explain how certain braided skew monoidal structures in the 2 - categorical setting give rise to braided monoidal bicategories. 1 We we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 2 nsubj _ _ 2 explain explain VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 3 how how SCONJ WRB _ 4 advmod _ _ 4 certain certain ADJ JJ Degree=Pos 8 amod _ _ 5 braided braided ADJ JJ Degree=Pos 8 amod _ _ 6 skew skew NOUN NN Number=Sing 8 nmod _ _ 7 monoidal monoidal ADJ JJ Degree=Pos 8 amod _ _ 8 structures structure NOUN NNS Number=Plur 15 nsubj _ _ 9 in in ADP IN _ 8 prep _ _ 10 the the DET DT Definite=Def|PronType=Art 14 det _ _ 11 2 2 NUM CD NumType=Card 13 nummod _ _ 12 - - PUNCT HYPH PunctType=Dash 13 punct _ _ 13 categorical categorical ADJ JJ Degree=Pos 14 amod _ _ 14 setting setting NOUN NN Number=Sing 9 pobj _ _ 15 give give VERB VBP Tense=Pres|VerbForm=Fin 2 ccomp _ _ 16 rise rise NOUN NN Number=Sing 15 dobj _ _ 17 to to ADP IN _ 15 prep _ _ 18 braided braid VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 20 amod _ _ 19 monoidal monoidal ADJ JJ Degree=Pos 20 amod _ _ 20 bicategories bicategorie NOUN NNS Number=Plur 17 pobj _ SpaceAfter=No 21 . . PUNCT . PunctType=Peri 2 punct _ SpaceAfter=No # sent_id = 5 # text = For the bialgebraic examples, we show that, for a skew monoidal category arising from a bialgebra, braidings on the skew monoidal category are in bijection with cobraidings (also known as coquasitriangular structures) on the bialgebra. 1 For for ADP IN _ 7 prep _ _ 2 the the DET DT Definite=Def|PronType=Art 4 det _ _ 3 bialgebraic bialgebraic NOUN NN Number=Sing 4 compound _ _ 4 examples example NOUN NNS Number=Plur 1 pobj _ SpaceAfter=No 5 , , PUNCT , PunctType=Comm 7 punct _ _ 6 we we PRON PRP Case=Nom|Number=Plur|Person=1|PronType=Prs 7 nsubj _ _ 7 show show VERB VBP Tense=Pres|VerbForm=Fin 0 ROOT _ _ 8 that that SCONJ IN _ 26 mark _ SpaceAfter=No 9 , , PUNCT , PunctType=Comm 26 punct _ _ 10 for for ADP IN _ 26 prep _ _ 11 a a DET DT Definite=Ind|PronType=Art 14 det _ _ 12 skew skew ADJ JJ Degree=Pos 14 amod _ _ 13 monoidal monoidal ADJ JJ Degree=Pos 14 amod _ _ 14 category category NOUN NN Number=Sing 10 pobj _ _ 15 arising arise VERB VBG Aspect=Prog|Tense=Pres|VerbForm=Part 14 acl _ _ 16 from from ADP IN _ 15 prep _ _ 17 a a DET DT Definite=Ind|PronType=Art 18 det _ _ 18 bialgebra bialgebra NOUN NN Number=Sing 16 pobj _ SpaceAfter=No 19 , , PUNCT , PunctType=Comm 26 punct _ _ 20 braidings braiding NOUN NNS Number=Plur 26 nsubj _ _ 21 on on ADP IN _ 20 prep _ _ 22 the the DET DT Definite=Def|PronType=Art 25 det _ _ 23 skew skew ADJ JJ Degree=Pos 25 amod _ _ 24 monoidal monoidal ADJ JJ Degree=Pos 25 amod _ _ 25 category category NOUN NN Number=Sing 21 pobj _ _ 26 are be AUX VBP Mood=Ind|Tense=Pres|VerbForm=Fin 7 ccomp _ _ 27 in in ADP IN _ 26 prep _ _ 28 bijection bijection NOUN NN Number=Sing 27 pobj _ _ 29 with with ADP IN _ 28 prep _ _ 30 cobraidings cobraiding NOUN NNS Number=Plur 29 pobj _ _ 31 ( ( PUNCT -LRB- PunctSide=Ini|PunctType=Brck 30 punct _ SpaceAfter=No 32 also also ADV RB _ 33 advmod _ _ 33 known know VERB VBN Aspect=Perf|Tense=Past|VerbForm=Part 30 acl _ _ 34 as as ADP IN _ 33 prep _ _ 35 coquasitriangular coquasitriangular ADJ JJ Degree=Pos 36 amod _ _ 36 structures structure NOUN NNS Number=Plur 34 pobj _ SpaceAfter=No 37 ) ) PUNCT -RRB- PunctSide=Fin|PunctType=Brck 30 punct _ _ 38 on on ADP IN _ 26 prep _ _ 39 the the DET DT Definite=Def|PronType=Art 40 det _ _ 40 bialgebra bialgebra NOUN NN Number=Sing 38 pobj _ SpaceAfter=No 41 . . PUNCT . PunctType=Peri 7 punct _ SpaceAfter=No