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The U.S. Army Corps of Engineers (USACE) Risk Management Center (RMC) has developed RMC-BestFit, 
a Bayesian estimation and fitting software designed to enhance and expedite flood hazard assessments within 
the Flood Risk Management, Planning, and Dam and Levee Safety communities of practice. RMC-BestFit 
can incorporate multiple sources of hydrologic information, including historical data, paleoflood indicators, 
regional rainfall-runoff results, and expert elicitation, into flood frequency analysis. The software now 
includes the capability to perform nonstationary flood frequency analysis (NSFFA), allowing distribution 
parameters to vary with time. This feature enables users to identify changing flood risk conditions. 
This paper presents a case study demonstrating NSFFA for a high-hazard dam within the USACE portfolio. 
The study illustrates the assessment of nonstationarity due to factors such as land use changes and climate 
change. It showcases the selection of appropriate trend models for the distribution parameters and how to 
incorporate historical, censored data, as well as Global Climate Model (GCM) projections, into the 
Bayesian NSFFA. The case study reveals that NSFFA can significantly impact the assessment of flood risk 
and inform potential dam safety and reallocation measures.  
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Introduction 
The U.S. Army Corps of Engineers (USACE) Risk Management Center (RMC) has developed RMC-BestFit, a Bayesian 
estimation and fitting software designed to enhance and expedite flood hazard assessments within the Flood Risk 
Management, Planning, and Dam and Levee Safety communities of practice (Smith & Doughty, 2020). RMC-BestFit can 
incorporate multiple sources of hydrologic information, including historical data, paleoflood indicators, regional rainfall-
runoff results, and expert elicitation, into flood frequency analysis (Smith & Skahill, 2019). The software now includes the 
capability to perform nonstationary flood frequency analysis (NSFFA), allowing distribution parameters to vary with time. 
This feature enables users to identify changing flood risk conditions. 
The Centre for Research of Epidemiology of Disasters (CRED) reported that floods were the most common disasters 
worldwide in 2023, affecting several million people and causing over ten thousand deaths (CRED, 2024). According to 
CRED, floods and storms accounted for more than 70% of natural disasters on average between 2003 and 2023. 
Furthermore, flood risk management (FRM) infrastructure in the U.S. and globally is aging, making many existing FRM 
structures vulnerable to the impacts of climate change. Both natural and anthropogenic influences can alter flood behaviour. 
Conceptually, a warming climate increases the amount of precipitable water in the atmosphere, which could increase the 
likelihood of extreme floods over time. Therefore, incorporating climate change into flood hazard and risk analysis is 
crucial for dam safety professionals. 
This paper presents a case study demonstrating NSFFA for a high-hazard dam within the USACE portfolio. The study 
illustrates the assessment of nonstationarity due to factors such as land use and climate change. It showcases the selection 
of appropriate trend models for the distribution parameters and how to incorporate historical, censored data, as well as 
Global Climate Model (GCM) projections, into the Bayesian NSFFA. The case study reveals that NSFFA can significantly 
impact the assessment of flood risk and inform potential dam safety and reallocation measures.  

Nonstationary Flood Frequency Analysis 
In recent years, there have been numerous examples of nonstationary flood frequency analysis (NSFFA). Debele et al. 
(2017a, 2017b) demonstrated how to perform NSFFA using generalized additive models for the location, scale, and shape 
(GAMLSS) parameters. Cheng and AghaKouchak (2014) and Skahill et al. (2016) demonstrated how to estimate 
nonstationary precipitation-frequency curves. Condon et al. (2015) and Hesarkazzazi et al. (2021) presented general 
frameworks for performing NSFFA. Renard et al. (2006), Luke et al. (2017), and Xu et al. (2018) offer Bayesian 
approaches to NSFFA. More recently, Jayaweera et al. (2023) demonstrate a nonstationary Generalized Extreme Value 
distribution for extreme rainfalls across Australia. Additionally, Wasko et al. (2024) provide a systematic review of climate 
change science relevant to Australian design flood estimation, including a review NSFFA approaches.  
In the RMC-BestFit software, FFA is performed using a Bayesian analysis framework described by Smith (2020). This 
approach leverages the power of Bayesian statistics to incorporate various source of uncertainty and prior information into 
the analysis.  
 



 
 

In the Bayesian approach to FFA, the model parameters 𝜽𝜽 = {𝜇𝜇,𝜎𝜎, 𝜉𝜉}, which represents the location (𝜇𝜇), scale (𝜎𝜎), and 
shape (𝜉𝜉) of the flood frequency distribution, are treated as random variables with their own probability distributions. 
Rather than converging to fixed point estimates, these parameters are characterized by their posterior distributions. This 
allows for a more comprehensive representation of the uncertainty inherent in flood frequency analysis. 
Bayes' theorem is used to calculate the posterior density of the model parameters given the observed data. The posterior 
density 𝑝𝑝(𝜽𝜽|𝐱𝐱) is derived from the likelihood function 𝐿𝐿(𝒙𝒙|𝜽𝜽), which represents the probability of the observed data 𝒙𝒙 =
{𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} given the parameters 𝜽𝜽, and the prior density 𝑝𝑝(𝜽𝜽), which encapsulates any prior knowledge or assumptions 
about the parameters. The theorem is mathematically expressed as: 

𝑝𝑝(𝜽𝜽|𝐱𝐱) =
𝐿𝐿(𝒙𝒙|𝜽𝜽) ∙ 𝑝𝑝(𝜽𝜽)

∫𝐿𝐿(𝒙𝒙|𝜽𝜽) ∙ 𝑝𝑝(𝜽𝜽) ∙ 𝑑𝑑𝜽𝜽
 Equation 1 

where 𝑝𝑝(𝜽𝜽|𝐱𝐱) is the posterior density of the parameter set 𝜽𝜽 given the observed flow data 𝒙𝒙 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}; 𝐿𝐿(𝒙𝒙|𝜽𝜽) is 
the likelihood function, which measures how well the parameters 𝜽𝜽 explain the observed data 𝒙𝒙; 𝑝𝑝(𝜽𝜽) is the prior density, 
reflecting any prior information or beliefs about the parameters before observing the data; and ∫ 𝐿𝐿(𝒙𝒙|𝜽𝜽) ∙ 𝑝𝑝(𝜽𝜽) ∙ 𝑑𝑑𝜽𝜽 is a 
normalizing constant ensuring that the posterior density integrates to one.  

For stationary FFA, where the assumption is that the data 𝒙𝒙 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} are independent and identically distributed 
(i.i.d), the likelihood function is computed as the product of probabilities of each individual data point: 

𝐿𝐿(𝒙𝒙|𝛉𝛉) =  �𝑓𝑓(𝑥𝑥𝑖𝑖|𝜽𝜽)
𝑛𝑛

𝑖𝑖=1

 Equation 2 

Here, 𝑓𝑓(𝑥𝑥|𝜽𝜽) is the probability density function of the flood-frequency distribution given the parameters 𝜽𝜽.  
However, when dealing with nonstationary data, where changes in climate, land use, or other factors cause the distribution 
parameters to vary over time, the assumption of identical distribution no longer holds. In this case, the parameters 𝜽𝜽 are 
allowed to vary with time, resulting in a time-dependent likelihood function: 

𝐿𝐿(𝒙𝒙|𝛉𝛉) = �𝑓𝑓(𝑥𝑥𝑡𝑡|𝜽𝜽𝑡𝑡)
𝑇𝑇

𝑡𝑡=1

 Equation 3 

The primary difference between a stationary and nonstationary frequency analysis is that, in the latter, each time step has 
a unique parameter set, resulting in a unique distribution and distribution properties over time. The likelihood function can 
be easily expanded to include interval- and threshold-censored data as well as measurement error, as demonstrated by 
Kuczera (1999), and O'Connell et al. (2002), and Reis and Stedinger (2005). 
This flexibility allows RMC-BestFit to account for nonstationarity in flood risk assessments, enabling more accurate and 
dynamic modelling of flood frequency under changing environmental conditions. By using the Bayesian framework, RMC-
BestFit provides a robust and flexible approach to FFA, incorporating both prior information and observed data to yield 
comprehensive probabilistic estimates of flood risk. 

In RMC-BestFit, the location (𝜇𝜇), scale (𝜎𝜎), and shape (𝜉𝜉) parameters can vary with time using a trend or step function as 
shown below in Table 1 below. However, in practice there is rarely enough data to justify a time-dependent model for the 
shape parameter. 
Table 1 - Trend model options for the location parameter (μ) in RMC-BestFit. 

Constant:  𝜇𝜇𝑡𝑡 = 𝛼𝛼 Power:  𝜇𝜇𝑡𝑡 = 𝛼𝛼𝛼𝛼𝛽𝛽 

Cubic:  𝜇𝜇𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝛾𝛾𝛾𝛾2 + 𝛿𝛿𝛿𝛿3  Quadratic:  𝜇𝜇𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝛾𝛾𝛾𝛾2  

Exponential:  𝜇𝜇𝑡𝑡 = 𝛼𝛼𝑒𝑒−𝛽𝛽𝛽𝛽 Reciprocal:  𝜇𝜇𝑡𝑡 = 1
𝛼𝛼+𝛽𝛽𝛽𝛽 

 

Linear:  𝜇𝜇𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝑡𝑡 Sinusoidal:  𝜇𝜇𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽 sin(2𝜋𝜋𝜋𝜋𝜋𝜋 + 𝛿𝛿) 

Logistic:  𝜇𝜇𝑡𝑡 = 𝛼𝛼
1+𝑒𝑒−𝛽𝛽𝛽𝛽

 Step Function:  𝜇𝜇𝑡𝑡 = �𝜇𝜇1,   𝑡𝑡 ≤ 𝑡𝑡𝑐𝑐
𝜇𝜇2,   𝑡𝑡 > 𝑡𝑡𝑐𝑐
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Case Study 
O.C. Fisher Dam is located on the North Concho River in Texas and has a catchment area of approximately 3,885 square 
kilometres. The city of San Angelo is directly downstream of the dam, as shown in Figure 1. O.C. Fisher dam is a multi-
purpose project that provides flood control, water supply, recreation, and environmental benefits.  

 
Figure 1 – Vicinity map of O.C. Fisher dam. 

 
Inflow Data 
The chronology plot of annual maximum 2-day average inflows to O.C. Fisher Dam is shown in Figure 2 below. Period-
of-record inflows to O.C. Fisher were obtained from 1916 to 2021 (labelled as exact data in the figure). The largest flood 
during this period occurred on September 17, 1936, and was estimated to be about 1,150 cubic meters per second (cms). 
Based on historical records and reports, the largest flood on the North Concho River occurred in 1853 and was at least as 
large as the 1936 event. Multiple other large events occurred between 1854 and 1915, but none were larger than the 1936 
event.  
 
 
 



 
 

 
Figure 2 – Chronology plot for the annual max inflows to O.C. Fisher dam. 

 
In RMC-BestFit, the historical period from 1853 to 1915 was treated a binomial-censored (Stedinger & Cohn, 1986), where 
the data points that occurred during this period have magnitudes that are below (or above) a threshold value, but it is 
unknown by how much. Figure 3 below shows how the threshold data is entered in the software.  

 
Figure 3 – Threshold data entry in RMC-BestFit. 

 
Hypothesis Testing 
From the chronology plot (Figure 2), it is visually apparent that there is a downward trend in annual max inflows. A 
nonstationary time series will often exhibit a trend or jump that can be increasing or decreasing and may be linear or 
nonlinear. The cause of the nonstationarity can be a gradual change in hydrological and climatological factors or conditions, 
or sometimes anthropogenic changes, such as alterations in land use and land cover. Detecting changes in the time series 
data is the first step in the analysis.  
As shown in Figure 4 below, RMC-BestFit provides several widely used hypothesis tests for identifying nonstationarity in 
the input data. These include the Wald-Wolfowitz, Mann-Whitney, Mann-Kendall, and linear trend tests, all of which 
indicate that the data is not stationary. The equal and unequal t-tests detect a difference in means in the data, and the Ljung-
Box tests indicates that the data has statistically significant autocorrelation.  
The autocorrelation function (ACF) plot of the annual max data is shown below in Figure 5. This plot confirms the Ljung-
Box test, indicating some persistent autocorrelation at a lag of 10 years. This may suggest that there is some periodicity in 
the data. 
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Figure 4 – Hypothesis test results for the annual max inflows to O.C. Fisher dam. 

 

 
Figure 5 – Autocorrelation function plot for the annual max inflow data. 

 
Bayesian NSFFA 
After the user has created the input data, a Bayesian FFA can be setup and performed. The analysis properties and options 
are shown below in Figure 6. As shown on the left side of the figure, the O.C. Fisher input data is selected, and Log-Pearson 
Type III (LPIII) distribution is chosen to be consistent with current U.S. flood frequency guidance (U.S. Geological Survey, 
2018). A NSFFA can be setup in RMC-BestFit by checking the “Nonstationary” checkbox, as illustrated on the right side 
of Figure 6. In this study, only the mean of the LPIII distribution was treated as a nonstationary parameter.  
Since the distribution parameters vary with time in a NSFFA, the exceedance probability and corresponding return period 
of a flow value also varies with time. In a stationary frequency analysis, the return period provides a straightforward and 
consistent measure of the likelihood of an event occurring. For example, if a flood has a return period of 100 years, it means 
there is a 1% chance (1/100) of that flood being exceeded in any given year. 
However, in a nonstationary frequency analysis, where the statistical properties change over time, the concept of a return 
period becomes more complex. In this context, the return period can vary over time, reflecting the changing probabilities 
of event magnitudes (Read & Vogel, 2015). Consequently, the return period in a nonstationary analysis must be carefully 
interpreted, often focusing on specific time steps or conditions to provide meaningful insights. 
The “Time Index” property, shown on the right side of Figure 6, determines the time step for evaluating the nonstationary 
frequency distribution. In the USACE dam safety program, risk is evaluated using the current conditions at the site rather 
than forecasted or hindcasted conditions. Thus, the parameters from the most recent time step, in this case 2021, are used 



 
 

for flood hazard prediction in the risk analysis. However, users can choose any time step within the study period and 
forecast up to 100 time steps into the future. This “Time Index” approach follows the procedures demonstrated by Cheng 
et al. (2014). 
The “Alpha” property represents the exceedance probability used for evaluating the nonstationary chronology plot. The 
default probability is 0.5 (or the 2-year return period), ensuring that the frequency distribution visually fits the observed 
data. 

 
Figure 6 – Model properties and options in RMC-BestFit. 

 
Incorporating GCM Projections 
As demonstrated by Coles and Tawn (1996) and Viglione et al. (2013), regional precipitation-frequency and modelled 
rainfall-runoff results can be incorporated in the Bayesian analysis through a prior distribution of flows for a specified 
exceedance probability, referred to as a quantile prior in the software.  
For this analysis, the Rainfall-Runoff Frequency tool (RRFT), a cloud-based system for stochastically sampling HEC-HMS 
models, was used to estimate quantile priors for the 0.1, 0.01, and 0.001 annual exceedance probabilities (AEPs), as shown 
in Figure 7 below. For more details on the RRFT, see Avance et al. (2021) and Quebbeman et al. (2023).  
Global Climate Model (GCM) projections can also be incorporated into the NSFFA with quantile priors in RMC-BestFit. 
For this case study, downscaled hydrology projections from a multi-model ensemble (Maurer, Brekke, Pruitt, & Duffy, 
2007) were downloaded and processed for the watershed. From the projections, it was estimated that runoff would continue 
to decrease by about 5% on average over the next 30 years. Therefore, the mean flows of the quantile priors were reduced 
accordingly.  
Model Selection 
As shown in Table 1, there are several trend model options for the location (𝜇𝜇), scale (𝜎𝜎), and shape (𝜉𝜉) parameters 
available in RMC-BestFit. Model selection under nonstationarity is a crucial issue, as complex trend options may fit the 
data well but might not be parsimonious. The modeler should select a simple model that can explain much of the variance 
of the data.  
It is recommended to always start with a stationary model as a baseline, which has the lowest number of parameters, and 
then test incrementally more complex models. This involves progressively adding parameters and checking whether each 
alternative model significantly improves over the previous one. The Akaike Information Criteria (AIC) and Bayesian 
Information Criteria (BIC) were used to compare the fitness of the models. The model with the lowest AIC or BIC is 
preferred. When comparing multiple models, additional parameters often yield larger, optimized log-likelihood values. 
AIC and BIC penalize for more complex models with additional parameters. However, for BIC, the penalty is a function 
of the sample size, and so it is typically more severe than that of AIC. For details on the measures, see the user guide (Smith 
& Doughty, 2020). 
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Figure 7 – Parameter and Quantile Prior Options in RMC-BestFit. 

 
In this study, only the mean of the LPIII distribution was treated as a nonstationary parameter, and four model 
configurations were evaluated: stationary (constant), linear trend, step function, and sinusoidal trend. The linear trend was 
tested because hypothesis tests results indicate a trend, making it a good default choice for modelling changes in the mean 
flow. The step function was tested because historical reports suggest a sudden decrease in inflows around 1960, 
corresponding to increased land use changes and agricultural demands on the groundwater aquifer. The sinusoidal trend 
was tested because the autocorrelation function of the data exhibited some periodicity.  
Table 2 below shows a comparison of the model performance in terms of AIC and BIC. The sinusoidal model has the 
smallest AIC and BIC. However, there is no hydrological or climatological explanation for why the data should follow a 
sinusoidal trend. The linear trend model has the second smallest AIC and BIC, is parsimonious, and can be explained based 
on hydrologic principles. Specifically, there have been persistent changes in the land use in the region, and climate models 
show a continued decrease in runoff going forward. 
Figure 8 below shows a comparison of the chronology plots for all four model configurations. These plots show the 
distribution of the 0.5 (or 2-year) inflow over time. The plot suggests that the linear trend model provides the best fit to the 
observations. Consequently, this model was carried forward into the risk analysis.  

 

 

 

 

 

 



 
 

Table 2 – Selected model options for the location parameter (μ) in RMC-BestFit. 

Model Type AIC BIC 

Constant:  𝜇𝜇𝑡𝑡 = 𝛼𝛼 1061.42 1069.41 

Linear:  𝜇𝜇𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝑡𝑡 1049.23 1059.89 

Step Function:  𝜇𝜇𝑡𝑡 = �𝜇𝜇1,   𝑡𝑡 ≤ 𝑡𝑡𝑐𝑐
𝜇𝜇2,   𝑡𝑡 > 𝑡𝑡𝑐𝑐

 1054.22 1067.54 

Sinusoidal:  𝜇𝜇𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽 sin(2𝜋𝜋𝜋𝜋𝜋𝜋 + 𝛿𝛿) 1040.22 1056.20 

 

 
Figure 8 – Comparison of trend model results. 

 
Frequency Analysis Results 
After estimating and selecting the best model, flood hazard predictions and risk analyses can be performed. In this study, 
the parameters from the most recent time step, 2021, were used for prediction. The stationary and nonstationary frequency 
results are shown below in Figure 9. The probable maximum flood (PMF) is plotted for reference as a horizontal dashed 
red line.  
The stationary posterior predictive curve suggests that the PMF has an AEP of approximately 2E-4 (or a 5,000-year return 
period). In contrast, the nonstationary posterior predictive curve indicates that the PMF has an AEP slightly less than 1E-
4 (or a 10,000-year return period). More significantly, the predicted 0.01 AEP (100-year) flow is much reduced with the 
nonstationary model, from 950 cms to 425 cms. This reduction in more frequent flows presents an opportunity to potentially 
decrease flood control storage while increasing water supply storage for climate resiliency. 



 
9     
 

 
Figure 9 – Comparison of stationary and nonstationary flood frequency results. 

 
Dam safety risk analysis requires that the nonstationary flow-frequency curve be transformed to a reservoir water level, 
which can be performed using a reservoir routing software, such as the Reservoir Frequency Analysis software, RMC-RFA 
(Smith, 2018). The results from RMC-BestFit and RMC-RFA can be imported to the quantitative risk analysis software 
RMC-TotalRisk (Smith & Fields, 2022), where the dam safety risk analysis can be conducted.  
In the coming decades, the reallocation of flood storage for water supply, or vice versa, will undoubtedly be necessary to 
address the impacts of climate change. Increasing water supply will tend to increase the likelihood of spillway discharge 
at lower water levels, thereby increasing the potential of flood damages during spillway operations. However, if the flood 
hazard is decreasing over time, the net increase in these damages could be negligible, allowing for positive net benefits and 
increased water supply.  
In general, for sites where the flood hazard is increasing due to climate change, more conservative dam safety modifications 
that provide higher levels of protection will be preferable. Conversely, for sites where the flood hazard is decreasing, lower 
levels of flood protection can be justified. Additionally, a decreasing flood hazard would encourage an increase in water 
supply storage at reservoirs, especially in the semi-arid western United States. 

Conclusions 
This study demonstrates the importance of incorporating nonstationarity into flood hazard predictions and risk analyses, 
particularly in the context of changing climatic conditions and land use. By using the Bayesian framework employed in 
RMC-BestFit, various trend model configurations for the mean of the LPIII distribution were effectively estimated and 
evaluated. The results indicate that the nonstationary models provide a more accurate and nuanced understanding of flood 
risks compared to stationary models. 
Specifically, the nonstationary posterior predictive curve suggests a lower AEP for the PMF and a significantly reduced 
flow for the 0.01 AEP, highlighting the dynamic nature of flood hazards in response to ongoing environmental changes. 
This reduction in predicted flow frequencies offers a valuable opportunity to reallocate flood control storage, thereby 
enhancing water supply storage and improving climate resiliency. 
Furthermore, the case study emphasizes the necessity of selecting parsimonious models that can explain much of the data 
variance while avoiding overfitting. The linear trend model was identified as the most suitable due to its balance of 
simplicity and explanatory power, supported by both hydrological principles and climate projections. 



 
 

As climate change continues to impact hydrological patterns, it is crucial to adopt flexible and forward-looking approaches 
in dam safety and water resource management. The methodologies and insights from this study provide a foundation for 
such adaptive strategies, ensuring better preparedness and optimized resource allocation in the face of evolving flood risks. 
In conclusion, the RMC-BestFit software offers numerous features to enhance and expedite flood hazard assessments, 
improving dam and levee safety investment decisions. The RMC-BestFit software is freely available to the public and 
downloadable from the RMC website ( https://www.rmc.usace.army.mil/Software/RMC-BestFit/).  
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