
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Musical Elements in the Discrete-Time Representation of
Sound

RENATO FABBRI, University of São Paulo, Brazil
VILSON VIEIRA DA SILVA JUNIOR, Cod.ai, DE
ANTÔNIO CARLOS SILVANO PESSOTTI, Universidade Metodista de Piracicaba, Brazil
DÉBORA CRISTINA CORRÊA, University of Western Australia, AU
OSVALDO N. OLIVEIRA JR., University of São Paulo, Brazil

The representation of basic elements of music in terms of discrete audio signals is often used in software for
musical creation and design. Nevertheless, there is no description of these elements in terms of the discrete
samples of digitized sound. This article addresses this issue: each musical element is related by equations and
procedures to the discrete-time samples of sounds. The routines are implemented in scripts within a public
domain software toolbox to be promptly scrutinized and expanded, and to enable use by musicians, engineers
and other interested parties e.g. for trustful scientific experiments, data sonification, art and education.

CCS Concepts: • Applied computing → Sound and music computing; • Computing methodologies
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1 INTRODUCTION
Music is usually defined as the art whose medium is sound. The definition might also state that the
medium includes silences and temporal organization of structures, or that music is also a cultural
activity or product. In physics and in this document, sounds are longitudinal waves of mechanical
pressure. The human auditory system perceives sounds in the frequency bandwidth between
20Hz and 20kHz, with the actual boundaries depending on the person, climate conditions and the
sonic characteristics themselves. Since the speed of sound is ≈ 343.2m/s , such frequency limits
corresponds to wavelengths of 343.2

20 ≈ 17.16m and 343.2
20000 ≈ 17.16mm. Hearing involves stimuli in

bones, stomach, ears, transfer functions of head and torso, and processing by the nervous system.
The ear is a dedicated organ for the appreciation of these waves, which decomposes them into their
sinusoidal spectra and delivers to the nervous system. The sinusoidal components are crucial to
musical phenomena, as one can recognize in the constitution of sounds of musical interest (such as
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0:2 R. Fabbri et al.

harmonic sounds and noises, discussed in Sections 2 and 3), and higher level musical structures
(such as tunings, scales and chords, in the Supporting Information document [17]). [40]

Fig. 1. Example of PCM audio: a sonic wave is represented by 25 samples equally spaced in time, where each
sample has an amplitude specified with 4 bits.

The representation of sound can take many forms, from musical scores and texts in a phonetic
language to electric analog signals and binary data. It includes sets of features such as wavelet
or sinusoidal components. Although the terms ’audio’ and ’sound’ are often used without dis-
tinction and ’audio’ has many definitions which depend on the context and the author, audio
most often means a representation of the amplitude through time. In this sense, audio expresses
sonic waves yield by synthesis or input by microphones, although these sources are not always
neatly distinguishable e.g. as captured sounds are processed to generate new sonorities. Digital
audio protocols often imply in quality loss (to achieve smaller files, ease storage and transfer) and
are called lossy [32]. This is the case e.g. of MP3 and Ogg Vorbis. Non-lossy representations of
digital audio, called lossless protocols or formats, on the other hand, assure perfect reconstruction
of the analog wave within any convenient precision. The standard paradigm of lossless audio
consists of representing the sound with samples equally spaced by a duration δs , and specifying
the amplitude of each sample by a fixed number of bits. This is the linear Pulse Code Modulation
(LPCM) representation of sound, herein referred to as PCM. A PCM audio format has two essential
attributes: a sampling frequency fs =

1
δs

(also called e.g. sampling rate or sample rate), which is the
number of samples used for representing a second of sound; and a bit depth, which is the number
of bits used for specifying the amplitude of each sample. Figure 1 shows 25 samples of a PCM audio
with a bit depth of 4, which enables 24 = 16 possible values for the amplitude of each sample and a
total of 4 × 25 = 100 bits for representing the whole sound.
The fixed sampling frequency and bit depth yield the quantization error or quantization noise.

This noise diminishes as the bit depth increases while greater sampling frequency allows higher
frequencies to be represented. The Nyquist theorem asserts that the sampling frequency is twice
the maximum frequency that the represented signal can contain [34]. Thus, for general musical
purposes, it is suitable to use a sample rate of at least twice the highest frequency heard by humans,
that is, fs ≥ 2 × 20kHz = 40kHz. This is the basic reason for the adoption of sampling frequencies
such as 44.1kHz and 48kHz, which are standards in Compact Disks (CD) and broadcast systems
(radio and television), respectively.

Within this framework for representing sounds, musical notes can be characterized. The note
often stands as the ’fundamental unit’ of musical structures (such as atoms in matter or cells in

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0.
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macroscopic organisms) and, in practice, it can unfold into sounds that uphold other approaches to
music. This is of capital importance because science and scholastic artists widened the traditional
comprehension of music in the twentieth century to encompass discourse without explicit rhythm,
melody or harmony. This is evident e.g. in the concrete, electronic, electroacoustic, and spectral
musical styles. In the 1990s, it became evident that popular (commercial) music had also incorporated
sound amalgams and abstract discursive arcs1. Notes are also convenient for another reason: the
average listener – and a considerable part of the specialists – presupposes rhythmic and pitch
organization (made explicit in the Supporting Information document [17]) as fundamental musical
properties, and these are developed in traditional musical theory in terms of notes. Thereafter, in this
article we describe musical notes in PCM audio through equations and then indicate mechanisms
for deriving higher level musical structures. We understand that this is not the unique approach to
mathematically express music in digital audio, but musical theory and practice suggest that this is
a proper framework for understanding and making computer music, as should become patent in
the reminder of this text and is verifiable by usage of the MASS toolbox. Hopefully, the interested
reader or programmer will be able to use this framework to synthesize music beyond traditional
conceptualizations when intended.

This document provides a fundamental description of musical structures in discrete-time audio.
The results include mathematical relations, usually in terms of musical characteristics and PCM
samples, concise musical theory considerations, and their implementation as software routines both
as very raw and straightforward algorithms and in the context of rendering musical pieces. Despite
the general interests involved, there are only a few books and computer implementations that
tackle the subject directly. These mainly focus on computer implementations and ways to mimic
traditional instruments, with scattered mathematical formalisms for the basic notions. Articles on
the topic appear to be lacking, to the best of our knowledge, which contrasts with the advanced
and specialized developments often reported. A compilation of such works and their contributions
is in the Appendix G of [12]. Although current music software uses the analytical descriptions
presented here, there is no concise mathematical description of them, and it is far from trivial to
achieve the equations by analyzing the available software implementations.

Accordingly, the objectives of this paper are to:

(1) Present a concise set of mathematical and algorithmic relations between basic musical
elements and sequences of PCM audio samples.

(2) Introduce a framework for sound and musical synthesis with control at sample level which
entails potential uses in psychoacoustic experiments, data sonification and synthesis with
extreme precision (recap in Section 4).

(3) Provide a powerful theoretical framework which can be used to synthesize musical pieces
and albums.

(4) Provide approachability to the developed framework2.

1There are well known incidences of such characteristics in ethnic music, such as in Pygmy music, but western theory
assimilated them only in the last century [51].
2All the analytic relations presented in this article are implemented as small scripts in public domain. They constitute the
MASS toolbox, available in an open source Git repository [5]. These routines are written in Python and make use of Numpy,
which performs numerical routines efficiently (e.g. through LAPACK), but the language and packages are by no means
mandatory. Part of the scripts has been ported to JavaScript (which favors their use in Web browsers such as Firefox and
Chromium) and native Python [33, 41, 48]. These are all open technologies, published using licenses that grant permission
for copying, distributing, modifying and usage in research, development, art and education. Hence, the work presented
here aims at being compliant with recommended practices for availability and validation and should ease co-authorship
processes [29, 37].
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(5) Provide a didactic presentation of the content, which is highly multidisciplinary, involving
signal processing, music, psychoacoustics and programming.

The reminder of this article is organized as follows: Section 2 characterizes the basic musical note;
Section 3 develops internal dynamics of musical notes; the Supporting Information document [17]
tackles the organization of musical notes into higher level musical structures [9, 27, 28, 39, 43, 50–
52]. As these descriptions require knowledge on topics such as psychoacoustics, cultural traditions,
and mathematical formalisms, the text points to external complements as needed and presents
methods, results and discussions altogether. Section 4 is dedicated to final considerations and
further work.

1.1 Additional material
The main Supporting information document holds an extension of this article to encompass
canonical music theory in order to bridge between the synthesis of notes and their organization
as music [17]. Another Supporting Information document [19] is dedicated to describing the
sinusoidal spectra of samples sounds and illustrates using figures and the traditional wavefoms
given in Section 2.4. The third Supporting Information document [16] holds commented listings of
all the equations, figures, tables and sections in this document and the scripts in the MASS toolbox.
The last Supporting Information document [18] is a PDF version of the code that implements the
equations and concepts in each section3. The Git repository [15] holds all the PDF documents and
Python scripts. The rendered musical pieces are referenced when convenient and linked directly
through URLs, and constitute another component of the framework. They are not very traditional,
which facilitates the understanding of specific techniques and the extrapolation of the note concept.
There are MASS-based software packages [13, 14] and further musical pieces that are linked in the
Git repository.

1.2 Synonymy, polysemy and theoretical frames (disclaimer)
Given that the main topic of this article (the expression of musical elements in PCM audio) is
multidisciplinary and involves art, the reader should be aware that much of the vocabulary admits
different choices of terms and definitions. More specifically, it is often the case where many words
can express the same concept and where one word can carry different meanings. This is a very
deep issue which might receive a dedicated manuscript. The reader might need to read the rest of
this document to understand this small selection of synonymy and polysemy in the literature, but
it is important to illustrate the point before the more dense sections:

• a “note” can mean a pitch or an abstract construct with pitch and duration or a sound emitted
from a musical instrument or a specific note in a score or a music.

• The sampling rate (discussed above) is also called the sampling frequency or sample rate.
• A harmonic in a sound is most often a sinusoidal component which is in the harmonic series
of the fundamental frequency. Many times, however, the terms harmonic and component are
not distinguished. A harmonic can also be a note performed in an instrument by preventing
certain overtones (components).

• Harmony can refer to chords or to note sets related to chords or even to “harmony” in a more
general sense, as a kind of balance and consistency.

3 The toolbox contains a collection of Python scripts which:
• implement each of the equations;
• render music and illustrate the concepts;
• render each of the figures used in this article.

The documentation of the toolbox consists of this article, the Supporting Information documents and the scripts themselves.
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• A “tremolo” can mean different things: e.g. in a piano score, a tremolo is a fast alternation
of two notes (pitches) while in computer music theory it is (most often) an oscillation of
loudness.

We strived to avoid nomenclature clashes and the use of more terms than needed. Also, there
are many theoretical standpoints for understanding musical phenomena, which is an evidence that
most often there is not a single way to express or characterize musical structures. Therefore, in
this article, adjectives such as "often", "commonly" and "frequently" are abundant and they would
probably be even more numerous if we wanted to be pedantically precise. Some of these issues are
exposed when the context is convenient, such as in the first considerations of timbre.

2 CHARACTERIZATION OF THE MUSICAL NOTE IN DISCRETE-TIME AUDIO
In diverse artistic and theoretical contexts, music is conceived as constituted by fundamental
units referred to as notes, “atoms” that constitute music itself [30, 50, 51]. In a cognitive per-
spective, notes are understood as discernible elements that facilitate and enrich the transmission
of information through music [27, 40]. Canonically, the basic characteristics of a musical note
are duration, loudness, pitch and timbre [27]. All relations described in this section are imple-
mented in the file src/sections/2.py. The musical pieces related to this section are on the
directory src/pieces2/. [15]

2.1 Duration
The sample frequency fs is defined as the number of samples in each second of the discrete-
time signal. Let T = {ti } be an ordered set of real samples separated by δs = 1/fs seconds
(fs = 44.1kHz ⇒ δs = 1/44100 ≈ 0.023ms). A musical note of duration ∆ seconds can be expressed
as a sequence T ∆ with Λ = ⌊∆. fs ⌋ samples. That is, the integer part of the multiplication is
considered, and an error of at most δs missing seconds is admitted, which is usually fine for musical
purposes. Thus:

T ∆ = {ti }
⌊∆.fs ⌋−1
i=0 = {ti }

Λ−1
0 (1)

2.2 Loudness
Loudness4 is a perception of sonic intensity that depends on reverberation, spectrum and other
characteristics described in Section 3 [7]. One can achieve loudness variations through the power
of the wave [7]:

pow(T ) =

∑Λ−1
i=0 t2i
Λ

(2)

The final loudness is dependent on the amplification of the signal by the speakers. Thus, what
matters is the relative power of a note in relation to the others around it, or the power of a musical
section in relation to the rest. Differences in loudness are the result of complex psychophysical
phenomena but can often be reasoned about in terms of decibels, calculated directly from the
amplitudes through energy or power:

VdB = 10loд10
pow(T

′

)

pow(T )
(3)

4Loudness and “volume” are often used indistinctly. In technical contexts, loudness is used for the subjective perception of
sound intensity while volume might be used for some measurement of loudness or to a change in the intensity of the signal
by equipment. Accordingly, one can perceive a sound as loud or soft and change the volume by turning a knob. We will use
the term loudness and avoid the more ambiguous term volume.
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The quantity VdB has the decibel unit (dB). By standard, a “doubled loudness” is associated to a
gain of 10dB (10 violins yield double the loudness of a violin). A handy reference is 10dB for each
step in the musical intensity scale: pianissimo, piano, mezzoforte, forte and fortissimo. Other useful
references are dB values related to double amplitude or power:

t
′

i = 2ti ⇒ pow(T
′

) = 4pow(T ) ⇒ V
′

dB = 10loд104 ≈ 6dB (4)

t
′

i =
√
2ti ⇒ pow(T

′

) = 2pow(T ) ⇒ V
′

dB = 10loд102 ≈ 3dB (5)

and the amplitude gain for a sequence whose loudness has been doubled (10dB):

10loд10
pot(T

′

)

pot(T )
= 10 ⇒

⇒

⌊∆.fs ⌋−1∑
i=0

t
′2
i = 10

Λ−1∑
i=0

t2i =
Λ−1∑
i=0

(
√
10.ti )2

∴ t
′

i =
√
10ti ⇒ t

′

i ≈ 3.16ti

(6)

Thus, an amplitude increase by a factor slightly above 3 is required for achieving a doubled
loudness. These values are guides for increasing or decreasing the absolute values in sample
sequences. The conversion from decibels to amplitude gain (or attenuation) is straightforward:

A = 10
VdB
20 (7)

where A is the multiplicative factor that relates the amplitudes before and after amplification.

2.3 Pitch
The perception of sounds as ’higher’ or ’lower’ is usually thought in terms of pitch. An exponential
progression of frequency (fi = f .X i ,∀ X > 0, i ≥ 1) yields a linear variation of the pitch, a fact that
will be further exploited in Sections 3 and the Supporting Information document [17]. Accordingly,
a pitch is specified by a (fundamental) frequency f whose cycle has duration δ = 1/f . This duration,
multiplied by the sampling frequency fs , yields the number of samples per cycle: λ = fs .δ = fs/f .
For didactic reasons, let f divide fs and result λ integer. IfT f is a sonic sequence with fundamental
frequency f , then:

T f =
{
t
f
i

}
=

{
t
f
i+λ

}
=

{
t
f

i+ fsf

}
(8)

In the next section, frequencies f that do not divide fs will be considered. This restriction does
not imply a loss of the generality of this current section’s content.

2.4 Timbre
A spectrum is said harmonic if all the (sinusoidal) frequencies fn it contains are (whole number)
multiples of a fundamental frequency f0 (lowest frequency): fn = (n + 1)f0. From a musical
perspective, it is critical to internalize that energy in a component with frequency f is a sinusoidal
oscillation in the constitution of the sound in that frequency f . This energy, specifically concentrated
on f , is separated from other frequencies by the ear for further cognitive processes (this separation
is performed by diverse living organisms by mechanisms similar to what is achieved by the human
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Fig. 2. Basic musical waveforms: (a) the basic synthetic waveforms given by the Equations 10, 11, 12 and 13;
(b) real waveforms. Because of the period with ≈ 100 samples (λf ≈ 100), if fs = 44.1kHz the basic and oboe

waves have a fundamental frequency of f = fs
λf

≈ 44100
100 = 441 Hz, whatever the waveform is.

cochlea). The sinusoidal components are responsible for timbre5 qualities (including pitch). If
their frequencies do not relate by small integers, the sound is perceived as noisy or dissonant, in
opposition to sonorities with an unequivocally established fundamental. Accordingly, the perception
of absolute pitch relies on the similarity of the spectrum to the harmonic series. [40]

A sound with a harmonic spectrum has a wave period (wave cycle duration) which corresponds
to the inverse of the fundamental frequency. The trajectory of the wave inside the period is the
waveform and implies a specific combination of amplitudes and phases of the harmonic spec-
trum. Sonic spectra with minimal differences can result in timbres with crucial differences and,
consequently, distinct timbres can be produced using different waveforms.
High curvatures in the waveform hint that there is energy in the high frequencies. Figure 2

depicts a wave, labeled as “soundscape fragment”. The same figure also displays a sampled period
from an oboe note. One can notice from the curvatures: the oboe’s rich spectrum at high frequencies
and the greater contribution of the lower frequencies in the spectrum of the soundscape fragment.

The sequence R = {ri }
λf −1
0 of samples in a real sound (e.g. of Figure 2) can be taken as a basis for

a sound T f in the following way:

T f = {t
f
i } =

{
r(i %λf )

}
(9)

The resulting sound has the spectrum of the original waveform. As a consequence of the identical
repetitions, the spectrum is perfectly harmonic, without noise or variations of the components
which are typical of natural phenomena. This can be observed in Figure 3, which shows the spectrum
of the original oboe note and a note with the same duration, whose samples consist of the repetition
of the cycle on Figure 2.

5The timbre of a sound is a subjective and complex characteristic. The timbre can be considered by the temporal evolution of
energy in the spectral components that are harmonic or noisy (and by deviations of the harmonics from the ideal harmonic
spectrum). In addition, the word timbre is used to designate different things: one same note can have (be produced with)
different timbres, an instrument has different timbres, two instruments of the same family have, at the same time, the same
timbre that blends them into the same family, and different timbres as they are different instruments. Timbre is not only
about spectrum: culture and context alter our perception of timbre. [40]
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Fig. 3. Spectra of the sonic waves of a natural oboe note and obtained through a sampled period. The natural
sound has fluctuations in the harmonics and in its noise, while the sampled period note has a perfectly
harmonic (and static) spectrum.

The simplest case is the spectrum with only one frequency, which is a sinusoid, often regarded
as a “pure” oscillation (e.g. in terms of the simple harmonic motion). Let S f be a sequence whose
samples s fi describe a sinusoid with frequency f :

S f = {s
f
i } =

{
sin

(
2π

i

λf

)}
=

{
sin

(
2π f

i

fs

)}
(10)

where λf =
fs
f =

δf
δs

is the number of samples in the period.
Other artificial waveforms are used in music for their spectral qualities and simplicity. While the

sinusoid is an isolated node in the spectrum, any other waveform presents a succession of harmonic
components (harmonics). Standard waveforms are specified by Equations 10, 11, 12 and 13, and are
illustrated in Figure 2. These artificial waveforms are traditionally used in music for synthesis and
oscillatory control of variables. They are also useful outside musical contexts [34].

The sawtooth presents all the harmonics with a decreasing energy of−6dB/octave6. The sequence
of temporal samples can be described as:

Df =
{
d
f
i

}
=

{
2
i %(λf + 1)

λf
− 1

}
(11)

The triangular waveform has only odd harmonics falling with −12dB/octave:

T f =
{
t
f
i

}
=

{
1 −

����2 − 4
i %λf
λf

����} (12)

The square wave also has only odd harmonics but falling at −6dB/octave:

Q f =
{
q
f
i

}
=

{
1 for (i %λf ) < λf /2
−1 otherwise (13)

The square wave can be used in a subtractive synthesis with the purpose of mimicking a clarinet.
This instrument has only the odd harmonics and the square wave is convenient with its abundant
energy at high frequencies. The sawtooth is a common starting point for subtractive synthesis,
because it has both odd and even harmonics with high energy. In general, these waveforms are
appreciated as excessively rich in sharp harmonics, and attenuation by filtering on treble and
6In musical jargon, an “octave” means a frequency and twice such frequency (f and 2f ), or the bandwidth [f , 2f ].
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Fig. 4. Spectra of basic artificial waveforms. The isolated and exactly harmonic components of the spectra is
a consequence of the fixed period. The figure exhibits the spectra described in Section 2.4: the sawtooth is the
only waveform with a complete harmonic series (odd and even components); triangular and square waves
have the same components (odd harmonics), decaying at −12dB/octave and −6dB/octave , respectively; the
sinusoid consists of a unique node in the spectrum.

middle parts of the spectrum is especially useful for achieving a more natural and pleasant sound.
The relatively attenuated harmonics of the triangle wave makes it the more functional - among the
listed possibilities - to be used in the synthesis of musical notes without any further processing.
The sinusoid is often a nice choice, but a problematic one. While pleasant if not loud in a very
high pitch (above ≈ 500Hz it requires careful dosage), the pitch of a pure sinusoid is not accurately
detected by the human auditory system, particularly at low frequencies. Also, it requires a great
amplitude gain for an increase in loudness of a sinusoid if compared to other waveforms. Both
particularities are understood in the scientific literature as a consequence of the nonexistence of
pure sinusoidal sounds in nature [40]. The spectra of each basic waveform is illustrated in Figure 4.
This article has a Supporting Information document for describing the sinusoidal spectra of

samples sounds and exemplifies by means of these basic waveforms [17].

2.5 The basic note
In a nutshell, a sequence T of sonic samples separated by δa = 1/fs expresses a musical note with
a frequency of f Hertz7 and ∆ seconds of duration if, and only if, it has the periodicity λf = fs/f
and size Λ = ⌊ fs .∆⌋:

T f , ∆ = {ti %λf }
Λ−1
0 =

{
t
f

i %
(
fs
f

)
}Λ−1

0

(14)

Such note still does not have a timbre: it is necessary to choose a waveform for the samples ti to
have a value. Any waveform can be used to further specify the note, where λf =

fs
f is the number

of samples in each period. Let Lf ∈ {S f ,Q f ,T f ,Df ,Rf } (as given by Equations 10, 11, 12 and 13
and let Rfi be a sampled waveform) be the sequence that describes a period of the waveform with
duration δf = 1/f :

7Let f be such that it divides fs . As mentioned before, this limitation simplifies the exposition for now and will be overcome
in the next section.
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Lf =
{
l
f
i

}δf .fs−1
0

=
{
l
f
i

}λf −1
0

(15)

Thereafter, the sequence T for a note of duration ∆ and frequency f is:

T f , ∆ =
{
t
f
i

} ⌊fs .∆⌋−1
0

=

{
l
f

i %
(
fs
f

)
}Λ−1

0

(16)

2.6 Spatialization: localization and reverberation
A musical note is always spatialized (i.e. it is always produced within the ordinary three dimen-
sional physical space) even though it is not one of its four basic properties in canonical music
theory (duration, loudness, pitch and timbre). The consideration of this fact is the subject of the
spatialization knowledge field and practice8. A note has a source which has a three dimensional
position. This position is the spatial localization of the sound. It is often (modeled as) a single point
but can be a surface or a volume. The reverberation in the environment in which a sound occurs
is an important topic of spatialization. Both concepts, spatial localization and reverberation, are
widely valued by composers, audiophiles and the music industry [31].

2.6.1 Spatial localization. It is understood that the perception of sound localization occurs in
our nervous system mainly by three cues: the delay of the incoming sound (and its reflections
in the surfaces) between both ears, the difference of sound intensity at each ear and the filtering
performed by the human body, specially in the chest, head and ears [6, 23, 40].

Fig. 5. Detection of sound source localization: schema used to calculate the Interaural Time Difference (ITD)
and the Interaural Intensity Difference (IID).

An object placed at (x ,y), as in Figure 5, is distant of each ear by:

8By spatialization one might find both: 1) the consideration of cues in sound that derive from the environment, including
the localization of the listener and the sound source; 2) techniques to produce sound through various sources, such as
loudspeakers, singers and traditional musical instruments, for musical purposes. We focus in the first issue although issues
of the second are also tackled and they are obviously intermingled.
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d =

√(
x −

ζ

2

)2
+ y2

d ′ =

√(
x +

ζ

2

)2
+ y2

(17)

where ζ is the distance between the ears, known to be ζ ≈ 21.5cm in an adult human. The cues for
the sonic localization are not easy to calculate, but, in a very simplified model, useful for musical
purposes, straightforward calculations result in the Interaural Time Difference:

ITD =
d ′ − d

vsound at air ≈ 343.2
seconds (18)

and in the Interaural Intensity Difference:

I ID = 20 log10

(
d

d ′

)
decibels (19)

I IDa =
d
d ′ can be used as a multiplicative constant to the right channel of a stereo sound signal

together with ITD [23]:

ΛIT D =

⌊
d ′ − d

343, 2
fs

⌋
I IDa =

d

d ′{
t ′
(i+ΛIT D )

}Λ+ΛIT D−1

ΛIT D
= {I IDa .ti }

Λ−1
0{

t ′i
}ΛIT D−1
0 = 0

(20)

where, where {t ′i } are samples of the wave incident in the left ear, {ti } are samples for the right ear,
and ΛIT D = ⌊ITD. fs ⌋. If ΛIT D < 0, it is necessary to change ti by t ′i and use Λ′

IT D = |ΛIT D | and
I ID ′

a = 1/I IDa .
Spatial localization depends considerably on other cues. By using only ITD and IID it is possible

to specify solely the horizontal angle (azimuthal) θ given by:

θ = arctan(y,x) (21)
with x ,y as presented in Figure 5. Notice that the same pair of ITD and IID (as defined in Equations 18
and 19) is related to all the points in a vertical circle parallel to the head, i.e. the source can have any
horizontal component inside the circle. Such a circle is called the "cone of confusion". In general,
one can assume that the source is in the same horizontal plane as the listener and at its front
(because humans are prone to hearing frontal and horizontal sources). Even in such cases, there
are other important cues for sound localization. Consider the acoustic shadow depicted in Figure 5:
for lateral sources the inference of the azimuthal angle is especially dependent on the filtering of
frequencies by the head, pinna (outer ear) and torso. Also, low frequencies diffract and arrive to
the opposite ear with a greater ITD. The complete localization, including height and distance of
a sound source, is given by the Head Related Transfer Function (HRTF). There are well known
open databases of HRTFs, such as CIPIC, and it is possible to apply such transfer functions in a
sonic signal by convolution (see Equation 35). Each human body has its own filtering and there are
techniques to generate HRTFs to be universally used. [2, 4, 6, 23, 31]
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2.6.2 Reverberation. The reverberation results from sound reflections and absorption by the
environment (e.g. a room) surface where a sound occurs. The sound propagates through the air with
a speed of ≈ 343.2m/s and can be emitted from a source with any directionality pattern. When a
sound front encounters a surface there are: 1) inversion of the propagation speed component normal
to the surface; 2) energy absorption, especially in high frequencies. The sonic waves propagate
until they reach inaudible levels (and further but then can often be neglected). As a sonic front
reaches the human ear, it can be described as the original sound, with the last reflection point
as the source, and the absorption filters of each surface it has reached. It is possible to simulate
reverberations that are impossible in real systems. For example, it is possible to use asymmetric
reflections with relation to the axis perpendicular to the surface, to model propagation in a space
with more than three dimensions, or consider a listener located in various positions.

There are reverberation models less related to each independent reflection and that explores
valuable cues to the auditory system. In fact, reverberation can be modeled with a set of two
temporal and two spectral regions [46]:

• First period: ’first reflections’ are more intense and scattered.
• Second period: ’late reverberation’ is practically a dense succession of indistinct delays with
exponential decay and statistical occurrences.

• First band: the bass has some resonance bandwidths relatively spaced.
• Second band: mid and treble have a progressive decay and smooth statistical fluctuations.

Smith III states that usual concert rooms have a total reverberation time of ≈ 1.9 seconds, and
that the period of first reflections is around 0.1s . With these values, there are perceived wave
fronts which propagate for 652.08m before reaching the ear. In addition, sound reflections made
after propagation for 34.32m have incidences less distinct by hearing. These first reflections are
particularly important to spatial sensation. The first incidence is the direct sound, described by
ITD and IID e.g. as in Equations 18 and 19. Assuming that each one of the first reflections, before
reaching the ear, will propagate at least 3− 30m, depending on the room dimensions, the separation
between the first reflections is 8 − 90ms . Also, it is experimentally verifiable that the number
of reflections increases with the square of time. A discussion about the use of convolutions and
filtering to favor the implementation of these phenomena is provided in Section 3.6, particularly in
the paragraphs about reverberation. [46]

2.7 Musical usages
Once the basic note is defined, it is didactically convenient to buildmusical structures with sequences
based on these particles. The sum of the amplitudes of N sequences with same size Λ results in the
overlapped spectral contents of each sequence, in a process called mixing:

{ti }
Λ−1
0 =

{
N−1∑
k=0

tk,i

}Λ−1

0

(22)

Figure 6 illustrates this overlapping process of discretized sound waves, each with 100 sam-
ples. If fs = 44.1kHz, the frequencies of the sawtooth, square and sine wave are, respectively:
fs

100/2 = 882Hz, fs
100/4 = 1764Hz and fs

100/5 = 2205Hz. The duration of each sequence is very short
fs=44.1kHz

100 ≈ 2ms . One can complete the sequence with zeroes to sum (mix) sequences with different
sizes.

The mixed notes are generally separated by the ear according to the physical laws of resonance
and by the nervous system [40]. This process of mixing musical notes results in musical harmony,
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Fig. 6. Mixing of three sonic sequences. The amplitudes are directly summed sample-by-sample.

where intervals between frequencies and chords of simultaneous notes guide subjective and abstract
aspects of music appreciation [42] and are addressed in the Supporting Information document [17].

Sequences can be concatenated in time. If the sequences {tk,i }Λk−10 represent musical notes, their
concatenation in a unique sequence T is a simple melodic sequence (or melody):

T = {ti }
∑
∆k−1

0 ={tl,i }
∑
∆k−1

0 ,

l smallest integer : Λl > i −
l−1∑
j=0

Λj
(23)

This mechanism is illustrated in Figure 7 with the same sequences of Figure 6. Although the
sequences are short for the usual sample rates, it is easy to visually observe the concatenation of
sonic sequences. In addition, each note has a duration larger than 100ms if fs < 1kHz (but need to
oscillate faster to yield audible frequencies).

Fig. 7. Concatenation of three sounds.

The musical piece reduced-fi explores the temporal juxtaposition of notes, resulting in a homo-
phonic piece. The vertical principle (mixing) is demonstrated at the sonic portraits, static sounds
with peculiar spectrum. [15]

With the basic musical note in discrete-time audio carefully described, the next section develops
the temporal evolution of its contents as in glissandi and intensity envelopes. Filtering of spectral
components and noise generation complements the musical note as a self-contained unit. The
Supporting Information Document [17] is dedicated to the organization of these notes e.g. by using
metrics and trajectories, with regards to traditional music theory.
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Fig. 8. Search (lookup) in a reference table (lookup table or LUT) to synthesize sounds at different frequencies

using a unique waveform with high resolution. Each i-th sample t fi of a sound with frequency f is related to

the samples in the table L̃ = {̃li }
Λ̃−1
0 by t fi = l̃

⌊
i f Λ̃

fs

⌋
% Λ̃

where fs is the sampling rate.

3 VARIATION IN THE BASIC NOTE
The basic digital music note defined in Section 2 has the following parameters: duration, pitch,
intensity (loudness) and timbre. This is a useful and paradigmatic model, but it does not exhaust all
the aspects of a musical note. First of all, characteristics of the note change along the note itself [7].
For example, a 3s piano note has intensity with an abrupt rise at the beginning and a progressive
decay, has spectral variations with harmonics decaying and some others emerging along time.
These variations are not mandatory, but they are used in sound synthesis for music because they
reflect how sounds appear in nature. This is considered so important that there is a rule of thumb:
to make a sound that incites interest by itself, arrange internal variations on it [40]. To explore
all the ways by which variations occur within a note is out of the scope of any work, given the
sensibility of the human ear and the complexity of human sound cognition. In this section, primary
resources are presented to produce variations in the basic note. It is worthwhile to recall that all the
relations in this and other sections are implemented in Python and published in public domain. All
relations described in this section are implemented in the file src/sections/3.py. The musical
pieces related to this section are on the directory src/pieces3/. [15]

3.1 Lookup table
The Lookup Table (LUT) is an array for indexed operations which substitutes continuous and
repetitive calculations. It is used to reduce computational complexity and for employing functions
without calculating them directly, e.g. from sampled data or hand picked values. In music its usage
simplifies many operations and enables the use a single wave period to synthesize sounds in the
whole audible spectrum, with any waveform.

Let Λ̃ be the wave period in samples and L̃ =
{
l̃i

}Λ̃−1
0

the sample sequence with the waveform.

A sequence T f , ∆ with samples of a sound with frequency f and duration ∆ can be obtained by
means of L̃:

T f , ∆ =
{
t
f
i

} ⌊ fs .∆ ⌋−1

0
=

{
l̃γi%Λ̃

}Λ−1
0
, where γi =

⌊
i f

Λ̃

fs

⌋
(24)
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In other words, with the right LUT indexes (γi%Λ̃) it is possible to synthesize sounds at any
frequency. Figure 8 illustrates the calculation of a sample ti from

{
l̃i

}
for f = 200Hz, Λ̃ = 128 and

adopting the sample rate of fs = 44.1kHz. Though this is not a practical configuration (as discussed
below), it allows for a graphical visualization of the procedure.

The calculation of the integer γi introduces noise which decreases as Λ̃ increases. In order to use
this calculation in sound synthesis, with fs = 44.1kHz, the standard guidelines suggest the use of
Λ̃ = 1024 samples, yielding a noise level of ≈ −60dB. Larger tables might be used to achieve sounds
with a greater quality. Also, a rounding or interpolation method can be used, but we advocate the
use of a larger table since it does not introduce relevant computation overhead. [20]

The expression defining the variable γi can be understood as fs being added to i at each second.
If i is divided by the sample frequency, i

fs
is incremented by 1 at each second. Multiplied by the

period, it results in i Λ̃fs , which covers the period in one second. Finally, with frequency f it results in

i f Λ̃
fs

which completes f periods Λ̃ in 1 second, i.e. the resulting sequence presents the fundamental
frequency f .

There are important considerations here: it is possible to use practically any frequency f . Limits
exist only at low frequencies when the size of table Λ̃ is not sufficient for the sample rate fs . The
lookup procedure is virtually costless and replaces calculations by simple indexed searches (what
is generally understood as an optimization process). Unless otherwise stated, this procedure will
be used along all the following discussions for every applicable case. LUTs are broadly used in
computational implementations for music, and are known also as wavetables. A classical usage of
LUTs is known asWavetable Synthesis, which generally consists of many LUTs used together to
generate a quasi-periodic musical note [3, 9].

3.2 Incremental variations of frequency and intensity
As stated by the (Weber and) Fechner law [10], human perception holds a logarithmic relation to
stimulus. That is to say, the exponential progression of a stimulus is perceived as linear. For didactic
reasons, and given its use in AM and FM synthesis (Section 3.5), linear variation is discussed first.
Consider a note with duration ∆ = Λ

fs
, in which the frequency f = fi varies linearly from f0 to

fΛ−1. Thus:

F = { fi }
Λ−1
0 =

{
f0 + (fΛ−1 − f0)

i

Λ − 1

}Λ−1
0

(25)

∆γi =
Λ̃

fs
fi ⇒ γi =

⌊
i∑
j=0

Λ̃

fs
fj

⌋
γi =

⌊
i∑
j=0

Λ̃

fs

[
f0 + (fΛ−1 − f0)

j

Λ − 1

] ⌋ (26)

{
t
f0, fΛ−1
i

}Λ−1
0
=

{
l̃γi%Λ̃

}Λ−1
0

(27)

where ∆γi = fi
Λ̃
fs

is the LUT increment between two samples given the sound frequency of the first
sample. There is a general rule to be noticed here: when a sound has variations in the fundamental
frequency, one should account for them in the LUT indexing. The resulting indexes can be found
by a cumulative sum of each indexing displacement. The equations for linear pitch transition are:
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F = { fi }
Λ−1
0 =

{
f0

(
fΛ−1
f0

) i
Λ−1

}Λ−1

0

(28)

∆γi =
Λ̃

fs
fi ⇒ γi =

⌊
i∑
j=0

Λ̃

fs
fj

⌋
γi =

⌊
i∑
j=0

f0
Λ̃

fs

(
fΛ−1
f0

) j
Λ−1

⌋ (29)

{
t
f0, fΛ−1
i

}Λ−1
0
=

{
l̃γi%Λ̃

}Λ−1
0

(30)

Fig. 9. Intensity transitions for different values of α (see Equations 31 and 32).

The term i
Λ−1 covers the interval [0, 1] and it is possible to raise it to a power α ≥ 0 in such a way

that the beginning of the transition will be smoother or steeper. This procedure is especially useful
for energy variations with the purpose of changing the loudness9. Thus, for amplitude variations:

{ai }
Λ−1
0 =

{
a0

(
aΛ−1
a0

)( i
Λ−1 )

α }Λ−1

0

=
{
(aΛ−1)

( i
Λ−1 )

α }Λ−1
0

(31)

where a0 is the initial amplitude factor and aΛ−1 is an amplitude factor to be reached at the end of
the transition. Applying the loudness transition to a sonic sequence T :

T
′

= T ⊙ A = {ti .ai }
Λ−1
0 =

{
ti .(aΛ−1)(

i
Λ−1 )

α }Λ−1
0

(32)

It is often convenient to have a0 = 1 to start a new sequence with the original amplitude and
then progressively change it. If α = 1, the amplitude variation follows the exponential progression
that is related to the linear variation of loudness. Figure 9 depicts transitions between values 1 and
2 and for different values of α , a gain of ≈ 6dB as given by Equation 4.
Special attention should be given while considering a = 0. In Equation 31, a0 = 0 results

in a division by zero and if aΛ−1 = 0, there will be a multiplication by zero. Both cases make
the procedure useless, once a ratio of any number in relation to zero is not well defined for
9See Section 2.2 for considerations about loudness, amplitudes and decibels.
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our purposes. It is possible to solve this dilemma choosing a number that is small enough like
−80dB ⇒ a = 10

−80
20 = 10−4 as the minimum loudness for a fade in (a0 = 10−4) or for a fade out

(aΛ−1 = 10−4). A linear fade can be used then to reach zero amplitude, if needed. Another common
solution is the use of the quartic polynomial term x4, as it reaches zero without these difficulties
and gets reasonably close to the curve with α = 1 as it departs from zero [9].

Using Equations 7 and 32 to specify a transition of VdB decibels:

T
′

=
{
ti10

VdB
20 ( i

Λ−1 )
α }Λ−1

0
(33)

in the general case of amplitude variations following a geometric progression. The greater the
value of α , the smoother the sound introduction and more intense its end. α > 1 results in loudness
transitions commonly called slow fade, while α < 1 results in fast fade [22].

For linear amplification – but not linear perception – it is sufficient to use an appropriate sequence
{ai }:

ai = a0 + (aΛ−1 − a0)
i

Λ − 1
(34)

The linear transitions will be used for AM and FM synthesis, while exponential transitions are
proper for tremolos and vibratos, as developed in Section 3.5. A non-oscillatory exploration of
these variations is in the music piece ParaMeter Transitions [15].

3.3 Application of digital filters
This subsection is limited to a description of sequences processing by convolution and difference
equations, and immediate applications, as a thorough discussion of filtering is beyond the scope
of this study10. With this procedure it is possible to achieve reverberators, equalizers, delays, to
name a few of a variety of other filters for sound processing used to obtain musical/artistic effects.
Filter employment can be part of the synthesis process or made subsequently as part of processes
commonly referred to as “acoustic/sound treatment”.

3.3.1 Convolution and finite impulse response (FIR) filters. Filters applied by means of convolution
are known by the acronym FIR (Finite Impulse Response) and are characterized by having a finite
sample representation. This sample representation is called ‘impulse response’ {hi }. FIR filters
are applied in the time domain by means of convolution of the sound with the respective impulse
response of the filter. For the purposes of this work, convolution of T with H is defined as:{

t ′i
}Λt+Λh−2 = Λt ′−1
0 ={(T ∗ H )i }

Λt ′−1
0 = {(H ∗T )i }

Λt ′−1
0

=

{min(Λh−1,i)∑
j=0

hjti−j

}Λt ′−1

0

=


i∑

j=max (i+1−Λh,0)
tjhi−j


Λt ′−1

0

(35)

where ti = 0 for the samples not given. In other words, the sound {t ′i }, resulting from the convolution
of {ti }, with the impulse response {hi }, has each i-th sample ti overwritten by the sum of its last
Λh samples {ti−j }Λh−1j=0 multiplied one-by-one by samples of the impulse response {hi }Λh−10 . This
procedure is illustrated in Figure 10, where the impulse response {hi } is in its retrograde form, and
10The implementation of filters encompasses an area of recognized complexity, with dedicated literature and software [34, 45].
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Fig. 10. Graphical interpretation of convolution. Each resulting sample is the sum of the previous samples of
a signal, with each one multiplied by the retrograde of the other sequence.

t ′12 and t
′
32 are two samples calculated using the convolution given by (T ∗H )i = t ′i . The final signal

always has the length of Λt + Λh − 1 = Λt ′ . It is also possible to apply the filter by multiplying the
Fourier coefficients of both the sound and the impulse response, and then performing the inverse
Fourier transform [34]. This application of the filter in the frequency domain is usually much faster
especially when using a Fast Fourier Transform (FFT) routine.
The impulse response can be provided by physical measurement or by pure synthesis. An

impulse response for a reverberation, for example, can be obtained by recording the sound of
the environment when someone triggers a click which resembles an impulse, or obtained by a
sinusoidal sweep whose Fourier transform approximates its frequency response. Both are impulse
responses which, properly convoluted with the sonic sequence, result in the same sound with a
reverberation that resembles the original environment where the measurement was made [9].
The Fourier transform of an impulse response of a FIR filter is an even and real envelope.

Convoluted with a sound (in the time or frequency domain), it performs the frequency filtering
specified by the envelope. The greater the number of samples, the higher the envelope resolution
and the computational complexity, which should often be weighted, for convolution is expensive.
An important property is the time shift caused by convolution with a shifted impulse. Despite

being computationally expensive, it is possible to create delay lines by means of a convolution with
an impulse response that has an impulse for each intended re-incidence of the sound. Figure 11
shows the shift caused by convolution with an impulse. Depending on the density of the impulses,
the result is perceived as rhythm (from an impulse for each couple of seconds to about 20 impulses
per second) or as pitch (from about 20 impulses per second and higher densities). In the latter case,
the process is considered e.g. granular synthesis, reverberation or equalization.

3.3.2 Infinite impulse response (IIR) filters. This class of filters, known by the acronym IIR, is
characterized by having an infinite time representation, i.e. the impulse response does not converge
to zero. Its application is usually made by the following equation:
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Fig. 11. Convolution with different densities of impulses: shifting (a), delay lines (b) and granular synthesis (c).
The vertical axis is related to amplitude although one should keep in mind that each subplot has two or three
displaced signals.

t ′i =
1
b0

(
J∑
j=0

ajti−j +
K∑
k=1

bkt
′
i−k

)
(36)

The variables may be normalized: a′j =
aj
b0

and b ′k =
bk
b0

⇒ b ′0 = 1. Equation 36 is called ‘difference
equation’ because the resulting samples

{
t ′i
}
are given by weighted differences between original

samples {ti } and previous ones in the resulting signal
{
t ′i−k

}
.

There are many methods and tools to obtain IIR filters. The text below lists a selection for
didactic purposes and as a reference. They are well behaved filters and their main characteristics
are described in Figure 12. For filters of simple order, the cutoff frequency fc is where the filter
performs an attenuation of −3dB ≈ 0.707 of the original amplitude. For band-pass and band-reject
(or ’notch’) filters, this attenuation has two specifications: fc (in this case, the ‘center frequency’)
and bandwidth bw . In both frequencies fc ± bw there is an attenuation of −3dB ≈ 0.707 of the
original amplitude. There is sound amplification in band-pass and band-reject filters when the
cutoff frequency is low and the bandwidth is large enough. In trebles, these filters present only a
deviation of the expected profile, extending the envelope to the bass.

It is possible to apply filters successively in order to obtain filters with other frequency responses.
Another possibility is to use a biquad ’filter recipe’11 or the calculation of Chebichev filter coeffi-
cients12. Both alternatives are explored by [45, 47], and by the collection of filters maintained by
the Music-DSP community of the Columbia University [8, 34].
11Short for ’biquadratic’: its transfer function has two poles and two zeros, i.e. its first direct form consists of two quadratic
polynomials in the fraction: H(z) = a0+a1 .z−1+a2 .x−2

1−b1 .z−1−b2 .z−2
.

12Butterworth and Elliptical filters can be considered as special cases of Chebichev filters [34, 45].
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Fig. 12. Moduli for the frequency response (a), (b), (c) and (d) for IIR filters of Equations 37, 38, 40 and 41
respectively, considering different cutoff frequencies, center frequencies and bandwidth.

(1) Low-pass with a simple pole, module of the frequency response in the upper left corner of
Figure 12. The general equation has the cutoff frequency fc ∈ (0, 12 ), fraction of the sample
frequency fs in which an attenuation of 3dB occurs. The coefficients a0 and b1 of the IIR filter
are given by x ∈ [e−π , 1]:

x = e−2π fc

a0 = 1 − x

b1 = x

(37)

(2) High-pass filter with a simple pole, module of its frequency responses at the upper right
corner of Figure 12. The general equation with cutoff frequency fc ∈ (0, 12 ) is calculated by
means of x ∈ [e−π , 1]:

x = e−2π fc

a0 =
x + 1
2

a1 = −
x + 1
2

b1 = x

(38)

(3) Notch filter. This filter is parametrized by a center frequency fc and bandwidth bw , both
given as fractions of fs , therefore f , bw ∈ (0, 12 ). Both frequencies fc ± bw have ≈ 0.707 of
the amplitude, i.e. an attenuation of 3dB. The auxiliary variables K and R are:

R = 1 − 3bw

K =
1 − 2R cos(2π fc ) + R2

2 − 2 cos(2π fc )
(39)
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The band-pass filter in the lower left corner of Figure 12 has the following coefficients:

a0 = 1 − K

a1 = 2(K − R) cos(2π fc )

a2 = R2 − K

b1 = 2R cos(2π fc )

b2 = −R2

(40)

The coefficients of band-reject filter, depicted in the lower right of Figure 12, are:

a0 = K

a1 = −2K cos(2π fc )
a2 = K

b1 = 2R cos(2π fc )

b2 = −R2

(41)

3.4 Noise
Sounds without an easily recognizable pitch are generally called noise [27]. They are important
musical sounds, as noise is present in real notes, e.g. emitted by a violin or a piano. Furthermore,
many percussion instruments do not exhibit an unequivocal pitch and their sounds are generally
regarded as noise [40]. In electronic music, including electro-acoustic and dance genres, noise has
diverse uses and frequently characterizes the music style [9].
The absence of a definite pitch is due to the lack of a perceptible harmonic organization in the

sinusoidal components of the sound. Hence, there are many ways to generate noise. The use of
random values to generate the sound sequence T is a trivial method but not outstandingly useful
because it tends to produce white noise with little or no variations [9]. Another possibility to
generate noise is by using the desired spectrum, from which it is possible to perform the inverse
Fourier transform. The spectral distribution should be done with care: if phases of components
present prominent correlation, the synthesized sound will concentrate energy in some portions of
its duration.
Some noises with static spectra are listed below. They are called colored noise since they are

associated with colors for many reasons. Figure 13 shows the spectral profile and the corresponding
sonic sequence side-by-side. All five noises were generated with the same phase for each component,
making it straightforward to observe the contributions of different parts of the spectrum.

• The white noise has this name because its energy is distributed equally among all frequencies,
such as the white color. It is possible to obtain white noise with the inverse transform of the
following coefficients:

fmin ≈ 15Hz

fi = i
fs
Λ
, i ≤

Λ

2
, i ∈ N

ci = 0 , ∀ i : fi < fmin

ci = e j .x , x random ∈ [0, 2π ] , ∀ i : fmin ≤ fi < f ⌈Λ/2−1⌉

cΛ/2 = 1 , if Λ even

ci = c
∗
Λ−i , for i >

Λ

2

(42)
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Fig. 13. Colors of noise generated by Equations 42, 43, 44, 45 and 46: spectrum and example waveforms.

The minimum frequency fmin is chosen considering that a sound component with frequency
below ≈ 20Hz is usually inaudible. The exponential e j .x is a way to obtain unitary module
and random phase for the value of ci . In addition, cΛ/2 is always real (as discussed in the
previous section).
Other noises can be made by a similar procedure. In the following equations, the same
coefficients are used and weighted using αi .

• The pink noise is characterized by a decrease of 3dB per octave. This noise is useful for
testing electronic devices, being prominent in nature [40].

αi =
(
10−

3
20

) log2 ( fi
fmin

)
ci = e j .xαi , x random ∈ [0, 2π ] , ∀ i : fmin ≤ fi < f ⌈Λ/2−1⌉

cΛ/2 = αΛ/2 , if Λ even

(43)
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• The brown noise (also Brownian noise) received this name after Robert Brown, who described
the Brownian movement13. What characterizes brown noise is the decrease of 6dB per octave,
with αi in Equations 43 being:

αi = (10−
6
20 )

log2
(

fi
fmin

)
(44)

• In the blue noise there is a gain of 3dB per octave in a band limited by the minimum frequency
fmin and the maximum frequency fmax. Therefore (also based on the Equations 43):

αi = (10
3
20 )

log2
(

fi
fmin

)
ci = 0 , ∀ i : fi < fmin or fi > fmax

(45)

• The violet noise is similar to the blue noise, but its gain is 6dB per octave:

αi = (10
6
20 )

log2
(

fi
fmin

)
(46)

• The black noise has higher losses than 6dB for octave:

αi = (10−
β
20 )

log2
(

fi
fmin

)
, β > 6 (47)

• The gray noise is defined as a white noise subject to one of the ISO-audible curves. Such
curves are obtained by experiments and are imperative to obtain αi . An implementation of
ISO 226, which is the last established revision of these curves, is in the MASS toolbox as an
auxiliary file [15].

This subsection discussed only noises with static spectra. There are also characterizations for
noises with a dynamic spectrum along time, and noises which are fundamentally transient, like
clicks and chirps. The former are easily modeled by an impulse relatively isolated, while a chirps is
not in fact a noise, but a fast scan of some given frequency band [9].

3.5 Tremolo and vibrato, AM and FM
A vibrato is a periodic variation of pitch and a tremolo is a periodic variation of loudness14. A
vibrato can be achieved by:

γ ′
i =

⌊
i f ′

Λ̃M

fs

⌋
(48)

t ′i = m̃γ ′
i %Λ̃M

(49)

fi = f

(
f + µ

f

)t ′i
= f .2t

′
i
ν
12 (50)

13Although its origin is disparate with its color association, this noise became established with this specific name in musical
contexts. Anyway, this association can be considered satisfactory once violet, blue, white and pink noises are more strident
and associated with more vivid colors [9, 22].
14The jargon may be different in other contexts. For example, in piano music, a tremolo is a vibrato in the classification
used here. The definitions used in this document are usual in contexts regarding music theory and electronic music, i.e.
they are based on a broader literature than the one used for a specific instrument, practice or musical tradition [27, 42].
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∆γi =
Λ̃

fs
fi ⇒ γi =

⌊
i∑
j=0

Λ̃

fs
fj

⌋
=

⌊
i∑
j=0

Λ̃

fs
f

(
f + µ

f

)t ′j ⌋
=

⌊
i∑
j=0

Λ̃

fs
f .2t

′
j
ν
12

⌋ (51)

T f ,vbr (f ′, ν ) =
{
t
f ,vbr (f ′, ν )
i

}Λ−1
0
=

{̃
lγi% Λ̃

}Λ−1
0

(52)

Fig. 14. Spectrogram of a sound with a sinusoidal vibrato of 3Hz and one octave of depth in a 1000Hz
sawtooth wave (fs = 44.1kHz). The color bar is in decibels.

For the proper realization of the vibrato, it is important to pay attention to both tables and
sequences. Table M̃ with length Λ̃M and the sequence of indices γ ′

i make the sequence t ′i which is
the oscillatory pattern in the frequency while table L̃ with length Λ̃ and the sequence of indices γi
make ti which is the sound itself. Variables µ and ν quantify the vibrato intensity:

• µ is a direct measure of how many Hertz are involved in the upper limit of the oscillation,
while

• ν is the direct measure of howmany semitones (or half steps) are involved in the oscillation (2ν
is the number of semitones between the upper and lower peaks of the frequency oscillations
of the sound {ti }).

It is convenient to use ν = log2
f +µ
f in this case because the maximum frequency increase is not

equivalent to the maximum frequency decrease. The maximum semitone/pitch displacement is the
invariant quantity and is called ’vibrato depth’. Most often, a vibrato depth is specified in semitones
or cents (one cent = 1

100 of a semitone).
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Figure 14 is the spectrogram of an artificial vibrato in a note with 1000Hz, in which the pitch
deviation reaches one octave above and one below. Practically any waveform can be used to
generate a sound and the vibrato oscillatory pattern, with virtually any oscillation frequency and
pitch deviation. Such oscillations with precise waveforms and arbitrary amplitudes are not possible
in traditional music instruments, and thus it introduces novelty in the artistic possibilities.
Tremolo is similar: f ′, γ ′

i and t
′
i remain the same. The amplitude sequence to be multiplied by

the original sequence ti is:

ai = 10
VdB
20 t ′i = a

t ′i
max (53)

and, finally:

T tr (f ′) =
{
t
tr (f ′)
i

}Λ−1
0
= {ti .ai }

Λ−1
0 =

{
ti .10t

′
i
VdB
20

}Λ−1
0
=

{
ti .a

t ′i
max

}Λ−1
0

(54)

whereVdB is the oscillation depth in decibels and amax = 10
VdB
20 is the maximum amplitude gain. The

measurement in decibels is suitable because the maximum increase in amplitude is not equivalent
to the maximum decrease, while the difference in decibels is preserved. Notice that the tremolo
is applied to a preexisting sound and thus the characteristics of the tremolo do not need to be
accounted for when synthesizing such sound (if it is synthesized) in contrast with making a sound
with a vibrato.

Figure 15 shows the amplitude of the sequences {ai }Λ−10 and {t ′i }
Λ−1
0 for three oscillations of a

tremolo with a sawtooth waveform. The curvature is due to the logarithmic progression of the
intensity. The tremolo frequency is 1.5Hz if fs = 44.1kHz because duration = imax=82000

fs
= 2s ⇒

3oscillations
2s = 1.5 oscillations per second.

The musical piece Shakes and Wiggles explores these possibilities given by tremolos and vibratos,
both used in conjunction and independently (tremolos and vibratos occur many times together in a
conventional music instrument), with different frequencies f ′, depths (ν and VdB ), and progressive
variations of parameters. Aiming at a qualitative appreciation, the piece also develops a comparison
between vibratos and tremolos in logarithmic and linear scales. [15]

The proximity of f ′ to 20Hz generates roughness in both tremolos and vibratos. This roughness
is largely appreciated both in traditional classical music and current electronic music, especially in
the Dubstep genre. Roughness is also generated by spectral content that produces beating [35, 36].
The sequence Bela Rugosi explores this roughness threshold with concomitant tremolos and vibratos
at the same voice, with different intensities and waveforms. [15]
As the frequency increases further, these oscillations no longer remain noticeable individually.

In this case, the oscillations become audible as pitch. Then, f ′, the depths (ν and VdB ), and the
waveform together change the audible spectrum of original sound T in different ways for tremolos
and vibratos. They are called AM (Amplitude Modulation) and FM (Frequency Modulation) synthesis,
respectively. These techniques are well known, with applications in synthesizers like Yamaha DX7,
and even with applications outside music, as in telecommunications for data transfer by means of
electromagnetic waves (e.g. AM and FM radios).
For musical goals, it is possible to understand FM based on the case of sines and, when other

waveforms are employed, to consider the signals by their respective Fourier components (i.e. sines
as well). The FM synthesis performed with a sinusoidal vibrato of frequency f ′ and depth µ in a
sinusoidal sound T with frequency f generates bands centered around f and far from each other
by f ′:
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Fig. 15. Tremolo with a depth of VdB = 12dB, with a sawtooth waveform as its oscillatory pattern, with
f ′ = 1.5Hz in a sine of f = 40Hz (fs = 44.1kHz).

{t ′i } =

{
cos

[
f .2π

i

fs − 1
+ µ .sen

(
f ′.2π

i

fs − 1

)]}
=

=

{
+∞∑

k=−∞

Jk (µ) cos
[
f .2π

i

fs − 1
+ k . f ′.2π

i

fs − 1

]}
=

=

{
+∞∑

k=−∞

Jk (µ) cos
[
(f + k . f ′).2π

i

fs − 1

]} (55)

where

Jk (µ) =
2
π

∫ π
2

0

[
cos

(
k
π

2
+ µ . sinw

)
.cos

(
k
π

2
+ k .w

)]
dw , k = k%2 , k ∈ N (56)

is the Bessel function [44, 47] and specifies the amplitude of each component in an FM synthesis.
In these equations, the frequency variation introduced by {t ′i } does not follow the geometric pro-

gression that yields linear pitch variation, but reflects Equation 25. The result of using Equations 50
for FM is described in the Appendix D of [12], where the spectral content of the FM synthesis is
calculated for oscillations in the logarithmic scale. In fact, the simple and attractive FM behavior is
usually observed with linear oscillations, such as in Equation 55, which yield less strident and less
noisy sounds.

For the amplitude modulation (AM):

{t ′i }
Λ−1
0 = {(1 + ai ).ti }Λ−10 =

{[
1 +M . sin

(
f ′.2π

i

fs − 1

)]
.P . sin

(
f .2π

i

fs − 1

)}Λ−1
0
=

=

{
P . sin

(
f .2π

i

fs − 1

)
+
P .M

2

[
sin

(
(f − f ′).2π

i

fs − 1

)
+ sin

(
(f + f ′).2π

i

fs − 1

)]}Λ−1
0

(57)
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The resulting sound is the original one together with the reproduction of its spectral content
below and above with a displacement of f ′. Again, this is achieved by variations in the linear scale
(of the amplitude). The spectrum of an AM performed with oscillations in the logarithmic amplitude
scale is described in Appendix D of [12]. The sequence T , with frequency f , called ‘carrier’, is
modulated by f ′, called ’modulator’. In FM and AM jargon, µ and amax = 10

VdB
20 are ‘modulation

indexes’. The following equations are defined for the oscillatory pattern of the modulator sequence
{t ′i }:

γ ′
i =

⌊
i f ′

Λ̃M

fs

⌋
(58)

t ′i = m̃γ ′
i %Λ̃M

(59)

In FM, the modulator {t ′i } is applied to the carrier {ti } by:

fi = f + µ .t ′i (60)

∆γi = fi
Λ̃

fs
⇒ γi =

⌊
i∑
j=0

fj
Λ̃

fs

⌋
=

⌊
i∑
j=0

Λ̃

fs
(f + µ .t ′j )

⌋
(61)

T f , FM (f ′, µ) =
{
t
f , FM (f ′, µ)
i

}Λ−1
0
=

{
l̃γi% Λ̃

}Λ−1
0

(62)

where l̃ is the waveform period with a length of Λ̃ samples, used for the carrier signal.
To perform AM, the signal {ti } needs to be modulated with {t ′i } using the following equations:

ai = 1 + α .t ′i (63)

T f , AM (f ′, α ) =
{
t
f , AM (f ′, α )
i

}Λ−1
0
= {ti .ai }

Λ−1
0 = {ti .(1 + α .t ′i )}

Λ−1
0 (64)

3.6 Musical usages
At this point the musical possibilities are very wide. Sonic characteristics, like pitch (given by
frequency), timbre (achieved by waveforms, filters and noise) and loudness (manipulated by in-
tensity) can be considered in an absolute form or varied throughout the duration of a sound or
a musical piece. The following musical usages encompass a collection of possibilities with the
purpose of exemplifying types of sonic manipulations that result in musical material. Some of them
are discussed more deeply in the next section.

3.6.1 Relations between characteristics. This is a widespread procedure used to obtain musically
attractive and coherent excerpts. A possibility is to establish relations between parameters of
tremolos and vibratos, and of the basic note like frequency. Let a vibrato frequency be proportional
to note pitch, or a tremolo depth be inversely proportional to pitch. Therefore, with Equations 48, 50
and 53:

f vbr = f tr = f unca(f )

ν = f uncb (f )

VdB = f uncc (f )

(65)
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with f vbr and f tr as f ′ in the referenced equations. ν and VdB are the respective depth values of
vibrato and tremolo. Functions f unca , f uncb and f uncc are arbitrary and dependent on musical
intentions. The music piece Bonds explores such bonds and exhibits variations in the waveforms
with the purpose of building a musical language (details in a Supporting Information document of
this article [17]). [15]

3.6.2 Convolution for rhythm and meter. A musical pulse - such as specified by a BPM tempo - can
be implied by an impulse at the start of each beat: the convolution with an impulse shifts the sound
to impulse position, as stated in Section 3.3.1. For example, two impulses equally spaced build a
binary division of the pulse. Two signals, one with 2 impulses and the other with 3 impulses, both
equally spaced in the pulse duration, yield a pulse maintenance with a rhythm which eases both
binary or ternary divisions. This is found in many ethnic and traditional musical styles [21]. The
absolute values of the impulses entail proportions among the amplitudes of the sonic re-incidences.
The use of convolution with impulses in this context is explored in the music piece Little train of
impulsive hillbillies. These procedures also encompass the creation of ‘sound amalgams’ based on
granular synthesis; see Figure SI-A-2 of the Supporting Information [17]. [15]

3.6.3 Moving source and receptor, Doppler effect. According to the discussion in Section 2.6, when
an audio source (or receptor) is moving, the IID and ITD are constantly changing and are ideally
updated at each sample of the digital signal (if fast computational rendering is not at stake). As
given by basic theory, the audio source speed ss , with positive values if the source moves away
from receptor, and receptor speed sr , positive when it gets closer to audio source (one might always
use sr = 0 for musical purposes), relates the frequency f as perceived by the receiver and the
frequency f0 emitted by:

f =

(
ssound + sr
ssound + ss

)
f0 (66)

Using the coordinates as in Figure 5, and Equation 17, the speed ss can be found simply by
ss = fs (di+1 − di ). One should also use IID for the intensity progression of the sound, and ITD to
correctly start and end the sonic sequences related to each ear. The change in pitch is antisymmetric
upon the crossing of source with receptor: the same semitones (or fraction of) that are added during
the approach are decreased during the departure. Moreover, the transition is abrupt if source and
receptor intersect with zero distance, otherwise, there is a smooth progression.

3.6.4 Filters and noises. With the use of filters, the possibilities are even wider. Convolve a signal to
have a reverberated version of it, to remove its noise, to distort or to handle the audio aesthetically
in many other ways. For example, sounds originated from an old television or telephone can be
simulated with a band-pass filter, allowing only frequencies between 1kHz and 3kHz. By rejecting
the frequency of an electric oscillation (usually 50Hz or 60Hz) and the harmonics, one can remove
noises caused by audio devices connected to the power supply. A more musical application is to
perform filtering in specific bands and to use those bands as an additional parameter to the notes.
Inspired by traditional music instruments, it is possible to apply a time-dependent filter [40].

Chaining such filters can be useful for performing complex and more accurate filtering routines.
The musical piece Noisy band explores filters and many kinds and noise synthesis. [15]

A sound can be altered through different filtering processes and then mixed to create an effect
known as chorus. Based on what happens in a choir of singers, the sound is synthesized using small
and potentially arbitrary modifications of parameters like center frequency, presence (or absence)
of vibrato or tremolo and its characteristics, equalization, loudness, etc. As a final result, those
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versions of the original sound are mixed together (see Equation 22). The musical piece Children
choir implements a very simple chorus and applies it to structures described in the next section. [15]

3.6.5 Reverberation. Using the same terms of Section 2.6, the late reverberation can be achieved by
a convolution with a section of pink, brown or black noise, with an exponential decay of amplitude
along time. Delay lines can be added as a prefix to the noise with the decay, and this accounts for
both time parts of the reverberation: the early reflections and the late reverberation. Quality can be
improved by varying the geometric trajectory and filtering by each surface where the wavefront
reflected before reaching the ear in the first 100 − 200ms (mainly with a LP). The colored noise can
be gradually introduced with a fade-in: the initial moment given by direct incidence of sound (i.e.
without any reflection and given by ITD and IID), reaching its maximum at the beginning of the
’late reverberation’, when the geometric incidences loose their relevance to the statistical properties
of the decaying noise. As an example, consider ∆1 as the duration of the first reverberation section
and ∆R as the complete duration of the reverberation (Λ1 = ∆1 fs , ΛR = ∆R fs ). Let pi be the
probability of a sound to be repeated in the i-th sample. Following Section 2.6, the sequence R1

with the amplitudes of the impulse response of the first period can be described as:

R1 =
{
r 1i

}Λ1−1
0 , where r 1i =

{
10

VdB
20

i
ΛR−1 with probability pi =

(
i
Λ1

)2
0 with probability 1 − pi

(67)

where VdB is the total decay in decibels, typically −80dB or −120dB. The sequence R2 with the
samples of the impulse response of the second period can be obtained from a brown noise N b (or
by a pink noise N p ) with an exponential amplitude decay of the waveform:

R2 =
{
r 2i

}ΛR−1
Λ1

=

{
10

VdB
20

i
ΛR−1 . rbi

}ΛR−1
Λ1

(68)

Finally:

R = {ri }
ΛR−1
0 , where ri =

{
r 1i if 0 ≤ i < Λ1 − 1
r 2i if Λ1 ≤ i < ΛR − 1 (69)

A sound with an artificial reverberation can be achieved by a simple convolution of R (called
reverberation impulse response) with the sound sequence T , as described in Section 3.3. Reverbera-
tion is well known for causing great interest in listeners and to provide sonorities that are more
enjoyable. Furthermore, modifications in the reverberation consist in a common technique (almost
a cliché) to surprise and attract the listener.

3.6.6 ADSR envelopes. The variation of loudness along the duration of a sound is crucial to our
timbre perception. The intensity envelope known as ADSR (Attack-Decay-Sustain-Release) has
many implementations in both hardware and software synthesizers. A pioneering implementation
can be found in the Hammond Novachord synthesizer of 1938 and some variants are mentioned
below [38]. The canonical ADSR envelope is characterized by 4 parameters: attack duration (time at
which the sound reaches its maximum amplitude), decay duration (follows the attack immediately),
level of sustained intensity (in which the intensity remains stable after the decay) and release
duration (after sustained section, this is the duration needed for amplitude to reach zero or final
value). Note that the sustain duration is not specified because it is the difference between the total
duration and the sum of the attack, decay and release durations.
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Fig. 16. An ADSR envelope (Attack, Decay, Sustain, Release) applied to an arbitrary sound sequence. The linear
variation of the amplitude is above, in blue. Below the amplitude variation is exponential.

The ADSR envelope with durations ∆A, ∆D and ∆R , with total duration ∆ and sustain level aS ,
given as the fraction of the maximum amplitude, to be applied to any sound sequence T = {ti }
(ideally also with duration ∆), can be expressed as:

{ai }
ΛA−1
0 =

{
ξ

(
1
ξ

) i
ΛA−1

}ΛA−1

0

or

=

{
i

ΛA − 1

}ΛA
0

{ai }
ΛA+ΛD−1
ΛA

=

{
a
i−ΛA
ΛD−1
S

}ΛA+ΛD−1

ΛA

or

=

{
1 − (1 − aS )

i − ΛA

ΛD − 1

}ΛA+ΛD−1

ΛA

{ai }
Λ−ΛR−1
ΛA+ΛD

= {aS }
Λ−ΛR−1
ΛA+ΛD

{ai }
Λ−1
Λ−ΛR

=

aS
(
ξ

aS

) i−(Λ−ΛR )

ΛR−1

Λ−1

Λ−ΛR

or

=

{
aS − aS

i + ΛR − Λ

ΛR − 1

}Λ−1
Λ−ΛR

(70)

with ΛX = ⌊∆X . fs ⌋ ∀ X ∈ (A,D,R ) and ξ being a small value that provides a satisfactory
fade in and fade out, e.g. ξ = 10

−80
20 = 10−4 . The lower the ξ , the slower the fade, similar to the α

illustrated in Figure 9. One might also use a linear or quartic (x4) fade at the beginning of the attack
and the end of the release sections to reach zero amplitude (exponential fades never reach zero).
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Schematically, Figure 16 shows the ADSR envelope in a classical implementation that supports
many variations. For example, between attack and decay it is possible to add an extra section where
the maximum amplitude remains for more than a peak. Another common example is the use of
more elaborated envelopes for attack or decay. The music piece ADa and SaRa explores many
configurations of the ADSR envelope. [15]{

tADSRi
}Λ−1
0 = {ti .ai }

Λ−1
0 (71)

4 CONCLUSIONS AND FURTHER DEVELOPMENTS
In our understanding, this article is effective in relating musical elements to digital audio. We
aimed at achieving a concise presentation of the subject because it involves many knowledge fields,
and therefore can very easily blast into thousands of pages. Some readers might benefit from the
text alone, but the scripts in the MASS toolbox, where all the equations and concepts are directly
and simply implemented as software (in Python), are very helpful for one to achieve elaborated
implementations and deeper understandings. The scripts include routines that render musical
pieces to illustrate the concepts in practical contexts. This is valuable since art (music) can involve
many non-trivial processes and is often deeply glamorized, which results in a nearly unmanageable
terrain for a newcomer. Moreover, this didactic report and the supplied open source scripts should
facilitate the use of the framework. One of the Supporting Information documents [16] holds
listings of sections, equations, figures, tables, scripts and other documents. Another Supporting
Information document [18] holds a PDF presentation of the code related to each section because
many readers might not find it easy to browse source code files. Most importantly, an extension of
the preceding sections to encompass the organization of notes in music, as managed by canonical
music theory, is yet in another Supporting Information document [17].

The possibilities provided by this exposition pour from both the organization of knowledge and
the ability to achieve sounds which are extremely true to the models. For example, one can produce
noises with an arbitrary resolution of the spectrum and a musical note can be synthesized with the
parameters (e.g. of a vibrato) updated sample-by-sample. Furthermore, software for synthesis and
processing of sounds for musical purposes by standard restricts the bit depth to 16 or 24. This is
achievable in this framework but by standard Python uses more bits per floating point number.
These “higher fidelity” characteristics can be crucial e.g. for psychoacoustic experiments or to
generate high quality musical sounds or pieces. Simply put, it is compelling for many scientific and
artistic purposes. The didactic potential of the framework is evident when noticed that:

• the integrals and derivatives, ubiquitous in continuous signal processing, are all replaced, in
discrete signals, by summations, which are more intuitive and does not require fluency in
calculus.

• The equations and concepts are implemented in a simple and straightforward manner as
software which can be easily assembled and inspected.

In fact, this framework was used in a number of contexts, including courses, software implemen-
tations and for making music [12, 24, 49]. As far as the authors know, such detailed analytical
descriptions have not been covered before in the literature, such as testified in the literature review
(Appendix G of [12], where books, articles and open software are related to this framework).

The free software license, and online availability of the content, facilitate collaborations and the
generation of sub-products in a co-authorship fashion, new implementations and development of
musical pieces. The scripts can be divided in three groups: implementation of all the equations
and topics of music theory covered here; routines for rendering musical pieces that illustrate the
concepts; scripts that render the figures of this article and the article itself.
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This framework favored the formation of interest groups in topics such as musical creativity
and computer music. In particular, the project labMacambira.sourceforge.net groups Brazilian and
foreign co-workers in diverse areas that range from digital direct democracy and georeferencing to
art and education. This was only possible because of the usefulness of audiovisual abilities in many
contexts, in particular because of the knowledge and mastery condensed in the MASS framework.15

Future work might include application of these results in artificial intelligence for the generation
of attractive artistic materials. Some psychoacoustic effects were detected, which need validation
and should be reported, specially with [11].16 Other foreseen advances are: enhancement of the
Python package written using MASS [14], a JavaScript version of the toolbox, better hypermedia de-
liverables of this framework, user guides for different goals (e.g. musical composition, psychophysic
experiments, sound synthesis, education), creation of more musical pieces, open experiments to
be studied with EEG recordings, a linked data representation of the knowledge in MASS through
SKOS and OWL to tackle the issues exposed in Section 1.2, data sonification routines, and further
analytical specification of musical elements in the discrete-time representation of sound as feedback
is received from the community.
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