-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathcommon.c
2408 lines (2012 loc) · 75.5 KB
/
common.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#define DEBUG_FLASH 0
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "stlink.h"
#include "stlink/mmap.h"
#include "stlink/logging.h"
#ifndef _WIN32
#define O_BINARY 0 //! @todo get rid of this OH MY (@xor-gate)
#endif
#ifdef _MSC_VER
#define __attribute__(x)
#endif
/* todo: stm32l15xxx flash memory, pm0062 manual */
/* stm32f FPEC flash controller interface, pm0063 manual */
// TODO - all of this needs to be abstracted out....
// STM32F05x is identical, based on RM0091 (DM00031936, Doc ID 018940 Rev 2, August 2012)
#define FLASH_REGS_ADDR 0x40022000
#define FLASH_REGS_SIZE 0x28
#define FLASH_ACR (FLASH_REGS_ADDR + 0x00)
#define FLASH_KEYR (FLASH_REGS_ADDR + 0x04)
#define FLASH_SR (FLASH_REGS_ADDR + 0x0c)
#define FLASH_CR (FLASH_REGS_ADDR + 0x10)
#define FLASH_AR (FLASH_REGS_ADDR + 0x14)
#define FLASH_OBR (FLASH_REGS_ADDR + 0x1c)
#define FLASH_WRPR (FLASH_REGS_ADDR + 0x20)
// STM32F10x_XL has two flash memory banks with separate registers to control the second bank.
#define FLASH_KEYR2 (FLASH_REGS_ADDR + 0x44)
#define FLASH_SR2 (FLASH_REGS_ADDR + 0x4c)
#define FLASH_CR2 (FLASH_REGS_ADDR + 0x50)
#define FLASH_AR2 (FLASH_REGS_ADDR + 0x54)
#define FLASH_BANK2_START_ADDR 0x08080000
// For STM32F05x, the RDPTR_KEY may be wrong, but as it is not used anywhere...
#define FLASH_RDPTR_KEY 0x00a5
#define FLASH_KEY1 0x45670123
#define FLASH_KEY2 0xcdef89ab
#define FLASH_SR_BSY 0
#define FLASH_SR_EOP 5
#define FLASH_CR_PG 0
#define FLASH_CR_PER 1
#define FLASH_CR_MER 2
#define FLASH_CR_STRT 6
#define FLASH_CR_LOCK 7
//32L = 32F1 same CoreID as 32F4!
#define STM32L_FLASH_REGS_ADDR ((uint32_t)0x40023c00)
#define STM32L_FLASH_ACR (STM32L_FLASH_REGS_ADDR + 0x00)
#define STM32L_FLASH_PECR (STM32L_FLASH_REGS_ADDR + 0x04)
#define STM32L_FLASH_PDKEYR (STM32L_FLASH_REGS_ADDR + 0x08)
#define STM32L_FLASH_PEKEYR (STM32L_FLASH_REGS_ADDR + 0x0c)
#define STM32L_FLASH_PRGKEYR (STM32L_FLASH_REGS_ADDR + 0x10)
#define STM32L_FLASH_OPTKEYR (STM32L_FLASH_REGS_ADDR + 0x14)
#define STM32L_FLASH_SR (STM32L_FLASH_REGS_ADDR + 0x18)
#define STM32L_FLASH_OBR (STM32L_FLASH_REGS_ADDR + 0x1c)
#define STM32L_FLASH_WRPR (STM32L_FLASH_REGS_ADDR + 0x20)
#define FLASH_L1_FPRG 10
#define FLASH_L1_PROG 3
// G0 (RM0444 Table 1, sec 3.7)
#define STM32G0_FLASH_REGS_ADDR ((uint32_t)0x40022000)
#define STM32G0_FLASH_ACR (STM32G0_FLASH_REGS_ADDR + 0x00)
#define STM32G0_FLASH_KEYR (STM32G0_FLASH_REGS_ADDR + 0x08)
#define STM32G0_FLASH_OPTKEYR (STM32G0_FLASH_REGS_ADDR + 0x0c)
#define STM32G0_FLASH_SR (STM32G0_FLASH_REGS_ADDR + 0x10)
#define STM32G0_FLASH_CR (STM32G0_FLASH_REGS_ADDR + 0x14)
#define STM32G0_FLASH_ECCR (STM32G0_FLASH_REGS_ADDR + 0x18)
#define STM32G0_FLASH_OPTR (STM32G0_FLASH_REGS_ADDR + 0x20)
#define STM32G0_FLASH_PCROP1ASR (STM32G0_FLASH_REGS_ADDR + 0x24)
#define STM32G0_FLASH_PCROP1AER (STM32G0_FLASH_REGS_ADDR + 0x28)
#define STM32G0_FLASH_WRP1AR (STM32G0_FLASH_REGS_ADDR + 0x2C)
#define STM32G0_FLASH_WRP1BR (STM32G0_FLASH_REGS_ADDR + 0x30)
#define STM32G0_FLASH_PCROP1BSR (STM32G0_FLASH_REGS_ADDR + 0x34)
#define STM32G0_FLASH_PCROP1BER (STM32G0_FLASH_REGS_ADDR + 0x38)
#define STM32G0_FLASH_SECR (STM32G0_FLASH_REGS_ADDR + 0x80)
//32L4 register base is at FLASH_REGS_ADDR (0x40022000)
#define STM32L4_FLASH_KEYR (FLASH_REGS_ADDR + 0x08)
#define STM32L4_FLASH_SR (FLASH_REGS_ADDR + 0x10)
#define STM32L4_FLASH_CR (FLASH_REGS_ADDR + 0x14)
#define STM32L4_FLASH_OPTR (FLASH_REGS_ADDR + 0x20)
#define STM32L4_FLASH_SR_BSY 16
#define STM32L4_FLASH_SR_ERRMASK 0x3f8 /* SR [9:3] */
#define STM32L4_FLASH_CR_LOCK 31 /* Lock control register */
#define STM32L4_FLASH_CR_PG 0 /* Program */
#define STM32L4_FLASH_CR_PER 1 /* Page erase */
#define STM32L4_FLASH_CR_MER1 2 /* Bank 1 erase */
#define STM32L4_FLASH_CR_MER2 15 /* Bank 2 erase */
#define STM32L4_FLASH_CR_STRT 16 /* Start command */
#define STM32L4_FLASH_CR_BKER 11 /* Bank select for page erase */
#define STM32L4_FLASH_CR_PNB 3 /* Page number (8 bits) */
// Bits requesting flash operations (useful when we want to clear them)
#define STM32L4_FLASH_CR_OPBITS \
((1lu<<STM32L4_FLASH_CR_PG) | (1lu<<STM32L4_FLASH_CR_PER) \
| (1lu<<STM32L4_FLASH_CR_MER1) | (1lu<<STM32L4_FLASH_CR_MER1))
// Page is fully specified by BKER and PNB
#define STM32L4_FLASH_CR_PAGEMASK (0x1fflu << STM32L4_FLASH_CR_PNB)
#define STM32L4_FLASH_OPTR_DUALBANK 21
//STM32L0x flash register base and offsets
//same as 32L1 above
// RM0090 - DM00031020.pdf
#define STM32L0_FLASH_REGS_ADDR ((uint32_t)0x40022000)
#define FLASH_ACR_OFF ((uint32_t) 0x00)
#define FLASH_PECR_OFF ((uint32_t) 0x04)
#define FLASH_PDKEYR_OFF ((uint32_t) 0x08)
#define FLASH_PEKEYR_OFF ((uint32_t) 0x0c)
#define FLASH_PRGKEYR_OFF ((uint32_t) 0x10)
#define FLASH_OPTKEYR_OFF ((uint32_t) 0x14)
#define FLASH_SR_OFF ((uint32_t) 0x18)
#define FLASH_OBR_OFF ((uint32_t) 0x1c)
#define FLASH_WRPR_OFF ((uint32_t) 0x20)
//STM32F4
#define FLASH_F4_REGS_ADDR ((uint32_t)0x40023c00)
#define FLASH_F4_KEYR (FLASH_F4_REGS_ADDR + 0x04)
#define FLASH_F4_OPT_KEYR (FLASH_F4_REGS_ADDR + 0x08)
#define FLASH_F4_SR (FLASH_F4_REGS_ADDR + 0x0c)
#define FLASH_F4_CR (FLASH_F4_REGS_ADDR + 0x10)
#define FLASH_F4_OPT_CR (FLASH_F4_REGS_ADDR + 0x14)
#define FLASH_F4_CR_STRT 16
#define FLASH_F4_CR_LOCK 31
#define FLASH_F4_CR_SER 1
#define FLASH_F4_CR_SNB 3
#define FLASH_F4_CR_SNB_MASK 0xf8
#define FLASH_F4_SR_BSY 16
#define L1_WRITE_BLOCK_SIZE 0x80
#define L0_WRITE_BLOCK_SIZE 0x40
void write_uint32(unsigned char* buf, uint32_t ui) {
if (!is_bigendian()) { // le -> le (don't swap)
buf[0] = ((unsigned char*) &ui)[0];
buf[1] = ((unsigned char*) &ui)[1];
buf[2] = ((unsigned char*) &ui)[2];
buf[3] = ((unsigned char*) &ui)[3];
} else {
buf[0] = ((unsigned char*) &ui)[3];
buf[1] = ((unsigned char*) &ui)[2];
buf[2] = ((unsigned char*) &ui)[1];
buf[3] = ((unsigned char*) &ui)[0];
}
}
void write_uint16(unsigned char* buf, uint16_t ui) {
if (!is_bigendian()) { // le -> le (don't swap)
buf[0] = ((unsigned char*) &ui)[0];
buf[1] = ((unsigned char*) &ui)[1];
} else {
buf[0] = ((unsigned char*) &ui)[1];
buf[1] = ((unsigned char*) &ui)[0];
}
}
uint32_t read_uint32(const unsigned char *c, const int pt) {
uint32_t ui;
char *p = (char *) &ui;
if (!is_bigendian()) { // le -> le (don't swap)
p[0] = c[pt + 0];
p[1] = c[pt + 1];
p[2] = c[pt + 2];
p[3] = c[pt + 3];
} else {
p[0] = c[pt + 3];
p[1] = c[pt + 2];
p[2] = c[pt + 1];
p[3] = c[pt + 0];
}
return ui;
}
static uint32_t __attribute__((unused)) read_flash_rdp(stlink_t *sl) {
uint32_t rdp;
stlink_read_debug32(sl, FLASH_WRPR, &rdp);
return rdp & 0xff;
}
static inline uint32_t read_flash_cr(stlink_t *sl) {
uint32_t reg, res;
if (sl->flash_type == STLINK_FLASH_TYPE_F4)
reg = FLASH_F4_CR;
else if (sl->flash_type == STLINK_FLASH_TYPE_L4)
reg = STM32L4_FLASH_CR;
else
reg = FLASH_CR;
stlink_read_debug32(sl, reg, &res);
#if DEBUG_FLASH
fprintf(stdout, "CR:0x%x\n", res);
#endif
return res;
}
static inline uint32_t read_flash_cr2(stlink_t *sl) {
uint32_t res;
stlink_read_debug32(sl, FLASH_CR2, &res);
#if DEBUG_FLASH
fprintf(stdout, "CR2:0x%x\n", res);
#endif
return res;
}
static inline unsigned int is_flash_locked(stlink_t *sl) {
/* return non zero for true */
uint32_t cr_lock_shift, cr = read_flash_cr(sl);
if (sl->flash_type == STLINK_FLASH_TYPE_F4)
cr_lock_shift = FLASH_F4_CR_LOCK;
else if (sl->flash_type == STLINK_FLASH_TYPE_L4)
cr_lock_shift = STM32L4_FLASH_CR_LOCK;
else
cr_lock_shift = FLASH_CR_LOCK;
return cr & (1 << cr_lock_shift);
}
static void unlock_flash(stlink_t *sl) {
uint32_t key_reg;
/* the unlock sequence consists of 2 write cycles where
2 key values are written to the FLASH_KEYR register.
an invalid sequence results in a definitive lock of
the FPEC block until next reset.
*/
if (sl->flash_type == STLINK_FLASH_TYPE_F4)
key_reg = FLASH_F4_KEYR;
else if (sl->flash_type == STLINK_FLASH_TYPE_L4)
key_reg = STM32L4_FLASH_KEYR;
else
key_reg = FLASH_KEYR;
stlink_write_debug32(sl, key_reg, FLASH_KEY1);
stlink_write_debug32(sl, key_reg, FLASH_KEY2);
if (sl->flash_type == STLINK_FLASH_TYPE_F1_XL) {
stlink_write_debug32(sl, FLASH_KEYR2, FLASH_KEY1);
stlink_write_debug32(sl, FLASH_KEYR2, FLASH_KEY2);
}
}
static int unlock_flash_if(stlink_t *sl) {
/* unlock flash if already locked */
if (is_flash_locked(sl)) {
unlock_flash(sl);
if (is_flash_locked(sl)) {
WLOG("Failed to unlock flash!\n");
return -1;
}
}
DLOG("Successfully unlocked flash\n");
return 0;
}
static void lock_flash(stlink_t *sl) {
uint32_t cr_lock_shift, cr_reg, n;
if (sl->flash_type == STLINK_FLASH_TYPE_F4) {
cr_reg = FLASH_F4_CR;
cr_lock_shift = FLASH_F4_CR_LOCK;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L4) {
cr_reg = STM32L4_FLASH_CR;
cr_lock_shift = STM32L4_FLASH_CR_LOCK;
} else {
cr_reg = FLASH_CR;
cr_lock_shift = FLASH_CR_LOCK;
}
n = read_flash_cr(sl) | (1 << cr_lock_shift);
stlink_write_debug32(sl, cr_reg, n);
if (sl->flash_type == STLINK_FLASH_TYPE_F1_XL) {
n = read_flash_cr2(sl) | (1 << cr_lock_shift);
stlink_write_debug32(sl, FLASH_CR2, n);
}
}
static void set_flash_cr_pg(stlink_t *sl) {
uint32_t cr_reg, x;
x = read_flash_cr(sl);
if (sl->flash_type == STLINK_FLASH_TYPE_F4) {
cr_reg = FLASH_F4_CR;
x |= 1 << FLASH_CR_PG;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L4) {
cr_reg = STM32L4_FLASH_CR;
x &= ~STM32L4_FLASH_CR_OPBITS;
x |= 1 << STM32L4_FLASH_CR_PG;
} else {
cr_reg = FLASH_CR;
x = 1 << FLASH_CR_PG;
}
stlink_write_debug32(sl, cr_reg, x);
}
static void __attribute__((unused)) clear_flash_cr_pg(stlink_t *sl) {
uint32_t cr_reg, n;
if (sl->flash_type == STLINK_FLASH_TYPE_F4)
cr_reg = FLASH_F4_CR;
else if (sl->flash_type == STLINK_FLASH_TYPE_L4)
cr_reg = STM32L4_FLASH_CR;
else
cr_reg = FLASH_CR;
n = read_flash_cr(sl) & ~(1 << FLASH_CR_PG);
stlink_write_debug32(sl, cr_reg, n);
}
static void set_flash_cr_per(stlink_t *sl) {
const uint32_t n = 1 << FLASH_CR_PER;
stlink_write_debug32(sl, FLASH_CR, n);
}
static void set_flash_cr2_per(stlink_t *sl) {
const uint32_t n = 1 << FLASH_CR_PER;
stlink_write_debug32(sl, FLASH_CR2, n);
}
static void __attribute__((unused)) clear_flash_cr_per(stlink_t *sl) {
const uint32_t n = read_flash_cr(sl) & ~(1 << FLASH_CR_PER);
stlink_write_debug32(sl, FLASH_CR, n);
}
static void set_flash_cr_mer(stlink_t *sl, bool v) {
uint32_t val, cr_reg, cr_mer, cr_pg;
if (sl->flash_type == STLINK_FLASH_TYPE_F4) {
cr_reg = FLASH_F4_CR;
cr_mer = 1 << FLASH_CR_MER;
cr_pg = 1 << FLASH_CR_PG;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L4) {
cr_reg = STM32L4_FLASH_CR;
cr_mer = (1 << STM32L4_FLASH_CR_MER1) | (1 << STM32L4_FLASH_CR_MER2);
cr_pg = 1 << STM32L4_FLASH_CR_PG;
} else {
cr_reg = FLASH_CR;
cr_mer = 1 << FLASH_CR_MER;
cr_pg = 1 << FLASH_CR_PG;
}
stlink_read_debug32(sl, cr_reg, &val);
if (val & cr_pg) {
/* STM32F030 will drop MER bit if PG was set */
val &= ~cr_pg;
stlink_write_debug32(sl, cr_reg, val);
}
if(v)
val |= cr_mer;
else
val &= ~cr_mer;
stlink_write_debug32(sl, cr_reg, val);
}
static void set_flash_cr2_mer(stlink_t *sl, bool v) {
const uint32_t cr_pg = 1 << FLASH_CR_PER;
const uint32_t cr_mer = 1 << FLASH_CR_MER;
uint32_t val;
stlink_read_debug32(sl, FLASH_CR2, &val);
val &= ~cr_pg;
if (v)
val |= cr_mer;
else
val &= ~cr_mer;
stlink_write_debug32(sl, FLASH_CR2, val);
}
static void __attribute__((unused)) clear_flash_cr_mer(stlink_t *sl) {
uint32_t val, cr_reg, cr_mer;
if (sl->flash_type == STLINK_FLASH_TYPE_F4) {
cr_reg = FLASH_F4_CR;
cr_mer = 1 << FLASH_CR_MER;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L4) {
cr_reg = STM32L4_FLASH_CR;
cr_mer = (1 << STM32L4_FLASH_CR_MER1) | (1 << STM32L4_FLASH_CR_MER2);
} else {
cr_reg = FLASH_CR;
cr_mer = 1 << FLASH_CR_MER;
}
stlink_read_debug32(sl, cr_reg, &val);
val &= ~cr_mer;
stlink_write_debug32(sl, cr_reg, val);
}
static void set_flash_cr_strt(stlink_t *sl) {
uint32_t val, cr_reg, cr_strt;
if (sl->flash_type == STLINK_FLASH_TYPE_F4) {
cr_reg = FLASH_F4_CR;
cr_strt = 1 << FLASH_F4_CR_STRT;
} else if (sl->flash_type == STLINK_FLASH_TYPE_L4) {
cr_reg = STM32L4_FLASH_CR;
cr_strt = 1 << STM32L4_FLASH_CR_STRT;
} else {
cr_reg = FLASH_CR;
cr_strt = 1 << FLASH_CR_STRT;
}
stlink_read_debug32(sl, cr_reg, &val);
val |= cr_strt;
stlink_write_debug32(sl, cr_reg, val);
}
static void set_flash_cr2_strt(stlink_t *sl) {
uint32_t val;
stlink_read_debug32(sl, FLASH_CR2, &val);
val |= 1 << FLASH_CR_STRT;
stlink_write_debug32(sl, FLASH_CR2, val);
}
static inline uint32_t read_flash_sr(stlink_t *sl) {
uint32_t res, sr_reg;
if (sl->flash_type == STLINK_FLASH_TYPE_F4)
sr_reg = FLASH_F4_SR;
else if (sl->flash_type == STLINK_FLASH_TYPE_L4)
sr_reg = STM32L4_FLASH_SR;
else
sr_reg = FLASH_SR;
stlink_read_debug32(sl, sr_reg, &res);
return res;
}
static inline uint32_t read_flash_sr2(stlink_t *sl) {
uint32_t res;
stlink_read_debug32(sl, FLASH_SR2, &res);
return res;
}
static inline unsigned int is_flash_busy(stlink_t *sl) {
uint32_t sr_busy_shift;
unsigned int res;
if (sl->flash_type == STLINK_FLASH_TYPE_F4)
sr_busy_shift = FLASH_F4_SR_BSY;
else if (sl->flash_type == STLINK_FLASH_TYPE_L4)
sr_busy_shift = STM32L4_FLASH_SR_BSY;
else
sr_busy_shift = FLASH_SR_BSY;
res = read_flash_sr(sl) & (1 << sr_busy_shift);
if (sl->flash_type == STLINK_FLASH_TYPE_F1_XL) {
res |= read_flash_sr2(sl) & (1 << sr_busy_shift);
}
return res;
}
static void wait_flash_busy(stlink_t *sl) {
/* todo: add some delays here */
while (is_flash_busy(sl))
;
}
static void wait_flash_busy_progress(stlink_t *sl) {
int i = 0;
fprintf(stdout, "Mass erasing");
fflush(stdout);
while (is_flash_busy(sl)) {
usleep(10000);
i++;
if (i % 100 == 0) {
fprintf(stdout, ".");
fflush(stdout);
}
}
fprintf(stdout, "\n");
}
static inline unsigned int is_flash_eop(stlink_t *sl) {
return read_flash_sr(sl) & (1 << FLASH_SR_EOP);
}
static void __attribute__((unused)) clear_flash_sr_eop(stlink_t *sl) {
const uint32_t n = read_flash_sr(sl) & ~(1 << FLASH_SR_EOP);
stlink_write_debug32(sl, FLASH_SR, n);
}
static void __attribute__((unused)) wait_flash_eop(stlink_t *sl) {
/* todo: add some delays here */
while (is_flash_eop(sl) == 0)
;
}
static inline void write_flash_ar(stlink_t *sl, uint32_t n) {
stlink_write_debug32(sl, FLASH_AR, n);
}
static inline void write_flash_ar2(stlink_t *sl, uint32_t n) {
stlink_write_debug32(sl, FLASH_AR2, n);
}
static inline void write_flash_cr_psiz(stlink_t *sl, uint32_t n) {
uint32_t x = read_flash_cr(sl);
x &= ~(0x03 << 8);
x |= (n << 8);
#if DEBUG_FLASH
fprintf(stdout, "PSIZ:0x%x 0x%x\n", x, n);
#endif
stlink_write_debug32(sl, FLASH_F4_CR, x);
}
static inline void write_flash_cr_snb(stlink_t *sl, uint32_t n) {
uint32_t x = read_flash_cr(sl);
x &= ~FLASH_F4_CR_SNB_MASK;
x |= (n << FLASH_F4_CR_SNB);
x |= (1 << FLASH_F4_CR_SER);
#if DEBUG_FLASH
fprintf(stdout, "SNB:0x%x 0x%x\n", x, n);
#endif
stlink_write_debug32(sl, FLASH_F4_CR, x);
}
static inline void write_flash_cr_bker_pnb(stlink_t *sl, uint32_t n) {
stlink_write_debug32(sl, STM32L4_FLASH_SR, 0xFFFFFFFF & ~(1<<STM32L4_FLASH_SR_BSY));
uint32_t x = read_flash_cr(sl);
x &=~ STM32L4_FLASH_CR_OPBITS;
x &=~ STM32L4_FLASH_CR_PAGEMASK;
x &= ~(1<<STM32L4_FLASH_CR_MER1);
x &= ~(1<<STM32L4_FLASH_CR_MER2);
x |= (n << STM32L4_FLASH_CR_PNB);
x |= (1lu << STM32L4_FLASH_CR_PER);
#if DEBUG_FLASH
fprintf(stdout, "BKER:PNB:0x%x 0x%x\n", x, n);
#endif
stlink_write_debug32(sl, STM32L4_FLASH_CR, x);
}
// Delegates to the backends...
void stlink_close(stlink_t *sl) {
DLOG("*** stlink_close ***\n");
if (!sl)
return;
sl->backend->close(sl);
free(sl);
}
int stlink_exit_debug_mode(stlink_t *sl) {
int ret;
DLOG("*** stlink_exit_debug_mode ***\n");
ret = stlink_write_debug32(sl, STLINK_REG_DHCSR, STLINK_REG_DHCSR_DBGKEY);
if (ret == -1)
return ret;
return sl->backend->exit_debug_mode(sl);
}
int stlink_enter_swd_mode(stlink_t *sl) {
DLOG("*** stlink_enter_swd_mode ***\n");
return sl->backend->enter_swd_mode(sl);
}
// Force the core into the debug mode -> halted state.
int stlink_force_debug(stlink_t *sl) {
DLOG("*** stlink_force_debug_mode ***\n");
return sl->backend->force_debug(sl);
}
int stlink_exit_dfu_mode(stlink_t *sl) {
DLOG("*** stlink_exit_dfu_mode ***\n");
return sl->backend->exit_dfu_mode(sl);
}
int stlink_core_id(stlink_t *sl) {
int ret;
DLOG("*** stlink_core_id ***\n");
ret = sl->backend->core_id(sl);
if (ret == -1) {
ELOG("Failed to read core_id\n");
return ret;
}
if (sl->verbose > 2)
stlink_print_data(sl);
DLOG("core_id = 0x%08x\n", sl->core_id);
return ret;
}
int stlink_chip_id(stlink_t *sl, uint32_t *chip_id) {
int ret;
ret = stlink_read_debug32(sl, 0xE0042000, chip_id);
if (ret == -1)
return ret;
if (*chip_id == 0)
ret = stlink_read_debug32(sl, 0x40015800, chip_id); //Try Corex M0 DBGMCU_IDCODE register address
return ret;
}
/**
* Cortex m3 tech ref manual, CPUID register description
* @param sl stlink context
* @param cpuid pointer to the result object
*/
int stlink_cpu_id(stlink_t *sl, cortex_m3_cpuid_t *cpuid) {
uint32_t raw;
if (stlink_read_debug32(sl, STLINK_REG_CM3_CPUID, &raw))
return -1;
cpuid->implementer_id = (raw >> 24) & 0x7f;
cpuid->variant = (raw >> 20) & 0xf;
cpuid->part = (raw >> 4) & 0xfff;
cpuid->revision = raw & 0xf;
return 0;
}
/**
* reads and decodes the flash parameters, as dynamically as possible
* @param sl
* @return 0 for success, or -1 for unsupported core type.
*/
int stlink_load_device_params(stlink_t *sl) {
ILOG("Loading device parameters....\n");
const struct stlink_chipid_params *params = NULL;
stlink_core_id(sl);
uint32_t chip_id;
uint32_t flash_size;
stlink_chip_id(sl, &chip_id);
sl->chip_id = chip_id & 0xfff;
/* Fix chip_id for F4 rev A errata , Read CPU ID, as CoreID is the same for F2/F4*/
if (sl->chip_id == 0x411) {
uint32_t cpuid;
stlink_read_debug32(sl, 0xE000ED00, &cpuid);
if ((cpuid & 0xfff0) == 0xc240)
sl->chip_id = 0x413;
}
params = stlink_chipid_get_params(sl->chip_id);
if (params == NULL) {
WLOG("unknown chip id! %#x\n", chip_id);
return -1;
}
if (params->flash_type == STLINK_FLASH_TYPE_UNKNOWN) {
WLOG("Invalid flash type, please check device declaration\n");
sl->flash_size = 0;
return 0;
}
// These are fixed...
sl->flash_base = STM32_FLASH_BASE;
sl->sram_base = STM32_SRAM_BASE;
stlink_read_debug32(sl,(params->flash_size_reg) & ~3, &flash_size);
if (params->flash_size_reg & 2)
flash_size = flash_size >>16;
flash_size = flash_size & 0xffff;
if ((sl->chip_id == STLINK_CHIPID_STM32_L1_MEDIUM || sl->chip_id == STLINK_CHIPID_STM32_L1_MEDIUM_PLUS) && ( flash_size == 0 )) {
sl->flash_size = 128 * 1024;
} else if (sl->chip_id == STLINK_CHIPID_STM32_L1_CAT2) {
sl->flash_size = (flash_size & 0xff) * 1024;
} else if ((sl->chip_id & 0xFFF) == STLINK_CHIPID_STM32_L1_HIGH) {
// 0 is 384k and 1 is 256k
if ( flash_size == 0 ) {
sl->flash_size = 384 * 1024;
} else {
sl->flash_size = 256 * 1024;
}
} else {
sl->flash_size = flash_size * 1024;
}
sl->flash_type = params->flash_type;
sl->flash_pgsz = params->flash_pagesize;
sl->sram_size = params->sram_size;
sl->sys_base = params->bootrom_base;
sl->sys_size = params->bootrom_size;
//medium and low devices have the same chipid. ram size depends on flash size.
//STM32F100xx datasheet Doc ID 16455 Table 2
if(sl->chip_id == STLINK_CHIPID_STM32_F1_VL_MEDIUM_LOW && sl->flash_size < 64 * 1024){
sl->sram_size = 0x1000;
}
ILOG("Device connected is: %s, id %#x\n", params->description, chip_id);
// TODO make note of variable page size here.....
ILOG("SRAM size: %#x bytes (%d KiB), Flash: %#x bytes (%d KiB) in pages of %u bytes\n",
sl->sram_size, sl->sram_size / 1024, sl->flash_size, sl->flash_size / 1024,
(unsigned int)sl->flash_pgsz);
return 0;
}
int stlink_reset(stlink_t *sl) {
DLOG("*** stlink_reset ***\n");
return sl->backend->reset(sl);
}
int stlink_jtag_reset(stlink_t *sl, int value) {
DLOG("*** stlink_jtag_reset ***\n");
return sl->backend->jtag_reset(sl, value);
}
int stlink_run(stlink_t *sl) {
DLOG("*** stlink_run ***\n");
return sl->backend->run(sl);
}
int stlink_set_swdclk(stlink_t *sl, uint16_t divisor) {
DLOG("*** set_swdclk ***\n");
return sl->backend->set_swdclk(sl, divisor);
}
int stlink_status(stlink_t *sl) {
int ret;
DLOG("*** stlink_status ***\n");
ret = sl->backend->status(sl);
stlink_core_stat(sl);
return ret;
}
/**
* Decode the version bits, originally from -sg, verified with usb
* @param sl stlink context, assumed to contain valid data in the buffer
* @param slv output parsed version object
*/
void _parse_version(stlink_t *sl, stlink_version_t *slv) {
uint32_t b0 = sl->q_buf[0]; //lsb
uint32_t b1 = sl->q_buf[1];
uint32_t b2 = sl->q_buf[2];
uint32_t b3 = sl->q_buf[3];
uint32_t b4 = sl->q_buf[4];
uint32_t b5 = sl->q_buf[5]; //msb
// b0 b1 || b2 b3 | b4 b5
// 4b | 6b | 6b || 2B | 2B
// stlink_v | jtag_v | swim_v || st_vid | stlink_pid
slv->stlink_v = (b0 & 0xf0) >> 4;
slv->jtag_v = ((b0 & 0x0f) << 2) | ((b1 & 0xc0) >> 6);
slv->swim_v = b1 & 0x3f;
slv->st_vid = (b3 << 8) | b2;
slv->stlink_pid = (b5 << 8) | b4;
return;
}
int stlink_version(stlink_t *sl) {
DLOG("*** looking up stlink version\n");
if (sl->backend->version(sl))
return -1;
_parse_version(sl, &sl->version);
DLOG("st vid = 0x%04x (expect 0x%04x)\n", sl->version.st_vid, STLINK_USB_VID_ST);
DLOG("stlink pid = 0x%04x\n", sl->version.stlink_pid);
DLOG("stlink version = 0x%x\n", sl->version.stlink_v);
DLOG("jtag version = 0x%x\n", sl->version.jtag_v);
DLOG("swim version = 0x%x\n", sl->version.swim_v);
if (sl->version.jtag_v == 0) {
DLOG(" notice: the firmware doesn't support a jtag/swd interface\n");
}
if (sl->version.swim_v == 0) {
DLOG(" notice: the firmware doesn't support a swim interface\n");
}
return 0;
}
int stlink_target_voltage(stlink_t *sl) {
int voltage = -1;
DLOG("*** reading target voltage\n");
if (sl->backend->target_voltage != NULL) {
voltage = sl->backend->target_voltage(sl);
if (voltage != -1) {
DLOG("target voltage = %ldmV\n", voltage);
} else {
DLOG("error reading target voltage\n");
}
} else {
DLOG("reading voltage not supported by backend\n");
}
return voltage;
}
int stlink_read_debug32(stlink_t *sl, uint32_t addr, uint32_t *data) {
int ret;
ret = sl->backend->read_debug32(sl, addr, data);
if (!ret)
DLOG("*** stlink_read_debug32 %x is %#x\n", *data, addr);
return ret;
}
int stlink_write_debug32(stlink_t *sl, uint32_t addr, uint32_t data) {
DLOG("*** stlink_write_debug32 %x to %#x\n", data, addr);
return sl->backend->write_debug32(sl, addr, data);
}
int stlink_write_mem32(stlink_t *sl, uint32_t addr, uint16_t len) {
DLOG("*** stlink_write_mem32 %u bytes to %#x\n", len, addr);
if (len % 4 != 0) {
fprintf(stderr, "Error: Data length doesn't have a 32 bit alignment: +%d byte.\n", len % 4);
abort();
}
return sl->backend->write_mem32(sl, addr, len);
}
int stlink_read_mem32(stlink_t *sl, uint32_t addr, uint16_t len) {
DLOG("*** stlink_read_mem32 ***\n");
if (len % 4 != 0) { // !!! never ever: fw gives just wrong values
fprintf(stderr, "Error: Data length doesn't have a 32 bit alignment: +%d byte.\n",
len % 4);
abort();
}
return sl->backend->read_mem32(sl, addr, len);
}
int stlink_write_mem8(stlink_t *sl, uint32_t addr, uint16_t len) {
DLOG("*** stlink_write_mem8 ***\n");
if (len > 0x40 ) { // !!! never ever: Writing more then 0x40 bytes gives unexpected behaviour
fprintf(stderr, "Error: Data length > 64: +%d byte.\n",
len);
abort();
}
return sl->backend->write_mem8(sl, addr, len);
}
int stlink_read_all_regs(stlink_t *sl, struct stlink_reg *regp) {
DLOG("*** stlink_read_all_regs ***\n");
return sl->backend->read_all_regs(sl, regp);
}
int stlink_read_all_unsupported_regs(stlink_t *sl, struct stlink_reg *regp) {
DLOG("*** stlink_read_all_unsupported_regs ***\n");
return sl->backend->read_all_unsupported_regs(sl, regp);
}
int stlink_write_reg(stlink_t *sl, uint32_t reg, int idx) {
DLOG("*** stlink_write_reg\n");
return sl->backend->write_reg(sl, reg, idx);
}
int stlink_read_reg(stlink_t *sl, int r_idx, struct stlink_reg *regp) {
DLOG("*** stlink_read_reg\n");
DLOG(" (%d) ***\n", r_idx);
if (r_idx > 20 || r_idx < 0) {
fprintf(stderr, "Error: register index must be in [0..20]\n");
return -1;
}
return sl->backend->read_reg(sl, r_idx, regp);
}
int stlink_read_unsupported_reg(stlink_t *sl, int r_idx, struct stlink_reg *regp) {
int r_convert;
DLOG("*** stlink_read_unsupported_reg\n");
DLOG(" (%d) ***\n", r_idx);
/* Convert to values used by STLINK_REG_DCRSR */
if (r_idx >= 0x1C && r_idx <= 0x1F) { /* primask, basepri, faultmask, or control */
r_convert = 0x14;
} else if (r_idx == 0x40) { /* FPSCR */
r_convert = 0x21;
} else if (r_idx >= 0x20 && r_idx < 0x40) {
r_convert = 0x40 + (r_idx - 0x20);
} else {
fprintf(stderr, "Error: register address must be in [0x1C..0x40]\n");
return -1;
}
return sl->backend->read_unsupported_reg(sl, r_convert, regp);
}
int stlink_write_unsupported_reg(stlink_t *sl, uint32_t val, int r_idx, struct stlink_reg *regp) {
int r_convert;
DLOG("*** stlink_write_unsupported_reg\n");
DLOG(" (%d) ***\n", r_idx);
/* Convert to values used by STLINK_REG_DCRSR */
if (r_idx >= 0x1C && r_idx <= 0x1F) { /* primask, basepri, faultmask, or control */
r_convert = r_idx; /* The backend function handles this */
} else if (r_idx == 0x40) { /* FPSCR */
r_convert = 0x21;
} else if (r_idx >= 0x20 && r_idx < 0x40) {
r_convert = 0x40 + (r_idx - 0x20);
} else {
fprintf(stderr, "Error: register address must be in [0x1C..0x40]\n");
return -1;
}
return sl->backend->write_unsupported_reg(sl, val, r_convert, regp);
}
bool stlink_is_core_halted(stlink_t *sl)
{
bool ret = false;
stlink_status(sl);
if (sl->q_buf[0] == STLINK_CORE_HALTED)
ret = true;
return ret;
}
int stlink_step(stlink_t *sl) {
DLOG("*** stlink_step ***\n");
return sl->backend->step(sl);
}
int stlink_current_mode(stlink_t *sl) {
int mode = sl->backend->current_mode(sl);
switch (mode) {
case STLINK_DEV_DFU_MODE:
DLOG("stlink current mode: dfu\n");
return mode;
case STLINK_DEV_DEBUG_MODE:
DLOG("stlink current mode: debug (jtag or swd)\n");
return mode;
case STLINK_DEV_MASS_MODE:
DLOG("stlink current mode: mass\n");
return mode;
}
DLOG("stlink mode: unknown!\n");
return STLINK_DEV_UNKNOWN_MODE;
}
// End of delegates.... Common code below here...
// Endianness
// http://www.ibm.com/developerworks/aix/library/au-endianc/index.html
// const int i = 1;
// #define is_bigendian() ( (*(char*)&i) == 0 )
unsigned int is_bigendian(void) {
static volatile const unsigned int i = 1;
return *(volatile const char*) &i == 0;
}
uint16_t read_uint16(const unsigned char *c, const int pt) {
uint32_t ui;
char *p = (char *) &ui;
if (!is_bigendian()) { // le -> le (don't swap)
p[0] = c[pt + 0];
p[1] = c[pt + 1];
} else {
p[0] = c[pt + 1];
p[1] = c[pt + 0];
}
return ui;
}
// same as above with entrypoint.
void stlink_run_at(stlink_t *sl, stm32_addr_t addr) {
stlink_write_reg(sl, addr, 15); /* pc register */
stlink_run(sl);
while (stlink_is_core_halted(sl))
usleep(3000000);