Skip to content

Latest commit

 

History

History
346 lines (224 loc) · 12.8 KB

README.md

File metadata and controls

346 lines (224 loc) · 12.8 KB
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

nanmskrange

NPM version Build Status Coverage Status

Calculate the range of a strided array according to a mask, ignoring NaN values.

The range is defined as the difference between the maximum and minimum values.

Usage

To use in Observable,

nanmskrange = require( 'https://cdn.jsdelivr.net/gh/stdlib-js/stats-base-nanmskrange@umd/browser.js' )

To vendor stdlib functionality and avoid installing dependency trees for Node.js, you can use the UMD server build:

var nanmskrange = require( 'path/to/vendor/umd/stats-base-nanmskrange/index.js' )

To include the bundle in a webpage,

<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/stats-base-nanmskrange@umd/browser.js"></script>

If no recognized module system is present, access bundle contents via the global scope:

<script type="text/javascript">
(function () {
    window.nanmskrange;
})();
</script>

nanmskrange( N, x, strideX, mask, strideMask )

Computes the range of a strided array x according to a mask, ignoring NaN values.

var x = [ 1.0, -2.0, 4.0, 2.0, NaN ];
var mask = [ 0, 0, 1, 0, 0 ];

var v = nanmskrange( x.length, x, 1, mask, 1 );
// returns 4.0

The function has the following parameters:

  • N: number of indexed elements.
  • x: input Array or typed array.
  • strideX: index increment for x.
  • mask: mask Array or typed array. If a mask array element is 0, the corresponding element in x is considered valid and included in computation. If a mask array element is 1, the corresponding element in x is considered invalid/missing and excluded from computation.
  • strideMask: index increment for mask.

The N and stride parameters determine which elements are accessed at runtime. For example, to compute the range of every other element in x,

var floor = require( '@stdlib/math-base-special-floor' );

var x = [ 1.0, 2.0, -7.0, -2.0, 4.0, 3.0, 5.0, 6.0 ];
var mask = [ 0, 0, 0, 0, 0, 0, 1, 1 ];
var N = floor( x.length / 2 );

var v = nanmskrange( N, x, 2, mask, 2 );
// returns 11.0

Note that indexing is relative to the first index. To introduce offsets, use typed array views.

var Float64Array = require( '@stdlib/array-float64' );
var Uint8Array = require( '@stdlib/array-uint8' );
var floor = require( '@stdlib/math-base-special-floor' );

var x0 = new Float64Array( [ 2.0, 1.0, -2.0, -2.0, 3.0, 4.0, 5.0, 6.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var mask0 = new Uint8Array( [ 0, 0, 0, 0, 0, 0, 1, 1 ] );
var mask1 = new Uint8Array( mask0.buffer, mask0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var N = floor( x0.length / 2 );

var v = nanmskrange( N, x1, 2, mask1, 2 );
// returns 6.0

nanmskrange.ndarray( N, x, strideX, offsetX, mask, strideMask, offsetMask )

Computes the range of a strided array according to a mask, ignoring NaN values and using alternative indexing semantics.

var x = [ 1.0, -2.0, 4.0, 2.0, NaN ];
var mask = [ 0, 0, 1, 0, 0 ];

var v = nanmskrange.ndarray( x.length, x, 1, 0, mask, 1, 0 );
// returns 4.0

The function has the following additional parameters:

  • offsetX: starting index for x.
  • offsetMask: starting index for mask.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the range for every other value in x starting from the second value

var floor = require( '@stdlib/math-base-special-floor' );

var x = [ 2.0, 1.0, -2.0, -2.0, 3.0, 4.0, 5.0, 6.0 ];
var mask = [ 0, 0, 0, 0, 0, 0, 1, 1 ];
var N = floor( x.length / 2 );

var v = nanmskrange.ndarray( N, x, 2, 1, mask, 2, 1 );
// returns 6.0

Notes

  • If N <= 0, both functions return NaN.
  • Depending on the environment, the typed versions (dnanmskrange, snanmskrange, etc.) are likely to be significantly more performant.

Examples

<!DOCTYPE html>
<html lang="en">
<body>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/random-base-randu@umd/browser.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/math-base-special-round@umd/browser.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/array-float64@umd/browser.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/array-uint8@umd/browser.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/stats-base-nanmskrange@umd/browser.js"></script>
<script type="text/javascript">
(function () {

var mask;
var x;
var i;

x = new Float64Array( 10 );
mask = new Uint8Array( x.length );
for ( i = 0; i < x.length; i++ ) {
    if ( randu() < 0.2 ) {
        mask[ i ] = 1;
    } else {
        mask[ i ] = 0;
    }
    if ( randu() < 0.1 ) {
        x[ i ] = NaN;
    } else {
        x[ i ] = round( (randu()*100.0) - 50.0 );
    }
}
console.log( x );
console.log( mask );

var v = nanmskrange( x.length, x, 1, mask, 1 );
console.log( v );

})();
</script>
</body>
</html>

See Also


Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.