About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Calculate the arithmetic mean of a single-precision floating-point strided array, ignoring
NaN
values, using ordinary recursive summation with extended accumulation, and returning an extended precision result.
The arithmetic mean is defined as
import dsnanmeanors from 'https://cdn.jsdelivr.net/gh/stdlib-js/stats-base-dsnanmeanors@esm/index.mjs';
Computes the arithmetic mean of a single-precision floating-point strided array x
, ignoring NaN
values, using ordinary recursive summation with extended accumulation, and returning an extended precision result.
import Float32Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-float32@esm/index.mjs';
var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;
var v = dsnanmeanors( N, x, 1 );
// returns ~0.3333
The function has the following parameters:
- N: number of indexed elements.
- x: input
Float32Array
. - stride: index increment for
x
.
The N
and stride
parameters determine which elements in x
are accessed at runtime. For example, to compute the arithmetic mean of every other element in x
,
import Float32Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-float32@esm/index.mjs';
import floor from 'https://cdn.jsdelivr.net/gh/stdlib-js/math-base-special-floor@esm/index.mjs';
var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ] );
var N = floor( x.length / 2 );
var v = dsnanmeanors( N, x, 2 );
// returns 1.25
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
import Float32Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-float32@esm/index.mjs';
import floor from 'https://cdn.jsdelivr.net/gh/stdlib-js/math-base-special-floor@esm/index.mjs';
var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var N = floor( x0.length / 2 );
var v = dsnanmeanors( N, x1, 2 );
// returns 1.25
Computes the arithmetic mean of a single-precision floating-point strided array, ignoring NaN
values and using ordinary recursive summation with extended accumulation and alternative indexing semantics.
import Float32Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-float32@esm/index.mjs';
var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
var N = x.length;
var v = dsnanmeanors.ndarray( N, x, 1, 0 );
// returns ~0.33333
The function has the following additional parameters:
- offset: starting index for
x
.
While typed array
views mandate a view offset based on the underlying buffer
, the offset
parameter supports indexing semantics based on a starting index. For example, to calculate the arithmetic mean for every other value in x
starting from the second value
import Float32Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-float32@esm/index.mjs';
import floor from 'https://cdn.jsdelivr.net/gh/stdlib-js/math-base-special-floor@esm/index.mjs';
var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
var N = floor( x.length / 2 );
var v = dsnanmeanors.ndarray( N, x, 2, 1 );
// returns 1.25
- If
N <= 0
, both functions returnNaN
. - If every indexed element is
NaN
, both functions returnNaN
. - Accumulated intermediate values are stored as double-precision floating-point numbers.
- Ordinary recursive summation (i.e., a "simple" sum) is performant, but can incur significant numerical error. If performance is paramount and error tolerated, using ordinary recursive summation to compute an arithmetic mean is acceptable; in all other cases, exercise due caution.
<!DOCTYPE html>
<html lang="en">
<body>
<script type="module">
import randu from 'https://cdn.jsdelivr.net/gh/stdlib-js/random-base-randu@esm/index.mjs';
import round from 'https://cdn.jsdelivr.net/gh/stdlib-js/math-base-special-round@esm/index.mjs';
import Float32Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-float32@esm/index.mjs';
import dsnanmeanors from 'https://cdn.jsdelivr.net/gh/stdlib-js/stats-base-dsnanmeanors@esm/index.mjs';
var x;
var i;
x = new Float32Array( 10 );
for ( i = 0; i < x.length; i++ ) {
if ( randu() < 0.2 ) {
x[ i ] = NaN;
} else {
x[ i ] = round( (randu()*100.0) - 50.0 );
}
}
console.log( x );
var v = dsnanmeanors( x.length, x, 1 );
console.log( v );
</script>
</body>
</html>
@stdlib/stats-base/dnanmeanors
: calculate the arithmetic mean of a double-precision floating-point strided array, ignoring NaN values and using ordinary recursive summation.@stdlib/stats-base/dsmeanors
: calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation with extended accumulation and returning an extended precision result.@stdlib/stats-base/dsnanmean
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values, using extended accumulation, and returning an extended precision result.@stdlib/stats-base/nanmeanors
: calculate the arithmetic mean of a strided array, ignoring NaN values and using ordinary recursive summation.@stdlib/stats-base/sdsnanmean
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values and using extended accumulation.@stdlib/stats-base/snanmeanors
: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values and using ordinary recursive summation.
This package is part of stdlib, a standard library with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.