About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Multiply a single-precision floating-point vector
x
by a constantalpha
.
import sscal from 'https://cdn.jsdelivr.net/gh/stdlib-js/blas-base-sscal@esm/index.mjs';
Multiplies a single-precision floating-point vector x
by a constant alpha
.
import Float32Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-float32@esm/index.mjs';
var x = new Float32Array( [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ] );
sscal( x.length, 5.0, x, 1 );
// x => <Float32Array>[ -10.0, 5.0, 15.0, -25.0, 20.0, 0.0, -5.0, -15.0 ]
The function has the following parameters:
- N: number of indexed elements.
- alpha: scalar constant.
- x: input
Float32Array
. - stride: index increment.
The N
and stride
parameters determine which elements in x
are accessed at runtime. For example, to multiply every other value by a constant
import Float32Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-float32@esm/index.mjs';
var x = new Float32Array( [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ] );
sscal( 4, 5.0, x, 2 );
// x => <Float32Array>[ -10.0, 1.0, 15.0, -5.0, 20.0, 0.0, -5.0, -3.0 ]
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
import Float32Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-float32@esm/index.mjs';
// Initial array:
var x0 = new Float32Array( [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ] );
// Create an offset view:
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
// Scale every other value:
sscal( 3, 5.0, x1, 2 );
// x0 => <Float32Array>[ 1.0, -10.0, 3.0, -20.0, 5.0, -30.0 ]
If either N
or stride
is less than or equal to 0
, the function returns x
unchanged.
Multiplies a single-precision floating-point vector x
by a constant alpha
using alternative indexing semantics.
import Float32Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-float32@esm/index.mjs';
var x = new Float32Array( [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ] );
sscal.ndarray( x.length, 5.0, x, 1, 0 );
// x => <Float32Array>[ -10.0, 5.0, 15.0, -25.0, 20.0, 0.0, -5.0, -15.0 ]
The function has the following additional parameters:
- offset: starting index.
While typed array
views mandate a view offset based on the underlying buffer, the offset
parameter supports indexing semantics based on a starting index. For example, to multiply the last three elements of x
by a constant
import Float32Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-float32@esm/index.mjs';
var x = new Float32Array( [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ] );
sscal.ndarray( 3, 5.0, x, 1, x.length-3 );
// x => <Float32Array>[ 1.0, -2.0, 3.0, -20.0, 25.0, -30.0 ]
<!DOCTYPE html>
<html lang="en">
<body>
<script type="module">
import discreteUniform from 'https://cdn.jsdelivr.net/gh/stdlib-js/random-array-discrete-uniform@esm/index.mjs';
import sscal from 'https://cdn.jsdelivr.net/gh/stdlib-js/blas-base-sscal@esm/index.mjs';
var opts = {
'dtype': 'float32'
};
var x = discreteUniform( 10, -100, 100, opts );
console.log( x );
sscal( x.length, 5.0, x, 1 );
console.log( x );
</script>
</body>
</html>
@stdlib/blas-base/daxpy
: multiply a vectorx
by a constant and add the result toy
.@stdlib/blas-base/dscal
: multiply a double-precision floating-point vector by a constant.@stdlib/blas-base/gscal
: multiply a vector by a constant.@stdlib/blas-base/saxpy
: multiply a vectorx
by a constant and add the result toy
.
This package is part of stdlib, a standard library with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.