-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathppmlhdfe.mata
848 lines (706 loc) · 32.2 KB
/
ppmlhdfe.mata
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
* ===========================================================================
* Mata Code: Poisson Pseudo-Maximum Likelihood through IRLS
* ===========================================================================
// Include reghdfe (which in turn includes ftools) --------------------------
cap findfile "reghdfe5.mata"
if (_rc) {
di as error "ppmlhdfe requires the {bf:reghdfe} package (version 6 or newer), which is not installed"
di as error `" - install from {stata ssc install reghdfe:SSC}"'
di as error `" - install from {stata `"net install reghdfe, from("/~https://github.com/sergiocorreia/reghdfe/raw/master/src/")"':Github}"'
exit 9
}
include "`r(fn)'"
// Include .mata files -----------------------------------------------------
local GLM "class GLM scalar"
findfile "ppmlhdfe_functions.mata"
include "`r(fn)'"
findfile "ppmlhdfe_separation_simplex.mata"
include "`r(fn)'"
findfile "ppmlhdfe_separation_relu.mata"
include "`r(fn)'"
// --------------------------------------------------------------------------
// GLM Class
// --------------------------------------------------------------------------
mata:
mata set matastrict on
mata set mataoptimize on
mata set matadebug off // (on when debugging; off in production)
mata set matalnum off // (on when debugging; off in production)
class GLM
{
`Varname' depvar, touse, weight_var, offsetvar
`Varlist' indepvars // , fullindepvars
// `RowVector' not_basevar (HDFE)
`String' absorb, weight_type
`RowString' separation
`FixedEffects' HDFE
`Boolean' verbose
`Boolean' log
`Integer' init_step // Used to ensure that we run the init_*() functions in the correct order
`String' vcetype
`RowString' clustervars, base_clustervars
// Data-related variables
`Variable' y, offset, true_w
`Variables' x
`Integer' k
`RowVector' stdev_x
`Real' stdev_y, min_positive_y
// Advanced estimation/solver parameters
`String' initial_guess_method // Method used to determine initial values of -mu-
`Boolean' standardize_data
`Boolean' remove_collinear_variables
`Boolean' use_exact_solver
`Boolean' use_exact_partial
`Boolean' use_heuristic_tol
`Real' tolerance, start_inner_tol, target_inner_tol, realized_tolerance
`Integer' iter, subiter // Iteration and subiteration counts
`Integer' min_ok // Minimum number of "ok" iterations before declaring convergence
`Integer' maxiter // Maximum number of iterations in IRLS step
// Step-halving
`Boolean' use_step_halving
`Real' step_halving_memory
`Iter' max_step_halving
// Separation-related parameters
`Integer' num_separated
`Real' mu_tol
`Real' simplex_tol
`Integer' simplex_maxiter
`Real' relu_tol
`Real' relu_maxiter
`Boolean' relu_report_r2
`String' relu_sepvarname
`String' relu_zvarname
`Boolean' relu_debug
`Boolean' relu_strict
`Boolean' relu_accelerate
// Methods
`Void' new()
`Void' validate_parameters()
`Void' init_fixed_effects()
`Void' init_variables()
`Void' init_separation()
`Void' solve()
`Boolean' inner_irls() // Returns 1 if converged else 0
}
`Void' GLM::new()
{
verbose = 0
log = 1
init_step = 0
weight_var = weight_type = ""
iter = subiter = 0
// separation = J(1, 0, "")
// Advanced estimation/solver parameters
remove_collinear_variables = 1
standardize_data = 1
use_exact_solver = 0
use_exact_partial = 0
use_heuristic_tol = 1
use_step_halving = 0
step_halving_memory = 0.9
max_step_halving = 2
tolerance = 1e-8
target_inner_tol = 1e-9 // Target HDFE tolerance
start_inner_tol = 1e-4
initial_guess_method = "simple"
min_ok = 1 // Set to 1 or at most 2... // BUGBUG: If this is below 2, then this test will fail: savefe_advanced.do (!!)
maxiter = 1000 // 10,000 ?
// Separation parameters
num_separated = 0
separation = tokens("fe simplex relu mu")
mu_tol = 1e-6 // Actual tolerance is this scaled by the minimum MU when y>0
simplex_tol = 1e-12
simplex_maxiter = 1000
relu_tol = 1e-4
relu_maxiter = 100
relu_report_r2 = relu_debug = 0
relu_zvarname = relu_sepvarname = ""
relu_strict = 0
relu_accelerate = 0 // 0 by default as it conflicts with the "accelerate partial" trick (by making the weights change frequently). Maybe if we make the weights more stable across iters...?
}
// --------------------------------------------------------------------------
// Validate that parameter values are not invalid
// --------------------------------------------------------------------------
`Void' GLM::validate_parameters()
{
assert_boolean(remove_collinear_variables)
assert_boolean(standardize_data)
assert_boolean(use_exact_solver)
assert_boolean(use_exact_partial)
assert_boolean(use_heuristic_tol)
assert_msg(0 < tolerance & tolerance <= 1, "tolerance must be a real between 0 and 1", 9001, 0)
assert_msg(0 < start_inner_tol & start_inner_tol <= 1, "start_inner_tol must be a real between 0 and 1", 9001, 0)
assert_in(initial_guess_method, ("simple", "ols"))
assert_msg(min_ok >= 1, "min_ok must be a positive integer", 9001, 0)
assert_msg(0 < maxiter)
// Separation parameters
assert_msg(0 < mu_tol & mu_tol < 1e-1, "mu_tol must be a real in (0, 0.1)", 9001, 0)
assert_msg(0 < simplex_tol & simplex_tol < 1e-1, "simplex_tol must be a real in (0, 0.1)", 9001, 0)
assert_msg(0 < simplex_maxiter, "simplex_maxiter must be a positive integer", 9001, 0)
}
// --------------------------------------------------------------------------
// Compute HDFE object
// --------------------------------------------------------------------------
`Void' GLM::init_fixed_effects()
{
`Integer' hdfe_verbose, num_tokens, i
`Boolean' check_separation
`String' options, key, val, cmd
`StringRowVector' tokens
if (verbose > 0) printf("\n{txt}{bf:- Parsing absorb() and creating HDFE object:}\n")
assert(++init_step == 1)
assert_msg(depvar != "", "glm.depvar is empty")
assert_msg(touse != "", "glm.touse is empty")
// SYNTAX: fixed_effects( absvars [ , touse, weighttype, weightvar, drop_singletons, verbose])
// Note: to set drop_singletons=0, add the "keepsingletons" option to the -absorb- string
hdfe_verbose = verbose > 0 ? verbose - 1 : verbose
check_separation = anyof(separation, "fe")
HDFE = fixed_effects(absorb, touse, check_separation ? "iweight" : "", depvar, ., hdfe_verbose)
HDFE.depvar = depvar // Otherwise, e(depvar) will be set to missing when we call HDFE.post()
// Check for invalid suboptions within absorb()
if (verbose > -1 & !HDFE.drop_singletons) printf("{err}warning: keeping singleton groups will keep fixed effects that cause separation\n")
assert_msg(HDFE.residuals == "", "option {bf:residuals} not allowed", 198, 0)
//assert_msg(st_global("s(options)") == "", sprintf("option(s) {bf:%s} not allowed",st_global("s(options)")), 198, 0)
// Add advanced options
options = st_global("s(options)")
if (options != "") {
tokens = tokens(options, " ()")
assert_msg(!mod(cols(tokens), 4), sprintf("Invalid options: %s", options))
num_tokens = trunc(cols(tokens) / 4)
for (i=0; i<num_tokens; i++) {
key = tokens[4*i+1]
assert_msg(tokens[4*i+2] == "(")
val = tokens[4*i+3]
assert_msg(tokens[4*i+4] == ")")
cmd = sprintf("cap mata: glm.%s = %s", key, val)
stata(cmd)
assert_msg(!st_numscalar("c(rc)"), sprintf("option {bf:%s} not allowed", key), 198, 0)
}
// Check that parameters are still valid
validate_parameters()
}
// Update touse (might be smaller due to singletons)
if (HDFE.drop_singletons) HDFE.save_touse()
}
// --------------------------------------------------------------------------
// Load data into Mata
// --------------------------------------------------------------------------
`Void' GLM::init_variables()
{
if (verbose > 0) printf("\n{txt}{bf:- Loading regression variables into Mata}\n")
assert(++init_step == 2)
// 1) Expand factor variables in the RHS, and mark omitted variables
stata(sprintf("ms_expand_varlist %s if %s", indepvars, touse))
if (verbose > 0) stata("return list")
HDFE.not_basevar = strtoreal(tokens(st_global("r(not_omitted)"))) // We want to output all coefs including the omitted ones
indepvars = HDFE.indepvars = tokens(st_global("r(varlist)"))
HDFE.fullindepvars = st_global("r(fullvarlist)") // tokens() ???
HDFE.varlist = depvar, HDFE.indepvars
// 2) Load LHS
y = st_data(HDFE.sample, depvar)
assert_msg(all(y :>= 0), sprintf("{err}%s must be greater than or equal to zero", depvar), 459, 0)
// 3) Load RHS
k = cols(indepvars)
if (k) {
_st_data_wrapper(HDFE.sample, indepvars, x=., verbose)
}
else {
x = J(rows(y), 0, .)
}
assert(cols(x)==k)
// 4) Load additional variables
offset = offsetvar != "" ? st_data(HDFE.sample, offsetvar) : J(0, 1, .)
true_w = weight_var != "" ? st_data(HDFE.sample, weight_var) : 1
// 5) Save memory
// st_dropvar(HDFE.tousevar)
// (If needed, preserve+clear the data)
// 6) Standardize data
if (standardize_data) {
if (verbose > 0) printf("{txt} @@ Standardizing variables\n")
stdev_x = reghdfe_standardize(x)
stdev_y = reghdfe_standardize(y)
//_edittozerotol(y, epsilon(1)) // round to zero values below macheps (2e-16) // Warning: doing this might be a bad idea, and will fail the collinear.do test
min_positive_y = min(select(y, y:>0))
if (verbose > -1 & min_positive_y <= 1e-6) printf("{err}warning: dependent variable takes very low values after standardizing (%g)\n", min_positive_y)
// TODO: do we need to rescale the offset?
}
else {
stdev_x = J(1, k, 1)
stdev_y = 1
}
// 7) Speedup trick: Try to sort data by first FE (if not already sorted by one of the FEs)
// Isn't it better to do this BEFORE loading all the data and creating HDFE?
// 8) Remove collinear variables (better to do this now than to carry these variables through the separation step)
// Note that this requires an entire partial_out() call, so it is slow
if (remove_collinear_variables) {
if (verbose > 0) printf("{txt} @@ Removing collinear variables\n")
HDFE.varlist = HDFE.indepvars
remove_collinears(HDFE, target_inner_tol, x, k, stdev_x, weight_type, weight_var, true_w, verbose) // Will modify (HDFE.not_basevar, x, k, stdev_x) accordingly, and overwrite HDFE.weights
HDFE.varlist = depvar, HDFE.indepvars
}
}
// --------------------------------------------------------------------------
// Detect and correct separation
// --------------------------------------------------------------------------
`Void' GLM::init_separation()
{
`Boolean' check_separation
`Vector' non_separated_obs
`Integer' num_drop
assert(++init_step == 3)
// Abort if there are no boundary observations (i.e. y > 0 always)
if (all(y :> 0)) {
if (verbose > 0) printf("{txt}\n $$ No boundary observations (y=0), no separation tests required.\n")
return
}
// Simplex method
check_separation = anyof(separation, "simplex") & k
if (check_separation) {
num_drop = simplex_fix_separation(HDFE, y, x, k, stdev_x, true_w, weight_type, weight_var, target_inner_tol, simplex_tol, simplex_maxiter, non_separated_obs=., verbose)
if (num_drop & rows(offset)) offset = offset[non_separated_obs]
num_separated = num_separated + num_drop
}
// ReLU method (also works for fixed effects and combinations of regressors and FEs)
check_separation = anyof(separation, "relu")
if (check_separation) {
num_drop = relu_fix_separation(HDFE, y, x, k, stdev_x, true_w, weight_type, weight_var, target_inner_tol,
relu_tol, relu_maxiter,
relu_sepvarname, relu_zvarname, relu_debug, relu_report_r2,
non_separated_obs=., relu_strict, relu_accelerate, verbose)
if (num_drop & rows(offset)) offset = offset[non_separated_obs]
num_separated = num_separated + num_drop
}
}
// --------------------------------------------------------------------------
// Compute estimates through IRLS
// --------------------------------------------------------------------------
`Void' GLM::solve(`String' bname,
`String' Vname,
`String' nname,
`String' rname,
`String' dfrname,
`String' llname,
`String' ll_0name,
`String' devname,
`String' chi2name,
`String' d_name)
{
`Variable' mu, eta, z, resid, d
`Variables' data
`Vector' b
`Matrix' V
`Integer' N, df_r, rank, N_sep, backup_iter
`Boolean' check_separation
`Boolean' converged
`Real' deviance, eps, ll, ll_0, ll_0_mu, chi2
`Vector' separated_obs, non_separated_obs, zero_sample
assert(++init_step == 4)
if (verbose > 1) printf("{txt} @@ Starting GLM::solve\n")
// Set up tolerance (used to estimate initial values and first step of IRLS)
HDFE.tolerance = max(( start_inner_tol , tolerance ))
// Set weights (used when setting initial values...)
HDFE.load_weights(weight_type, weight_var, true_w, verbose) // Before, HDFE.weight was just -depvar-!
// Initial values for -mu- (using actual weights)
// - Reference: Generalized Linear Models and Extensions (Hardin & Hilbe) page 31
// a) "initialize the fitted values to the inverse link of the mean of the response variable"
// b) "set the initial fitter values to (y + y̅ ) / 2"
// TODO: is there a better way?
if (verbose > 0) printf("{txt} @@ Setting initial values\n")
if (initial_guess_method == "ols") {
if (verbose > 0) printf("\n{txt} - OLS Estimates of log(1+y) as initial values")
HDFE._partial_out(data = (log(y :+ mean(y, HDFE.weight) :/ 100 ), x), ., 0, ., 1) // Don't standardize vars; flush aux vectors // Bugbug why divide mean by 100? to make it small?
reghdfe_solve_ols(HDFE, data, b=., V=., N=., rank=., df_r=., mu=., ., "vce_none") // mu instead of resid, to save space
mu = exp(log(y :+ 1) - mu)
}
else {
mu = 0.5 * (y :+ mean(y, HDFE.weight))
}
// Run IRLS algorithm (note that -mu- is both an input and output!)
check_separation = anyof(separation, "mu")
converged = inner_irls(mu, eta, check_separation, data=., z=., deviance=., eps=., separated_obs=J(0, 1, .))
assert_msg(converged, sprintf("{err}Failed to converge in %4.0f iterations (eps=%9.6e){txt}\n", maxiter, eps), 430, 0)
// Post-IRLS check for separation
N_sep = rows(separated_obs)
if (N_sep) {
assert(check_separation)
data = . // Conserve memory
num_separated = num_separated + N_sep
if (verbose > -1) printf("{txt}(IRLS step detected %g separated observation%s)\n", N_sep, N_sep > 1 ? "s" : "")
non_separated_obs = trim_separated_obs(HDFE, y, x, weight_type, weight_var, true_w, separated_obs, verbose)
// Note that we might separate more than N_sep obs. due to possible new singletons
mu = mu[non_separated_obs]
eta = eta[non_separated_obs]
z = z[non_separated_obs]
if (rows(offset)) offset = offset[non_separated_obs]
remove_collinears(HDFE, target_inner_tol, x, k, stdev_x, weight_type, weight_var, true_w, verbose) // Will modify (HDFE.not_basevar, x, k, stdev_x) accordingly, and overwrite HDFE.weights
// Re-run IRLS with trimmed data
backup_iter = iter
converged = inner_irls(mu, eta, 0, data=., z=., deviance=., eps=., separated_obs=J(0, 1, .))
iter = iter + backup_iter
assert_msg(converged, sprintf("{err}Failed to converge in %4.0f iterations (eps=%9.6e){txt}\n", maxiter, eps), 430, 0)
}
if (verbose > -1 & log) printf("{txt}{hline 108}\n")
if (verbose > -1 & log) printf("{txt}(legend: {res}p{txt}: exact partial-out {res}s{txt}: exact solver {res}h{txt}: step-halving {res}o{txt}: epsilon below tolerance)\n")
if (verbose > -1) printf("{txt}Converged in %g iterations and %g HDFE sub-iterations (tol =%4.0e)\n", iter, subiter, tolerance)
st_local("ic", strofreal(iter))
st_local("ic2", strofreal(subiter))
// Compute results
if (verbose > 0) printf("{txt} @@ Computing DoF\n")
HDFE.vcetype = vcetype
HDFE.clustervars = tokens(clustervars)
HDFE.base_clustervars = tokens(base_clustervars)
HDFE.num_clusters = length(HDFE.clustervars)
HDFE.estimate_dof()
if (verbose > 0) printf("{txt} @@ Computing final betas and standard errors\n")
// Pseudo log likelihood
// We use lngamma() because lnfactorial() doesn't work with non-integers
resid = y :* stdev_y :* (eta:+ log(stdev_y)) - mu :* stdev_y - lngamma(y :* stdev_y :+ 1)
//resid = y :* stdev_y :* (log(mu) :+ log(stdev_y)) - mu :* stdev_y - lngamma(y :* stdev_y :+ 1) // Not as accurate on extreme cases, makes collinear2.do fail
zero_sample = selectindex(y :== 0)
resid[zero_sample] = -mu[zero_sample] :* stdev_y
ll = quadsum(resid :* true_w)
resid = .
// Alternative; using the fact that LL = MAX_LL - Deviance / 2
// resid = y :* stdev_y :* (log(y) :+ log(stdev_y) - 1) - lngamma(y :* stdev_y :+ 1)
// resid[zero_sample] = -y[zero_sample] :* stdev_y
// ll = quadsum(resid :* true_w) - deviance / 2
// Pseudo Log likelihood of constant-only model
ll_0_mu = mean(y, true_w)
resid = y :* (stdev_y * (log(ll_0_mu) + log(stdev_y))) :- (ll_0_mu * stdev_y) :- lngamma(y :* stdev_y :+ 1)
zero_sample = selectindex(y :== 0)
resid[zero_sample] = J(rows(zero_sample), 1, -ll_0_mu * stdev_y)
ll_0 = quadsum(resid :* true_w)
resid = .
// Prepare to recover _cons
HDFE.compute_constant = 1
// Note: mu :* true_w == HDFE.weight
HDFE.means = mean(log(mu), HDFE.weight) , mean(x, HDFE.weight)
stdev_x = stdev_x, 1
// With fweights we need to run an ad-hoc code, equivalent to aweights+fweights
reghdfe_solve_ols(HDFE, data, b=., V=., N=., rank=., df_r=., resid=., ., "vce_asymptotic",
weight_type == "fweight" ? true_w : J(0, 1, .))
if (rows(offset)) b[rows(b)] = b[rows(b)] - mean(offset, HDFE.weight) // mu :* true_w
// Run this before updating weights
if (HDFE.save_any_fe | (d_name != "")) {
// z = x b + d + e (z: working depvar)
// zz = xx b + e (zz: demeaned z)
// THUS: d = z - xb - (e = zz - xx b)
d = z - resid :- (cols(x) ? x * b[1..(rows(b)-1)] : 0)
d = d :- mean(d, HDFE.weight)
if (d_name != "") {
if (HDFE.verbose > 0) printf("{txt} @@ Storing sum of fixed effects in {res}%s{txt}\n", d_name)
//resid = resid :- log(stdev_y)
HDFE.save_variable(d_name, d, "Sum of fixed effects")
}
if (HDFE.save_any_fe) {
if (verbose > 0 & verbose < 3) printf("\n## Storing estimated fixed effects\n")
HDFE.store_alphas(d)
}
// Debugging:
// HDFE.save_variable("weight", HDFE.weight)
// stata("su A B weight") // Not zero mean
// stata("su A B [iw=weight]") // Zero mean
}
// Rescale results
// See https://stats.stackexchange.com/questions/175349/in-a-poisson-model-what-is-the-difference-between-using-time-as-a-covariate-or
b[rows(b)] = b[rows(b)] + log(stdev_y)
b = b :/ stdev_x'
V = V :/ (stdev_x' * stdev_x)
// resid = resid :* stdev_y // BUGBUG?
HDFE.load_weights(weight_type, weight_var, true_w, 1) // Why verbose==1? BUGBUG
assert(cols(data) - 1 == rows(b) - HDFE.compute_constant)
data = .
chi2 = HDFE.F * HDFE.df_m // Wald test; based on output by reghdfe_solve_ols()
// Add constant
if (verbose > 1) printf("\n{txt}## Adding _cons to varlist\n")
assert_msg(rows(HDFE.not_basevar) == 1, "rows(S.not_basevar) == 1")
HDFE.not_basevar = HDFE.not_basevar, 1
HDFE.fullindepvars = HDFE.fullindepvars + " _cons"
HDFE.indepvars = HDFE.indepvars, " _cons"
// Add base/omitted variables
add_base_variables(HDFE, b, V)
// Post results
st_matrix(bname, b')
st_matrix(Vname, V)
st_numscalar(nname, N)
st_numscalar(rname, rank)
st_numscalar(dfrname, df_r)
st_numscalar(llname, ll)
st_numscalar(ll_0name, ll_0)
st_numscalar(chi2name, chi2)
st_numscalar(devname, deviance)
// Need to save resids if saving FEs, even if temporarily
if (HDFE.residuals == "" & HDFE.save_any_fe) {
HDFE.residuals = "__temp_reghdfe_resid__"
}
// BUGBUG ! We shouldn't need to update touse!!
//st_dropvar(HDFE.tousevar)
//HDFE.save_touse("", 0)
HDFE.save_touse("", 1)
}
// --------------------------------------------------------------------------
// Iteratively Re-weighted Least Squares (IRLS)
// --------------------------------------------------------------------------
// WARNING:
// Discussion on numerical stability: very low (but positive) values of mu
// (This is related to the "collinear2.do" test)
// If our LHS has both very high and very low values, then standardizing -y- will make the very low values *extremely low*
// Then, the ratio y/mu (and thus log(..)) can be wildly inaccurate
// Example from obs. 5 of collinear2.do:
// y=134.9833527, eta= -1.23202993 ; thus mu=0.291699846, y/mu=462.7474252 and log(y/mu)=6.137181387
// However, if stdev_y=1.17511e+14 , then mu=2.22045e-14 y/mu=51.73238502 and log(y/mu)=3.946083988
// Instead, let's do y/mu=exp(log(y)-eta)=462.7474256 and log(y/mu)=log(y)-eta= 6.137181388 , which are WAY CLOSER to the correct soln (!!)
// (The cost is of course a slower computation for y/mu)
`Boolean' GLM::inner_irls(`Variable' mu, // Initial value
`Variable' eta, // Will be returned (to compute log-likelihood)
`Boolean' check_separation,
`Variables' data, // Return transformed data (y,x)
`Variable' z, // Return working depvar; only used when saving FEs
`Real' deviance, // Return final deviance
`Real' eps, // Return eps; the convergence criteria
`Vector' separated_obs)
{
`Integer' ok, N_sep, col, num_step_halving
`Variable' separation_mask, z_last, irls_w, resid, old_eta
`Vector' zero_sample
`Vector' b
`Real' log_septol, old_deviance, delta_deviance, alt_tol, highest_inner_tol, denom_eps, min_eta, adjusted_log_septol
`Boolean' iter_fast_partial, iter_fast_solver, iter_step_halving
`String' iter_text
`Matrix' last_x
`Vector' eps_history
`Real' predicted_eps
// Sanity checks
assert(k == cols(x))
assert(0 < step_halving_memory & step_halving_memory < 1)
// WARNING:
// If the initial value of MU is too close to zero, then
// when computing z = "eta - 1 + y / mu" we end up with a high value
// and that eventually leads to mu=exp(eta) being infinite
// EG: if y/mu=1e-2, exp(z) = 2e+43 (!!!)
censor_mu(mu, y, verbose)
// Initialize IRLS
highest_inner_tol = max((1e-12, min((target_inner_tol, 0.1 * tolerance)) )) // This is the *actual* target tolerance; HDFE.partial_out() will never have a tolerance higher than this
log_septol = log(mu_tol) // sep. tolerance in terms of Mu and not Eta
eta = log(mu)
HDFE.load_weights("aweight", "<placeholder for mu>", y, 1) // y is just a placeholder; we'll place (true_w*mu) later
eps = deviance = .
ok = N_sep = iter_step_halving = num_step_halving = 0
separation_mask = z = z_last = J(rows(eta), 1, 0)
zero_sample = selectindex(y :== 0)
eps_history = J(3, 1, .)
if (verbose > 0) {
printf("{txt} @@ Starting IRLS\n")
printf("{txt} Target HDFE tolerance:{res}%-9.4e{txt}\n", highest_inner_tol)
if (verbose > 2) stata("memory")
}
// Iterate
iter = 0
while ((ok < min_ok) & (++iter <= maxiter)) {
iter_fast_partial = !use_exact_partial & (iter > 1)
iter_fast_solver = !iter_step_halving & !use_exact_solver & k & (HDFE.tolerance > tolerance * 11)
if (use_heuristic_tol) {
predicted_eps = predict_eps(eps_history, eps)
iter_fast_solver = iter_fast_solver & (predicted_eps > tolerance)
}
// (a) Update weights: W = μ
if (verbose > 1) printf("{txt} @@@ HDFE.update_sorted_weights()\n")
assert_msg(!hasmissing(mu), sprintf("mu has infinite values on iteration %g; aborting", iter), 9003, 0)
irls_w = true_w :* mu
HDFE.update_sorted_weights(irls_w)
HDFE.update_cvar_objects()
// (b) Update working variable z = η + (y - μ) / μ - offset
// = η + y/μ - 1 - offset
// Note: lim z (μ->0; y=0) = η - 1 - offset + 0/ε
// = η - 1 - offset
if (rows(offset)) {
z = eta - offset :- 1 + y :/ mu
// z = eta - offset :- 1 + exp(log(y) - eta) // Perhaps more accurate?
if (check_separation) z[zero_sample] = eta[zero_sample] - offset[zero_sample] :- 1
}
else {
z = eta :- 1 + y :/ mu
// z = eta :- 1 + exp(log(y) - eta) // Perhaps more accurate?
if (check_separation) z[zero_sample] = eta[zero_sample] :- 1
}
// (c) Data is (z, X)
if (iter_fast_partial) {
data[., 1] = data[., 1] + z - z_last
// data[., 1] = data[., 1] - (last_x - data[., 2..cols(data)]) * b[1..k]
}
else {
data = (z, x)
}
//last_x = data[., 2..cols(data)]
// (d.1) Partial out data
if (verbose > 1) printf("{txt} @@@ HDFE._partial_out()\n")
_edittozerotol(data, min((tolerance, 1e-12)) ) // see test: hard2.do
if (iter > 1) (void) --HDFE.verbose
HDFE._partial_out(data, 0, 0, 0, 1) // Don't standardize vars; flush aux vectors
if (iter > 1) (void) ++HDFE.verbose
_edittozerotol(data, min((tolerance, 1e-12)) )
subiter = subiter + HDFE.iteration_count
// (d.2) Solve β and compute residuals
if (verbose > 1) printf("{txt} @@@ reghdfe_solve_ols()\n")
if (iter_fast_solver) {
// Faster solution (~5% runtime) when still away from converging
b = fastsolve(data, HDFE.weight)
if (verbose > 1) b'
resid = data * (1 \ -b)
}
else {
// Good-quality estimates when close to the solution
reghdfe_solve_ols(HDFE, data, b=., ., ., ., ., resid=., ., "vce_none")
if (verbose > 1) b'
}
if (verbose > 1) printf("{txt} @@@ updating eta/mu/deviance\n")
// (e) Update η = z - resid = xβ + d
if (!iter_step_halving) swap(old_eta, eta) // A faster alternative to "old_eta = eta"
if (rows(offset)) {
eta = z - resid + offset
}
else {
eta = z - resid
}
if (check_separation) {
// Add min(eta + 5| y > 0) to log_septol, if that is negative
// Essentially, this uses a more conservative tolerance if eta is also low when y>0
// But the effect only kicks in when eta is below -5
adjusted_log_septol = log_septol + min(( min(select(eta, y:>0)) + 5, 0 ))
separation_mask = separation_mask :| ( (eta :<= adjusted_log_septol) :& (y :== 0) )
separated_obs = selectindex(separation_mask)
N_sep = rows(separated_obs)
}
// (f) Update μ = exp(η)
mu = exp(eta)
if (N_sep) mu[separated_obs] = J(N_sep, 1, 0)
_vector_scalar_max(mu, epsilon(100)) // the result might oscillate endlessly if mu is too close to epsilon()
// (e) Update deviance:
// Dev = 2 { Σ[μ] - Σ[y] + (y>0) * Σ[y log(y/μ)]
swap(z, z_last)
old_deviance = deviance
//deviance = quadsum((mu - y) :* true_w) + quadcross(y, (y :> 0) :* true_w, log(y :/ mu) )
deviance = quadsum((mu - y) :* true_w) + quadcross(y, (y :> 0) :* true_w, log(y) - eta )
if (2 * deviance / rows(y) < epsilon(1)) deviance = 0 // We are within macheps accuracy of zero
deviance = 2 * edittozerotol(deviance, epsilon(1))
if (deviance < 0) deviance = 0
delta_deviance = old_deviance - deviance
// Trick: since Dev>0; in the next iteration ΔDev can't be lower than Dev
if (!missing(delta_deviance) & (deviance < 0.1 * delta_deviance)) {
delta_deviance = deviance
if (verbose > 0) printf("{txt} - note: deviance is already very close to zero\n")
}
// Stopping criteria:
// - It's HARD to choose a good stopping criteria
// - Note: unless the model has no constant, sum(y) == sum(mu) at convergence
if (iter > 1) {
// Alternatives:
//eps = abs(delta_deviance) / (0.1 + deviance) // R criterion: /~https://github.com/SurajGupta/r-source/blob/a28e609e72ed7c47f6ddfbb86c85279a0750f0b7/src/library/stats/R/glm.R#L302
//eps = abs(delta_deviance) // Stata criterion: glm.ado (line 1060)
//eps = delta_deviance / deviance // Julia criterion: /~https://github.com/JuliaStats/GLM.jl/blob/84da7f178589ebd5aa131e92be5aff8baa9a9636/src/glmfit.jl#L262
//eps = abs(delta_deviance) / deviance // Modified Julia criterion: /~https://github.com/JuliaStats/GLM.jl/blob/84da7f178589ebd5aa131e92be5aff8baa9a9636/src/glmfit.jl#L262
//eps = abs(delta_deviance) / (0.1 + min((deviance, old_deviance))) // Criterion from version 1 of ppmlhdfe.ado
// denom_eps = max(( min((deviance, old_deviance)) , 0.1 / stdev_y ))
denom_eps = max(( min((deviance, old_deviance)) , 0.1 ))
eps = abs(delta_deviance) / denom_eps
// Never used:
//eps, delta_deviance, denom_eps, ., min((deviance, old_deviance)), 0.1, 0.1 / stdev_y
//eps = mreldif(deviance, old_deviance) // maybe this is safer?
//eps = mean(reldif(deviance, old_deviance))
//eps = abs(delta_deviance) / (0.1 * stdev_y + min((deviance, old_deviance)))
//eps = abs(delta_deviance) / max(( min((deviance, old_deviance)) , epsilon(100) ))
// Declare convergence once we have enough non-accelerated iterations where eps < tol
if (eps < tolerance) {
if (use_heuristic_tol & HDFE.accuracy >= 0) {
// HDFE.accuracy can be -1 with LSMR (LSMR does not update accuracy as it uses multiple tols)
assert(HDFE.accuracy <= HDFE.tolerance)
if (!iter_fast_solver & (HDFE.accuracy <= 1.1 * highest_inner_tol | HDFE.G==1)) {
ok = ok + 1
}
}
else {
if (!iter_fast_solver & (HDFE.tolerance <= 1.1 * highest_inner_tol | HDFE.G==1)) {
ok = ok + 1
}
}
}
else if (use_step_halving & (delta_deviance < 0) & (num_step_halving < max_step_halving)) {
// Run step-halving AFTER checking for convergence
eta = step_halving_memory * old_eta + (1 - step_halving_memory) * eta
if (num_step_halving > 0) update_mask(eta, selectindex(eta:<-10), -10) // If the first step halving was not enough, clip very low values of eta
mu = exp(eta)
iter_step_halving = 1
ok = 0
num_step_halving = num_step_halving + 1
}
else {
iter_step_halving = 0
num_step_halving = 0
}
}
// Progress report
if (verbose > -1 & log) {
col = 0
iter_text = sprintf("{txt}{col %2.0f}Iteration %g:", col, iter)
col = col + 16
iter_text = iter_text + sprintf("{txt}{col %2.0f}deviance = {res}%-11.5e", col, deviance * stdev_y)
col = col + 23
iter_text = iter_text + sprintf("{col %2.0f}{txt}eps = {res}%-9.4e{txt}", col, eps)
col = col + 16
iter_text = iter_text + sprintf("{col %2.0f}{txt}iters = {res}%g", col, HDFE.iteration_count)
col = col + 13
iter_text = iter_text + sprintf("{col %2.0f}{txt}tol ={res}%5.0e", col, HDFE.tolerance)
col = col + 14
min_eta = min(select(eta, !separation_mask))
iter_text = iter_text + sprintf("{col %2.0f}{txt} min(eta) = {%s}%6.2f", col, min_eta < log_septol - 1 & !check_separation ? "err" : "res", min_eta ) // Add "& verbose>0"
col = col + 20
//iter_text = iter_text + sprintf("{txt}{col %2.0f}[{txt}%s%s%s%s{txt}] ", col, iter_fast_partial ? " " : "p", iter_fast_solver ? " " : "s", iter_step_halving ? "h" : " ", ok ? "o" : " ")
iter_text = iter_text + " {txt}"
iter_text = iter_text + (iter_fast_partial ? " " : "P")
iter_text = iter_text + (iter_fast_solver ? " " : "S")
iter_text = iter_text + (iter_step_halving ? "H" : " ")
iter_text = iter_text + (ok ? "O" : " ")
col = col + 6
if (N_sep) iter_text = iter_text + sprintf("{col %2.0f}{txt} sep.obs. = {res}%g", col = col, N_sep)
printf(iter_text + "\n")
}
// If using step halving, start a new iteration after the progress report
if (iter_step_halving) {
deviance = old_deviance
continue
}
if (ok >= min_ok | ok >= 1 & deviance == 0) {
deviance = deviance * stdev_y
return(1) // converged=1
}
// As IRLS starts to converge, switch to stricter tolerances when partialling out
if (use_heuristic_tol) {
if (eps < HDFE.tolerance) {
// Increase HDFE tol by at least 10x.
// Go further if IRLS is converging fast enough.
// But don't increase beyond the user-requested tol!
// (Note: "max((eps, epsilon(1)))" avoids missing values when eps==0)
HDFE.tolerance = max((min((0.1 * HDFE.tolerance, alt_tol)), highest_inner_tol))
alt_tol = 10 ^ -ceil(log10(1 / max((0.1 * eps, epsilon(1))) ))
}
if (use_exact_partial & HDFE.tolerance > tolerance) HDFE.tolerance = 0.1 * tolerance // BUGBUG??
if (inrange(tolerance, predicted_eps, eps) & inrange(HDFE.tolerance/highest_inner_tol, 1.1, 10.1) & (HDFE.accuracy/highest_inner_tol <= 10.1)) {
HDFE.tolerance = 0.1 * HDFE.tolerance
}
}
else {
if (eps < HDFE.tolerance) {
// Increase HDFE tol by at least 10x.
// Go further if IRLS is converging fast enough.
// But don't increase beyond the user-requested tol!
// (Note: "max((eps, epsilon(1)))" avoids missing values when eps==0)
HDFE.tolerance = max((min((0.1 * HDFE.tolerance, alt_tol)), highest_inner_tol))
alt_tol = 10 ^ -ceil(log10(1 / max((0.1 * eps, epsilon(1))) ))
}
if (use_exact_partial & HDFE.tolerance > tolerance) HDFE.tolerance = 0.1 * tolerance // BUGBUG??
}
}
return(0) // converged=0
}
end
exit