-
Notifications
You must be signed in to change notification settings - Fork 433
/
Copy pathutils.py
194 lines (173 loc) · 8.82 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from torch.utils.data import TensorDataset
import numpy as np
import logging
import os
import random
import torch
import time
from tqdm import tqdm
from _utils import *
logger = logging.getLogger(__name__)
def load_and_cache_gen_data(args, filename, pool, tokenizer, split_tag, only_src=False, is_sample=False):
# cache the data into args.cache_path except it is sampled
# only_src: control whether to return only source ids for bleu evaluating (dev/test)
# return: examples (Example object), data (TensorDataset)
data_tag = '_all' if args.data_num == -1 else '_%d' % args.data_num
cache_fn = '{}/{}.pt'.format(args.cache_path, split_tag + ('_src' if only_src else '') + data_tag)
examples = read_examples(filename, args.data_num, args.task)
if is_sample:
examples = random.sample(examples, min(5000, len(examples)))
if split_tag == 'train':
calc_stats(examples, tokenizer, is_tokenize=True)
else:
calc_stats(examples)
if os.path.exists(cache_fn) and not is_sample:
logger.info("Load cache data from %s", cache_fn)
data = torch.load(cache_fn)
else:
if is_sample:
logger.info("Sample 5k data for computing bleu from %s", filename)
else:
logger.info("Create cache data into %s", cache_fn)
tuple_examples = [(example, idx, tokenizer, args, split_tag) for idx, example in enumerate(examples)]
features = pool.map(convert_examples_to_features, tqdm(tuple_examples, total=len(tuple_examples)))
all_source_ids = torch.tensor([f.source_ids for f in features], dtype=torch.long)
if split_tag == 'test' or only_src:
data = TensorDataset(all_source_ids)
else:
all_target_ids = torch.tensor([f.target_ids for f in features], dtype=torch.long)
data = TensorDataset(all_source_ids, all_target_ids)
if args.local_rank in [-1, 0] and not is_sample:
torch.save(data, cache_fn)
return examples, data
def load_and_cache_clone_data(args, filename, pool, tokenizer, split_tag, is_sample=False):
cache_fn = '{}/{}.pt'.format(args.cache_path, split_tag + '_all' if args.data_num == -1 else '_%d' % args.data_num)
examples = read_examples(filename, args.data_num, args.task)
if is_sample:
examples = random.sample(examples, int(len(examples) * 0.1))
calc_stats(examples, tokenizer, is_tokenize=True)
if os.path.exists(cache_fn):
logger.info("Load cache data from %s", cache_fn)
data = torch.load(cache_fn)
else:
if is_sample:
logger.info("Sample 10 percent of data from %s", filename)
elif args.data_num == -1:
logger.info("Create cache data into %s", cache_fn)
tuple_examples = [(example, idx, tokenizer, args) for idx, example in enumerate(examples)]
features = pool.map(convert_clone_examples_to_features, tqdm(tuple_examples, total=len(tuple_examples)))
all_source_ids = torch.tensor([f.source_ids for f in features], dtype=torch.long)
all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
data = TensorDataset(all_source_ids, all_labels)
if args.local_rank in [-1, 0] and args.data_num == -1:
torch.save(data, cache_fn)
return examples, data
def load_and_cache_defect_data(args, filename, pool, tokenizer, split_tag, is_sample=False):
cache_fn = os.path.join(args.cache_path, split_tag)
examples = read_examples(filename, args.data_num, args.task)
if is_sample:
examples = random.sample(examples, int(len(examples) * 0.1))
calc_stats(examples, tokenizer, is_tokenize=True)
if os.path.exists(cache_fn):
logger.info("Load cache data from %s", cache_fn)
data = torch.load(cache_fn)
else:
if is_sample:
logger.info("Sample 10 percent of data from %s", filename)
elif args.data_num == -1:
logger.info("Create cache data into %s", cache_fn)
tuple_examples = [(example, idx, tokenizer, args) for idx, example in enumerate(examples)]
features = pool.map(convert_defect_examples_to_features, tqdm(tuple_examples, total=len(tuple_examples)))
# features = [convert_clone_examples_to_features(x) for x in tuple_examples]
all_source_ids = torch.tensor([f.source_ids for f in features], dtype=torch.long)
all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
data = TensorDataset(all_source_ids, all_labels)
if args.local_rank in [-1, 0] and args.data_num == -1:
torch.save(data, cache_fn)
return examples, data
def get_filenames(data_root, task, sub_task, split=''):
if task == 'concode':
data_dir = '{}/{}'.format(data_root, task)
train_fn = '{}/train.json'.format(data_dir)
dev_fn = '{}/dev.json'.format(data_dir)
test_fn = '{}/test.json'.format(data_dir)
elif task == 'summarize':
data_dir = '{}/{}/{}'.format(data_root, task, sub_task)
train_fn = '{}/train.jsonl'.format(data_dir)
dev_fn = '{}/valid.jsonl'.format(data_dir)
test_fn = '{}/test.jsonl'.format(data_dir)
elif task == 'refine':
data_dir = '{}/{}/{}'.format(data_root, task, sub_task)
train_fn = '{}/train.buggy-fixed.buggy,{}/train.buggy-fixed.fixed'.format(data_dir, data_dir)
dev_fn = '{}/valid.buggy-fixed.buggy,{}/valid.buggy-fixed.fixed'.format(data_dir, data_dir)
test_fn = '{}/test.buggy-fixed.buggy,{}/test.buggy-fixed.fixed'.format(data_dir, data_dir)
elif task == 'translate':
data_dir = '{}/{}'.format(data_root, task)
if sub_task == 'cs-java':
train_fn = '{}/train.java-cs.txt.cs,{}/train.java-cs.txt.java'.format(data_dir, data_dir)
dev_fn = '{}/valid.java-cs.txt.cs,{}/valid.java-cs.txt.java'.format(data_dir, data_dir)
test_fn = '{}/test.java-cs.txt.cs,{}/test.java-cs.txt.java'.format(data_dir, data_dir)
else:
train_fn = '{}/train.java-cs.txt.java,{}/train.java-cs.txt.cs'.format(data_dir, data_dir)
dev_fn = '{}/valid.java-cs.txt.java,{}/valid.java-cs.txt.cs'.format(data_dir, data_dir)
test_fn = '{}/test.java-cs.txt.java,{}/test.java-cs.txt.cs'.format(data_dir, data_dir)
elif task == 'clone':
data_dir = '{}/{}'.format(data_root, task)
train_fn = '{}/train.txt'.format(data_dir)
dev_fn = '{}/valid.txt'.format(data_dir)
test_fn = '{}/test.txt'.format(data_dir)
elif task == 'defect':
data_dir = '{}/{}'.format(data_root, task)
train_fn = '{}/train.jsonl'.format(data_dir)
dev_fn = '{}/valid.jsonl'.format(data_dir)
test_fn = '{}/test.jsonl'.format(data_dir)
if split == 'train':
return train_fn
elif split == 'dev':
return dev_fn
elif split == 'test':
return test_fn
else:
return train_fn, dev_fn, test_fn
def read_examples(filename, data_num, task):
read_example_dict = {
'summarize': read_summarize_examples,
'refine': read_refine_examples,
'translate': read_translate_examples,
'concode': read_concode_examples,
'clone': read_clone_examples,
'defect': read_defect_examples,
}
return read_example_dict[task](filename, data_num)
def calc_stats(examples, tokenizer=None, is_tokenize=False):
avg_src_len = []
avg_trg_len = []
avg_src_len_tokenize = []
avg_trg_len_tokenize = []
for ex in examples:
if is_tokenize:
avg_src_len.append(len(ex.source.split()))
avg_trg_len.append(len(str(ex.target).split()))
avg_src_len_tokenize.append(len(tokenizer.tokenize(ex.source)))
avg_trg_len_tokenize.append(len(tokenizer.tokenize(str(ex.target))))
else:
avg_src_len.append(len(ex.source.split()))
avg_trg_len.append(len(str(ex.target).split()))
if is_tokenize:
logger.info("Read %d examples, avg src len: %d, avg trg len: %d, max src len: %d, max trg len: %d",
len(examples), np.mean(avg_src_len), np.mean(avg_trg_len), max(avg_src_len), max(avg_trg_len))
logger.info("[TOKENIZE] avg src len: %d, avg trg len: %d, max src len: %d, max trg len: %d",
np.mean(avg_src_len_tokenize), np.mean(avg_trg_len_tokenize), max(avg_src_len_tokenize),
max(avg_trg_len_tokenize))
else:
logger.info("Read %d examples, avg src len: %d, avg trg len: %d, max src len: %d, max trg len: %d",
len(examples), np.mean(avg_src_len), np.mean(avg_trg_len), max(avg_src_len), max(avg_trg_len))
def get_elapse_time(t0):
elapse_time = time.time() - t0
if elapse_time > 3600:
hour = int(elapse_time // 3600)
minute = int((elapse_time % 3600) // 60)
return "{}h{}m".format(hour, minute)
else:
minute = int((elapse_time % 3600) // 60)
return "{}m".format(minute)