-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathnavfn_planner.cpp
553 lines (470 loc) · 16.7 KB
/
navfn_planner.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
// Copyright (c) 2018 Intel Corporation
// Copyright (c) 2018 Simbe Robotics
// Copyright (c) 2019 Samsung Research America
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Navigation Strategy based on:
// Brock, O. and Oussama K. (1999). High-Speed Navigation Using
// the Global Dynamic Window Approach. IEEE.
// https://cs.stanford.edu/group/manips/publications/pdfs/Brock_1999_ICRA.pdf
// #define BENCHMARK_TESTING
#include "nav2_navfn_planner/navfn_planner.hpp"
#include <chrono>
#include <cmath>
#include <iomanip>
#include <iostream>
#include <limits>
#include <memory>
#include <string>
#include <vector>
#include "builtin_interfaces/msg/duration.hpp"
#include "nav2_navfn_planner/navfn.hpp"
#include "nav2_util/costmap.hpp"
#include "nav2_util/node_utils.hpp"
#include "nav2_costmap_2d/cost_values.hpp"
using namespace std::chrono_literals;
using namespace std::chrono; // NOLINT
using nav2_util::declare_parameter_if_not_declared;
using rcl_interfaces::msg::ParameterType;
using std::placeholders::_1;
namespace nav2_navfn_planner
{
NavfnPlanner::NavfnPlanner()
: tf_(nullptr), costmap_(nullptr)
{
}
NavfnPlanner::~NavfnPlanner()
{
RCLCPP_INFO(
logger_, "Destroying plugin %s of type NavfnPlanner",
name_.c_str());
}
void
NavfnPlanner::configure(
const rclcpp_lifecycle::LifecycleNode::WeakPtr & parent,
std::string name, std::shared_ptr<tf2_ros::Buffer> tf,
std::shared_ptr<nav2_costmap_2d::Costmap2DROS> costmap_ros)
{
tf_ = tf;
name_ = name;
costmap_ = costmap_ros->getCostmap();
global_frame_ = costmap_ros->getGlobalFrameID();
node_ = parent;
auto node = parent.lock();
clock_ = node->get_clock();
logger_ = node->get_logger();
RCLCPP_INFO(
logger_, "Configuring plugin %s of type NavfnPlanner",
name_.c_str());
// Initialize parameters
// Declare this plugin's parameters
declare_parameter_if_not_declared(node, name + ".tolerance", rclcpp::ParameterValue(0.5));
node->get_parameter(name + ".tolerance", tolerance_);
declare_parameter_if_not_declared(node, name + ".use_astar", rclcpp::ParameterValue(false));
node->get_parameter(name + ".use_astar", use_astar_);
declare_parameter_if_not_declared(node, name + ".allow_unknown", rclcpp::ParameterValue(true));
node->get_parameter(name + ".allow_unknown", allow_unknown_);
declare_parameter_if_not_declared(
node, name + ".use_final_approach_orientation", rclcpp::ParameterValue(false));
node->get_parameter(name + ".use_final_approach_orientation", use_final_approach_orientation_);
// Create a planner based on the new costmap size
planner_ = std::make_unique<NavFn>(
costmap_->getSizeInCellsX(),
costmap_->getSizeInCellsY());
}
void
NavfnPlanner::activate()
{
RCLCPP_INFO(
logger_, "Activating plugin %s of type NavfnPlanner",
name_.c_str());
// Add callback for dynamic parameters
auto node = node_.lock();
dyn_params_handler_ = node->add_on_set_parameters_callback(
std::bind(&NavfnPlanner::dynamicParametersCallback, this, _1));
}
void
NavfnPlanner::deactivate()
{
RCLCPP_INFO(
logger_, "Deactivating plugin %s of type NavfnPlanner",
name_.c_str());
dyn_params_handler_.reset();
}
void
NavfnPlanner::cleanup()
{
RCLCPP_INFO(
logger_, "Cleaning up plugin %s of type NavfnPlanner",
name_.c_str());
planner_.reset();
}
nav_msgs::msg::Path NavfnPlanner::createPlan(
const geometry_msgs::msg::PoseStamped & start,
const geometry_msgs::msg::PoseStamped & goal)
{
#ifdef BENCHMARK_TESTING
steady_clock::time_point a = steady_clock::now();
#endif
unsigned int mx_start, my_start, mx_goal, my_goal;
if (!costmap_->worldToMap(start.pose.position.x, start.pose.position.y, mx_start, my_start)) {
throw nav2_core::StartOutsideMapBounds(
"Start Coordinates of(" + std::to_string(start.pose.position.x) + ", " +
std::to_string(start.pose.position.y) + ") was outside bounds");
}
if (!costmap_->worldToMap(goal.pose.position.x, goal.pose.position.y, mx_goal, my_goal)) {
throw nav2_core::GoalOutsideMapBounds(
"Goal Coordinates of(" + std::to_string(goal.pose.position.x) + ", " +
std::to_string(goal.pose.position.y) + ") was outside bounds");
}
if (costmap_->getCost(mx_start, my_start) == nav2_costmap_2d::LETHAL_OBSTACLE) {
throw nav2_core::StartOccupied(
"Start Coordinates of(" + std::to_string(start.pose.position.x) + ", " +
std::to_string(start.pose.position.y) + ") was in lethal cost");
}
if (tolerance_ == 0 && costmap_->getCost(mx_goal, my_goal) == nav2_costmap_2d::LETHAL_OBSTACLE) {
throw nav2_core::GoalOccupied(
"Goal Coordinates of(" + std::to_string(goal.pose.position.x) + ", " +
std::to_string(goal.pose.position.y) + ") was in lethal cost");
}
// Update planner based on the new costmap size
if (isPlannerOutOfDate()) {
planner_->setNavArr(
costmap_->getSizeInCellsX(),
costmap_->getSizeInCellsY());
}
nav_msgs::msg::Path path;
// Corner case of the start(x,y) = goal(x,y)
if (start.pose.position.x == goal.pose.position.x &&
start.pose.position.y == goal.pose.position.y)
{
path.header.stamp = clock_->now();
path.header.frame_id = global_frame_;
geometry_msgs::msg::PoseStamped pose;
pose.header = path.header;
pose.pose.position.z = 0.0;
pose.pose = start.pose;
// if we have a different start and goal orientation, set the unique path pose to the goal
// orientation, unless use_final_approach_orientation=true where we need it to be the start
// orientation to avoid movement from the local planner
if (start.pose.orientation != goal.pose.orientation && !use_final_approach_orientation_) {
pose.pose.orientation = goal.pose.orientation;
}
path.poses.push_back(pose);
return path;
}
if (!makePlan(start.pose, goal.pose, tolerance_, path)) {
throw nav2_core::NoValidPathCouldBeFound(
"Failed to create plan with tolerance of: " + std::to_string(tolerance_) );
}
#ifdef BENCHMARK_TESTING
steady_clock::time_point b = steady_clock::now();
duration<double> time_span = duration_cast<duration<double>>(b - a);
std::cout << "It took " << time_span.count() * 1000 << std::endl;
#endif
return path;
}
bool
NavfnPlanner::isPlannerOutOfDate()
{
if (!planner_.get() ||
planner_->nx != static_cast<int>(costmap_->getSizeInCellsX()) ||
planner_->ny != static_cast<int>(costmap_->getSizeInCellsY()))
{
return true;
}
return false;
}
bool
NavfnPlanner::makePlan(
const geometry_msgs::msg::Pose & start,
const geometry_msgs::msg::Pose & goal, double tolerance,
nav_msgs::msg::Path & plan)
{
// clear the plan, just in case
plan.poses.clear();
plan.header.stamp = clock_->now();
plan.header.frame_id = global_frame_;
// TODO(orduno): add checks for start and goal reference frame -- should be in global frame
double wx = start.position.x;
double wy = start.position.y;
RCLCPP_DEBUG(
logger_, "Making plan from (%.2f,%.2f) to (%.2f,%.2f)",
start.position.x, start.position.y, goal.position.x, goal.position.y);
unsigned int mx, my;
worldToMap(wx, wy, mx, my);
// clear the starting cell within the costmap because we know it can't be an obstacle
clearRobotCell(mx, my);
std::unique_lock<nav2_costmap_2d::Costmap2D::mutex_t> lock(*(costmap_->getMutex()));
// make sure to resize the underlying array that Navfn uses
planner_->setNavArr(
costmap_->getSizeInCellsX(),
costmap_->getSizeInCellsY());
planner_->setCostmap(costmap_->getCharMap(), true, allow_unknown_);
lock.unlock();
int map_start[2];
map_start[0] = mx;
map_start[1] = my;
wx = goal.position.x;
wy = goal.position.y;
worldToMap(wx, wy, mx, my);
int map_goal[2];
map_goal[0] = mx;
map_goal[1] = my;
// TODO(orduno): Explain why we are providing 'map_goal' to setStart().
// Same for setGoal, seems reversed. Computing backwards?
planner_->setStart(map_goal);
planner_->setGoal(map_start);
if (use_astar_) {
planner_->calcNavFnAstar();
} else {
planner_->calcNavFnDijkstra(true);
}
double resolution = costmap_->getResolution();
geometry_msgs::msg::Pose p, best_pose;
bool found_legal = false;
p = goal;
double potential = getPointPotential(p.position);
if (potential < POT_HIGH) {
// Goal is reachable by itself
best_pose = p;
found_legal = true;
} else {
// Goal is not reachable. Trying to find nearest to the goal
// reachable point within its tolerance region
double best_sdist = std::numeric_limits<double>::max();
p.position.y = goal.position.y - tolerance;
while (p.position.y <= goal.position.y + tolerance) {
p.position.x = goal.position.x - tolerance;
while (p.position.x <= goal.position.x + tolerance) {
potential = getPointPotential(p.position);
double sdist = squared_distance(p, goal);
if (potential < POT_HIGH && sdist < best_sdist) {
best_sdist = sdist;
best_pose = p;
found_legal = true;
}
p.position.x += resolution;
}
p.position.y += resolution;
}
}
if (found_legal) {
// extract the plan
if (getPlanFromPotential(best_pose, plan)) {
smoothApproachToGoal(best_pose, plan);
// If use_final_approach_orientation=true, interpolate the last pose orientation from the
// previous pose to set the orientation to the 'final approach' orientation of the robot so
// it does not rotate.
// And deal with corner case of plan of length 1
if (use_final_approach_orientation_) {
size_t plan_size = plan.poses.size();
if (plan_size == 1) {
plan.poses.back().pose.orientation = start.orientation;
} else if (plan_size > 1) {
double dx, dy, theta;
auto last_pose = plan.poses.back().pose.position;
auto approach_pose = plan.poses[plan_size - 2].pose.position;
// Deal with the case of NavFn producing a path with two equal last poses
if (std::abs(last_pose.x - approach_pose.x) < 0.0001 &&
std::abs(last_pose.y - approach_pose.y) < 0.0001 && plan_size > 2)
{
approach_pose = plan.poses[plan_size - 3].pose.position;
}
dx = last_pose.x - approach_pose.x;
dy = last_pose.y - approach_pose.y;
theta = atan2(dy, dx);
plan.poses.back().pose.orientation =
nav2_util::geometry_utils::orientationAroundZAxis(theta);
}
}
} else {
RCLCPP_ERROR(
logger_,
"Failed to create a plan from potential when a legal"
" potential was found. This shouldn't happen.");
}
}
return !plan.poses.empty();
}
void
NavfnPlanner::smoothApproachToGoal(
const geometry_msgs::msg::Pose & goal,
nav_msgs::msg::Path & plan)
{
// Replace the last pose of the computed path if it's actually further away
// to the second to last pose than the goal pose.
if (plan.poses.size() >= 2) {
auto second_to_last_pose = plan.poses.end()[-2];
auto last_pose = plan.poses.back();
if (
squared_distance(last_pose.pose, second_to_last_pose.pose) >
squared_distance(goal, second_to_last_pose.pose))
{
plan.poses.back().pose = goal;
return;
}
}
geometry_msgs::msg::PoseStamped goal_copy;
goal_copy.pose = goal;
plan.poses.push_back(goal_copy);
}
bool
NavfnPlanner::getPlanFromPotential(
const geometry_msgs::msg::Pose & goal,
nav_msgs::msg::Path & plan)
{
// clear the plan, just in case
plan.poses.clear();
// Goal should be in global frame
double wx = goal.position.x;
double wy = goal.position.y;
// the potential has already been computed, so we won't update our copy of the costmap
unsigned int mx, my;
worldToMap(wx, wy, mx, my);
int map_goal[2];
map_goal[0] = mx;
map_goal[1] = my;
planner_->setStart(map_goal);
const int & max_cycles = (costmap_->getSizeInCellsX() >= costmap_->getSizeInCellsY()) ?
(costmap_->getSizeInCellsX() * 4) : (costmap_->getSizeInCellsY() * 4);
int path_len = planner_->calcPath(max_cycles);
if (path_len == 0) {
return false;
}
auto cost = planner_->getLastPathCost();
RCLCPP_DEBUG(
logger_,
"Path found, %d steps, %f cost\n", path_len, cost);
// extract the plan
float * x = planner_->getPathX();
float * y = planner_->getPathY();
int len = planner_->getPathLen();
for (int i = len - 1; i >= 0; --i) {
// convert the plan to world coordinates
double world_x, world_y;
mapToWorld(x[i], y[i], world_x, world_y);
geometry_msgs::msg::PoseStamped pose;
pose.pose.position.x = world_x;
pose.pose.position.y = world_y;
pose.pose.position.z = 0.0;
pose.pose.orientation.x = 0.0;
pose.pose.orientation.y = 0.0;
pose.pose.orientation.z = 0.0;
pose.pose.orientation.w = 1.0;
plan.poses.push_back(pose);
}
return !plan.poses.empty();
}
double
NavfnPlanner::getPointPotential(const geometry_msgs::msg::Point & world_point)
{
unsigned int mx, my;
if (!worldToMap(world_point.x, world_point.y, mx, my)) {
return std::numeric_limits<double>::max();
}
unsigned int index = my * planner_->nx + mx;
return planner_->potarr[index];
}
// bool
// NavfnPlanner::validPointPotential(const geometry_msgs::msg::Point & world_point)
// {
// return validPointPotential(world_point, tolerance_);
// }
// bool
// NavfnPlanner::validPointPotential(
// const geometry_msgs::msg::Point & world_point, double tolerance)
// {
// const double resolution = costmap_->getResolution();
// geometry_msgs::msg::Point p = world_point;
// double potential = getPointPotential(p);
// if (potential < POT_HIGH) {
// // world_point is reachable by itself
// return true;
// } else {
// // world_point, is not reachable. Trying to find any
// // reachable point within its tolerance region
// p.y = world_point.y - tolerance;
// while (p.y <= world_point.y + tolerance) {
// p.x = world_point.x - tolerance;
// while (p.x <= world_point.x + tolerance) {
// potential = getPointPotential(p);
// if (potential < POT_HIGH) {
// return true;
// }
// p.x += resolution;
// }
// p.y += resolution;
// }
// }
// return false;
// }
bool
NavfnPlanner::worldToMap(double wx, double wy, unsigned int & mx, unsigned int & my)
{
if (wx < costmap_->getOriginX() || wy < costmap_->getOriginY()) {
return false;
}
mx = static_cast<int>(
std::round((wx - costmap_->getOriginX()) / costmap_->getResolution()));
my = static_cast<int>(
std::round((wy - costmap_->getOriginY()) / costmap_->getResolution()));
if (mx < costmap_->getSizeInCellsX() && my < costmap_->getSizeInCellsY()) {
return true;
}
RCLCPP_ERROR(
logger_,
"worldToMap failed: mx,my: %d,%d, size_x,size_y: %d,%d", mx, my,
costmap_->getSizeInCellsX(), costmap_->getSizeInCellsY());
return false;
}
void
NavfnPlanner::mapToWorld(double mx, double my, double & wx, double & wy)
{
wx = costmap_->getOriginX() + mx * costmap_->getResolution();
wy = costmap_->getOriginY() + my * costmap_->getResolution();
}
void
NavfnPlanner::clearRobotCell(unsigned int mx, unsigned int my)
{
// TODO(orduno): check usage of this function, might instead be a request to
// world_model / map server
costmap_->setCost(mx, my, nav2_costmap_2d::FREE_SPACE);
}
rcl_interfaces::msg::SetParametersResult
NavfnPlanner::dynamicParametersCallback(std::vector<rclcpp::Parameter> parameters)
{
rcl_interfaces::msg::SetParametersResult result;
for (auto parameter : parameters) {
const auto & type = parameter.get_type();
const auto & name = parameter.get_name();
if (type == ParameterType::PARAMETER_DOUBLE) {
if (name == name_ + ".tolerance") {
tolerance_ = parameter.as_double();
}
} else if (type == ParameterType::PARAMETER_BOOL) {
if (name == name_ + ".use_astar") {
use_astar_ = parameter.as_bool();
} else if (name == name_ + ".allow_unknown") {
allow_unknown_ = parameter.as_bool();
} else if (name == name_ + ".use_final_approach_orientation") {
use_final_approach_orientation_ = parameter.as_bool();
}
}
}
result.successful = true;
return result;
}
} // namespace nav2_navfn_planner
#include "pluginlib/class_list_macros.hpp"
PLUGINLIB_EXPORT_CLASS(nav2_navfn_planner::NavfnPlanner, nav2_core::GlobalPlanner)