-
Notifications
You must be signed in to change notification settings - Fork 299
/
Copy pathtrain.py
343 lines (283 loc) · 12.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
import contextlib
import os
from dataclasses import dataclass, field
from timeit import default_timer as timer
from typing import Any, Dict, List
import numpy as np
import torch
import torch.nn.functional as F
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.tensor.parallel import loss_parallel
from torchtrain.checkpoint import CheckpointManager, IntervalType
from torchtrain.config_manager import JobConfig
from torchtrain.datasets import create_tokenizer, dataloader_fn
from torchtrain.float8_linear import build_fp8_linear
from torchtrain.logging_utils import init_logger, logger
from torchtrain.lr_scheduling import get_lr_scheduler
from torchtrain.meta_init import meta_model_init
from torchtrain.metrics import build_metric_logger, get_num_params, GPUMemoryMonitor
from torchtrain.models import model_name_to_cls, model_name_to_tokenizer, models_config
from torchtrain.parallelisms import (
init_distributed,
models_parallelize_fns,
ParallelDims,
)
from torchtrain.profiling import maybe_run_profiler
from torchtrain.utils import Color, dist_max, dist_mean
_is_local_logging = True
if "SLURM_JOB_ID" in os.environ:
_is_local_logging = False
@dataclass
class TrainState:
step: int = 0
current_loss: float = -1
losses: List[float] = field(default_factory=list)
iter_times: List[float] = field(default_factory=list)
data_load_times: List[float] = field(default_factory=list)
def state_dict(self) -> Dict[str, Any]:
return {
"step": torch.tensor(self.step, dtype=torch.int32),
"current_loss": torch.tensor(self.current_loss, dtype=torch.float32),
"losses": torch.tensor(self.losses, dtype=torch.float32),
}
def load_state_dict(self, state_dict) -> None:
self.step = state_dict["step"].item()
self.current_loss = state_dict["current_loss"].item()
self.losses = state_dict["losses"].tolist()
def build_optimizer(model, job_config: JobConfig):
# build optimizer
name = job_config.optimizer.name
lr = job_config.optimizer.lr
if name == "Adam":
# TODO: make the optimizer options configurable by toml/cmd args
optimizer = torch.optim.Adam(
model.parameters(), lr=lr, betas=(0.9, 0.95), weight_decay=0.1
)
elif name == "AdamW":
optimizer = torch.optim.AdamW(
model.parameters(), lr=lr, betas=(0.9, 0.95), weight_decay=0.1
)
else:
raise NotImplementedError(f"Optimizer {name} not added.")
return optimizer
def build_grad_scaler(model):
# apply gradient scaling if mixed precision training is enabled with fp16 param dtype
# NOTE: currently mixed precision training is supported only when FSDP is used
if isinstance(model, FSDP) and model.mixed_precision.param_dtype == torch.float16:
enable_grad_scaling = True
logger.info("Enabling gradient scaling for mixed precision training")
else:
enable_grad_scaling = False
logger.info("Gradient scaling not enabled")
return ShardedGradScaler(enabled=enable_grad_scaling)
def main(job_config: JobConfig):
init_logger()
logger.info(f"Starting job: {job_config.job.description}")
# init world mesh
world_size = int(os.environ["WORLD_SIZE"])
parallel_dims = ParallelDims(
dp=job_config.training.data_parallel_degree,
sp=job_config.training.sequence_parallel_degree,
pp=job_config.training.pipeline_parallel_degree,
world_size=world_size,
enable_loss_parallel=job_config.training.enable_loss_parallel,
)
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
init_distributed(job_config)
world_mesh = parallel_dims.build_mesh(device_type="cuda")
model_name = job_config.model.name
# build tokenizer
tokenizer_type = model_name_to_tokenizer[model_name]
tokenizer = create_tokenizer(tokenizer_type, job_config.model.tokenizer_path)
# build dataloader
build_dataloader_fn = dataloader_fn[job_config.training.dataset]
if parallel_dims.dp_enabled:
dp_mesh = world_mesh["dp"]
dp_degree = dp_mesh.size()
dp_rank = dp_mesh.get_local_rank()
else:
dp_degree, dp_rank = 1, 0
data_loader = build_dataloader_fn(
job_config.training.dataset,
job_config.training.dataset_path,
tokenizer,
job_config.training.batch_size,
job_config.training.seq_len,
dp_degree,
dp_rank,
)
# build model (using meta init)
model_cls = model_name_to_cls[model_name]
model_config = models_config[model_name][job_config.model.flavor]
model_config.vocab_size = tokenizer.n_words
with meta_model_init():
logger.info(
f"Building {model_name} {job_config.model.flavor} with {model_config}"
)
model = model_cls.from_model_args(model_config)
# apply fp8 linear module swap
if job_config.training.fp8_linear:
build_fp8_linear(model, job_config)
# log model size
model_param_count = get_num_params(model)
if _is_local_logging:
logger.info(
f"{Color.blue}Model {model_name} {job_config.model.flavor} "
f"{Color.red}size: {model_param_count:,} total parameters{Color.reset}"
)
else:
logger.info(
f"{model_name} {job_config.model.flavor} size: {model_param_count:,} total parameters"
)
# initialize GPU memory monitor before applying parallelisms to the model
gpu_metrics = GPUMemoryMonitor("cuda")
logger.info(f"GPU memory initial condition: {gpu_metrics}")
# apply PTD parallelisms + AC/selective AC
model = models_parallelize_fns[model_name](
model, world_mesh, parallel_dims, job_config
)
# build optimizer after applying parallelisms to the model
optimizer = build_optimizer(model, job_config)
scheduler = get_lr_scheduler(optimizer, job_config)
# build grad scaler which is effective only when mixed precision training
# is enabled with fp16 param dtype under FSDP
scaler = build_grad_scaler(model)
metric_logger = build_metric_logger(job_config)
# torch.compile model for improved performance
if job_config.training.compile:
if job_config.training.enable_selective_ac:
torch._dynamo.config._experimental_support_context_fn_in_torch_utils_checkpoint = (
True
)
logger.info("Compiling model with torch.compile")
model = torch.compile(
model,
)
train_state = TrainState()
# train loop
model.train()
checkpoint = CheckpointManager(
model=model,
optimizer=optimizer,
states={"train_state": train_state},
folder=job_config.training.checkpoint_folder,
interval_type=(
IntervalType.SECONDS
if job_config.training.checkpoint_interval_type == "seconds"
else IntervalType.STEPS
),
interval=job_config.training.checkpoint_interval,
)
checkpoint.load()
data_iterator = iter(data_loader)
with maybe_run_profiler(job_config) as torch_profiler:
checkpoint.reset()
# variables used to keep info for metrics logging
losses_since_last_log: List[float] = []
nwords_since_last_log = 0
data_loading_times: List[float] = []
time_last_log = timer()
while train_state.step < job_config.training.steps:
train_state.step += 1
# get batch
data_load_start = timer()
batch = next(data_iterator)
input_ids, labels = batch
input_ids = input_ids.cuda()
labels = labels.cuda()
nwords_since_last_log += labels.numel()
data_loading_times.append(timer() - data_load_start)
optimizer.zero_grad()
# forward
pred = model(input_ids)
with loss_parallel() if parallel_dims.loss_parallel_enabled else contextlib.nullcontext():
loss = F.cross_entropy(pred.flatten(0, 1), labels.flatten(0, 1))
# backward on scaled loss to create scaled gradients
scaler.scale(loss).backward()
# clip gradients (after unscaling gradients of the optimizer's params)
scaler.unscale_(optimizer)
if isinstance(model, FSDP):
model.clip_grad_norm_(job_config.training.max_norm)
else:
torch.nn.utils.clip_grad_norm_(
model.parameters(), job_config.training.max_norm
)
# optimizer step
# If gradients don't contain infs/NaNs, optimizer.step() is then called;
# otherwise, optimizer.step() is skipped.
scaler.step(optimizer)
# updates the scale for next iteration
scaler.update()
# if profiler is active
if torch_profiler:
torch_profiler.step()
train_state.current_loss = loss.item()
train_state.losses.append(train_state.current_loss)
losses_since_last_log.append(train_state.current_loss)
# log metrics
if (train_state.step - 1) % job_config.metrics.log_freq == 0:
avg_loss, max_loss = (
np.mean(losses_since_last_log),
np.max(losses_since_last_log),
)
if parallel_dims.dp_enabled:
global_avg_loss, global_max_loss = (
dist_mean(avg_loss, dp_mesh),
dist_max(max_loss, dp_mesh),
)
else:
global_avg_loss, global_max_loss = avg_loss, max_loss
time_delta = timer() - time_last_log
wps = nwords_since_last_log / (
time_delta * parallel_dims.model_parallel_size
)
time_end_to_end = time_delta / job_config.metrics.log_freq
time_data_loading = np.mean(data_loading_times)
time_data_loading_pct = 100 * np.sum(data_loading_times) / time_delta
gpu_mem_stats = gpu_metrics.get_current_stats(return_data=True)
metrics = {
"loss_metrics/global_avg_loss": global_avg_loss,
"loss_metrics/global_max_loss": global_max_loss,
"wps": wps,
"memory_current/active(%)": gpu_mem_stats.active_curr,
"memory_current/allocated(%)": gpu_mem_stats.allocated_curr,
"memory_current/reserved(%)": gpu_mem_stats.reserved_curr,
"memory_peak/active(%)": gpu_mem_stats.active_peak,
"memory_peak/allocated(%)": gpu_mem_stats.allocated_peak,
"memory_peak/reserved(%)": gpu_mem_stats.reserved_peak,
"time_metrics/end_to_end(s)": time_end_to_end,
"time_metrics/data_loading(s)": time_data_loading,
"time_metrics/data_loading(%)": time_data_loading_pct,
}
metric_logger.log(metrics, step=train_state.step)
losses_since_last_log.clear()
nwords_since_last_log = 0
data_loading_times.clear()
time_last_log = timer()
if _is_local_logging:
logger.info(
f"{Color.cyan}step: {train_state.step:2} "
f"{Color.green}loss: {global_avg_loss.item():7.4f} "
f"{Color.blue}wps: {round(wps):7,} "
f"{Color.yellow}peak_memory: {gpu_mem_stats.reserved_peak:5}%{Color.reset}"
)
else:
logger.info(
f"step: {train_state.step:2} "
f"loss: {global_avg_loss.item():7.4f} "
f"wps: {round(wps):7,} "
f"peak_memory: {gpu_mem_stats.reserved_peak:5}%"
)
scheduler.step()
checkpoint.save(
train_state.step, force=(train_state.step == job_config.training.steps)
)
metric_logger.close()
logger.info(f"GPU memory usage: {gpu_metrics.get_current_stats()}")
if __name__ == "__main__":
config = JobConfig()
config.parse_args()
main(config)