Skip to content

Commit

Permalink
libcontainer/SPEC.md: add documentation for Intel RDT/CAT
Browse files Browse the repository at this point in the history
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
  • Loading branch information
xiaochenshen committed May 15, 2017
1 parent d5ac70d commit 96fd05f
Showing 1 changed file with 84 additions and 0 deletions.
84 changes: 84 additions & 0 deletions libcontainer/SPEC.md
Original file line number Diff line number Diff line change
Expand Up @@ -154,6 +154,90 @@ that no processes or threads escape the cgroups. This sync is
done via a pipe ( specified in the runtime section below ) that the container's
init process will block waiting for the parent to finish setup.

### IntelRdt

Intel platforms with new Xeon CPU support Intel Resource Director Technology
(RDT). Cache Allocation Technology (CAT) is a sub-feature of RDT, which
currently supports L3 cache resource allocation.

This feature provides a way for the software to restrict cache allocation to a
defined 'subset' of L3 cache which may be overlapping with other 'subsets'.
The different subsets are identified by class of service (CLOS) and each CLOS
has a capacity bitmask (CBM).

It can be used to handle L3 cache resource allocation for containers if
hardware and kernel support Intel RDT/CAT.

In Linux 4.10 kernel or newer, the interface is defined and exposed via
"resource control" filesystem, which is a "cgroup-like" interface.

Comparing with cgroups, it has similar process management lifecycle and
interfaces in a container. But unlike cgroups' hierarchy, it has single level
filesystem layout.

Intel RDT "resource control" filesystem hierarchy:
```
mount -t resctrl resctrl /sys/fs/resctrl
tree /sys/fs/resctrl
/sys/fs/resctrl/
|-- info
| |-- L3
| |-- cbm_mask
| |-- min_cbm_bits
| |-- num_closids
|-- cpus
|-- schemata
|-- tasks
|-- <container_id>
|-- cpus
|-- schemata
|-- tasks
```

For runc, we can make use of `tasks` and `schemata` configuration for L3 cache
resource constraints.

The file `tasks` has a list of tasks that belongs to this group (e.g.,
<container_id>" group). Tasks can be added to a group by writing the task ID
to the "tasks" file (which will automatically remove them from the previous
group to which they belonged). New tasks created by fork(2) and clone(2) are
added to the same group as their parent. If a pid is not in any sub group, it
is in root group.

The file `schemata` has allocation masks/values for L3 cache on each socket,
which contains L3 cache id and capacity bitmask (CBM).
```
Format: "L3:<cache_id0>=<cbm0>;<cache_id1>=<cbm1>;..."
```
For example, on a two-socket machine, L3's schema line could be `L3:0=ff;1=c0`
Which means L3 cache id 0's CBM is 0xff, and L3 cache id 1's CBM is 0xc0.

The valid L3 cache CBM is a *contiguous bits set* and number of bits that can
be set is less than the max bit. The max bits in the CBM is varied among
supported Intel Xeon platforms. In Intel RDT "resource control" filesystem
layout, the CBM in a group should be a subset of the CBM in root. Kernel will
check if it is valid when writing. e.g., 0xfffff in root indicates the max bits
of CBM is 20 bits, which mapping to entire L3 cache capacity. Some valid CBM
values to set in a group: 0xf, 0xf0, 0x3ff, 0x1f00 and etc.

For more information about Intel RDT/CAT kernel interface:
https://www.kernel.org/doc/Documentation/x86/intel_rdt_ui.txt

An example for runc:
```
Consider a two-socket machine with two L3 caches where the default CBM is
0xfffff and the max CBM length is 20 bits. With this configuration, tasks
inside the container only have access to the "upper" 80% of L3 cache id 0 and
the "lower" 50% L3 cache id 1:
"linux": {
"intelRdt": {
"l3CacheSchema": "L3:0=ffff0;1=3ff"
}
}
```

### Security

The standard set of Linux capabilities that are set in a container
Expand Down

0 comments on commit 96fd05f

Please sign in to comment.