This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders
Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swith to the dev branch, and use -mode test_text
and use -text_src $RAW_SRC.TXT
to input your text file. Please still use master branch for normal training and evaluation, dev branch should be only used for test_text mode.
- abstractive use -task abs, extractive use -task ext
- use
-test_from $PT_FILE$
to use your model checkpoint file. - Format of the source text file:
- For abstractive summarization, each line is a document.
- If you want to do extractive summarization, please insert
[CLS] [SEP]
as your sentence boundaries.
- There are example input files in the raw_data directory
- If you also have reference summaries aligned with your source input, please use
-text_tgt $RAW_TGT.TXT
to keep the order for evaluation.
Results on CNN/DailyMail (20/8/2019):
Models | ROUGE-1 | ROUGE-2 | ROUGE-L |
---|---|---|---|
Extractive | |||
TransformerExt | 40.90 | 18.02 | 37.17 |
BertSumExt | 43.23 | 20.24 | 39.63 |
BertSumExt (large) | 43.85 | 20.34 | 39.90 |
Abstractive | |||
TransformerAbs | 40.21 | 17.76 | 37.09 |
BertSumAbs | 41.72 | 19.39 | 38.76 |
BertSumExtAbs | 42.13 | 19.60 | 39.18 |
Python version: This code is in Python3.6
Package Requirements: torch==1.1.0 pytorch_transformers tensorboardX multiprocess pyrouge
Updates: For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.
Some codes are borrowed from ONMT(/~https://github.com/OpenNMT/OpenNMT-py)
unzip the zipfile and put all .pt
files into bert_data
Download and unzip the stories
directories from here for both CNN and Daily Mail. Put all .story
files in one directory (e.g. ../raw_stories
)
We will need Stanford CoreNLP to tokenize the data. Download it here and unzip it. Then add the following command to your bash_profile:
export CLASSPATH=/path/to/stanford-corenlp-full-2017-06-09/stanford-corenlp-3.8.0.jar
replacing /path/to/
with the path to where you saved the stanford-corenlp-full-2017-06-09
directory.
python preprocess.py -mode tokenize -raw_path RAW_PATH -save_path TOKENIZED_PATH
RAW_PATH
is the directory containing story files (../raw_stories
),JSON_PATH
is the target directory to save the generated json files (../merged_stories_tokenized
)
python preprocess.py -mode format_to_lines -raw_path RAW_PATH -save_path JSON_PATH -n_cpus 1 -use_bert_basic_tokenizer false -map_path MAP_PATH
RAW_PATH
is the directory containing tokenized files (../merged_stories_tokenized
),JSON_PATH
is the target directory to save the generated json files (../json_data/cnndm
),MAP_PATH
is the directory containing the urls files (../urls
)
python preprocess.py -mode format_to_bert -raw_path JSON_PATH -save_path BERT_DATA_PATH -lower -n_cpus 1 -log_file ../logs/preprocess.log
JSON_PATH
is the directory containing json files (../json_data
),BERT_DATA_PATH
is the target directory to save the generated binary files (../bert_data
)
First run: For the first time, you should use single-GPU, so the code can download the BERT model. Use -visible_gpus -1
, after downloading, you could kill the process and rerun the code with multi-GPUs.
python train.py -task ext -mode train -bert_data_path BERT_DATA_PATH -ext_dropout 0.1 -model_path MODEL_PATH -lr 2e-3 -visible_gpus 0,1,2 -report_every 50 -save_checkpoint_steps 1000 -batch_size 3000 -train_steps 50000 -accum_count 2 -log_file ../logs/ext_bert_cnndm -use_interval true -warmup_steps 10000 -max_pos 512
python train.py -mode train -accum_count 5 -batch_size 300 -bert_data_path BERT_DATA_PATH -dec_dropout 0.1 -log_file ../../logs/cnndm_baseline -lr 0.05 -model_path MODEL_PATH -save_checkpoint_steps 2000 -seed 777 -sep_optim false -train_steps 200000 -use_bert_emb true -use_interval true -warmup_steps 8000 -visible_gpus 0,1,2,3 -max_pos 512 -report_every 50 -enc_hidden_size 512 -enc_layers 6 -enc_ff_size 2048 -enc_dropout 0.1 -dec_layers 6 -dec_hidden_size 512 -dec_ff_size 2048 -encoder baseline -task abs
python train.py -task abs -mode train -bert_data_path BERT_DATA_PATH -dec_dropout 0.2 -model_path MODEL_PATH -sep_optim true -lr_bert 0.002 -lr_dec 0.2 -save_checkpoint_steps 2000 -batch_size 140 -train_steps 200000 -report_every 50 -accum_count 5 -use_bert_emb true -use_interval true -warmup_steps_bert 20000 -warmup_steps_dec 10000 -max_pos 512 -visible_gpus 0,1,2,3 -log_file ../logs/abs_bert_cnndm
python train.py -task abs -mode train -bert_data_path BERT_DATA_PATH -dec_dropout 0.2 -model_path MODEL_PATH -sep_optim true -lr_bert 0.002 -lr_dec 0.2 -save_checkpoint_steps 2000 -batch_size 140 -train_steps 200000 -report_every 50 -accum_count 5 -use_bert_emb true -use_interval true -warmup_steps_bert 20000 -warmup_steps_dec 10000 -max_pos 512 -visible_gpus 0,1,2,3 -log_file ../logs/abs_bert_cnndm -load_from_extractive EXT_CKPT
EXT_CKPT
is the saved.pt
checkpoint of the extractive model.
python train.py -task abs -mode validate -batch_size 3000 -test_batch_size 500 -bert_data_path BERT_DATA_PATH -log_file ../logs/val_abs_bert_cnndm -model_path MODEL_PATH -sep_optim true -use_interval true -visible_gpus 1 -max_pos 512 -max_length 200 -alpha 0.95 -min_length 50 -result_path ../logs/abs_bert_cnndm
python train.py -task abs -mode validate -batch_size 3000 -test_batch_size 500 -bert_data_path BERT_DATA_PATH -log_file ../logs/val_abs_bert_cnndm -model_path MODEL_PATH -sep_optim true -use_interval true -visible_gpus 1 -max_pos 512 -min_length 20 -max_length 100 -alpha 0.9 -result_path ../logs/abs_bert_cnndm
-mode
can be {validate, test
}, wherevalidate
will inspect the model directory and evaluate the model for each newly saved checkpoint,test
need to be used with-test_from
, indicating the checkpoint you want to useMODEL_PATH
is the directory of saved checkpoints- use
-mode valiadte
with-test_all
, the system will load all saved checkpoints and select the top ones to generate summaries (this will take a while)