-
Notifications
You must be signed in to change notification settings - Fork 147
/
Copy pathOption.v
424 lines (361 loc) · 15.1 KB
/
Option.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
From Coq Require Import Morphisms.
From Coq Require Import Relation_Definitions.
Require Import Crypto.Util.Tactics.BreakMatch.
Require Import Crypto.Util.Tactics.DestructHead.
Require Import Crypto.Util.Notations.
Scheme Equality for option.
Arguments option_beq {_} _ _ _.
Definition option_beq_hetero {A B} (AB_beq : A -> B -> bool) (x : option A) (y : option B) : bool
:= match x, y with
| Some x, Some y => AB_beq x y
| None, None => true
| Some _, _
| None, _
=> false
end.
(** In general, [lift : M (option A) -> option (M A)]. This is a bit
confusing for [option] because [M = option]. We want to return
[None] if the thing contained in the [M (option A)] is [None], and
say [Some] otherwise. *)
Definition lift {A} (x : option (option A)) : option (option A)
:= match x with
| Some None => None (* the contained thing is bad/not present *)
| Some (Some x) => Some (Some x)
| None => Some None
end.
Notation map := option_map (only parsing). (* so we have [Option.map] *)
Definition map2 {A B C} (f : A -> B -> C) (v1 : option A) (v2 : option B) : option C
:= match v1, v2 with
| None, _
| _, None
=> None
| Some v1, Some v2 => Some (f v1 v2)
end.
Definition bind {A B} (v : option A) (f : A -> option B) : option B
:= match v with
| Some v => f v
| None => None
end.
Definition bind2 {A B C} (v1 : option A) (v2 : option B) (f : A -> B -> option C) : option C
:= match v1, v2 with
| None, _
| _, None
=> None
| Some x1, Some x2 => f x1 x2
end.
Global Arguments bind2 {A B C} !v1 !v2 / f.
Definition sequence {A} (v1 v2 : option A) : option A
:= match v1 with
| Some v => Some v
| None => v2
end.
Definition sequence_return {A} (v1 : option A) (v2 : A) : A
:= match v1 with
| Some v => v
| None => v2
end.
Global Arguments sequence {A} !v1 v2.
Global Arguments sequence_return {A} !v1 v2.
Notation or_else := sequence (only parsing).
(* After OCaml's [value] *)
Notation value := sequence_return (only parsing).
Notation get_default := sequence_return (only parsing).
Module Export Notations.
Declare Scope option_scope.
Delimit Scope option_scope with option.
Bind Scope option_scope with option.
Notation "'olet' x .. y <- X ; B" := (bind X (fun x => .. (fun y => B%option) .. )) : option_scope.
Notation "A <- X ; B" := (bind X (fun A => B%option)) : option_scope.
(*Notation "A , A' <- X , X' ; B" := (bind2 X X' (fun A A' => B%option)) : option_scope.*)
Infix ";;" := sequence : option_scope.
Infix ";;;" := sequence_return : option_scope.
End Notations.
Local Open Scope option_scope.
Definition combine {A B} (x : option A) (y : option B) : option (A * B)
:= match x, y with
| Some x, Some y => Some (x, y)
| _, _ => None
end.
Section Relations.
Definition option_eq {A B} eq (x : option A) (y : option B) :=
match x with
| None => y = None
| Some ax => match y with
| None => False
| Some ay => eq ax ay
end
end.
Local Ltac t :=
cbv; repeat (break_match || intro || intuition congruence ||
solve [ apply reflexivity
| apply symmetry; eassumption
| eapply transitivity; eassumption
| eauto ] ).
Global Instance Reflexive_option_eq {T} {R} {Reflexive_R:@Reflexive T R}
: Reflexive (option_eq R) | 1. Proof. t. Qed.
Lemma option_eq_sym {A B} {R1 R2 : _ -> _ -> Prop} (HR : forall v1 v2, R1 v1 v2 -> R2 v2 v1)
: forall v1 v2, @option_eq A B R1 v1 v2 -> option_eq R2 v2 v1.
Proof. t. Qed.
Lemma option_eq_trans {A B C} {R1 R2 R3 : _ -> _ -> Prop}
(HR : forall v1 v2 v3, R1 v1 v2 -> R2 v2 v3 -> R3 v1 v3)
: forall v1 v2 v3, @option_eq A B R1 v1 v2 -> @option_eq B C R2 v2 v3 -> @option_eq A C R3 v1 v3.
Proof. t. Qed.
Global Instance Transitive_option_eq {T} {R} {Transitive_R:@Transitive T R}
: Transitive (option_eq R) | 1 := option_eq_trans Transitive_R.
Global Instance Symmetric_option_eq {T} {R} {Symmetric_R:@Symmetric T R}
: Symmetric (option_eq R) | 1 := option_eq_sym Symmetric_R.
Global Instance Equivalence_option_eq {T} {R} {Equivalence_R:@Equivalence T R}
: Equivalence (option_eq R). Proof. split; exact _. Qed.
End Relations.
Lemma option_bl_hetero {A B} {AB_beq : A -> B -> bool} {AB_R : A -> B -> Prop}
(AB_bl : forall x y, AB_beq x y = true -> AB_R x y)
{x y}
: option_beq_hetero AB_beq x y = true -> option_eq AB_R x y.
Proof using Type.
destruct x, y; cbn in *; eauto; congruence.
Qed.
Lemma option_lb_hetero {A B} {AB_beq : A -> B -> bool} {AB_R : A -> B -> Prop}
(AB_lb : forall x y, AB_R x y -> AB_beq x y = true)
{x y}
: option_eq AB_R x y -> option_beq_hetero AB_beq x y = true.
Proof using Type.
destruct x, y; cbn in *; eauto; intuition congruence.
Qed.
Lemma option_beq_hetero_uniform {A : Type} A_beq {x y}
: option_beq_hetero A_beq x y = @option_beq A A_beq x y.
Proof. destruct x, y; reflexivity. Qed.
Lemma option_bl_hetero_eq {A}
{A_beq : A -> A -> bool}
(A_bl : forall x y, A_beq x y = true -> x = y)
{x y}
: option_beq_hetero A_beq x y = true -> x = y.
Proof using Type. rewrite option_beq_hetero_uniform; now apply internal_option_dec_bl. Qed.
Lemma option_lb_hetero_eq {A}
{A_beq : A -> A -> bool}
(A_lb : forall x y, x = y -> A_beq x y = true)
{x y}
: x = y -> option_beq_hetero A_beq x y = true.
Proof using Type. rewrite option_beq_hetero_uniform; now apply internal_option_dec_lb. Qed.
Global Instance bind_Proper {A B}
: Proper (eq ==> (pointwise_relation _ eq) ==> eq) (@bind A B).
Proof.
cbv [respectful bind pointwise_relation Proper]; intros; subst; break_innermost_match; auto.
Qed.
Global Instance bind_Proper_pointwise_option_eq {A B RB}
: Proper (eq ==> (pointwise_relation _ (option_eq RB)) ==> option_eq RB) (@bind A B) | 90.
Proof.
cbv [respectful bind pointwise_relation Proper]; intros; subst; break_innermost_match; cbn [option_eq]; auto.
Qed.
Lemma bind_Proper_option_eq_hetero {A A' B B'} {RA RB : _ -> _ -> Prop}
a a' (HA : option_eq RA a a') b b' (HB : forall a a', RA a a' -> option_eq RB (b a) (b' a'))
: option_eq RB (@bind A B a b) (@bind A' B' a' b').
Proof.
cbv [bind].
destruct a as [a|], a' as [a'|]; try (reflexivity || congruence || exfalso; assumption).
cbn [option_eq] in *; auto.
Qed.
Global Instance bind_Proper_option_eq {A B RA RB}
: Proper (option_eq RA ==> (RA ==> option_eq RB) ==> option_eq RB) (@bind A B) | 100.
Proof.
cbv [Proper respectful]; eapply bind_Proper_option_eq_hetero.
Qed.
Global Instance Proper_option_rect_nd_changebody
{A B:Type} {RB:relation B} {a:option A}
: Proper (pointwise_relation _ RB ==> RB ==> RB) (fun S N => option_rect (fun _ => B) S N a).
Proof. cbv; repeat (intro || break_match); intuition. Qed.
(* FIXME: there used to be a typeclass resolution hint here, something like
Hint Extern 1 (Proper _ (@option_rect ?A (fun _ => ?B))) => exact (@Proper_option_rect_nd_changebody A B _ _) : typeclass_instances.
but I could not get it working after generalizing [RB] from [Logic.eq] ~ andreser *)
Global Instance Proper_option_rect_nd_changevalue
{A B RA RB} some {Proper_some: Proper (RA==>RB) some}
: Proper (RB ==> option_eq RA ==> RB) (@option_rect A (fun _ => B) some).
Proof. cbv; repeat (intro || break_match || f_equiv || intuition congruence). Qed.
Lemma bind_zero_l {A B} f : @bind A B None f = None.
Proof. reflexivity. Qed.
Lemma bind_zero_r {A B} v : @bind A B v (fun _ => None) = None.
Proof. destruct v; reflexivity. Qed.
Lemma bind_zero_r_ext {A B} v f : (forall v, f v = None) -> @bind A B v f = None.
Proof. destruct v; cbn; auto. Qed.
Lemma option_rect_false_returns_true_iff
{T} {R} {reflexiveR:Reflexive R}
(f:T->bool) {Proper_f:Proper(R==>eq)f} (o:option T) :
option_rect (fun _ => bool) f false o = true <-> exists s:T, option_eq R o (Some s) /\ f s = true.
Proof.
unfold option_rect; break_match; repeat intuition (destruct_head ex; eauto);
solve [ congruence
| repeat esplit; simpl; easy
| match goal with [H : f _ = true |- f _ = true ] =>
solve [rewrite <- H; eauto] end ].
Qed.
Lemma option_rect_false_returns_true_iff_eq
{T} (f:T->bool) (o:option T) :
option_rect (fun _ => bool) f false o = true <-> exists s:T, Logic.eq o (Some s) /\ f s = true.
Proof. unfold option_rect; break_match; repeat intuition (destruct_head ex; eauto); congruence. Qed.
Lemma option_rect_option_map : forall {A B C} (f:A->B) some none v,
option_rect (fun _ => C) (fun x => some (f x)) none v = option_rect (fun _ => C) some none (option_map f v).
Proof.
destruct v; reflexivity.
Qed.
Lemma option_map_map : forall {A B C} (f:A->B) (g:B->C) v,
option_map g (option_map f v) = option_map (fun v => g (f v)) v.
Proof.
destruct v; reflexivity.
Qed.
Lemma option_rect_function {A B C S' N' v} f
: f (option_rect (fun _ : option A => option B) S' N' v)
= option_rect (fun _ : option A => C) (fun x => f (S' x)) (f N') v.
Proof. destruct v; reflexivity. Qed.
(*
Ltac commute_option_rect_Let_In := (* pull let binders out side of option_rect pattern matching *)
idtac;
lazymatch goal with
| [ |- ?LHS = option_rect ?P ?S ?N (Let_In ?x ?f) ]
=> (* we want to just do a [change] here, but unification is stupid, so we have to tell it what to unfold in what order *)
cut (LHS = Let_In x (fun y => option_rect P S N (f y))); cbv beta;
[ set_evars;
let H := fresh in
intro H;
rewrite H;
clear;
abstract (cbv [Let_In]; reflexivity)
| ]
end.
*)
Ltac replace_option_match_with_option_rect :=
idtac;
lazymatch goal with
| [ |- _ = ?RHS :> ?T ]
=> lazymatch RHS with
| match ?a with None => ?N | Some x => @?S x end
=> replace RHS with (option_rect (fun _ => T) S N a) by (destruct a; reflexivity)
end
end.
Ltac simpl_option_rect := (* deal with [option_rect _ _ _ None] and [option_rect _ _ _ (Some _)] *)
repeat match goal with
| [ |- context[option_rect ?P ?S ?N None] ]
=> change (option_rect P S N None) with N
| [ |- context[option_rect ?P ?S ?N (Some ?x) ] ]
=> change (option_rect P S N (Some x)) with (S x); cbv beta
end.
Definition option_leq_to_eq {A} (x y : option A) : x = y -> option_eq eq x y.
Proof. destruct x; intro; subst; simpl; reflexivity. Defined.
Definition option_eq_to_leq {A} (x y : option A) : option_eq eq x y -> x = y.
Proof.
destruct x, y; simpl;
try solve [ intros []
| apply f_equal
| reflexivity
| apply eq_sym ].
Defined.
Lemma option_leq_to_eq_to_leq {A x y} v : @option_eq_to_leq A x y (@option_leq_to_eq A x y v) = v.
Proof.
destruct x; subst; simpl; reflexivity.
Qed.
Lemma option_eq_to_leq_to_eq {A x y} v : @option_leq_to_eq A x y (@option_eq_to_leq A x y v) = v.
Proof.
compute in *.
repeat first [ progress subst
| progress break_innermost_match_step
| reflexivity ].
Qed.
Lemma UIP_None {A} (p q : @None A = @None A) : p = q.
Proof.
rewrite <- (option_leq_to_eq_to_leq p), <- (option_leq_to_eq_to_leq q); simpl; reflexivity.
Qed.
Definition is_None {A} (x : option A) : bool
:= match x with
| Some _ => false
| None => true
end.
Definition is_Some {A} (x : option A) : bool
:= match x with
| Some _ => true
| None => false
end.
Lemma is_None_eq_None_iff {A x} : @is_None A x = true <-> x = None.
Proof. destruct x; cbv; split; congruence. Qed.
Definition invert_Some {A : Type} (x : option A) : match x with
| Some _ => A
| None => unit
end
:= match x with
| Some x' => x'
| None => tt
end.
Lemma invert_eq_Some {A x y} (p : Some x = Some y) : { pf : x = y | @option_eq_to_leq A (Some x) (Some y) pf = p }.
Proof.
refine (exist _ _ (option_leq_to_eq_to_leq _)).
Qed.
Definition always_invert_Some {A} (x : option A) {pf : x <> None} : A
:= match x return x <> None -> A with
| Some v => fun _ => v
| None => fun pf => False_rect _ (pf eq_refl)
end pf.
Lemma push_always_invert_Some' {A B} (f : A -> B) (x : option A)
(pf : x <> None)
(pf' : option_map f x <> None)
: f (@always_invert_Some _ x pf) = @always_invert_Some _ (option_map f x) pf'.
Proof.
destruct x; [ reflexivity | congruence ].
Qed.
Definition pull_always_invert_Some {A B} (f : A -> B) (x : option A)
(pf : option_map f x <> None)
: f (@always_invert_Some _ x (fun H => pf (f_equal (option_map f) H)))
= @always_invert_Some _ (option_map f x) pf
:= push_always_invert_Some' f x _ pf.
Lemma option_map_neq_None_iff {A B} (f : A -> B) x
: x <> None <-> option_map f x <> None.
Proof. destruct x; cbn in *; split; congruence. Qed.
Definition push_always_invert_Some {A B} (f : A -> B) (x : option A)
(pf : x <> None)
: f (@always_invert_Some _ x pf)
= @always_invert_Some _ (option_map f x)
(proj1 (option_map_neq_None_iff f x) pf)
:= push_always_invert_Some' f x pf _.
Definition always_invert_Some_bind' {A B} (x : option A) (f : A -> option B)
pf pf' pf''
: @always_invert_Some _ (bind x f) pf
= @always_invert_Some _ (f (@always_invert_Some _ x pf')) pf''.
Proof.
destruct x as [x|]; cbn in *; [ destruct (f x); cbn in * | ];
congruence.
Qed.
Lemma bind_neq_None_iff {A B} (x : option A) (f : A -> option B)
: (bind x f <> None) <-> (x <> None /\ forall pf, f (@always_invert_Some _ x pf) <> None).
Proof.
destruct x as [x|]; cbn; [ destruct (f x); cbn | ]; intuition congruence.
Qed.
Lemma bind_neq_None_iff' {A B} (x : option A) (f : A -> option B)
: (bind x f <> None) <-> (exists pf : x <> None, f (@always_invert_Some _ x pf) <> None).
Proof.
destruct x as [x|]; cbn; [ destruct (f x); cbn | ];
split; intros; destruct_head'_ex; try unshelve econstructor;
congruence.
Qed.
Definition push_always_invert_Some_bind {A B} (x : option A) (f : A -> option B)
pf
(pf' := proj1 (proj1 (bind_neq_None_iff x f) pf))
(pf'' := proj2 (proj1 (bind_neq_None_iff x f) pf) pf')
: @always_invert_Some _ (bind x f) pf
= @always_invert_Some _ (f (@always_invert_Some _ x pf')) pf''
:= always_invert_Some_bind' x f _ _ _.
Definition pull_always_invert_Some_bind {A B} (x : option A) (f : A -> option B)
pf pf'
(pf'' := proj2 (bind_neq_None_iff' x f) (ex_intro _ pf pf'))
: @always_invert_Some _ (f (@always_invert_Some _ x pf)) pf'
= @always_invert_Some _ (bind x f) pf''
:= eq_sym (always_invert_Some_bind' x f _ _ _).
Ltac inversion_option_step :=
match goal with
| [ H : Some _ = Some _ |- _ ] => apply option_leq_to_eq in H; unfold option_eq in H
| [ H : Some _ = Some _ |- _ ]
=> let H' := fresh in
rename H into H';
destruct (invert_eq_Some H') as [H ?]; subst H'
| [ H : None = Some _ |- _ ] => solve [ inversion H ]
| [ H : Some _ = None |- _ ] => solve [ inversion H ]
| [ H : None = None |- _ ] => clear H
| [ H : None = None |- _ ]
=> assert (eq_refl = H) by apply UIP_None; subst H
end.
Ltac inversion_option := repeat inversion_option_step.